WO2001042129A1 - Hand holdable pump spray apparatus - Google Patents

Hand holdable pump spray apparatus Download PDF

Info

Publication number
WO2001042129A1
WO2001042129A1 PCT/US2000/033233 US0033233W WO0142129A1 WO 2001042129 A1 WO2001042129 A1 WO 2001042129A1 US 0033233 W US0033233 W US 0033233W WO 0142129 A1 WO0142129 A1 WO 0142129A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
valve
chamber
nozzle
piston
Prior art date
Application number
PCT/US2000/033233
Other languages
French (fr)
Inventor
Paul M. Havlovitz
Original Assignee
Oms Investments, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/457,171 external-priority patent/US6170706B1/en
Priority to DK00984023T priority Critical patent/DK1254072T3/en
Priority to EP00984023A priority patent/EP1254072B1/en
Priority to HU0203272A priority patent/HUP0203272A3/en
Priority to NZ519481A priority patent/NZ519481A/en
Priority to IL15007800A priority patent/IL150078A0/en
Application filed by Oms Investments, Inc. filed Critical Oms Investments, Inc.
Priority to DE60037336T priority patent/DE60037336T2/en
Priority to PL00355996A priority patent/PL193683B1/en
Priority to JP2001543437A priority patent/JP4377097B2/en
Priority to MXPA02005658A priority patent/MXPA02005658A/en
Priority to CA002393687A priority patent/CA2393687C/en
Priority to AU20703/01A priority patent/AU759592C/en
Publication of WO2001042129A1 publication Critical patent/WO2001042129A1/en
Priority to NO20022745A priority patent/NO20022745L/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • B05B9/043Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump having pump readily separable from container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/1001Piston pumps
    • B05B11/1015Piston pumps actuated without substantial movement of the nozzle in the direction of the pressure stroke
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/109Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle the dispensing stroke being affected by the stored energy of a spring
    • B05B11/1091Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle the dispensing stroke being affected by the stored energy of a spring being first hold in a loaded state by locking means or the like, then released
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • B05B9/0403Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump with pumps for liquids or other fluent material
    • B05B9/0426Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump with pumps for liquids or other fluent material with a pump attached to the spray gun or discharge device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • B05B9/08Apparatus to be carried on or by a person, e.g. of knapsack type
    • B05B9/085Apparatus to be carried on or by a person, e.g. of knapsack type with a liquid pump
    • B05B9/0877Apparatus to be carried on or by a person, e.g. of knapsack type with a liquid pump the pump being of pressure-accumulation type or being connected to a pressure accumulation chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • B05B9/08Apparatus to be carried on or by a person, e.g. of knapsack type
    • B05B9/085Apparatus to be carried on or by a person, e.g. of knapsack type with a liquid pump
    • B05B9/0877Apparatus to be carried on or by a person, e.g. of knapsack type with a liquid pump the pump being of pressure-accumulation type or being connected to a pressure accumulation chamber
    • B05B9/0883Apparatus to be carried on or by a person, e.g. of knapsack type with a liquid pump the pump being of pressure-accumulation type or being connected to a pressure accumulation chamber having a discharge device fixed to the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/30Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages
    • B05B1/3033Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages the control being effected by relative coaxial longitudinal movement of the controlling element and the spray head

