WO2001013526A2 - Wireless telephone network optimization - Google Patents

Wireless telephone network optimization Download PDF

Info

Publication number
WO2001013526A2
WO2001013526A2 PCT/US2000/022873 US0022873W WO0113526A2 WO 2001013526 A2 WO2001013526 A2 WO 2001013526A2 US 0022873 W US0022873 W US 0022873W WO 0113526 A2 WO0113526 A2 WO 0113526A2
Authority
WO
WIPO (PCT)
Prior art keywords
fromsector
sector
window size
timing advance
interest
Prior art date
Application number
PCT/US2000/022873
Other languages
French (fr)
Other versions
WO2001013526A3 (en
Inventor
Graham D. Stead
Original Assignee
Invertix Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Invertix Corporation filed Critical Invertix Corporation
Priority to AU69204/00A priority Critical patent/AU6920400A/en
Publication of WO2001013526A2 publication Critical patent/WO2001013526A2/en
Publication of WO2001013526A3 publication Critical patent/WO2001013526A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the present invention is directed to the art of wireless telephone networks. More particularly, the present invention is directed to optimizing parameters of radio base stations in a wireless telephone network, 2. Background Information Cellular and PCS telephone services have enjoyed explosive growth over the last ten years. There is no reason to believe that this growth will not continue for some time. This continued growth creates a great demand for the infrastructure that supports these services. As more and more people begin to use wireless telephones, more and more fixed location base stations must be installed across the landscape to handle the rising demand for wireless traffic. Each wireless telephone base station has a plurality of transceivers, each connected to a respective antenna.
  • each of these antennas defines the coverage area of a "sector."
  • Each sector in the wireless network has some degree of overlap with one or more nearby sectors, and in the aggregate, the coverage areas of all the sectors in the network define coverage area of the network as a whole.
  • One difficulty in establishing a network of base stations is that the aggregate coverage provided by the sectors is not perfect. It may have weak spots, or self- interference spots, where wireless telephony functions at a substandard level or it may even have dead spots where no wireless calls can function at all. Such problems can be rectified by optimizing the sectors to attempt to cover the weak and/or dead spots in wireless coverage. Coverage optimization may be accomplished by varying a number of parameters for each sector.
  • One parameter to vary is the azimuth angle at which the antenna for the sector is pointed.
  • Other parameters to vary are the antenna height (moving the antenna higher or lower on its tower, host building, or other supporting structure), the angle of tilt of the antenna (useful in uneven terrain locations), and the amount of power radiated by the antenna.
  • the option is also available to substitute a different type of antenna (different model or different manufacturer entirely) in order to obtain better coverage results. This optimization process is laborious and time consuming. Each time a network engineer wants to change four of the five above-identified parameters of a sector (azimuth, height, tilt, antenna type), someone has to climb up a tower (or other support structure) and physically make an adjustment to the antenna. Only power changes can be made without a need to get at the antenna.
  • one sector will transfer to a neighboring sector the responsibility for handling the wireless telephone call.
  • a hand off may be necessitated because the wireless telephone unit is portable and has moved out of the effective range of the sector that had been heretofore handling the call, or it may be necessitated due to high demand for the limited number of channels that the sector can provide. This is (ideally) done in a seamless manner such that the user of the telephone never notices any discontinuity in service.
  • a number of parameters of the hardware supporting each sector need to be optimized.
  • One parameter is called a "neighbor list.”
  • Each sector has a neighbor list, which is a ranked listing of neighboring sectors to which hand offs may most appropriately be made.
  • Window size is a parameter that is set for each sector uniquely.
  • This parameter tells a mobile wireless telephone unit how wide a "window" of code space (in chips) the mobile unit should search through in order to attempt to synchronize with the PN (pseudo noise) sequence of a given sector.
  • the prior art provides no satisfactory device or process for optimizing choices of window size for the sectors in a network. As with coverage optimization, a network engineer must program the window size parameter at each sector based on his or her best guess as to what should be an optimum value.
  • a related concept in time division type wireless networks e.g., GSM, TDMA, iDEN
  • GSM time division type wireless networks
  • Timing advance is an analogous concept to the window size parameter of CDMA networks, but is directed to finding an appropriate time slot rather than to code synchronization.
  • the prior art does not provide a suitable way to optimize timing advance, either, leaving network engineers to guess their way to an optimum solution. Such a haphazard optimization technique is not an efficient use of the time of highly skilled workers. Thus, what is needed is an effective way to optimize hand off timing parameters for sectors in a wireless network.
  • SUMMARY OF THE INVENTION It is an object of the present invention to provide a labor-saving and time-efficient way to develop optimum coverage-related parameters for sectors of a wireless network. To address the need for a way to develop optimum coverage-related parameters for sectors of a wireless network, the present invention provides a simulation environment.
  • This simulation environment allows a network engineer to vary parameters of a virtual model of the wireless network and observe how the changes affect coverage. It is another object of the present invention to provide algorithms to optimize hand off timing parameters for sectors in a wireless network.
  • the present invention provides an optimization algorithm.
  • the optimization algorithm analyzes measured data regarding network coverage and regional terrain to arrive at a report containing recommended values for window size parameters (code division systems) or timing advance parameters (time division systems).
