WO2001006954A1 - Tapered self-expanding stent - Google Patents

Tapered self-expanding stent Download PDF

Info

Publication number
WO2001006954A1
WO2001006954A1 PCT/US2000/040289 US0040289W WO0106954A1 WO 2001006954 A1 WO2001006954 A1 WO 2001006954A1 US 0040289 W US0040289 W US 0040289W WO 0106954 A1 WO0106954 A1 WO 0106954A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
cylindrical elements
cylindrical element
adjacent cylindrical
longitudinally flexible
Prior art date
Application number
PCT/US2000/040289
Other languages
French (fr)
Inventor
Daniel L. Cox
Kent C.B. Stalker
Joe Ii Ventura
Original Assignee
Advanced Cardiovascular Systems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Cardiovascular Systems, Inc. filed Critical Advanced Cardiovascular Systems, Inc.
Priority to AU71329/00A priority Critical patent/AU7132900A/en
Publication of WO2001006954A1 publication Critical patent/WO2001006954A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91516Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a change in frequency along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91525Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91575Adjacent bands being connected to each other connected peak to trough
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0013Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter

Definitions

  • the present invention relates to expandable endoprosthesis devices, generally known as stents, which are designed for implantation in a patient's body lumen, such as blood vessels, to maintain the patency thereof.
  • stents which are designed for implantation in a patient's body lumen, such as blood vessels, to maintain the patency thereof.
  • PTCA percutaneous transluminal coronary angioplasty
  • PTA percutaneous transluminal angioplasty
  • Stents are typically implanted within a vessel in a contracted state and expanded when in place in the vessel in order to maintain patency of the vessel to allow fluid flow through the vessel.
  • implantation of such stents is accomplished by mounting the stent on the balloon portion of a catheter, positioning the stent in a body lumen at the stenosis, and expanding the stent to an expanded state by inflation of the balloon within the stent. The stent can then be left in place by deflating the balloon and removing the catheter.
  • a bifurcated stenosis typically can occur in the carotid or coronary arteries at the carina between adjoining arterial branches and around the ostia of the adjoining arterial branches.
  • Employment of a stent for repair of vessels that are diseased at a bifurcation requires that the stent must, without compromising blood flow, overlay the entire circumference of the ostium to a diseased portion and extend to a point within and beyond the diseased portion.
  • lesions may form along the side walls of the blood vessel and at the carina of the bifurcation, not only contributing to stenosis of a main branch and side branch of the bifurcation, but also interfering with the normal rheology of flow at the bifurcation to create eddy currents that can contribute to formation of thrombosis.
  • a conventional stent might be placed so that a portion of the stent extends into the pathway of blood flow to a side branch of the bifurcation or extend so far as to completely cover the path of blood flow in a side branch.
  • the conventional stent might alternatively be placed proximal to, but not entirely overlaying the circumference of the ostium to the diseased portion. Such placement of the conventional stent results in a bifurcation that is not completely repaired. Also, where the stent does not overlay the entire circumference of the ostium to the diseased portion, the stent fails to completely repair the bifurcated vessel.
  • the side-branch vessel is first stented so that the stent protrudes into the main vessel.
  • a dilatation is then performed in the main vessel to open and stretch the stent struts extending across the lumen from the side-branch vessel.
  • the main-vessel stent is implanted so that its proximal end overlaps with the side-branch vessel.
  • the structure of the deployed stent must be recrossed with a wire by trial and error.
  • a stent is implanted in the main vessel with a side-branch stent partially extending into the main vessel creating a double-barreled lumen of the two stents in the main vessel proximal to the bifurcation.
  • Another prior art approach includes a so-called “trouser legs and seat” approach, which includes implanting three stents, one stent in the side-branch vessel, a second stent in a distal portion of the main vessel, and a third stent, or a proximal stent, in the main vessel just proximal to the bifurcation.
  • stents it is important for stents to be sized correctly for the vessel into which they are implanted. In some situations, like the carotid artery, it is desirable to place a single stent from the common carotid artery to the internal carotid artery. The diameter is about 2 to 3 mm smaller in the internal carotid artery, so it is difficult to size a stent appropriately for both vessels. A stent that is designed for a large diameter vessel is not optimal for a small diameter vessel, and vice versa.
  • the present invention is directed to a tapered stent.
  • the diameter of the stent varies along the length of the stent.
  • tapered stent designs are known in the art.
  • PCT Publication No. W098/53759 entitled “Carotid Stent,” by Jay S. Yadav discloses a stent for cardiovascular application wherein a substantially cylindrical tubular member tapers from its proximal end to its distal end. This type of tapered stent is intended for stenting the common carotid bifurcation or the proximal internal carotid artery.
  • PCT Publication No. W098/34668 entitled “Non-Foreshortening Intraluminal Prosthesis" by Gary S. Roubin et al. discloses an intraluminal prosthesis provided with a plurality of annular elements.
  • the stent may be provided with varying flexibility along its length and/or circumference, and may include segments that have different diameters. The differing diameters may be accomplished by providing the stent in a tapered or a stepped configuration.
  • tapered stents include U.S. Patent No. 5,222,964 to Cooper, disclosing a tapered stent made of resilient material for interconnecting portions of a Fallopian tube after a resection procedure.
  • U.S. Patent No. 5,180,392 to Skeie et al. discloses a prosthesis for use in joining hollow organ parts or systems wherein the prosthesis may have tapered outer ends.
  • U.S. Patent No. 4,441,215 to Kaster discloses a vascular graft of a synthetic material including a tubular member having a braided inner layer and a compliant outer covering layer. This synthetic vascular graft can have an increasing or decreasing taper.
  • Flamingo Wallstent Another tapered stent is known as the "Flamingo Wallstent.”
  • the Flamingo Wallstent is intended for esophageal malignant strictures. It is partially covered at the ends to protect against tissue injury, and inside to prevent food impaction and tumor growth.
  • a major drawback for the Flamingo Wallstent design is its inability to be accurately placed due to unpredictable foreshortening after deployment.
  • the present invention is directed to a stent having a taper along its length and having varying radial strength as a function of the diameter of the stent and spacing between the struts.
  • the present invention is directed to a longitudinally flexible stent for implanting in a body lumen and expandable from a contracted condition to an expanded condition, comprising a plurality of adjacent cylindrical elements, each cylindrical element having a circumference extending around a longitudinal axis and being substantially independently expandable in the radial direction, wherein the plurality of adjacent cylindrical elements are arranged in alignment along the longitudinal stent axis, and wherein a plurality of cylindrical elements include sequentially increasing diameters to create a tapered profile, with each cylindrical element formed from struts arranged in a serpentine wave pattern; and a plurality of interconnecting members extending between the adjacent cylindrical elements and connecting the adjacent cylindrical elements to one another; wherein the struts and interconnecting members at the tapered profile increase in length along
  • Such a tapered stent with smaller diameters as well as larger diameters has several benefits.
  • a stent having a smaller diameter can have greater radial strength, better coverage of the vessel wall, and less foreshortening than is achievable with a stent having larger diameters.
  • Obtaining these optimized features is especially important for the carotid application in which the internal carotid artery has the most significant disease, but the common carotid artery diameter dictates many of the design requirements of the stent.
  • carotid stent procedures frequently involve the treatment of a diseased artery where plaque extends across the bifurcation between the common and internal carotid arteries.
  • Selection of an appropriate stent diameter becomes precarious because the internal carotid artery tends to be smaller than the parent common carotid artery.
  • the stent selected must be large enough to treat the common carotid artery, but using a stent sized to the common carotid artery can require implantation of a stent much larger than the nominal diameter of the internal carotid artery. This stent diameter mismatch and concomitant oversizing could lead to vessel injury and poor clinical results.
  • each end of the stent has preferably been designed specifically for the appropriate diameter range. That is, when deployed, the smaller diameter end of the stent supports the diseased portion of the internal carotid artery while the larger diameter end of the tapered stent supports the large diameter of the common carotid artery.
  • the present invention can be made from a shape-memory metallic alloy such as Nitinol or superelastic Nitinol to create a self-expanding stent.
  • the present invention stent can be balloon expanded.
  • the shape of the balloon can be used to control the final shape of the stent.
  • a balloon with more than one diameter can be used to expand a stent having two final diameters.
  • Separate balloons can also be used to post dilate the stent with a step in its diameter.
  • the present invention tapered stent presents a logical solution for carotid stenting across the bifurcation.
  • the varying stent diameter accomplishes at least two goals: it allows adequate treatment of a lesion in both the common and internal carotid while maintaining a suitable stent-to-artery ratio for each vessel.
  • FIGURE 1 is a side elevational view depicting the present invention stent and a deployment system as the stent is carried through a vessel.
  • FIG. 2 is a top plan view of a handle of the deployment system.
  • FIG. 3 is a cross-sectional view of the present invention tapered stent after deployment at the bifurcation between the common and internal carotid arteries.
  • FIG. 4 is a perspective view of a preferred embodiment of the present invention tapered stent in its expanded mode.
  • FIG. 5 is a plan view of a flattened strut pattern of the present invention tapered stent in its unexpanded mode.
  • FIG. 6 is a plan view of a flattened strut pattern of an alternative embodiment tapered stent in its unexpanded mode.
  • the present invention is directed to a tapered stent with a strut pattern that changes the spacing between struts to achieve various design objectives. While the present invention is described in detail as applied to the carotid artery of a patient, those skilled in the art will appreciate that the present invention can also be used in other body lumens as well.
  • FIG. 1 is a side elevational view and partial sectional view of self-expanding stent 10 of the present invention as carried inside stent delivery system 12.
  • Stent delivery system 12 includes elongated catheter body 14 for delivering and deploying stent 10 which is shown in the compressed or unexpanded state. As seen in FIG. 1, elongated catheter body 14 is positioned within artery 16 or similar type vessel.
  • Stent delivery system 12 further includes housing assembly 18 attached to proximal end 20 of delivery catheter 14. Housing assembly 18 is used to manually deploy compressed stent 10 mounted at distal end 22 of delivery catheter 14.