Definitions

  • the present invention relates to a hand holdable pump spray apparatus and more particularly to a hand holdable pump spray which is reliable, easy to use, safe and inexpensive.
  • Non-aerosol pump spraying devices have been developed primarily to eliminate the use of propellants which have a detrimental effect on the environment and to eliminate the use of pressurized containers which pose a safety hazard. Pressurized containers may explode and cause injury, and when the containers have ingredients such as insecticide, weed and grass killer and fertilizer, there may be undesirable environmental affects. Examples of non-aerosol pump spray apparatus may be seen by reference to U.S. Patents Nos. 5,938,116; 5,918,782; 5,860,574; 5,816,447; 5,810,211 and 4 , 174 , 055. A drawback to all of such non-aerosol pump apparatus is that the pump device is located in the container having the liquid to be pumped.
  • a hand holdable pump spray apparatus comprising a generally tubular hand holdable housing having first and second end portions spaced apart from a container of liquid to be sprayed, a piston movable m the housing, a handle connected to the piston adapted to be gripped by a user to move the piston toward one end of the housing, a spring located m the housing between the piston and the end of the housing to bias the piston toward the other end of the housing, a chamber formed m the housing between the piston and the other end of the housing, a first valve positioned between the container and the chamber, a nozzle, another valve located between the nozzle and the first valve, and an actuator for opening the second valve whereby liquid m the chamber may be ejected through the nozzle.
  • the present invention provides a non-aerosol hand holdable pump spray apparatus having the pump contained m the wand, thereby eliminating prior potential safety hazards relative to pressurized liquid m the flow path.
  • Another advantage of the present invention is that it enables elimination of various previously required components.
  • Yet another advantage of the present invention is that the pump spray wand and the container combination is relatively inexpensive and that the container is disposable after use but the pump mechanism m the wand is separate and may be reused.
  • Still another feature of the present invention is to provide a simple container valve whose position is visually apparent to ensure that the container is sealed when not m use or when it is transported, thereby preventing inadvertent leakage of possibly environmentally hazardous liquids.
  • a further feature of the present invention is to enable the container to be emptied more completely than can be accomplished by prior pump spray devices.
  • a further object of the present invention is that the wand is reliable, easy to use, inexpensive and safe.
  • FIG. 1 is a front elevation view of a hand holdable pump spray system.
  • FIG. 2 is an enlarged front elevation view, partially broken away showing a hand holdable pump spray system as it would be m storage or during shipping and further illustrating a container safety valve m a closed position m solid line and m an open position m phantom line .
  • FIG. 3 is a sectional view taken along line 3-3 of FIG. 2 but without the hand holdable wand.
  • FIG. 4 is an enlarged sectional elevation view of a variation valve cap for the container, where the valve is shown m a closed position.
  • FIG. 5 illustrates the valve cap of FIG. 4 with the valve m an open position and connected to a supply tube.
  • FIG. 6 is an enlarged front elevation view of an embodiment of a hand holdable pump spray apparatus .
  • FIG. 7 is a side elevation view of the hand holdable pump spray apparatus shown m FIG. 6.
  • FIG. 8 is a top plan view of the hand holdable pump spray apparatus shown m FIGS . 6 and 7.
  • FIG. 9 is a sectional view taken along line 9-9 of FIG. 8.
  • FIG. 10 is an enlarged sectional view taken within the circle 10-10 of FIG. 6 showing the valve m the apparatus m a closed position.
  • FIG. 11 is a partial view like that shown m FIG. 10 except the illustrated valve is shown m an open position.
  • FIG. 12 is an enlarged section view taken along
  • FIG. 13 is an enlarged section view taken within the circle 13-13 of FIG. 8.
  • FIG. 14 is a section view taken along line 14-
  • FIG. 14 of FIG. 13 showing a handle of the hand holdable spray apparatus m a restrained position.
  • FIG. 15 is a view of the handle shown m FIG. 14 m an unrestrained position.
  • FIG. 16 is an elevation view, partially diagrammatic, of a variation of the present invention with part of the casing removed to show the internal mechanism.
  • FIG. 17 is an enlarged sectional elevation view of the variation shown m FIG. 16.
  • FIG. 18 is a sectional elevation view of the variation of FIG. 16 illustrating the filling of the hand holdable spray apparatus .
  • FIG. 19 is a sectional elevation view of a further embodiment similar to the embodiment shown m FIGS. 16-18 but illustrating the use of a pulley to reduce the force needed to fill the hand held spray apparatus .
  • FIG. 20 is a sectional elevation view of the embodiment of FIG. 19 with the handle extended.
  • FIG. 21 is an elevation view of another embodiment of the pump spray apparatus of the present invention.
  • FIG. 22 s a perspective view of another embodiment of a pump spray apparatus of the present invention.
  • FIG. 23 is a perspective view of yet another embodiment of the present invention illustrating a pump SOray apparatus attached to the top of a container.
  • the hand holdable non- aerosol pump spray system is defined generally to include a container 10 acting as a liquid reservoir, to which is connected a supply tube 12 which in turn is connected to a hand holdable pump spray apparatus or wand 14.
  • a container 10 acting as a liquid reservoir to which is connected a supply tube 12 which in turn is connected to a hand holdable pump spray apparatus or wand 14.
  • wand 14 a hand holdable pump spray apparatus
  • Another advantage relates to the handling of liquid m the container. Because it may not be desirable to directly touch the liquid m the container 10, even though only a relatively small residual amount is left after use, it is desirable and often necessary to dispose of the container.
  • the pump mechanism m the wand By having the pump mechanism m the wand, the wand and the supply tube may be disengaged from the container and used again with a new, completely filled container. The wand and supply tube are simply disconnected from the spent container and the container is sealed using a simple but effective valve. Referring now to FIGS . 2 and 3 , the container will be described m more detail .
  • the container may be made of any suitable synthetic resin, such as high density polyethylene, using a blow molding technique, to achieve a container having an integral handle 20, a spout 22 and a storage sleeve or compartment 24.
  • a special safety cap 26 is also provided.
  • This cap has a pivotal valve 28.
  • the pivotal valve provides a safety feature. It allows a user to determine by simple visual inspection whether the valve is open or closed.
  • the pivotal valve 28 is connected to the top of the cap 26 which m turn is attached or threaded to the container spout 22.
  • the pivotal valve includes a central opening 30 which forms a passageway from a first end 32 of the valve toward an opposite end portion 34. Connected to the end portion 34 m any suitable fashion is the supply tube 12.
  • the valve is pivotally mounted to the cap.
  • the first end 32 rotates from a position shown m solid line m FIG. 2, where the valve 28 is generally horizontal, as is the central opening 30, to a position shown m phantom lme where the valve 28 is generally vertically aligned.
  • This vertical position allows the central opening 30 to align with a liquid transferring internal tube 36 extending downwardly from the cap 26 to or very near the bottom 39 of the container 10.
  • This central opening 30 aligned with the internal tube 36 there is a direct passageway between a liquid 38 m the container 10 and the wand 14.
  • the passageway extends through the internal tube 36, the valve 28 and the supply tube 12.
  • valve 28 when the valve 28 is pivoted to its horizontal position, it can be seen that this passageway is closed or blocked between the internal tube 36 and the supply tube 12. This seals the liquid within the container.
  • the pivoting valve is safe, relatively inexpensive and provides by visual inspection immediate information to a user or operator as to whether the container is open or closed.
  • a further advantage is that when the container is emptied, except for a residual, the container, the cap, and the internal tube may be properly discarded after the supply tube has been disconnected from the valve 28. It may now be appreciated that the elements of the system being made for disposal are simple and relatively inexpensive while the more complicated and expensive elements, such as the pump m the wand, are reuseable .
  • the storage/shipping sleeve 24 is provided to allow storage of the wand 14 when the system is shipped or stored. Between the sleeve and the container is an integral bridge flange 40. The flange provides a base around which the supply tube may be wrapped when the wand is placed m the sleeve. As shown m solid line m FIG. 2, the system is m condition to be shipped m a relatively compact arrangement and, of course, m a non- pressurized state. Again, this feature reduces costs and enhances safety.
  • the modified cap 21 has an internal thread 23 for engaging a complementary thread (not shown) about the spout of the container.
  • the cap 21 includes an integral sleeve 25 for receiving the upper end portion 27 of the internal tube 36.
  • a slot 29 is formed in the top of the cap to which is pivotally mounted a valve element 31.
  • the valve element 31 is generally tubular and includes a central passageway 33 for receiving a connector 35 affixed to the end of the supply tube 12.
  • the connector has a central opening 45 and may engage the valve element 31 in the central passageway 33 as shown in FIG. 5.
  • the valve element also includes an end opening 37 which communicates with the central passageway so that the valve element may have liquid pass through its entire longitudinal length.
  • a vent opening 47 is also provided in the cap to allow pressure equalization during use, and a liquid opening 41 is provided to align with the internal tube 36 and the end opening 37 of the valve element 31 as shown in FIG. 5.
  • the valve element 31 is closed when in the horizontal position as shown in FIG. 4.
  • both the liquid opening 41 and the vent opening 47 are blocked so that the container is sealed.
  • the connector must be removed before the container is sealed. This is another safety feature because, if properly used, all of the liquid in the wand and the supply tube will be returned to the container as will be explained below.
  • the wand 14 includes a hand holdable tubular housing 44 having a first or left end portion 46 and a second or right end portion 48. Within the housing is a piston 50 movable between the first and the second end portions of the housing.
  • the piston Connected to the piston is a handle 54.
  • a piston rod 52 joins the piston to the handle.
  • the piston includes a front face 58 and a rear face 60. Between the rear face 60 of the piston and the first end portion of the housing is a first coil spring 62 which biases the piston toward the right or second end portion 48 of the housing.
  • Attached to the left end portion 46 of the housing is a cap 64.
  • Attached to the right end portion 48 of the housing is a nozzle 66.
  • the right end portion of the housing also contains two valves, two chambers and two springs.
  • a trigger sleeve 68 Surrounding the housing about its right end portion is a trigger sleeve 68 including a thumb lever 70. Adjacent the nozzle 66 is a fluid return mechanism 72 and a connector 74 for engagement with the supply tube.
  • a first or mam chamber 80 Located between the front face 58 of the piston 50 and the right end portion 48 of the housing is a first or mam chamber 80 into which the liquid 38 (FIG. 2) from the container is drawn when the handle 54 is moved by a user to the left or away from the cap 64.
  • the wand is shown a relaxed or non-pressurized mode as it would be during shipment, storage or when the wand is removed from the container.
  • FIGS. 10-12 the relative simplicity and reliability of the pump and spray mechanisms may be seen.
