WO2001038790A1 - Electronic fuel convertibility selection - Google Patents

Electronic fuel convertibility selection Download PDF

Info

Publication number
WO2001038790A1
WO2001038790A1 PCT/US2000/032480 US0032480W WO0138790A1 WO 2001038790 A1 WO2001038790 A1 WO 2001038790A1 US 0032480 W US0032480 W US 0032480W WO 0138790 A1 WO0138790 A1 WO 0138790A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
gas
outlet pressure
microprocessor
fuel
Prior art date
Application number
PCT/US2000/032480
Other languages
French (fr)
Inventor
Douglas D. Bird
Stephen J. Kemp
Original Assignee
Honeywell Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell Inc. filed Critical Honeywell Inc.
Priority to CA002393128A priority Critical patent/CA2393128A1/en
Publication of WO2001038790A1 publication Critical patent/WO2001038790A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/005Regulating fuel supply using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/04Memory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves

Definitions

  • THERMOPILE are commonly assigned co-pending applications incorporated herein by reference.
  • the present invention generally relates to systems for control of a gas
  • Such appliances have the primary heat supplied by a main burner with a substantial pressurized gas input regulated via a main valve.
  • the main burner consumes so much fuel and generates so much heat that the main burner is ignited only as necessary.
  • the main valve is closed extinguishing the main burner flame.
  • pilot light is a second, much smaller burner, having a small pressurized gas input regulated via a pilot valve.
  • the pilot light is intended to burn perpetually.
  • turning the main valve on provides fuel to the main burner which is quickly ignited by the pilot light flame.
  • Turning the main valve off extinguishes the main burner, which can readily be reignited by the presence of the pilot light.
  • thermocouple thermocouple
  • thermopile thermopile
  • a standard approach uses a thermogenerative electrical device (e.g., thermocouple, thermopile, etc.) in close proximity to the properly operating flame. Whenever the corresponding flame is present, the thermocouple generates a current. A solenoid operated portion of the pilot valve and the main valve require the presence of a current from the thermocouple to maintain the corresponding valve in the open position. Therefore, if no flame is
  • thermocouple(s) is cold and not generating current, neither the pilot valve nor the main valve will release any fuel.
  • the pilot light is ignited infrequently such as at installation, loss of fuel supply, etc. Ignition is accomplished by manually overriding the safety feature and holding the pilot valve
  • thermocouple open while the pilot light is lit using a match or piezo igniter.
  • the manual override is held until the heat from the pilot flame is sufficient to cause the thermocouple to generate enough current to hold the safety solenoid.
  • the pilot valve remains open as long as the thermocouple continues to generate sufficient current to actuate the pilot valve solenoid.
  • the safety thermocouple(s) can be replaced with a thermopile(s) for generation of additional electrical current.
  • This additional current may be desired for operating various indicators or for powering interfaces to equipment external to the appliance. Normally, this requires conversion of the electrical energy produced by the thermopile to a voltage useful to these additional loads.
  • thermocouple(s) Upon loss of flame (e.g., from loss of fuel pressure), the thermocouple(s) ceases generating electrical current and the pilot valve and main valve are closed, of course, in keeping with normal safety requirements. Yet this function involves only a binary result (i.e., valve completely on or valve completely off). Though it is common within vehicles, such as automobiles, to provide variable fuel valve control as discussed in U.S. Patent No. 5,546,908,
  • Patent No. 5, 150,685 issued to Porter et al., suggest approaches to variable valve positioning of a gas appliance.
  • the introduction of an entirely new valve design is likely to introduce severe regulatory difficulties.
  • the present safety valve approach has been used for such a long time with satisfactory results. Proof of safe operation of a new approach to valve design would
  • burner valve for 1 a gas appliance which offers the user the opportunity to quickly and easily change
  • the main burner valve of the present invention utilizes a standard, linearly actuated valve design having
  • valve of the present invention may be positioned along the entire length of its travel from full open to full closed, the valve is totally adjustable permitting changes in mode, fuel input, and other outlet pressure related features.
  • thermopile is thermally coupled to the pilot flame. As current is generated by the thermopile, it is converted via a DC-to- DC converter to a regulated output and an unregulated output.
  • the regulated output powers a microprocessor and other electronic circuitry which control operation of the main fuel valve in
  • the unregulated output powers various mechanical components including a stepper motor.
  • the stepper motor is mechanically coupled to a linear actuator which precisely positions the main fuel valve. Because the main fuel valve is linearly actuated, it operates in known fashion with respect to the industry proven flame out safety features. Yet, the stepper motor, under direct control of the microprocessor, positions the linear actuator for precise valve positioning and therefore, fuel input modulation to the burner.
  • stepper motor means that any selected valve position is held statically by the internal rachet action of the stepper motor without quiescent consumption of any electrical
  • stepper motor duty cycle is sufficiently low, that the power supply can charge a capacitor slowly over time such that when needed, that capacitor can power the stepper motor to change the position of the linear actuator and hence the main fuel valve outlet pressure regulation point.
  • the gas appliance is calibrated during the manufacturing process.
  • the stepper motor values and hence the valve positioning data corresponding to the desired valve settings are determined empirically for the various fuel types. This information is stored within non- volatile memory of the microprocessor. Thus, a table of stepper motor commands are available to the microprocessor for rapid changes of fuel type.
  • FIG. 1 is a simplified electrical schematic diagram of the present invention
  • Fig. 2 is a simplified block diagram of the microprocessor of the present invention.
  • Fig.3 is a detailed electrical block diagram
  • Fig. 4 is a plan view of the valve assembly
  • Fig. 5 is a flow diagram showing calibration of the valve assembly.
  • Fig. 1 is a very basic electrical diagram 22 of the power circuitry of the present invention.
