WO2001021063A1 - Vorrichtung zum messen von physikalischen grössen, insbesondere zur druckmessung im auge - Google Patents

Vorrichtung zum messen von physikalischen grössen, insbesondere zur druckmessung im auge Download PDF

Info

Publication number
WO2001021063A1
WO2001021063A1 PCT/EP2000/009301 EP0009301W WO0121063A1 WO 2001021063 A1 WO2001021063 A1 WO 2001021063A1 EP 0009301 W EP0009301 W EP 0009301W WO 0121063 A1 WO0121063 A1 WO 0121063A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
implant
sensor
eye
annular
Prior art date
Application number
PCT/EP2000/009301
Other languages
English (en)
French (fr)
Inventor
Christine Kreiner
Volker BÖDECKER
Uwe Schnakenberg
Stella Marianne Ullerich
Peter Walter
Original Assignee
Acritec Gesellschaft Für Ophthalmologische Produkte Mbh
Mesotec Gesellschaft für Medizinische Sensortechnik mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acritec Gesellschaft Für Ophthalmologische Produkte Mbh, Mesotec Gesellschaft für Medizinische Sensortechnik mbH filed Critical Acritec Gesellschaft Für Ophthalmologische Produkte Mbh
Priority to EP00964227A priority Critical patent/EP1213991B1/de
Priority to US10/089,363 priority patent/US6796942B1/en
Priority to JP2001524497A priority patent/JP4251387B2/ja
Priority to AT00964227T priority patent/ATE241932T1/de
Priority to DE50002477T priority patent/DE50002477D1/de
Publication of WO2001021063A1 publication Critical patent/WO2001021063A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/16Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring intraocular pressure, e.g. tonometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses

Definitions

  • Device for measuring physical quantities in particular for measuring pressure in the eye
  • the invention relates to a device according to the preamble of claim 1, as known from DE 197 28 069 Cl.
  • the known device is used to measure the intraocular pressure and has a foldable implant on which a telemetric system with a pressure sensor and a transmitting device having a coil is provided outside the field of vision of the eye.
  • a transmitting device information corresponding to the sensor signals can be passed on wirelessly to a receiving device arranged outside the eye.
  • the information received is converted into reproducible data in an evaluation device connected to the receiving device.
  • the remote measuring device that can be implanted in the eye can have a data logger in which the measurement data continuously supplied by the pressure sensor can be stored and from which the measurement data can be interrogated for a limited time when required in the transceiver mode.
  • the object of the invention is to provide a device of the type mentioned which is foldable or rollable with excellent reception and transmission quality.
  • a carrier foil insbesonde re ⁇ a carrier foil the coil in a flat surface in the form of a plurality of adjacent coil windings, planar applied.
  • the remote measuring device containing the electronics and / or the sensor are preferably contained in at least one electronic component (chip) and are likewise applied to the coil on the foldable carrier with electrical contacting.
  • This arrangement is cast into a foldable, biocompatible implant material, in particular made of polyorganosiloxane, for example polydimethylsiloxane.
  • the implant material can serve not only as a covering for the transmitting device and remote measuring device, but also as a transmission medium for the physical quantity to be measured, which can be, in particular, the intraocular pressure or the temperature in the eye, towards the sensor.
  • the sensor is also surrounded by the biocompatible implant material.
  • the physical quantity to be measured in the eye for example the intraocular pressure or the temperature, then acts directly on the sensor surface or this sensor area. It is also possible to use a different transmission medium for the physical size than the implant material.
  • planar design of the coil with a plurality of coil turns lying next to one another which preferably lies in a plane perpendicular to the optical axis of the eye or the implant designed as an intraocular lens, achieves high transmission and reception quality without the foldability or rollability of the Implant material is impaired. Furthermore, the required compatibility with the eye is achieved for the entire device. In addition to a planar layer, several planar layers (planes) lying one above the other can also be provided for the coil turns.
  • the implant is preferably designed as an intraocular lens, the telemetry device and the transmitting device having the coil being accommodated outside the optical lens part, in particular essentially in the area of the feel of the intraocular lens which surrounds the optical lens part.
  • the haptic can have an annular area surrounding the optical lens part, within which the planar arrangement of the coil turns is accommodated.
  • the coil turns are preferably designed as planar electrical conductor tracks, which preferably consist of precious metal, in particular gold.
  • the conductor tracks of the coil turns are produced on the carrier film using conventional planar technology, for example by metal deposition, in particular galvanic deposition, as are known in microstructuring processes.
  • the implant can also have an annular design.
  • the coil turns are then arranged on at least one of the ring surfaces.
  • the ring-shaped implant is preferably fixed to the sulcus of the eye.
  • the ring can be formed partly from a hard material, in particular PMMA and partly from a flexible material, in particular silicone.
  • the implant is preferably covered with a biocompatible material, for example silicone rubber.
  • the ring can also consist entirely of silicone, with a stabilizing haptic, in particular made of PMMA or another rigid material.
  • the carrier film is formed as a thin flexible and foldable foil, which ensures a good adhesion of the metal of the coil turns, in particular the film mate rial ⁇ has dielectric properties and may be made of a suitable plastic, for example, consist of a polyimide.
  • the device Due to the extreme rollability or foldability of the device, it can be operated without the usual minimally invasive surgical procedures.
  • methods to be implanted in the eye can be implanted in the eye.
  • microelectronic and sensory components for wireless energy and signal transmission for example in the form of an artificial intraocular lens that can be folded, can be applied to the eye. After the implantation, the intraocular lens unfolds.
  • Figure 1 is a plan view of an embodiment designed as an intraocular lens
  • FIG. 2 shows a top view of an embodiment for a telemetric system, which can be used in the embodiment shown in FIG. 1;
  • FIG. 3 shows a sectional representation of the telemetric system shown in FIG. 2;
  • Figure 4 is a sectional representation of a telemetric system see "of another embodiment
  • Figure 5 shows an embodiment of a ring-shaped implant
  • FIG. 6 shows a further exemplary embodiment for a ring-shaped implant with closed haptic loops
  • Figure 7 shows an embodiment for a ring-shaped implant with open haptic loops.
  • the illustrated embodiment of an eye implant 6 is designed as an intraocular lens. This has an optical lens part 1, which can be used in the visual area of the eye.
  • the optical lens portion 8 has an opti cal ⁇ axis 10 which is substantially perpendicular to the Figure 1 ⁇ plane. In the implanted state, the optical axis is essentially extended to the visual axis of the eye. directed.
  • the optical lens part 8 essentially covers the field of vision of the eye.
  • a coil 1 which forms the inductance in the transmitting and receiving device.
  • the coil is formed by planar coil turns 3, in the form of interconnects lying next to one another.
  • the conductor tracks of the coil turns 3 lie next to one another in a plane running essentially perpendicular to the optical axis 10.
  • the width of a coil turn is on the order of approximately 3 to 90 ⁇ m, preferably approximately 10 to 90 ⁇ m.
  • About 10 to 65 coil turns can be provided in a respective plane for the coil 1.
  • the foldability, rollability and possibly kinkability of the carrier film 2 remain unaffected by such a design of the coil 1.
  • the coil turns 3 can be produced, for example, by galvanic deposition, as is known in the process of microstructuring.
  • the coil 1 is on an annular surface.
  • the coil can also be oval, oval-like or have another configuration.
  • the carrier film 2 there is also the electronics of the telemetric system, which is accommodated in an electronic module (chip) 4, it also being possible, of course, to use several electronic modules.
  • a sensor 5 for detecting the physical quantity to be measured, in particular the intraocular pressure, can preferably be provided on this electronic module 4 in an edge region.
  • the electronic component 4 is contacted with the coil 1 in a suitable manner (electrical contacts 11).
  • the coil turns 3 preferably run essentially in a straight line for easier contacting, as is shown in a straight line winding area 7 of FIG. 2.
  • the electrical contact 11 between the coil 1 and the electronic component 4 can be achieved in hybrid or flip-chip technology by bonding.
  • the electrical contact points 11 (FIG. 3) can be formed by gold bumps with a thickness of 30 ⁇ m and less.
  • the chip or the electronic components can be incorporated into one or more foils and thus be foldable or rollable.
  • the planar coil turns have a thickness (height) in the range from 5 to 60 ⁇ m.
  • the height of the electronic component 4 is approximately 600 ⁇ m and can be significantly less, for example 300 ⁇ m.
  • the area of the electronic module 4 is approximately 2.0 mm x 2.0 mm.
  • the thickness of the carrier film can be approximately 8 ⁇ m.
  • the coil can have an outer radius of approximately 5.15 mm and an inner radius of approximately 3.85 mm.
  • the area t of the carrier film 2, which lies within the coil 1, can be punched out, so that the carrier film 2 is present as an annular carrier film which is essentially covered with the coil turns 3.
  • FIG. 1 shows the intraocular lens into which the telemetric system shown in FIGS. 2 to 4 is cast.
  • the dimensions given in FIG. 1 are exemplary details which can be varied within the limits permitted for an eye implantation.
  • the coil 1 is located within an annular haptic area which concentrically surrounds the optical lens part 8. It can be a circular ring or an oval or oval-like ring.
  • annular region 12 of the lens material lying between this annular haptic region and the optical lens part 8 is provided with elongated holes 9 which extend at their boundary edges approximately concentrically to the annular coil 1 and the annular region 12 about the optical axis 10. These elongated holes 9 not only facilitate the folding or rolling of the lens, but also support the fixation of the lens in the eye, since eye tissue can grow into these elongated holes. As can also be seen from FIG. 1, the sensor 5 is in the vicinity of the optical one
  • Lens part 8 It lies between the optical lens part 8 and the inner edge of the coil 1 in an area which does not overlap the surface of the coil 1.
  • the sensor 5 is enclosed by a lens material 9 ⁇ is located between two ends of the oblong holes in the annular portion 12 of the lens material.
  • the lens material is used to transmit the physical quantity to be measured in the eye, for example the temperature or the intraocular pressure.
  • a polyorganosiloxane, in particular polydimethylsiloxane, is preferably used for the lens material. It is also possible to provide another transmission medium in the area of the sensor 5 or a sensor area which responds to the physical variable (eg pressure, temperature) or to expose this area, as will be explained with reference to FIG. 4.
  • the outside diameter of the intraocular lens may be about 12 mm or less e.g. B. 8.5 mm.
  • the diameter of the optical lens part 8 can be 6 mm or less, for example 4.8 mm.
  • the thickness of the lens in the center of the optical lens part 8 can be about 0.780 mm or less. In the non-optical area, the thickness can be 0.500 mm or less, but it is ensured in the area of the electronic assembly 4 that the lens material is completely enveloped and accordingly the lens has a corresponding thickness in this area.
  • the length of the elongated holes 9 can be approximately 4.6 mm or less.
  • the width can be 1.2 mm or less.
  • the coil 1 and the electronic module 4 are on the same side of the carrier film 2.
  • the coil 1 is on one side of the carrier film 2 and the electronic Module 4 on the other side of the carrier film 2.
  • the electrical contact 11 between the coil 1 and the electronic module 4 takes place with the help of through contacts through the carrier film 2.
  • an area of the sensor 5 that is sensitive to the physical variable to be detected can be exposed.
  • it is a sensor surface 13.
  • a recess can be provided in the carrier film 2.
  • This recess is also in the enveloping implant or intraocular lens material.
  • a material that transmits the physical size to be used in the recess as the implant material.
  • the exposed sensor surface 13 is located on the inside of the sensor 5.
  • the exposed sensor surface can also be on the other side, i.e. lie on the outside of the sensor 5.
  • the implant or lens material by about mutually parallel folding edges 14 ⁇ can be folded or rolled, the both sides of the electronic module 4 lie. Even if the electronic component 4 consists of a non-foldable monolithic component, the implant cross-section for the implantation is considerably reduced. The two folded edges 14 run on both sides of the electronic module. Furthermore, the implant can also be folded along a fold edge 15 running through the center of the lens (optical axis 10). From this it can be seen that there are a large number of folding options for the implant, even if the electronic component 4 is monolithic. Due to the special design of the coil 1, it can be folded to achieve a high inductance.
  • a memory can be provided in the electronic module 4, which stores the pressure values continuously recorded by the sensor, in particular pressure sensor 5. These pressure values can be called up from this memory from time to time, for example in a rotation of one week, and can be transmitted from the telemetry device to a receiving device (not shown) with a connected evaluation device, as described, for example, in German patent DE 197 28 069 C1. It is also possible for the electronic component 4 to be formed from foldable carrier material, so that the intraocular lens can be deformed to a small diameter and only a small incision has to be made on the eye for the implantation. The lens material is designed in such a way that it unfolds after the implantation and takes on the desired lens shape.
  • an implant body 16 is of annular design.
  • the recess provided in the ring interior is dimensioned at least so that it lies outside the field of view when the ring-shaped implant is arranged in the eye.
  • the coil not shown, is designed as shown in FIG. 2 is shown. It is located on one or both surfaces of the annular implant.
  • the sensor 5 and the electronic component 4 are connected in the same way as was explained in the previous exemplary embodiments.
  • the sensor 5 is located within the annular arrangement of the coil 1, as can be seen from FIG. 2.
  • the annular implant 16 consists of hard or rigid ring parts 17, preferably of PMMA, and of flexible ring parts 18, in particular of silicone. This makes it possible to fold the annular implant 16 about a folding axis laid through the flexible ring parts 18.
  • the outer diameter of the ring is approximately 12 to 15 mm.
  • the width of the ring can be 1 to 3 mm.
  • the annular implant body 16 has closed haptic loops 19.
  • the exemplary embodiment shown in FIG. 7 has open haptic loops 20.
  • the annular implant bodies 16 in exemplary embodiments 6 and 7 are preferably made of silicone rubber.
  • the haptic loops 19 and 20 are preferably made of a rigid material, in particular PMMA.
  • 20 fixing holes 21 are provided in the open haptic loops. This provides a stable positio ⁇ discrimination of the implant body 16 ensures in mind.
  • the exemplary embodiments in FIGS. 5 to 7 are suitable for fixation in the sulcus of the eye. If necessary, additional fixation holes, not shown, can also be provided in the exemplary embodiment in FIG. 5.
  • FIGS. 5, 6 and 7 can be completely encased with a covering made of silicone rubber or another biocompatible covering.
  • the intraocular pressure is transmitted to the sensor surface of the pressure sensor 5 via this flexible covering.
  • the wrapping material forms the transmission medium of the intraocular pressure on the sensor surface of the sensor 5.

Abstract

Eine Vorrichtung zum Messen von physikalischen Grössen im Auge, insbesondere des Augeninnendrucks mit einem faltbaren Telemetriesystem, enthaltend eine auf einem faltbaren Träger, flächig angeordnete Spule (1), welche zusammen mit einem die Elektronik des Telemetriesystems enthaltenden elektronischen Baustein (4), vollständig im biokompatiblen Implantatmaterial eingegossen ist.

Description

[Patentanmeldung]
[Bezeichnung der Erfindung]
Vorrichtung zum Messen von physikalischen Größen, insbesondere zur Druckmessung im Auge
[Beschreibung]
Die Erfindung betrifft eine Vorrichtung nach dem Oberbegriff des Patentanspruches 1, wie aus der DE 197 28 069 Cl bekannt.
[Stand der Technik] Die bekannte Vorrichtung dient zum Messen des Augeninnen- drucks und besitzt ein faltbares Implantat, an welchem außerhalb des Blickfeldes des Auges ein telemetrisches System mit einem Drucksensor und einer eine Spule aufweisenden Sendeeinrichtung vorgesehen sind. Mit der Sendeeinrichtung können den Sensorsignalen entsprechende Informationen drahtlos an eine außerhalb des Auges angeordnete Empfangseinrichtung weitergegeben werden. In einer an die Empfangseinrichtung angeschlossenen Auswerteeinrichtung werden die empfangenen Informationen in wiedergebbare Daten umgewandelt.
Bei der bekannten Vorrichtung kann die in das Auge implantierbare Fernmesseinrichtung einen Datalogger aufweisen, in welchem die vom Drucksensor kontinuierlich gelieferten Messdaten speicherbar und aus welchem die Messdaten beim Sende- empfangsbetrieb zeitlich begrenzt bei Bedarf abgefragt werden können .
[Aufgabe der Erfindung]
Aufgabe der Erfindung ist es eine Vorrichtung der eingangsgenannten Art zu schaffen, welche bei hervorragender Empfangs- und Sendequalität falt- bzw. rollbar ist.
Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst, wobei die Unteransprüche vorteilhafte Weiterbildungen der Erfindung beinhal- ten.
Bei der Erfindung ist auf einem faltbaren Träger, insbesonde¬ re einer Trägerfolie die Spule in einer ebenen Fläche in Form mehrerer nebeneinander liegender Spulenwindungen, planar aufgebracht. Die die Elektronik und/oder den Sensor enthaltende Fernmesseinrichtung sind bevorzugt in wenigstens einem elektronischen Baustein (Chip) enthalten und ebenfalls mit elektrischer Kontaktierung zu der Spule auf dem faltbaren Träger aufgebracht. Diese Anordnung ist in ein faltbares biokompatibles Implantatmaterial, insbesondere aus Polyorga- nosiloxan, z.B. Polydimethylsiloxan eingegossen. Hierbei kann das Implantatmaterial nicht nur als Umhüllung für die Sendeeinrichtung und Fernmesseinrichtung, sondern auch als Über- tragungsmedium für die zu messende physikalische Größe, welche insbesondere der Augeninnendruck oder auch die Temperatur im Auge sein kann, zum Sensor hin dienen. D.h. bei einer bevorzugten Ausführungsform ist auch der Sensor von dem biokompatiblen Implantatmaterial umgeben. Es ist jedoch auch möglich, den Sensor an einer Sensorfläche, welche gegenüber der zu messenden bzw. zu erfassenden physikalischen Größe empfindlich ist, bzw. in einem bestimmten Sensorbereich freizulegen. Die im Auge vorliegende zu messende physikalische Größe, beispielsweise der Augeninnendruck oder die Temperatur, wirkt dann unmittelbar auf die Sensorfläche oder diesen Sensorbereich. Ferner ist es möglich, ein anderes Übertragungsmedium für die physikalische Größe zu verwenden als das Implantatmaterial.
Durch die planare Ausbildung der Spule mit mehreren nebeneinander liegenden Spulenwindungen, welche bevorzugt in einer zur optischen Achse des Auges bzw. des als Intraokularlinse ausgebildeten Implantats senkrechten Ebene liegt, wird eine hohe Sende- und Empfangsqualität erreicht, ohne dass die Falt- bzw. Rollbarkeit des Implantatmaterials beeinträchtigt wird. Ferner wird für die gesamte Vorrichtung die erforderliche Verträglichkeit mit dem Auge erreicht. Neben einer plana- ren Lage können auch mehrere planare übereinanderliegende Lagen (Ebenen) für die Spulenwindungen vorgesehen sein. In bevorzugter Weise ist das Implantat als Intraokularlinse ausgebildet, wobei die Telemetrieeinrichtung und die die Spule aufweisende Sendeeinrichtung außerhalb des optischen Linsenteils, insbesondere im wesentlichen im Bereich der Haptik der Intraokularlinse, welche den optischen Linsenteil umgibt, untergebracht sind. Hierzu kann die Haptik einen den optischen Linsenteil umgebenden ringförmigen Bereich aufweisen, innerhalb welchem die planare Anordnung der Spulenwindungen, untergebracht ist. Die Spulenwindungen sind bevorzugt als planare elektrische Leiterbahnen ausgebildet, die bevorzugt aus Edelmetall, insbesondere Gold bestehen. Die Leiterbahnen der Spulenwindungen werden auf der Trägerfolie in herkömmlicher Planartechnik, beispielsweise durch Metallabscheiden, insbesondere galvanische Abscheidung, wie sie bei Mikrostrukturierungsverfahren bekannt sind, hergestellt.
Das Implantat kann auch ringförmig ausgebildet sein. Die Spulenwindungen sind dann auf wenigstens einer der Ringoberflächen angeordnet. Vorzugsweise erfolgt die Fixation des ringförmigen Implantats am Sulcus des Auges. Der Ring kann zum Teil von einem harten Material, insbesondere PMMA und zum Teil von einem flexiblen Material, insbesondere Silikon gebildet werden. Das Implantat ist vorzugsweise mit einem biokompatiblen Material, beispielsweise Silconkautschuk umhüllt. Der Ring kann auch ganz aus Silikon bestehen, wobei eine stabilisierende Haptik, insbesondere aus PMMA oder einem anderen starren Material vorgesehen ist.
Die Trägerfolie ist als dünne flexible und faltbare Folie ausgebildet, die eine gute Haftung für das Metall der Spulenwindungen gewährleistet, insbesondere besitzt das Folienmate¬ rial dielektrische Eigenschaften und kann aus einem geeigneten Kunststoff, z.B. einem Polyimid, bestehen.
Aufgrund der extremen Roll- bzw. Faltbarkeit der Vorrichtung kann diese ohne die üblichen minimal-invasiven Operationsme- thoden zu ändern, in das Auge implantiert werden. Hierdurch können mikroelektronische und sensorische Komponenten für die drahtlose Energie- und Signalübertragung, beispielsweise in Form einer künstlichen Intraokularlinse, welche faltbar ist, in das Auge appliziert werden. Nach der Implantation entfaltet sich die Intraokularlinse.
[Beispiele]
Anhand der Figuren wird an einem Ausführungsbeispiel die Erfindung noch näher erläutert. Es zeigt:
Figur 1 eine Draufsicht auf ein als Intraokularlinse ausgebildetes Ausführungsbeispiel;
Figur 2 in Draufsicht eine Ausführungsform für ein telemet- risches System, welches bei dem in der Figur 1 dar- gestellten Ausführungsbeispiel zur Anwendung kommen kann;
Figur 3 eine schnittbildliche Darstellung des in Figur 2 dargestellten telemetrischen Systems;
Figur 4 eine schnittbildliche Darstellung eines telemetri- sehen Systems" eines weiteren Ausführungsbeispiels;
Figur 5 ein Ausführungsbeispiel für eine ringförmiges Implantat;
Figur 6 ein weiteres Ausführungsbeispiel für ein ringförmiges Implantat mit geschlossenen Haptikschlaufen; und
Figur 7 ein Ausführungsbeispiel für ein ringförmiges Implantat mit offenen Haptikschlaufen .
Das dargestellte Ausführungsbeispiel eines Augenimplantats 6 ist als Intraokularlinse ausgebildet. Diese besitzt einen optischen Linsenteil 1, welcher im Sehbereich des Auges einsetzbar ist. Der optische Linsenteil 8 besitzt eine opti¬ sche Achse 10, welche im wesentlichen senkrecht zur Zeichen¬ ebene der Figur 1 verläuft. Die optische Achse ist im implan- tierten Zustand im wesentlichen zur Sehachse des Auges ausge- richtet. Der optische Linsenteil 8 deckt im wesentlichen das Blickfeld des Auges ab.
Auf einem als Trägerfolie 2 (Figur 2) , ausgebildeten ringför- migen Träger welcher flexibel d. h. faltbar und rollbar ausgebildet ist, befindet sich eine Spule 1, welche in der Sende- und Empfangseinrichtung die Induktivität bildet. Die Spule wird von planaren Spulenwindungen 3, in Form von nebeneinander liegenden Leiterbahnen gebildet. Die Leiterbahnen der Spulenwindungen 3 liegen nebeneinander in einer im wesentlichen senkrecht zur optischen Achse 10, verlaufenden Ebene. Die Breite einer Spulenwindung liegt in der Größenordnung von ca. 3 bis 90 μm, vorzugsweise von ca. 10 bis 90 μm. Es können etwa 10 bis 65 Spulenwindungen in einer jeweiligen Ebene für die Spule 1 vorgesehen sein. Durch eine derartige Ausbildung der Spule 1 bleibt die Faltbarkeit, Rollbarkeit und gegebenenfalls Knickbarkeit der Trägerfolie 2 unbeein- trächtigt . Die Spulenwindungen 3 können beispielsweise durch galvanische Abscheidung, wie sie bei Verfahren der Mikro- strukturierung bekannt ist, hergestellt werden. Beim dargestellten Ausführungsbeispiel befindet sich die Spule 1 auf einer kreisringförmigen Fläche. In Anpassung an den Einsatzort des Implantates 6 kann die Spule jedoch auch oval, ovalähnlich ausgebildet sein oder eine andere Ausgestaltung haben.
Auf der Trägerfolie 2 befindet sich ferner die Elektronik des telemetrischen Systems, welche in einem elektronischen Baustein (Chip) 4 untergebracht ist, wobei selbstverständlich auch mehrere elektronische Bausteine Verwendung finden können. An diesem elektronischen Baustein 4 kann bevorzugt in einem Randbereich ein Sensor 5 zur Erfassung der zu messenden physikalischen Größe, insbesondere des Augeninnendrucks vorgesehen sein. Wie die Figur 3 zeigt, ist der elektronische Baustein 4 in geeigneter Weise mit der Spule 1 kontaktiert (elektrische Kontaktierungen 11) . Im Bereich des elektroni- sehe Bausteins 4 verlaufen zur erleichterten Kontaktierung die Spulenwindungen 3 vorzugsweise im wesentlichen geradlinig, wie es in einem geradlinigen Windungsbereich 7 der Figur 2 gezeigt ist. Die elektrische Kontaktierung 11 zwischen der Spule 1 und dem elektronischen Bauteil 4 kann in Hybrid- oder Flip-Chip-Technologie durch Bonden erreicht werden. Die elektrischen Kontaktierungsstellen 11 (Figur 3) können durch Goldbumps mit einer Dicke von 30 μm und weniger gebildet werden. Neben monolithischer Bauform kann der Chip bzw. können die elektronischen Bausteine in eine oder mehrere Folien eingearbeitet und somit falt- bzw. rollbar sein.
Die planaren Spulenwindungen besitzen eine Dicke (Höhe) im Bereich von 5 bis 60 μm. Die Höhe des elektronischen Bau- steins 4 beträgt ca. 600 μm und kann wesentlich geringer beispielsweise 300 μm betragen. Die Fläche des elektronischen Bausteins 4 beträgt ca. 2,0 mm x 2,0 mm. Die Dicke der Trägerfolie kann etwa 8 μm betragen. Die Spule kann einen Außenradius von ca. 5,15 mm und einen Innenradius von ca. 3,85 mm aufweisen. Der Bereichtder Trägerfolie 2, welcher innerhalb der Spule 1 liegt, kann ausgestanzt sein, so dass die Trägerfolie 2 als ringförmige Trägerfolie, welche im wesentlichen mit den Spulenwindungen 3 bedeckt ist, vorliegt.
Die Trägerfolie 2 mit den darauf angeordneten telemetrischen Einrichtungen, wie sie in den Figuren 2 und 3 gezeigt sind, wird von einem biokompatiblen Implantatmaterial, insbesondere Linsenmaterial vollständig, insbesondere durch Eingießen umhüllt. Das Implantatmaterial bzw. Linsenmaterial überdeckt auch den Sensor 5, welcher insbesondere als Drucksensor ausgebildet ist. Die Figur 1 zeigt die Intraokularlinse, in welche das in den Figuren 2 bis 4 dargestellte telemetrische System eingegossen ist. Die in der Figur 1 wieder gegebenen Abmessungsangaben sind beispielhafte Angaben, welche inner- halb der für eine Augenimplantation zulässigen Grenzen variierbar sind. Wie aus der Figur 1 zu ersehen ist, befindet sich die Spule 1 innerhalb eines ringförmigen Haptikbereiches, welcher den optischen Linsenteil 8 konzentrisch umgibt. Es kann sich um einen Kreisring oder ovalen oder ovalähnlichen Ring handeln. Ein zwischen diesem ringförmigen Haptikbereich und dem optischen Linsenteil 8 liegender ringförmiger Bereich 12 des Linsenmaterials ist mit Langlöchern 9 versehen, die an ihren Begrenzüngsrändern etwa konzentrisch zu der ringförmigen Spule 1 und dem ringförmigen Bereich 12 um die optische Achse 10 sich erstrecken. Diese Langlöcher 9 erleichtern nicht nur das Falten bzw. Rollen der Linse, sondern unterstützen die Fixierung der Linse im Auge, da in diese Langlöcher Augengewebe einwachsen kann. Wie aus der Figur 1 ferner zu ersehen ist, befindet sich der Sensor 5 in der Nähe des optischen
Linsenteiles 8. Er liegt zwischen dem optischen Linsenteil 8 und dem Innenrand der Spule 1 in einem Bereich, welcher die Fläche der Spule 1 nicht überlappt. Der Sensor 5 wird von einem Linsenmaterial umschlossen, das sich zwischen zwei Enden der Langlöcher 9 ^im ringförmigen Bereich 12 des Linsenmaterials befindet. Das Linsenmaterial dient zur Übertragung der im Auge zu messenden physikalischen Größe, beispielsweise der Temperatur oder des Augeninnendrucks . In bevorzugter Weise kommt ein Polyorganosiloxan, insbesondere Polydimethyl- siloxan für das Linsenmaterial zur Anwendung. Es ist auch möglich, ein anderes Übertragungsmedium im Bereich des Sensors 5 oder eines auf die physikalische Größe (z.B. Druck, Temperatur) ansprechenden Sensorbereichs vorzusehen oder diesen Bereich freizulegen, wie es anhand der Figur 4 noch erläutert wird.
Der Außendurchmesser der Intraokularlinse kann etwa 12 mm oder weniger z. B. 8,5 mm betragen. Der Durchmesser des optischen Linsenteils 8 kann 6 mm oder weniger, beispielswei- se 4,8 mm betragen. Die Dicke der Linse im Zentrum des optischen Linsenteiles 8 kann etwa 0,780 mm oder weniger betra- gen. Im nichtoptischen Bereich kann die Dicke 0,500 mm oder weniger betragen, wobei jedoch im Bereich der elektronischen Baueinheit 4 gewährleistet ist, dass diese vom Linsenmaterial vollständig umhüllt ist und dem gemäß die Linse in diesem Bereich eine entsprechende Dicke aufweist. Die Länge der Langlöcher 9 kann etwa 4,6 mm oder geringer bemessen sein. Die Breite kann 1,2 mm oder weniger betragen.
Bei dem in der Fig. 3 dargestellten Ausführungsbeispiel befinden sich die Spule 1 und der elektronische Baustein 4 auf der gleichen Seite der Trägerfolie 2. Bei dem in der Figur 4 dargestellten Ausführungsbeispiel befindet sich die Spule 1 auf der einen Seite der Trägerfolie 2 und der elektronische Baustein 4 auf der anderen Seite der Trägerfolie 2. Die elektrische Kontaktierung 11 zwischen der Spule 1 und dem elektronischen Baustein 4 erfolgt mit Hilfe von Durchkontak- tieren durch die Trägerfolie 2.
Wie aus dem Ausführungsbeispiel der Figur 4 zu ersehen ist, kann ein für die zu erfassende physikalische Größe empfindlicher Bereich des Sensors 5 freigelegt sein. Beim dargestellten Ausführungsbeispiel ist es eine Sensorfläche 13. Hierzu kann in der Trägerfolie 2 eine Ausnehmung vorgesehen sein. Diese Ausnehmung befindet sich auch in dem umhüllenden Imp- lantat bzw. Intraokularlinsenmaterial . Es ist jedoch auch möglich, dass in der Ausnehmung ein anderes die physikalische Größe übertragendes Material als das Implantatmaterial verwendet wird. Beim dargestellten Ausführungsbeispiel der Fig. 4 befindet sich die freigelegte Sensorfläche 13 an der Innen- seite des Sensors 5. Die freigelegte Sensorfläche kann auch auf der anderen Seite, d.h. an der Außenseite des Sensors 5 liegen .
Wie aus der Fig. 1 zu ersehen ist, kann das Implantat- bzw. Linsenmaterial um etwa parallel zueinander verlaufende Falt¬ kanten 14, gefaltet oder gerollt werden, die beidseits des elektronischen Bausteins 4 liegen. Selbst wenn der elektronische Baustein 4 aus einem nicht faltbaren monolithischen Baustein besteht, erreicht man eine erhebliche Verringerung des Implantatquerschnittes für die Implantation. Die beiden Faltkanten 14 verlaufen beidseits des elektronischen Bausteins. Ferner kann das Implantat auch entlang einer durch die Linsenmitte (optische Achse 10) verlaufende Faltkante 15 gefaltet werden. Hieraus ist ersichtlich, dass es eine große Anzahl an Faltmöglichkeiten des Implantats gibt, selbst wenn der elektronische Baustein 4 monolithisch ausgebildet ist. Durch die spezielle Ausbildung der Spule 1 ist diese unter Erzielung einer hohen Induktivität faltbar.
Im elektronische Baustein 4 kann ein Speicher vorgesehen sein, welcher die vom Sensor, insbesondere Drucksensor 5 kontinuierlich aufgenommenen Druckwerte speichert. Diese Druckwerte können aus diesem Speicher von Zeit zu Zeit beispielsweise im Turnus von einer Woche jeweils abgerufen werden und von der Telemetrieeinrichtung auf eine nicht näher dargestellte Empfangseinrichtung mit angeschlossener Auswerteeinrichtung übertragen werden, wie es beispielsweise in der deutschen Patentschrift DE 197 28 069 Cl beschrieben ist. Es ist auch möglich, dass der elektronische Baustein 4 aus faltbarem Trägermaterial gebildet wird, so dass eine Verfor- mung der Intraokularlinse auf einen geringen Durchmesser möglich ist und am Auge ein nur kleiner Schnitt für die Implantation vorgesehen werden muss. Das Linsenmaterial ist in der Weise ausgebildet, dass es sich nach der Implantation entfaltet und die gewünschte Linsenform annimmt.
Bei den in den Figuren 5 bis 7 dargestellten Ausführungsbeispielen ist ein Implantatkörper 16 ringförmig ausgebildet. Die im Ringinnern vorgesehene Ausnehmung ist mindestens so bemessen, dass sie außerhalb des Blickfeldes liegt, wenn das ringförmige Implantat im Auge angeordnet ist. Die nicht näher dargestellte Spule ist so ausgebildet, wie es in Figur 2 dargestellt ist. Sie befindet sich auf einer oder beiden Oberflächen des ringförmigen Implantats. Der Anschluss des Sensors 5 und des elektronischen Bauteils 4 erfolgt in der gleichen Weise, wie es in den vorherigen Ausführungsbeispie- len erläutert wurde. Der Sensor 5 befindet sich innerhalb der ringförmigen Anordnung der Spule 1, wie es aus Figur 2 zu ersehen ist.
Bei dem in Figur 5 dargestellten Ausführungsbeispiel besteht das ringförmige Implantat 16 aus harten bzw. starren Ringteilen 17, vorzugsweise aus PMMA sowie aus flexiblen Ringteilen 18, insbesondere aus Silikon. Hierdurch ist die Faltung des ringförmigen Implantats 16 um eine durch die flexiblen Ringteile 18 gelegte Faltungsachse möglich. Der Außendurchmesser des Ringes beträgt etwa 12 bis 15 mm. Die Breite des Ringes kann 1 bis 3 mm betragen.
Bei dem in der Figur 6 dargestellten Ausführungsbeispiel besitzt der ringförmige Implantatkörper 16 geschlossene Haptikschlaufen 19. Das in Figur 7 dargestellte Ausführungs- beispiel besitzt offene Haptikschlaufen 20. Die ringförmigen Implantatkörper 16 der Ausführungsbeispiele 6 und 7 betsehen vorzugsweise aus Silikonkautschuk. Die Haptikschlaufen 19 und 20 bestehen vorzugsweise aus einem starren Material, insbe- sondere PMMA. Bei dem in der Figur 7 dargestellten Ausführungsbeispiel sind in den offenen Haptikschlaufen 20 Fixati- onslöcher 21 vorgesehen. Hierdurch wird eine stabile Positio¬ nierung des Implantatkörpers 16 im Auge gewährleistet. Die Ausführungsbeispiele der Figuren 5 bis 7 sind für eine Fixa- tion im Sulcus des Auges geeignet. Gegebenenfalls können auch beim Ausführungsbeispiel der Figur 5 zusätzliche nicht näher dargestellte Fixationslöcher vorgesehen sein.
Die Ausführungsbeispiele der Figuren 5, 6 und 7 können mit einer Umhüllung aus Silikonkautschuk oder einer anderen biokompatiblen Umhüllung vollständig ummantelt sein. Die Übertragung des Augeninnendruckes auf die Sensorfläche des Drucksensors 5 erfolgt über diese nachgiebige Umhüllung. Das Umhüllungsmaterial bildet das Übertragungsmedium des Augenin- nendrucks auf die Sensorfläche des Sensors 5.
Man erreicht daher bei allen Ausführungsbeispielen eine vollständige Umhüllung des Implantats mit biokompatiblem
Material und eine einwandfreie Druckübertragung auf die
Sensorfläche des Sensors 5 über das Umhüllungsmaterial.
[Bezugszeichenliste]
1 Spule
2 Trägerfolie 3 Spulenwindungen
4 elektronischer Baustein (Chip)
5 Sensor, insbesondere Drucksensor
6 Implantat, insbesondere Intraokularlinse
7 geradliniger Windungsbereich 8 optischer Linsenteil
9 Langloch
10 optische Achse
11 elektrische Kontaktierung
12 ringförmiger Bereich 13 Sensorfläche
14 Faltkante
15 Faltkante
16 ringförmiger Implantatkörper
17 starres Ringteil 18 flexibles Ringteil
19 geschlossene Haptikschlaufe
20 offene Haptikschlaufe
21 Fixationsloch

Claims

[Patentansprüche]
1. Vorrichtung zum Messen physikalischer Größen im Auge mit einem faltbaren Implantat, an welchem außerhalb eines das Blickfeld des Auges überdeckenden Implantatteil eine Fernmesseinrichtung mit einem Sensor und einer eine Spule aufweisenden Sendeeinrichtung zur drahtlosen Übertragung von den Sensorsignalen entsprechenden Informationen angeordnet ist, und einer außerhalb des Auges angeordneten Empfangseinrichtung, welche die von der Sendeeinrichtung gesendeten Informationen empfängt, und einer Auswerteeinrichtung, welche die empfangenen Informationen in wiedergebbare Daten wandelt, dadurch gekennzeichnet, dass auf einem faltbaren ringförmigen Träger (2; 16) die Spule (1) in Form mehrerer nebeneinander liegender Spulenwindungen in wenigstens einer Fläche angeordnet ist und mit der
Spule wenigstens ein die Elektronik der Fernmesseinrichtung enthaltender elektronischer Baustein (4) elektrisch kontaktiert ist und dass diese Anordnung in das faltbare biokompatible Implantatmaterial eingegossen ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass Spulenwindungen (3) aus planaren elektrischen Leiterbahnen gebildet sind.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Spulenwindungen (3) in einer oder mehreren Ebenen angeordnet sind.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Sensor (5) ganz oder teilweise von einem die physikalische Größe übertragenden Übertragungsmedium umhüllt ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das biokompatible Material, mit welchem die Vorrichtung umhüllt ist, dass Übertragungsmedium bildet.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Spulenwindungen (3) im Bereich ihrer Verbindung mit dem elektronischen Baustein (4) im wesentlichen geradlinig verlaufen.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Spulenwindungen (3) im wesentlichen sich im gesamten außerhalb des Blickfeldes des Auges liegenden Implantatteil erstrecken.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Sensor (5) als Drucksensor ausgebildet ist.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass der Drucksensor (5) kontinuierlich den Augeninnendruck mißt und die Elektronik der Fernmesseinrichtung einen Speicher aufweist, in welchem die Sensorsignale für ein zeitlich begrenztes Senden an eine Empfangseinrichtung gespeichert werden.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Sensor (5) in einem die Fläche der Spulenwindungen (3) nicht überlappenden Bereich außerhalb des Blickfeldes des Auges liegt.
11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Sensor (5) innerhalb des von der Spule (1) gebildeten Ringes liegt.
12. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Implantat (6) als Intraokularlinse ausgebildet ist und dass der ringförmige Träger (2) im Bereich des optischen Linsenteils (8) eine Ausnehmung aufweist, welche innerhalb der Spulenwindungen (3) liegt.
13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass im Implantatmaterial zwischen der Spule (1) und dem das Blickfeld durchsetzenden Implantat- teil, insbesondere optischen Linsenteil (8) der Intraokularlinse, Langlöchern (9) eingeformt sind.
14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass der Sensor (5) in einem ringförmigen Bereich (12) des Implantatmaterials liegt, in welchem die Langlöcher (9) sich erstrecken.
15. Vorrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Fläche bzw. die Flächen, in wel¬ cher bzw. in welchen die Spule (1) angeordnet ist, sich etwa senkrecht zur optischen Achse (10) des als Intraokularlinse ausgebildeten Implantats (6) erstreckt bzw. erstrecken .
16. Vorrichtung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Spule (1) an der einen Oberflä- ehe und der elektronische Baustein (4) auf der anderen Oberfläche des ringförmigen Trägers (2; 16) angeordnet sind.
17. Vorrichtung nach einem der Ansprüche 1 bis 11 und 15, 16, gekennzeichnet durch einen ringförmigen Implantatkörper (16) aus zumindest teilweise flexiblen Material, welcher den Träger für die Spule (1) bildet.
18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass der ringförmige Implantatkörper (16) im Sulcus des Auges fixierbar ist.
PCT/EP2000/009301 1999-09-24 2000-09-22 Vorrichtung zum messen von physikalischen grössen, insbesondere zur druckmessung im auge WO2001021063A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP00964227A EP1213991B1 (de) 1999-09-24 2000-09-22 Vorrichtung zum messen von physikalischen grössen, insbesondere zur druckmessung im auge
US10/089,363 US6796942B1 (en) 1999-09-24 2000-09-22 Device for measuring physical quantities, especially for measuring pressure in the eye
JP2001524497A JP4251387B2 (ja) 1999-09-24 2000-09-22 物理量の測定、特に眼圧を測定するためのシステム
AT00964227T ATE241932T1 (de) 1999-09-24 2000-09-22 Vorrichtung zum messen von physikalischen grössen,insbesondere zur druckmessung im auge
DE50002477T DE50002477D1 (de) 1999-09-24 2000-09-22 Vorrichtung zum messen von physikalischen grössen, insbesondere zur druckmessung im auge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19945879A DE19945879C2 (de) 1999-09-24 1999-09-24 Vorrichtung zum Messen des Augeninnendruckes mit einem faltbaren Implantat
DE19945879.0 1999-09-24

Publications (1)

Publication Number Publication Date
WO2001021063A1 true WO2001021063A1 (de) 2001-03-29

Family

ID=7923221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/009301 WO2001021063A1 (de) 1999-09-24 2000-09-22 Vorrichtung zum messen von physikalischen grössen, insbesondere zur druckmessung im auge

Country Status (7)

Country Link
US (1) US6796942B1 (de)
EP (1) EP1213991B1 (de)
JP (1) JP4251387B2 (de)
AT (1) ATE241932T1 (de)
DE (2) DE19945879C2 (de)
ES (1) ES2200938T3 (de)
WO (1) WO2001021063A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2374925A (en) * 2001-04-24 2002-10-30 Anant Sharma Pressure detectors
WO2010000671A1 (de) * 2008-07-03 2010-01-07 Robert Bosch Gmbh Kapselspannring mit spule für die induktive kopplung an ein externes elektromagnetisches feld
US7989936B2 (en) 2003-10-13 2011-08-02 Mccain Joseph Harry Microelectronic device with integrated energy source
DE102010031432A1 (de) 2010-07-16 2012-01-19 Robert Bosch Gmbh Augeninnendrucksensor
DE102012200574A1 (de) 2012-01-17 2013-07-18 Robert Bosch Gmbh Implantatvorrichtung, Sensormodul, Einweginjektor mit einer Implantatvorrichtung und Verfahren zum Herstellen einer Implantatvorrichtung
EP2647336A1 (de) * 2012-04-03 2013-10-09 Johnson & Johnson Vision Care, Inc. Lidschlagerkennungssystem für elektronische ophthalmische Linse
US8915877B2 (en) 2010-10-12 2014-12-23 Emmett T. Cunningham, JR. Glaucoma drainage device and uses thereof
US9370444B2 (en) 2010-10-12 2016-06-21 Emmett T. Cunningham, JR. Subconjunctival conformer device and uses thereof
DE102017107576A1 (de) 2017-04-07 2018-10-11 Implandata Ophthalmic Products Gmbh Flachbaugruppe zur Bestimmung des Augeninnendrucks zur Implantation in den menschlichen Körper
WO2019214823A1 (de) 2018-05-09 2019-11-14 Implandata Ophthalmic Products Gmbh Flachbaugruppe zur bestimmung des augeninnendrucks zur implantation in den menschlichen körper

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488303B1 (en) * 2002-09-21 2009-02-10 Glaukos Corporation Ocular implant with anchor and multiple openings
US7678065B2 (en) 2001-05-02 2010-03-16 Glaukos Corporation Implant with intraocular pressure sensor for glaucoma treatment
WO2002089699A2 (en) 2001-05-03 2002-11-14 Glaukos Corporation Medical device and methods of use for glaucoma treatment
JP5079970B2 (ja) * 2001-06-29 2012-11-21 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) 眼圧記録装置
DE10156469B4 (de) * 2001-11-16 2004-05-13 Cranium Telemetrics Gmbh Vorrichtung zur intrakorporalen Messung des Hirndruckes
DE10156494B4 (de) * 2001-11-16 2006-02-09 Campus Micro Technologies Gmbh Implantat zum Einbau in den menschlichen oder tierischen Körper
US7951155B2 (en) 2002-03-15 2011-05-31 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
EP1589866A2 (de) 2003-01-09 2005-11-02 The Regents of the University of California Implantierbare vorrichtungen und verfahren zur messung von intraokularem, subkonjunktivalem oder subdermalem druck und/oder analytkonzentrationen
DE10353144A1 (de) * 2003-11-14 2005-06-02 Cranium Telemetrics Gmbh Implantat zur Durchführung intrakorpolarer Messungen
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US7699770B2 (en) 2005-02-24 2010-04-20 Ethicon Endo-Surgery, Inc. Device for non-invasive measurement of fluid pressure in an adjustable restriction device
US8016744B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US20070106200A1 (en) * 2005-11-08 2007-05-10 Brian Levy Intraocular shunt device and method
US7686768B2 (en) 2005-11-23 2010-03-30 Vital Sensors Holding Company, Inc. Implantable pressure monitor
US7682313B2 (en) 2005-11-23 2010-03-23 Vital Sensors Holding Company, Inc. Implantable pressure monitor
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
WO2008051973A1 (en) 2006-10-24 2008-05-02 Bradley Fixtures Corporation Capacitive sensing for washroom fixture
US7842004B2 (en) * 2007-10-31 2010-11-30 Codman & Shurtleff, Inc. Wireless pressure setting indicator
US8454524B2 (en) 2007-10-31 2013-06-04 DePuy Synthes Products, LLC Wireless flow sensor
US9204812B2 (en) * 2007-10-31 2015-12-08 DePuy Synthes Products, LLC Wireless pressure sensing shunts
US8480612B2 (en) 2007-10-31 2013-07-09 DePuy Synthes Products, LLC Wireless shunts with storage
US8187163B2 (en) 2007-12-10 2012-05-29 Ethicon Endo-Surgery, Inc. Methods for implanting a gastric restriction device
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US8142452B2 (en) 2007-12-27 2012-03-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US8221439B2 (en) 2008-02-07 2012-07-17 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US8057492B2 (en) 2008-02-12 2011-11-15 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with MEMS pump
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US8034065B2 (en) 2008-02-26 2011-10-11 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8187162B2 (en) 2008-03-06 2012-05-29 Ethicon Endo-Surgery, Inc. Reorientation port
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US20110137391A1 (en) * 2008-06-03 2011-06-09 Leigh C Roger Foldable coil for an implantable medical device
US20100016704A1 (en) * 2008-07-16 2010-01-21 Naber John F Method and system for monitoring a condition of an eye
JP2012533355A (ja) * 2009-07-14 2012-12-27 エレンザ, インコーポレイテッド 眼内レンズのための折り畳みの設計
WO2011035228A1 (en) 2009-09-18 2011-03-24 Orthomems, Inc. Implantable mems intraocular pressure sensor devices and methods for glaucoma monitoring
US9968254B2 (en) * 2010-01-05 2018-05-15 Sensimed Sa Intraocular pressure monitoring device
US20120238857A1 (en) * 2010-09-16 2012-09-20 Orthomems, Inc. Expandable implantable pressure sensor for intraocular surgery
WO2012137067A2 (en) 2011-04-07 2012-10-11 Oculox Technology Intraocular pressure monitoring device and methods
US10307292B2 (en) 2011-07-18 2019-06-04 Mor Research Applications Ltd Device for adjusting the intraocular pressure
WO2013040079A1 (en) 2011-09-13 2013-03-21 Dose Medical Corporation Intraocular physiological sensor
US8834566B1 (en) 2012-09-12 2014-09-16 David Jones Presbyopia-correcting intraocular lens implant
US20140107459A1 (en) * 2012-10-11 2014-04-17 Alcon Research, Ltd. Devices, systems, and methods for intraocular measurements
US9730638B2 (en) 2013-03-13 2017-08-15 Glaukos Corporation Intraocular physiological sensor
EP2979662A1 (de) * 2014-08-01 2016-02-03 Akkolens International B.V. Intraokularlinse mit einem stromgenerator und zusätzlichen funktionssystemen
CN114532976A (zh) 2016-05-31 2022-05-27 酷拉公司 可植入眼压传感器和使用方法
DE102016221371A1 (de) 2016-10-28 2018-05-03 Implandata Ophthalmic Products Gmbh Ringimplantat
WO2019191748A1 (en) * 2018-03-30 2019-10-03 Qura, Inc. Intraocular lenses including an intraocular pressure sensor
US11554009B2 (en) * 2019-05-17 2023-01-17 Qura, Inc. Intraocular lenses with intraocular pressure sensors and methods of manufacture
JP2023518839A (ja) * 2020-03-23 2023-05-08 テクタス コーポレイション 電子眼内デバイス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816031A (en) * 1988-01-29 1989-03-28 Pfoff David S Intraocular lens system
US5005577A (en) * 1988-08-23 1991-04-09 Frenkel Ronald E P Intraocular lens pressure monitoring device
DE19728069C1 (de) * 1997-07-01 1999-02-11 Acritec Gmbh Vorrichtung zur Messung des Augeninnendrucks
EP0908756A1 (de) * 1997-10-06 1999-04-14 Wöhlk Contact-Linsen GmbH Ophthalmische Linse
DE19858172A1 (de) * 1998-12-16 2000-06-21 Campus Micro Technologies Gmbh Implantat zur Messung des Augeninnendrucks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816031A (en) * 1988-01-29 1989-03-28 Pfoff David S Intraocular lens system
US5005577A (en) * 1988-08-23 1991-04-09 Frenkel Ronald E P Intraocular lens pressure monitoring device
DE19728069C1 (de) * 1997-07-01 1999-02-11 Acritec Gmbh Vorrichtung zur Messung des Augeninnendrucks
EP0908756A1 (de) * 1997-10-06 1999-04-14 Wöhlk Contact-Linsen GmbH Ophthalmische Linse
DE19858172A1 (de) * 1998-12-16 2000-06-21 Campus Micro Technologies Gmbh Implantat zur Messung des Augeninnendrucks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PUERS R: "CAPACITIVE SENSORS: WHEN AND HOW TO USE THEM", SENSORS AND ACTUATORS A,CH,ELSEVIER SEQUOIA S.A., LAUSANNE, vol. A37/38, 1 June 1993 (1993-06-01), pages 93 - 105, XP000411381, ISSN: 0924-4247 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2374925A (en) * 2001-04-24 2002-10-30 Anant Sharma Pressure detectors
US9099410B2 (en) 2003-10-13 2015-08-04 Joseph H. McCain Microelectronic device with integrated energy source
US7989936B2 (en) 2003-10-13 2011-08-02 Mccain Joseph Harry Microelectronic device with integrated energy source
US8373559B2 (en) 2003-10-13 2013-02-12 Joseph H. McCain Microelectronic device with integrated energy source
US9413405B2 (en) 2003-10-13 2016-08-09 Joseph H. McCain Microelectronic device with integrated energy source
WO2010000671A1 (de) * 2008-07-03 2010-01-07 Robert Bosch Gmbh Kapselspannring mit spule für die induktive kopplung an ein externes elektromagnetisches feld
EP2293713A1 (de) 2008-07-03 2011-03-16 Robert Bosch GmbH Kapselspannring mit spule für die induktive kopplung an ein externes elektromagnetisches feld
CN102083357A (zh) * 2008-07-03 2011-06-01 罗伯特.博世有限公司 具有用于感应耦合到外置的电磁场上的线圈的囊袋张力环
DE102010031432A1 (de) 2010-07-16 2012-01-19 Robert Bosch Gmbh Augeninnendrucksensor
US8915877B2 (en) 2010-10-12 2014-12-23 Emmett T. Cunningham, JR. Glaucoma drainage device and uses thereof
US9370444B2 (en) 2010-10-12 2016-06-21 Emmett T. Cunningham, JR. Subconjunctival conformer device and uses thereof
WO2013107677A1 (de) 2012-01-17 2013-07-25 Robert Bosch Gmbh Implantatvorrichtung, sensormodul, einweginjektor mit einer implantatvorrichtung und verfahren zum herstellen einer implantatvorrichtung
DE102012200574A1 (de) 2012-01-17 2013-07-18 Robert Bosch Gmbh Implantatvorrichtung, Sensormodul, Einweginjektor mit einer Implantatvorrichtung und Verfahren zum Herstellen einer Implantatvorrichtung
US9468522B2 (en) 2012-01-17 2016-10-18 Implandata Ophthalmic Products Gmbh Implant device, sensor module, single-use injector and method for producing an implant device
EP3682795A1 (de) * 2012-01-17 2020-07-22 Implandata Ophthalmic Products GmbH Implantatvorrichtung, sensormodul, einweginjektor mit einer implantatvorrichtung und verfahren zum herstellen einer implantatvorrichtung
EP2647336A1 (de) * 2012-04-03 2013-10-09 Johnson & Johnson Vision Care, Inc. Lidschlagerkennungssystem für elektronische ophthalmische Linse
CN103356160A (zh) * 2012-04-03 2013-10-23 庄臣及庄臣视力保护公司 用于电子式眼科透镜的眨眼检测系统
US9072465B2 (en) 2012-04-03 2015-07-07 Johnson & Johnson Vision Care, Inc. Blink detection system for electronic ophthalmic lens
US9498124B2 (en) 2012-04-03 2016-11-22 Johnson & Johnson Vision Care, Inc. Blink detection system for electronic ophthalmic lens
DE102017107576A1 (de) 2017-04-07 2018-10-11 Implandata Ophthalmic Products Gmbh Flachbaugruppe zur Bestimmung des Augeninnendrucks zur Implantation in den menschlichen Körper
WO2019214823A1 (de) 2018-05-09 2019-11-14 Implandata Ophthalmic Products Gmbh Flachbaugruppe zur bestimmung des augeninnendrucks zur implantation in den menschlichen körper

Also Published As

Publication number Publication date
DE50002477D1 (de) 2003-07-10
JP2003518962A (ja) 2003-06-17
JP4251387B2 (ja) 2009-04-08
US6796942B1 (en) 2004-09-28
DE19945879C2 (de) 2002-01-03
DE19945879A1 (de) 2001-05-10
EP1213991B1 (de) 2003-06-04
ATE241932T1 (de) 2003-06-15
EP1213991A1 (de) 2002-06-19
ES2200938T3 (es) 2004-03-16

Similar Documents

Publication Publication Date Title
WO2001021063A1 (de) Vorrichtung zum messen von physikalischen grössen, insbesondere zur druckmessung im auge
DE19858172A1 (de) Implantat zur Messung des Augeninnendrucks
DE10156469B4 (de) Vorrichtung zur intrakorporalen Messung des Hirndruckes
DE60015721T2 (de) Passive Biotelemetrie
DE69924290T2 (de) Verfahren und sensoren zur drahtlosen messung physiologischer variablen
EP0931343B1 (de) Chipmodul insbesondere zur implantation in einen chipkartenkörper
DE19728069C1 (de) Vorrichtung zur Messung des Augeninnendrucks
DE19638813C1 (de) Meßvorrichtung für medizinische Anwendungen mit einem intrakorporal einsetzbaren Sensorelement und Verfahren zu deren Herstellung
WO1998035610A1 (de) Implantierbare messeinheit zur intrakorporalen messung von patientendaten
EP2244628A1 (de) Patientendaten-sensorvorrichtung
EP1664704A1 (de) Kraftmesswandler
DE10156494B4 (de) Implantat zum Einbau in den menschlichen oder tierischen Körper
DE102004055220B4 (de) Vorrichtung zur Intraokulardruckmessung
EP1694205A1 (de) Implantat zur durchführung intrakorporaler messungen
DE19705474A1 (de) Implantierbare Meßeinheit zur intrakorporalen Messung von Patientendaten, insbesondere von Hirndrücken, für den mobilen Einsatz unter Alltagsbedingungen
DE102004056757A1 (de) Vorrichtung zur Intraokulardruckmessung
EP0889436A2 (de) Transponderanordnung und Verfahren zu deren Herstellung
DE102021121166A1 (de) Ophthalmisches Implantat und Verfahren zur Herstellung eines Solchen
DE102004056756B4 (de) Vorrichtung zur Intraokulardruckmessung
DE102004061543B4 (de) Implantat zur intraokularen Druckmessung
WO1998022906A1 (de) Verfahren zum herstellen einer chipkarte
DE102017223695B4 (de) Passives Transpondersystem und Druckwellenmessvorrichtung
DE19713266A1 (de) Verkapseltes, intrakorporal einsetzbares Meßsystem und Verfahren zur Verkapselung davon
WO2022263495A1 (de) Ophthalmisches implantat und verfahren zur herstellung eines solchen
WO2024052274A1 (de) Medizinisches implantat in form einer wickelmanschette

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000964227

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 524497

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000964227

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10089363

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2000964227

Country of ref document: EP