  • the sectional view of FIGS. 10 and 11 is of the right end portion 48 of the housing 44.
  • the supply tube 12 is attached to the connector 74 which communicates with a second or small chamber 82.
  • a first or intake valve 84 commonly called a check valve, which opens one direction usually m response to a pressure differential across the valve.
  • a check valve which opens one direction usually m response to a pressure differential across the valve.
  • the pressure differential causes the valve to open, as shown m an exaggerated phantom line, and the liquid 38 to move from the container 10 through the supply tube and the small chamber 82 into the mam chamber 80.
  • the coil spring 62 (FIG. 9) is steadily compressed.
  • the mam chamber 80 When the piston reaches the limit of its travel or the user stops the leftward movement of the handle, the mam chamber 80 is filled with liquid and the spring 62 is completely or partially compressed. This compressed spring provides a biasing force against the rear face 60 of the piston and the liquid, thereby closing the check valve 84.
  • a second valve including a valve stem 88 positioned withm the housing at its right end portion.
  • the valve stem has a central longitudinal opening 90, a first or left radial passage 92 and a second or right radial passage 94 close to the valve stem nose 93.
  • a plug 96 seals the upstream end of the longitudinal opening 90.
  • the second valve also includes a first Coring seal 98 positioned about the outer circumference of the valve stem. The seal acts as a valve face.
  • the nozzle 66 includes a rounded head 110 having a spray opening 112.
  • a third or nozzle chamber 114 Immediately internal to the nozzle and between the nozzle and the valve stem is a third or nozzle chamber 114.
  • the nozzle also includes a ring shoulder 116, a ring edge 118 and an external shoulder 119.
  • the right end portion 48 of the housing includes a first sleeve portion 120 having an annular flange 122 about the outer circumference of the sleeve portion and an oblique annular surface 124 which functions as part of the second valve by being a valve seat. Between the flange 122 and the ring edge 118 is a second coil spring 126. Positioned about a portion of the nozzle and the sleeve portion 120 is the trigger sleeve 68 which has an annular radially directed flange 130. This flange is constructed to abut the shoulder 119 of the nozzle. If the trigger sleeve is moved to the left by a user's thumb on the lever 70, FIGS.
  • the second spring 126 When the user removes his thumb from the thumb lever 70, the second spring 126 will push the ring edge 118 of the nozzle to the right thereby causing both the nozzle and the valve stem to also slide rightwardly, which in turn, causes the valve face 98 and the valve seat 124 to abut each other to block the flow of liquid to the nozzle chamber 114.
  • the valve stem 88 includes a longitudinal slot 121 for receiving a longitudinally extending key 123.
  • This mechanism is used to allow a user to rotate the nozzle relative to the valve stem while the valve stem is kept rotationally stationary. Nevertheless, the valve stem is allowed to move in a longitudinal direction in response to the rotation of the nozzle.
  • the left end portion 46 of the housing 44 is shown in more detail.
  • the cap 64 is threadedly engaged with the housing and includes an outer surface 138 and a central opening 139.
  • the central opening allows the piston rod 52 to extend beyond the end of the housing.
  • the cap includes an arcuate flange 140 extendmg over an acute angle. Integral with the rod is an arcuate radially extending flange 142.
  • the piston 50 is its most rightward position as generally shown m FIG. 9, the rod flange and the cap flange are m position to allow the rod flange to be trapped by the cap and the cap flange.
  • the cap may also include a flange shape opening 143.
  • the rod Since the rod is cylindrical m form, it may be rotated from a trapped or restrained position as shown m FIGS. 13 and 14 to an untrapped or unrestrained position as shown m FIG. 15. In the trapped position, the pump is inoperative and unpressurized. This means that the first spring 62 is m a relaxed or almost relaxed condition. When m the restrained position, the rod flange and the opening 143 align and the rod flange slides into the opening and is restrained against rotation as well as outward linear movement.
  • the rod flange moves to the unrestrained position and the wand may be pressurized by the user or operator gripping the handle and pulling it to the left against the force of the compression spring.
  • the liquid return mechanism 72 is provided as a safety feature to allow liquid m the mam chamber 80 and the small chamber 82 to return to the container if it is not sprayed through the nozzle. This is done by forcing open the check valve 84.
  • the liquid return mechanism includes a plunger 141, an activation button 145 and a third spring 144.
  • the plunger 140 rides within a short second sleeve 146 of the housing 44 located m the right end portion 48.
  • the button 145 When the button 145 is pressed, it moves to the left by sliding on the outer circumference 148 of the second sleeve 146.
  • an internal annular flange of the plunger causing the plunger to push against the check valve 84. This forces the check valve to open allowing the liquid m the mam chamber 80 to enter the small chamber 82 and from there to the supply tube 12.
  • a movable piston 210 which travels between the first and the second end portions of the housing.
  • a handle 212 is connected to the piston by a rod 214.
  • a coil spring 216 is positioned around the rod and provides a biasing force to urge the piston toward the upper end portion 208 of the housing.
  • a first or intake valve 222 is positioned at the end of an intake conduit 224 which is shown m diagrammatic form to be connected to a reservoir 226. It is understood that the reservoir may take the form of a liquid holding container, such as the container 10 shown in FIGS. 1 and 2.
  • the intake valve consists of a loose ball 230 usually seated on a valve seat 232 and constrained by a cage 234.
  • the chamber 220 is created and is at a lower pressure than the pressure on the liquid in the reservoir 226. Because of the pressure differential, the liquid will flow through the conduit 224 unseating the ball from the valve seat 232. The liquid will flow through the cage 234 and enter a second chamber or manifold 240. From there the fluid will enter the chamber 220. In this fashion, the hand holdable pump spray apparatus is primed for operation.
  • a second or outlet valve 244 which valve includes a slidable valve element 246, a coil spring 248 and an opening 250 in a conduit 252 which leads to the nozzle.
  • An actuator 254 is attached to the outer casing 202.
  • the actuator includes an operating button 255, a pivot shaft 256 and an extended arm 258.
  • the extended arm is connected to the slidable valve element 246 so that when the operating button 255 is depressed, it and the arm rotate in a counterclockwise direction causing the valve element 246 to slide to the left and compress the spring 248.
  • the valve element By sliding to the left, the valve element exposes the opening 250 to the liquid in the chamber and the manifold.
  • the coil spring 248 will bias the arm and the button to pivot clockwise thereby returning the valve element 246 to its original position as shown in FIG. 17.
  • the hand holdable pump spray apparatus 200 is simple, reliable and inexpensive as well as being easy to use and efficient in operation.
  • FIGS. 19 and 20 there is illustrated another embodiment of a hand holdable pump spray apparatus 280 which includes an outer casing 282, a cylindrical housing 284, an internal piston 286 and a handle 288.
  • the housing has a first end portion 290 and a second end portion 292.
  • the construction of the embodiment is very similar to the embodiment shown in FIGS. 16-18 except that instead of a rod connecting the piston to the handle, there is a cable 294.
  • One end 295 of the cable is attached to a lower end 296 of the cylindrical housing while the opposite end 297of the cable is attached to an anchor 298 in the handle.
  • a pulley 300 which is mounted to the piston.
  • FIGS. 19 and 20 When an operator pulls on the handle to move the piston toward the first end portion, a low pressure chamber 302 is created and the biasing spring 287 is compressed.
  • the advantage of the cable and pulley arrangement is that only about half of the force is required on the handle 288 to move the piston when compared to the embodiment of FIGS. 16-18.
  • the embodiment in FIGS. 19 and 20 includes an input conduit or tube 303, a first valve 304, a second valve 306 and a nozzle 308. Further, the embodiment of FIGS. 19 and 20 is operated by the identical actuator 310 as already described in relation to FIGS. 16-18.
  • FIG. 21 another embodiment of the wand is illustrated.
  • This hand holdable pump spray 160 is configured with a pistol grip 162 and a trigger 164.
  • a supply tube 166 engages the bottom of the grip.
  • a handle 168 is designed to be visually integrated with the remainder of the wand to provide a more aesthetically pleasing unit.
  • FIG. 22 there is shown another embodiment of the wand.
  • the illustrated wand 180 is similar to the wand of the FIG. 16 embodiment except that the FIG. 21 variation has a pistol grip 182.
  • Still another embodiment is shown m FIG. 23 which is similar to the FIG. 1 embodiment except that the wand 190 is attached directly to the liquid container 192.
  • the wand in all embodiments may be made of any suitable material such as polypropylene .
  • a user first removes the wand 14 from the sleeve 24 and unwraps the supply tube 12 from the bridge flange 40. The user then lifts the end 34 of the valve 28 to open the valve sealing the container. In the alternative structure the user lifts the valve element 31 to open the valve (see FIGS. 4-5) and plugs m the connector 35. Either of these actions communicates the valve with the internal tube 36, and thereby, the liquid 38 m the container 10.
  • the user holds the spray apparatus housing 44 m one hand and pulls the handle outward or to the left when viewed m FIGS. 6, 7 and 9. Liquid is drawn into the mam chamber 80, while at the same time the coil spring 62 is compressed.
  • the user or operator may release the handle 54 and place his/her hand around the trigger sleeve 68 with his/her thumb on the thumb lever
  • the user pulls back on the trigger sleeve 68 causing the nozzle/valve stem combination to slide leftwardly and unseat the valve face 98 from the valve seat 124.
  • liquid will flow around the valve stem in the annular space 91, through the radial passage 92, through the longitudinal opening 90, out of the radial passage 94, and into the nozzle chamber 114. From there the liquid will be ejected through the nozzle opening 112.
  • the nozzle spray may be adjusted by rotating the nozzle relative to the valve stem so as to change the relative location of the valve stem nose 93 to the nozzle opening 112.
  • the liquid will be sprayed out of the nozzle opening 112 as long as the coil spring 62 biases the piston 50 to the right, causing the main chamber 80 to contract .
  • the piston will no longer provide pressure on the liquid and the user will have to re- pressurize the wand by again moving the handle 54 to the left thereby compressing the spring 62 again, and enlarging and filling the main chamber 80. This may be done repeatedly until most of the liquid 38 has been drawn out of the container 10.
  • the valve 28 or the valve element 31 may be rotated to a horizontal position to seal the container.
  • the supply tube 12 and the wand may be removed and the container and residual liquid may be discarded.
  • the supply tube and wand may then be reused by connecting the supply tube to a new, fully filled container.
  • the button 145 of the fluid return mechanism may be depressed. This causes the plunger 141 to open the check valve 84, allowing the liquid in the main chamber 80 to pass into the small chamber 82 and from there, into the supply tube 12 and back to the container. In this manner the wand is depressurized and the liquid in the wand and supply tube is once again stored m the container. Once the liquid has returned to the container the pivot valve member may be rotated to a horizontal position to seal the container. Also the supply tube may be wrapped about the bridge flange and the wand may be inserted into the storage sleeve 24.

