Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónWO2001030437 A1
Tipo de publicaciónSolicitud
Número de solicitudPCT/US2000/029730
Fecha de publicación3 May 2001
Fecha de presentación27 Oct 2000
Fecha de prioridad28 Oct 1999
También publicado comoEP1257317A1, EP1257317A4, WO2001030437A8
Número de publicaciónPCT/2000/29730, PCT/US/0/029730, PCT/US/0/29730, PCT/US/2000/029730, PCT/US/2000/29730, PCT/US0/029730, PCT/US0/29730, PCT/US0029730, PCT/US029730, PCT/US2000/029730, PCT/US2000/29730, PCT/US2000029730, PCT/US200029730, WO 0130437 A1, WO 0130437A1, WO 2001/030437 A1, WO 2001030437 A1, WO 2001030437A1, WO-A1-0130437, WO-A1-2001030437, WO0130437 A1, WO0130437A1, WO2001/030437A1, WO2001030437 A1, WO2001030437A1
InventoresMichael A. Martinelli
SolicitanteWinchester Development Associates, Enterprise Medical Technology, Inc.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos:  Patentscope, Espacenet
Patient-shielding and coil system
WO 2001030437 A1
Resumen
A patient-shielding and coil system, including a coil wire (44) electrically coupled to a source of electrical current, an electrically conductive surface (52), insulation material (74) between the coil wire (44) and the conductive surface (52), and a drain wire (42) connected to the conductive surface (52) and forming a capacitive current loop with respect to the source.
Reclamaciones  (El texto procesado por OCR puede contener errores)
What is claimed is:
1. A patient-shielding and coil system, comprising: a coil wire electrically coupled to a source of electrical current; an electrically conductive surface; insulation material situated between the coil wire and the conductive surface; and a drain wire connected to the conductive surface and forming a capacitive current loop with respect to the source.
2. A system according to claim 1 , wherein the conductive surface has a resistance of substantially 1 ohm per square.
3. A system according to claim 1, wherein the electrically conductive surface forms an incomplete enclosure of the coil wire, so as to create an incomplete electrical circuit.
4. A system according to claim 1, wherein the conductive surface includes an upper portion and a lower portion.
5. A system according to claim 1, wherein the conductive surface includes a polyester foil, vapor deposited with aluminum.
Descripción  (El texto procesado por OCR puede contener errores)

PATIENT-SHIELDING AND COIL SYSTEM

BACKGROUND OF THE INVENTION

The present invention relates to, a patient-shielding system for use when a patient is exposed to capacitive currents as a result of immersion into a time-varying magnetic field. More particularly, this invention relates to a system for redirecting potentially harmful currents away from organs such as the heart when a medical procedure includes exposing that organ to a time-varying magnetic field.

Systems and methods for determining the position and orientation of surgical probes based on the use of magnetic fields are known. See, for example, U.S. Patent 5,592,939. Such systems and methods generally rely on the presence of a time varying magnetic field in the surgical region of interest. An exemplary navigation system is shown in FIG. 1. The exemplary system of FIG. 1 contains platform 10 in which is embedded coils for generating a time-varying magnetic field. Two such coils are depicted as first coil set 12 and second coil set 14. Field line 22 depicts the orientation of a magnetic field amplitude at an instant of time. See also U.S. Patent 5,592,939.

Present techniques for projecting a time varying magnetic field into a surgical region of interest preferably position the patient proximal to the coils that are generating the necessary fields. This is depicted in FIG. 2. Patient 24 is generally kept from direct contact with coil sets 12 and 14 by non-conducting layer 20. As a result of this relationship, there are times when coil sets 12 and 14, located proximally to the surgical region of interest, may have differing voltage potentials. By way of example only, in FIG. 2, coil set 12 is at positive potential 16, and coil set 14 is at negative potential 18. A uniform amplitude field that has its major component lateral to a plane determined by an operating room table is thus generated by two coils at different voltage potentials separated along that lateral dimension. Field line 22 in FIG.2 indicates the direction of such an amplitude. In the relationship indicated in FIG. 2, the surgical region of interest has loop characteristics of what is known as a capacitive current. A schematic of such a current is depicted in FIG. 3. For a time-varying magnetic field where the frequency is of the order of/= 20 kilohertz and the difference between positive potential 16 and negative potential 18 is V= 25 volts, capacitive current 34, denoted by I, can exceed what is considered desirable. For example, typical safety standards, such as those of Underwriter Laboratories, require that the current through a patient be less than 1= 10 microamps. For insulating layer 20 with capacitance 30 of the order of C = 10"10 farads, and where patient 24 has a resistance 32 of approximately 100 ohms, capacitive current 34 is of the order

I= V( 2 πfC) = 345 microamps This is well in excess of a 10 microamp current.

In light of the foregoing, it is desirable to reduce the magnitude of the capacitive current introduced by a magnetic field coil within a surgical region. It is an object of the present invention to substantially overcome the above-identified disadvantages and drawbacks of the prior art.

SUMMARY OF THE INVENTION The foregoing and other objects are achieved by the invention which in one aspect comprises a patient-shielding and coil system, including a coil wire electrically coupled to a source of electrical current, an electrically conductive surface, insulation material situated between the coil wire and the conductive surface, and a drain wire connected to the conductive surface and forming a capacitive current loop with respect to the source.

In another embodiment of the invention, the conductive surface has a resistance of substantially 1 ohm per square.

In another embodiment of the invention, the electrically conductive surface forms an incomplete enclosure of the coil wire, so as to create an incomplete electrical circuit. In another embodiment of the invention, the conductive surface includes an upper portion and a lower portion.

In another embodiment of the invention, the conductive surface includes a polyester foiL apor deposited with aluminum. BRIEF DESCRIPTION OF DRAWINGS

The foregoing and other objects of this invention, the various features thereof, as well as the invention itself, may be more fully understood from the following description, when read together with the accompanying drawings in which: FIG. 1 depicts an exemplary coil system for generating a uniform amplitude magnetic field for a navigational system.

FIG. 2 depicts an effect the exemplary system of FIG. 1 can have on a patient.

FIG. 3 is a circuit diagram of a capacitive current loop formed by the configuration of FIG. 2. FIG. 4 depicts an exemplary patient-shielding and coil system consistent with the present invention.

FIG. 5 depicts a cross section of a portion of the exemplary system of FIG. 4.

FIG. 6 depicts an example of how current flows across a cross section of the exemplary system of FIG. 4. FIG. 7 depicts an alternative exemplary patient-shielding and coil system consistent with the present invention.

FIG. 8 depicts a side view of the exemplary patient-shielding and coil system of FIG. 7.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is directed to a system for redirecting potentially harmful currents away from organs such as the heart when a medical procedure includes exposing that organ to a time-varying magnetic field.

FIG. 4 depicts a patient-shielding and coil system in accordance with a preferred embodiment of the present invention. The ends of coil wire 44 are attached to a driving voltage source (not shown). Between the ends of coil wire 44 and the coil assembly 40, coil wire 44 is wrapped about itself as twisted pair 47. Within coil assembly 40, coil wire 44 is looped N times. The current along coil wire 40 is denoted I . Thus, in the absence of any other effects, the net current around coil assembly 40 is

Also depicted in FIG. 4 is coil form 54. Coil form 54 surrounds that portion of coil wire 44 where coil wire 44 is looped N times. Coil form 54 is depicted in FIG. 4 as rectangular in shape, but other shapes such can be used as well, and are consistent with the present invention. Other embodiments of the invention may include a coil wire 44 without a coil form, such that the coil wire is looped without the benefit of any coil form. Also depicted in FIG. 4 is drain wire 42 and shield 52, depicted as the dashed line. The shield 52 is preferably electrically conductive, so as to support an electrical current in the presence of a voltage potential. In some embodiments, the shield 52 may include a non-conductive foundation bonded, or otherwise attached, to a conductive surface. Drain wire 42 is attached, or otherwise mounted, to shield 52. Shield 52 extends along twisted pair 47 and envelops most of coil form 54, and thus envelopes most of coil wire 44. However, shield 52 does not form a complete enclosure around coil axis 45, so as to prevent a compensating current from forming along the surface of shield 52 that would serve to decrease the magnitude of the magnetic field produced by the coil assembly 40. Thus, shield 52 ends at gap 46.

A more detailed cross section of coil assembly 40 consistent with a preferred embodiment of the present invention is shown in FIG. 5. Shield 52 is exterior of coil form 54. The lower portion of shield 52 is depicted as "U" shaped, and the upper portion of shield 52 is depicted as a cover. The lower and upper portions of shield 52 can preferably be connected by conductive silver ink at location 56, but other techniques of connectivity using any type of conducting material can also be used. Shield 52 can be composed of a polyester foil with aluminum vapor-deposited on its surface, but other compositions with the resistance discussed below can also be used. The resistance of the vapor-deposited aluminum, a thin film, used in one embodiment of the present invention is of the order 1 ohm per square. The unit "ohm per square" is a unit of resistance known in the art appropriate for discussions of thin film material. Drain wire 42 is connected to shield 52 and is connected to ground. Drain wire 42 carries the current 1Q along the length of shield 52. At each point along shield 52 the current 1Q in drain wire 42 is the total of all current induced between that point and gap 46. Because of the ground connection, these are capacitive currents as discussed above with regard to patient 24. However, here the capacitive current loop is closed with respect to a ground rather than through patient 24. The current IQ, at an instant of time, is associated with positive potential 16 and the capacitance of coil form 54, where the current loop of interest is completed by shield 52 connected to ground via drain wire 42.

Also depicted in the cross section shown in FIG. 5 are the N cross sections of coil wire 44 contained within coil form 54. Because of the presence of current 1Q along drain wire 42, the current in coil wire 44 is altered by an amount of the order IQ/(2N). This is depicted in FIG. 6 where drain wire 42 along shield 52 has a current -/(~/2 and coil wire 44 along one loop has an adjusted current lfof+ 1Q/(2Η). The net current including the effect of N loops of coil wire 44 and drain wire 42 along coil assembly 40, however, remains the value as before NIM- The current along drain wire 42 is cancelled. The net result is that patient 24 is shielded from capacitive current 34 by an amount of the order 1Q. Nevertheless, the desired magnetic fields for navigation throughout the surgical region of interest remain the same.

FIGS. 7 and 8 depict a patient-shielding and coil system in accordance with another preferred embodiment of the present invention. In FIGS. 7 and 8, shield system 70 is placed over platform 10 containing coil sets 12 and 14. Shield system 70 is depicted as containing vapor-deposited conductive film 76 on top of non-conductive plastic sheet 74. Conductive film 76 is connected to drain wire 42. Coil sets 12 and 14 are connected in series and are driven through twisted pair 47 to produced the desired magnetic fields. Positive potential 16 and negative potential 18 are shielded from patient 24 the conductive film 76. Vapor-deposited conductive film 76 has a resistance of the order 1 ohm per square. This resistance is sufficient to produce little effect on the magnetic fields, indicated in FIG. 8 by field lines 48. Nevertheless, this resistance is sufficient to protect patient 24 from capacitive current 34.

Experiments performed to measure the effect on navigation of the currents induced in the shield system 70 indicate that these currents are small and have an effect of less than 0.1% on navigation accuracy. The small residual effect can be eliminated by a calibration of the navigating fields in the presence of shield system 70.

Systems consistent with the present invention shield a patient from capacitive currents that arise as a result of patient immersion into a time-varying magnetic field. The foregoing description of implementations of the invention has been presented for purposes of illustration and description. It is not exhaustive and does not limit the invention to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practicing the invention.

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefore to be considered in respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of the equivalency of the claims are therefore intended to be embraced therein.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US4548208 *27 Jun 198422 Oct 1985Medtronic, Inc.Automatic adjusting induction coil treatment device
US4889526 *13 Nov 198726 Dic 1989Magtech Laboratories, Inc.Non-invasive method and apparatus for modulating brain signals through an external magnetic or electric field to reduce pain
US5030196 *15 Jul 19839 Jul 1991Inoue-Japax Research IncorporatedMagnetic treatment device
Otras citas
Referencia
1 *See also references of EP1257317A4
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US765730021 Mar 20022 Feb 2010Medtronic Navigation, Inc.Registration of human anatomy integrated for electromagnetic localization
US766062330 Ene 20039 Feb 2010Medtronic Navigation, Inc.Six degree of freedom alignment display for medical procedures
US769797214 Jul 200313 Abr 2010Medtronic Navigation, Inc.Navigation system for cardiac therapies
US775186515 Sep 20046 Jul 2010Medtronic Navigation, Inc.Method and apparatus for surgical navigation
US776303513 Sep 200427 Jul 2010Medtronic Navigation, Inc.Image guided spinal surgery guide, system and method for use thereof
US779703223 Sep 200214 Sep 2010Medtronic Navigation, Inc.Method and system for navigating a catheter probe in the presence of field-influencing objects
US78310825 Jun 20069 Nov 2010Medtronic Navigation, Inc.System and method for image based sensor calibration
US783577816 Oct 200316 Nov 2010Medtronic Navigation, Inc.Method and apparatus for surgical navigation of a multiple piece construct for implantation
US783578421 Sep 200516 Nov 2010Medtronic Navigation, Inc.Method and apparatus for positioning a reference frame
US784025330 Sep 200523 Nov 2010Medtronic Navigation, Inc.Method and apparatus for surgical navigation
US785330513 May 200514 Dic 2010Medtronic Navigation, Inc.Trajectory storage apparatus and method for surgical navigation systems
US788177016 Mar 20041 Feb 2011Medtronic Navigation, Inc.Multiple cannula image guided tool for image guided procedures
US805740711 Oct 200515 Nov 2011Medtronic Navigation, Inc.Surgical sensor
US811229221 Abr 20067 Feb 2012Medtronic Navigation, Inc.Method and apparatus for optimizing a therapy
US820031422 Ene 200712 Jun 2012British Telecommunications Public Limited CompanySurgical navigation
US823900111 Jul 20057 Ago 2012Medtronic Navigation, Inc.Method and apparatus for surgical navigation
US84520682 Nov 201128 May 2013Covidien LpHybrid registration method
US84675892 Nov 201118 Jun 2013Covidien LpHybrid registration method
US84730322 Jun 200925 Jun 2013Superdimension, Ltd.Feature-based registration method
US86119846 Abr 201017 Dic 2013Covidien LpLocatable catheter
US86630882 Dic 20094 Mar 2014Covidien LpSystem of accessories for use with bronchoscopes
US86965489 Jun 201115 Abr 2014Covidien LpEndoscope structures and techniques for navigating to a target in branched structure
US876472514 Nov 20081 Jul 2014Covidien LpDirectional anchoring mechanism, method and applications thereof
US883819914 Feb 200516 Sep 2014Medtronic Navigation, Inc.Method and apparatus for virtual digital subtraction angiography
US890592019 Sep 20089 Dic 2014Covidien LpBronchoscope adapter and method
US893220710 Jul 200913 Ene 2015Covidien LpIntegrated multi-functional endoscopic tool
US90558811 May 200516 Jun 2015Super Dimension Ltd.System and method for image-based alignment of an endoscope
US908926114 Sep 200428 Jul 2015Covidien LpSystem of accessories for use with bronchoscopes
US911381317 Dic 201325 Ago 2015Covidien LpLocatable catheter
US911725820 May 201325 Ago 2015Covidien LpFeature-based registration method
US916810218 Ene 200627 Oct 2015Medtronic Navigation, Inc.Method and apparatus for providing a container to a sterile environment
US92718032 May 20131 Mar 2016Covidien LpHybrid registration method
US95751402 Abr 200921 Feb 2017Covidien LpMagnetic interference detection system and method
US959715424 Feb 201421 Mar 2017Medtronic, Inc.Method and apparatus for optimizing a computer assisted surgical procedure
US964251411 Abr 20149 May 2017Covidien LpEndoscope structures and techniques for navigating to a target in a branched structure
US965937424 Jul 201523 May 2017Covidien LpFeature-based registration method
US96686398 Jun 20126 Jun 2017Covidien LpBronchoscope adapter and method
US967542422 Jul 200913 Jun 2017Surgical Navigation Technologies, Inc.Method for calibrating a navigation system
US975708729 Jun 200912 Sep 2017Medtronic Navigation, Inc.Method and apparatus for perspective inversion
USRE4219412 Jun 20061 Mar 2011Medtronic Navigation, Inc.Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE4222612 Jun 200615 Mar 2011Medtronic Navigation, Inc.Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE4332831 Ene 200224 Abr 2012Medtronic Navigation, IncImage guided awl/tap/screwdriver
USRE439525 Oct 199029 Ene 2013Medtronic Navigation, Inc.Interactive system for local intervention inside a non-homogeneous structure
USRE4640920 Abr 201523 May 2017Medtronic Navigation, Inc.Image guided awl/tap/screwdriver
USRE4642220 Abr 20156 Jun 2017Medtronic Navigation, Inc.Image guided awl/tap/screwdriver
Clasificaciones
Clasificación internacionalA61N1/16
Clasificación cooperativaA61N1/16
Clasificación europeaA61N1/16
Eventos legales
FechaCódigoEventoDescripción
3 May 2001ALDesignated countries for regional patents
Kind code of ref document: A1
Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG
3 May 2001AKDesignated states
Kind code of ref document: A1
Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW
27 Jun 2001121Ep: the epo has been informed by wipo that ep was designated in this application
13 Sep 2001DFPERequest for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
8 Nov 2001CFPCorrected version of a pamphlet front page
Free format text: REVISED ABSTRACT RECEIVED BY THE INTERNATIONAL BUREAU AFTER COMPLETION OF THE TECHNICAL PREPARATIONS FOR INTERNATIONAL PUBLICATION
8 Nov 2001ALDesignated countries for regional patents
Kind code of ref document: C1
Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG
8 Nov 2001AKDesignated states
Kind code of ref document: C1
Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW
21 Ago 2002WWEWipo information: entry into national phase
Ref document number: 2000972380
Country of ref document: EP
10 Oct 2002REGReference to national code
Ref country code: DE
Ref legal event code: 8642
20 Nov 2002WWPWipo information: published in national office
Ref document number: 2000972380
Country of ref document: EP
30 Abr 2003WWWWipo information: withdrawn in national office
Ref document number: 2000972380
Country of ref document: EP
30 Jul 2004NENPNon-entry into the national phase in:
Ref country code: JP
8 Jul 2010DPE2Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)