  • Delivery catheter 14 further includes inner tubular member 24 that extends within outer tubular member 26 in a coaxial arrangement.
  • Outer tubular member 26 has a proximal end attached to pull-back handle 28 that is designed to move along the longitudinal axis of delivery catheter 14 while supported by base 30 of housing assembly 18.
  • pull-back handle 28 When pull-back handle 28 is translated in the proximal direction, outer tubular member 26 is likewise translated in the proximal direction exposing compressed stent 10. Because base 30 of housing assembly 18 remains stationary, inner tubular member 24 also remains stationary during the stent deployment. Applying tensile force to the shaft of outer tubular member 26 during stent deployment creates an equal and opposite compressive force on inner tubular member
  • Inner tubular member 24 possesses sufficient column strength to prevent buckling or deformation during deployment.
  • Tip assembly 36 having a preferably tapered profile is positioned at distal end 22 of delivery catheter 14 to help cross any areas of occlusions in the diseased artery.
  • Tip assembly 36 is made from a small segment of preferably stainless steel hypotube that has internally tapered wound coil 38 welded to the distal end of tip assembly 36.
  • An optional radiopaque tungsten element 40 is placed at the distal end of tip assembly 36.
  • An opening at the distal end of tip assembly 36 permits guidewire 42 to advance therethrough thereby allowing delivery catheter 14 to track into the diseased artery.
  • Other aspects of the delivery system are disclosed in co-pending patent application serial no.
  • FIG. 3 provides a cross-sectional view of the present invention as deployed in bifurcation 44 between common carotid artery 46 and internal carotid artery 48.
  • FIGS. 4 and 5 show expanded and contracted states of stent 10, respectively.
  • stent 10 is constructed from a plurality of nested cylindrical elements 52 arranged coaxially along a common longitudinal stent axis to assume a tubular form. Adjacent cylindrical elements 52 are joined at predetermined circumferential locations by interconnecting members 54 so that each cylindrical element 52 is independently expandable. In the preferred embodiment shown in FIGS. 4 and 5, interconnecting members 54 are aligned axially.
  • each cylindrical element 52 has a generally serpentine wave strut pattern constructed from repeating patterns of upright and inverted V's 56. Connecting upright and inverted V's 56 are strut arms 58. Each strut arm 58 is generally straight but may include shoulder 60. Optional shoulder 60 is included in strut arm 58 in order to squeeze the stent to a smaller profile in the delivery system. In other words, inclusion of shoulders 60 in strut arms 58 permits tighter packing of the struts of the stent. This leads to better coverage of the vessel wall. Conversely, if strut arms 58 were straight, the vessel coverage by the stent struts is diminished.
  • Each cylindrical element 52 has a longitudinal dimension or length as measured from peak 84 of one inverted V to valley 86 of the next upright V.
  • Cylindrical elements 52 are described as nested to mean that those lengths of adjacent cylindrical elements 52 overlap each other.
  • peaks 84 of inverted V's 56 of one cylindrical element 52 lie within the open areas of peaks 84 of inverted V's 56 of adjacent cylindrical elements 52.
  • valleys 86 of upright V's 56 of one cylindrical element 52 lie within the open areas of valleys 86 of upright V's of an adjacent cylindrical element 52.
  • This preferred strut arrangement could be described as a loose herringbone pattern.
  • the lengths of interconnecting members 54 and strut arms 58 increase from first end 64 toward second end 62. Looking at it another way, the strut pattern under this configuration becomes more dense toward first end 64 due to the shorter struts.
  • Taper 82 is not created by the varying strut arm lengths 58. Rather, the strut arm lengths 58 is enabled by the taper.
  • the tapering 82 is dictated by the expansion process, that is, the shape of the expansion mandrel when the stent is fabricated. Again, the tapered profile is best seen in the expanded mode of FIG. 4.
  • taper 82 is positioned at a center portion of stent 10.
  • taper 82 can be relocated as needed along the length of stent 10.
  • Taper 82 may be continuous or discrete, and include changes in shape or dimension, with small flares, or tapers only at the ends of the stent.
  • some types of tapers contemplated in the present invention tapered stent 10 include a step taper as seen in the expanded state of stent 10 in FIG. 4. That is, stent 10 has first end 64 with cylindrical elements 52 at that end having a small constant diameter; second end 62 with cylindrical elements 52 at that end having a large constant diameter; and center section 82 with sequentially changing diameters in cylindrical elements 52 along the longitudinal stent axis to achieve the step taper.
  • the length and location of center section 82 containing the taper can be changed as necessary to accommodate the specific anatomy of the patient.
  • the present invention in an alternative embodiment (not shown) further contemplates straight conical tapers; that is, the stent has an angled profile from one end to the opposite end.
  • the shape of the taper in the step diameter change can be varied from straight to parabolic to other shapes as well.
  • Many physical parameters of the present invention stent can be changed to achieve specific engineering objectives. For example, the density of the strut pattern can be adjusted as needed by varying the lengths of strut arms 58 and interconnecting members 54 to affect the amount of open areas.
  • the included angles of the peaks and valleys of inverted and upright V's 56 can be changed to affect strut density. Increasing the number of inverted and upright V's 56 in a given cylindrical element 52 can also increase strut density.
  • the degree of nesting can be adjusted by only changing the lengths of interconnecting members 54. Shortening interconnecting members 54, for example, would result in a more tightly packed or nested strut pattern. Changing the phase of inverted and upright V's 56 in one cylindrical element 52 to the next can also affect the amount of open space in stent 10, its flexibility, vessel coverage, etc.
  • stent 10 can be varied by increasing or decreasing strut arm lengths 58 and interconnecting member lengths 54, by using more or fewer cylindrical elements 52, and by changing the included angles of the inverted and upright V's 56.
  • the present invention stent is preferably fabricated through manufacturing processes known in the art appropriate for pseudoelastic Nitinol.
  • Other stent materials known in the art, such as stainless steel, are contemplated but not explicitly described here.
  • the stent strut pattern is laser cut out of a tube stock of pseudoelastic Nitinol.
  • any scale on the surface of the material is removed by bead blast or acid wash.
  • the stent is made from Nitinol, it is expanded on an expansion mandrel and heat set.
  • the heat set imparts the shape memory to the alloy, and preferably occurs at approximately 500 to 550 degrees Celsius.
  • the stent is quenched in water. Both the heat set and quenching help control the transformation temperature between martensite and austenite of the Nitinol material.
  • the expansion and heat set cycle is performed in stages, sometimes up to five steps, to avoid damaging the stent. The last one or two steps are performed on tapered mandrels to impart the tapered profile.
  • the stent has inherent resilience, which conforms the stent profile to the profile of the tapered mandrels at each stage.
  • the Nitinol stent is electropolished.
  • the electropolish solution is a methanol based, acidic mixture.
  • the mixture consists of 465 ml absolution methanol, 37.5 mil sulfuric acid (>96.5 percent), and 12.5 ml hydrocloric acid (saturated), which combined produces approximately 500 ml of solution.
  • the stent is placed in an electropolish fixture preferably constructed from four round, Nitinol wires acting as anodes to hold the stent.
  • the four anode wires are placed around the circumference of the stent, parallel to the stent' s longitudinal axis.
  • the negatively charged center cathode is used to complete the circuit in the solution to polish the inside diameter of the stent.
  • a curved sheath cathode made of platinum mesh is located parallel to the longitudinal stent axis and partially surrounding the Nitinol wires.
  • the curved sheath cathode is used to complete the circuit in the solution to polish the outside diameter of the stent.
  • the curved sheath is placed just below the four holding anodes, wherein the distance between the sheath and the stent is determined by the size of the part needed to be polished.
  • the fixture and stent positioned thereon are immersed in the solution described above and an electrical current is applied to the circuit.
  • Sixth the stent is loaded in a delivery system. The end result is a stent with varying diameter along its length as illustrated in FIGS. 4 and 5.
  • a tapered stent such as in the present invention presents a logical solution for carotid stenting across the bifurcation.
  • the varying stent diameter allows adequate treatment of a lesion in both the common and internal carotid arteries, while maintaining a suitable stent-to-artery ratio for each vessel.
  • a tapered stent can be applied to other parts of the vascular system where a bifurcation is present such as the coronary arteries and relevant areas where peripheral vascular disease may exist. Tapered stent diameters, lengths, flexibility, radiopacity, and radial hoop strength are all features that would be optimized depending on the expected application of the present invention stent.
  • FIG. 6 provides a flattened, plan view strut pattern of an alternative embodiment stent 66.
  • Stent 66 is preferably constructed from a plurality of cylindrical elements 68 arranged along a common, longitudinal stent axis to assume a tubular form. Each cylindrical element has decreasing lengths from first end 70 to second end 72 of stent 66, similar to the embodiment depicted in FIGS. 4 and 5.
  • each cylindrical element 68 is formed from struts arranged in a repeating serpentine wave patterns.
  • Interconnecting members 74 join adjacent cylindrical elements 68.
  • the serpentine wave pattern is made from alternating U's and W's joined by straight strut arms 80.
  • Each interconnecting member 74 joins W's 78 to U's 77.
  • Formation of the taper at any portion along the length of stent 66 can be achieved through processing steps described above.
  • FIG. 6 does not show the taper because stent 66 is in the unexpanded state.
  • the shorter cylindrical elements 68 near second end 72 improve the radial strength and also increase vessel coverage.
  • Opposite second end 72 has longer straight strut arms 80 to allow expansion to larger diameters although the radial force and vessel coverage are reduced.
  • the stent struts could be varied in width or thickness.
  • the material processing conditions could be varied to impart different engineering characteristics.
  • the number of repeating patterns that form the serpentine wave pattern around the circumference of cylindrical element 68 could be changed.
  • the number of cylindrical elements 68 and the number of interconnecting elements 74 may be varied to change flexibility and other typical design parameters. While the present invention has been illustrated and described in terms of its use as carotid stents, it will be apparent to those skilled in the art that the present invention stent can be used in other instances in all lumens in the body.
  • the present invention stent has the novel feature of self-expansion to a large diameter while retaining its structural integrity, it is particularly well suited for implantation in almost any vessel where such devices are used. This feature, coupled with limited longitudinal foreshortening of the stent when it is radially expanded, provide a highly desirable support member for all vessels in the body. Other modifications and improvements may be made without departing from the scope of the present invention.