Abstract

A hand holdable pump spray apparatus is disclosed where the pump mechanism is in the hand holdable wand (14) rather than in a spaced apart liquid container. The wand (14) may be held with one handle (54) is extended with other hand. This creates a pressure differential which allows liquid to flow from the container (10), passed a check valve (84) and into the wand (14). After filling, a biased spring provides a force against the liquid creating a higher pressure in the wand (14) than ambient pressure. This closes the check valve (84). When an operator depresses an actuator (68), another valve (88) opens allowing the liquid in the wand (14) to be ejected through a nozzle (66).

Description

HAND HOLDABLE PUMP SPRAY APPARATUS
TECHNICAL FIELD
The present invention relates to a hand holdable pump spray apparatus and more particularly to a hand holdable pump spray which is reliable, easy to use, safe and inexpensive.
BACKGROUND ART
Non-aerosol pump spraying devices have been developed primarily to eliminate the use of propellants which have a detrimental effect on the environment and to eliminate the use of pressurized containers which pose a safety hazard. Pressurized containers may explode and cause injury, and when the containers have ingredients such as insecticide, weed and grass killer and fertilizer, there may be undesirable environmental affects. Examples of non-aerosol pump spray apparatus may be seen by reference to U.S. Patents Nos. 5,938,116; 5,918,782; 5,860,574; 5,816,447; 5,810,211 and 4 , 174 , 055. A drawback to all of such non-aerosol pump apparatus is that the pump device is located in the container having the liquid to be pumped. There is then a flexible tube connecting the container to a hand holdable spray device or "wand" . Typically, the container is sold as a disposable unit to be discarded when there is no more liquid to be pumped. This results in a relatively high cost to both the manufacturer and the consumer because the pump mechanism, located within the container, is also discarded along with the container. Another problem of pump- in-container designs is that the hand held wand must be set down or held in an awkward position when the pump is to be operated because two hands are necessary to manipulate the pump. For example, when it comes time to operate the spraying device, the pump must be activated to pressurize at least part of the system. Usually this means there is a need to pull upwardly on a handle attached to a piston located m the container. While this is done with one hand, the other hand must hold the container "down" to counteract the upward pull on the handle. Hence, it is difficult to also hold the wand at the same time.
There are also safety issues made especially more relevant because of the nature of the liquid being sprayed. First, there is a need to have a sealed container when it is shipped from the factory and again when it is stored by a consumer. Further, there may also be a safety problem regarding pressurized liquid contained m the flow path from the container to the spray device.
The numerous prior attempts to improve upon non-aerosol pump spray devices have yet to produce an optimal system.
DISCLOSURE OF THE INVENTION
The difficulties encountered by the previous devices have been overcome by the present invention. What is described here is a hand holdable pump spray apparatus comprising a generally tubular hand holdable housing having first and second end portions spaced apart from a container of liquid to be sprayed, a piston movable m the housing, a handle connected to the piston adapted to be gripped by a user to move the piston toward one end of the housing, a spring located m the housing between the piston and the end of the housing to bias the piston toward the other end of the housing, a chamber formed m the housing between the piston and the other end of the housing, a first valve positioned between the container and the chamber, a nozzle, another valve located between the nozzle and the first valve, and an actuator for opening the second valve whereby liquid m the chamber may be ejected through the nozzle.
There are a number of advantages, features and ob ects achieved with the present apparatus not available m prior devices. For example, one advantage is that the present invention provides a non-aerosol hand holdable pump spray apparatus having the pump contained m the wand, thereby eliminating prior potential safety hazards relative to pressurized liquid m the flow path. Another advantage of the present invention is that it enables elimination of various previously required components. Yet another advantage of the present invention is that the pump spray wand and the container combination is relatively inexpensive and that the container is disposable after use but the pump mechanism m the wand is separate and may be reused. Still another feature of the present invention is to provide a simple container valve whose position is visually apparent to ensure that the container is sealed when not m use or when it is transported, thereby preventing inadvertent leakage of possibly environmentally hazardous liquids. A further feature of the present invention is to enable the container to be emptied more completely than can be accomplished by prior pump spray devices. A further object of the present invention is that the wand is reliable, easy to use, inexpensive and safe.
A more complete understanding of the present invention and other advantages, objects and features thereof will be gained from a consideration of the following preferred embodiments read m conjunction with the accompanying drawings provided herein.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front elevation view of a hand holdable pump spray system.
FIG. 2 is an enlarged front elevation view, partially broken away showing a hand holdable pump spray system as it would be m storage or during shipping and further illustrating a container safety valve m a closed position m solid line and m an open position m phantom line .
FIG. 3 is a sectional view taken along line 3-3 of FIG. 2 but without the hand holdable wand. FIG. 4 is an enlarged sectional elevation view of a variation valve cap for the container, where the valve is shown m a closed position.
FIG. 5 illustrates the valve cap of FIG. 4 with the valve m an open position and connected to a supply tube.
FIG. 6 is an enlarged front elevation view of an embodiment of a hand holdable pump spray apparatus .
FIG. 7 is a side elevation view of the hand holdable pump spray apparatus shown m FIG. 6. FIG. 8 is a top plan view of the hand holdable pump spray apparatus shown m FIGS . 6 and 7.
FIG. 9 is a sectional view taken along line 9-9 of FIG. 8.
FIG. 10 is an enlarged sectional view taken within the circle 10-10 of FIG. 6 showing the valve m the apparatus m a closed position.
FIG. 11 is a partial view like that shown m FIG. 10 except the illustrated valve is shown m an open position. FIG. 12 is an enlarged section view taken along
Figure imgf000006_0001
FIG. 13 is an enlarged section view taken within the circle 13-13 of FIG. 8. FIG. 14 is a section view taken along line 14-
14 of FIG. 13 showing a handle of the hand holdable spray apparatus m a restrained position.
FIG. 15 is a view of the handle shown m FIG. 14 m an unrestrained position. FIG. 16 is an elevation view, partially diagrammatic, of a variation of the present invention with part of the casing removed to show the internal mechanism.
FIG. 17 is an enlarged sectional elevation view of the variation shown m FIG. 16.
FIG. 18 is a sectional elevation view of the variation of FIG. 16 illustrating the filling of the hand holdable spray apparatus .
FIG. 19 is a sectional elevation view of a further embodiment similar to the embodiment shown m FIGS. 16-18 but illustrating the use of a pulley to reduce the force needed to fill the hand held spray apparatus .
FIG. 20 is a sectional elevation view of the embodiment of FIG. 19 with the handle extended.
FIG. 21 is an elevation view of another embodiment of the pump spray apparatus of the present invention.
FIG. 22 s a perspective view of another embodiment of a pump spray apparatus of the present invention.
FIG. 23 is a perspective view of yet another embodiment of the present invention illustrating a pump SOray apparatus attached to the top of a container. BEST MODE FOR CARRYING OUT THE INVENTION
While the present invention is open to various modifications and alternative constructions, the preferred embodiments shown in the drawings will be described herein in detail. It is understood, however, that there is no intention to limit the invention to the particular forms disclosed. On the contrary, the intention is to cover all modifications, variations, equivalent structures and methods, and alternative constructions falling within the spirit and scope of the invention as expressed in the appended claims .
Referring now to FIG. 1, the hand holdable non- aerosol pump spray system is defined generally to include a container 10 acting as a liquid reservoir, to which is connected a supply tube 12 which in turn is connected to a hand holdable pump spray apparatus or wand 14. As mentioned, there are a number of advantages to having a pump placed in the wand rather than in the container as shown in the earlier patents listed above. By placing the pump in the wand, the pump is much easier to use.
There is no need to release the wand nor to hold it in an awkward position when operating the pump. A user can use one hand to hold the wand 14 while the other hand draws back the pump's piston as will be explained below. When this is being done, there is no need to hold down or even to touch the container itself; unlike the previous devices, there is no need to hold the container down in opposition to an upward force on the pump because there are no additional forces acting upon the container when the pump of the present invention is manipulated. A second major feature is that manufacturing costs are reduced. This comes about in two ways. First, the placement of the pump in the wand simplifies the design and reduces the number of parts thereby reducing cost . Second, not having the pump mechanism m the container means that the disposable container is a much cheaper item to make.
Another advantage relates to the handling of liquid m the container. Because it may not be desirable to directly touch the liquid m the container 10, even though only a relatively small residual amount is left after use, it is desirable and often necessary to dispose of the container. By having the pump mechanism m the wand, the wand and the supply tube may be disengaged from the container and used again with a new, completely filled container. The wand and supply tube are simply disconnected from the spent container and the container is sealed using a simple but effective valve. Referring now to FIGS . 2 and 3 , the container will be described m more detail . The container may be made of any suitable synthetic resin, such as high density polyethylene, using a blow molding technique, to achieve a container having an integral handle 20, a spout 22 and a storage sleeve or compartment 24. A special safety cap 26 is also provided. This cap has a pivotal valve 28. The pivotal valve provides a safety feature. It allows a user to determine by simple visual inspection whether the valve is open or closed. The pivotal valve 28 is connected to the top of the cap 26 which m turn is attached or threaded to the container spout 22. The pivotal valve includes a central opening 30 which forms a passageway from a first end 32 of the valve toward an opposite end portion 34. Connected to the end portion 34 m any suitable fashion is the supply tube 12.
The valve is pivotally mounted to the cap. The first end 32 rotates from a position shown m solid line m FIG. 2, where the valve 28 is generally horizontal, as is the central opening 30, to a position shown m phantom lme where the valve 28 is generally vertically aligned. This vertical position allows the central opening 30 to align with a liquid transferring internal tube 36 extending downwardly from the cap 26 to or very near the bottom 39 of the container 10. By having this central opening 30 aligned with the internal tube 36, there is a direct passageway between a liquid 38 m the container 10 and the wand 14. The passageway extends through the internal tube 36, the valve 28 and the supply tube 12. However, when the valve 28 is pivoted to its horizontal position, it can be seen that this passageway is closed or blocked between the internal tube 36 and the supply tube 12. This seals the liquid within the container. The pivoting valve is safe, relatively inexpensive and provides by visual inspection immediate information to a user or operator as to whether the container is open or closed.
A further advantage is that when the container is emptied, except for a residual, the container, the cap, and the internal tube may be properly discarded after the supply tube has been disconnected from the valve 28. It may now be appreciated that the elements of the system being made for disposal are simple and relatively inexpensive while the more complicated and expensive elements, such as the pump m the wand, are reuseable .
The storage/shipping sleeve 24 is provided to allow storage of the wand 14 when the system is shipped or stored. Between the sleeve and the container is an integral bridge flange 40. The flange provides a base around which the supply tube may be wrapped when the wand is placed m the sleeve. As shown m solid line m FIG. 2, the system is m condition to be shipped m a relatively compact arrangement and, of course, m a non- pressurized state. Again, this feature reduces costs and enhances safety.
Referring now to FIGS. 4 and 5, there is illustrated a variation of the cap and the valve connected to the top of the container. The modified cap 21 has an internal thread 23 for engaging a complementary thread (not shown) about the spout of the container. The cap 21 includes an integral sleeve 25 for receiving the upper end portion 27 of the internal tube 36. A slot 29 is formed in the top of the cap to which is pivotally mounted a valve element 31. The valve element 31 is generally tubular and includes a central passageway 33 for receiving a connector 35 affixed to the end of the supply tube 12. The connector has a central opening 45 and may engage the valve element 31 in the central passageway 33 as shown in FIG. 5. The valve element also includes an end opening 37 which communicates with the central passageway so that the valve element may have liquid pass through its entire longitudinal length. A vent opening 47 is also provided in the cap to allow pressure equalization during use, and a liquid opening 41 is provided to align with the internal tube 36 and the end opening 37 of the valve element 31 as shown in FIG. 5. As with the valve embodiment in FIG. 2, the valve element 31 is closed when in the horizontal position as shown in FIG. 4. When horizontal, both the liquid opening 41 and the vent opening 47 are blocked so that the container is sealed. Also, because of the geometry of the slot 29 and the connector 35, the connector must be removed before the container is sealed. This is another safety feature because, if properly used, all of the liquid in the wand and the supply tube will be returned to the container as will be explained below. When an operator wishes to dispense the liquid, the valve elements is pivoted upwardly about a pivot point 43 and the connector is plugged into the central passageway 33 as shown m FIG. 5. When the valve element is fully upright, there is a clear passage for the liquid m the container to the wand through the internal tube 36, the liquid opening 41, the end opening 37, the central passageway 33, the central connector opening 45, and the supply tube 12. Referring now to FIGS. 6-9, the hand holdable pump spray apparatus is shown m more detail. The wand 14 includes a hand holdable tubular housing 44 having a first or left end portion 46 and a second or right end portion 48. Within the housing is a piston 50 movable between the first and the second end portions of the housing. Connected to the piston is a handle 54. A piston rod 52 joins the piston to the handle. The piston includes a front face 58 and a rear face 60. Between the rear face 60 of the piston and the first end portion of the housing is a first coil spring 62 which biases the piston toward the right or second end portion 48 of the housing. Attached to the left end portion 46 of the housing is a cap 64. Attached to the right end portion 48 of the housing is a nozzle 66. As will be explained below, the right end portion of the housing also contains two valves, two chambers and two springs.
Surrounding the housing about its right end portion is a trigger sleeve 68 including a thumb lever 70. Adjacent the nozzle 66 is a fluid return mechanism 72 and a connector 74 for engagement with the supply tube. Located between the front face 58 of the piston 50 and the right end portion 48 of the housing is a first or mam chamber 80 into which the liquid 38 (FIG. 2) from the container is drawn when the handle 54 is moved by a user to the left or away from the cap 64. In FIGS. 6-9, the wand is shown a relaxed or non-pressurized mode as it would be during shipment, storage or when the wand is removed from the container. Referring now to FIGS. 10-12, the relative simplicity and reliability of the pump and spray mechanisms may be seen. The sectional view of FIGS. 10 and 11 is of the right end portion 48 of the housing 44. The supply tube 12 is attached to the connector 74 which communicates with a second or small chamber 82.
Separating the small chamber 82 from the mam chamber 80 is a first or intake valve 84, commonly called a check valve, which opens one direction usually m response to a pressure differential across the valve. As the piston 50 (FIG. 9) is pulled to the left by a user, the mam chamber 80 expands. This causes the pressure m the mam chamber to decrease while the pressure acting on the liquid is atmospheric, thereby creating a pressure differential across the check valve 84. The pressure differential causes the valve to open, as shown m an exaggerated phantom line, and the liquid 38 to move from the container 10 through the supply tube and the small chamber 82 into the mam chamber 80. In addition, as the piston 50 is pulled to the left, the coil spring 62 (FIG. 9) is steadily compressed. When the piston reaches the limit of its travel or the user stops the leftward movement of the handle, the mam chamber 80 is filled with liquid and the spring 62 is completely or partially compressed. This compressed spring provides a biasing force against the rear face 60 of the piston and the liquid, thereby closing the check valve 84.
In parallel alignment with the check valve, there is a second valve including a valve stem 88 positioned withm the housing at its right end portion. The valve stem has a central longitudinal opening 90, a first or left radial passage 92 and a second or right radial passage 94 close to the valve stem nose 93. A plug 96 seals the upstream end of the longitudinal opening 90. The second valve also includes a first Coring seal 98 positioned about the outer circumference of the valve stem. The seal acts as a valve face. There is also included a second 0-ring 100, a third O-ring 102 and a fourth 0-ring 104 to seal various portions of the valve. There is also an outer threaded portion 106 about the circumference of the valve stem which engages an inner thread 108 on the nozzle 66. The threaded engagement of the valve stem and the nozzle ensures that they move or slide together when an external force is applied, and yet the nozzle and the valve stem may be moved relative to one another to adjust the spray projected from the nozzle. The nozzle 66 includes a rounded head 110 having a spray opening 112. Immediately internal to the nozzle and between the nozzle and the valve stem is a third or nozzle chamber 114. The nozzle also includes a ring shoulder 116, a ring edge 118 and an external shoulder 119.
The right end portion 48 of the housing includes a first sleeve portion 120 having an annular flange 122 about the outer circumference of the sleeve portion and an oblique annular surface 124 which functions as part of the second valve by being a valve seat. Between the flange 122 and the ring edge 118 is a second coil spring 126. Positioned about a portion of the nozzle and the sleeve portion 120 is the trigger sleeve 68 which has an annular radially directed flange 130. This flange is constructed to abut the shoulder 119 of the nozzle. If the trigger sleeve is moved to the left by a user's thumb on the lever 70, FIGS. 6 and 7, it will cause the nozzle to slide to the left thereby moving the valve stem to the left and causing the O-ring seal or valve face 98 to move away from the oblique annular surface or valve seat 124 as shown in FIG. 11. When this happens, liquid represented by the arrow 132 may move around the end of the valve stem 88, past the valve face 98 and the valve seat 124, through an annular space 91 around the valve stem 88, through the radial passage 92, then to the longitudinal opening 90, through the radial passage 94, into the nozzle chamber 114 and out of the spray opening 112. When the user removes his thumb from the thumb lever 70, the second spring 126 will push the ring edge 118 of the nozzle to the right thereby causing both the nozzle and the valve stem to also slide rightwardly, which in turn, causes the valve face 98 and the valve seat 124 to abut each other to block the flow of liquid to the nozzle chamber 114.
Referring now to FIG. 12, the valve stem 88 includes a longitudinal slot 121 for receiving a longitudinally extending key 123. This mechanism is used to allow a user to rotate the nozzle relative to the valve stem while the valve stem is kept rotationally stationary. Nevertheless, the valve stem is allowed to move in a longitudinal direction in response to the rotation of the nozzle.
Referring now to FIGS. 13-15, there is illustrated another example of the elegant simplicity of the apparatus here. The left end portion 46 of the housing 44 is shown in more detail. The cap 64 is threadedly engaged with the housing and includes an outer surface 138 and a central opening 139. The central opening allows the piston rod 52 to extend beyond the end of the housing. The cap includes an arcuate flange 140 extendmg over an acute angle. Integral with the rod is an arcuate radially extending flange 142. When the piston 50 is its most rightward position as generally shown m FIG. 9, the rod flange and the cap flange are m position to allow the rod flange to be trapped by the cap and the cap flange. The cap may also include a flange shape opening 143. Since the rod is cylindrical m form, it may be rotated from a trapped or restrained position as shown m FIGS. 13 and 14 to an untrapped or unrestrained position as shown m FIG. 15. In the trapped position, the pump is inoperative and unpressurized. This means that the first spring 62 is m a relaxed or almost relaxed condition. When m the restrained position, the rod flange and the opening 143 align and the rod flange slides into the opening and is restrained against rotation as well as outward linear movement. However, by backing the handle to the left and simply rotating the handle 54 a half turn, or 180°, the rod flange moves to the unrestrained position and the wand may be pressurized by the user or operator gripping the handle and pulling it to the left against the force of the compression spring.
Returning to FIG. 10 and as mentioned earlier, the liquid return mechanism 72 is provided as a safety feature to allow liquid m the mam chamber 80 and the small chamber 82 to return to the container if it is not sprayed through the nozzle. This is done by forcing open the check valve 84. The liquid return mechanism includes a plunger 141, an activation button 145 and a third spring 144. The plunger 140 rides within a short second sleeve 146 of the housing 44 located m the right end portion 48. When the button 145 is pressed, it moves to the left by sliding on the outer circumference 148 of the second sleeve 146. In turn, an internal annular flange of the plunger causing the plunger to push against the check valve 84. This forces the check valve to open allowing the liquid m the mam chamber 80 to enter the small chamber 82 and from there to the supply tube 12.
From the supply tube, the liquid will flow back into the container 10. The driving force moving the liquid is provided by the first spring 62 (FIG. 9) applied to the rear face 60 of the piston 50. Referring now to FIGS. 16, 17 and 18, there is shown yet another embodiment of the present invention. Illustrated is a hand holdable pump spray apparatus 200 including one-half of an outer casing 202 within which is a cylindrical housing 204 having a first or lower end portion 206 and a second or upper end portion 208.
Within the housing is a movable piston 210 which travels between the first and the second end portions of the housing. A handle 212 is connected to the piston by a rod 214. A coil spring 216 is positioned around the rod and provides a biasing force to urge the piston toward the upper end portion 208 of the housing.
As can be best seen m FIG. 18, when the handle is extended, the coil spring 216 is compressed thereby increasing the biasing force against the piston. Extending the handle also creates a chamber 220 m the housing between the upper end portion 208 and the piston 210. This chamber is filled with the fluid or liquid to be sprayed as the piston is moved to the lower end portion 206. A first or intake valve 222 is positioned at the end of an intake conduit 224 which is shown m diagrammatic form to be connected to a reservoir 226. It is understood that the reservoir may take the form of a liquid holding container, such as the container 10 shown in FIGS. 1 and 2. And as with the earlier mentioned embodiment of the hand holdable pump spray apparatus, it is intended that the apparatus be spaced from the container or reservoir as is shown in FIGS. 1 and 16. The intake valve consists of a loose ball 230 usually seated on a valve seat 232 and constrained by a cage 234. When the handle is extended, the chamber 220 is created and is at a lower pressure than the pressure on the liquid in the reservoir 226. Because of the pressure differential, the liquid will flow through the conduit 224 unseating the ball from the valve seat 232. The liquid will flow through the cage 234 and enter a second chamber or manifold 240. From there the fluid will enter the chamber 220. In this fashion, the hand holdable pump spray apparatus is primed for operation.
Ultimately, the liquid is to be expelled through a nozzle 242. However, between the chamber 220 and the manifold 240 is a second or outlet valve 244. This valve includes a slidable valve element 246, a coil spring 248 and an opening 250 in a conduit 252 which leads to the nozzle. An actuator 254 is attached to the outer casing 202. The actuator includes an operating button 255, a pivot shaft 256 and an extended arm 258. The extended arm is connected to the slidable valve element 246 so that when the operating button 255 is depressed, it and the arm rotate in a counterclockwise direction causing the valve element 246 to slide to the left and compress the spring 248. By sliding to the left, the valve element exposes the opening 250 to the liquid in the chamber and the manifold. When the operating force on the button 255 is relieved, the coil spring 248 will bias the arm and the button to pivot clockwise thereby returning the valve element 246 to its original position as shown in FIG. 17. As can now be appreciated, the hand holdable pump spray apparatus 200 is simple, reliable and inexpensive as well as being easy to use and efficient in operation.
Referring to FIGS. 19 and 20, there is illustrated another embodiment of a hand holdable pump spray apparatus 280 which includes an outer casing 282, a cylindrical housing 284, an internal piston 286 and a handle 288. As in the previous embodiments, the housing has a first end portion 290 and a second end portion 292. The construction of the embodiment is very similar to the embodiment shown in FIGS. 16-18 except that instead of a rod connecting the piston to the handle, there is a cable 294. One end 295 of the cable is attached to a lower end 296 of the cylindrical housing while the opposite end 297of the cable is attached to an anchor 298 in the handle. Between these two terminal points of the cable is a pulley 300 which is mounted to the piston. When an operator pulls on the handle to move the piston toward the first end portion, a low pressure chamber 302 is created and the biasing spring 287 is compressed. The advantage of the cable and pulley arrangement is that only about half of the force is required on the handle 288 to move the piston when compared to the embodiment of FIGS. 16-18. As with the embodiment shown in FIGS. 16-18, the embodiment in FIGS. 19 and 20 includes an input conduit or tube 303, a first valve 304, a second valve 306 and a nozzle 308. Further, the embodiment of FIGS. 19 and 20 is operated by the identical actuator 310 as already described in relation to FIGS. 16-18.
Referring to FIG. 21, another embodiment of the wand is illustrated. This hand holdable pump spray 160 is configured with a pistol grip 162 and a trigger 164. A supply tube 166 engages the bottom of the grip. A handle 168 is designed to be visually integrated with the remainder of the wand to provide a more aesthetically pleasing unit. Referring now to FIG. 22, there is shown another embodiment of the wand. The illustrated wand 180 is similar to the wand of the FIG. 16 embodiment except that the FIG. 21 variation has a pistol grip 182. Still another embodiment is shown m FIG. 23 which is similar to the FIG. 1 embodiment except that the wand 190 is attached directly to the liquid container 192. The wand in all embodiments may be made of any suitable material such as polypropylene .
In operation of the FIGS. 1-15 embodiment, a user first removes the wand 14 from the sleeve 24 and unwraps the supply tube 12 from the bridge flange 40. The user then lifts the end 34 of the valve 28 to open the valve sealing the container. In the alternative structure the user lifts the valve element 31 to open the valve (see FIGS. 4-5) and plugs m the connector 35. Either of these actions communicates the valve with the internal tube 36, and thereby, the liquid 38 m the container 10.
To pressurize the system, the user holds the spray apparatus housing 44 m one hand and pulls the handle outward or to the left when viewed m FIGS. 6, 7 and 9. Liquid is drawn into the mam chamber 80, while at the same time the coil spring 62 is compressed. When the mam chamber 80 is filled, such as when the coil spring is fully compressed, the user or operator may release the handle 54 and place his/her hand around the trigger sleeve 68 with his/her thumb on the thumb lever
70. When it is desired to actuate the system, the user pulls back on the trigger sleeve 68 causing the nozzle/valve stem combination to slide leftwardly and unseat the valve face 98 from the valve seat 124. When this is done, liquid will flow around the valve stem in the annular space 91, through the radial passage 92, through the longitudinal opening 90, out of the radial passage 94, and into the nozzle chamber 114. From there the liquid will be ejected through the nozzle opening 112. The nozzle spray may be adjusted by rotating the nozzle relative to the valve stem so as to change the relative location of the valve stem nose 93 to the nozzle opening 112. The liquid will be sprayed out of the nozzle opening 112 as long as the coil spring 62 biases the piston 50 to the right, causing the main chamber 80 to contract . When the coil spring 62 has reached its relaxed position, or if the piston is stopped such as by the shaft flange, the piston will no longer provide pressure on the liquid and the user will have to re- pressurize the wand by again moving the handle 54 to the left thereby compressing the spring 62 again, and enlarging and filling the main chamber 80. This may be done repeatedly until most of the liquid 38 has been drawn out of the container 10. At that time or before, the valve 28 or the valve element 31 may be rotated to a horizontal position to seal the container. The supply tube 12 and the wand may be removed and the container and residual liquid may be discarded. The supply tube and wand may then be reused by connecting the supply tube to a new, fully filled container.
Should the spraying operation be finished before the spring 62 has reached its relaxed position, the button 145 of the fluid return mechanism may be depressed. This causes the plunger 141 to open the check valve 84, allowing the liquid in the main chamber 80 to pass into the small chamber 82 and from there, into the supply tube 12 and back to the container. In this manner the wand is depressurized and the liquid in the wand and supply tube is once again stored m the container. Once the liquid has returned to the container the pivot valve member may be rotated to a horizontal position to seal the container. Also the supply tube may be wrapped about the bridge flange and the wand may be inserted into the storage sleeve 24.
In operation of the embodiments shown m FIGS. 16-23, loading of the hand held pump spray apparatus is occasioned by the extension of the handle whereby the piston m the cylindrical housing is moved from the second end portion to the first end portion. This creates the lower pressure formed chamber and causes the liquid m the reservoir or container to be sucked through the intake tube, into the manifold and then into the formed chamber. After the chamber is filled, the intake valve closes because of the reverse pressure differential caused by the biasing spring acting on the piston which m turn acts on the liquid to be sprayed. The liquid to be sprayed is now contained between the intake and outlet valves. When the user depresses the operating button, the outlet valve opens and the liquid m the manifold and the chamber is expelled from the hand holdable pump spray apparatus until the button is released. When this occurs, the outlet valve is closed and no further liquid is sprayed. Operating the button causes the pump spray apparatus to dispense liquid until the manifold and the chamber are evacuated at which time the user will have to recharge the apparatus by extending the handle once again. The specification describes m detail several embodiments of the present invention. Other modifications and variations will, under the doctrine of equivalents, come within the scope of the appended claims. For example, different actuator mechanisms, valve set-ups and nozzles are considered equivalent structures as are different aesthetic designs of the casing. Also, different handles, rods, pulleys, cylinders and pistons are also equivalent structures. Still other alternatives will also be equivalent as will many new technologies. There is no desire or intention here to limit in any way the application of the doctrine of equivalents.

Claims

1. A hand holdable pump spray apparatus comprising in combination: a hand holdable generally tubular housing having first and second end portions; a piston having two faces movable in said housing; a handle connected to said piston and located outside said housing adapted to be gripped by a user to move said piston toward said first end portion of said housing; a first spring located in said housing between one face of said piston and said first end portion of said housing to bias said piston toward said second end portion of said housing; a first chamber formed in said housing between the other face of said piston and said second end portion of said housing; a second chamber in connection with said housing operatively connected to a reservoir containing a liquid to be sprayed; a first valve separating said second chamber from said first chamber; a second valve mounted in said housing communicating with said first chamber; a nozzle connected to said second end portion of said housing; a second spring located in said housing to engage and bias said nozzle; and a hand operated trigger connected to said nozzle to move said nozzle and said second valve whereby liquid in said first chamber may be ejected through said nozzle.
2. An apparatus as claimed in claim 1 wherein: said second valve includes a valve stem engaged to said nozzle; said trigger causes a spray of liquid by moving said nozzle and said valve stem toward said first end portion of said housing whereby said second spring is compressed to provide a force to return said valve stem and said nozzle to a closed position; and said housing includes a first sleeve portion in which is mounted said valve stem.
3. An apparatus as claimed in claim 2 wherein: said housing includes a second sleeve portion to mount a plunger for opening said first valve .
4. An apparatus as claimed in claim 3 including : a plunger mounted in said second sleeve to engage and open said first valve to allow liquid located in said first chamber to flow into said second chamber and back to said reservoir.
5. An apparatus as claimed in claim 1 wherein: said trigger is a generally tubular shaped element mounted about said housing.
6. An apparatus as claimed in claim 1 including : an end cap connected to said first end portion of said housing, said end cap having a flange and wherein: said handle includes a flange for engaging said flange of said end cap to restrain said handle from moving said piston.
7. An apparatus as claimed in claim 1 wherein: said valve stem has a central opening operatively communicating with an opening in said nozzle .
8. An apparatus as claimed in claim 1 including: a third chamber located between said second valve and said nozzle; and wherein said handle extends beyond the first end portion of said housing; said second chamber is formed in said second end portion of said housing; and said first valve is located in said second end portion of said housing.
9. An apparatus as claimed in claim 4 including : a third spring biasing said plunger away from engagement with said first valve.
10. An apparatus as claimed in claim 4 including : a third chamber located between said second valve and said nozzle; and a third spring biasing said plunger away from engagement with said first valve.
11. A hand holdable pump spray system comprising m combination: a container to hold a liquid to be sprayed; and a hand holdable pump spray apparatus separated from said container and including a housing having first and second end portions, a piston having two faces movable m said housing, a handle connected to the piston adapted to be gripped by a user to move said piston, a first spring located m said housing between one face of said piston and said first end portion of said housing to bias said piston toward said second end portion of said housing, a first chamber formed m said housing between the other face of said piston and said second end portion of said housing, a second chamber m communication with said second end portion of said housing operably connected to the liquid m said container, a first valve separating said second chamber from said first chamber, a second valve mounted m said second end portion of said housing communicating with said first chamber, a nozzle connected to said second end portion of said housing; a second spring located m said housing to engage said nozzle, a trigger connected to said nozzle to move said nozzle and said second valve whereby liquid m said first chamber may be ejected through said nozzle.
12. A system as claimed m claim 11 including: a supply tube connecting said container to said hand held pump spray apparatus; and a storage sleeve connected to said container to hold said hand holdable pump spray apparatus .
13. A system as claimed m claim 12 wherein: said second valve includes a valve stem engaged to said nozzle; said trigger moves said nozzle and valve stem toward said first end portion of said housing when said trigger is activated whereby said second spring is compressed to provide a force on said valve stem and nozzle; and said housing including a first sleeve m which is mounted said valve stem.
14. A system as claimed m claim 13 wherein: said housing includes a second sleeve for mounting a plunger; and including a safety valve connected to said container and said supply tube .
15. A system as claimed m claim 14 wherein: said plunger is mounted m said second sleeve for engaging and opening said first valve to allow liquid m said first chamber to flow into said second chamber and back to said container.
16. A system as claimed m claim 15 including: a third chamber located between said second valve and said nozzle; a third spring biasing said plunger away from said engagement with said first valve.
17. A system as claimed in claim 16 including: an end cap connected to said first end portion of said housing, said end cap having a flange; and wherein: said handle includes a flange to engage said flange of said end cap to restrain said handle .
18. A system as claimed in claim 11 including: a third chamber located between said second valve and said nozzle; a third spring biasing said plunger away from engagement with said first valve.
19. A hand holdable pump spray system comprising in combination: a container for containing a liquid to be sprayed; a supply tube being removably connectable to said container; a hand holdable pump spray apparatus including a housing having first and second end portions, a first sleeve and a second sleeve connected to said supply tube; a piston movable in said housing; a first chamber formed in the housing between said piston and said second end portion; a second chamber formed in said second sleeve ; a nozzle connected to said housing; a first valve located in said housing separating said first chamber from said second chamber; a second valve located in said first sleeve of said housing separating said first chamber and said nozzle; an opening in said housing for receiving said supply tube and communicating said supply tube with said second chamber; a handle connected to said piston to move said piston relative to said housing; a plunger engageable with said first valve; and a trigger to open said second valve.
20. A system as claimed in claim 19 including: a first spring in said housing to bias said piston toward said second end portion of said housing; a second spring in contact with said second valve to bias said second valve to a closed position; and a third spring to bias said plunger away from said second valve .
21. A system as claimed in claim 20 wherein: said second spring is mounted about said first sleeve; said handle includes a flange; and said another flange is connected to said housing to engage with said handle flange.
22. A systems as claimed in claim 21 wherein; said second valve includes a valve stem; and including an O-ring mounted about said valve stem; and a valve seat formed by a portion of said first sleeve.
23. A hand holdable pump spray apparatus comprising in combination: a housing having first and second end portions, said housing being spaced from a reservoir of fluid to be sprayed; a piston being movable in said housing between said first and said second end portions; a handle connected to said piston adapted to be operated by a user of said hand holdable pump spray apparatus to move said piston toward said first end portion of said housing; a first spring operably connected to said piston to bias said piston toward said second end portion of said housing; a chamber formed in said housing when said piston is moved toward said first end portion, said chamber being in operative communication with the spaced apart reservoir of fluid to be sprayed; a first valve positioned between the fluid reservoir and said formed chamber, said valve being open when said handle is operated to move said piston toward said first end portion of said housing; a nozzle operatively connected to said housing and positioned to receive fluid from said formed chamber; a second valve separating said formed chamber from said nozzle; and an actuator operatively connected to said second valve for opening said valve to pass fluid from said chamber to said nozzle.
24. An apparatus as claimed in claim 23 including : an outer casing, said casing enclosing said housing, said piston, said first spring, said first valve and said second valve.
25. An apparatus as claimed in claim 23 wherein : said second valve includes a movable element, an opening and a second spring, said second spring for biasing said movable element to close said opening.
26. An apparatus as claimed in claim 23 including : a second chamber located between said first and said second valves.
27. An apparatus as claimed in claim 23 including : a supply conduit located within said outer casing and being connected to said first valve.
28. An apparatus as claimed in claim 23 wherein: said actuator includes an operating button, a pivot shaft connected to said operating button and an arm for engaging said second valve.
29. An apparatus as claimed in claim 28 wherein: said second valve includes a movable element, an opening and a second spring, said second spring for biasing said movable element to close said opening; and said arm of said actuator engages said movable element of said second valve for moving said movable element against the bias of said second spring.
30. An apparatus as claimed in claim 29 including : an outer casing, said casing enclosing said housing, said piston, said first spring, said first valve and said second valve.
31. An apparatus as claimed in claim 30 including : a supply conduit located within said outer casing and being connected to said first valve.
32. An apparatus as claimed m claim 31 including : a second chamber located between said first and said second valves.
PCT/US2000/033233 1999-12-08 2000-12-07 Hand holdable pump spray apparatus WO2001042129A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AU20703/01A AU759592C (en) 1999-12-08 2000-12-07 Hand holdable pump spray apparatus
PL00355996A PL193683B1 (en) 1999-12-08 2000-12-07 Hand holdable pump spray apparatus
HU0203272A HUP0203272A3 (en) 1999-12-08 2000-12-07 Hand holdable pump spray apparatus
NZ519481A NZ519481A (en) 1999-12-08 2000-12-07 Hand holdable pump spray apparatus
IL15007800A IL150078A0 (en) 1999-12-08 2000-12-07 Hand holdable pump spray apparatus
DK00984023T DK1254072T3 (en) 1999-12-08 2000-12-07 Handheld pump sprayer
DE60037336T DE60037336T2 (en) 1999-12-08 2000-12-07 HAND-OPERATED PUMP SPRAYER
EP00984023A EP1254072B1 (en) 1999-12-08 2000-12-07 Hand holdable pump spray apparatus
JP2001543437A JP4377097B2 (en) 1999-12-08 2000-12-07 Handheld pump spraying device
MXPA02005658A MXPA02005658A (en) 1999-12-08 2000-12-07 Hand holdable pump spray apparatus.
CA002393687A CA2393687C (en) 1999-12-08 2000-12-07 Hand holdable pump spray apparatus
NO20022745A NO20022745L (en) 1999-12-08 2002-06-07 Handheld pump spray device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/457,171 1999-12-08
US09/457,171 US6170706B1 (en) 1999-12-08 1999-12-08 Hand holdable pump spray system
US09/723,067 US6415956B1 (en) 1999-12-08 2000-11-27 Hand holdable pump spray apparatus
US09/723,067 2000-11-27

Publications (1)

Publication Number Publication Date
WO2001042129A1 true WO2001042129A1 (en) 2001-06-14

Family

ID=27038506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/033233 WO2001042129A1 (en) 1999-12-08 2000-12-07 Hand holdable pump spray apparatus

Country Status (16)

Country Link
EP (1) EP1254072B1 (en)
JP (1) JP4377097B2 (en)
CN (1) CN1221321C (en)
AT (1) ATE380158T1 (en)
AU (1) AU759592C (en)
CA (1) CA2393687C (en)
CZ (1) CZ20021931A3 (en)
DK (1) DK1254072T3 (en)
ES (1) ES2296664T3 (en)
HU (1) HUP0203272A3 (en)
IL (1) IL150078A0 (en)
MX (1) MXPA02005658A (en)
NO (1) NO20022745L (en)
NZ (1) NZ519481A (en)
PL (1) PL193683B1 (en)
WO (1) WO2001042129A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2420321A1 (en) * 2010-08-18 2012-02-22 PA Knowledge Limited Spray device
EP2520517A1 (en) * 2006-01-30 2012-11-07 The Fountainhead Group, Inc. Fluid dispensing system
WO2014062560A1 (en) * 2012-10-15 2014-04-24 Monsanto Technology Llc Dispensing assemblies and related methods
US10005095B2 (en) 2012-10-15 2018-06-26 Monsanto Technology Llc Dispensing assemblies and related methods
GB2615779A (en) * 2022-02-17 2023-08-23 Workforce Biologics Ltd A misting system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2642086A1 (en) * 2008-10-28 2010-04-28 Lovro Gotovac Fluid nozzle
US9079142B2 (en) * 2013-03-11 2015-07-14 Oms Investments, Inc. Hydraulic mixing device for sprayer system
EP3043924B1 (en) * 2013-09-11 2018-05-09 The Fountainhead Group, Inc. Sprayer
CN110092079A (en) * 2019-04-30 2019-08-06 中山市华宝勒生活用品实业有限公司 A kind of automatic liquid discharging container

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1681845A (en) * 1925-10-10 1928-08-21 Fred M Dilley Pressure oil can
US2545319A (en) * 1945-04-17 1951-03-13 Edwin P Sundholm Lubricant dispenser
US4174055A (en) 1977-04-20 1979-11-13 James D. Pauls & J. Claybrook Lewis & Associates, Ltd. Non-aerosol pressure dispenser
US5649664A (en) * 1995-04-04 1997-07-22 H.D.Hudson Manufacturing Company Reusable sprayer
US5810211A (en) 1997-03-06 1998-09-22 Hayes Products, Llc Pump assembly with sliding plug
US5816447A (en) 1997-03-06 1998-10-06 Hayes Products, Llc Non-aerosol pump spray apparatus
US5918782A (en) 1997-03-06 1999-07-06 Hayes Products, Llc Pump assembly with sprayer
US5938116A (en) 1996-01-11 1999-08-17 The Fountainhead Group, Inc. Pump sprayer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2789396A (en) * 1954-06-28 1957-04-23 K P Mfg Company Portable, stroke-actuated liquid dispensing system
US3603694A (en) * 1969-11-10 1971-09-07 Ronald D Hamm Device for feeding paint to a painting brush
AU659930B2 (en) * 1992-01-31 1995-06-01 Contico International, Inc. Liquid dispenser assembly with adaptor
WO1994000208A1 (en) * 1992-06-22 1994-01-06 Johnson Lonnie G Hand pump water gun with remote water source

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1681845A (en) * 1925-10-10 1928-08-21 Fred M Dilley Pressure oil can
US2545319A (en) * 1945-04-17 1951-03-13 Edwin P Sundholm Lubricant dispenser
US4174055A (en) 1977-04-20 1979-11-13 James D. Pauls & J. Claybrook Lewis & Associates, Ltd. Non-aerosol pressure dispenser
US5649664A (en) * 1995-04-04 1997-07-22 H.D.Hudson Manufacturing Company Reusable sprayer
US5938116A (en) 1996-01-11 1999-08-17 The Fountainhead Group, Inc. Pump sprayer
US5810211A (en) 1997-03-06 1998-09-22 Hayes Products, Llc Pump assembly with sliding plug
US5816447A (en) 1997-03-06 1998-10-06 Hayes Products, Llc Non-aerosol pump spray apparatus
US5860574A (en) 1997-03-06 1999-01-19 Hayes Products, Llc Pump assembly with bayonet lock
US5918782A (en) 1997-03-06 1999-07-06 Hayes Products, Llc Pump assembly with sprayer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2520517A1 (en) * 2006-01-30 2012-11-07 The Fountainhead Group, Inc. Fluid dispensing system
EP2420321A1 (en) * 2010-08-18 2012-02-22 PA Knowledge Limited Spray device
WO2014062560A1 (en) * 2012-10-15 2014-04-24 Monsanto Technology Llc Dispensing assemblies and related methods
US9975663B2 (en) 2012-10-15 2018-05-22 Monsanto Technology Llc Dispensing assemblies and related methods
US10005095B2 (en) 2012-10-15 2018-06-26 Monsanto Technology Llc Dispensing assemblies and related methods
US10532371B2 (en) 2012-10-15 2020-01-14 Monsanto Technology Llc Dispensing assemblies and related methods
US11944991B2 (en) 2012-10-15 2024-04-02 Monsanto Technology Llc Dispensing assemblies and related methods
GB2615779A (en) * 2022-02-17 2023-08-23 Workforce Biologics Ltd A misting system
WO2023156623A1 (en) * 2022-02-17 2023-08-24 Workforce Biologics Ltd A misting system

Also Published As

Publication number Publication date
PL355996A1 (en) 2004-05-31
HUP0203272A3 (en) 2004-05-28
JP2003516228A (en) 2003-05-13
AU759592C (en) 2003-10-30
NO20022745D0 (en) 2002-06-07
ES2296664T3 (en) 2008-05-01
AU759592B2 (en) 2003-04-17
ATE380158T1 (en) 2007-12-15
NZ519481A (en) 2004-02-27
MXPA02005658A (en) 2002-11-29
IL150078A0 (en) 2002-12-01
AU2070301A (en) 2001-06-18
DK1254072T3 (en) 2008-04-14
CA2393687A1 (en) 2001-06-14
CN1414922A (en) 2003-04-30
CA2393687C (en) 2006-10-03
EP1254072A1 (en) 2002-11-06
CN1221321C (en) 2005-10-05
JP4377097B2 (en) 2009-12-02
EP1254072B1 (en) 2007-12-05
CZ20021931A3 (en) 2003-01-15
HUP0203272A2 (en) 2003-01-28
EP1254072A4 (en) 2006-03-15
NO20022745L (en) 2002-08-07
PL193683B1 (en) 2007-03-30

Similar Documents

Publication Publication Date Title
US6415956B1 (en) Hand holdable pump spray apparatus
US3799448A (en) Liquid spraying device
US4958754A (en) Dispenser or sprayer with vent system
US4082223A (en) Trigger type spraying device
US7350675B2 (en) Sustained duration non-aerosol mechanical sprayer with a charging element load bearing surface
CA1078796A (en) Liquid spraying device
JP6539308B2 (en) Method of releasing a product from the internal volume of a container fitted with a power assembly
JPH0849649A (en) Pump and distributor with said pump
DK2520517T3 (en) fluid delivery system
US20170027151A1 (en) Sprayer
AU759592C (en) Hand holdable pump spray apparatus
CA1066238A (en) Pump devices for dispensing fluid
US10344750B2 (en) Hand pump with air storage tank
US5799828A (en) Water gun
US20020016127A1 (en) Water gun having pump with internal passageway
US6269981B1 (en) Oil dispensing apparatus
JPH05319465A (en) Spray device
JP2004516398A (en) Manually operated pump assembly
US4709735A (en) Automatic shut-off device for fuel dispenser
EP0499520B1 (en) Spraying or dispensing device for a fluid product comprising a sliding element within its inlet port
RU2780153C2 (en) Pump mechanism activated by single rotation for continuous aerosol spraying

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: PV2002-1931

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 150078

Country of ref document: IL

Ref document number: 2002/04560

Country of ref document: ZA

Ref document number: 200204560

Country of ref document: ZA

Ref document number: 2393687

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/005658

Country of ref document: MX

Ref document number: 20703/01

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2001 543437

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 519481

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 008178844

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2000984023

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000984023

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: PV2002-1931

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 20703/01

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 519481

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 519481

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 2000984023

Country of ref document: EP