  • Thermopile 24 is structured in accordance with the prior art.
  • Resistor 26 represents the internal resistance of thermopile 24.
  • Pilot valve 28 has a solenoid (not separately shown) which holds the pilot valve closed whenever sufficient current flows through the circuit.
  • the internal solenoid (also not separately shown) main valve 32 holds the main valve closed whenever sufficient current flows through the associated circuit.
  • DC-to-DC conversion facility 36 converts the relatively low voltage output of thermopile 24 to a sufficiently large voltage to power the electronic circuitry, including the microprocessor.
  • DC-to-DC conversion facility 36 consists of two DC-to-DC converters. The first converter operates at the extremely low
  • the other DC-to-DC converter once started, can keep converting at much lower input voltage and generate much more power from the limited thermopile output for the system during normal operation.
  • Fig. 2 is a simplified diagram showing the basic inputs and outputs of microprocessor 60.
  • microprocessor 60 is an 8-bit AVR model AT90LS8535 microprocessor
  • microprocessor 60 is clocked at one megahertz to save power, even though the selected device may be clocked at up to four megahertz.
  • the two primary inputs to microprocessor 60 are the thermopile output voltage received via input 62 and the manual mode change information received via input 64.
  • the thermopile output voltage is input once per second.
  • the mode change information is received aperiodically in response to manual action by the user.
  • Output 66 controls operation of the stepper motor. As is explained in more detail below, this affects management of the main fuel valve orifice size.
  • Output 68 is the on/off control for the external circulation fan.
  • Output 70 controls the radio frequency receiver through which an
  • Fig. 3 is a detailed block diagram of the inputs and outputs of microprocessor 60.
  • megahertz crystal 84 clocks microprocessor 60.
  • the output of crystal 84 is also divided down to
  • thermopile output voltage Indicator 112 permits early notification of flame on to the user.
  • Manual mode switch 86 permits an operator to select local mode or remote mode.
  • manual switch 88 is used to select the input fuel type, so that the main valve outlet pressure regulation point can be switched between propane and methane.
  • microprocessor 60 to consult a particular corresponding entry within the valve positioning table stored in the non- volatile memory of microprocessor 60. These entries provide the necessary information for microprocessor 60 to direct the stepper motor to set the main burner valve outlet pressure to the proper value.
  • the method for determining the valve positioning table entries is described in detail below.
  • DC-to-DC converter 36 can receiver inputs from up to two thermopiles. Inputs 94 and 96 provide the positive and negative inputs from the first thermopile, whereas inputs 90 and 92 provide the positive and negative inputs from the second thermopile, respectively.
  • Output 102 is the unregulated output of DC-to-DC converter 36. This output has a voltage varying between about 6 volts and 10 volts. The unregulated output powers the mechanical components, including the stepper motor.
  • Line 104 is a 3 volt regulated output. It powers microprocessor 60 and the most critical electronic components. Line 106 permits microprocessor to power DC-to-DC converter 36 up and down. This is consistent with the voltage sampling and analysis by microprocessor 60 which predicts flame out conditions.
  • Line 72 enables and disables pilot valve driver 72 coupled to the pilot valve via line 98.
  • line 110 controls main valve driver 74 coupled to the main valve via line 100. This is
  • microprocessor 60 can predict flame out conditions and shut down the pilot and main valves ,long before the output of the thermopile is insufficient to hold the valves open.
  • Stepper motor drivers 76 are semiconductor switches which permit the output of discrete signals from microprocessor 60 to control the relatively heavy current required to drive the stepper motor. In that way, line 66 controls the stepper motor positioning in accordance with the direction of the microprocessor firmware. Line 114 permits sensing of the stepper motor status. Lines 122, 124, 126, and 130 provide the actual stepper motor current.
  • the gas appliance is a fireplace.
  • the thermopile output is not sufficient to power the desired fan.
  • the system can control operation of the fan. Therefore, line 132 provides the external power which is controlled by fan driver 80.
  • Lines 128 and 129 couple to optical isolation device 78 for coupling via lines
  • Line 134 actually powers the fan.
  • the fireplace of the preferred mode also has radio frequency remote control.
  • a battery operated transmitter communicates with rf receiver 82 via antenna 136.
  • Lines 70 and 120 provide the interface to microprocessor 60.
  • Rf receiver 82 is powered by the 3 volt regulated output of
  • FIG. 4 is a plan view of the valve assembly 140 of the preferred mode of the present
  • Fuel inlet 150 has standard fittings.
  • gas outlet 148 includes a standard coupling.
  • ⁇ Reg ⁇ lator cap 142 fits within housing cap 144 as shown (a better view is found in the
  • Motor housing 146 contains the linear actuator and stepper motor (neither shown in this view).
  • Fig. 5 is a flow diagram showing the manner in which the entries are empirically
  • valve positioning table Entry is via element 160.
  • the propane valve positioning values are determined first.
  • the stepper motor opens the valve to its maximum position at element 164.
  • the stepper motor decrements the outlet pressure of the valve.
  • control is given at element 168. If the pressure is not as desired, control is returned to element 166 for a further decrement of the outlet pressure. When the valve pressure has been decremented to the desired point, control is given by element 168 to element 170.
  • the stepper motor positioning command is stored in the valve positioning table by element 170. Element 72 determines whether there are other propane entries to be determined. If yes, control is given to
  • element 172 finds that all of the propane entries have been made in the valve positioning table, control is given to element 174 to initialize for determine the methane (or natural gas) values. The process is essentially repeated for methane. Element 176 opens the
  • valve to the maximum outlet pressure. Decrementation of the valve outlet pressure is accomplished by element 178.
  • Element 180 determines if the desired value has been reached. If no, the process continues at element 178. If yes, element 182 records the stepper motor value.
  • Element 184 ascertains whether all of the methane values have been determined. If not, control is given to element 178. If yes, element 186 completes the valve positioning table, and exit is made

Abstract

An apparatus for and method for providing easy and rapid conversion from a first fuel to a second fuel in a gas appliance. The gas appliance has a variable fuel valve controlled by a microprocessor. A table stored in non-volatile memory has an entry for each of the fuels to be burned in the gas appliance. The table entries are empirically determined at the time of manufacture.

Description

ELECTRONIC FUEL CONVERTIBILITY SELECTION
.CROSS REFERENCE TO CO-PENDING APPLICATIONS
U.S. Patent Application No. , filed , and entitled, "LOW INPUT VOLTAGE,
LOW COST, MICRO-POWER DC-DC CONVERTER"; U.S. Patent Application No. ,
filed , and entitled, "STEPPER MOTOR DRIVING A LINEAR ACTUATOR
OPERATING A PRESSURE CONTROL REGULATOR"; U.S. Patent Application No. ,
filed , and entitled, "LOW INPUT VOLTAGE, HIGH EFFICIENCY, DUAL OUTPUT DC TO DC CONVERTER"; and U.S. Patent Application No. , filed , and entitled,
"ELECTRONIC DETECTING OF FLAME LOSS BY SENSING POWER OUTPUT FROM
THERMOPILE" are commonly assigned co-pending applications incorporated herein by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention: The present invention generally relates to systems for control of a gas
appliance incorporating a flame and more particularly relates to fuel control valve systems. 2. Description of the prior art: It is known in the art to employ various appliances for household and industrial applications which utilize a fuel such as natural gas (i.e., methane),
propane, or similar gaseous hydrocarbons. Typically, such appliances have the primary heat supplied by a main burner with a substantial pressurized gas input regulated via a main valve. Ordinarily, the main burner consumes so much fuel and generates so much heat that the main burner is ignited only as necessary. At other times (e.g., the appliance is not used, etc.), the main valve is closed extinguishing the main burner flame.
A customary approach to reigniting the main burner whenever needed is through the use of a pilot light. The pilot light is a second, much smaller burner, having a small pressurized gas input regulated via a pilot valve. In most installations, the pilot light is intended to burn perpetually. Thus, turning the main valve on provides fuel to the main burner which is quickly ignited by the pilot light flame. Turning the main valve off, extinguishes the main burner, which can readily be reignited by the presence of the pilot light.
These fuels, being toxic and highly flammable, are particularly dangerous in a gaseous state if released into the ambient. Therefore, it is customary to provide certain safety features for ensuring that the pilot valve and main valve are never open when a flame is not present preventing release of the fuel into the atmosphere. A standard approach uses a thermogenerative electrical device (e.g., thermocouple, thermopile, etc.) in close proximity to the properly operating flame. Whenever the corresponding flame is present, the thermocouple generates a current. A solenoid operated portion of the pilot valve and the main valve require the presence of a current from the thermocouple to maintain the corresponding valve in the open position. Therefore, if no flame is
present and the thermocouple(s) is cold and not generating current, neither the pilot valve nor the main valve will release any fuel.
In practice, the pilot light is ignited infrequently such as at installation, loss of fuel supply, etc. Ignition is accomplished by manually overriding the safety feature and holding the pilot valve
open while the pilot light is lit using a match or piezo igniter. The manual override is held until the heat from the pilot flame is sufficient to cause the thermocouple to generate enough current to hold the safety solenoid. The pilot valve remains open as long as the thermocouple continues to generate sufficient current to actuate the pilot valve solenoid.
The safety thermocouple(s) can be replaced with a thermopile(s) for generation of additional electrical current. This additional current may be desired for operating various indicators or for powering interfaces to equipment external to the appliance. Normally, this requires conversion of the electrical energy produced by the thermopile to a voltage useful to these additional loads. Though not suitable for this application, U.S. Patent No. 5,822,200, issued to Stasz; U.S. Patent No. 5,804,950, issued to Hwang et al.; U.S. Patent No. 5,381,298,
issued to Shaw et al.; U.S. Patent No. 4,014,165, issued to Barton; and U.S. Patent No. 3,992,585, issued to Turner et al. all discuss some form of voltage conversion. Upon loss of flame (e.g., from loss of fuel pressure), the thermocouple(s) ceases generating electrical current and the pilot valve and main valve are closed, of course, in keeping with normal safety requirements. Yet this function involves only a binary result (i.e., valve completely on or valve completely off). Though it is common within vehicles, such as automobiles, to provide variable fuel valve control as discussed in U.S. Patent No. 5,546,908,
issued to Stokes, and U.S. Patent No. 5,311,849, issued to Lambert et al., it is normal to provide static gas appliances with a simple on or off, linearly actuated valve having the desired safety
features.
Yet, there are occasions when it is desirable to adjust the valve outlet pressure regulation point of the main burner supply valve of a standard gas appliance. These include changes in mode
(i.e., changes in the desired intensity of the flame) and changes in the fuel type (e.g., a change
from propane to methane). U.S. Patent No. 5,234,196, issued to Harris; U.S. Patent No. 4,816,987, issued to Brooks et al.; U.S. Patent No. 5,873,351, issued to Vars et al.; and U.S.
Patent No. 5, 150,685, issued to Porter et al., suggest approaches to variable valve positioning of a gas appliance. However, the introduction of an entirely new valve design is likely to introduce severe regulatory difficulties. The present safety valve approach has been used for such a long time with satisfactory results. Proof of safe operation of a new approach to valve design would
require substantial costly end user testing.
SUMMARY OF THE INVENTION
The present invention overcomes the disadvantages of the prior art by providing a main
burner valve for1 a gas appliance which offers the user the opportunity to quickly and easily change
the main valve outlet pressure regulation point to accommodate changes in fuel type. The main burner valve of the present invention utilizes a standard, linearly actuated valve design having
proven safety features, but which also offers precisely controllable differing outlet pressure. Linear actuation is important, because it offers the normal safety features associated with the
industry standard of full off upon flame out. However, because the valve of the present invention may be positioned along the entire length of its travel from full open to full closed, the valve is totally adjustable permitting changes in mode, fuel input, and other outlet pressure related features.
In accordance with the preferred mode of the present invention, a thermopile is thermally coupled to the pilot flame. As current is generated by the thermopile, it is converted via a DC-to- DC converter to a regulated output and an unregulated output. The regulated output powers a microprocessor and other electronic circuitry which control operation of the main fuel valve in
response to sensed conditions, operator inputs, and certain stored data. The unregulated output powers various mechanical components including a stepper motor.
The stepper motor is mechanically coupled to a linear actuator which precisely positions the main fuel valve. Because the main fuel valve is linearly actuated, it operates in known fashion with respect to the industry proven flame out safety features. Yet, the stepper motor, under direct control of the microprocessor, positions the linear actuator for precise valve positioning and therefore, fuel input modulation to the burner.
The use of a stepper motor means that any selected valve position is held statically by the internal rachet action of the stepper motor without quiescent consumption of any electrical
energy. That m'akes the electrical duty cycle of the stepper motor/valve positioning system extremely low. This is a very important feature which permits the system to operate under the power of the thermopile without any necessary external electrical power source. In fact, the
stepper motor duty cycle is sufficiently low, that the power supply can charge a capacitor slowly over time such that when needed, that capacitor can power the stepper motor to change the position of the linear actuator and hence the main fuel valve outlet pressure regulation point. In accordance with the present invention, the gas appliance is calibrated during the manufacturing process. The stepper motor values and hence the valve positioning data corresponding to the desired valve settings are determined empirically for the various fuel types. This information is stored within non- volatile memory of the microprocessor. Thus, a table of stepper motor commands are available to the microprocessor for rapid changes of fuel type.
BRIEF DESCRIPTION OF THE DRAWINGS
Other objects of the present invention and many of the attendant advantages of the present
invention will bej readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, in
which like reference numerals designate like parts throughout the figures thereof and wherein: FIG. 1 is a simplified electrical schematic diagram of the present invention;
Fig. 2 is a simplified block diagram of the microprocessor of the present invention;
Fig.3 is a detailed electrical block diagram;
Fig. 4 is a plan view of the valve assembly; and
Fig. 5 is a flow diagram showing calibration of the valve assembly.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Fig. 1 is a very basic electrical diagram 22 of the power circuitry of the present invention.
Thermopile 24 is structured in accordance with the prior art. Resistor 26 represents the internal resistance of thermopile 24.
Pilot valve 28 has a solenoid (not separately shown) which holds the pilot valve closed whenever sufficient current flows through the circuit. Similarly, the internal solenoid (also not separately shown) main valve 32 holds the main valve closed whenever sufficient current flows through the associated circuit.
DC-to-DC conversion facility 36 converts the relatively low voltage output of thermopile 24 to a sufficiently large voltage to power the electronic circuitry, including the microprocessor. In accordance with the preferred mode of the present invention, DC-to-DC conversion facility 36 consists of two DC-to-DC converters. The first converter operates at the extremely low
thermopile output voltages experienced during combustion chamber warm up to generate a higher voltage to start the higher efficiency, second DC-to-DC converter. The other DC-to-DC converter, once started, can keep converting at much lower input voltage and generate much more power from the limited thermopile output for the system during normal operation. A more detailed description of the second device is available in the above identified and incorporated, commonly assigned, co-pending U.S. Patent Applications. Fig. 2 is a simplified diagram showing the basic inputs and outputs of microprocessor 60. In the preferred mode, microprocessor 60 is an 8-bit AVR model AT90LS8535 microprocessor
available from ATMEL. It is a high performance, low power, restricted instruction set (i.e., RISC) microprocessor. In the preferred mode, microprocessor 60 is clocked at one megahertz to save power, even though the selected device may be clocked at up to four megahertz.
The two primary inputs to microprocessor 60 are the thermopile output voltage received via input 62 and the manual mode change information received via input 64. The thermopile output voltage is input once per second. The mode change information, on the other hand, is received aperiodically in response to manual action by the user.
Output 66 controls operation of the stepper motor. As is explained in more detail below, this affects management of the main fuel valve orifice size. Output 68 is the on/off control for the external circulation fan. Output 70 controls the radio frequency receiver through which an
operator can communicate via a remote control device.
Fig. 3 is a detailed block diagram of the inputs and outputs of microprocessor 60. One
megahertz crystal 84 clocks microprocessor 60. The output of crystal 84 is also divided down to
provide an interrupt to microprocessor 60 once per second. This interval is utilized for sampling
of the thermopile output voltage Indicator 112 permits early notification of flame on to the user.
Manual mode switch 86 permits an operator to select local mode or remote mode. Similarly, manual switch 88 is used to select the input fuel type, so that the main valve outlet pressure regulation point can be switched between propane and methane. Each of these
alternative switch positions cause microprocessor 60 to consult a particular corresponding entry within the valve positioning table stored in the non- volatile memory of microprocessor 60. These entries provide the necessary information for microprocessor 60 to direct the stepper motor to set the main burner valve outlet pressure to the proper value. The method for determining the valve positioning table entries is described in detail below.
DC-to-DC converter 36 can receiver inputs from up to two thermopiles. Inputs 94 and 96 provide the positive and negative inputs from the first thermopile, whereas inputs 90 and 92 provide the positive and negative inputs from the second thermopile, respectively. Output 102 is the unregulated output of DC-to-DC converter 36. This output has a voltage varying between about 6 volts and 10 volts. The unregulated output powers the mechanical components, including the stepper motor. Line 104 is a 3 volt regulated output. It powers microprocessor 60 and the most critical electronic components. Line 106 permits microprocessor to power DC-to-DC converter 36 up and down. This is consistent with the voltage sampling and analysis by microprocessor 60 which predicts flame out conditions. Line 72 enables and disables pilot valve driver 72 coupled to the pilot valve via line 98. Similarly, line 110 controls main valve driver 74 coupled to the main valve via line 100. This is
important because microprocessor 60 can predict flame out conditions and shut down the pilot and main valves ,long before the output of the thermopile is insufficient to hold the valves open. A
more detailed description of this significant feature may be found in the above referenced, co-
pending, commonly assigned, and incorporated U.S. Patent Applications.
Stepper motor drivers 76 are semiconductor switches which permit the output of discrete signals from microprocessor 60 to control the relatively heavy current required to drive the stepper motor. In that way, line 66 controls the stepper motor positioning in accordance with the direction of the microprocessor firmware. Line 114 permits sensing of the stepper motor status. Lines 122, 124, 126, and 130 provide the actual stepper motor current.
In the preferred mode of practicing the present invention, the gas appliance is a fireplace. The thermopile output is not sufficient to power the desired fan. However, the system can control operation of the fan. Therefore, line 132 provides the external power which is controlled by fan driver 80. Lines 128 and 129 couple to optical isolation device 78 for coupling via lines
68, 116, and 118 to microprocessor 60. Line 134 actually powers the fan.
The fireplace of the preferred mode also has radio frequency remote control. A battery operated transmitter communicates with rf receiver 82 via antenna 136. Lines 70 and 120 provide the interface to microprocessor 60. Rf receiver 82 is powered by the 3 volt regulated output of
DC-to-DC converter 36 found on line 104. Fig. 4 is a plan view of the valve assembly 140 of the preferred mode of the present
invention. Fuel inlet 150 has standard fittings. Similarly, gas outlet 148 includes a standard coupling. ~ Regμlator cap 142 fits within housing cap 144 as shown (a better view is found in the
section of Fig. 5). Motor housing 146 contains the linear actuator and stepper motor (neither shown in this view).
Fig. 5 is a flow diagram showing the manner in which the entries are empirically
determined for the valve positioning table. Entry is via element 160. The propane valve positioning values are determined first. The stepper motor opens the valve to its maximum position at element 164.
At element 166, the stepper motor decrements the outlet pressure of the valve. The outlet
pressure is determined at element 168. If the pressure is not as desired, control is returned to element 166 for a further decrement of the outlet pressure. When the valve pressure has been decremented to the desired point, control is given by element 168 to element 170. The stepper motor positioning command is stored in the valve positioning table by element 170. Element 72 determines whether there are other propane entries to be determined. If yes, control is given to
element 166 to continue the process.
After element 172 finds that all of the propane entries have been made in the valve positioning table, control is given to element 174 to initialize for determine the methane (or natural gas) values. The process is essentially repeated for methane. Element 176 opens the
valve to the maximum outlet pressure. Decrementation of the valve outlet pressure is accomplished by element 178. Element 180 determines if the desired value has been reached. If no, the process continues at element 178. If yes, element 182 records the stepper motor value. Element 184 ascertains whether all of the methane values have been determined. If not, control is given to element 178. If yes, element 186 completes the valve positioning table, and exit is made
via element 188. Having thus described the preferred embodiments of the present invention, those of skill in
the art will be readily able to adapt the teachings found herein to yet other embodiments within the scope of the plaims hereto attached. WE CLAIM:

Claims

1. In a gas appliance having a flame produced by a main burner configured to burn at least two
different types of fuels wherein said flame of said main burner is controlled by a main valve, the
improvement comprising:
a. A switch which changes said main valve from a first fuel source to a second fuel source
by electrically modifying said main valve from a first predetermined outlet pressure to a second
predetermined outlet pressure.
2. The improvement according to claim 1 further comprising an electronic circuit for controlling
the position of said main valve..
3. The improvement according to claim 2 wherein said electronic circuit further comprises a
microprocessor.
4. The improvement according to claim 3 wherein said further microprocessor further comprises
non-volatile memory.
5. The improvement according to claim 4 wherein said non- volatile memory stores a first quantity corresponding to said first predetermined outlet pressure and a second quantity corresponding to
said second predetermined outlet pressure.
6. An apparatus comprising:
a. A gas inlet; b. A gas outlet;
c. A valve having a variable outlet pressure interposed between said gas inlet and said gas outlet; and
d. An electrical device responsively coupled to said valve which controllably varies said outlet pressure from a first predetermined value to a second predetermined value.
7. An apparatus according to claim 6 wherein said electrical device further comprises a microprocessor.
8. An apparatus according to claim 7 wherein said microprocessor further comprises a nonvolatile memory.
9. An apparatus according to claim 8 wherein said non-volatile memory contains a first quantity corresponding to said first predetermined value and a second quantity corresponding to said second predetermined value.
10. An apparatus according to claim 9 wherein said first quantity corresponds to propane and said second quantity corresponds to methane.
11. A method of facilitating conversion of fuel type within a gas appliance having a valve with an adjustable outlet pressure comprising:
a. initializing calibration of said valve for a first fuel type;
I b. changing said adjustable outlet pressure;
c. determining if outlet pressure of said valve is a desired value; d. if said determining step determines no,- repeating steps b and c; and
e. if said determining step determines yes, storing a quantity corresponding to said outlet pressure.
12. A method according to claim 11 further comprising: a. repeating steps b through e for each of a plurality of desired values.
13. A method according to claim 12 further comprising: a. reinitializing calibration of said valve for a second fuel type and repeating steps b through e.
14. A method according to claim 13 wherein said first fuel type is methane.
15. A method according to claim 14 wherein said second fuel type is propane.
16. An apparatus comprising: a. Means for supplying a first gas; b. Means responsively coupled to said supplying means for controlling flow of said first gas; and
c. Means responsively coupled to said controlling means for electrically changing said flow.
17. An apparatus according to claim 16 further comprising: a. means responsively coupled to said controlling means for supplying a second gas; and
b. means responsively coupled to said electrically changing means for converting from said first gas to said second gas.
18. An apparatus according to claim 17 wherein said changing means further comprises a microprocessor.
19. An apparatus according to claim 18 wherein said converting means further comprises a nonvolatile memory.
20. An apparatus according to claim 19 further comprising: a. a first quantity corresponding to said first gas stored within said non-volatile memory';
and b. a second quantity corresponding to said second gas stored within said non-volatile
memory.
PCT/US2000/032480 1999-11-29 2000-11-29 Electronic fuel convertibility selection WO2001038790A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002393128A CA2393128A1 (en) 1999-11-29 2000-11-29 Electronic fuel convertibility selection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/450,078 1999-11-29
US09/450,078 US6428308B1 (en) 1999-11-29 1999-11-29 Electronic fuel convertibility selection

Publications (1)

Publication Number Publication Date
WO2001038790A1 true WO2001038790A1 (en) 2001-05-31

Family

ID=23786682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/032480 WO2001038790A1 (en) 1999-11-29 2000-11-29 Electronic fuel convertibility selection

Country Status (3)

Country Link
US (1) US6428308B1 (en)
CA (1) CA2393128A1 (en)
WO (1) WO2001038790A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039391A1 (en) * 2002-11-01 2004-05-13 Lucas Alexandra R Viral serpin regulation of inflamation
US7419670B2 (en) 2000-09-29 2008-09-02 Viron Therapeutics, Inc. Method of treating arthritis with SERP-1 and an immunosuppressant
US7514405B2 (en) 1999-10-27 2009-04-07 Viron Therapeutics Inc. Methods for treating transplant rejection
US7745396B2 (en) 2004-10-21 2010-06-29 Viron Therapeutics Inc. Use of SERP-1 as an antiplatelet agent

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4064936B2 (en) * 2004-03-11 2008-03-19 リンナイ株式会社 Gas stove
US20070243495A1 (en) * 2006-04-18 2007-10-18 Robertshaw Controls Company Electronic gas control system
DE102009014745A1 (en) * 2008-03-26 2009-11-05 Fisher & Paykel Appliances Ltd., East Tamaki Gas cooker device
US9752990B2 (en) 2013-09-30 2017-09-05 Honeywell International Inc. Low-powered system for driving a fuel control mechanism
ITPD20130186A1 (en) * 2013-07-02 2015-01-03 Sit La Precisa S P A Con Socio Uni Co METHOD OF MONITORING THE OPERATION OF A BURNER

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992585A (en) 1975-10-06 1976-11-16 Koss Corporation Self-energizing electrostatic loudspeaker system
US4014165A (en) 1974-03-25 1977-03-29 Texas Instruments Incorporated DC-DC converter in watch system
EP0043256A1 (en) * 1980-07-01 1982-01-06 Tohoku Mikuni Kogyo Company Limited A proportional control valve for gas and a proportional control system comprising the valve
US4816987A (en) 1985-06-28 1989-03-28 Electric Power Research Institute, Inc. Microprocessor-based control and diagnostic system for motor operated valves
JPH01174820A (en) * 1987-12-25 1989-07-11 Paloma Ind Ltd Air-fuel ratio regulator for gas combustion equipment
JPH0293206A (en) * 1988-09-29 1990-04-04 Toshiba Corp Burner
US5150685A (en) 1991-09-11 1992-09-29 Porter Fred C Apparatus and method for converting conventionally fueled engines to operate on an alternative fuel
US5234196A (en) 1991-06-17 1993-08-10 Harmony Thermal Company, Inc. Variable orifice gas modulating valve
EP0562538A2 (en) * 1992-03-26 1993-09-29 Matsushita Electric Industrial Co., Ltd. Gas burning apparatus
US5311849A (en) 1992-07-14 1994-05-17 Gas Research Institute Carburetor assembly for an internal combustion gas engine
US5381298A (en) 1992-09-09 1995-01-10 Waters Instruments, Inc. Electric fence charger
US5546908A (en) 1994-01-07 1996-08-20 Stokes; Richard A. Plural fuel system for internal combustion engine
US5804950A (en) 1996-06-20 1998-09-08 Micro Linear Corporation Input current modulation for power factor correction
US5822200A (en) 1997-04-21 1998-10-13 Nt International, Inc. Low level, high efficiency DC/DC converter
US5873351A (en) 1997-04-16 1999-02-23 Woodward Governor Company Gas mass flow control system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111637A (en) * 1977-03-10 1978-09-05 Phillips Petroleum Company Control system for plurality of gas supplies
US4144997A (en) * 1977-10-12 1979-03-20 Phillips Petroleum Company Control of multiple fuel streams to a burner
US4770629A (en) * 1987-03-11 1988-09-13 Honeywell Inc. Status indicator for self-energizing burner control system
JP3394376B2 (en) * 1995-11-15 2003-04-07 パロマ工業株式会社 Gas combustor
US5816792A (en) * 1997-12-22 1998-10-06 Roberts-Gordon, Inc. Alternate gas fuel burning system

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014165A (en) 1974-03-25 1977-03-29 Texas Instruments Incorporated DC-DC converter in watch system
US3992585A (en) 1975-10-06 1976-11-16 Koss Corporation Self-energizing electrostatic loudspeaker system
EP0043256A1 (en) * 1980-07-01 1982-01-06 Tohoku Mikuni Kogyo Company Limited A proportional control valve for gas and a proportional control system comprising the valve
US4816987A (en) 1985-06-28 1989-03-28 Electric Power Research Institute, Inc. Microprocessor-based control and diagnostic system for motor operated valves
JPH01174820A (en) * 1987-12-25 1989-07-11 Paloma Ind Ltd Air-fuel ratio regulator for gas combustion equipment
JPH0293206A (en) * 1988-09-29 1990-04-04 Toshiba Corp Burner
US5234196A (en) 1991-06-17 1993-08-10 Harmony Thermal Company, Inc. Variable orifice gas modulating valve
US5150685A (en) 1991-09-11 1992-09-29 Porter Fred C Apparatus and method for converting conventionally fueled engines to operate on an alternative fuel
EP0562538A2 (en) * 1992-03-26 1993-09-29 Matsushita Electric Industrial Co., Ltd. Gas burning apparatus
US5311849A (en) 1992-07-14 1994-05-17 Gas Research Institute Carburetor assembly for an internal combustion gas engine
US5381298A (en) 1992-09-09 1995-01-10 Waters Instruments, Inc. Electric fence charger
US5546908A (en) 1994-01-07 1996-08-20 Stokes; Richard A. Plural fuel system for internal combustion engine
US5804950A (en) 1996-06-20 1998-09-08 Micro Linear Corporation Input current modulation for power factor correction
US5873351A (en) 1997-04-16 1999-02-23 Woodward Governor Company Gas mass flow control system
US5822200A (en) 1997-04-21 1998-10-13 Nt International, Inc. Low level, high efficiency DC/DC converter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 013, no. 449 (M - 878) 9 October 1989 (1989-10-09) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 295 (M - 0990) 26 June 1990 (1990-06-26) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7514405B2 (en) 1999-10-27 2009-04-07 Viron Therapeutics Inc. Methods for treating transplant rejection
US7906483B2 (en) 1999-10-27 2011-03-15 Viron Therapeutics Inc. Method for treating transplant rejection
US7419670B2 (en) 2000-09-29 2008-09-02 Viron Therapeutics, Inc. Method of treating arthritis with SERP-1 and an immunosuppressant
WO2004039391A1 (en) * 2002-11-01 2004-05-13 Lucas Alexandra R Viral serpin regulation of inflamation
US7745396B2 (en) 2004-10-21 2010-06-29 Viron Therapeutics Inc. Use of SERP-1 as an antiplatelet agent

Also Published As

Publication number Publication date
US6428308B1 (en) 2002-08-06
CA2393128A1 (en) 2001-05-31

Similar Documents

Publication Publication Date Title
US6701874B1 (en) Method and apparatus for thermal powered control
US11268695B2 (en) Method and system for starting an intermittent flame-powered pilot combustion system
US6667594B2 (en) Determination of maximum travel of linear actuator
CA2264337C (en) Temperature control system with thermoelectric and rechargeable energy sources
US6419478B1 (en) Stepper motor driving a linear actuator operating a pressure control regulator
RU2378579C2 (en) Gas-regulating accessories
US11719436B2 (en) Method and system for controlling an ignition sequence for an intermittent flame-powered pilot combustion system
US4778378A (en) Self-powered intermittent ignition and control system for gas combustion appliances
EP1215441B1 (en) Pulsed sequence burner control with valve
US6428308B1 (en) Electronic fuel convertibility selection
US20080108002A1 (en) Safety control device for gas appliance
US20050130086A1 (en) Burner ignition and control system
US6280179B1 (en) Over temperature limiting scheme by reducing gas pressure
US4836444A (en) Device for controlling heater for motor vehicle
US6478573B1 (en) Electronic detecting of flame loss by sensing power output from thermopile
US6346789B1 (en) Motor step-less speed control with active feedback of phase detector
US5599181A (en) Combustion apparatus having a built-in storage battery
CN110966624A (en) Gas ignition device, gas oven and gas stove
WO2001038792A1 (en) Low input voltage, low cost, micro-power dc-dc converter
CA2394972A1 (en) Detect stepper motor movement by sensing induced emf on motor windings
US20060257803A1 (en) Gas valve controller
CA2392532A1 (en) Low input voltage, low cost, micro-power dc-dc converter
CN211952837U (en) Gas ignition device, gas oven and gas stove
US20080108001A1 (en) Safety device for gas appliance
JPH09250741A (en) Combustion device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2393128

Country of ref document: CA