  • the optimization algorithm analyzes measured data regarding network coverage and regional terrain to arrive at a report containing recommended neighbor lists for each sector.
  • Some of the above objects are obtained by a process of modeling signal strength coverage of a wireless network based on empirical coverage measurements for the network over a region of interest, based on user inputs, and based on terrain data in the region of interest, the network having plural base station antennas.
  • the process includes mapping the empirical coverage measurements onto the terrain data to provide an initial coverage model, and receiving from a user an input for change of a parameter of one of the antennas.
  • the process also includes generating outputs of signal strength at points on the terrain that are affected by the parameter change, and modifying the initial coverage model based on the generated outputs of signal strength to provide a hypothetical coverage model.
  • Some of the above objects are also obtained by a process of generating a neighbor list for a sector-of-interest in a wireless network based on empirical measurements of signal to noise ratio.
  • the process includes calculating a weight for every pair wise combination of the sector-of-interest other network sectors between which a predetermined threshold signal level criteria, T_ADD, is met.
  • T_ADD threshold signal level criteria
  • the process also includes ordering the calculated weights from largest to smallest, and listing the sectors that meet the T_ADD criteria with respect to the sector-of-interest in rank order corresponding to the ordered calculated weights.
  • Some of the above objects are also obtained by a process of selecting a value of window size for a sector-of-interest in a code division multiple access wireless network.
  • the process includes selecting the earliest arriving multipath signal of all sectors that meet the threshold criteria Ec/Io > T_ADD, wherein T_ADD is a predetermined threshold signal level, and selecting a pair of sectors, ToSector and FromSector, that meet the threshold criteria Ec/Io > T_ADD.
  • Some of the above objects are also obtained by a process of generating a value of timing advance for a sector-of-interest in a time division-type wireless network.
  • FIG. 1 illustrates a high-level flow chart for performing simulation according to an embodiment of the present invention.
  • Fig. 2 illustrates an antenna dialog box according to an embodiment of the present invention.
  • Fig. 3 illustrates a user interface for inputting proposed changes to the network's parameters and displaying simulation results according to an embodiment of the present invention.
  • Fig. 4 illustrates a detail view of the sector select window of Fig. 3.
  • Fig. 5 illustrates a map output display according to an embodiment of the present invention.
  • Fig. 6 illustrates a graph output display according to an embodiment of the present invention.
  • Fig. 7 illustrates an optimized neighbor list generated according to one aspect of the present invention.
  • Fig. 1 illustrates a high-level flow chart for performing simulation according to an embodiment of the present invention.
  • Fig. 2 illustrates an antenna dialog box according to an embodiment of the present invention.
  • Fig. 3 illustrates a user interface for inputting proposed changes to the network's parameters and displaying simulation results according to an embodiment of the present invention
  • FIG. 8 illustrates a flowchart for an algorithm to ascertain an appropriate window size for a sector of a CDMA wireless network according to another aspect of the present invention.
  • Fig. 9 illustrates a flowchart for an algorithm to ascertain an appropriate timing advance for a sector of a time division-type wireless network according to yet another aspect of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION Several types of input information are initially gathered together to create a virtual environment for purposes of simulation of a wireless network. Once the baseline representing the status quo is established, a user is able to perform simulations by varying one or more parameters from those that exist in reality. The varied parameters have many affects on performance of the system, and these effects are modeled by the present invention. Referring to Fig.
  • FIG. 1 a high-level flow chart illustrates how simulation is done according to the present invention.
  • Data gathered by a pilot scanner (gathered over days or even weeks of "drive” tests) is used to provide a comprehensive mapping 10 of signal strengths of the sectors of a wireless network in a given region.
  • a user then proposes "what if changes 20 to the parameters of the network.
  • the pilot scanner data and the proposed "what if changes are utilized along with data pertaining to antennas used (or that may be used) in the network and three dimensional cartographic data 30 as inputs to an interference engine 40.
  • the interference engine 40 is an algorithm that takes the above- described inputs and generates "what if outputs of signal strength at points on the terrain that are affected by the proposed "what if changes.
  • MSC information may also be input.
  • an antenna dialog box is illustrated. Via the antenna dialog box, antenna data is made available for a user to select as input data. A particular antenna may be selected according to manufacturer and model number 60. Textual information is displayed 80 for the user's consideration, along with graphical displays of an antenna's horizontal gain 50 and vertical gain 70.
  • a user interface for inputting proposed changes to the network's parameters is illustrated. A "before" plot of Ec Io versus time 110 is displayed adjacent an "after” plot of ErVIo versus time 120. A sector select window for varying parameters of selected sectors 130 is shown along side the signal versus time plots 110, 120.
  • the illustrated example shows that sector number 405-2 has been selected and that one parameter, antenna downtilt, has been changed from 6 degrees to 8 degrees.
  • the signal strength plot for sector 405-2 is highlighted in red in both plots 110, 120. It is clear from inspection of the after plot 120 to the before plot 110 that the proposed antenna downtilt change would have a markedly bad affect on the performance of the sector.
  • a detail of the sector select window 130 is illustrated to provide a detailed view of how various parameters of a selected sector can be varied for simulation.
  • a selection button 405 provides for a user to select any sector in the wireless network for proposed parameter changes.
  • the antenna azimuth parameter may be changed via the azimuth slide control 425, the actual azimuth value being displayed in brackets 410 and the proposed value 415 being displayed adjacent the azimuth slide control 425.
  • the antenna height parameter may be changed via the height slide control 440, the actual height value (shown in meters) being displayed in brackets 430 and the proposed value 435 being displayed adjacent the height slide control 440.
  • the antenna downtilt parameter may be changed via the downtilt slide control 455, the actual downtilt value being displayed in brackets 445 and the proposed value 450 being displayed adjacent the downtilt slide control 455.
  • the sector transmission power parameter may be changed via the power delta (i.e., change in power) slide control 465, the original power delta value (zero) is displayed in brackets 460 and the proposed power delta value 470 is displayed adjacent the power delta slide control 465.
  • the user is also free to change the type of antenna being used in the simulation.
  • the actual status quo antenna type is displayed in brackets 475 and the selected antenna type is displayed 480 under the "antenna" label. Selections of antenna types are made via the antenna dialog box shown in Fig. 2.
  • Simulation is performed by numerical calculations performed by an interference engine.
  • the simulation algorithm receives input information in the following form: • The list of sectors the user wants to change. The simulation needs the old and new power/height/downtilt azimuth for every sector changed.
  • the present invention also performs automated optimization of parameters affecting hand off, and generates reports of such automated optimization results.
  • One parameter that is automatically optimized according to the present invention is Window Size in a CDMA system. As a general rule, it is desirable to set the window size parameter to be the smallest size that will give an acceptable rate of capture of the PN sequence of the sector. Since the prior art provides no satisfactory device or process for optimizing choices of window size for the sectors in a network, network engineers have no choice but to program the window size parameter at each sector based on a best guess as to what may be an optimum value. The present invention provides an algorithm that predicts optimum window size based on empirical measurements.
  • the input parameters to the algorithm are Ec/Io, pilot channel SNR for a given sector, measured delay time ⁇ from the base location to a given measuring location, and the location information itself.
  • Another factor that affects the algorithm is an assumption that is made as to which particular sector in the network provides the reference time for the hypothetical mobile unit to be handed off. Referring to Fig. 8, a flowchart for an algorithm to ascertain an appropriate window size for a subject sector of a CDMA wireless network is illustrated. The algorithm is applied to empirical drive test data. Multipath signals of all sectors are evaluated to see if they meet the threshold criteria Ec/Io > T_ADD, and then the earliest arriving is selected 810 therefrom.
  • a pair of sectors, ToSector and FromSector, are selected 820, which meet the threshold criteria Ec/Io > T_ADD.
  • the window size of the subject sector i.e., FromSector's window size
  • the window size of the subject sector is set 830 to a value that is equal to ToSector's chip delay, less the chip delay of the earliest arriving multipath sector.
  • An evaluation is then made 840 as to whether FromSector's window size is greater than the maximum window size of the subject sector. If it is, then the maximum FromSector window size is set 850 to equal to the window size for the subject sector. If it is not, then no action is taken. In either case, an evaluation is then made 860 as to whether this is the last sector measured at a given location.
  • Timing advance is an analogous concept to the window size parameter of CDMA networks, but is directed to finding an appropriate sector signal transmission timing advance rather than to code synchronization. Calculation of optimum timing advance is performed in an analogous manner as to window size. Referring to Fig.
  • a flowchart for an algorithm to ascertain an appropriate timing advance for a sector of a time division type wireless network is illustrated.
  • the algorithm is applied to empirical drive test data.
  • a sector, FromSector is selected 910, with a sufficient Received Signal Strength Indication (RSSI) to serve a call.
  • RSSI Received Signal Strength Indication
  • the distance to FromSector is then calculated 920.
  • the timing advance of the subject sector i.e., FromSector's timing advance
  • An evaluation is then made 940 as to whether FromSector's timing advance is greater than the maximum timing advance of the subject sector. If it is, then the maximum FromSector timing advance is set 950 to equal to the timing advance for the subject sector.
  • each sector in a wireless network has a neighbor list. Conventionally, the neighbor list was input by a network engineer making a judgement call as to what looked like the best prioritization of which neighboring sectors were most relevant to the subject sector for purposes of making hand offs of calls. For the wireless network to operate effectively, it is important that the prioritization of members of the neighbor list for each sector be accurate.
  • Ec is the energy per chip in the relevant pilot channel (a or b in this example)
  • Io is the total noise power spectral density
  • Ec/Io is the signal-to-noise ratio of each sector at each location
  • T_ADD is a predetermined threshold signal level.
  • the value of n represents the number of locations over which summation is to occur.
  • This weight calculation is calculated for every pair wise combination of sectors between which the T_ADD threshold criteria is met.
  • the input information for this formula is the empirical measurements of Ec/I 0 .
  • a table is shown that comprises an output report according to the automatic optimization aspect of the present invention.
  • the Sector Name column lists, in descending rank order, the ten sectors that make up the Neighbor List for sector number 161-3.
  • the SRCH_WIN_N column lists the optimized search window sizes for the sectors on the Neighbor List.
  • the present invention generates a Neighbor Discrepancy List, which is a comparison of the Neighbor List before optimization and the Neighbor List after optimization.