Abstract

A self-expanding, tapered profile stent for implantation in a body lumen, such as an artery, is disclosed. The stent is constructed of a plurality of radially expandable cylindrical elements generally aligned on a common longitudinal stent axis and interconnected by one or more interconnecting members placed so that the stent is flexible in the longitudinal direction. The lengths of the cylindrical elements increase from one end of the stent to the opposite end by increasing the lengths of the struts and the lengths of the interconnecting members. Each cylindrical element is formed from repeating patterns of upright V's and inverted V's connected by straight strut arms with shoulders to create an overall serpentine wave pattern around the circumference. A step, continuous, parabolic, or curved taper in the stent can be imparted by using an expansion mandrel and applying deforming forces to the stent. The stent is made from pseudoelastic and shape memory alloys.

Description

TAPERED SELF-EXPANDING STENT
BACKGROUND OF THE INVENTION
The present invention relates to expandable endoprosthesis devices, generally known as stents, which are designed for implantation in a patient's body lumen, such as blood vessels, to maintain the patency thereof. These devices are particularly useful in the treatment and repair of blood vessels after a stenosis has been compressed by percutaneous transluminal coronary angioplasty (PTCA), percutaneous transluminal angioplasty (PTA), or removed by atherectomy or other means.
Stents are typically implanted within a vessel in a contracted state and expanded when in place in the vessel in order to maintain patency of the vessel to allow fluid flow through the vessel. Ideally, implantation of such stents is accomplished by mounting the stent on the balloon portion of a catheter, positioning the stent in a body lumen at the stenosis, and expanding the stent to an expanded state by inflation of the balloon within the stent. The stent can then be left in place by deflating the balloon and removing the catheter.
A bifurcated stenosis typically can occur in the carotid or coronary arteries at the carina between adjoining arterial branches and around the ostia of the adjoining arterial branches. Employment of a stent for repair of vessels that are diseased at a bifurcation requires that the stent must, without compromising blood flow, overlay the entire circumference of the ostium to a diseased portion and extend to a point within and beyond the diseased portion. Particularly at a bifurcation, lesions may form along the side walls of the blood vessel and at the carina of the bifurcation, not only contributing to stenosis of a main branch and side branch of the bifurcation, but also interfering with the normal rheology of flow at the bifurcation to create eddy currents that can contribute to formation of thrombosis.
A conventional stent might be placed so that a portion of the stent extends into the pathway of blood flow to a side branch of the bifurcation or extend so far as to completely cover the path of blood flow in a side branch. The conventional stent might alternatively be placed proximal to, but not entirely overlaying the circumference of the ostium to the diseased portion. Such placement of the conventional stent results in a bifurcation that is not completely repaired. Also, where the stent does not overlay the entire circumference of the ostium to the diseased portion, the stent fails to completely repair the bifurcated vessel.
In a conventional method for treating bifurcated vessels, the side-branch vessel is first stented so that the stent protrudes into the main vessel. A dilatation is then performed in the main vessel to open and stretch the stent struts extending across the lumen from the side-branch vessel. Thereafter, the main-vessel stent is implanted so that its proximal end overlaps with the side-branch vessel. However, the structure of the deployed stent must be recrossed with a wire by trial and error.
In another prior art procedure, known as "kissing" stents, a stent is implanted in the main vessel with a side-branch stent partially extending into the main vessel creating a double-barreled lumen of the two stents in the main vessel proximal to the bifurcation. Another prior art approach includes a so-called "trouser legs and seat" approach, which includes implanting three stents, one stent in the side-branch vessel, a second stent in a distal portion of the main vessel, and a third stent, or a proximal stent, in the main vessel just proximal to the bifurcation. In addition to problems encountered in treating disease involving bifurcations for vessel origins, difficulty is also encountered in treating disease confined to a vessel segment but extending very close to a distal branch point or bifurcation which is not diseased and does not require treatment. In such circumstances, very precise placement of a stent covering the distal segment, but not extending into the ostium of the distal side-branch, may be difficult or impossible.
It is important for stents to be sized correctly for the vessel into which they are implanted. In some situations, like the carotid artery, it is desirable to place a single stent from the common carotid artery to the internal carotid artery. The diameter is about 2 to 3 mm smaller in the internal carotid artery, so it is difficult to size a stent appropriately for both vessels. A stent that is designed for a large diameter vessel is not optimal for a small diameter vessel, and vice versa.
To address the deployment problems at a bifurcation and to address the stent sizing problems, the present invention is directed to a tapered stent. With such a tapered stent, the diameter of the stent varies along the length of the stent.
Some tapered stent designs are known in the art. For example, PCT Publication No. W098/53759, entitled "Carotid Stent," by Jay S. Yadav discloses a stent for cardiovascular application wherein a substantially cylindrical tubular member tapers from its proximal end to its distal end. This type of tapered stent is intended for stenting the common carotid bifurcation or the proximal internal carotid artery.
PCT Publication No. W098/34668, entitled "Non-Foreshortening Intraluminal Prosthesis" by Gary S. Roubin et al. discloses an intraluminal prosthesis provided with a plurality of annular elements. The stent may be provided with varying flexibility along its length and/or circumference, and may include segments that have different diameters. The differing diameters may be accomplished by providing the stent in a tapered or a stepped configuration.
Other tapered stents include U.S. Patent No. 5,222,964 to Cooper, disclosing a tapered stent made of resilient material for interconnecting portions of a Fallopian tube after a resection procedure. U.S. Patent No. 5,180,392 to Skeie et al. discloses a prosthesis for use in joining hollow organ parts or systems wherein the prosthesis may have tapered outer ends. U.S. Patent No. 4,441,215 to Kaster discloses a vascular graft of a synthetic material including a tubular member having a braided inner layer and a compliant outer covering layer. This synthetic vascular graft can have an increasing or decreasing taper.
Another tapered stent is known as the "Flamingo Wallstent." The Flamingo Wallstent is intended for esophageal malignant strictures. It is partially covered at the ends to protect against tissue injury, and inside to prevent food impaction and tumor growth. A major drawback for the Flamingo Wallstent design is its inability to be accurately placed due to unpredictable foreshortening after deployment.
There is, however, still a need for an improved tapered stent for deployment in, for example, the common carotid bifurcation or the proximal internal carotid artery. These areas are the most common sites for cerebrovascular atherosclerotic disease.
SUMMARY OF THE INVENTION
To address the aforementioned problems, the present invention is directed to a stent having a taper along its length and having varying radial strength as a function of the diameter of the stent and spacing between the struts. In a preferred embodiment, the present invention is directed to a longitudinally flexible stent for implanting in a body lumen and expandable from a contracted condition to an expanded condition, comprising a plurality of adjacent cylindrical elements, each cylindrical element having a circumference extending around a longitudinal axis and being substantially independently expandable in the radial direction, wherein the plurality of adjacent cylindrical elements are arranged in alignment along the longitudinal stent axis, and wherein a plurality of cylindrical elements include sequentially increasing diameters to create a tapered profile, with each cylindrical element formed from struts arranged in a serpentine wave pattern; and a plurality of interconnecting members extending between the adjacent cylindrical elements and connecting the adjacent cylindrical elements to one another; wherein the struts and interconnecting members at the tapered profile increase in length along the longitudinal stent axis.
Such a tapered stent with smaller diameters as well as larger diameters has several benefits. A stent having a smaller diameter can have greater radial strength, better coverage of the vessel wall, and less foreshortening than is achievable with a stent having larger diameters. Obtaining these optimized features is especially important for the carotid application in which the internal carotid artery has the most significant disease, but the common carotid artery diameter dictates many of the design requirements of the stent.
As mentioned earlier, carotid stent procedures frequently involve the treatment of a diseased artery where plaque extends across the bifurcation between the common and internal carotid arteries. Selection of an appropriate stent diameter becomes precarious because the internal carotid artery tends to be smaller than the parent common carotid artery. The stent selected must be large enough to treat the common carotid artery, but using a stent sized to the common carotid artery can require implantation of a stent much larger than the nominal diameter of the internal carotid artery. This stent diameter mismatch and concomitant oversizing could lead to vessel injury and poor clinical results.
In the present invention, each end of the stent has preferably been designed specifically for the appropriate diameter range. That is, when deployed, the smaller diameter end of the stent supports the diseased portion of the internal carotid artery while the larger diameter end of the tapered stent supports the large diameter of the common carotid artery.
The present invention can be made from a shape-memory metallic alloy such as Nitinol or superelastic Nitinol to create a self-expanding stent. Alternatively, the present invention stent can be balloon expanded. With a balloon expandable stent, the shape of the balloon can be used to control the final shape of the stent. For example, a balloon with more than one diameter can be used to expand a stent having two final diameters. Separate balloons can also be used to post dilate the stent with a step in its diameter.
The present invention tapered stent presents a logical solution for carotid stenting across the bifurcation. The varying stent diameter accomplishes at least two goals: it allows adequate treatment of a lesion in both the common and internal carotid while maintaining a suitable stent-to-artery ratio for each vessel. Other features and advantages of the present invention will become more apparent from the following detailed description of the invention, when taken in conjunction with the accompanying exemplary drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGURE 1 is a side elevational view depicting the present invention stent and a deployment system as the stent is carried through a vessel.
FIG. 2 is a top plan view of a handle of the deployment system.
FIG. 3 is a cross-sectional view of the present invention tapered stent after deployment at the bifurcation between the common and internal carotid arteries.
FIG. 4 is a perspective view of a preferred embodiment of the present invention tapered stent in its expanded mode.
FIG. 5 is a plan view of a flattened strut pattern of the present invention tapered stent in its unexpanded mode.
FIG. 6 is a plan view of a flattened strut pattern of an alternative embodiment tapered stent in its unexpanded mode.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is directed to a tapered stent with a strut pattern that changes the spacing between struts to achieve various design objectives. While the present invention is described in detail as applied to the carotid artery of a patient, those skilled in the art will appreciate that the present invention can also be used in other body lumens as well.
FIG. 1 is a side elevational view and partial sectional view of self-expanding stent 10 of the present invention as carried inside stent delivery system 12. Stent delivery system 12 includes elongated catheter body 14 for delivering and deploying stent 10 which is shown in the compressed or unexpanded state. As seen in FIG. 1, elongated catheter body 14 is positioned within artery 16 or similar type vessel. Stent delivery system 12 further includes housing assembly 18 attached to proximal end 20 of delivery catheter 14. Housing assembly 18 is used to manually deploy compressed stent 10 mounted at distal end 22 of delivery catheter 14. Delivery catheter 14 further includes inner tubular member 24 that extends within outer tubular member 26 in a coaxial arrangement.
Outer tubular member 26 has a proximal end attached to pull-back handle 28 that is designed to move along the longitudinal axis of delivery catheter 14 while supported by base 30 of housing assembly 18. When pull-back handle 28 is translated in the proximal direction, outer tubular member 26 is likewise translated in the proximal direction exposing compressed stent 10. Because base 30 of housing assembly 18 remains stationary, inner tubular member 24 also remains stationary during the stent deployment. Applying tensile force to the shaft of outer tubular member 26 during stent deployment creates an equal and opposite compressive force on inner tubular member
24. Inner tubular member 24 possesses sufficient column strength to prevent buckling or deformation during deployment.
Distal end 32 of inner tubular member 24 has stent holder 34 upon which compressed stent 10 is mounted. Tip assembly 36 having a preferably tapered profile is positioned at distal end 22 of delivery catheter 14 to help cross any areas of occlusions in the diseased artery. Tip assembly 36 is made from a small segment of preferably stainless steel hypotube that has internally tapered wound coil 38 welded to the distal end of tip assembly 36. An optional radiopaque tungsten element 40 is placed at the distal end of tip assembly 36. An opening at the distal end of tip assembly 36 permits guidewire 42 to advance therethrough thereby allowing delivery catheter 14 to track into the diseased artery. Other aspects of the delivery system are disclosed in co-pending patent application serial no. 09/313,780, filed May 17, 1999, entitled "Self-Expanding Stent with Enhanced Delivery Precision and Stent Delivery System," whose entire contents are hereby incorporated by reference. Although this delivery system is used in conjunction with the present invention self-expanding stent, other types of delivery systems are contemplated. For example, the present invention stent may be made of stainless steel or tantalum for example, and may be deployed on a balloon catheter delivery system and balloon expanded at the delivery site. Such balloon delivery systems are well known in the art. FIG. 3 provides a cross-sectional view of the present invention as deployed in bifurcation 44 between common carotid artery 46 and internal carotid artery 48. It is clear that selection of an appropriate stent diameter becomes important because internal carotid artery 48 tends to be smaller than the parent common carotid artery 46. Furthermore, the denser strut pattern, described below, giving greater hoop strength of stent 10 is important at this particular location to support diseased regions 50. As seen in FIG. 3, outer tubular member 26 has been withdrawn in the proximal direction exposing stent 10 which self-expands. This is accomplished by fabricating stent 10 from a highly resilient alloy such as superelastic Nitinol or other spring-like materials known in the art.
FIGS. 4 and 5 show expanded and contracted states of stent 10, respectively. As seen in these figures, the preferred embodiment of the present invention stent 10 is constructed from a plurality of nested cylindrical elements 52 arranged coaxially along a common longitudinal stent axis to assume a tubular form. Adjacent cylindrical elements 52 are joined at predetermined circumferential locations by interconnecting members 54 so that each cylindrical element 52 is independently expandable. In the preferred embodiment shown in FIGS. 4 and 5, interconnecting members 54 are aligned axially.
As best seen in FIG. 4, each cylindrical element 52 has a generally serpentine wave strut pattern constructed from repeating patterns of upright and inverted V's 56. Connecting upright and inverted V's 56 are strut arms 58. Each strut arm 58 is generally straight but may include shoulder 60. Optional shoulder 60 is included in strut arm 58 in order to squeeze the stent to a smaller profile in the delivery system. In other words, inclusion of shoulders 60 in strut arms 58 permits tighter packing of the struts of the stent. This leads to better coverage of the vessel wall. Conversely, if strut arms 58 were straight, the vessel coverage by the stent struts is diminished.
Each cylindrical element 52 has a longitudinal dimension or length as measured from peak 84 of one inverted V to valley 86 of the next upright V. Cylindrical elements 52 are described as nested to mean that those lengths of adjacent cylindrical elements 52 overlap each other. Thus, peaks 84 of inverted V's 56 of one cylindrical element 52 lie within the open areas of peaks 84 of inverted V's 56 of adjacent cylindrical elements 52. In a similar fashion, valleys 86 of upright V's 56 of one cylindrical element 52 lie within the open areas of valleys 86 of upright V's of an adjacent cylindrical element 52. This preferred strut arrangement could be described as a loose herringbone pattern.
As best seen in FIG. 4, the lengths of interconnecting members 54 and strut arms 58 increase from first end 64 toward second end 62. Looking at it another way, the strut pattern under this configuration becomes more dense toward first end 64 due to the shorter struts. Taper 82, however, is not created by the varying strut arm lengths 58. Rather, the strut arm lengths 58 is enabled by the taper. The tapering 82 is dictated by the expansion process, that is, the shape of the expansion mandrel when the stent is fabricated. Again, the tapered profile is best seen in the expanded mode of FIG. 4. Of course, by imparting the length and angle of taper 82 as well as its location on the expansion mandrel, the shape and profiles of the individual strut arms 58 and interconnecting members 54 are likewise formed. In the embodiment shown in FIG. 4, taper 82 is positioned at a center portion of stent 10. Naturally, taper 82 can be relocated as needed along the length of stent 10.
Taper 82 may be continuous or discrete, and include changes in shape or dimension, with small flares, or tapers only at the ends of the stent. For instance, some types of tapers contemplated in the present invention tapered stent 10 include a step taper as seen in the expanded state of stent 10 in FIG. 4. That is, stent 10 has first end 64 with cylindrical elements 52 at that end having a small constant diameter; second end 62 with cylindrical elements 52 at that end having a large constant diameter; and center section 82 with sequentially changing diameters in cylindrical elements 52 along the longitudinal stent axis to achieve the step taper. Of course, the length and location of center section 82 containing the taper can be changed as necessary to accommodate the specific anatomy of the patient.
The present invention in an alternative embodiment (not shown) further contemplates straight conical tapers; that is, the stent has an angled profile from one end to the opposite end. The shape of the taper in the step diameter change can be varied from straight to parabolic to other shapes as well. Many physical parameters of the present invention stent can be changed to achieve specific engineering objectives. For example, the density of the strut pattern can be adjusted as needed by varying the lengths of strut arms 58 and interconnecting members 54 to affect the amount of open areas. The included angles of the peaks and valleys of inverted and upright V's 56 can be changed to affect strut density. Increasing the number of inverted and upright V's 56 in a given cylindrical element 52 can also increase strut density. Furthermore, the degree of nesting can be adjusted by only changing the lengths of interconnecting members 54. Shortening interconnecting members 54, for example, would result in a more tightly packed or nested strut pattern. Changing the phase of inverted and upright V's 56 in one cylindrical element 52 to the next can also affect the amount of open space in stent 10, its flexibility, vessel coverage, etc.
Adding or decreasing the number of interconnecting members 54 joining adjacent cylindrical elements 52, positioning them at specific locations around the circumference, and aligning them in a row such as that shown in FIGS. 4 and 5 are all different methods of affecting the stent's hoop strength, foreshortening, flexibility, recoil, and other engineering characteristics. The length of stent 10 can be varied by increasing or decreasing strut arm lengths 58 and interconnecting member lengths 54, by using more or fewer cylindrical elements 52, and by changing the included angles of the inverted and upright V's 56.
In general, the present invention stent is preferably fabricated through manufacturing processes known in the art appropriate for pseudoelastic Nitinol. Other stent materials known in the art, such as stainless steel, are contemplated but not explicitly described here.
First, in the preferred process, the stent strut pattern is laser cut out of a tube stock of pseudoelastic Nitinol. Second, any scale on the surface of the material is removed by bead blast or acid wash.
Third, because the stent is made from Nitinol, it is expanded on an expansion mandrel and heat set. The heat set imparts the shape memory to the alloy, and preferably occurs at approximately 500 to 550 degrees Celsius. After heat set, the stent is quenched in water. Both the heat set and quenching help control the transformation temperature between martensite and austenite of the Nitinol material. Furthermore, the expansion and heat set cycle is performed in stages, sometimes up to five steps, to avoid damaging the stent. The last one or two steps are performed on tapered mandrels to impart the tapered profile. The stent has inherent resilience, which conforms the stent profile to the profile of the tapered mandrels at each stage. Fourth, the Nitinol stent is electropolished. Preferably, the electropolish solution is a methanol based, acidic mixture. Specifically, the mixture consists of 465 ml absolution methanol, 37.5 mil sulfuric acid (>96.5 percent), and 12.5 ml hydrocloric acid (saturated), which combined produces approximately 500 ml of solution.
The stent is placed in an electropolish fixture preferably constructed from four round, Nitinol wires acting as anodes to hold the stent. The four anode wires are placed around the circumference of the stent, parallel to the stent' s longitudinal axis. There is a center cathode made of a platinum rod. The cathode is located at the center of the four anode wires and extends through the center of the stent, parallel and coextensive with its longitudinal axis. The negatively charged center cathode is used to complete the circuit in the solution to polish the inside diameter of the stent.
A curved sheath cathode made of platinum mesh is located parallel to the longitudinal stent axis and partially surrounding the Nitinol wires. The curved sheath cathode is used to complete the circuit in the solution to polish the outside diameter of the stent. The curved sheath is placed just below the four holding anodes, wherein the distance between the sheath and the stent is determined by the size of the part needed to be polished. The fixture and stent positioned thereon are immersed in the solution described above and an electrical current is applied to the circuit. Fifth, after electropolish, the stent diameter is reduced for fitment with a delivery system. Sixth, the stent is loaded in a delivery system. The end result is a stent with varying diameter along its length as illustrated in FIGS. 4 and 5.
A tapered stent such as in the present invention presents a logical solution for carotid stenting across the bifurcation. The varying stent diameter allows adequate treatment of a lesion in both the common and internal carotid arteries, while maintaining a suitable stent-to-artery ratio for each vessel.
A tapered stent can be applied to other parts of the vascular system where a bifurcation is present such as the coronary arteries and relevant areas where peripheral vascular disease may exist. Tapered stent diameters, lengths, flexibility, radiopacity, and radial hoop strength are all features that would be optimized depending on the expected application of the present invention stent.
FIG. 6 provides a flattened, plan view strut pattern of an alternative embodiment stent 66. Stent 66 is preferably constructed from a plurality of cylindrical elements 68 arranged along a common, longitudinal stent axis to assume a tubular form. Each cylindrical element has decreasing lengths from first end 70 to second end 72 of stent 66, similar to the embodiment depicted in FIGS. 4 and 5.
In FIG. 6, each cylindrical element 68 is formed from struts arranged in a repeating serpentine wave patterns. Interconnecting members 74 join adjacent cylindrical elements 68. In this exemplary embodiment, the serpentine wave pattern is made from alternating U's and W's joined by straight strut arms 80. Each interconnecting member 74 joins W's 78 to U's 77.
Formation of the taper at any portion along the length of stent 66 can be achieved through processing steps described above. FIG. 6 does not show the taper because stent 66 is in the unexpanded state.
The shorter cylindrical elements 68 near second end 72 improve the radial strength and also increase vessel coverage. Opposite second end 72 has longer straight strut arms 80 to allow expansion to larger diameters although the radial force and vessel coverage are reduced.
Clearly, there are other parameters that could also be varied to optimize performance at each end. For example, the stent struts could be varied in width or thickness. The material processing conditions could be varied to impart different engineering characteristics. The number of repeating patterns that form the serpentine wave pattern around the circumference of cylindrical element 68 could be changed. The number of cylindrical elements 68 and the number of interconnecting elements 74 may be varied to change flexibility and other typical design parameters. While the present invention has been illustrated and described in terms of its use as carotid stents, it will be apparent to those skilled in the art that the present invention stent can be used in other instances in all lumens in the body. Since the present invention stent has the novel feature of self-expansion to a large diameter while retaining its structural integrity, it is particularly well suited for implantation in almost any vessel where such devices are used. This feature, coupled with limited longitudinal foreshortening of the stent when it is radially expanded, provide a highly desirable support member for all vessels in the body. Other modifications and improvements may be made without departing from the scope of the present invention.

Claims

CLAIMSWHAT IS CLAIMED IS:
1. A longitudinally flexible stent for implanting in a body lumen and expandable from a contracted state to an expanded state, comprising: a plurality of adjacent cylindrical elements, each cylindrical element having a circumference extending around a longitudinal stent axis and being substantially independently expandable in the radial direction, wherein each cylindrical element is formed from struts arranged in a serpentine wave pattern; wherein the plurality of adjacent cylindrical elements are arranged in alignment along the longitudinal stent axis, and wherein a plurality of cylindrical elements include sequentially increasing diameters to create a tapered profile; a plurality of interconnecting members extending between the adjacent cylindrical elements and connecting the adjacent cylindrical elements to one another; and wherein at least one of the plurality of struts and interconnecting members at the tapered profile increase in length along the longitudinal stent axis.
2. The longitudinally flexible stent of claim 1, wherein the stent includes a pseudoelastic alloy material.
3. The longitudinally flexible stent of claim 1, wherein the stent includes a shape memory alloy material.
4. The longitudinally flexible stent of claim 1, wherein the plurality of interconnecting members are aligned end to end.
5. The longitudinally flexible stent of claim 1, wherein the serpentine wave pattern of a cylindrical element further comprises a repeating strut pattern of upright V's and inverted V's.
6. The longitudinally flexible stent of claim 5, wherein the strut pattern of upright V's and inverted V's of one cylindrical element is in phase with the strut pattern of V's and inverted V's of an adjacent cylindrical element.
7. The longitudinally flexible stent of claim 6, wherein the strut pattern of upright V's and inverted V's of one cylindrical element nest into the upright V's and inverted V's of the adjacent cylindrical element.
8. The longitudinally flexible stent of claim 1, wherein the serpentine wave pattern of a cylindrical element further comprises a repeating strut pattern of U's connected to W's.
9. The longitudinally flexible stent of claim 8, wherein the serpentine wave pattern of a cylindrical element is out of phase with the serpentine wave pattern of an adjacent cylindrical element.
10. A longitudinally flexible stent for implanting in a body lumen and expandable from a contracted state to an expanded state, comprising: a plurality of adjacent cylindrical elements, each cylindrical element having a circumference extending around a longitudinal stent axis and being substantially independently expandable in the radial direction, wherein the plurality of adjacent cylindrical elements are arranged in alignment along the longitudinal stent axis and define a first end, a second and, and a center section; wherein the center section is tapered when expanded such that the first end includes a small diameter and the second end includes a large diameter; each cylindrical element formed from struts arranged in a serpentine wave pattern; a plurality of interconnecting members extending between the adjacent cylindrical elements and connecting the adjacent cylindrical elements to one another; and wherein in the expanded state of the stent, a distance between adjacent cylindrical elements increases from the first end to the second end.
11. The longitudinally flexible stent of claim 10, wherein the plurality of interconnecting members are aligned end to end.
12. The longitudinally flexible stent of claim 10, wherein the serpentine wave pattern of a cylindrical element further comprises a repeating strut pattern of upright V's and inverted V's with each upright V and inverted V including a shoulder.
13. The longitudinally flexible stent of claim 10, wherein the serpentine wave pattern of a cylindrical element further comprises a repeating strut pattern of U's connected to W's.
14. The longitudinally flexible stent of claim 10, wherein the stent includes a nickel-titanium alloy.
15. A method for providing a longitudinally flexible stent for implanting in a body lumen and expandable from a contracted state to an expanded state, the method comprising the steps of: providing a plurality of adjacent cylindrical elements, wherein each cylindrical element has a circumference extending around a longitudinal stent axis and is substantially independently expandable in the radial direction; arranging the plurality of adjacent cylindrical elements in alignment along the longitudinal stent axis to define a first end, a second end, and a center section; providing a tapered profile in the center section when expanded by providing small diameter cylindrical elements in the first end and gradually increasing the diameters toward the second end; forming a serpentine wave pattern in each cylindrical element; providing a plurality of interconnecting members extending between the adjacent cylindrical elements; connecting the adjacent cylindrical elements to one another using the interconnecting members; and wherein when the stent is in the expanded state, a distance between adjacent cylindrical elements increases from the first end toward the second end.
16. The method of claim 15, wherein the step of forming the serpentine wave pattern further comprises forming a repeating strut pattern of upright V's and inverted V's.
17. The method of claim 16, wherein the step of forming the serpentine wave pattern further comprises nesting the upright V's and inverted V's of one cylindrical element with an adjacent cylindrical element by arranging the serpentine patterns in phase and shortening the interconnecting members.
18. The method of claim 15, wherein the step of forming the serpentine wave pattern further comprises forming a repeating strut pattern of U's connected to W's.
19. The method of claim 15, wherein the step of providing a plurality of adjacent cylindrical elements includes forming the cylindrical elements from shape memory alloy material.
20. The method of claim 15, wherein the step of providing a plurality of adjacent cylindrical elements includes forming the cylindrical elements from a pseudoelastic alloy material.
PCT/US2000/040289 1999-07-22 2000-06-30 Tapered self-expanding stent WO2001006954A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU71329/00A AU7132900A (en) 1999-07-22 2000-06-30 Tapered self-expanding stent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/359,550 US6569193B1 (en) 1999-07-22 1999-07-22 Tapered self-expanding stent
US09/359,550 1999-07-22

Publications (1)

Publication Number Publication Date
WO2001006954A1 true WO2001006954A1 (en) 2001-02-01

Family

ID=23414305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/040289 WO2001006954A1 (en) 1999-07-22 2000-06-30 Tapered self-expanding stent

Country Status (3)

Country Link
US (2) US6569193B1 (en)
AU (1) AU7132900A (en)
WO (1) WO2001006954A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001061080A1 (en) * 2000-02-14 2001-08-23 Advanced Cardiovascular Systems, Inc. Electro-polishing fixture and electrolyte solution for polishing nitinol stents and method of using same
WO2004007812A1 (en) * 2002-07-17 2004-01-22 Maillefer Instruments Holding S.A.R.L. Method for electrolytic polishing of dental instruments made of nickel-titanium alloy
US8021414B2 (en) * 1996-04-26 2011-09-20 Boston Scientific Scimed, Inc. Intravascular stent
ES2374382A1 (en) * 2011-10-27 2012-02-16 Javier Gallastegui Goiburu Stent
WO2013071115A1 (en) * 2011-11-09 2013-05-16 Boston Scientific Scimed, Inc. Occlusion device
US9492293B2 (en) 2001-03-13 2016-11-15 Medinol Ltd. Method and apparatus for stenting
WO2020163542A1 (en) 2019-02-06 2020-08-13 Seshadri Raju Venous and arterial application of the unitary stent & balloon

Families Citing this family (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7204848B1 (en) 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US6235053B1 (en) 1998-02-02 2001-05-22 G. David Jang Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal connectors
US20040106985A1 (en) 1996-04-26 2004-06-03 Jang G. David Intravascular stent
US6666883B1 (en) 1996-06-06 2003-12-23 Jacques Seguin Endoprosthesis for vascular bifurcation
US8728143B2 (en) * 1996-06-06 2014-05-20 Biosensors International Group, Ltd. Endoprosthesis deployment system for treating vascular bifurcations
US7238197B2 (en) 2000-05-30 2007-07-03 Devax, Inc. Endoprosthesis deployment system for treating vascular bifurcations
US7686846B2 (en) 1996-06-06 2010-03-30 Devax, Inc. Bifurcation stent and method of positioning in a body lumen
US8172897B2 (en) 1997-04-15 2012-05-08 Advanced Cardiovascular Systems, Inc. Polymer and metal composite implantable medical devices
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US10028851B2 (en) 1997-04-15 2018-07-24 Advanced Cardiovascular Systems, Inc. Coatings for controlling erosion of a substrate of an implantable medical device
EP0884029B1 (en) * 1997-06-13 2004-12-22 Gary J. Becker Expandable intraluminal endoprosthesis
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US6375676B1 (en) * 1999-05-17 2002-04-23 Advanced Cardiovascular Systems, Inc. Self-expanding stent with enhanced delivery precision and stent delivery system
US20030139803A1 (en) * 2000-05-30 2003-07-24 Jacques Sequin Method of stenting a vessel with stent lumenal diameter increasing distally
US7766956B2 (en) 2000-09-22 2010-08-03 Boston Scientific Scimed, Inc. Intravascular stent and assembly
US20040176837A1 (en) * 2001-05-17 2004-09-09 Atladottir Svava Maria Self-expanding stent and catheter assembly and method for treating bifurcations
US8337540B2 (en) * 2001-05-17 2012-12-25 Advanced Cardiovascular Systems, Inc. Stent for treating bifurcations and method of use
US7989018B2 (en) 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7285304B1 (en) 2003-06-25 2007-10-23 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US6863683B2 (en) 2001-09-19 2005-03-08 Abbott Laboratoris Vascular Entities Limited Cold-molding process for loading a stent onto a stent delivery system
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
US20050182477A1 (en) * 2001-12-20 2005-08-18 White Geoffrey H. Intraluminal stent and graft
US8425549B2 (en) 2002-07-23 2013-04-23 Reverse Medical Corporation Systems and methods for removing obstructive matter from body lumens and treating vascular defects
CA2505137A1 (en) 2002-11-08 2004-05-21 Jacques Seguin Endoprosthesis for vascular bifurcation
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7112216B2 (en) * 2003-05-28 2006-09-26 Boston Scientific Scimed, Inc. Stent with tapered flexibility
US7131993B2 (en) * 2003-06-25 2006-11-07 Boston Scientific Scimed, Inc. Varying circumferential spanned connectors in a stent
DE10335649A1 (en) * 2003-07-30 2005-02-24 Jotec Gmbh Braid stent for implantation in a blood vessel
US20050038501A1 (en) * 2003-08-12 2005-02-17 Moore James E. Dynamic stent
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
DE602004026756D1 (en) * 2003-10-15 2010-06-02 Cook Inc HOLDING DEVICE FOR A PROSTHESIS SYSTEM
US7803178B2 (en) 2004-01-30 2010-09-28 Trivascular, Inc. Inflatable porous implants and methods for drug delivery
US8568469B1 (en) 2004-06-28 2013-10-29 Advanced Cardiovascular Systems, Inc. Stent locking element and a method of securing a stent on a delivery system
US8241554B1 (en) 2004-06-29 2012-08-14 Advanced Cardiovascular Systems, Inc. Method of forming a stent pattern on a tube
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US8778256B1 (en) 2004-09-30 2014-07-15 Advanced Cardiovascular Systems, Inc. Deformation of a polymer tube in the fabrication of a medical article
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US8747878B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US9283099B2 (en) 2004-08-25 2016-03-15 Advanced Cardiovascular Systems, Inc. Stent-catheter assembly with a releasable connection for stent retention
GB0419954D0 (en) 2004-09-08 2004-10-13 Advotek Medical Devices Ltd System for directing therapy
US7229471B2 (en) 2004-09-10 2007-06-12 Advanced Cardiovascular Systems, Inc. Compositions containing fast-leaching plasticizers for improved performance of medical devices
US7875233B2 (en) 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
US8173062B1 (en) 2004-09-30 2012-05-08 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube in fabricating a medical article
US8043553B1 (en) 2004-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US7381048B2 (en) * 2005-04-12 2008-06-03 Advanced Cardiovascular Systems, Inc. Stents with profiles for gripping a balloon catheter and molds for fabricating stents
US7658880B2 (en) 2005-07-29 2010-02-09 Advanced Cardiovascular Systems, Inc. Polymeric stent polishing method and apparatus
US9248034B2 (en) 2005-08-23 2016-02-02 Advanced Cardiovascular Systems, Inc. Controlled disintegrating implantable medical devices
WO2007051183A1 (en) * 2005-10-28 2007-05-03 Incept, Llc Flared stents and apparatus and methods for delivering them
US8518100B2 (en) * 2005-12-19 2013-08-27 Advanced Cardiovascular Systems, Inc. Drug eluting stent for the treatment of dialysis graft stenoses
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US20070156228A1 (en) * 2006-01-03 2007-07-05 Majercak David C Prosthetic stent graft for treatment of abdominal aortic aneurysm
US20070156230A1 (en) 2006-01-04 2007-07-05 Dugan Stephen R Stents with radiopaque markers
US7951185B1 (en) 2006-01-06 2011-05-31 Advanced Cardiovascular Systems, Inc. Delivery of a stent at an elevated temperature
US7964210B2 (en) 2006-03-31 2011-06-21 Abbott Cardiovascular Systems Inc. Degradable polymeric implantable medical devices with a continuous phase and discrete phase
US20130190676A1 (en) 2006-04-20 2013-07-25 Limflow Gmbh Devices and methods for fluid flow through body passages
US8069814B2 (en) 2006-05-04 2011-12-06 Advanced Cardiovascular Systems, Inc. Stent support devices
US7761968B2 (en) 2006-05-25 2010-07-27 Advanced Cardiovascular Systems, Inc. Method of crimping a polymeric stent
US7951194B2 (en) 2006-05-26 2011-05-31 Abbott Cardiovascular Sysetms Inc. Bioabsorbable stent with radiopaque coating
US8752268B2 (en) 2006-05-26 2014-06-17 Abbott Cardiovascular Systems Inc. Method of making stents with radiopaque markers
US7959940B2 (en) 2006-05-30 2011-06-14 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical devices
US8343530B2 (en) 2006-05-30 2013-01-01 Abbott Cardiovascular Systems Inc. Polymer-and polymer blend-bioceramic composite implantable medical devices
US7842737B2 (en) 2006-09-29 2010-11-30 Abbott Cardiovascular Systems Inc. Polymer blend-bioceramic composite implantable medical devices
US8034287B2 (en) 2006-06-01 2011-10-11 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8486135B2 (en) 2006-06-01 2013-07-16 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from branched polymers
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8535372B1 (en) 2006-06-16 2013-09-17 Abbott Cardiovascular Systems Inc. Bioabsorbable stent with prohealing layer
US8333000B2 (en) 2006-06-19 2012-12-18 Advanced Cardiovascular Systems, Inc. Methods for improving stent retention on a balloon catheter
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US9072820B2 (en) 2006-06-26 2015-07-07 Advanced Cardiovascular Systems, Inc. Polymer composite stent with polymer particles
US8128688B2 (en) 2006-06-27 2012-03-06 Abbott Cardiovascular Systems Inc. Carbon coating on an implantable device
US7794776B1 (en) 2006-06-29 2010-09-14 Abbott Cardiovascular Systems Inc. Modification of polymer stents with radiation
US8240020B2 (en) * 2006-06-30 2012-08-14 Advanced Cardiovascular Systems, Inc. Stent retention mold and method
US7740791B2 (en) 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US8029558B2 (en) * 2006-07-07 2011-10-04 Abbott Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US7823263B2 (en) 2006-07-11 2010-11-02 Abbott Cardiovascular Systems Inc. Method of removing stent islands from a stent
US7998404B2 (en) 2006-07-13 2011-08-16 Advanced Cardiovascular Systems, Inc. Reduced temperature sterilization of stents
US7757543B2 (en) 2006-07-13 2010-07-20 Advanced Cardiovascular Systems, Inc. Radio frequency identification monitoring of stents
US7794495B2 (en) 2006-07-17 2010-09-14 Advanced Cardiovascular Systems, Inc. Controlled degradation of stents
US7886419B2 (en) 2006-07-18 2011-02-15 Advanced Cardiovascular Systems, Inc. Stent crimping apparatus and method
US8016879B2 (en) 2006-08-01 2011-09-13 Abbott Cardiovascular Systems Inc. Drug delivery after biodegradation of the stent scaffolding
US9173733B1 (en) 2006-08-21 2015-11-03 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US7988720B2 (en) 2006-09-12 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US7923022B2 (en) 2006-09-13 2011-04-12 Advanced Cardiovascular Systems, Inc. Degradable polymeric implantable medical devices with continuous phase and discrete phase
US20080085294A1 (en) * 2006-10-04 2008-04-10 Toby Freyman Apparatuses and methods to treat atherosclerotic plaques
US8099849B2 (en) 2006-12-13 2012-01-24 Abbott Cardiovascular Systems Inc. Optimizing fracture toughness of polymeric stent
US8623070B2 (en) 2007-03-08 2014-01-07 Thomas O. Bales Tapered helical stent and method for manufacturing the stent
US8262723B2 (en) 2007-04-09 2012-09-11 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from polymer blends with star-block copolymers
US7829008B2 (en) 2007-05-30 2010-11-09 Abbott Cardiovascular Systems Inc. Fabricating a stent from a blow molded tube
US7959857B2 (en) 2007-06-01 2011-06-14 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8202528B2 (en) 2007-06-05 2012-06-19 Abbott Cardiovascular Systems Inc. Implantable medical devices with elastomeric block copolymer coatings
US8293260B2 (en) 2007-06-05 2012-10-23 Abbott Cardiovascular Systems Inc. Elastomeric copolymer coatings containing poly (tetramethyl carbonate) for implantable medical devices
US8425591B1 (en) 2007-06-11 2013-04-23 Abbott Cardiovascular Systems Inc. Methods of forming polymer-bioceramic composite medical devices with bioceramic particles
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US7901452B2 (en) 2007-06-27 2011-03-08 Abbott Cardiovascular Systems Inc. Method to fabricate a stent having selected morphology to reduce restenosis
US7955381B1 (en) 2007-06-29 2011-06-07 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical device with different types of bioceramic particles
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
CN101917929A (en) 2007-10-04 2010-12-15 特里瓦斯库拉尔公司 Modular vascular graft for low profile percutaneous delivery
US11337714B2 (en) 2007-10-17 2022-05-24 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US8545514B2 (en) 2008-04-11 2013-10-01 Covidien Lp Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
US8066757B2 (en) 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US9220522B2 (en) 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US9198687B2 (en) 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US8926680B2 (en) 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US10123803B2 (en) 2007-10-17 2018-11-13 Covidien Lp Methods of managing neurovascular obstructions
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
AU2009217354B2 (en) 2008-02-22 2013-10-10 Covidien Lp Methods and apparatus for flow restoration
US10028747B2 (en) 2008-05-01 2018-07-24 Aneuclose Llc Coils with a series of proximally-and-distally-connected loops for occluding a cerebral aneurysm
US10716573B2 (en) 2008-05-01 2020-07-21 Aneuclose Janjua aneurysm net with a resilient neck-bridging portion for occluding a cerebral aneurysm
JP5315507B2 (en) * 2008-06-04 2013-10-16 チェック−キャップ リミテッド Device for imaging body tissue
US8734502B2 (en) 2008-12-17 2014-05-27 Cook Medical Technologies Llc Tapered stent and flexible prosthesis
RU2567831C2 (en) * 2009-02-02 2015-11-10 Кордис Корпорейшн Construction of flexible stent
US9358140B1 (en) 2009-11-18 2016-06-07 Aneuclose Llc Stent with outer member to embolize an aneurysm
US8568471B2 (en) 2010-01-30 2013-10-29 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US8808353B2 (en) 2010-01-30 2014-08-19 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds having a low crossing profile
US8801775B2 (en) * 2010-04-27 2014-08-12 Medtronic Vascular, Inc. Helical stent with opposing and/or alternating pitch angles
US9101453B2 (en) 2010-06-17 2015-08-11 Greg Harold Albers Urological repair apparatus and method
KR20130096716A (en) 2010-08-02 2013-08-30 코디스 코포레이션 Flexible helical stent having intermediated non-helical region
MX2013001445A (en) 2010-08-02 2013-03-12 Cordis Corp Flexible stent having protruding hinges.
WO2012018836A2 (en) 2010-08-02 2012-02-09 Cordis Corporation Flexible helical stent having intermediate structural feature
CA2807119C (en) 2010-08-02 2017-08-01 Cordis Corporation Flexible helical stent having different helical regions
US20120179238A1 (en) * 2011-01-10 2012-07-12 Peritec Biosciences, Ltd. Stent having variable stiffness
US9533124B2 (en) * 2011-04-14 2017-01-03 Abbott Cardiovascular Systems Inc. Reperfusion injury devices
US8726483B2 (en) 2011-07-29 2014-05-20 Abbott Cardiovascular Systems Inc. Methods for uniform crimping and deployment of a polymer scaffold
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
US20130305512A1 (en) * 2012-05-18 2013-11-21 Abbott Cardiovascular Systems, Inc. Apparatus and methods for forming medical devices
CN103169557A (en) * 2013-02-27 2013-06-26 湖南瑞康通科技发展有限公司 Self-expandable stent system and manufacturing method thereof
JP6609479B2 (en) 2013-03-08 2019-11-20 リムフロウ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and system for providing or maintaining fluid flow through a body passage
US10835367B2 (en) 2013-03-08 2020-11-17 Limflow Gmbh Devices for fluid flow through body passages
US9907684B2 (en) 2013-05-08 2018-03-06 Aneuclose Llc Method of radially-asymmetric stent expansion
WO2015073016A1 (en) 2013-11-15 2015-05-21 Massachusetts Institute Of Technology Method for controlling the energy damping of a shape memory alloy with surface roughness
US9545263B2 (en) 2014-06-19 2017-01-17 Limflow Gmbh Devices and methods for treating lower extremity vasculature
US9999527B2 (en) 2015-02-11 2018-06-19 Abbott Cardiovascular Systems Inc. Scaffolds having radiopaque markers
US9700443B2 (en) 2015-06-12 2017-07-11 Abbott Cardiovascular Systems Inc. Methods for attaching a radiopaque marker to a scaffold
AU2016344149B2 (en) 2015-10-27 2020-09-03 Contego Medical, Inc. Transluminal angioplasty devices and methods of use
CN108025108B (en) * 2015-12-14 2021-08-31 北京阿迈特医疗器械有限公司 Personalized polymer stent and preparation method and application thereof
AU2017376270B2 (en) 2016-12-13 2022-08-11 Contego Medical, Inc. Therapeutic agent coated angioplasty balloon with embolic filter and protective cover
US10940030B2 (en) 2017-03-10 2021-03-09 Serenity Medical, Inc. Method and system for delivering a self-expanding stent to the venous sinuses
EP4299086A2 (en) 2017-04-10 2024-01-03 LimFlow GmbH Devices for treating lower extremity vasculature
CN109966034B (en) * 2017-12-27 2021-08-17 先健科技(深圳)有限公司 Covered stent
WO2020076833A1 (en) 2018-10-09 2020-04-16 Limflow Gmbh Devices and methods for catheter alignment
CN110269730B (en) * 2019-07-22 2024-02-27 珠海通桥医疗科技有限公司 Vascular stent
EP4051174A4 (en) 2019-11-01 2023-11-22 LimFlow GmbH Devices and methods for increasing blood perfusion to a distal extremity
WO2022032302A2 (en) * 2020-08-07 2022-02-10 Seshadri Raju An improved volumetric flow graft and stents with near constant conductance flow
CN117338495A (en) * 2023-08-29 2024-01-05 南京鼓楼医院 Left ventricle outflow tract bracket and conveying system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441215A (en) 1980-11-17 1984-04-10 Kaster Robert L Vascular graft
US5180392A (en) 1988-02-01 1993-01-19 Einar Skeie Anastomotic device
US5222964A (en) 1992-03-03 1993-06-29 Cooper William I Intraluminal stent
WO1998034668A1 (en) 1997-02-07 1998-08-13 Cornerstone Devices, Inc. Non-foreshortening intraluminal prosthesis
WO1998053759A2 (en) 1997-05-28 1998-12-03 Yadav Jay S Carotid stent
WO1999017680A1 (en) * 1997-10-03 1999-04-15 Localmed, Inc. Radially expansible vessel scaffold having beams and expansion joints
WO1999039661A2 (en) * 1998-02-05 1999-08-12 Medtronic, Inc. Radially-expandable stent and delivery system
US5938697A (en) * 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
WO2000028922A1 (en) * 1998-11-12 2000-05-25 Advanced Cardiovascular Systems, Inc. Stent having non-uniform structure

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2380683C (en) * 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
FR2688401B1 (en) * 1992-03-12 1998-02-27 Thierry Richard EXPANDABLE STENT FOR HUMAN OR ANIMAL TUBULAR MEMBER, AND IMPLEMENTATION TOOL.
JP2703510B2 (en) * 1993-12-28 1998-01-26 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Expandable stent and method of manufacturing the same
DE69514690T3 (en) * 1994-02-25 2006-09-14 Fischell, Robert E. stent
JP2825452B2 (en) * 1994-04-25 1998-11-18 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Radiopak stent marker
DE4418336A1 (en) * 1994-05-26 1995-11-30 Angiomed Ag Stent for widening and holding open receptacles
US5591197A (en) * 1995-03-14 1997-01-07 Advanced Cardiovascular Systems, Inc. Expandable stent forming projecting barbs and method for deploying
US6010530A (en) * 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
CA2223479A1 (en) * 1995-06-08 1996-12-27 Bard Galway Limited Endovascular stent
US5843117A (en) 1996-02-14 1998-12-01 Inflow Dynamics Inc. Implantable vascular and endoluminal stents and process of fabricating the same
US5925061A (en) * 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US5911732A (en) * 1997-03-10 1999-06-15 Johnson & Johnson Interventional Systems, Co. Articulated expandable intraluminal stent
US5855600A (en) * 1997-08-01 1999-01-05 Inflow Dynamics Inc. Flexible implantable stent with composite design
US5911754A (en) * 1998-07-24 1999-06-15 Uni-Cath Inc. Flexible stent with effective strut and connector patterns

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441215A (en) 1980-11-17 1984-04-10 Kaster Robert L Vascular graft
US5180392A (en) 1988-02-01 1993-01-19 Einar Skeie Anastomotic device
US5222964A (en) 1992-03-03 1993-06-29 Cooper William I Intraluminal stent
WO1998034668A1 (en) 1997-02-07 1998-08-13 Cornerstone Devices, Inc. Non-foreshortening intraluminal prosthesis
WO1998053759A2 (en) 1997-05-28 1998-12-03 Yadav Jay S Carotid stent
WO1999017680A1 (en) * 1997-10-03 1999-04-15 Localmed, Inc. Radially expansible vessel scaffold having beams and expansion joints
WO1999039661A2 (en) * 1998-02-05 1999-08-12 Medtronic, Inc. Radially-expandable stent and delivery system
US5938697A (en) * 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
WO2000028922A1 (en) * 1998-11-12 2000-05-25 Advanced Cardiovascular Systems, Inc. Stent having non-uniform structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8021414B2 (en) * 1996-04-26 2011-09-20 Boston Scientific Scimed, Inc. Intravascular stent
US9078778B2 (en) 1996-04-26 2015-07-14 Boston Scientific Scimed, Inc. Intravascular stent
WO2001061080A1 (en) * 2000-02-14 2001-08-23 Advanced Cardiovascular Systems, Inc. Electro-polishing fixture and electrolyte solution for polishing nitinol stents and method of using same
US6375826B1 (en) 2000-02-14 2002-04-23 Advanced Cardiovascular Systems, Inc. Electro-polishing fixture and electrolyte solution for polishing stents and method
US9492293B2 (en) 2001-03-13 2016-11-15 Medinol Ltd. Method and apparatus for stenting
WO2004007812A1 (en) * 2002-07-17 2004-01-22 Maillefer Instruments Holding S.A.R.L. Method for electrolytic polishing of dental instruments made of nickel-titanium alloy
EP1386985A1 (en) * 2002-07-17 2004-02-04 Maillefer Instruments Holding S.A.R.L. Process for electrolytic polishing of dental instruments made of nickel-titanium alloys
ES2374382A1 (en) * 2011-10-27 2012-02-16 Javier Gallastegui Goiburu Stent
WO2013071115A1 (en) * 2011-11-09 2013-05-16 Boston Scientific Scimed, Inc. Occlusion device
US9861370B2 (en) 2011-11-09 2018-01-09 Boston Scientific Scimed Inc. Occlusion device
WO2020163542A1 (en) 2019-02-06 2020-08-13 Seshadri Raju Venous and arterial application of the unitary stent & balloon

Also Published As

Publication number Publication date
US20010010013A1 (en) 2001-07-26
AU7132900A (en) 2001-02-13
US6569193B1 (en) 2003-05-27

Similar Documents

Publication Publication Date Title
US6569193B1 (en) Tapered self-expanding stent
US6312459B1 (en) Stent design for use in small vessels
US6814749B2 (en) Stent designs for use in peripheral vessels
US8721705B2 (en) Non-foreshortening intraluminal prosthesis
US8915954B2 (en) Endoprosthesis having foot extensions
US8282679B2 (en) Intravascular stents
US20020123791A1 (en) Stent design with increased vessel coverage
US5899934A (en) Dual stent
US9427340B2 (en) Stent with protruding branch portion for bifurcated vessels
EP1208814A2 (en) Low profile stent
US20050154447A1 (en) Ostium stent system
US20070135891A1 (en) Stent having an expandable web structure
US20080027533A1 (en) Dedicated bifurcation stent apparatus and method
US20070260304A1 (en) Bifurcated stent with minimally circumferentially projected side branch
US7578840B2 (en) Stent with reduced profile
US8500791B2 (en) Stent designs for use in peripheral vessels
JP2010246987A (en) Small vessel expandable stent and method for production of same
WO2008024928A2 (en) Stent designs for use in peripheral vessels

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP