WO2001007494A1 - Process for preparing comb-branched polymers - Google Patents

Process for preparing comb-branched polymers Download PDF

Info

Publication number
WO2001007494A1
WO2001007494A1 PCT/US2000/018692 US0018692W WO0107494A1 WO 2001007494 A1 WO2001007494 A1 WO 2001007494A1 US 0018692 W US0018692 W US 0018692W WO 0107494 A1 WO0107494 A1 WO 0107494A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
monomer
reaction zone
initiator
acrylate
Prior art date
Application number
PCT/US2000/018692
Other languages
French (fr)
Inventor
Bi Le-Khac
Wei Wang
Edward T. Shawl
Original Assignee
Arco Chemical Technology, L.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23407925&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001007494(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Arco Chemical Technology, L.P. filed Critical Arco Chemical Technology, L.P.
Priority to AT00947138T priority Critical patent/ATE306504T1/en
Priority to EP00947138A priority patent/EP1218427B2/en
Priority to ES00947138T priority patent/ES2246872T5/en
Priority to CA002377463A priority patent/CA2377463C/en
Priority to JP2001512575A priority patent/JP5409980B2/en
Priority to DE60023160T priority patent/DE60023160T3/en
Priority to MXPA02000745 priority patent/MX248224B/en
Priority to AU60797/00A priority patent/AU6079700A/en
Publication of WO2001007494A1 publication Critical patent/WO2001007494A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers

Definitions

  • the invention relates to a method for preparing comb-branched polymers. More particularly, the invention relates to a continuous polymerization process for making a copolymer of a polyether macromonomer and an acrylic monomer.
  • the copolymers are valuable water reducing agents for cement.
  • Water reducing agents reduce the amount of water needed in cement admixtures, while maintaining good processing ability and consistency.
  • Lignin sulfonates and naphthalene sulfonate-formaldehyde condensates have long been used as water reducing agents. These conventional water reducing agents are readily available and relatively inexpensive. However, they are used in high doses.
  • Comb-branched copolymers of acrylic acid and polyether macromonomers have been used as high performance water reducing agents (see U.S. Pat. No. 5,834,576).
  • the comb-branched copolymers have more uniform structures compared to the graft polymers of U.S. Pat. No. 4,814,014. Consequently, they have higher water reducing ability.
  • An added advantage of these copolymers is the improved ability to maintain "slump.” Slump retention is the workable time after the cement admixture is mixed.
  • Commonly used polyether macromonomers include acrylates, methacrylates, and allyl ethers of polyether.
  • the invention is a continuous process for making a comb-branched copolymer of an acrylic monomer and a polyether macromonomer.
  • the process comprises: (a) forming a monomer stream, an initiator stream, and an optional chain transfer agent stream; (b) polymerizing the streams in a reaction zone at a temperature within the range of about -20°C to about 150°C; and (c) withdrawing a polymer stream from the reaction zone.
  • the invention also includes a multiple-zone process that comprises: (a) forming a monomer stream, an initiator stream, and an optional chain transfer agent stream; (b) polymerizing the streams in a first reaction zone at a temperature within the range of about -20°C to about 150°C; (c) transferring a first polymer stream from the first reaction zone to a second reaction zone wherein the polymerization continues; and (d) withdrawing a second polymer stream from the second reaction zone.
  • the multiple-zone process enhances monomer conversion and process efficiency.
  • the continuous process of the invention uses streams of a monomer, an initiator, and, optionally, a chain transfer agent.
  • the monomer stream contains an acrylic monomer and a polyether macromonomer.
  • Suitable acrylic monomers derive from acrylic acid and methacrylic acid.
  • Preferred acrylic monomers include acrylic acid, methacrylic acid, their ammonium and alkali metal salts, their Ci to C 1 0 alkyl and C 6 to C ⁇ 2 aryl esters, and their amides.
  • Acrylic acid, methacrylic acid, ammonium acrylate, ammonium methacrylate, sodium acrylate, sodium methacrylate, potassium acrylate, and potassium methacrylate are preferred. Most preferred are acrylic acid and methacrylic acid.
  • Suitable polyether macromonomers have a polyether chain and a single carbon-carbon double bond, which can be located either at the end of or inside the polyether chain. Examples include polyether monoacrylates, polyether monomethacrylates, polyether monoallyl ethers, polyether monomaleates, and polyether monofumarates.
  • the polyether of the macromonomer is an alkylene oxide polymer having a number average molecular weight within the range of about 500 to about 10,000. Suitable alkylene oxides include ethylene oxide, propylene oxide, butylene oxide, and the like, and mixtures thereof.
  • the polyether macromonomers preferably have hydroxyl functionality from 0 to 5.
  • polyether macromonomers are poly(propylene glycol) acrylates or methacrylates, poly(ethylene glycol) acrylates or methacrylates, poly(ethylene glycol) methyl ether acrylates or methacrylates, acrylates or methacrylates of an oxyethylene and oxypropylene block or random copolymer, poly(propylene glycol) allyl ether, poly(ethylene glycol) allyl ether, poly(propylene glycol) mono-maleate, and the like, and mixtures thereof.
  • Preferred polyether macromonomers are polypropylene glycol) acrylates or methacrylates, poly(ethylene glycol) acrylates or methacrylates, acrylates or methacrylates of an oxyethylene and oxypropylene block and random copolymer. More preferred are acrylates or methacrylates of an oxyethylene and oxypropylene block or random copolymer.
  • the ratio of acrylic monomer to polyether macromonomer is determined by many factors within the skilled person's discretion, including the required physical properties of the comb-branched copolymer, the selection of the acrylic monomer, and the properties of the polyether macromonomer.
  • the ratio generally is within the range from 1/99 to 99/1 by weight.
  • the preferred range is from 5/95 to 75/25.
  • the monomer stream contains a third monomer.
  • the third monomer is preferably selected from vinyl aromatics, vinyl halides, vinyl ethers, vinyl esters, vinyl pyrrolidinones, conjugated dienes, unsaturated sulfonic acids, unsaturated phosphonic acids, and the like, and mixtures thereof.
  • the amount of third monomer used depends on the required physical properties of the comb-branched copolymer product, but is preferably less that 50% by weight of the total amount of monomers.
  • the monomer stream also includes a solvent. The solvent is used to dissolve the monomer, to assist heat transfer of the polymerization, or to reduce the viscosity of the final product.
  • the solvent is preferably selected from water, alcohols, ethers, esters, ketones, aliphatic hydrocarbons, aromatic hydrocarbons, halides, and the like, and mixtures thereof. Selections of solvent type and amount are determined by the polymerization conditions including reaction temperature. Water and alcohols, such as methanol, ethanol, and isopropanol, are preferred.
  • the initiator stream contains a free radical initiator.
  • the initiator is preferably selected from persulfates, hydrogen peroxide, organic peroxides and hydroperoxides, azo compounds, and redox initiators such as hydrogen peroxide plus ferrous ion. Persulfates, such as ammonium and potassium persulfate, are preferred.
  • the initiator stream contains a solvent.
  • the solvent is used to dissolve or dilute the initiator, to control the polymerization rate, or to aid heat or mass transfer of the polymerization. Suitable solvents are described above. Selections of solvent type and amount are determined by the nature of the initiator and the polymerization conditions. Water and alcohols such as methanol, ethanol, and isopropanol are preferred when persulfate is used as initiator.
  • the monomer and initiator streams optionally include a chain transfer agent. Suitable chain transfer agent includes alkyl amines, alkyl sulfides, alkyl disulfides, carbon tetrahalides, allyl ethers, and mercaptans.
  • Mercaptans such as butyl mercapan, mercaptoacetic and mercaptopropionic acids, are preferred.
  • the chain transfer agent stream contains a solvent that is used to dissolve or dilute the chain transfer agent.
  • Suitable solvents include water, alcohols, ethers, esters, ketones, aliphatic and aromatic hydrocarbons, halides, and the like, and mixtures thereof. Selections of solvent type and amount are determined by the nature of the chain transfer agent and the polymerization conditions. Water and alcohols, such as methanol, ethanol, and isopropanol, are preferred.
  • the monomer stream, initiator stream, and optional chain transfer agent stream are polymerized in a reaction zone.
  • the reaction temperature is preferably kept essentially constant during the polymerization. The temperature is determined by a combination of factors including the desired molecular weight of the comb-branched polymer product, the initiator type and concentration, the monomer type and concentration, and the solvent used.
  • the reaction is performed at a temperature within the range of about -20°C to about 150°C, preferably, within the range of about 0°C to about
  • the addition rate of each stream depends on the desired concentration of each component, the size and shape of the reaction zone, the reaction temperature, and many other considerations. In general, the streams flow into the reaction zone at rates that keep the initiator concentration within the range of about 0.01 % to about 1 % by weight, and the chain transfer agent concentration within the range of about 0.1 % to about 1.5% by weight.
  • the reaction zone is where the polymerization takes place. It can be in the form of a tank reactor, a tubular reactor, or any other desirably shaped reactor.
  • the reaction zone is preferably equipped with a mixer, a heat transfer device, an inert gas source, and any other suitable equipment.
  • a polymer stream is withdrawn.
  • the flow rate of the polymer stream is such that the reaction zone is mass-balanced, meaning that the amount of material that flows into the reaction zone equals to the amount of material withdrawn from the reaction zone.
  • the polymer stream is then collected.
  • the invention also includes a multiple zone process.
  • a multiple zone process is similar to the process discussed above except that more than one reaction zone is used.
  • a first polymer stream is withdrawn from a first reaction zone and transferred into a second reaction zone where the polymerization continues.
  • a second polymer stream is withdrawn from the second reaction zone. More than two reaction zones can be used if desirable.
  • the reaction temperature in the second reaction zone can be the same as or different from the first reaction zone.
  • a multiple zone process can enhance monomer conversion and increase efficiency of the process.
  • the monomer conversion is within the range of about 65% to 85% by weight.
  • the second reaction zone preferably brings the monomer conversion to 90% or greater.
  • mercaptopropionic acid 1.2 g
  • ammonium persulfate 0.70 g
  • the reactor is equipped with a stirrer, a temperature controller, a heating coil, a nitrogen purge device, a monomer addition pump, an initiator addition pump, and a sample outlet.
  • the reactor contents are purged with N 2 for 20 minutes.
  • Polyether macromonomer (245 g, 0.123 mole), acrylic acid (53 g, 0.736 mole), mercaptopropionic acid (2.6 g) and distilled water (Dl water) (145 g) are mixed.
  • the mixture is purged with N 2 for 20 minutes and then charged to the monomer pump.
  • Ammonium persulfate (1.4 g) is dissolved in Dl water (153 g). The solution is purged with N 2 for 20 minutes and then charged into the initiator pump. The reactor contents are heated to 40°C. The monomer mixture and the initiator solution are continuously pumped into the reactor at the rates of 1.0 gram/min and 0.33 gram/min, respectively. The product is continuously withdrawn from the reactor at rate of 1.33 gram/min. After the reaction reaches a steady state (after about 150 grams of polymer is produced), the product is collected for physical property and slump tests. It has a number average molecular weight Mn: 10820, and molecular weight distribution Mw/Mn: 1.36.
  • the product is tested in a mortar mixture by using the slump test (ASTM method C-143).
  • ASTM method C-143 In a typical test at 15% water cut, water (302 g), cement (760 g), mortar sand (1660 g), and 0.76 gram of the comb-branched polymer (0.10% based on the dry cement) are mixed for 5 minutes, and then the slump test is performed.
  • the cement admixture with 0.10% of the comb- branched copolymer has a slump and a flow of 124 mm and 202 mm, respectively, compared to a slump of 25 mm for the cement admixture without the comb-branched copolymer.
  • Polyether macromonomer 3894 g, 1.947 mole, as described in Example 1
  • acrylic acid 561 g, 7.792 mole
  • mercaptopropionic acid 32 g
  • Dl water 2200 g
  • the mixture is purged with N 2 for 20 minutes and then charged into the monomer pump.
  • Ammonium persulfate (32 g) is dissolved in Dl water (2195 g). The solution is purged with N 2 for
  • the slump is tested according to the procedure of Example 1. It has slump: 128, and flow 236 at 0.08% dosage.
  • Polyether macromonomer as described in Example 1 (175 g, 0.0875 mole), acrylic acid (19 g, 0.264 mole), and Dl water (207 g) are charged to a one-liter glass reactor equipped with stirrer, temperature controller, heating coil, nitrogen purge device, and addition pump.
  • the reactor contents are purged with N 2 for 20 minutes at room temperature and then the reactor is sealed with N 2 (3 psi).
  • One gram of ammonium persulfate and 1.8 grams of mercaptopropionic acid are added to the reactor.
  • the reactor contents are heated to 40°C, and 19 grams of acrylic acid (0.264 mole) is added into the reactor at 0.8 gram/min. After the acrylic acid addition is complete, the polymerization continues at 40°C for four hours.
  • the product is discharged after cooled to 25°C. It has a Mn: 1 1810, and Mw/Mn: 1.31.
  • the slump is tested according to the procedure of Example 1 . It has slump: slump 96, flow 149 at 0.10% dosage.
  • Table 1 summarizes the different performance of the comb-branched copolymers made by the continuous process of the invention versus the semi-batch and batch processes (Comparative Examples 3 and 4). Comparing examples that use the same copolymer composition and same dose in cement (i.e., 1 versus C3 and 2 versus C4), it is clear that the comb- branched copolymers made by the continuous process have significantly higher slump and flow than those made by either the semi-batch or batch process.

Abstract

A continuous process for making a comb-branched copolymer of an acrylic monomer and a polyether macromonomer is disclosed. The process is performed by continuously feeding a reaction zone with a monomer stream that contains an acrylic acid and a polyether macronomer, and an initiator stream. The comb-branched copolymer made thereby performs better as water reducing agent in cement compared to that made by a batch process.

Description

PROCESS FOR PREPARING COMB-BRANCHED POLYMERS
FIELD OF THE INVENTION The invention relates to a method for preparing comb-branched polymers. More particularly, the invention relates to a continuous polymerization process for making a copolymer of a polyether macromonomer and an acrylic monomer. The copolymers are valuable water reducing agents for cement.
BACKGROUND OF THE INVENTION Water reducing agents reduce the amount of water needed in cement admixtures, while maintaining good processing ability and consistency. Lignin sulfonates and naphthalene sulfonate-formaldehyde condensates have long been used as water reducing agents. These conventional water reducing agents are readily available and relatively inexpensive. However, they are used in high doses.
In contrast, newly developed polymeric water reducing agents offer high performance but are more expensive to make. U.S. Pat. No. 4,814,014, for example, teaches to graft ethylenically unsaturated monomers onto a polyether. The graft copolymer is used at a low dosage. Unfortunately, it is contaminated with a large portion of non-grafted polyether and ethylenic homopolymer. Because these non-grafted polymers do not function as water reducing agents, they reduce the effectiveness of the product.
Comb-branched copolymers of acrylic acid and polyether macromonomers have been used as high performance water reducing agents (see U.S. Pat. No. 5,834,576). The comb-branched copolymers have more uniform structures compared to the graft polymers of U.S. Pat. No. 4,814,014. Consequently, they have higher water reducing ability. An added advantage of these copolymers is the improved ability to maintain "slump." Slump retention is the workable time after the cement admixture is mixed. Commonly used polyether macromonomers include acrylates, methacrylates, and allyl ethers of polyether. Methods for preparing comb-branched copolymers of carboxylic monomers and polyether macromonomers are known and relatively simple. In general, free radically polymerizing a polyether macromonomer with a carboxylic monomer forms a comb-branched copolymer. While the related literature briefly mentions batch, semi-batch, and continuous processes (see U.S. Pat. No. 5,834,576, and copending Appl. Ser. No. 09/074,673), no one has suggested that a continuous process would offer comb-branched copolymers that perform better in cement compositions. Specific teachings about how to conduct a continuous process for making comb-branched copolymers are not available. U.S. Pat. No. 5,834,576, for example, only teaches details of a batch process.
SUMMARY OF THE INVENTION The invention is a continuous process for making a comb-branched copolymer of an acrylic monomer and a polyether macromonomer. The process comprises: (a) forming a monomer stream, an initiator stream, and an optional chain transfer agent stream; (b) polymerizing the streams in a reaction zone at a temperature within the range of about -20°C to about 150°C; and (c) withdrawing a polymer stream from the reaction zone.
The invention also includes a multiple-zone process that comprises: (a) forming a monomer stream, an initiator stream, and an optional chain transfer agent stream; (b) polymerizing the streams in a first reaction zone at a temperature within the range of about -20°C to about 150°C; (c) transferring a first polymer stream from the first reaction zone to a second reaction zone wherein the polymerization continues; and (d) withdrawing a second polymer stream from the second reaction zone. The multiple-zone process enhances monomer conversion and process efficiency.
We surprisingly found that the comb-branched copolymers made by the process of the invention perform significantly better as water reducing agent in cement compared with polymers made by a batch process. They offer higher slump and flow.
DETAILED DESCRIPTION OF THE INVENTION The continuous process of the invention uses streams of a monomer, an initiator, and, optionally, a chain transfer agent. The monomer stream contains an acrylic monomer and a polyether macromonomer. Suitable acrylic monomers derive from acrylic acid and methacrylic acid. Preferred acrylic monomers include acrylic acid, methacrylic acid, their ammonium and alkali metal salts, their Ci to C10 alkyl and C6 to Cι2 aryl esters, and their amides. Acrylic acid, methacrylic acid, ammonium acrylate, ammonium methacrylate, sodium acrylate, sodium methacrylate, potassium acrylate, and potassium methacrylate are preferred. Most preferred are acrylic acid and methacrylic acid.
Suitable polyether macromonomers have a polyether chain and a single carbon-carbon double bond, which can be located either at the end of or inside the polyether chain. Examples include polyether monoacrylates, polyether monomethacrylates, polyether monoallyl ethers, polyether monomaleates, and polyether monofumarates. The polyether of the macromonomer is an alkylene oxide polymer having a number average molecular weight within the range of about 500 to about 10,000. Suitable alkylene oxides include ethylene oxide, propylene oxide, butylene oxide, and the like, and mixtures thereof. The polyether macromonomers preferably have hydroxyl functionality from 0 to 5. They can be either linear or branched polymers, homopolymers or copolymers, random or block copolymers, diblock or multiple-block copolymers. Examples of polyether macromonomers are poly(propylene glycol) acrylates or methacrylates, poly(ethylene glycol) acrylates or methacrylates, poly(ethylene glycol) methyl ether acrylates or methacrylates, acrylates or methacrylates of an oxyethylene and oxypropylene block or random copolymer, poly(propylene glycol) allyl ether, poly(ethylene glycol) allyl ether, poly(propylene glycol) mono-maleate, and the like, and mixtures thereof. Preferred polyether macromonomers are polypropylene glycol) acrylates or methacrylates, poly(ethylene glycol) acrylates or methacrylates, acrylates or methacrylates of an oxyethylene and oxypropylene block and random copolymer. More preferred are acrylates or methacrylates of an oxyethylene and oxypropylene block or random copolymer.
The ratio of acrylic monomer to polyether macromonomer is determined by many factors within the skilled person's discretion, including the required physical properties of the comb-branched copolymer, the selection of the acrylic monomer, and the properties of the polyether macromonomer. The ratio generally is within the range from 1/99 to 99/1 by weight. The preferred range is from 5/95 to 75/25.
Optionally, the monomer stream contains a third monomer. The third monomer is preferably selected from vinyl aromatics, vinyl halides, vinyl ethers, vinyl esters, vinyl pyrrolidinones, conjugated dienes, unsaturated sulfonic acids, unsaturated phosphonic acids, and the like, and mixtures thereof. The amount of third monomer used depends on the required physical properties of the comb-branched copolymer product, but is preferably less that 50% by weight of the total amount of monomers. Optionally, the monomer stream also includes a solvent. The solvent is used to dissolve the monomer, to assist heat transfer of the polymerization, or to reduce the viscosity of the final product. The solvent is preferably selected from water, alcohols, ethers, esters, ketones, aliphatic hydrocarbons, aromatic hydrocarbons, halides, and the like, and mixtures thereof. Selections of solvent type and amount are determined by the polymerization conditions including reaction temperature. Water and alcohols, such as methanol, ethanol, and isopropanol, are preferred.
The initiator stream contains a free radical initiator. The initiator is preferably selected from persulfates, hydrogen peroxide, organic peroxides and hydroperoxides, azo compounds, and redox initiators such as hydrogen peroxide plus ferrous ion. Persulfates, such as ammonium and potassium persulfate, are preferred.
Optionally, the initiator stream contains a solvent. The solvent is used to dissolve or dilute the initiator, to control the polymerization rate, or to aid heat or mass transfer of the polymerization. Suitable solvents are described above. Selections of solvent type and amount are determined by the nature of the initiator and the polymerization conditions. Water and alcohols such as methanol, ethanol, and isopropanol are preferred when persulfate is used as initiator. The monomer and initiator streams optionally include a chain transfer agent. Suitable chain transfer agent includes alkyl amines, alkyl sulfides, alkyl disulfides, carbon tetrahalides, allyl ethers, and mercaptans. Mercaptans, such as butyl mercapan, mercaptoacetic and mercaptopropionic acids, are preferred. Under some conditions, it is preferred to add the optional chain transfer agent in a separate stream. This is particularly desirable when the chain transfer agent causes decomposition of the initiator or polymerization of the monomer once it is mixed with those components. This is particularly important in a large, commercial scale because these reactions can cause safety problems.
Optionally, the chain transfer agent stream contains a solvent that is used to dissolve or dilute the chain transfer agent. Suitable solvents include water, alcohols, ethers, esters, ketones, aliphatic and aromatic hydrocarbons, halides, and the like, and mixtures thereof. Selections of solvent type and amount are determined by the nature of the chain transfer agent and the polymerization conditions. Water and alcohols, such as methanol, ethanol, and isopropanol, are preferred.
The monomer stream, initiator stream, and optional chain transfer agent stream are polymerized in a reaction zone. The reaction temperature is preferably kept essentially constant during the polymerization. The temperature is determined by a combination of factors including the desired molecular weight of the comb-branched polymer product, the initiator type and concentration, the monomer type and concentration, and the solvent used. The reaction is performed at a temperature within the range of about -20°C to about 150°C, preferably, within the range of about 0°C to about
100°C. More preferred is the range of about 20°C to about 90°C. Most preferred is the range of about 40°C to about 60°C.
The addition rate of each stream depends on the desired concentration of each component, the size and shape of the reaction zone, the reaction temperature, and many other considerations. In general, the streams flow into the reaction zone at rates that keep the initiator concentration within the range of about 0.01 % to about 1 % by weight, and the chain transfer agent concentration within the range of about 0.1 % to about 1.5% by weight. The reaction zone is where the polymerization takes place. It can be in the form of a tank reactor, a tubular reactor, or any other desirably shaped reactor. The reaction zone is preferably equipped with a mixer, a heat transfer device, an inert gas source, and any other suitable equipment.
As the streams are polymerized in the reaction zone, a polymer stream is withdrawn. The flow rate of the polymer stream is such that the reaction zone is mass-balanced, meaning that the amount of material that flows into the reaction zone equals to the amount of material withdrawn from the reaction zone. The polymer stream is then collected.
The invention also includes a multiple zone process. A multiple zone process is similar to the process discussed above except that more than one reaction zone is used. In a multiple zone process, a first polymer stream is withdrawn from a first reaction zone and transferred into a second reaction zone where the polymerization continues. A second polymer stream is withdrawn from the second reaction zone. More than two reaction zones can be used if desirable. The reaction temperature in the second reaction zone can be the same as or different from the first reaction zone. A multiple zone process can enhance monomer conversion and increase efficiency of the process. Usually, in the first polymer stream, the monomer conversion is within the range of about 65% to 85% by weight. The second reaction zone preferably brings the monomer conversion to 90% or greater.
The following examples merely illustrate the invention. Those skilled in the art will recognize many variations that are within the spirit of the invention and scope of the claims.
EXAMPLE 1
Preparation of Comb-branched Copolymer By Continuous Process An acrylate of oxyethylene/oxypropylene random copolymer having oxyethylene/oxypropylene ratio 50/50 by weight and number average molecular weight Mn of 2,000 (122.5 g, 0.0613 mole), acrylic acid (26.5 g,
0.368 mole), mercaptopropionic acid (1.2 g) and ammonium persulfate (0.70 g) are charged into a one-liter reactor. The reactor is equipped with a stirrer, a temperature controller, a heating coil, a nitrogen purge device, a monomer addition pump, an initiator addition pump, and a sample outlet. The reactor contents are purged with N2 for 20 minutes. Polyether macromonomer (245 g, 0.123 mole), acrylic acid (53 g, 0.736 mole), mercaptopropionic acid (2.6 g) and distilled water (Dl water) (145 g) are mixed. The mixture is purged with N2for 20 minutes and then charged to the monomer pump. Ammonium persulfate (1.4 g) is dissolved in Dl water (153 g). The solution is purged with N2 for 20 minutes and then charged into the initiator pump. The reactor contents are heated to 40°C. The monomer mixture and the initiator solution are continuously pumped into the reactor at the rates of 1.0 gram/min and 0.33 gram/min, respectively. The product is continuously withdrawn from the reactor at rate of 1.33 gram/min. After the reaction reaches a steady state (after about 150 grams of polymer is produced), the product is collected for physical property and slump tests. It has a number average molecular weight Mn: 10820, and molecular weight distribution Mw/Mn: 1.36.
The product is tested in a mortar mixture by using the slump test (ASTM method C-143). In a typical test at 15% water cut, water (302 g), cement (760 g), mortar sand (1660 g), and 0.76 gram of the comb-branched polymer (0.10% based on the dry cement) are mixed for 5 minutes, and then the slump test is performed. The cement admixture with 0.10% of the comb- branched copolymer has a slump and a flow of 124 mm and 202 mm, respectively, compared to a slump of 25 mm for the cement admixture without the comb-branched copolymer.
EXAMPLE 2 Preparation of Comb-branched Copolymer By Two-stage Continuous Process
Polyether macromonomer (3894 g, 1.947 mole, as described in Example 1 ), acrylic acid (561 g, 7.792 mole), mercaptopropionic acid (32 g) and Dl water (2200 g) are mixed. The mixture is purged with N2 for 20 minutes and then charged into the monomer pump. Ammonium persulfate (32 g) is dissolved in Dl water (2195 g). The solution is purged with N2 for
20 minutes and then charged into the initiator pump. To a first reactor (700 mL) with agitation, 75 grams of the monomer mixture and 25 grams of the initiator solution are added from the addition pumps. The reactor contents are purged with N2 for 20 minutes, and then heated to 40°C. The monomer mixture and the initiator solution are continuously pumped into the reactor at the rates of 6 grams/min and 2 grams/min, respectively. The reaction mixture overflows to a second reactor (500 mL) in which the polymerization continues at 40°C. After the reaction reaches a steady state (after about 1000 grams of polymer is produced), the product is then collected for physical property and slump tests. It has Mn: 1 1780, and Mw/Mn: 1.50.
The slump is tested according to the procedure of Example 1. It has slump: 128, and flow 236 at 0.08% dosage.
COMPARATIVE EXAMPLE 3 Preparation of Comb-branched copolymer By Semi-batch Process
Polyether macromonomer as described in Example 1 (175 g, 0.0875 mole), acrylic acid (19 g, 0.264 mole), and Dl water (207 g) are charged to a one-liter glass reactor equipped with stirrer, temperature controller, heating coil, nitrogen purge device, and addition pump. The reactor contents are purged with N2 for 20 minutes at room temperature and then the reactor is sealed with N2 (3 psi). One gram of ammonium persulfate and 1.8 grams of mercaptopropionic acid are added to the reactor. The reactor contents are heated to 40°C, and 19 grams of acrylic acid (0.264 mole) is added into the reactor at 0.8 gram/min. After the acrylic acid addition is complete, the polymerization continues at 40°C for four hours. The product is discharged after cooled to 25°C. It has a Mn: 1 1810, and Mw/Mn: 1.31. The slump is tested according to the procedure of Example 1 . It has slump: slump 96, flow 149 at 0.10% dosage.
COMPARATIVE EXAMPLE 4
Preparation of Comb-branched Copolymer By Batch Process
Polyether macromonomer as described in Example 1 (150 g, 0.075 mole), acrylic acid (21.6 g, 0.30 mole), mercaptopropionic acid (0.8 g), and
Dl water (163 g) are charged to the reactor. The reactor contents are purged with N2 for 20 minutes at room temperature and then the reactor is sealed with N2 (3 psi). The reactor contents are heated to 40°C, and 6.5 grams of ammonium persulfate aqueous solution (25 wt%) is injected into the reactor. The polymerization is carried out at 40°C for four hours. The product is discharged after cooled to 25°C. It has a Mn: 15850, and Mw/Mn: 1.30. The slump is tested according to the procedure of Example 1. It has slump: slump 114, flow 199 at 0.08% dosage.
TABLE 1 Comparison of Continuous Process with Batch and Semi-batch Processes
Figure imgf000011_0001
"Comparative examples
Table 1 summarizes the different performance of the comb-branched copolymers made by the continuous process of the invention versus the semi-batch and batch processes (Comparative Examples 3 and 4). Comparing examples that use the same copolymer composition and same dose in cement (i.e., 1 versus C3 and 2 versus C4), it is clear that the comb- branched copolymers made by the continuous process have significantly higher slump and flow than those made by either the semi-batch or batch process.

Claims

We claim:
1. A continuous process which comprises:
(a) forming a monomer stream that contains an acrylic monomer and a polyether macromonomer; an initiator stream that contains a free radical initiator; and, optionally, a chain transfer agent stream;
(b) polymerizing the streams in a reaction zone at a temperature within the range of about -20°C to about 150°C; and (c) withdrawing a polymer stream from the reaction zone.
2. The process of claim 1 wherein the polymerization temperature is within the range of about 20°C to about 90°C.
3. The process of claim 1 wherein the polymerization temperature is within the range of about 40°C to about 60°C.
4. The process of claim 1 wherein the monomer stream further contains a solvent.
5. The process of claim 1 wherein the initiator stream further contains a solvent.
6. The process of claim 1 wherein the monomer stream further contains a chain transfer agent.
7. The process of claim 1 wherein the initiator stream further contains a chain transfer agent.
8. The process of claim 1 wherein the polyether macromonomer is selected from the group consisting of poly(propylene glycol) acrylate, polypropylene glycol) methacrylate, poly(ethylene glycol) acrylate, poly(ethylene glycol) methacrylate, acrylates and methacrylates of an oxyethylene and oxypropylene block and random copolymer, and mixtures thereof.
9. The process of claim 1 wherein the acrylic monomer is selected from the group consisting of acrylic acid, methacrylic acid, sodium acrylate, sodium methacrylate, ammonium acrylate, ammonium methacrylate, potassium acrylate, potassium methacrylate, and mixtures thereof.
10. The process of claim 1 wherein the initiator is a persulfate.
11. The process of claim 1 wherein the chain transfer agent is a mercaptan.
12. The process of claim 4 wherein the solvent is selected from the group consisting of water, methyl alcohol, ethyl alcohol, butyl alcohol, and isopropyl alcohol, and mixtures thereof.
13. The process of claim 5 wherein the solvent is selected from the group consisting of water, methyl alcohol, ethyl alcohol, butyl alcohol, and isopropyl alcohol.
14. The process of claim 6 wherein the chain transfer agent is a mercaptan.
15. The process of claim 7 wherein the chain transfer agent is a mercaptan.
16. A continuous process which comprises:
(a) forming a monomer stream that contains an acrylic monomer and a polyether macromonomer; an initiator stream that contains a free radical initiator, and, optionally, a chain transfer agent stream;
(b) polymerizing the streams in a first reaction zone at a temperature within the range of about -20°C to about 150°C; and
(c) transferring a first polymer stream from the first reaction zone to a second reaction zone wherein the polymerization continues at a temperature within the range of about -20°C to about 150°C. (d) withdrawing a second polymer stream from the second reaction zone.
17. The process of claim 16 wherein the monomer stream comprises 5% to 75% by weight of the acrylic monomer and 95% to 25% by weight of the polyether macromonomer.
18. The process of claim 16 wherein the polyether macromonomer is an acrylate of oxypropylene and oxyethylene random copolymer that has a number average molecular weight from about 500 to about 10,000, and an oxyethylene/oxypropylene ratio from about 20/80 to about 80/20 by weight.
19. The process of claim 16 wherein the acrylic monomer is selected from the group consisting of acrylic acid, methacrylic acid, sodium acrylate, sodium methacrylate, ammonium acrylate, ammonium methacrylate, potassium acrylate, potassium methacrylate, and mixtures thereof.
20. The process of claim 16 wherein the acrylic monomer is acrylic acid.
PCT/US2000/018692 1999-07-21 2000-07-07 Process for preparing comb-branched polymers WO2001007494A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AT00947138T ATE306504T1 (en) 1999-07-21 2000-07-07 METHOD FOR PRODUCING COMB POLYMERS
EP00947138A EP1218427B2 (en) 1999-07-21 2000-07-07 Process for preparing comb-branched polymers
ES00947138T ES2246872T5 (en) 1999-07-21 2000-07-07 Procedure for preparing comb-type branched polymers
CA002377463A CA2377463C (en) 1999-07-21 2000-07-07 Process for preparing comb-branched polymers
JP2001512575A JP5409980B2 (en) 1999-07-21 2000-07-07 Comb polymer manufacturing method
DE60023160T DE60023160T3 (en) 1999-07-21 2000-07-07 PROCESS FOR PREPARING COMPOSITE POLYMERS
MXPA02000745 MX248224B (en) 1999-07-21 2000-07-07 Process for preparing comb-branched polymers.
AU60797/00A AU6079700A (en) 1999-07-21 2000-07-07 Process for preparing comb-branched polymers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/358,009 US6214958B1 (en) 1999-07-21 1999-07-21 Process for preparing comb-branched polymers
US09/358,009 1999-07-21

Publications (1)

Publication Number Publication Date
WO2001007494A1 true WO2001007494A1 (en) 2001-02-01

Family

ID=23407925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/018692 WO2001007494A1 (en) 1999-07-21 2000-07-07 Process for preparing comb-branched polymers

Country Status (11)

Country Link
US (2) US6214958B1 (en)
EP (1) EP1218427B2 (en)
JP (1) JP5409980B2 (en)
CN (1) CN1145650C (en)
AT (1) ATE306504T1 (en)
AU (1) AU6079700A (en)
CA (1) CA2377463C (en)
DE (1) DE60023160T3 (en)
ES (1) ES2246872T5 (en)
MX (1) MX248224B (en)
WO (1) WO2001007494A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6527850B2 (en) 2001-04-11 2003-03-04 Arco Chemical Technology L.P. Use of comb-branched copolymers in gypsum compositions
EP1767564A2 (en) 2005-09-26 2007-03-28 Nippon Shokubai Co., Ltd. Polymer, a method for producing the polymer, and a cement admixture using the same
WO2007052122A1 (en) * 2005-11-04 2007-05-10 Coatex S.A.S. Method of producing an impact-resistant thermoplastic resin
WO2007130261A1 (en) * 2006-05-09 2007-11-15 Coatex S.A.S. Preparation of comb-branched polymers
EP2090553A1 (en) * 2008-02-13 2009-08-19 Construction Research and Technology GmbH Continuous method for producing copolymers
WO2010118924A1 (en) * 2009-04-15 2010-10-21 Evonik Röhm Gmbh Method for producing homopolymers and copolymers containing (alkoxy)polyalkylene glycol(meth)acrylate and the use of polymers produced that way
WO2013140098A2 (en) 2012-03-23 2013-09-26 Coatex Slightly ionic polymers for aqueous suspension of mineral fillers for a coating liquid intended for inkjet printing
WO2019149520A1 (en) * 2018-01-31 2019-08-08 Basf Se A process for the preparation of a polymer composition

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214958B1 (en) * 1999-07-21 2001-04-10 Arco Chemical Technology, L.P. Process for preparing comb-branched polymers
JP4209685B2 (en) * 2001-05-01 2009-01-14 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット Antifoaming agent for water reducing agent admixture
DE10125238A1 (en) * 2001-05-22 2002-11-28 Basf Ag Water-soluble polymers of esters from acrylic acid, methacrylic acid and alkyl polyalkylene glycols
DE10125237A1 (en) * 2001-05-22 2002-11-28 Basf Ag Water-soluble polymers of esters from acrylic acid and alkyl polyalkylene glycols
WO2004011513A1 (en) * 2002-07-29 2004-02-05 Applera Corporation Graft copolymers, their preparation and use in capillary electrophoresis
US7147706B1 (en) 2002-08-29 2006-12-12 Carpentercrete, Llc Cementitious compositions and methods of making cementitious compositions
US7128781B1 (en) 2002-08-29 2006-10-31 Carpentercrete, Llc Cementitious compositions and methods of making cementitious compositions
US6869988B2 (en) * 2003-04-16 2005-03-22 Arco Chemical Technology, L.P. Solid supported comb-branched copolymers as an additive for gypsum compositions
US7175918B2 (en) * 2004-04-27 2007-02-13 Equistar Chemicals, Lp Polyolefin compositions
GB0415934D0 (en) * 2004-07-16 2004-08-18 Avecia Bv Vinyl polymer compositions
JP4585299B2 (en) * 2004-12-09 2010-11-24 東京応化工業株式会社 Rinsing liquid for lithography and resist pattern forming method using the same
JP5485494B2 (en) * 2005-09-26 2014-05-07 株式会社日本触媒 Polymer, method for producing the polymer, and cement admixture using the polymer
US7560337B2 (en) * 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
CN100358825C (en) * 2006-01-17 2008-01-02 武汉理工大学 Acrylic acid series multiple copolymer analog high efficiency water reducing agent and its synthesis method
US7825204B2 (en) * 2006-12-19 2010-11-02 Lyondell Chemical Technology, L.P. Inorganic oxide extrudates
US7563740B2 (en) * 2006-12-19 2009-07-21 Lyondell Chemical Technology, L.P. Direct epoxidation process
US7387981B1 (en) 2007-06-28 2008-06-17 Lyondell Chemical Technology, L.P. Direct epoxidation catalyst and process
EP2065350B1 (en) * 2007-10-29 2011-02-23 Sika Technology AG Dispersion aid for hydraulic setting systems
US7879643B2 (en) * 2008-01-18 2011-02-01 Macronix International Co., Ltd. Memory cell with memory element contacting an inverted T-shaped bottom electrode
US7879645B2 (en) * 2008-01-28 2011-02-01 Macronix International Co., Ltd. Fill-in etching free pore device
EP2090596A1 (en) * 2008-02-13 2009-08-19 Construction Research and Technology GmbH Copolymer with polyether side chains and hydroxyalkyl and acid building blocks
US8519029B2 (en) * 2008-06-16 2013-08-27 Construction Research & Technology Gmbh Copolymer admixture system for workability retention of cementitious compositions
US8592040B2 (en) 2008-09-05 2013-11-26 Basf Se Polymer emulsion coating or binding formulations and methods of making and using same
FR2939128B1 (en) * 2008-12-03 2010-11-12 Coatex Sas USE OF A COMBINATION OF COMBINED POLYMERS AS AN AGENT ENHANCING THE HANDLING OF AQUEOUS FORMULATION BASED ON HYDRAULIC BINDERS.
FR2956663B1 (en) * 2010-02-24 2012-05-18 Coatex Sas AQUEOUS SOLUTION OF COMBINED (METH) ACRYLIC COMBINED POLYMER WITH A DRY EXTRACT OF MORE THAN 60%, PROCESS FOR PRODUCTION AND USE AS FLUIDIZING AGENT.
BR112012023990A2 (en) 2010-03-23 2016-08-02 Basf Se paper coating or binder formulation, paper, and method for producing a paper coating or binder formulation
FR2961211B1 (en) * 2010-06-10 2012-07-27 Coatex Sas (METH) ACRYLIC COMBINED POLYMERS WITH HYDROXY POLYALKYLENE GLYCOL FUNCTION, THEIR USE AS A RHEOFLUIDIFIER IN SOLDERING SAUCES AND SAUCES CONTAINING SAME.
US8395935B2 (en) 2010-10-06 2013-03-12 Macronix International Co., Ltd. Cross-point self-aligned reduced cell size phase change memory
CN102093522B (en) * 2011-01-05 2012-07-04 武汉格瑞林建材科技股份有限公司 Polycarboxylic acid, use thereof and water reducer containing same
US9102848B2 (en) 2011-02-28 2015-08-11 Basf Se Environmentally friendly, polymer dispersion-based coating formulations and methods of preparing and using same
FR2973241B1 (en) 2011-03-28 2013-04-19 Coatex Sas COMBINED POLYMERS FOR HAIR
FR2974502B1 (en) 2011-04-26 2013-05-24 Coatex Sas USE OF COMBINED ACRYLIC COPOLYMERS AS A COLOR DEVELOPER AGENT IN COSMETIC COMPOSITIONS.
CN102504135B (en) * 2011-10-19 2014-04-09 西南科技大学 Preparation method of retarding and efficient water reducing agent for silicate cement and calcined gypsum
CN102504140B (en) * 2011-11-30 2013-09-25 上海东大化学有限公司 Polycarboxylic acid water reducing agent prepared from poly(ethylene glycol) ethyl ether, and preparation method and using method for polycarboxylic acid water reducing agent
CN102942659B (en) * 2012-11-16 2015-04-22 上海台界化工有限公司 Method for producing polycarboxylic water reducer by tubular reactor
EP2742995A1 (en) 2012-12-11 2014-06-18 Construction Research & Technology GmbH Continuous method for manufacturing copolymers
CN104371077A (en) * 2014-05-23 2015-02-25 江苏省建筑科学研究院有限公司 Preparation method for starlike polycarboxylic-acid cement dispersant
WO2023028184A1 (en) 2021-08-27 2023-03-02 Stepan Company Crystal growth inhibitors for agricultural formulations
CN113980203B (en) * 2021-11-22 2023-05-09 山东交通学院 Polycarboxylate superplasticizer with controllable structure based on EPEG polyether macromonomer and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310813A (en) * 1990-08-24 1994-05-10 Toagosei Chemical Industry Co., Ltd. Thermosetting coating resin and process for producing the same
US5834576A (en) * 1995-02-28 1998-11-10 Nippon Shokubai Co., Ltd. Acrylic acid derivatives, method for preparing the acrylic acid derivatives, and acrylic acid polymers

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092985A (en) * 1973-12-24 1975-07-24
JPS51136776A (en) * 1975-05-22 1976-11-26 Asahi Chem Ind Co Ltd Process for preparing acr ylonitrile copolymer
DE2617570A1 (en) * 1976-04-22 1977-11-03 Bayer Ag PROCESS FOR THE MANUFACTURING OF ACRYLONITRILE / COPOLYMERS
US4466904A (en) * 1983-01-10 1984-08-21 Cosden Technology, Inc. Polymerization co-inhibitors for vinyl aromatic compounds
US4814014A (en) 1986-12-09 1989-03-21 W. R. Grace & Co. Hydraulic cement additives and hydraulic cement compositions containing same
JPH01226757A (en) * 1988-03-04 1989-09-11 Takemoto Oil & Fat Co Ltd Dispersing agent for cement
US5086141A (en) * 1989-03-20 1992-02-04 Xerox Corporation Polysiloxane crosslinked styrene/butadiene copolymers
JP2851722B2 (en) * 1991-07-26 1999-01-27 日本石油株式会社 Polymer solid electrolyte and method for producing the same
DE4423358A1 (en) * 1994-07-04 1996-01-11 Roehm Gmbh Dispersing cooligomers and copolymers
JP3654993B2 (en) * 1995-02-28 2005-06-02 株式会社日本触媒 Acrylic acid derivative, method for producing the same, and acrylic acid polymer
US5530056A (en) * 1995-05-03 1996-06-25 National Starch And Chemical Investment Holding Corporation latex binders and paints which are free of volatile coalescents and freeze-thaw additives
US5575924A (en) * 1995-05-04 1996-11-19 Betzdearborn Inc. Water treatment methods
US5773521A (en) * 1995-12-19 1998-06-30 Shell Oil Company Coupling to produce inside-out star polymers with expanded cores
DE19547632A1 (en) * 1995-12-20 1997-06-26 Bayer Ag Low-viscosity polymer polyols, a process for their preparation and their use in the production of polyurethane foams
JP3603473B2 (en) * 1996-01-31 2004-12-22 日本ゼオン株式会社 Low heat generation rubber composition and roll
JP3689822B2 (en) * 1996-03-04 2005-08-31 株式会社日本触媒 Cement dispersant and cement composition containing the same
US5605991A (en) * 1996-03-21 1997-02-25 Shell Oil Company Multifunctional initiator from divinyl dislane
JP2992511B2 (en) * 1997-08-06 1999-12-20 株式会社日本触媒 Cement admixture and cement composition
JPH1160305A (en) * 1997-08-06 1999-03-02 Nippon Shokubai Co Ltd Cement admixture and cement composition using the same
AU742676B2 (en) * 1997-08-25 2002-01-10 Arco Chemical Technology L.P. Preparation of functionalised polyethers
US5854386A (en) * 1997-08-25 1998-12-29 Arco Chemical Technology, L.P. Stabilizers for polymer polyols
US6214958B1 (en) * 1999-07-21 2001-04-10 Arco Chemical Technology, L.P. Process for preparing comb-branched polymers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310813A (en) * 1990-08-24 1994-05-10 Toagosei Chemical Industry Co., Ltd. Thermosetting coating resin and process for producing the same
US5834576A (en) * 1995-02-28 1998-11-10 Nippon Shokubai Co., Ltd. Acrylic acid derivatives, method for preparing the acrylic acid derivatives, and acrylic acid polymers

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6527850B2 (en) 2001-04-11 2003-03-04 Arco Chemical Technology L.P. Use of comb-branched copolymers in gypsum compositions
EP1767564A2 (en) 2005-09-26 2007-03-28 Nippon Shokubai Co., Ltd. Polymer, a method for producing the polymer, and a cement admixture using the same
EP1767564B2 (en) 2005-09-26 2013-09-25 Nippon Shokubai Co., Ltd. Polymer, a method for producing the polymer, and a cement admixture using the same
CN101356205B (en) * 2005-11-04 2013-04-24 可泰克斯有限合伙公司 Method of producing an impact-resistant thermoplastic resin
WO2007052122A1 (en) * 2005-11-04 2007-05-10 Coatex S.A.S. Method of producing an impact-resistant thermoplastic resin
FR2893031A1 (en) * 2005-11-04 2007-05-11 Coatex Sas PROCESS FOR PRODUCING A THERMOPLASTIC RESIN WITH ENHANCED IMPACT RESISTANCE USING A COMBINED POLYMER WITH AT LEAST ONE POLYALKYLENE OXIDE GRAY FUNCTION AND RESINS OBTAINED
CN101356205A (en) * 2005-11-04 2009-01-28 可泰克斯有限合伙公司 Method of producing an impact-resistant thermoplastic resin
US8536292B2 (en) 2005-11-04 2013-09-17 Omya International Ag Method of producing an impact-resistant thermoplastic resin
WO2007130261A1 (en) * 2006-05-09 2007-11-15 Coatex S.A.S. Preparation of comb-branched polymers
CN101437859B (en) * 2006-05-09 2011-01-26 高帝斯股份有限公司 Comb-branched polymers and preparation thereof
AU2009214298B2 (en) * 2008-02-13 2013-03-28 Construction Research & Technology Gmbh Continuously operated method for producing copolymers
WO2009100956A3 (en) * 2008-02-13 2010-04-15 Construction Research & Technology Gmbh Continuously operated method for producing copolymers
WO2009100956A2 (en) * 2008-02-13 2009-08-20 Construction Research & Technology Gmbh Continuously operated method for producing copolymers
EP2090553A1 (en) * 2008-02-13 2009-08-19 Construction Research and Technology GmbH Continuous method for producing copolymers
US8648158B2 (en) 2008-02-13 2014-02-11 Construction Research & Technology Gmbh Continuously operated method for producing copolymers
WO2010118924A1 (en) * 2009-04-15 2010-10-21 Evonik Röhm Gmbh Method for producing homopolymers and copolymers containing (alkoxy)polyalkylene glycol(meth)acrylate and the use of polymers produced that way
WO2013140098A2 (en) 2012-03-23 2013-09-26 Coatex Slightly ionic polymers for aqueous suspension of mineral fillers for a coating liquid intended for inkjet printing
WO2019149520A1 (en) * 2018-01-31 2019-08-08 Basf Se A process for the preparation of a polymer composition

Also Published As

Publication number Publication date
US6214958B1 (en) 2001-04-10
ATE306504T1 (en) 2005-10-15
JP2003505560A (en) 2003-02-12
CA2377463C (en) 2009-09-22
AU6079700A (en) 2001-02-13
MX248224B (en) 2007-08-21
JP5409980B2 (en) 2014-02-05
EP1218427B1 (en) 2005-10-12
DE60023160D1 (en) 2006-02-23
ES2246872T5 (en) 2012-06-22
CA2377463A1 (en) 2001-02-01
MXPA02000745A (en) 2002-08-20
CN1145650C (en) 2004-04-14
EP1218427A1 (en) 2002-07-03
CN1374975A (en) 2002-10-16
DE60023160T2 (en) 2006-06-14
EP1218427A4 (en) 2004-11-17
EP1218427B2 (en) 2012-05-02
DE60023160T3 (en) 2012-10-25
ES2246872T3 (en) 2006-03-01
US20010001797A1 (en) 2001-05-24
US6815513B2 (en) 2004-11-09

Similar Documents

Publication Publication Date Title
CA2377463C (en) Process for preparing comb-branched polymers
US7070648B1 (en) Preparation of gypsum compositions
US7232875B1 (en) Preparation of comb-branched polymers
US6034208A (en) Copolymers useful as cement additives and a process for their preparation
EP0884290B2 (en) Process for producing a polycarboxylic acid
TW515811B (en) Preparation of functionalised polyethers
JP5335213B2 (en) Method for producing copolymer having polyalkylene glycol chain
Higashimura et al. Vinyl ethers with a functional group: living cationic polymerization and synthesis of monodisperse polymers
EP1620371A1 (en) Cement admixture and cement composition
CN109320710A (en) A kind of polymeric monomer and the method for preparing polycarboxylate water-reducer with it
KR100860470B1 (en) Cement admixture and cement composition comprising the same
EP1199314B1 (en) Process for producing aqueous resin dispersion
JP4498569B2 (en) Reactive surfactant composition
JP2011032132A (en) Method for production of polycarboxylic acid-based copolymer for cement admixture
JP4174223B2 (en) Method for producing copolymer
JP2012184129A (en) Cement composition
JP5578437B2 (en) Cement composition
US6350842B1 (en) Preparation of allylic copolymers of broad molecular weight distributions
JP5582411B2 (en) Cement composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2377463

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/000745

Country of ref document: MX

Ref document number: 2000947138

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008130361

Country of ref document: CN

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2000947138

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000947138

Country of ref document: EP