Abstract

A wireless network can be easily optimized utilizing processes according to the present invention. A simulation environment allows a network engineer to vary parameters (e.g., antenna height, tilt, and power) of a virtual model of the wireless network and observe how the changes affect coverage. Algorithms also enable hand off timing parameters for sectors in a wireless network to be optimized. One algorithm analyzes measured data regarding network coverage and regional terrain to arrive at a report containing recommended values for window size paramaters (code division systems) or timing advance parameters (time division systems). Another algorithm analyzes measured data regarding network coverage to arrive at a report containing recommended neighbour list for each sector in the network.

Description

Title: WIRELESS TELEPHONE NETWORK OPTIMIZATION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is directed to the art of wireless telephone networks. More particularly, the present invention is directed to optimizing parameters of radio base stations in a wireless telephone network, 2. Background Information Cellular and PCS telephone services have enjoyed explosive growth over the last ten years. There is no reason to believe that this growth will not continue for some time. This continued growth creates a great demand for the infrastructure that supports these services. As more and more people begin to use wireless telephones, more and more fixed location base stations must be installed across the landscape to handle the rising demand for wireless traffic. Each wireless telephone base station has a plurality of transceivers, each connected to a respective antenna. The electromagnetic radiation pattern of each of these antennas defines the coverage area of a "sector." Each sector in the wireless network has some degree of overlap with one or more nearby sectors, and in the aggregate, the coverage areas of all the sectors in the network define coverage area of the network as a whole. One difficulty in establishing a network of base stations is that the aggregate coverage provided by the sectors is not perfect. It may have weak spots, or self- interference spots, where wireless telephony functions at a substandard level or it may even have dead spots where no wireless calls can function at all. Such problems can be rectified by optimizing the sectors to attempt to cover the weak and/or dead spots in wireless coverage. Coverage optimization may be accomplished by varying a number of parameters for each sector. One parameter to vary is the azimuth angle at which the antenna for the sector is pointed. Other parameters to vary are the antenna height (moving the antenna higher or lower on its tower, host building, or other supporting structure), the angle of tilt of the antenna (useful in uneven terrain locations), and the amount of power radiated by the antenna. Additionally, the option is also available to substitute a different type of antenna (different model or different manufacturer entirely) in order to obtain better coverage results. This optimization process is laborious and time consuming. Each time a network engineer wants to change four of the five above-identified parameters of a sector (azimuth, height, tilt, antenna type), someone has to climb up a tower (or other support structure) and physically make an adjustment to the antenna. Only power changes can be made without a need to get at the antenna. Once a parameter has been varied, a fresh set of signal strength measurements must be made by physically driving around the relevant terrain with a measurement device to map out how the parameter change has affected coverage. After analyzing the measurements, another parameter (perhaps for a different sector) can then be varied. This iterative process of vary-measure-vary-measure is repeated over and over again until an optimum result is obtained. It takes a long time and relies upon highly skilled workers to accomplish. Thus, what is needed is a labor-saving and time-efficient way to develop optimum coverage-related parameters for sectors of a wireless network. A wireless telephone often communicates via a number of sectors in succession in the course of a single telephone call via a process called hand-off. In simple terms, one sector will transfer to a neighboring sector the responsibility for handling the wireless telephone call. A hand off may be necessitated because the wireless telephone unit is portable and has moved out of the effective range of the sector that had been heretofore handling the call, or it may be necessitated due to high demand for the limited number of channels that the sector can provide. This is (ideally) done in a seamless manner such that the user of the telephone never notices any discontinuity in service. In order for call hand offs between sectors to be performed effectively, a number of parameters of the hardware supporting each sector need to be optimized. One parameter is called a "neighbor list." Each sector has a neighbor list, which is a ranked listing of neighboring sectors to which hand offs may most appropriately be made. The ranking of members in a neighbor list is an important factor in enabling effective hand offs. However, prior art practice is for a network engineer to simply make an educated guess as to which neighboring sectors should be included as members of the neighbor list of a given sector, as well as how to rank the members of the list by importance. Prior art practice does not include a rigorous analysis of how members of a neighbor list should be ranked, or even which neighboring sectors should be included as members of the list. Another parameter relevant to hand off effectiveness in CDMA wireless networks is "window size." Window size is a parameter that is set for each sector uniquely. This parameter tells a mobile wireless telephone unit how wide a "window" of code space (in chips) the mobile unit should search through in order to attempt to synchronize with the PN (pseudo noise) sequence of a given sector. As a general rule, it is desirable to set the window size parameter to be the smallest size that will give an acceptable rate of capture of the PN sequence of the sector. The prior art provides no satisfactory device or process for optimizing choices of window size for the sectors in a network. As with coverage optimization, a network engineer must program the window size parameter at each sector based on his or her best guess as to what should be an optimum value. A related concept in time division type wireless networks (e.g., GSM, TDMA, iDEN) is the "timing advance" parameter. Timing advance is an analogous concept to the window size parameter of CDMA networks, but is directed to finding an appropriate time slot rather than to code synchronization. The prior art does not provide a suitable way to optimize timing advance, either, leaving network engineers to guess their way to an optimum solution. Such a haphazard optimization technique is not an efficient use of the time of highly skilled workers. Thus, what is needed is an effective way to optimize hand off timing parameters for sectors in a wireless network. SUMMARY OF THE INVENTION It is an object of the present invention to provide a labor-saving and time-efficient way to develop optimum coverage-related parameters for sectors of a wireless network. To address the need for a way to develop optimum coverage-related parameters for sectors of a wireless network, the present invention provides a simulation environment. This simulation environment allows a network engineer to vary parameters of a virtual model of the wireless network and observe how the changes affect coverage. It is another object of the present invention to provide algorithms to optimize hand off timing parameters for sectors in a wireless network. To address the need for a way to optimize hand off timing parameters for sectors in a wireless network, the present invention provides an optimization algorithm. The optimization algorithm analyzes measured data regarding network coverage and regional terrain to arrive at a report containing recommended values for window size parameters (code division systems) or timing advance parameters (time division systems). The optimization algorithm analyzes measured data regarding network coverage and regional terrain to arrive at a report containing recommended neighbor lists for each sector. Some of the above objects are obtained by a process of modeling signal strength coverage of a wireless network based on empirical coverage measurements for the network over a region of interest, based on user inputs, and based on terrain data in the region of interest, the network having plural base station antennas. The process includes mapping the empirical coverage measurements onto the terrain data to provide an initial coverage model, and receiving from a user an input for change of a parameter of one of the antennas. The process also includes generating outputs of signal strength at points on the terrain that are affected by the parameter change, and modifying the initial coverage model based on the generated outputs of signal strength to provide a hypothetical coverage model. Some of the above objects are also obtained by a process of generating a neighbor list for a sector-of-interest in a wireless network based on empirical measurements of signal to noise ratio. The process includes calculating a weight for every pair wise combination of the sector-of-interest other network sectors between which a predetermined threshold signal level criteria, T_ADD, is met. The process also includes ordering the calculated weights from largest to smallest, and listing the sectors that meet the T_ADD criteria with respect to the sector-of-interest in rank order corresponding to the ordered calculated weights. Some of the above objects are also obtained by a process of selecting a value of window size for a sector-of-interest in a code division multiple access wireless network. The process includes selecting the earliest arriving multipath signal of all sectors that meet the threshold criteria Ec/Io > T_ADD, wherein T_ADD is a predetermined threshold signal level, and selecting a pair of sectors, ToSector and FromSector, that meet the threshold criteria Ec/Io > T_ADD. The process also includes setting a window size of FromSector = chip delay of ToSector - chip delay of the earliest arriving multipath sector, evaluating whether the window size of FromSector > maximum window size, and in the event that the window size of FromSector is greater that the maximum window size, then set maximum FromSector window size = the window size of FromSector. Some of the above objects are also obtained by a process of generating a value of timing advance for a sector-of-interest in a time division-type wireless network. The process includes selecting a sector, FromSector, with a sufficient Received Signal Strength Indication (RSSI) to serve a call, calculating the distance to FromSector, and setting timing advance of FromSector = one half the distance to FromSector. The process also includes evaluating whether FromSector' s timing advance > maximum timing advance, and in the event that FromSector' s timing advance is greater than the maximum timing advance, then set maximum FromSector timing advance = FromSector timing advance. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 illustrates a high-level flow chart for performing simulation according to an embodiment of the present invention. Fig. 2 illustrates an antenna dialog box according to an embodiment of the present invention. Fig. 3 illustrates a user interface for inputting proposed changes to the network's parameters and displaying simulation results according to an embodiment of the present invention.. Fig. 4 illustrates a detail view of the sector select window of Fig. 3. Fig. 5 illustrates a map output display according to an embodiment of the present invention. Fig. 6 illustrates a graph output display according to an embodiment of the present invention. Fig. 7 illustrates an optimized neighbor list generated according to one aspect of the present invention. Fig. 8 illustrates a flowchart for an algorithm to ascertain an appropriate window size for a sector of a CDMA wireless network according to another aspect of the present invention. Fig. 9 illustrates a flowchart for an algorithm to ascertain an appropriate timing advance for a sector of a time division-type wireless network according to yet another aspect of the present invention. DETAILED DESCRIPTION OF THE INVENTION Several types of input information are initially gathered together to create a virtual environment for purposes of simulation of a wireless network. Once the baseline representing the status quo is established, a user is able to perform simulations by varying one or more parameters from those that exist in reality. The varied parameters have many affects on performance of the system, and these effects are modeled by the present invention. Referring to Fig. 1 a high-level flow chart illustrates how simulation is done according to the present invention. Data gathered by a pilot scanner (gathered over days or even weeks of "drive" tests) is used to provide a comprehensive mapping 10 of signal strengths of the sectors of a wireless network in a given region. A user then proposes "what if changes 20 to the parameters of the network. The pilot scanner data and the proposed "what if changes are utilized along with data pertaining to antennas used (or that may be used) in the network and three dimensional cartographic data 30 as inputs to an interference engine 40. The interference engine 40 is an algorithm that takes the above- described inputs and generates "what if outputs of signal strength at points on the terrain that are affected by the proposed "what if changes. In addition to measured RF data (from drive tests), antenna data, and terrain data, MSC information may also be input. Referring to Fig. 2, an antenna dialog box is illustrated. Via the antenna dialog box, antenna data is made available for a user to select as input data. A particular antenna may be selected according to manufacturer and model number 60. Textual information is displayed 80 for the user's consideration, along with graphical displays of an antenna's horizontal gain 50 and vertical gain 70. Referring to Fig. 3, a user interface for inputting proposed changes to the network's parameters is illustrated. A "before" plot of Ec Io versus time 110 is displayed adjacent an "after" plot of ErVIo versus time 120. A sector select window for varying parameters of selected sectors 130 is shown along side the signal versus time plots 110, 120. The illustrated example shows that sector number 405-2 has been selected and that one parameter, antenna downtilt, has been changed from 6 degrees to 8 degrees. The signal strength plot for sector 405-2 is highlighted in red in both plots 110, 120. It is clear from inspection of the after plot 120 to the before plot 110 that the proposed antenna downtilt change would have a markedly bad affect on the performance of the sector. Referring to Fig. 4, a detail of the sector select window 130 is illustrated to provide a detailed view of how various parameters of a selected sector can be varied for simulation. A selection button 405 provides for a user to select any sector in the wireless network for proposed parameter changes. The antenna azimuth parameter may be changed via the azimuth slide control 425, the actual azimuth value being displayed in brackets 410 and the proposed value 415 being displayed adjacent the azimuth slide control 425. The antenna height parameter may be changed via the height slide control 440, the actual height value (shown in meters) being displayed in brackets 430 and the proposed value 435 being displayed adjacent the height slide control 440. The antenna downtilt parameter may be changed via the downtilt slide control 455, the actual downtilt value being displayed in brackets 445 and the proposed value 450 being displayed adjacent the downtilt slide control 455. The sector transmission power parameter may be changed via the power delta (i.e., change in power) slide control 465, the original power delta value (zero) is displayed in brackets 460 and the proposed power delta value 470 is displayed adjacent the power delta slide control 465. The user is also free to change the type of antenna being used in the simulation. The actual status quo antenna type is displayed in brackets 475 and the selected antenna type is displayed 480 under the "antenna" label. Selections of antenna types are made via the antenna dialog box shown in Fig. 2. Simulation is performed by numerical calculations performed by an interference engine. The simulation algorithm receives input information in the following form: • The list of sectors the user wants to change. The simulation needs the old and new power/height/downtilt azimuth for every sector changed. • The following measurements at each location where the user wants to simulate the change: • ECJRC — pilot channel power for sector i (units dBm) • (Ec Io) i — pilot channel signal-to-noise ratio for sector /' (units dB) • I0W — total received power at this location (units dBm) The input measurements are typically received in units of dB or dBm, which are nonlinear (logarithmic) units. As most of the calculations disclosed are in linear units, a conversion from logarithmic to linear units would be necessary. Once the input data has been properly initialized, the following process steps are performed: 1 ) Use pilot channel powers to find X, where X is defined as: X = I0W/sum(Ec,Rc) 2) For each sector whose power or antenna has changed, calculate the new Ec,Rc, which is denoted as Ec,Rc ', after antenna changes: Ec,Rc ' = Ec,Rc - oldAntennaGain at LOS path from antenna to this location + newAntennaGain at LOS path from antenna to this location - oldPowerfor this sector + newPower for this sector [NOTE: This calculation is written for dB units instead of linear units] 3) Calculate the new total received power, I0W', at this location after antenna changes: I0W = X su (Ec,Rc') 4) Find the new E< I0 value, for a sector , at this location after antenna changes: (Ec/Io), ' = EcRcY 0W 5) Perform this for every location that contains measurements from changed sectors. Once the algorithm has been performed for all changed sectors, the resulting simulation data, Ec,Rc ', (Ec/I0), ' and I0W needs to be converted back into logarithmic units (dB or dBm units). These are the results of the simulation that the user will see. The above foraiulas are preferred simplifications based on a rigorous mathematical derivation. Simulation outputs are provided as signal strength maps, either two dimensional or virtual reality, as tables of numerical data, and as charts. Referring to Fig. 5, an example, according to an embodiment of the present invention, of a two-dimensional map simulation output is illustrated. Referring to Fig. 6, an example, according to an embodiment of the present invention, of a graph output is illustrated. The present invention also performs automated optimization of parameters affecting hand off, and generates reports of such automated optimization results. One parameter that is automatically optimized according to the present invention is Window Size in a CDMA system. As a general rule, it is desirable to set the window size parameter to be the smallest size that will give an acceptable rate of capture of the PN sequence of the sector. Since the prior art provides no satisfactory device or process for optimizing choices of window size for the sectors in a network, network engineers have no choice but to program the window size parameter at each sector based on a best guess as to what may be an optimum value. The present invention provides an algorithm that predicts optimum window size based on empirical measurements. The input parameters to the algorithm are Ec/Io, pilot channel SNR for a given sector, measured delay time τ from the base location to a given measuring location, and the location information itself. Another factor that affects the algorithm is an assumption that is made as to which particular sector in the network provides the reference time for the hypothetical mobile unit to be handed off. Referring to Fig. 8, a flowchart for an algorithm to ascertain an appropriate window size for a subject sector of a CDMA wireless network is illustrated. The algorithm is applied to empirical drive test data. Multipath signals of all sectors are evaluated to see if they meet the threshold criteria Ec/Io > T_ADD, and then the earliest arriving is selected 810 therefrom. A pair of sectors, ToSector and FromSector, are selected 820, which meet the threshold criteria Ec/Io > T_ADD. The window size of the subject sector (i.e., FromSector's window size) is set 830 to a value that is equal to ToSector's chip delay, less the chip delay of the earliest arriving multipath sector. An evaluation is then made 840 as to whether FromSector's window size is greater than the maximum window size of the subject sector. If it is, then the maximum FromSector window size is set 850 to equal to the window size for the subject sector. If it is not, then no action is taken. In either case, an evaluation is then made 860 as to whether this is the last sector measured at a given location. If not, then the algorithm loops back to the step of selecting 820 a pair of sectors, ToSector and FromSector. If so, then the algorithm proceeds on to the next measurement location 870 and continues to repeat the algorithm as described above. The algorithm is exhausted 880 when the last measurement location has been exhausted. A related concept in time division type wireless networks (e.g., GSM, TDMA, iDEN) is the "timing advance" parameter. Timing advance is an analogous concept to the window size parameter of CDMA networks, but is directed to finding an appropriate sector signal transmission timing advance rather than to code synchronization. Calculation of optimum timing advance is performed in an analogous manner as to window size. Referring to Fig. 9, a flowchart for an algorithm to ascertain an appropriate timing advance for a sector of a time division type wireless network is illustrated. The algorithm is applied to empirical drive test data. A sector, FromSector is selected 910, with a sufficient Received Signal Strength Indication (RSSI) to serve a call. The distance to FromSector is then calculated 920. The timing advance of the subject sector (i.e., FromSector's timing advance) is set 930 to a value that is equal to be half of the calculated distance. An evaluation is then made 940 as to whether FromSector's timing advance is greater than the maximum timing advance of the subject sector. If it is, then the maximum FromSector timing advance is set 950 to equal to the timing advance for the subject sector. If it is not, then no action is taken. In either case, an evaluation is then made 960 as to whether this is the last sector measured at a given location. If not, then the algorithm loops back to the step of selecting 920 a sector of sufficient RSSI. If so, then the algorithm proceeds on to the next measurement location 970 and continues to repeat the algorithm as described above. The algorithm is exhausted 980 when the last measurement location has been exhausted. Each sector in a wireless network has a neighbor list. Conventionally, the neighbor list was input by a network engineer making a judgement call as to what looked like the best prioritization of which neighboring sectors were most relevant to the subject sector for purposes of making hand offs of calls. For the wireless network to operate effectively, it is important that the prioritization of members of the neighbor list for each sector be accurate. The primary factor in determining ranking of neighbor list members is a quantity called "weight." Weight is calculated, with respect to two neighbor sectors "a" and "b", as follows: n weight a→b = Σ 10Λ{[( Ec/Io(a,i) - T_ADD) + ( Ec I0(b,i) - T_ADD)]/10} i=l In this equation Ec is the energy per chip in the relevant pilot channel (a or b in this example), Io is the total noise power spectral density, Ec/Io is the signal-to-noise ratio of each sector at each location, and T_ADD is a predetermined threshold signal level. The value of n represents the number of locations over which summation is to occur. This weight calculation is calculated for every pair wise combination of sectors between which the T_ADD threshold criteria is met. The input information for this formula is the empirical measurements of Ec/I0. Referring to Fig. 7, a table is shown that comprises an output report according to the automatic optimization aspect of the present invention. The Sector Name column lists, in descending rank order, the ten sectors that make up the Neighbor List for sector number 161-3. The SRCH_WIN_N column lists the optimized search window sizes for the sectors on the Neighbor List. Additionally, the present invention generates a Neighbor Discrepancy List, which is a comparison of the Neighbor List before optimization and the Neighbor List after optimization. Although the present invention has been described in terms of preferred embodiments, various modifications and variations may be made without departing from the scope of the invention, as will be understood by those of skill in the art. The present invention is limited only by the appended claims.

Claims

WHAT IS CLAIMED IS: 1. A process of modeling signal strength coverage of a wireless network based on empirical coverage measurements for the network over a region of interest, based on user inputs, and based on terrain data in the region of interest, the network having plural base station antennas, the process comprising: mapping the empirical coverage measurements onto the terrain data to provide an initial coverage model; receiving from a user an input for change of a parameter of one of the antennas; generating outputs of signal strength at points on the terrain that are affected by the parameter change; and modifying the initial coverage model based on the generated outputs of signal strength to provide a hypothetical coverage model.
2. The process of claim 1, wherein the parameter is chosen from the group consisting of: antenna height, antenna tilt angle, antenna type, antenna azimuth, and transmitted signal power at the antenna.
3. The process of claim 1, further comprising: providing a visual representation of signal strength coverage according to the initial coverage model.
4. The process of claim 1, further comprising: providing a visual representation of signal strength coverage according to the hypothetical coverage model.
5. The process of claim 1, further comprising: providing a comparative visual representation of signal strength coverage according to superposition of the initial coverage model with the hypothetical coverage model.
6. A process of generating a neighbor list for a sector-of-interest in a wireless network based on empirical measurements of signal to noise ratio, the process comprising: calculating a weight for every pair wise combination of the sector-of-interest other network sectors between which a predetermined threshold signal level criteria, T_ADD, is met; ordering the calculated weights from largest to smallest; and listing the sectors that meet the T_ADD criteria with respect to the sector-of- interest in rank order corresponding to the ordered calculated weights.
7. The process of claim 6, wherein weight is calculated, with respect to two neighbor sectors a and b, as follows: n weight a→b = ∑ 10Λ{ [( Ec/Io(a,i) - T_ADD) + ( Ec/I0(b,i) - T_ADD)]/10} i=l wherein Ec/I0 is the signal-to-noise ratio of each sector at each location, and the value of n represents the number of locations over which summation is to occur.
8. A process of selecting a value of window size for a sector-of-interest in a code division multiple access wireless network, the process comprising: select the earliest arriving multipath signal of all sectors that meet the threshold criteria Ec/Io > T_ADD, wherein T_ADD is a predetermined threshold signal level; select a pair of sectors, ToSector and FromSector, that meet the threshold criteria Ec/Io > T_ADD; set a window size of FromSector = chip delay of ToSector - chip delay of the earliest arriving multipath sector; evaluate whether the window size of FromSector > maximum window size; and in the event that the window size of FromSector is greater that the maximum window size, then set maximum FromSector window size = the window size of FromSector.
9. A process of generating a value of timing advance for a sector-of-interest in a time division-type wireless network, the process comprising: select a sector, FromSector, with a sufficient Received Signal Strength Indication (RSSI) to serve a call; calculate the distance to FromSector; set timing advance of FromSector = one half the distance to FromSector; evaluate whether FromSector's timing advance > maximum timing advance; and in the event that FromSector's timing advance is greater than the maximum timing advance, then set maximum FromSector timing advance = FromSector timing advance.
10. A computer program product for enabling a computer to model signal strength coverage of a wireless network based on empirical coverage measurements for the network over a region of interest, based on user inputs, and based on terrain data in the region of interest, the network having plural base station antennas, the computer program product comprising: software instructions for enabling the computer to perform predetermined operations, and a computer readable medium embodying the software instructions; the predetermined operations comprising: mapping the empirical coverage measurements onto the terrain data to provide an initial coverage model; receiving from a user an input for change of a parameter of one of the antennas; generating outputs of signal strength at points on the terrain that are affected by the parameter change; and modifying the initial coverage model based on the generated outputs of signal strength to provide a hypothetical coverage model.
11. A computer program product for enabling a computer to generate a neighbor list for a sector-of-interest in a wireless network based on empirical measurements of signal to noise ratio, the computer program product comprising: software instructions for enabling the computer to perform predetermined operations, and a computer readable medium embodying the software instructions; the predetermined operations comprising: calculating a weight for every pair wise combination of the sector-of-interest other network sectors between which a predetermined threshold signal level criteria, T_ADD, is met; ordering the calculated weights from largest to smallest; and listing the sectors that meet the T_ADD criteria with respect to the sector-of- interest in rank order corresponding to the ordered calculated weights.
12. A computer program product for enabling a computer to select a value of window size for a sector-of-interest in a code division multiple access wireless network, the computer program product comprising: software instructions for enabling the computer to perform predetermined operations, and a computer readable medium embodying the software instructions; the predetermined operations comprising: select the earliest arriving multipath signal of all sectors that meet the threshold criteria Ec/Io > T_ADD, wherein T_ADD is a predetermined threshold signal level; select a pair of sectors, ToSector and FromSector, that meet the threshold criteria Ec/Io > T_ADD; set a window size of FromSector = chip delay of ToSector - chip delay of the earliest arriving multipath sector; evaluate whether the window size of FromSector > maximum window size; and in the event that the window size of FromSector is greater that the maximum window size, then set maximum FromSector window size = the window size of FromSector.
13. A computer program product for enabling a computer to generate a value of timing advance for a sector-of-interest in a time division-type wireless network, the computer program product comprising: software instructions for enabling the computer to perform predetermined operations, and a computer readable medium embodying the software instructions; the predetermined operations comprising: select a sector, FromSector, with a sufficient Received Signal Strength Indication (RSSI) to serve a call; calculate the distance to FromSector; set timing advance of FromSector = one half the distance to FromSector; evaluate whether FromSector's timing advance > maximum timing advance; and in the event that FromSector's timing advance is greater than the maximum timing advance, then set maximum FromSector timing advance = FromSector timing advance.
14. A computer system adapted to model signal strength coverage of a wireless network based on empirical coverage measurements for the network over a region of interest, based on user inputs, and based on terrain data in the region of interest, the network having plural base station antennas, comprising: a processor, and a memory including software instructions adapted to enable the computer system to perform operations comprising: mapping the empirical coverage measurements onto the terrain data to provide an initial coverage model; receiving from a user an input for change of a parameter of one of the antennas; generating outputs of signal strength at points on the terrain that are affected by the parameter change; and modifying the initial coverage model based on the generated outputs of signal strength to provide a hypothetical coverage model.
15. A computer system adapted to generate a neighbor list for a sector-of-interest in a wireless network based on empirical measurements of signal to noise ratio, comprising: a processor, and a memory including software instructions adapted to enable the computer system to perform operations comprising: calculating a weight for every pair wise combination of the sector-of-interest other network sectors between which a predetermined threshold signal level criteria, T_ADD, is met; ordering the calculated weights from largest to smallest; and listing the sectors that meet the T_ADD criteria with respect to the sector-of- interest in rank order corresponding to the ordered calculated weights.
16. A computer system adapted to select a value of window size for a sector-of- interest in a code division multiple access wireless network, comprising: a processor, and a memory including software instructions adapted to enable the computer system to perform operations comprising: select the earliest arriving multipath signal of all sectors that meet the threshold criteria Ec/Io > T_ADD, wherein T_ADD is a predetermined threshold signal level; select a pair of sectors, ToSector and FromSector, that meet the threshold criteria Ec/Io > T_ADD; set a window size of FromSector = chip delay of ToSector - chip delay of the earliest arriving multipath sector; evaluate whether the window size of FromSector > maximum window size; and in the event that the window size of FromSector is greater that the maximum window size, then set maximum FromSector window size = the window size of FromSector.
17. A computer system adapted to generate a value of timing advance for a sector- of-interest in a time division-type wireless network, comprising: a processor, and a memory including software instructions adapted to enable the computer system to perform operations comprising: select a sector, FromSector, with a sufficient Received Signal Strength Indication (RSSI) to serve a call; calculate the distance to FromSector; set timing advance of FromSector = one half the distance to FromSector; evaluate whether FromSector's timing advance > maximum timing advance; and in the event that FromSector's timing advance is greater than the maximum timing advance, then set maximum FromSector timing advance = FromSector timing advance.
PCT/US2000/022873 1999-08-19 2000-08-18 Wireless telephone network optimization WO2001013526A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU69204/00A AU6920400A (en) 1999-08-19 2000-08-18 Wireless telephone network optimization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14988899P 1999-08-19 1999-08-19
US60/149,888 1999-08-19

Publications (2)

Publication Number Publication Date
WO2001013526A2 true WO2001013526A2 (en) 2001-02-22
WO2001013526A3 WO2001013526A3 (en) 2001-06-07

Family

ID=22532223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/022873 WO2001013526A2 (en) 1999-08-19 2000-08-18 Wireless telephone network optimization

Country Status (2)

Country Link
AU (1) AU6920400A (en)
WO (1) WO2001013526A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091776A1 (en) * 2001-05-04 2002-11-14 Nokia Corporation Intelligent antenna using position data stored in data base to steer antenna beam towards mobile station
WO2005071993A1 (en) * 2004-01-09 2005-08-04 Cisco Technology, Inc. System and method to simulate and manage a wireless local area network (wlan)
WO2006100401A1 (en) * 2005-03-23 2006-09-28 France Telecom Generating automatically list of neighbouring cells
EP1727384A1 (en) * 2005-05-26 2006-11-29 Siemens S.p.A. Method and system for producing adjacent cell lists in cellular communication systems, computer program product therefor
WO2009005628A2 (en) * 2007-06-30 2009-01-08 Alcatel-Lucent Usa Inc. Method and apparatus for dynamically creating and updating base station neighbor lists
WO2009117282A2 (en) 2008-03-20 2009-09-24 Airmagnet, Inc. Methods and systems for network channel capacity planning, measuring and analyzing of wlan networks
WO2011018640A1 (en) * 2009-08-11 2011-02-17 Ubiquisys Limited Creating ranked neighbour cell lists
US8364090B2 (en) 2010-04-15 2013-01-29 Apple Inc. Method and apparatus for wireless radio frequency test signal generation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4030825A1 (en) * 1989-09-29 1991-04-11 Televerket METHOD FOR SIMULATING THE EFFECT OF ALTERNATIVE ANTENNA DIRECTION DIAGRAMS IN A MOBILE RADIO SYSTEM
US5561841A (en) * 1992-01-23 1996-10-01 Nokia Telecommunication Oy Method and apparatus for planning a cellular radio network by creating a model on a digital map adding properties and optimizing parameters, based on statistical simulation results
WO1997019522A2 (en) * 1995-11-20 1997-05-29 Nokia Telecommunications Oy Method for controlling a receiver, and a receiver
US5640676A (en) * 1995-05-11 1997-06-17 Motorola, Inc. Method for generating a handoff candidate list
WO1997029557A1 (en) * 1996-02-12 1997-08-14 Telia Ab Method for evaluation of antenna tiltings
WO1997041652A1 (en) * 1996-04-26 1997-11-06 Motorola Inc. Method and apparatus for controlling a wireless communication system
US5764687A (en) * 1995-06-20 1998-06-09 Qualcomm Incorporated Mobile demodulator architecture for a spread spectrum multiple access communication system
US5878328A (en) * 1995-12-21 1999-03-02 At&T Wireless Services, Inc. Method and apparatus for wireless communication system organization
WO1999027718A1 (en) * 1997-11-26 1999-06-03 Motorola Inc. Method and apparatus for determining hand-off candidates in a communication system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4030825A1 (en) * 1989-09-29 1991-04-11 Televerket METHOD FOR SIMULATING THE EFFECT OF ALTERNATIVE ANTENNA DIRECTION DIAGRAMS IN A MOBILE RADIO SYSTEM
US5561841A (en) * 1992-01-23 1996-10-01 Nokia Telecommunication Oy Method and apparatus for planning a cellular radio network by creating a model on a digital map adding properties and optimizing parameters, based on statistical simulation results
US5640676A (en) * 1995-05-11 1997-06-17 Motorola, Inc. Method for generating a handoff candidate list
US5764687A (en) * 1995-06-20 1998-06-09 Qualcomm Incorporated Mobile demodulator architecture for a spread spectrum multiple access communication system
WO1997019522A2 (en) * 1995-11-20 1997-05-29 Nokia Telecommunications Oy Method for controlling a receiver, and a receiver
US5878328A (en) * 1995-12-21 1999-03-02 At&T Wireless Services, Inc. Method and apparatus for wireless communication system organization
WO1997029557A1 (en) * 1996-02-12 1997-08-14 Telia Ab Method for evaluation of antenna tiltings
WO1997041652A1 (en) * 1996-04-26 1997-11-06 Motorola Inc. Method and apparatus for controlling a wireless communication system
WO1999027718A1 (en) * 1997-11-26 1999-06-03 Motorola Inc. Method and apparatus for determining hand-off candidates in a communication system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091776A1 (en) * 2001-05-04 2002-11-14 Nokia Corporation Intelligent antenna using position data stored in data base to steer antenna beam towards mobile station
WO2005071993A1 (en) * 2004-01-09 2005-08-04 Cisco Technology, Inc. System and method to simulate and manage a wireless local area network (wlan)
WO2006100401A1 (en) * 2005-03-23 2006-09-28 France Telecom Generating automatically list of neighbouring cells
FR2883695A1 (en) * 2005-03-23 2006-09-29 France Telecom AUTOMATIC GENERATION OF LIST OF NEIGHBORING CELLS
EP1727384A1 (en) * 2005-05-26 2006-11-29 Siemens S.p.A. Method and system for producing adjacent cell lists in cellular communication systems, computer program product therefor
WO2009005628A3 (en) * 2007-06-30 2009-04-09 Lucent Technologies Inc Method and apparatus for dynamically creating and updating base station neighbor lists
WO2009005628A2 (en) * 2007-06-30 2009-01-08 Alcatel-Lucent Usa Inc. Method and apparatus for dynamically creating and updating base station neighbor lists
WO2009117282A2 (en) 2008-03-20 2009-09-24 Airmagnet, Inc. Methods and systems for network channel capacity planning, measuring and analyzing of wlan networks
EP2258139A4 (en) * 2008-03-20 2015-06-24 Airmagnet Inc Methods and systems for network channel capacity planning, measuring and analyzing of wlan networks
WO2011018640A1 (en) * 2009-08-11 2011-02-17 Ubiquisys Limited Creating ranked neighbour cell lists
KR20120060841A (en) * 2009-08-11 2012-06-12 유비퀴시스 리미티드 Creating ranked neighbour cell lists
US8559953B2 (en) 2009-08-11 2013-10-15 Ubiquisys Limited Creating neighbour cell lists
US8855644B2 (en) 2009-08-11 2014-10-07 Ubiquisys Limited Creating neighbour cell lists
KR101648527B1 (en) 2009-08-11 2016-08-16 유비퀴시스 리미티드 Creating ranked neighbour cell lists
US8364090B2 (en) 2010-04-15 2013-01-29 Apple Inc. Method and apparatus for wireless radio frequency test signal generation

Also Published As

Publication number Publication date
WO2001013526A3 (en) 2001-06-07
AU6920400A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
US6940838B1 (en) Wireless telephone network optimization
KR101729873B1 (en) Network coverage planning method and apparatus of evolution communication system
US7881720B2 (en) Method of indoor radio planning
US8060102B2 (en) System and method for coverage analysis in a wireless network
US6810246B1 (en) Method and system for analyzing digital wireless network performance
US7565148B2 (en) Methods and apparatus for design of wireless networks to aid in location identification of mobile units
US6889053B1 (en) Likelihood-based geolocation prediction algorithms for CDMA systems using pilot strength measurements
US8712428B2 (en) Location estimation of wireless terminals through pattern matching of deduced signal strengths
US11057736B2 (en) Radio signal quality pattern mapping in geo space to provide guided location alignment indication to user equipment
RU2007116114A (en) METHOD INTENDED FOR FINDING THE LOCATION OF THE MOBILE TERMINAL IN THE CELLULAR RADIO SYSTEM
EP1727300A1 (en) Electric wave propagation characteristic estimation system, method thereof, and program
JP2006352385A (en) Method for measuring reception quality in communication area, and device and program therefor
CA2279626A1 (en) Method and apparatus for estimating pilot coverage
CA2399665A1 (en) Method and apparatus for simulating and planning of wireless position location networks
EP1059008A1 (en) Method and system for estimating a subscriber&#39;s location in a wireless communication system service area
CN103620441A (en) Method and apparatus for mapping operating parameter in coverage area of wireless network
Skidmore et al. Interactive coverage region and system design simulation for wireless communication systems in multifloored indoor environments: SMT Plus
JP3877135B2 (en) Peripheral zone table creation method and apparatus, program and storage medium in mobile communication system
KR20210026520A (en) System and method for predicting wireless communication coverage based on measurement data
JPWO2004112414A1 (en) Wireless network change support system and wireless network change support method
WO2001013526A2 (en) Wireless telephone network optimization
Kouakou et al. Cost-efficient sensor deployment in indoor space with obstacles
Xie et al. A new indoor localization method based on inversion propagation model
KR100594881B1 (en) System for optimizing wireless network applying fast automatic searching optimum solution and method thereof
CN103118331B (en) Positioning method for multi-mode base station

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP