WO2001045164A1 - Method for interconnecting integrated circuits - Google Patents

Method for interconnecting integrated circuits Download PDF

Info

Publication number
WO2001045164A1
WO2001045164A1 PCT/FR2000/003508 FR0003508W WO0145164A1 WO 2001045164 A1 WO2001045164 A1 WO 2001045164A1 FR 0003508 W FR0003508 W FR 0003508W WO 0145164 A1 WO0145164 A1 WO 0145164A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
conductive
contacts
silicon wafer
integrated circuit
Prior art date
Application number
PCT/FR2000/003508
Other languages
French (fr)
Inventor
Françis STEFFEN
Original Assignee
Stmicroelectronics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stmicroelectronics filed Critical Stmicroelectronics
Publication of WO2001045164A1 publication Critical patent/WO2001045164A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00015Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed as prior art
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Definitions

  • the present invention relates to techniques for interconnecting integrated circuits, and more particularly to techniques for direct interconnection by stacking integrated circuit wafers.
  • an integrated circuit is in the form of a small silicon wafer (or silicon chip) which has on its front face an integrated circuit region and contact pads electrically connected to the integrated circuit region .
  • the integrated circuit wafers are enclosed in boxes provided with metal pins and their interconnection is ensured by printed circuit boards having metallized areas on which the pins of the boxes are welded.
  • FIG. 2 schematically represents a first conventional technique for transferring an integrated circuit board 1 onto an interconnection support 10, known as a "flip” chip “(" chip upside down “).
  • the plate 1 is mounted” upside down “on the support 10, its active face 2 being oriented downwards.
  • the contact pads 3 of the plate are directly fixed on metallized areas 11 of the interconnection support 10 by means of a fusible alloy such as tin-lead or an electrically conductive adhesive, forming protuberances
  • the interconnection support 10 can be a printed circuit board or a support of smaller dimensions such as a thick film hybrid circuit (“thic film”) or a layered circuit thin (“thin film”) on ceramic substrate (A1 2 0 3 ).
  • FIG. 2 schematically represents a second conventional technique for mounting an integrated circuit board 20 on an interconnection support 10, called “chip and ire” ("chip and wire”).
  • the silicon wafer 20 is mounted this time “at the place” and its contact pads 21 are connected to metallized pads 11 of the interconnection support 10 by ultrasonic wiring ("ultrasonic wire bonding"), that is to say - say by means of metal wires 22 welded with ultrasound.
  • ultrasonic wiring ultrasonic wire bonding
  • FIG. 3 represents a stack of two integrated circuit boards 20, 30 having their active faces oriented upwards.
  • the contact pads 21, 31 of each plate 20, 30 are, as in the previous assembly, connected to metallized pads 11 of the interconnection support 10 by metal wires 22.
  • This technique quickly finds its limits beyond two, or even three stacked integrated circuits, due to the "staircase" profile that the assembly must present. Indeed, the plate 30 must be of a surface smaller than that of the plate 20, so as not to mask the contacts 21 of the latter.
  • the fact that the contacts 31 of the upper plate are located at a greater distance from the pads 11 of the interconnection support 10 makes the wiring operations more delicate.
  • the son loops 22 are longer and more fragile and many difficulties arise in the context of industrial production.
  • FIG. 4 represents a recent technique for stacking several integrated circuits, which has the advantage of being reproducible on an industrial scale without crippling problems of reliability.
  • Each integrated circuit board 40 is arranged in a micro-housing 45 constituted by a polyimide frame 46 filled with resin 47.
  • the electrical connection of the integrated circuit boards 40 is ensured by flat conductors 48
  • the total thickness of the stack of four integrated circuits shown in FIG. 4 does not exceed 0.5 millimeters, the plates 40 being of a thickness of the order of 30 to 50 micrometers and the micro-housings 45 with a thickness of the order of 100 micrometers.
  • Lcium sil wafers indeed have an initial thickness of several hundred micrometers when the integrated circuits are installed there (at this stage, they are called "wafers") and are then thinned from their back side by so-called "backlappmg” processes combining chemical etching and mechanical abrasion , before being cut into individual integrated circuit boards.
  • backlappmg processes combining chemical etching and mechanical abrasion
  • the polyimide micro-housings 45 prove to be of a non-negligible cost price and their manufacture requires considerable know-how and industrial tools.
  • the objective of the present invention is to provide an alternative solution for stacking silicon wafers, which has the advantage of being simple and which can be implemented by means of conventional techniques for transferring chips onto a support. interconnection, in particular the "flip chip” technique mentioned above.
  • an objective of the present invention is to provide a means for interconnecting integrated stacked circuits.
  • the present invention is based on a simple but no less inventive idea in its application to integrated circuit boards, which is to provide integrated circuit boards comprising contacts on the rear face electrically connected by conductive bushings to the regions of integrated circuits on the front panel.
  • conductive bushings make it possible to directly connect the rear face of a silicon wafer on the front face of another wafer or connector; the rear face of a silicon wafer with metallized areas of an interconnection support.
  • the present invention firstly provides a method of manufacturing conductive bushings in a silicon wafer, comprising the steps of producing cuvettes of a determined depth on the front face of the silicon wafer; depositing on the walls of the bowls an electrically insulating material; deposit at least one electrically conductive material on the insulated walls of the cuvettes, and thin the silicon wafer, by chemical and / or mechanical abrasion of its rear face, until reaching the conductive material deposited in the cuvettes.
  • the step of depositing on the walls of the cuvettes a conductive material comprises a step of filling the cuvettes with at least one conductive material.
  • the cuvettes are produced before the implantation of an integrated circuit region on the silicon wafer.
  • the cuvettes are produced after the implantation of an integrated circuit region on the silicon wafer.
  • a step consisting in depositing on the rear face of the wafer at least one layer of an electrically insulating material, and a step consisting in producing on the rear face contact pads connected to the conductive bushings .
  • a step of cutting the silicon wafer is provided, passing through the middle of the conductive bushings to obtain at least one silicon wafer comprising conductive bushings sectioned along their longitudinal axis, along the sides of the wafer. .
  • the present invention also provides a method for interconnecting at least two integrated circuit boards, comprising the steps consisting in providing an integrated circuit board comprising rear panel contacts electrically connected to an integrated circuit region on the front panel through conductive bushings passing through. the wafer right through, and soldering or bonding the contacts on the rear face of the wafer to contacts on the front face of another silicon wafer.
  • the conductive bushings include practical orifices in the silicon wafer, an electrically insulating layer covering the walls of the orifice, and at least one electrically conductive material covering the insulated walls of the orifice or completely filling the 'orifice.
  • the conductive crossings are sectioned along their longitudinal axis and run along the sides of the plates.
  • the present invention also relates to a silicon wafer comprising an integrated circuit region located on its front face, conductive bushings connected to the integrated circuit region, passing right through the wafer and emerging on its rear face.
  • a conductive bushing comprises an orifice passing through the silicon wafer, an electrically insulating layer covering the walls of the orifice, and at least one electrically conductive material covering the insulated walls of the orifice or completely filling the orifice.
  • the wafer comprises on its rear face contacts electrically isolated from the wafer and electrically connected to conductive bushings.
  • the wafer further comprises conductive bushings which are not connected to the integrated circuit region.
  • the plate comprises conductive cross-sections sectioned along their longitudinal axis, along the sides of the plate.
  • the present invention also provides an assembly of silicon wafers comprising at least one stack of two silicon wafers, each wafer comprising an integrated circuit region on the front face and contacts welded or bonded to contacts of the other wafer, in which at least one plate includes contacts on the rear face and conductive bushings passing through the plate; right through, electrically connecting the contacts on the rear face to the integrated circuit region.
  • the contacts on the rear face of a wafer are welded or glued to contacts on the front face of the other silicon wafer.
  • conductive bushings comprise orifices made in the silicon wafer, an electrically insulating layer covering the walls of the orifice, and at least one electrically conductive material covering the walls insulated from the orifice or completely filling the 'orifice.
  • At least one silicon wafer has at least one conductive bushing which is not connected to its integrated circuit region.
  • At least one plate comprises conductive cross-sections sectioned along their longitudinal axis, along the sides of the plate.
  • FIGS. 1 to 4 previously described illustrate conventional methods of interconnecting integrated circuits
  • Figures 5A to 5E are sectional views of a silicon wafer illustrating a method of manufacturing conductive bushings according to the invention
  • FIGS. 6A to 6D illustrate an alternative embodiment of certain steps of the method of FIGS. 5A to 5E
  • FIGS. 7 to 8A, 9 to 13 are sectional views of silicon wafers representing various alternative embodiments of conductive bushings according to the invention
  • FIG. 8B represents the rear face of a silicon wafer seen in section in FIG. 8A
  • FIGS. 14, 15 are diagrammatic section views of assemblies of integrated circuits according to the invention.
  • FIG. 16A and 16B show a perspective view and a top view of an integrated circuit board comprising conductive bushings according to the invention arranged on the edges of the board
  • Figure 17 is the electrical diagram of an electronic circuit comprising integrated circuits to be interconnected
  • - Figures 18A to 18D illustrate a method of interconnection according to the invention of the integrated circuits of Figure 17,
  • Figures 19A to 19D illustrate a method of manufacturing cuvettes in a silicon wafer by anisotropic etching.
  • FIGS. 5A to 5E are views in partial section of a silicon wafer and illustrate a method of manufacturing conductive bushings according to the invention.
  • one begins by making cuvettes 60 of a determined depth in a virgin monocrystalline silicon wafer 50, commonly called a "wafer" and intended to receive integrated circuits.
  • the wafer 50 has a standard thickness of several hundred micrometers, for example 700 micrometers for a wafer with a diameter of 6 inches (15.24 cm).
  • the bowls 60 are made to a depth of the order of 30 to 150 micrometers depending on the final thickness of the wafer 50 aimed at the end of a thinning step described below.
  • the bowls 60 are formed by isotropic or anisotropic etching of the silicon or by any other known method enabling blind holes to be produced on the surface of a silicon wafer, in particular the plasma or laser etching methods.
  • various regions of integrated circuits 51 are then produced collectively on the front face of the wafer 50, by implantation / diffusion of dopants, deposition and etching of layers of oxide, of polyc ⁇ stallin silicon ... (a only region 51 being partially shown in the figure).
  • the regions of integrated circuits 51 include various electronic or electrical components, such as transistors, resistors, capacitors, conductive tracks, etc.
  • the steps for implanting regions 51 are in themselves conventional and will not be described here for the sake of of simplicity.
  • the presence of the bowls 60 does not imply any appreciable modification of the etching and diffusion masks.
  • an electrically insulating layer 61 is deposited on the surface of the wafer 50 which extends from the integrated circuits 51 to the interior of the bowls 60 and isolates the walls of the latter.
  • the material 51 is conventionally silicon oxide S ⁇ 0 2 or any other known oxide or insulator, for example silicon oxynitride SiON.
  • a layer of conductive material is deposited and etched 62 such as aluminum or copper, which extends from the regions of integrated circuits 51 to the cuvettes 60 and covers the insulated walls of the latter.
  • the conductive layer 62 is etched to form conductive tracks or conductive sections electrically connecting the cuvettes 60 to inputs / outputs of the regions of integrated circuits 51.
  • the wafer 50 shown in FIG. 5B is similar to a conventional wafer, with the difference that the contacts conventionally made on the periphery of the integrated circuit regions 51 here take the form of conductive cuvettes 60.
  • a passivation layer 52 like a hardened glass paste or a polyimide, which has openings made by dry or wet etching opposite the bowls 60.
  • the cuvettes 60 are filled with an assembly material 64 forming protuberances ("bumps"), for example a tin-lead alloy SnPb, a conductive adhesive charged with silver, a ACF conductive paste ("Anisotropic Conductive Paste”), an ACF conductive film (“Anisotropic Conductive Film”) ... these materials being known to those skilled in the art and used in the "flip chip” technique mentioned in the preamble.
  • the assembly material 64 is deposited directly in the cuvettes 60 or, as shown in FIG. 5C, via a junction material 63 compatible with the conductive layer 62.
  • the junction material 63 is for example nickel , Zincate (Nickel-Zinc), a Tungsten-Titanium alloy ... deposited by projection ("sputtering") or formed by electrochemical growth.
  • Zincate Nickel-Zinc
  • sputtering a Tungsten-Titanium alloy ... deposited by projection ("sputtering") or formed by electrochemical growth.
  • material compatibility issues are known to those skilled in the art and have been resolved in the prior art.
  • the joining material 63 is useless if the layer 62 is made of copper (copper can support any type of joining material) and is on the contrary necessary if the layer 62 is made of aluminum and the joining material used is tin-lead.
  • the wafer 50 is inverted on a flexible strip 59 ("backlap tape"), preferably a strip of the "UV” type whose adhesion on the front face of the wafer 50 can be degraded to appropriate time by exposure to ultraviolet light.
  • the rear face of the wafer 50 is then attacked by chemical and mechanical abrasion ("backlapping") until the silicon at the bottom of the bowls 60 is removed and the junction material 63 or the assembly material 64 is reached. (in the absence of joint material 63).
  • the bowls 60 thus become conductive crossings according to the invention, which will be designated by the same reference 60, opening onto the rear face of the thinned wafer 50.
  • the thickness of the thinned wafer 50 is of the order of 30 to 150 micrometers according to the initial depth of the bowls 60.
  • the wafer 50 is an unfinished product from the industrial point of view but nevertheless constitutes a finished object according to one aspect of the invention.
  • the wafer 50 offers a plurality of contacts on the rear face which allow, if desired, to electrically test the regions of integrated circuits 51 by means of a spike card without it being necessary. to remove the wafer from the support strip 59.
  • the conductive bushings 60 according to the invention may only be produced for the purpose of the electrical test of the wafer 50 by its rear face. This possibility is advantageous when the wafer 50 is too fragile to be handled and placed on a classic test tray.
  • Another advantage is that the crossings 60 form areas for relaxation of the mechanical stresses exerted on the wafer 50.
  • the rear face of the wafer 50 can then be entirely covered with an insulating layer in order to bury the contacts on the rear face, if these were only made for the purpose of the electrical test of the regions of integrated circuits 51, such as we proposed it above.
  • the primary objective of the present invention being to allow the assembly of integrated circuit wafers, the method of the invention will generally be continued, as illustrated in FIG. 5E, by a deposition step on the rear face of the wafer 50 an insulating layer 53 having openings 54 at the places where the conductive crossings open 60.
  • the insulating layer 53 is for example a non-thermal hard oxide deposited according to LPCVD (Low Pressure Chemical Vapor Deposition) technology at low pressure and at low temperature, such as silicon oxynitride SiON, or a material of the "BCB Photoimaginable" type, or a polyimide deposited in one or more layers.
  • the openings 54 are produced by chemical or mechanical etching (plasma, laser) depending on the material forming the layer 53.
  • An assembly material 65 is then deposited in the openings 54 forming protuberances on the rear face, which may be identical to the material d 'assembly 64 forming the protrusions on the front face.
  • a silicon wafer comprising regions of integrated circuits 51 and protrusions 64, 65 ("bumps") on the front face and on the rear face electrically connected to the regions 51.
  • the protrusions 64, 65 make it possible to produce stacks of integrated circuits 51 in a simpler manner than in the prior art, by assembly steps carried out at the "wafer level"("waferlevel") or at "chip level".
  • one begins by manufacturing on the front face of the wafer 50 regions of integrated circuits 51 provided with conventional contacts 55 ("pads"), accessible through openings practiced in the passivation layer 52 (glass or polyimide) and comprising as previously a conductive layer 62 (aluminum or copper) resting on an insulating layer 61 (oxide).
  • pads conventional contacts 55
  • the passivation layer 52 glass or polyimide
  • a conductive layer 62 aluminum or copper
  • cuvettes 70 are produced in the middle of the contacts 55, by plasma etching or laser etching, or even by chemical etching after having deposited an etching mask on the surface of the wafer 50.
  • an insulating layer 71 is deposited on the walls of the cuvettes 70 without covering the entire conductive layer 62, which forms around the cuvettes 70 a conductive ring from initial contacts 55.
  • the insulating layer 71 is for example a thick coarse oxide deposited at low temperature (200-250 ° C.).
  • the next step, illustrated in FIG. 6D, is identical to the step in FIG. 5C and consists in depositing in the insulated bowls 70 an assembly material 64 forming protuberances, optionally by means of a joining material. 63.
  • the electrical connection between the cuvettes 70 and the inputs / outputs of the integrated circuit regions 51 is ensured here by the fact that the junction material 63 or contact material 64 (in the absence of junction material 64) substantially extends beyond the cuvettes 70 and is in contact with the conductive layer 62.
  • steps of thinning the wafer 50 and making contacts 65 on the rear face are followed by steps of thinning the wafer 50 and making contacts 65 on the rear face, which have been described above in relation to FIGS. 5D, 5E.
  • Figures 7 to 13 are sectional views illustrating other alternative embodiments of conductive bushings according to the invention and of contacts on the rear face. These variants have particularities which can be combined to make still other alternative embodiments of conductive bushings according to the invention.
  • the wafer 50 of Figure 7 has conductive crossings 60 similar to those of Figure 5E.
  • the contact on the rear face differs from that described above in that a conductive layer 66 is deposited and etched on the insulating layer 53, before the protuberances 65 are deposited.
  • the conductive layer 66 for example copper for an insulating layer : 3 in polyimide, is etched so as to form contact pads covering the openings 54 made in the insulating layer 53.
  • the conductive layer 66 extends beyond the openings 54 in the form of conductive tracks 67 ending in contact pads 68 on which the protuberances of the assembly material 65 are deposited.
  • FIG. 8B it can be seen that the tracks 67 make it possible to offset at any point on the rear face of the silicon wafer 50 the contact pads 68 receiving the protrusions 65.
  • FIG. 8B also shows that conductive bushings 60 according to the invention are not necessarily arranged at the periphery of an integrated circuit region 51.
  • the integrated circuit region 51 located on the front face may have the shape of a frame, as shown by dotted lines, and conductive crossings 66 may be provided inside this frame.
  • the wafer 50 of FIG. 9 comprises conductive bushings 80 which differ from those of FIG. 5E in that the contacts on the front face are themselves offset with regard to the locations where the bushings 80 open out.
  • the junction material 63 has two layers 63-1, 63-2.
  • the first layer 63-1 is deposited or formed in the bushings 80 and the second layer 63-2 is deposited or formed on a first passivation layer 52-1 provided with openings facing the conductive layer 62.
  • the second layer 63 -2 which is in contact with the conductive layer 62, is covered by a second passivation layer 52-2.
  • the second passivation layer 52-2 has openings facing the second layer 63-2 of the junction material 63 in which the protuberances of the assembly material 64 are deposited.
  • the wafer 50 of FIG. 10 has conductive crossings 81 which differ from those of FIG. 5E in that the conductive layer 62 does not cover the walls of the conductive crossings 81, which are always insulated by the layer 61.
  • the electrical contact between the conductive layer 62 and the junction material 63 (or the joining material 64 in the absence of junction material 63) is ensured by an overflow of the junction material 63 (or assembly material 64) on the layer 62, outside the bushings 81.
  • the wafer 50 may also include conductive bushings 82 which are not electrically connected to the integrated circuit region 51.
  • the bushings 82 simply comprise an insulating layer 72 covering their walls and are filled by the assembly material 64. As will be seen later, such bushings 82 make it possible to transfer an electrical signal through a silicon wafer in an assembly of several silicon wafers.
  • the wafer 50 comprises conductive crossings 83 devoid of contact on the front face, the upper mouth of the crossings 83 being covered by the passivation layer 52.
  • the walls of the crossings 83 are covered by the insulating layer 61 and the conductive layer 62.
  • Such bushings 83 can be filled with a conductive material. They can also be left empty or, as shown in FIG. 12, be filled with an insulating material 73. In this case, the continuity electrical with the conductive layer 66 on the rear face, which carries the protuberances of the assembly material 65, is ensured by a "T" contact between the layer 62 and the layer 66.
  • the wafer 50 has bushings 84 filled with the assembly material 64 which forms both protrusions 64-1 on the front face and protrusions 64-2 on the rear face.
  • the protrusions 64-2 on the rear face are obtained before the deposition of the insulating layer 53 by an over-etching of the rear face of the wafer 50, for example by continuing abrasion of the rear face chemically without mechanical abrasion in order to remove some additional micrometers of silicon without attacking the assembly material 64.
  • the assembly material 64 is thus protruding from the rear face and forms the protuberances 64-2.
  • the rear face of the wafer 50 is then covered by the insulating layer 53.
  • the insulating layer 53 covering the protrusions 64-2 is removed by etching or by fine polishing of the rear face.
  • the wafer 50 which has just been described, comprising conductive bushings according to the invention, can be assembled with another wafer before being cut.
  • the assembly of future integrated circuit wafers is carried out collectively at the "wafer level" and the cutting of the assembled wafers makes it possible to directly obtain stacks of integrated circuit wafers.
  • the assembly of integrated circuit wafers can also be carried out at the "chip level", that is to say after the cutting of the wafers into individual integrated circuit wafers.
  • the present invention makes it possible to produce stacks of integrated circuit wafers, examples of which 90, 95 are shown schematically in Figures 14 and 15.
  • the stack 90 of FIG. 14 includes three integrated circuit boards 91, 92, 93 comprising contacts on the front face and on the rear face electrically connected by conductive bushings according to the invention.
  • the contacts on the rear face of the wafer 91 are welded or bonded to the contacts on the front face of the wafer 92, and the contacts on the rear face of the wafer 92 are welded or glued to the contacts on the front face of the wafer 93.
  • the contacts in rear face of the plate 93 are welded or bonded to contact pads of an interconnection support 94.
  • the welding or bonding of the contacts located opposite is ensured by melting or polymerization of the assembly material described above (tin - lead, conductive adhesive, ACP, ACF ).
  • the assembly material may only be deposited on one face of one of the two wafers.
  • the term "contact” designates the protuberances of the assembly material 64, 65 (FIGS. 5E, 7, 8A, 9, 10, 11, 12, 13) when that this is deposited but also denotes, when the assembly material is not deposited, the conductive pads intended to receive the assembly material, for example the conductive pads on the rear face formed by the conductive material 66 (FIGS. 7, 8A, 12) or the conductive pads on the front face formed by the junction material 63 ( Figures 7, 8A, 10).
  • the stack 95 of FIG. 15 comprises three plates 96, 97, 98.
  • the plate 96 of conventional type, only has contacts opposite ant. Platelets
  • the contacts on the front face of the wafer 96 are welded or glued to the contacts on the front face of the wafer 97 (the wafer 96 being mounted in "flip chip") and the contacts on the rear face of the wafer 97 are welded or glued to the contacts on the front face of the plate 98.
  • the contacts on the rear face of the plate 98 are welded or glued to contact pads of an interconnection support 99. It can be seen in the figure that the contacts on the front face of the plate 98 are offset relative to the contacts on the rear face, thanks to an offset of the location of the contacts ("re-routing") of the type described above in relation to FIG. 9. A shift of the contacts on the rear face can also be provided, as described above in relation to FIGS. 8A, 8B.
  • FIG. 16A represents a silicon wafer 58 cut out from the wafer 50 previously described by following cutting lines passing through the center of the conductive bushings according to the invention.
  • the structure of these conductive crossings can be any of the structures previously described.
  • ccnductive crossings 85 sectioned along their longitudinal axis.
  • These "half-crossings" 85 run along the edges of the wafer 58 and are connected on the front face to the integrated circuit region 51 by the conductive layer 62 already described.
  • the conductive layer 66 already described forms sections of tracks oriented towards the center of the rear face, at the ends of which are the protuberances of the assembly material 65.
  • This embodiment allows in particular to reduce the number of conductive crossings made on a silicon wafer, each crossing splitting into two half-crossings on the edges of two separate silicon wafers.
  • FIG. 17 schematically represents an example of an electronic circuit which can be produced in the form of a stack of integrated circuit wafers according to the invention.
  • the circuit includes a microprocessor MP, a memory MEM and a power supply circuit PWS.
  • the microprocessor MP comprises a first port of eight inputs / outputs connected to a bus B1 comprising wires ⁇ i to es, and a second port of eight inputs / outputs connected to a bus B2 comprising wires in to ei ⁇ .
  • the memory MEM includes a port of eight inputs / outputs connected to the wires in eig of the bus B2.
  • the microprocessor MP, the memory MEM and the circuit PWS each have a terminal connected to the ground GND.
  • the circuit PWS receives an external voltage Vcc and delivers a first voltage VI applied to the memory MEM and to the microprocessor MP and two other voltages V2, V3 applied only to the microprocessor MP.
  • FIG. 18A represents a printed circuit board 100 intended to connect the elements MP, MEM, PWS to the buses Bl, B2 as well as to the voltage Vcc and to the ground GND.
  • the wafer 100 thus comprises eight conductive tracks ei a es (bus Bl), eight conductive tracks in ae l8 (bus B2), a ground track GND and a track carrying the voltage Vcc. These various tracks end in metallized areas arranged in a rectangular pattern.
  • FIGS. 18B, 18C, 18D respectively represent, by views on the front face, three silicon wafers 101, 102, 103 which are stacked as illustrated in FIG. 14 to make the circuit of FIG. 17.
  • the wafer 101 has a region of integrated circuit MP where the microprocessor MP is installed, the wafer 102 comprises a region of integrated circuit MEM and the wafer 103 comprises a region of integrated circuit PWS.
  • the plate 101 is arranged on the printed circuit 100 and comprises on the front face 18 contacts ei-e ⁇ , en-eie, GND, Vcc connected to conductive bushings, as well as 3 contacts VI, V2, V3 devoid of conductive bushings.
  • the 18 conductive bushings e ⁇ ⁇ es, en-e ⁇ , GND, Vcc lead to contacts on the rear face (not shown) coinciding with the contact pads of the printed circuit 100. All the contacts except the Vcc contact are connected has integrated MP circuit region.
  • the plate 102 is arranged on the plate 101 and has for this purpose on the front face 13 contacts e-eis, GND, Vcc, VI, V2, V3 connected to conductive bushings opening on the rear face on contacts coinciding with the corresponding contacts of the wafer 101.
  • the contacts en-e 18 , GND, VI are connected to the integrated circuit region MEM and the contacts Vcc, V2, V3 are isolated from the integrated circuit region MEM.
  • the plate 103 which dissipates the most heat, is arranged on the plate 102 and comprises on the front face 5 conductive crossings GND, Vcc, VI, V2, V3 connected to the integrated PWS region, leading to contacts on the rear face coinciding with the corresponding contacts of the plate 102.
  • additional contacts not connected to the integrated circuit regions can be provided on the front (solid lines) and rear (dotted lines) faces of the plates 101 to 103 for regular distribution of the contacts and better fixing of these various elements.
  • the stacking of plates 101, 102, 103 according to the invention makes it possible not only to reduce by three the dimensions of the plates on the surface of the printed circuit 100, but also to eliminate the conductive tracks. that would be necessary for their interconnection.
  • the connection of the memory MEM to the bus B2 (in at e 8 ) is provided by conductive crossings, and the voltages V2, V3 supplied by the power supply circuit PWS of the wafer 103 are applied directly to the microprocessor MP of the wafer 101 by means of wafer 102 which for this purpose has crossings V2, V3 which are not connected to the region of integrated circuit MEM.
  • the conductive bushings and contacts on the rear face according to the invention are not only applicable to the assembly of several integrated circuit boards. They can also make it possible to connect a simple integrated circuit board on an interconnection support, for example on a printed circuit or a hybrid circuit thick layers or thin layers.
  • This chip transfer technique constitutes an alternative to conventional techniques of the “chip and son” or “flip chip” type described in the preamble in relation to FIGS. 1 and 2.
  • FIGS. 19A to 19E a method making it possible to produce cuvettes in a virgin monoc ⁇ stallin silicon wafer before the implantation of electronic components, without altering the surface of the wafer.
  • the oxide layer 110 is deposited in a conventional manner in a "hydrox" oven intended to grow oxide and the nitride layer 111 is deposited in an LPCVD ("Low Pressure Chemical Vapor") oven.
  • the wafer 50 is of a standard thickness of the order of 700 micrometers.
  • the oxide layer 110 is of the order of 90 nanometers thick and the nitride layer 111 is 160 nanometers thick.
  • a photosensitive resin mask 112 is provided on the surface of the wafer 50 comprising openings 113 in regions where cuvettes must be produced.
  • the nitride layer 111 located opposite the openings 113 is attacked by means of an "Al" etchant, for example a cold plasma CF4 (mechanical etching) or a solution of orthophosphoric acid H3PO4 (chemical etching).
  • the oxide layer 110 is then attacked using an etchant "B1", for example a cold plasma or a solution of hydrofluoric acid or ammonium fluoride.
  • the resin mask 112 is then dissolved or removed with an oxygen plasma.
  • the plate 50 is provided with an etching mask constituted by the layers of oxide 110 and nitride 111, having openings 114 at the places where the openings 113 of the resin mask were located.
  • the wafer 50 is then immersed in a solution comprising an etching agent "C" attacking the monocrystalline silicon 50 without attacking the nitride 111, causing the cuvettes 60 to appear.
  • This solution is for example a KOH potash solution of concentration 6N brought to a temperature of the order of 80 ° C., capable of containing an accelerating etching agent.
  • Such a solution makes it possible to etch monocrystalline silicon at a speed of the order of 1.6 micrometers per minute and a selectivity greater than 1/23000 relative to the nitride layer 111.
  • the etching of a bowl 60 of a depth of 100 micrometers is produced in approximately one hour and causes etching of the nitride layer 111 of the order of 4.3 nanometers, negligible with regard to
  • the nitride layer 111 is removed by means of an etching agent "A2" capable of attacking the silicon of the bowls 60 although this is not desired.
  • the agent "A2” is for example a cold plasma or a solution of orthophosphoric acid.
  • the oxide layer 110 protects the silicon wafer 50.
  • the oxide layer 110 is then removed, preferably by means of a chemical etching agent "B2" which does not attack monocrystalline silicon, for example hydrofluoric acid.
  • D is the depth of the cuvette
  • Wo is the opening or size of the cuvette (i.e. its width at the surface of the silicon wafer)
  • Wb is the width at the bottom of the cuvette (i.e. the size of the contact obtained on the back).
  • the table below gives various values of the width Wb of the contact on the rear face according to the opening Wo and the depth D of a bowl, for a range of values of the depth D going from 30 to 110 micrometers.
  • the surface of the contact on the rear face can of course be enlarged by the production of conductive pads, as has been described above.

Abstract

The invention relates to a method for interconnecting at least two integrated circuit boards, wherein one printed circuit board has contacts (65, 66) on a rear surface and conductive feed-throughs (60) electronically linking the contacts (65,66) on the rear surface to a region of the integrated circuit (51) on the front surface, the rear surface contacts being welded or glued to the front surface contacts (64) of another silicon wafer. The invention also relates to a method for the production of said conductive feed-throughs, comprising the following steps: troughs (50) having a given depth are made on the front surface of a silicon wafer; an electrically insulating material (61) is deposited on the walls of said troughs; at least one electrically conductive material (62,63) is deposited on the insulated walls of the troughs, and the silicon circuit wafer (50) is thinned down by chemical and/or mechanical abrasion of the rear surface thereof until the conductive material (62,63) deposited in the troughs is reached.

Description

PROCEDE D'INTERCONNEXION DE CIRCUITS INTEGRES METHOD FOR INTERCONNECTING INTEGRATED CIRCUITS
La présente invention concerne les techniques d'interconnexion des circuits intégrés, et plus particulièrement les techniques d'interconnexion directe par empilement de plaquettes de circuits intégrés.The present invention relates to techniques for interconnecting integrated circuits, and more particularly to techniques for direct interconnection by stacking integrated circuit wafers.
Depuis l'apparition des circuits intégrés sur plaquettes de silicium, les méthodes d'interconnexion des circuits intégrés ont fait l'objet de nombreuses recherches et développements. Rappelons qu'un circuit intégré se présente sous la forme d'une plaquette de silicium de faibles dimensions (ou puce de silicium) qui présente sur sa face avant une région de circuit intégré et des plages de contact reliées électriquement à la région de circuit intégré. Dans de nombreuses réalisations, les plaquettes de circuits intégrés sont enfermées dans des boîtiers pourvus de broches métalliques et leur interconnexion est assurée par des planches de circuits imprimés comportant des plages métallisées sur lesquelles sont soudées les broches des boîtiers.Since the appearance of integrated circuits on silicon wafers, the methods of interconnecting integrated circuits have been the subject of much research and development. Recall that an integrated circuit is in the form of a small silicon wafer (or silicon chip) which has on its front face an integrated circuit region and contact pads electrically connected to the integrated circuit region . In many embodiments, the integrated circuit wafers are enclosed in boxes provided with metal pins and their interconnection is ensured by printed circuit boards having metallized areas on which the pins of the boxes are welded.
L'inconvénient de cette technique d'interconnexion est qu'elle conduit à réaliser des systèmes électroniques encombrants malgré les divers progrès réalisés dans le domaine des circuits imprimés. On a ainsi développé, parallèlement, des techniques de montage direct de circuits intégrés sur un support d'interconnexion, pour les applications où un haut niveau d'intégration est nécessaire .The disadvantage of this interconnection technique is that it leads to bulky electronic systems despite the various advances made in the field of printed circuits. We have thus developed, in parallel, direct mounting techniques of integrated circuits on an interconnection support, for applications where a high level of integration is necessary.
La figure 2 représente schématiquement une première technique classique de report d'une plaquette de circuit intégré 1 sur un support d'interconnexion 10, dite "flip chip" ("puce à l'envers"). La plaquette 1 est montée "à l'envers" sur le support 10, sa face active 2 étant orientée vers le bas. Les plages de contact 3 de la plaquette sont directement fixées sur des plages métallisées 11 du support d'interconnexion 10 au moyen d'un alliage fusible comme de 1 ' étain-plomb ou une colle électriquement conductrice, formant des protubérancesFIG. 2 schematically represents a first conventional technique for transferring an integrated circuit board 1 onto an interconnection support 10, known as a "flip" chip "(" chip upside down "). The plate 1 is mounted" upside down "on the support 10, its active face 2 being oriented downwards. The contact pads 3 of the plate are directly fixed on metallized areas 11 of the interconnection support 10 by means of a fusible alloy such as tin-lead or an electrically conductive adhesive, forming protuberances
("bumps") à la surface des plages de contact 3. Le support d'interconnexion 10 peut être une planche de circuit imprimé ou un support de plus faible encombrement comme un circuit hybride couches épaisses ("thic film") ou un circuit couches minces ("thin film") sur substrat de céramique (A1203) .("bumps") on the surface of the contact pads 3. The interconnection support 10 can be a printed circuit board or a support of smaller dimensions such as a thick film hybrid circuit ("thic film") or a layered circuit thin ("thin film") on ceramic substrate (A1 2 0 3 ).
La figure 2 représente schématiquement une deuxième technique classique de montage d'une plaquette de circuit intégré 20 sur un support d'interconnexion 10, dite "chip and ire" ("puce et fil") . La plaquette de silicium 20 est montée cette fois "à l'endroit" et ses plages de contact 21 sont reliées à des plages métallisées 11 du support d'interconnexion 10 par câblage ultrasonique ("ultrasonic wire bonding"), c'est-à-dire au moyen de fils métalliques 22 soudés aux ultrasons.FIG. 2 schematically represents a second conventional technique for mounting an integrated circuit board 20 on an interconnection support 10, called "chip and ire" ("chip and wire"). The silicon wafer 20 is mounted this time "at the place" and its contact pads 21 are connected to metallized pads 11 of the interconnection support 10 by ultrasonic wiring ("ultrasonic wire bonding"), that is to say - say by means of metal wires 22 welded with ultrasound.
Toutefois, comme une plaquette de circuit intégré présente une surface importante au regard de son épaisseur, la recherche d'une intégration encore plus poussée a conduit l'homme de l'art à envisager le concept "d'empilement de circuits intégrés".However, as an integrated circuit wafer has a large surface area with regard to its thickness, the search for even more integration has led those skilled in the art to consider the concept of "stacking integrated circuits".
A titre d'exemple, la figure 3 représente un empilement de deux plaquettes de circuits intégrés 20, 30 ayant leurs faces actives orientées vers le haut. Les plages de contact 21, 31 de chaque plaquette 20, 30 sont, comme dans le montage précédent, connectés à des plages métallisées 11 du support d'interconnexion 10 par des fils métalliques 22. Cette technique trouve vite ses limites au-delà de deux, voire trois circuits intégrés empilés, en raison du profil en "marches d'escalier" que doit présenter l'assemblage. En effet, la plaquette 30 doit être d'une surface inférieure à celle de la plaquette 20, afin de ne pas masquer les contacts 21 de cette dernière. De plus, le fait que les contacts 31 de la plaquette supérieure se trouvent à une plus grande distance des plages 11 du support d'interconnexion 10 rend les opérations de câblage plus délicates. Les boucles de fils 22 sont plus longues et plus fragiles et de nombreuses difficultés apparaissent dans le cadre d'une production industrielle.By way of example, FIG. 3 represents a stack of two integrated circuit boards 20, 30 having their active faces oriented upwards. The contact pads 21, 31 of each plate 20, 30 are, as in the previous assembly, connected to metallized pads 11 of the interconnection support 10 by metal wires 22. This technique quickly finds its limits beyond two, or even three stacked integrated circuits, due to the "staircase" profile that the assembly must present. Indeed, the plate 30 must be of a surface smaller than that of the plate 20, so as not to mask the contacts 21 of the latter. In addition, the fact that the contacts 31 of the upper plate are located at a greater distance from the pads 11 of the interconnection support 10 makes the wiring operations more delicate. The son loops 22 are longer and more fragile and many difficulties arise in the context of industrial production.
La figure 4 représente une technique récente d'empilement de plusieurs circuits intégrés, qui présente l'avantage d'être reproductible à l'échelle industrielle sans problèmes rédhibitoires de fiabilité. Chaque plaquette de circuit intégré 40 est agencée dans un microboîtier 45 constitué par un cadre en polyimide 46 rempli de résine 47. La connexion électrique des plaquettes de circuits intégrés 40 est assurée par des conducteurs plats 48FIG. 4 represents a recent technique for stacking several integrated circuits, which has the advantage of being reproducible on an industrial scale without crippling problems of reliability. Each integrated circuit board 40 is arranged in a micro-housing 45 constituted by a polyimide frame 46 filled with resin 47. The electrical connection of the integrated circuit boards 40 is ensured by flat conductors 48
("leads") se prolongeant à l'extérieur des microboîtiers("leads") extending outside the micropacks
45 pour former des pattes métalliques 49 de faibles dimensions. Les pattes 49 de même rang des microboîtiers 45 sont soudées ensemble, à leurs extrémités, aux plages métallisées 11 d'un support d'interconnexion 10.45 to form metal legs 49 of small dimensions. The tabs 49 of the same rank of the micro-housings 45 are welded together, at their ends, to the metallized areas 11 of an interconnection support 10.
En pratique, l'épaisseur totale de l'empilement de quatre circuits intégrés représenté sur la figure 4 n'excède pas 0,5 millimètre, les plaquettes 40 étant d'une épaisseur de l'ordre de 30 à 50 micromètres et les microboîtiers 45 d'une épaisseur de l'ordre de 100 micromètres. Notons qu'une telle technique d'empilement n'est devenue possible qu'en raison des récents progrès réalisés dans le domaine des techniques d'amincissement des plaquettes de silicium. Les plaquettes de sil Lcium présentent en effet une épaisseur initiale de plusieurs centaines de micromètres au moment où les circuits intégrés y sont implantés (à ce stade, on les appelle des "wafers") et sont ensuite amincies a partir de leur face arrière par des procédés dits de "backlappmg" combinant la gravure chimique et l'abrasion mécanique, avant d'être découpées en plaquettes individuelles de circuits intègres. A l'heure actuelle, on arrive a amincir des plaquettes de silicium jusqu'à 30 a 50 micromètres et il n'est pas douteux que cette épaisseur soit encore réduite à 1 ' avenir .In practice, the total thickness of the stack of four integrated circuits shown in FIG. 4 does not exceed 0.5 millimeters, the plates 40 being of a thickness of the order of 30 to 50 micrometers and the micro-housings 45 with a thickness of the order of 100 micrometers. It should be noted that such a stacking technique has only become possible due to recent progress made in the field of techniques for thinning silicon wafers. Lcium sil wafers indeed have an initial thickness of several hundred micrometers when the integrated circuits are installed there (at this stage, they are called "wafers") and are then thinned from their back side by so-called "backlappmg" processes combining chemical etching and mechanical abrasion , before being cut into individual integrated circuit boards. At present, we manage to thin silicon wafers up to 30 to 50 micrometers and there is no doubt that this thickness will be further reduced in the future.
Maigre le haut degré d'intégration qu'offre l'empilement qui vient d'être décrit, les microboîtiers 45 en polyimide s'avère d'un prix de revient non négligeable et leur fabrication nécessite un savoir-faire et un outillage industriel important.Despite the high degree of integration offered by the stack which has just been described, the polyimide micro-housings 45 prove to be of a non-negligible cost price and their manufacture requires considerable know-how and industrial tools.
L'objectif de la présente invention est de prévoir une solution alternative pour empiler des plaquettes de silicium, qui présente l'avantage d'être simple et qui puisse être mise en œuvre au moyen des techniques conventionnelles de report de puces sur un support d'interconnexion, notamment la technique "flip chip" précédemment évoquée.The objective of the present invention is to provide an alternative solution for stacking silicon wafers, which has the advantage of being simple and which can be implemented by means of conventional techniques for transferring chips onto a support. interconnection, in particular the "flip chip" technique mentioned above.
Plus particulièrement, un objectif de la présente invention est de prévoir un moyen permettant d'interconnecter des circuits intègres empilés.More particularly, an objective of the present invention is to provide a means for interconnecting integrated stacked circuits.
Pour atteindre cet objectif, la présente invention repose sur une idée simple mais non moins inventive dans son application aux plaquettes de circuits intégrés, qui est de prévoir des plaquettes de circuits intègres comportant des contacts en face arrière reliés électriquement par des traversées conductrices aux régions de circuits intégrés en face avant. De telles traversées conductrices permettent de connecter directement la face arrière d'une plaquette de silicium à la face avant d'une autre plaquette ou de connecte'; la face arrière d'une plaquette de silicium à des plages métallisées d'un support d' interconnexion.To achieve this objective, the present invention is based on a simple but no less inventive idea in its application to integrated circuit boards, which is to provide integrated circuit boards comprising contacts on the rear face electrically connected by conductive bushings to the regions of integrated circuits on the front panel. Such conductive bushings make it possible to directly connect the rear face of a silicon wafer on the front face of another wafer or connector; the rear face of a silicon wafer with metallized areas of an interconnection support.
Toutefois, la réalisation de traversées dans une plaquette de silicium d'une épaisseur de plusieurs centaines de micromètre est une opération rédhibitoire sur le plan technique.However, making crossings in a silicon wafer with a thickness of several hundred micrometers is an unacceptable technical operation.
Ainsi, la présente invention prévoit tout d'abord un procédé de fabrication de traversées conductrices dans une plaquette de silicium, comprenant les étapes consistant à réaliser des cuvettes d'une profondeur déterminée sur la face avant de la plaquette de silicium ; déposer sur les parois des cuvettes un matériau électriquement isolant ; déposer au moins un matériau électriquement conducteur sur les parois isolées des cuvettes, et amincir la plaquette de silicium, par abrasion chimique et/ou mécanique de sa face arrière, jusqu'à atteindre le matériau conducteur déposé dans les cuvettes .Thus, the present invention firstly provides a method of manufacturing conductive bushings in a silicon wafer, comprising the steps of producing cuvettes of a determined depth on the front face of the silicon wafer; depositing on the walls of the bowls an electrically insulating material; deposit at least one electrically conductive material on the insulated walls of the cuvettes, and thin the silicon wafer, by chemical and / or mechanical abrasion of its rear face, until reaching the conductive material deposited in the cuvettes.
Selon un mode de réalisation, l'étape de dépôt sur les parois des cuvettes d'un matériau conducteur comprend une étape de remplissage des cuvettes avec au moins un matériau conducteur.According to one embodiment, the step of depositing on the walls of the cuvettes a conductive material comprises a step of filling the cuvettes with at least one conductive material.
Selon un mode de réalisation, les cuvettes sont réalisées avant l'implantation d'une région de circuit intégré sur la plaquette de silicium.According to one embodiment, the cuvettes are produced before the implantation of an integrated circuit region on the silicon wafer.
Selon un mode de réalisation, les cuvettes sont réalisées après l'implantation d'une région de circuit intégré sur la plaquette de silicium. Selon un mode de réalisation, il est prévu une étape consistant à déposer sur la face arrière de la plaquette au moins une couche d'un matériau électriquement isolant, et une étape consistant à réaliser sur la face arrière des plages de contact connectées aux traversées conductrices .According to one embodiment, the cuvettes are produced after the implantation of an integrated circuit region on the silicon wafer. According to one embodiment, there is provided a step consisting in depositing on the rear face of the wafer at least one layer of an electrically insulating material, and a step consisting in producing on the rear face contact pads connected to the conductive bushings .
Selon un mode de réalisation, il est prévu une étape de découpe de la plaquette de silicium en passant par le milieu des traversées conductrices pour obtenir au moins une plaquette de silicium comportant des traversées conductrices sectionnées selon leur axe longitudinal, longeant les flancs de la plaquette.According to one embodiment, a step of cutting the silicon wafer is provided, passing through the middle of the conductive bushings to obtain at least one silicon wafer comprising conductive bushings sectioned along their longitudinal axis, along the sides of the wafer. .
La présente invention prévoit également un procédé pour interconnecter au moins deux plaquettes de circuits intégrés, comprenant les étapes consistant à prévoir une plaquette de circuit intégré comprenant des contacts en face arrière reliés électriquement à une région de circuit intégré en face avant par des traversées conductrices traversant la plaquette de part en part, et souder ou coller les contacts en face arrière de la plaquette à des contacts en face avant d'une autre plaquette de silicium.The present invention also provides a method for interconnecting at least two integrated circuit boards, comprising the steps consisting in providing an integrated circuit board comprising rear panel contacts electrically connected to an integrated circuit region on the front panel through conductive bushings passing through. the wafer right through, and soldering or bonding the contacts on the rear face of the wafer to contacts on the front face of another silicon wafer.
Selon un mode de réalisation, les traversées conductrices comprennent des orifices pratiques dans la plaquette de silicium, une couche électriquement isolante recouvrant les parois de l'orifice, et au moins un matériau électriquement conducteur recouvrant les parois isolées de l'orifice ou remplissant entièrement l'orifice.According to one embodiment, the conductive bushings include practical orifices in the silicon wafer, an electrically insulating layer covering the walls of the orifice, and at least one electrically conductive material covering the insulated walls of the orifice or completely filling the 'orifice.
Selon un mode de réalisation, les traversées conductrices sont sectionnées selon leur axe longitudinal et longent les flancs des plaquettes. La présente invention concerne également une plaquette de silicium comportant une région de circuit intégré implantée sur sa face avant, des traversées conductrices connectées à la région de circuit intégré, traversant la plaquette de part en part et débouchant sur sa face arrière .According to one embodiment, the conductive crossings are sectioned along their longitudinal axis and run along the sides of the plates. The present invention also relates to a silicon wafer comprising an integrated circuit region located on its front face, conductive bushings connected to the integrated circuit region, passing right through the wafer and emerging on its rear face.
Selon un mode de réalisation, une traversée conductrice comprend un orifice traversant la plaquette de silicium, une couche électriquement isolante recouvrant les parois de l'orifice, et au moins un matériau électriquement conducteur recouvrant les parois isolées de l'orifice ou remplissant entièrement l'orifice.According to one embodiment, a conductive bushing comprises an orifice passing through the silicon wafer, an electrically insulating layer covering the walls of the orifice, and at least one electrically conductive material covering the insulated walls of the orifice or completely filling the orifice.
Selon un mode de réalisation, la plaquette comprend sur sa face arrière des contacts isolés électriquement de la plaquette et reliés électriquement à des traversées conductrices .According to one embodiment, the wafer comprises on its rear face contacts electrically isolated from the wafer and electrically connected to conductive bushings.
Selon un mode de réalisation, la plaquette comprend en outre des traversées conductrices qui ne sont pas connectées à la région de circuit intégré.According to one embodiment, the wafer further comprises conductive bushings which are not connected to the integrated circuit region.
Selon un mode de réalisation, la plaquette comprend des traversées conductrices sectionnées selon leur axe longitudinal, longeant les flancs de la plaquette.According to one embodiment, the plate comprises conductive cross-sections sectioned along their longitudinal axis, along the sides of the plate.
La présente invention prévoit également un assemblage de plaquettes de silicium comprenant au moins un empilement de deux plaquettes de silicium, chaque plaquette comprenant une région de circuit intégré en face avant et des contacts soudés ou collés à des contacts de l'autre plaquette, dans lequel au moins une plaquette comprend des contacts en face arrière et des traversées conductrices traversant la plaquette; de part en part, reliant électriquement les contacts en face arrière à la région de circuit intégré. Selon un mode de réalisation, les contacts en face arrière d'une plaquette sont soudés ou collés à des contacts en face avant de l'autre plaquette de silicium.The present invention also provides an assembly of silicon wafers comprising at least one stack of two silicon wafers, each wafer comprising an integrated circuit region on the front face and contacts welded or bonded to contacts of the other wafer, in which at least one plate includes contacts on the rear face and conductive bushings passing through the plate; right through, electrically connecting the contacts on the rear face to the integrated circuit region. According to one embodiment, the contacts on the rear face of a wafer are welded or glued to contacts on the front face of the other silicon wafer.
Selon un mode de réalisation, des traversées conductrices comprennent des orifices pratiqués dans la plaquette de silicium, une couche électriquement isolante recouvrant les parois de l'orifice, et au moins un matériau électriquement conducteur recouvrant les parois isolées de l'orifice ou remplissant entièrement l'orifice.According to one embodiment, conductive bushings comprise orifices made in the silicon wafer, an electrically insulating layer covering the walls of the orifice, and at least one electrically conductive material covering the walls insulated from the orifice or completely filling the 'orifice.
Selon un mode de réalisation, au moins une plaquette de silicium comporte au moins une traversée conductrice qui n'est pas connectée a sa région de circuit intègre.According to one embodiment, at least one silicon wafer has at least one conductive bushing which is not connected to its integrated circuit region.
Selon un mode de réalisation, au moins une plaquette comprend des traversées conductrices sectionnées selon leur axe longitudinal, longeant les flancs de la plaquette.According to one embodiment, at least one plate comprises conductive cross-sections sectioned along their longitudinal axis, along the sides of the plate.
Ces objets, caractéristiques ainsi que d'autres de la présente invention seront exposes plus en détail dans la description suivante d'un procède de fabrication de traversées conductrices selon 1 ' invention et de diverses variantes de ce procédé, ainsi que d'exemples d'assemblages de circuits intégres selon l'invention, en relation avec les figures jointes parmi lesquelles : - les figures 1 à 4 précédemment décrites illustrent des méthodes classiques d'interconnexion de circuits intégrés, les figures 5A a 5E sont des vues en coupe d'une plaquette de silicium illustrant un procédé de fabrication de traversées conductrices selon l'invention, - les figures 6A à 6D illustrent une variante de réalisation de certaines étapes du procédé des figures 5A à 5E, - les figures 7 à 8A, 9 à 13 sont des vues en coupe de plaquettes de silicium représentant diverses variantes de réalisation de traversées conductrices selon l'invention,These objects, characteristics as well as others of the present invention will be explained in more detail in the following description of a process for manufacturing conductive bushings according to the invention and of various variants of this process, as well as examples of integrated circuit assemblies according to the invention, in relation to the attached figures among which: - Figures 1 to 4 previously described illustrate conventional methods of interconnecting integrated circuits, Figures 5A to 5E are sectional views of a silicon wafer illustrating a method of manufacturing conductive bushings according to the invention, - FIGS. 6A to 6D illustrate an alternative embodiment of certain steps of the method of FIGS. 5A to 5E, FIGS. 7 to 8A, 9 to 13 are sectional views of silicon wafers representing various alternative embodiments of conductive bushings according to the invention,
- la figure 8B représente la face arrière d'une plaquette de silicium vue en coupe sur la figure 8A,FIG. 8B represents the rear face of a silicon wafer seen in section in FIG. 8A,
- les figures 14, 15 sont des vues en coupe schématique d'assemblages de circuits intégrés selon l'invention,FIGS. 14, 15 are diagrammatic section views of assemblies of integrated circuits according to the invention,
- les figures 16A et 16B représentent par une vue en perspective et une vue de dessus une plaquette de circuit intégré comprenant des traversées conductrices selon l'invention agencées sur les bords de la plaquette, la figure 17 est le schéma électrique d'un circuit électronique comprenant des circuits intégrés devant être interconnectés, - les figures 18A à 18D illustrent un procédé d'interconnexion selon l'invention des circuits intégrés de la figure 17, et les figures 19A à 19D illustrent un procédé de fabrication de cuvettes dans une plaquette de silicium par gravure anisotrope.- Figures 16A and 16B show a perspective view and a top view of an integrated circuit board comprising conductive bushings according to the invention arranged on the edges of the board, Figure 17 is the electrical diagram of an electronic circuit comprising integrated circuits to be interconnected, - Figures 18A to 18D illustrate a method of interconnection according to the invention of the integrated circuits of Figure 17, and Figures 19A to 19D illustrate a method of manufacturing cuvettes in a silicon wafer by anisotropic etching.
Les figures 5A à 5E sont des vues en coupe partielle d'une plaquette de silicium et illustrent un procédé de fabrication de traversées conductrices selon l'invention.FIGS. 5A to 5E are views in partial section of a silicon wafer and illustrate a method of manufacturing conductive bushings according to the invention.
A l'étape représentée sur la figure 5A, on commence par réaliser des cuvettes 60 d'une profondeur déterminée dans une plaquette vierge de silicium monocristallin 50, appelée communément un "wafer" et destinée à recevoir des circuits intégrés. Le wafer 50 présente une épaisseur standard de plusieurs centaines de micromètres, par exemple 700 micromètres pour un wafer d'un diamètre de 6 pouces (15,24 cm). Les cuvettes 60 sont pratiquées sur une profondeur de l'ordre de 30 à 150 micromètres selon l'épaisseur finale du wafer 50 visée au terme d'une étape d'amincissement décrite plus loin. Les cuvettes 60 sont pratiquées par gravure isotrope ou anisotrope du silicium ou par tout autre procédé connu permettant de réaliser des trous borgnes à la surface d'une plaquette de silicium, notamment les procédés de gravure au plasma ou au laser. Il doit être noté que sur les figures 5A à 5E et les figures 7 à 13 décrites plus loin, les cuvettes sont représentées avec des parois inclinées en raison d'une gravure anisotrope du silicium. Toutefois, ces cuvettes pourraient également présenter des parois droites ou des parois de forme irrégulière selon la technique de gravure choisie. Un procédé de gravure anisotrope au moyen d'une solution de potasse sera décrit à titre d'exemple dans les dernières pages de la présente demande .In the step shown in FIG. 5A, one begins by making cuvettes 60 of a determined depth in a virgin monocrystalline silicon wafer 50, commonly called a "wafer" and intended to receive integrated circuits. The wafer 50 has a standard thickness of several hundred micrometers, for example 700 micrometers for a wafer with a diameter of 6 inches (15.24 cm). The bowls 60 are made to a depth of the order of 30 to 150 micrometers depending on the final thickness of the wafer 50 aimed at the end of a thinning step described below. The bowls 60 are formed by isotropic or anisotropic etching of the silicon or by any other known method enabling blind holes to be produced on the surface of a silicon wafer, in particular the plasma or laser etching methods. It should be noted that in Figures 5A to 5E and Figures 7 to 13 described below, the cuvettes are shown with inclined walls due to an anisotropic etching of the silicon. However, these bowls could also have straight walls or walls of irregular shape depending on the engraving technique chosen. An anisotropic etching process using a potassium hydroxide solution will be described by way of example in the last pages of this application.
Comme illustre en figure 5B, diverses régions de circuits intégrés 51 sont ensuite réalisées de façon collective sur la face avant du wafer 50, par implantation/diffusion de dopants, dépôt et gravure de couches d'oxyde, de silicium polycπstallin... (une seule région 51 étant partiellement représentée sur la figure) . Les régions de circuits intégres 51 comprennent divers composants électroniques ou électriques, comme des transistors, des résistances, des capacités, des pistes conductrices... Les étapes d'implantation des régions 51 sont en soi classiques et ne seront pas décrites ici dans un souci de simplicité. La présence des cuvettes 60 n'implique aucune modification sensible des masques de gravure et de diffusion.As illustrated in FIG. 5B, various regions of integrated circuits 51 are then produced collectively on the front face of the wafer 50, by implantation / diffusion of dopants, deposition and etching of layers of oxide, of polycπstallin silicon ... (a only region 51 being partially shown in the figure). The regions of integrated circuits 51 include various electronic or electrical components, such as transistors, resistors, capacitors, conductive tracks, etc. The steps for implanting regions 51 are in themselves conventional and will not be described here for the sake of of simplicity. The presence of the bowls 60 does not imply any appreciable modification of the etching and diffusion masks.
Au cours de la fabrication des régions 51, on dépose à la surface du wafer 50 une couche électriquement isolante 61 qui s'étend depuis les circuits intégrés 51 jusqu'à l'intérieur des cuvettes 60 et isole les parois de ces dernières. Le matériau 51 est classiquement de l'oxyde de silicium Sι02 ou tout autre oxyde ou isolant connu, par exemple de l'oxynitrure de silicium SiON. Egalement, on dépose et on grave une couche de matériau conducteur 62 comme de l'aluminium ou du cuivre, qui s'étend depuis les régions de circuits intégrés 51 jusqu'aux cuvettes 60 et recouvre les parois isolées de ces dernières. Dans les parties s ' étendant entre les circuits intégres 51 et les cuvettes 60, la couche conductrice 62 est gravée pour former des pistes conductrices ou des tronçons conducteurs reliant électriquement les cuvettes 60 à des entrées/sorties des régions de circuits intégrés 51. Ainsi, le wafer 50 représenté sur la figure 5B est semblable à un wafer classique, à la différence près que les contacts réalisés classiquement a la périphérie des régions de circuit intégre 51 prennent ici la forme de cuvettes conductrices 60.During the manufacture of the regions 51, an electrically insulating layer 61 is deposited on the surface of the wafer 50 which extends from the integrated circuits 51 to the interior of the bowls 60 and isolates the walls of the latter. The material 51 is conventionally silicon oxide Sι0 2 or any other known oxide or insulator, for example silicon oxynitride SiON. Also, a layer of conductive material is deposited and etched 62 such as aluminum or copper, which extends from the regions of integrated circuits 51 to the cuvettes 60 and covers the insulated walls of the latter. In the parts extending between the integrated circuits 51 and the cuvettes 60, the conductive layer 62 is etched to form conductive tracks or conductive sections electrically connecting the cuvettes 60 to inputs / outputs of the regions of integrated circuits 51. Thus, the wafer 50 shown in FIG. 5B is similar to a conventional wafer, with the difference that the contacts conventionally made on the periphery of the integrated circuit regions 51 here take the form of conductive cuvettes 60.
Au terme du processus, la surface du wafer 50 est recouverte par une couche de passivation 52 comme une pâte de verre durcie ou un polyimide, qui présente en regard des cuvettes 60 des ouvertures pratiquées par gravure sèche ou humide.At the end of the process, the surface of the wafer 50 is covered by a passivation layer 52 like a hardened glass paste or a polyimide, which has openings made by dry or wet etching opposite the bowls 60.
A l'étape représentée sur la figure 5C, on remplit les cuvettes 60 avec un matériau d'assemblage 64 formant des protubérances ("bumps"), par exemple un alliage etain- plomb SnPb, une colle conductrice a charge d'argent, une pâte conductrice ACF ("Anisotropic Conductive Paste"), un film conducteur ACF ("Anisotropic Conductive Film")... ces matériaux étant connus de l'homme de l'art et utilisés dans la technique "flip chip" citée au préambule. Le matériau d'assemblage 64 est dépose directement dans les cuvettes 60 ou, comme représenté sur la figure 5C, par l'intermédiaire d'un matériau de jonction 63 compatible avec la couche conductrice 62. Le matériau de jonction 63 est par exemple du Nickel, du Zincate (Nickel-Zinc) , un alliage Tungstène-Titane... déposé par projection ("sputtering") ou formé par croissance électrochimique . De façon générale, les questions de compatibilité de matériaux sont connues de l'homme de l'art et ont été résolues dans l'art antérieur. Par exemple, le matériau de jonction 63 est inutile si la couche 62 est en cuivre (le cuivre pouvant supporter tout type de matériau d'assemblage) et est au contraire nécessaire si la couche 62 est en aluminium et que le matériau d'assemblage utilisé est de l'étain- plomb.In the step shown in FIG. 5C, the cuvettes 60 are filled with an assembly material 64 forming protuberances ("bumps"), for example a tin-lead alloy SnPb, a conductive adhesive charged with silver, a ACF conductive paste ("Anisotropic Conductive Paste"), an ACF conductive film ("Anisotropic Conductive Film") ... these materials being known to those skilled in the art and used in the "flip chip" technique mentioned in the preamble. The assembly material 64 is deposited directly in the cuvettes 60 or, as shown in FIG. 5C, via a junction material 63 compatible with the conductive layer 62. The junction material 63 is for example nickel , Zincate (Nickel-Zinc), a Tungsten-Titanium alloy ... deposited by projection ("sputtering") or formed by electrochemical growth. In general, material compatibility issues are known to those skilled in the art and have been resolved in the prior art. For example, the joining material 63 is useless if the layer 62 is made of copper (copper can support any type of joining material) and is on the contrary necessary if the layer 62 is made of aluminum and the joining material used is tin-lead.
A l'étape de la figure 5D, le wafer 50 est renversé sur une bande souple 59 ("backlap tape"), de préférence une bande du type "UV" dont l'adhésion sur la face avant du wafer 50 peut être dégradée au moment voulu par une exposition aux ultraviolets. La face arrière du wafer 50 est ensuite attaquée par abrasion chimique et mécanique ("backlapping" ) jusqu'à ce que silicium au fond des cuvettes 60 soit enlevé et que l'on atteigne le matériau de jonction 63 ou le matériau d'assemblage 64 (en l'absence de matériau de jonction 63). Les cuvettes 60 deviennent ainsi des traversées conductrices selon l'invention, que l'on désignera par la même référence 60, débouchant sur la face arrière du wafer aminci 50. L'épaisseur du wafer aminci 50 est de l'ordre de 30 a 150 micromètres selon la profondeur initiale des cuvettes 60.In the step of FIG. 5D, the wafer 50 is inverted on a flexible strip 59 ("backlap tape"), preferably a strip of the "UV" type whose adhesion on the front face of the wafer 50 can be degraded to appropriate time by exposure to ultraviolet light. The rear face of the wafer 50 is then attacked by chemical and mechanical abrasion ("backlapping") until the silicon at the bottom of the bowls 60 is removed and the junction material 63 or the assembly material 64 is reached. (in the absence of joint material 63). The bowls 60 thus become conductive crossings according to the invention, which will be designated by the same reference 60, opening onto the rear face of the thinned wafer 50. The thickness of the thinned wafer 50 is of the order of 30 to 150 micrometers according to the initial depth of the bowls 60.
A ce stade du procédé selon l'invention, le wafer 50 est un produit inachevé du point de vue industriel mais constitue néanmoins un objet fini selon un aspect de l'invention. En effet, grâce aux traversées 60, le wafer 50 offre une pluralité de contacts en face arrière qui permettent, si on le souhaite, de tester électriquement les régions de circuits intégrés 51 au moyen d'une carte à pointes sans qu'il soit nécessaire de retirer le wafer de la bande support 59. Ainsi, les traversées conductrices 60 selon l'invention peuvent n'être réalisées qu'aux fins du test électrique du wafer 50 par sa face arrière. Cette possibilité est avantageuse lorsque le wafer 50 est trop fragile pour être manipulé et posé sur un plateau de test classique. Un autre avantage est que les traversées 60 forment des zones de relaxation des contraintes mécaniques qui s'exercent sur le wafer 50. Il est en effet bien connu que les contraintes mécaniques apparaissant après la formation de régions de circuits intégrés 51 fragilisent les wafers et rendent périlleux leur amincissement au-delà d'une certaine épaisseur. En réalisant les traversées 60, on améliore sensiblement la résistance du wafer 50 et l'on facilite son amincissement au-delà des limites généralement admises dans l'état de la technique.At this stage of the process according to the invention, the wafer 50 is an unfinished product from the industrial point of view but nevertheless constitutes a finished object according to one aspect of the invention. Indeed, thanks to the crossings 60, the wafer 50 offers a plurality of contacts on the rear face which allow, if desired, to electrically test the regions of integrated circuits 51 by means of a spike card without it being necessary. to remove the wafer from the support strip 59. Thus, the conductive bushings 60 according to the invention may only be produced for the purpose of the electrical test of the wafer 50 by its rear face. This possibility is advantageous when the wafer 50 is too fragile to be handled and placed on a classic test tray. Another advantage is that the crossings 60 form areas for relaxation of the mechanical stresses exerted on the wafer 50. It is indeed well known that the mechanical stresses appearing after the formation of regions of integrated circuits 51 weaken the wafers and make perilous their thinning beyond a certain thickness. By making the crossings 60, the resistance of the wafer 50 is significantly improved and its thinning is facilitated beyond the limits generally accepted in the state of the art.
La face arrière du wafer 50 peut ensuite être entièrement recouverte d'une couche isolante afin d'enterrer les contacts en face arrière, si ceux-ci n'ont été réalisés qu'aux fins du test électrique des régions de circuits intégrés 51, comme on l'a proposé ci-dessus.The rear face of the wafer 50 can then be entirely covered with an insulating layer in order to bury the contacts on the rear face, if these were only made for the purpose of the electrical test of the regions of integrated circuits 51, such as we proposed it above.
L'objectif premier de la présente invention étant toutefois de permettre l'assemblage de plaquettes de circuits intégrés, le procédé de l'invention sera généralement poursuivi, comme illustré sur la figure 5E, par une étape de dépôt sur la face arrière du wafer 50 d'une couche isolante 53 présentant des ouvertures 54 aux endroits où débouchent les traversées conductrices 60. La couche isolante 53 est par exemple un oxyde dur non thermique déposé selon la technologie LPCVD ("Low Pressure Chemical Vapour Déposition") à basse pression et à faible température, comme de l'oxynitrure de silicium SiON, ou un matériau du type "BCB Photoimaginable", ou encore un polyimide déposé en une ou plusieurs couches. Les ouvertures 54 sont réalisées par gravure chimique ou mécanique (plasma, laser) selon le matériau formant la couche 53. On dépose ensuite dans les ouvertures 54 un matériau d'assemblage 65 formant des protubérances en face arrière, qui peut être identique au matériau d'assemblage 64 formant les protubérances en face avant. Au terme du procédé qui vient d'être décrit, on dispose d'un wafer de silicium comportant des régions de circuits intégrés 51 et des protubérances 64, 65 ("bumps") en face avant et en face arrière reliées électriquement aux régions 51. Comme cela sera décrit plus en détail par la suite, les protubérances 64, 65 permettent de réaliser des empilements de circuits intégres 51 d'une manière plus simple que dans l'art antérieur, par des étapes d'assemblage réalisées au "niveau wafer" ("wafer level") ou au "niveau puce" ("chip level").The primary objective of the present invention however being to allow the assembly of integrated circuit wafers, the method of the invention will generally be continued, as illustrated in FIG. 5E, by a deposition step on the rear face of the wafer 50 an insulating layer 53 having openings 54 at the places where the conductive crossings open 60. The insulating layer 53 is for example a non-thermal hard oxide deposited according to LPCVD (Low Pressure Chemical Vapor Deposition) technology at low pressure and at low temperature, such as silicon oxynitride SiON, or a material of the "BCB Photoimaginable" type, or a polyimide deposited in one or more layers. The openings 54 are produced by chemical or mechanical etching (plasma, laser) depending on the material forming the layer 53. An assembly material 65 is then deposited in the openings 54 forming protuberances on the rear face, which may be identical to the material d 'assembly 64 forming the protrusions on the front face. At the end of the process which has just been described, there is a silicon wafer comprising regions of integrated circuits 51 and protrusions 64, 65 ("bumps") on the front face and on the rear face electrically connected to the regions 51. As will be described in more detail below, the protrusions 64, 65 make it possible to produce stacks of integrated circuits 51 in a simpler manner than in the prior art, by assembly steps carried out at the "wafer level"("waferlevel") or at "chip level".
On décrira tout d'abord diverses variantes de l'invention se rapportant au procédé de fabrication des traversées conductrices, à la structure des traversées et a la structure des contacts en face avant et arrière.We will first describe various variants of the invention relating to the method of manufacturing the conductive bushings, the structure of the bushings and the structure of the contacts on the front and rear faces.
Selon une variante d'exécution du procédé de l'invention illustrée en figure 6A, on commence par fabriquer sur la face avant du wafer 50 des régions de circuits intégrés 51 pourvues de contacts conventionnels 55 ("pads"), accessibles grâce à des ouvertures pratiquées dans la couche de passivation 52 (verre ou polyimide) et comprenant comme précédemment une couche conductrice 62 (aluminium ou cuivre) reposant sur une couche isolante 61 (oxyde) .According to an alternative embodiment of the method of the invention illustrated in FIG. 6A, one begins by manufacturing on the front face of the wafer 50 regions of integrated circuits 51 provided with conventional contacts 55 ("pads"), accessible through openings practiced in the passivation layer 52 (glass or polyimide) and comprising as previously a conductive layer 62 (aluminum or copper) resting on an insulating layer 61 (oxide).
A l'étape représentée en figure 6B, on réalise des cuvettes 70 au milieu des contacts 55, par gravure au plasma ou gravure laser, ou encore par gravure chimique après avoir déposé à la surface du wafer 50 un masque de gravure .In the step shown in FIG. 6B, cuvettes 70 are produced in the middle of the contacts 55, by plasma etching or laser etching, or even by chemical etching after having deposited an etching mask on the surface of the wafer 50.
A l'étape représentée en figure 6C, on dépose sur les parois des cuvettes 70 une couche isolante 71 sans recouvrir la totalité de la couche conductrice 62, qui forme autour des cuvettes 70 un anneau conducteur issu des contacts initiaux 55. La couche isolante 71 est par exemple un oxyde grossier épais déposé à basse température (200-250°C) .In the step shown in FIG. 6C, an insulating layer 71 is deposited on the walls of the cuvettes 70 without covering the entire conductive layer 62, which forms around the cuvettes 70 a conductive ring from initial contacts 55. The insulating layer 71 is for example a thick coarse oxide deposited at low temperature (200-250 ° C.).
L'étape suivante, illustrée en figure 6D, est identique à l'étape de la figure 5C et consiste a déposer dans les cuvettes isolées 70 un matériau d'assemblage 64 formant des protubérances, éventuellement par l'intermédiaire d'un matériau de jonction 63. La liaison électrique entre les cuvettes 70 et les entrées/sorties des régions de circuits intégrés 51 est assurée ici par le fait que le matériau de jonction 63 ou de contact 64 (en l'absence de matériau de jonction 64) déborde sensiblement des cuvettes 70 et se trouve au contact de la couche conductrice 62.The next step, illustrated in FIG. 6D, is identical to the step in FIG. 5C and consists in depositing in the insulated bowls 70 an assembly material 64 forming protuberances, optionally by means of a joining material. 63. The electrical connection between the cuvettes 70 and the inputs / outputs of the integrated circuit regions 51 is ensured here by the fact that the junction material 63 or contact material 64 (in the absence of junction material 64) substantially extends beyond the cuvettes 70 and is in contact with the conductive layer 62.
Ces étapes sont suivies d'étapes d'amincissement du wafer 50 et de réalisation de contacts 65 en face arrière, qui ont été décrites plus haut en relation avec les figures 5D, 5E.These steps are followed by steps of thinning the wafer 50 and making contacts 65 on the rear face, which have been described above in relation to FIGS. 5D, 5E.
Les figures 7 à 13 sont des vues en coupe illustrant d'autres variantes de réalisation de traversées conductrices selon l'invention et de contacts en face arrière. Ces variantes présentent des particularités qui peuvent être combinées pour réaliser encore d'autres variantes de réalisation de traversées conductrices selon 1 ' invention .Figures 7 to 13 are sectional views illustrating other alternative embodiments of conductive bushings according to the invention and of contacts on the rear face. These variants have particularities which can be combined to make still other alternative embodiments of conductive bushings according to the invention.
Le wafer 50 de la figure 7 comporte des traversées conductrices 60 semblables à celles de la figure 5E. Le contact en face arrière diffère de celui décrit plus haut par le fait qu'une couche conductrice 66 est déposée et gravée sur la couche isolante 53, avant le dépôt des protubérances 65. La couche conductrice 66, par exemple du cuivre pour une couche isolante : 3 en polyimide, est gravée de manière à former des plages de contact recouvrant les ouvertures 54 pratiquées dans la couche isolante 53.The wafer 50 of Figure 7 has conductive crossings 60 similar to those of Figure 5E. The contact on the rear face differs from that described above in that a conductive layer 66 is deposited and etched on the insulating layer 53, before the protuberances 65 are deposited. The conductive layer 66, for example copper for an insulating layer : 3 in polyimide, is etched so as to form contact pads covering the openings 54 made in the insulating layer 53.
Sur la figure 8A, la couche conductrice 66 se prolonge au-delà des ouvertures 54 sous la forme de pistes conductrices 67 se terminant par des plages de contact 68 sur lesquelles sont déposés les protubérances du matériau d'assemblage 65. Sur la figure 8B, on voit que les pistes 67 permettent de décaler en tout point de la face arrière de la plaquette de silicium 50 les plages de contact 68 recevant les protubérances 65. La figure 8B montre également que des traversées conductrices 60 selon l'invention ne sont pas obligatoirement agencées à la périphérie d'une région de circuit intègre 51. Par exemple, la région de circuit intègre 51 implantée en face avant peut avoir la forme d'un cadre, comme représenté par des traits pointillés, et des traversées conductrices 66 peuvent être prévues à l'intérieur de ce cadre .In FIG. 8A, the conductive layer 66 extends beyond the openings 54 in the form of conductive tracks 67 ending in contact pads 68 on which the protuberances of the assembly material 65 are deposited. In FIG. 8B, it can be seen that the tracks 67 make it possible to offset at any point on the rear face of the silicon wafer 50 the contact pads 68 receiving the protrusions 65. FIG. 8B also shows that conductive bushings 60 according to the invention are not necessarily arranged at the periphery of an integrated circuit region 51. For example, the integrated circuit region 51 located on the front face may have the shape of a frame, as shown by dotted lines, and conductive crossings 66 may be provided inside this frame.
Le wafer 50 de la figure 9 comporte des traversées conductrices 80 se distinguant de celles de la figure 5E par le fait que les contacts en face avant sont eux-mêmes décales au regard des emplacements où débouchent les traversées 80. Ici, le matériau de jonction 63 comprend deux couches 63-1, 63-2. La première couche 63-1 est déposée ou formée dans les traversées 80 et la deuxième couche 63-2 est déposée ou formée sur une première couche de passivation 52-1 pourvue d'ouvertures en regard de la couche conductrice 62. La deuxième couche 63-2, qui se trouve au contact de la couche conductrice 62, est recouverte par une deuxième couche de passivation 52-2. La deuxième couche de passivation 52-2 présente des ouvertures en regard de la deuxième couche 63-2 du matériau de jonction 63 dans lesquelles les protubérances du matériau d'assemblage 64 sont déposées. Par ce procédé, les protubérances en face avant peuvent être agencées en tout point de surface du wafer 50, y compris au-dessus des régions de circuits intégrés 51 comme on le voit sur la figure 9.The wafer 50 of FIG. 9 comprises conductive bushings 80 which differ from those of FIG. 5E in that the contacts on the front face are themselves offset with regard to the locations where the bushings 80 open out. Here, the junction material 63 has two layers 63-1, 63-2. The first layer 63-1 is deposited or formed in the bushings 80 and the second layer 63-2 is deposited or formed on a first passivation layer 52-1 provided with openings facing the conductive layer 62. The second layer 63 -2, which is in contact with the conductive layer 62, is covered by a second passivation layer 52-2. The second passivation layer 52-2 has openings facing the second layer 63-2 of the junction material 63 in which the protuberances of the assembly material 64 are deposited. By this method, the protrusions on the front face can be arranged at any point on the surface of the wafer 50, including above the regions of integrated circuits 51 as seen in FIG. 9.
Le wafer 50 de la figure 10 comporte des traversées conductrices 81 se distinguant de celles de la figure 5E par le fait que la couche conductrice 62 ne recouvre pas les parois des traversées conductrices 81, qui sont toujours isolées par la couche 61. Comme pour le mode de réalisation de la figure 6D, le contact électrique entre la couche conductrice 62 et le matériau de jonction 63 (ou le matériau d'assemblage 64 en l'absence de matériau de jonction 63) est assuré par un débordement du matériau de jonction 63 (ou du matériau d'assemblage 64) sur la couche 62, à l'extérieur des traversées 81.The wafer 50 of FIG. 10 has conductive crossings 81 which differ from those of FIG. 5E in that the conductive layer 62 does not cover the walls of the conductive crossings 81, which are always insulated by the layer 61. As for the embodiment of FIG. 6D, the electrical contact between the conductive layer 62 and the junction material 63 (or the joining material 64 in the absence of junction material 63) is ensured by an overflow of the junction material 63 (or assembly material 64) on the layer 62, outside the bushings 81.
Comme illustré sur la figure 11, le wafer 50 peut également comprendre des traversées conductrices 82 qui ne sont pas reliées électriquement à la région de circuit intégré 51. Dans ce cas, les traversées 82 comprennent simplement une couche isolante 72 recouvrant leurs parois et sont remplies par le matériau d'assemblage 64. Comme on le verra par la suite, de telles traversées 82 permettent de transférer un signal électrique a travers une plaquette de silicium dans un assemblage de plusieurs plaquettes de silicium.As illustrated in FIG. 11, the wafer 50 may also include conductive bushings 82 which are not electrically connected to the integrated circuit region 51. In this case, the bushings 82 simply comprise an insulating layer 72 covering their walls and are filled by the assembly material 64. As will be seen later, such bushings 82 make it possible to transfer an electrical signal through a silicon wafer in an assembly of several silicon wafers.
Sur la figure 12, le wafer 50 comporte des traversées conductrices 83 dépourvues de contact en face avant, l'embouchure supérieure des traversées 83 étant recouverte par la couche de passivation 52. Les parois des traversées 83 sont recouvertes par la couche isolante 61 et la couche conductrice 62. De telles traversées 83 peuvent être remplies avec un matériau conducteur. Elles peuvent également être laissées vides ou, comme représenté sur la figure 12, être remplies avec un matériau isolant 73. Dans ce cas, la continuité électrique avec la couche conductrice 66 en face arrière, qui porte les protubérances du matériau d'assemblage 65, est assurée par un contact en "T" entre la couche 62 et la couche 66.In FIG. 12, the wafer 50 comprises conductive crossings 83 devoid of contact on the front face, the upper mouth of the crossings 83 being covered by the passivation layer 52. The walls of the crossings 83 are covered by the insulating layer 61 and the conductive layer 62. Such bushings 83 can be filled with a conductive material. They can also be left empty or, as shown in FIG. 12, be filled with an insulating material 73. In this case, the continuity electrical with the conductive layer 66 on the rear face, which carries the protuberances of the assembly material 65, is ensured by a "T" contact between the layer 62 and the layer 66.
Sur la figure 13, le wafer 50 comporte des traversées 84 remplies par le matériau d'assemblage 64 qui forme à la fois des protubérances 64-1 en face avant et des protubérances 64-2 en face arrière. Les protubérances 64- 2 en face arrière sont obtenues avant le dépôt de la couche isolante 53 par une surgravure de la face arrière du wafer 50, par exemple en poursuivant l'abrasion de la face arrière de façon chimique sans abrasion mécanique afin de retirer quelques micromètres supplémentaires de silicium sans attaquer le matériau d'assemblage 64. Une fois le silicium retire, le matériau d'assemblage 64 se trouve ainsi en excroissance vis-a-vis de la face arrière et forme les protubérances 64-2. La face arrière du wafer 50 est ensuite recouverte par la couche isolante 53. La couche isolante 53 recouvrant les protubérances 64-2 est retirée par gravure ou par polissage fin de la face arrière .In FIG. 13, the wafer 50 has bushings 84 filled with the assembly material 64 which forms both protrusions 64-1 on the front face and protrusions 64-2 on the rear face. The protrusions 64-2 on the rear face are obtained before the deposition of the insulating layer 53 by an over-etching of the rear face of the wafer 50, for example by continuing abrasion of the rear face chemically without mechanical abrasion in order to remove some additional micrometers of silicon without attacking the assembly material 64. Once the silicon is removed, the assembly material 64 is thus protruding from the rear face and forms the protuberances 64-2. The rear face of the wafer 50 is then covered by the insulating layer 53. The insulating layer 53 covering the protrusions 64-2 is removed by etching or by fine polishing of the rear face.
En pratique, le wafer 50 qui vient d'être décrit, comportant des traversées conductrices selon l'invention, peut être assemble avec un autre wafer avant d'être découpe. Dans ce cas, l'assemblage des futures plaquettes de circuits intègres est réalise collectivement au "stade wafer" ("wafer level") et la découpe des wafers assemblés permet d'obtenir directement des empilements de plaquettes de circuits intégrés. L'assemblage des plaquettes de circuits intégres peut aussi être réalisé au "stade puce" ("chip level"), c'est-à-dire après la découpe des wafers en plaquettes de circuits intégrés individuelles. Quelle que soit la méthode retenue, la présente invention permet de réaliser des empilements de plaquettes de circuits intégrés dont des exemples 90, 95 sont représentés schématiquement sur les figures 14 et 15.In practice, the wafer 50 which has just been described, comprising conductive bushings according to the invention, can be assembled with another wafer before being cut. In this case, the assembly of future integrated circuit wafers is carried out collectively at the "wafer level" and the cutting of the assembled wafers makes it possible to directly obtain stacks of integrated circuit wafers. The assembly of integrated circuit wafers can also be carried out at the "chip level", that is to say after the cutting of the wafers into individual integrated circuit wafers. Whatever method is chosen, the present invention makes it possible to produce stacks of integrated circuit wafers, examples of which 90, 95 are shown schematically in Figures 14 and 15.
L'empilement 90 de la figure 14 comprend trois plaquettes de circuits intégrés 91, 92, 93 comprenant des contacts en face avant et en face arrière reliés électriquement par des traversées conductrices selon l'invention. Les contacts en face arrière de la plaquette 91 sont soudés ou collés aux contacts en face avant de la plaquette 92, et les contacts en face arrière de la plaquette 92 sont soudés ou collés aux contacts en face avant de la plaquette 93. Les contacts en face arrière de la plaquette 93 sont soudés ou collés à des plages de contact d'un support d'interconnexion 94. Le soudage ou collage des contacts se trouvant en regard est assuré par fusion ou polymérisation du matériau d'assemblage décrit plus haut (étain-plomb, colle conductrice, ACP, ACF... ) .The stack 90 of FIG. 14 includes three integrated circuit boards 91, 92, 93 comprising contacts on the front face and on the rear face electrically connected by conductive bushings according to the invention. The contacts on the rear face of the wafer 91 are welded or bonded to the contacts on the front face of the wafer 92, and the contacts on the rear face of the wafer 92 are welded or glued to the contacts on the front face of the wafer 93. The contacts in rear face of the plate 93 are welded or bonded to contact pads of an interconnection support 94. The welding or bonding of the contacts located opposite is ensured by melting or polymerization of the assembly material described above (tin - lead, conductive adhesive, ACP, ACF ...).
Bien entendu, lorsque deux plaquettes de circuits intégrés sont assemblées, le matériau d'assemblage peut n'être déposé que sur une face d'une des deux plaquettes.Of course, when two integrated circuit wafers are assembled, the assembly material may only be deposited on one face of one of the two wafers.
Ainsi, il est clair que dans la description et dans les revendications, le terme "contact" désigne les protubérances du matériau d'assemblage 64, 65 (figures 5E, 7, 8A, 9, 10, 11, 12, 13) lorsque celui-ci est déposé mais désigne également, lorsque le matériau d'assemblage n'est pas déposé, les plages conductrices destinées à recevoir le matériau d'assemblage, par exemple les plages conductrices en face arrière formées par le matériau conducteur 66 (figures 7, 8A, 12) ou les plages conductrices en face avant formées par le matériau de jonction 63 (figures 7, 8A, 10) .Thus, it is clear that in the description and in the claims, the term "contact" designates the protuberances of the assembly material 64, 65 (FIGS. 5E, 7, 8A, 9, 10, 11, 12, 13) when that this is deposited but also denotes, when the assembly material is not deposited, the conductive pads intended to receive the assembly material, for example the conductive pads on the rear face formed by the conductive material 66 (FIGS. 7, 8A, 12) or the conductive pads on the front face formed by the junction material 63 (Figures 7, 8A, 10).
L'empilement 95 de la figure 15 comprend trois plaquettes 96, 97, 98. La plaquette 96, de type conventionnel, ne comporte que des contacts en face
Figure imgf000021_0001
ant . Les plaquettes
The stack 95 of FIG. 15 comprises three plates 96, 97, 98. The plate 96, of conventional type, only has contacts opposite
Figure imgf000021_0001
ant. Platelets
97, 98 sont pourvues de contacts en face avant et face arrière reliés par des traversées conductrices. Les contacts en face avant de la plaquette 96 sont soudés ou collés aux contacts en face avant de la plaquette 97 (la plaquette 96 étant montée en "flip chip") et les contacts en face arrière de la plaquette 97 sont soudés ou collés aux contacts en face avant de la plaquette 98. Les contacts en face arrière de la plaquette 98 sont soudés ou collés à des plages de contact d'un support d'interconnexion 99. On voit sur la figure que les contacts en face avant de la plaquette 98 sont décalés relativement au contacts en face arrière, grâce à un décalage de l'emplacement des contacts ( "re-routing" ) du type décrit plus haut en relation avec la figure 9. Un décalage des contacts en face arrière peut également être prévu, comme décrit plus haut en relation avec les figures 8A, 8B.97, 98 are provided with contacts on the front and face rear connected by conductive crossings. The contacts on the front face of the wafer 96 are welded or glued to the contacts on the front face of the wafer 97 (the wafer 96 being mounted in "flip chip") and the contacts on the rear face of the wafer 97 are welded or glued to the contacts on the front face of the plate 98. The contacts on the rear face of the plate 98 are welded or glued to contact pads of an interconnection support 99. It can be seen in the figure that the contacts on the front face of the plate 98 are offset relative to the contacts on the rear face, thanks to an offset of the location of the contacts ("re-routing") of the type described above in relation to FIG. 9. A shift of the contacts on the rear face can also be provided, as described above in relation to FIGS. 8A, 8B.
Lorsque de tels empilements sont réalisés collectivement au "stade wafer", il est avantageux d'injecter entre les deux wafers de silicium assemblés un matériau amortissant 86, qui facilite la découpe des wafers et protège les régions de circuits intégrés. Après la découpe des wafers, le matériau 86 remplit l'espace se trouvant entre les plaquettes de silicium, comme représenté sur les figure 14 et 15, et confère à l'assemblage une bonne cohésion mécanique.When such stacks are produced collectively at the "wafer stage", it is advantageous to inject between the two silicon wafers assembled a damping material 86, which facilitates the cutting of the wafers and protects the regions of integrated circuits. After cutting the wafers, the material 86 fills the space between the silicon wafers, as shown in FIGS. 14 and 15, and gives the assembly good mechanical cohesion.
Bien entendu, la présente invention est susceptible de divers autres modes de réalisation, variantes et applications.Of course, the present invention is susceptible of various other embodiments, variants and applications.
Ainsi, la figure 16A représente une plaquette de silicium 58 découpée dans le wafer 50 précédemment décrit en suivant des lignes de découpe passant par le centre des traversées conductrices selon l'invention. La structure de ces traversées conductrices peut être l'une quelconque des structures précédemment décrites. On obtient dans ce cas des traversées ccnductrices 85 sectionnées selon leur axe longitudinal. Ces "demi-traversées" 85 longent les bords de la plaquette 58 et sont reliées en face avant à la région de circuit intégré 51 par la couche conductrice 62 déjà décrite. Sur la face arrière de la plaquette 58, représentée sur la figure 16B, la couche conductrice 66 déjà décrite forme des tronçons de pistes orientés vers le centre de la face arrière, aux extrémités desquels se trouvent les protubérances du matériau d'assemblage 65. Ce mode de réalisation permet notamment de diminuer le nombre de traversées conductrices réalisées sur un wafer de silicium, chaque traversée se fractionnant en deux demi-traversées sur les bords de deux plaquettes de silicium distinctes.Thus, FIG. 16A represents a silicon wafer 58 cut out from the wafer 50 previously described by following cutting lines passing through the center of the conductive bushings according to the invention. The structure of these conductive crossings can be any of the structures previously described. We get in this case of ccnductive crossings 85 sectioned along their longitudinal axis. These "half-crossings" 85 run along the edges of the wafer 58 and are connected on the front face to the integrated circuit region 51 by the conductive layer 62 already described. On the rear face of the wafer 58, shown in FIG. 16B, the conductive layer 66 already described forms sections of tracks oriented towards the center of the rear face, at the ends of which are the protuberances of the assembly material 65. This embodiment allows in particular to reduce the number of conductive crossings made on a silicon wafer, each crossing splitting into two half-crossings on the edges of two separate silicon wafers.
La figure 17 représente schématiquement un exemple de circuit électronique pouvant être réalisé sous forme d'empilement de plaquettes de circuit intégré selon l'invention. Le circuit comprend un microprocesseur MP, une mémoire MEM et un circuit d'alimentation électrique PWS. Le microprocesseur MP comprend un premier port de huit entrées/sorties connecté à un bus Bl comprenant des fils βi à es, et un deuxième port de huit entrées/sorties connecté à un bus B2 comprenant des fils en à eiβ. La mémoire MEM comprend un port de huit entrées/sorties connecté aux fils en à eig du bus B2. Le microprocesseur MP, la mémoire MEM et le circuit PWS ont chacun une borne connectée à la masse GND. Le circuit PWS reçoit une tension externe Vcc et délivre une première tension VI appliquée à la mémoire MEM et au microprocesseur MP et deux autres tensions V2, V3 appliquées uniquement au microprocesseur MP.FIG. 17 schematically represents an example of an electronic circuit which can be produced in the form of a stack of integrated circuit wafers according to the invention. The circuit includes a microprocessor MP, a memory MEM and a power supply circuit PWS. The microprocessor MP comprises a first port of eight inputs / outputs connected to a bus B1 comprising wires βi to es, and a second port of eight inputs / outputs connected to a bus B2 comprising wires in to eiβ. The memory MEM includes a port of eight inputs / outputs connected to the wires in eig of the bus B2. The microprocessor MP, the memory MEM and the circuit PWS each have a terminal connected to the ground GND. The circuit PWS receives an external voltage Vcc and delivers a first voltage VI applied to the memory MEM and to the microprocessor MP and two other voltages V2, V3 applied only to the microprocessor MP.
La figure 18A représente une plaquette de circuit imprimé 100 prévue pour connecter les éléments MP, MEM, PWS aux bus Bl, B2 ainsi qu'à la tension Vcc et à la masse GND.FIG. 18A represents a printed circuit board 100 intended to connect the elements MP, MEM, PWS to the buses Bl, B2 as well as to the voltage Vcc and to the ground GND.
La plaquette 100 comprend ainsi huit pistes conductrices ei a es (bus Bl), huit pistes conductrices en a el8 (bus B2 ) , une piste de masse GND et une piste véhiculant la tension Vcc. Ces diverses pistes se terminent par des plages métallisées agencées selon un motif rectangulaire.The wafer 100 thus comprises eight conductive tracks ei a es (bus Bl), eight conductive tracks in ae l8 (bus B2), a ground track GND and a track carrying the voltage Vcc. These various tracks end in metallized areas arranged in a rectangular pattern.
Les figures 18B, 18C, 18D représentent respectivement, par des vues en face avant, trois plaquettes de silicium 101, 102, 103 qui sont empilées comme illustre sur la figure 14 pour réaliser le circuit de la figure 17. La plaquette 101 comporte une région de circuit intègre MP ou est implante le microprocesseur MP, la plaquette 102 comporte une région de circuit intègre MEM et la plaquette 103 comporte une région de circuit intègre PWS.FIGS. 18B, 18C, 18D respectively represent, by views on the front face, three silicon wafers 101, 102, 103 which are stacked as illustrated in FIG. 14 to make the circuit of FIG. 17. The wafer 101 has a region of integrated circuit MP where the microprocessor MP is installed, the wafer 102 comprises a region of integrated circuit MEM and the wafer 103 comprises a region of integrated circuit PWS.
La plaquette 101 est agencée sur le circuit imprime 100 et comporte en face avant 18 contacts ei-eβ, en-eie, GND, Vcc relies a des traversées conductrices, ainsi que 3 contacts VI, V2, V3 dépourvus de traversées conductrices. Les 18 traversées conductrices eι~es, en-e^, GND, Vcc débouchent sur des contacts en face arrière (non représentes) coïncidant avec les plages de contact du circuit imprime 100. Tous les contacts a l'exception du contact Vcc sont connectes a la région de circuit intègre MP.The plate 101 is arranged on the printed circuit 100 and comprises on the front face 18 contacts ei-eβ, en-eie, GND, Vcc connected to conductive bushings, as well as 3 contacts VI, V2, V3 devoid of conductive bushings. The 18 conductive bushings eι ~ es, en-e ^, GND, Vcc lead to contacts on the rear face (not shown) coinciding with the contact pads of the printed circuit 100. All the contacts except the Vcc contact are connected has integrated MP circuit region.
La plaquette 102 est agencée sur la plaquette 101 et comporte a cet effet en face avant 13 contacts e -eis, GND, Vcc, VI, V2, V3 relies a des traversées conductrices débouchant en face arrière sur des contacts coïncidant avec les contacts correspondants de la plaquette 101. Les contacts en-e18, GND, VI sont connectes a la région de circuit intègre MEM et les contacts Vcc, V2, V3 sont isoles de la région de circuit intègre MEM.The plate 102 is arranged on the plate 101 and has for this purpose on the front face 13 contacts e-eis, GND, Vcc, VI, V2, V3 connected to conductive bushings opening on the rear face on contacts coinciding with the corresponding contacts of the wafer 101. The contacts en-e 18 , GND, VI are connected to the integrated circuit region MEM and the contacts Vcc, V2, V3 are isolated from the integrated circuit region MEM.
Enfin, la plaquette 103, qui dissipe le plus de chaleur, est agencée sur la plaquette 102 et comporte en face avant 5 traversées conductrices GND, Vcc, VI, V2, V3 reliées à la région intégrée PWS, débouchant sur des contacts en face arrière coïncidant avec les contacts correspondants de la plaquette 102.Finally, the plate 103, which dissipates the most heat, is arranged on the plate 102 and comprises on the front face 5 conductive crossings GND, Vcc, VI, V2, V3 connected to the integrated PWS region, leading to contacts on the rear face coinciding with the corresponding contacts of the plate 102.
Comme représenté sur les figure 18A à 18D, des contacts supplémentaires non connectés aux régions de circuits intégrés peuvent être prévus sur les faces avant (traits pleins) et arrière (traits pointillé) des plaquettes 101 à 103 pour une répartition régulière des contacts et une meilleure fixation de ces divers éléments.As shown in FIGS. 18A to 18D, additional contacts not connected to the integrated circuit regions can be provided on the front (solid lines) and rear (dotted lines) faces of the plates 101 to 103 for regular distribution of the contacts and better fixing of these various elements.
Par rapport à un montage à plat classique, l'empilement des plaquettes 101, 102, 103 selon l'invention permet non seulement de réduire par trois l'encombrement des plaquettes a la surface du circuit imprimé 100, mais également de supprimer les pistes conductrices qui seraient nécessaires à leur interconnexion. Ainsi, la connexion de la mémoire MEM au bus B2 (en à eι8) est assurée par des traversées conductrices, et les tensions V2, V3 délivrées par le circuit d'alimentation PWS de la plaquette 103 sont appliquées directement au microprocesseur MP de la plaquette 101 par l'intermédiaire de la plaquette 102 qui comporte à cet effet des traversées V2 , V3 qui ne sont pas reliées à la région de circuit intégre MEM.Compared to a conventional flat mounting, the stacking of plates 101, 102, 103 according to the invention makes it possible not only to reduce by three the dimensions of the plates on the surface of the printed circuit 100, but also to eliminate the conductive tracks. that would be necessary for their interconnection. Thus, the connection of the memory MEM to the bus B2 (in at e 8 ) is provided by conductive crossings, and the voltages V2, V3 supplied by the power supply circuit PWS of the wafer 103 are applied directly to the microprocessor MP of the wafer 101 by means of wafer 102 which for this purpose has crossings V2, V3 which are not connected to the region of integrated circuit MEM.
Bien entendu, les traversées conductrices et contacts en face arrière selon l'invention ne sont pas seulement applicables à l'assemblage de plusieurs plaquettes de circuits intégrés. Ils peuvent aussi permettre de connecter une simple plaquette de circuit intégré sur un support d'interconnexion, par exemple sur un circuit imprimé ou un circuit hybride couches épaisses ou couches minces. Cette technique de report de puce constitue une alternative aux techniques classiques du type "puce et fils" ou "flip chip" décrites au préambule en relation avec les figures 1 et 2. On décrira maintenant en relation avec les figures 19A à 19E un procédé permettant de réaliser des cuvettes dans une plaquette vierge de silicium monocπstallin avant l'implantation de composants électroniques, sans altérer la surface de la plaquette.Of course, the conductive bushings and contacts on the rear face according to the invention are not only applicable to the assembly of several integrated circuit boards. They can also make it possible to connect a simple integrated circuit board on an interconnection support, for example on a printed circuit or a hybrid circuit thick layers or thin layers. This chip transfer technique constitutes an alternative to conventional techniques of the “chip and son” or “flip chip” type described in the preamble in relation to FIGS. 1 and 2. There will now be described in relation to FIGS. 19A to 19E a method making it possible to produce cuvettes in a virgin monocπstallin silicon wafer before the implantation of electronic components, without altering the surface of the wafer.
Comme illustré par la figure 19A, on commence par déposer successivement sur les deux faces de la plaquette de silicium 50 une couche 110 d'oxyde de silicium Sι02 et une couche 111 de nitrure, par exemple du nitrure de silicium Sι3N4. La couche d'oxyde 110 est déposée de façon classique dans un four "hydrox" prévu pour faire croître de l'oxyde et la couche de nitrure 111 est déposée dans un four LPCVD ("Low Pressure Chemical Vapour Déposition"). La plaquette 50 est d'une épaisseur standard de l'ordre de 700 micromètres. La couche d'oxyde 110 est d'une épaisseur de l'ordre de 90 nanomètres et la couche de nitrure 111 d'une épaisseur de 160 nanomètres.As illustrated in FIG. 19A, one begins by successively depositing on the two faces of the silicon wafer 50 a layer 110 of silicon oxide Sι02 and a layer 111 of nitride, for example silicon nitride Sι3N4. The oxide layer 110 is deposited in a conventional manner in a "hydrox" oven intended to grow oxide and the nitride layer 111 is deposited in an LPCVD ("Low Pressure Chemical Vapor") oven. The wafer 50 is of a standard thickness of the order of 700 micrometers. The oxide layer 110 is of the order of 90 nanometers thick and the nitride layer 111 is 160 nanometers thick.
Au cours d'une étape illustrée par la figure 19B, on réalise à la surface de la plaquette 50 un masque de résine photosensible 112 comportant des ouvertures 113 dans des régions ou des cuvettes doivent être réalisées. La couche de nitrure 111 se trouvant en regard des ouvertures 113 est attaquée au moyen d'un agent de gravure "Al", par exemple un plasma froid CF4 (gravure mécanique) ou une solution d'acide orthophosphorique H3PO4 (gravure chimique) . La couche d'oxyde 110 est ensuite attaquée au moyen d'un agent de gravure "Bl", par exemple un plasma froid ou une solution d'acide fluorhydrique ou de fluorure d'ammonium.During a step illustrated in FIG. 19B, a photosensitive resin mask 112 is provided on the surface of the wafer 50 comprising openings 113 in regions where cuvettes must be produced. The nitride layer 111 located opposite the openings 113 is attacked by means of an "Al" etchant, for example a cold plasma CF4 (mechanical etching) or a solution of orthophosphoric acid H3PO4 (chemical etching). The oxide layer 110 is then attacked using an etchant "B1", for example a cold plasma or a solution of hydrofluoric acid or ammonium fluoride.
Comme illustré sur la figure 19C, le masque de résine 112 est ensuite dissout ou retiré avec un plasma d'oxygène.As illustrated in Figure 19C, the resin mask 112 is then dissolved or removed with an oxygen plasma.
La plaquette 50 se trouve pourvue d'un masque de gravure constitué par les couches d'oxyde 110 et de nitrure 111, présentant des ouvertures 114 aux endroits où se trouvaient les ouvertures 113 du masque de résine. La plaquette 50 est ensuite plongée dans une solution comprenant un agent de gravure "C" attaquant le silicium monocristallin 50 sans attaquer le nitrure 111, faisant apparaître des cuvettes 60. Cette solution est par exemple une solution de potasse KOH de concentration 6N portée à une température de l'ordre de 80°C, susceptible de contenir un agent accélérateur de gravure. Une telle solution permet de graver le silicium monocristallin à une vitesse de l'ordre de 1,6 micromètre par minute et une sélectivité supérieure à 1/23000 relativement à la couche de nitrure 111. Ainsi, la gravure d'une cuvette 60 d'une profondeur de 100 micromètres est réalisée en une heure environ et entraîne une gravure de la couche de nitrure 111 de l'ordre de 4,3 nanomètres, négligeable au regard de son épaisseur totale.The plate 50 is provided with an etching mask constituted by the layers of oxide 110 and nitride 111, having openings 114 at the places where the openings 113 of the resin mask were located. The wafer 50 is then immersed in a solution comprising an etching agent "C" attacking the monocrystalline silicon 50 without attacking the nitride 111, causing the cuvettes 60 to appear. This solution is for example a KOH potash solution of concentration 6N brought to a temperature of the order of 80 ° C., capable of containing an accelerating etching agent. Such a solution makes it possible to etch monocrystalline silicon at a speed of the order of 1.6 micrometers per minute and a selectivity greater than 1/23000 relative to the nitride layer 111. Thus, the etching of a bowl 60 of a depth of 100 micrometers is produced in approximately one hour and causes etching of the nitride layer 111 of the order of 4.3 nanometers, negligible with regard to its total thickness.
Les cuvettes 60 étant réalisées, on retire la couche de nitrure 111 au moyen d'un agent de gravure "A2" susceptible d'attaquer le silicium des cuvettes 60 bien que cela ne soit pas souhaité. L'agent "A2" est par exemple un plasma froid ou une solution d'acide orthophosphorique. Comme il est techniquement difficile d'arrêter le processus au moment précis où le dernier atome de la couche de nitrure 111 est dissout, la couche d'oxyde 110 protège la plaquette de silicium 50. La couche d'oxyde 110 est ensuite retirée, de préférence au moyen d'un agent de gravure chimique "B2" n'attaquant pas le silicium monocristallin, par exemple de l'acide fluorhydrique .The bowls 60 being produced, the nitride layer 111 is removed by means of an etching agent "A2" capable of attacking the silicon of the bowls 60 although this is not desired. The agent "A2" is for example a cold plasma or a solution of orthophosphoric acid. As it is technically difficult to stop the process at the precise moment when the last atom of the nitride layer 111 is dissolved, the oxide layer 110 protects the silicon wafer 50. The oxide layer 110 is then removed, preferably by means of a chemical etching agent "B2" which does not attack monocrystalline silicon, for example hydrofluoric acid.
Ces étapes étant terminées, on dispose d'une plaquette de silicium vierge 50 pourvue de cuvettes 60 destinées à former des traversées conductrices selon l'invention, comme cela a été décrit plus haut. La potasse attaquant le silicium de façon isotrope, c'est-à-dire selon l'orientation des atomes du réseau cristallin (1,0,0), les cuvettes présentent quatre parois inclinées d'environ 58° relativement à la surface de la plaquette 50. De façon générale, la forme d'une cuvette selon l'invention est donnée par la relation suivante :These steps being completed, there is a virgin silicon wafer 50 provided with cuvettes 60 intended to form conductive bushings according to the invention, as has been described above. Potash attacking silicon isotropically, that is to say according to the orientation of the atoms of the crystal lattice (1,0,0), the cuvettes have four walls inclined by about 58 ° relative to the surface of the wafer 50. In general, the shape of a cuvette according to the invention is given by the following relation:
(1) Wb = Wo - 2D cotg(58°)(1) Wb = Wo - 2D cotg (58 °)
soit, approximativementeither approximately
(2) Wb Wo - 1.25 D(2) Wb Wo - 1.25 D
dans laquelle D est la profondeur de la cuvette, Wo est l'ouverture ou encombrement de la cuvette (soit sa largeur à la surface de la plaquette de silicium) et Wb est la largeur au fond de la cuvette (soit la taille du contact obtenu en face arrière) . Pour fixer les idées, le tableau ci-après donne diverses valeurs de la largeur Wb du contact en face arrière en fonction de l'ouverture Wo et de la profondeur D d'une cuvette, pour une gamme de valeurs de la profondeur D allant de 30 à 110 micromètres. La surface du contact en face arrière peut bien entendu être agrandie par la réalisation de plages conductrices, comme cela a été décrit plus haut.in which D is the depth of the cuvette, Wo is the opening or size of the cuvette (i.e. its width at the surface of the silicon wafer) and Wb is the width at the bottom of the cuvette (i.e. the size of the contact obtained on the back). To fix the ideas, the table below gives various values of the width Wb of the contact on the rear face according to the opening Wo and the depth D of a bowl, for a range of values of the depth D going from 30 to 110 micrometers. The surface of the contact on the rear face can of course be enlarged by the production of conductive pads, as has been described above.
Figure imgf000028_0001
Figure imgf000028_0001

Claims

REVENDICATIONS
1. Procédé de fabrication de traversées conductrices (60, 70, 80-85) dans une plaquette de silicium (50), caractérisé en ce qu'il comprend les étapes consistant à : - réaliser des cuvettes (60, 70) d'une profondeur déterminée sur la face avant de la plaquette de silicium, déposer sur les parois des cuvettes un matériau électriquement isolant (61, 71, 72),1. A method of manufacturing conductive bushings (60, 70, 80-85) in a silicon wafer (50), characterized in that it comprises the steps consisting in: - producing cuvettes (60, 70) of a depth determined on the front face of the silicon wafer, deposit on the walls of the cuvettes an electrically insulating material (61, 71, 72),
- déposer au moins un matériau électriquement conducteur (62, 63, 64) sur les parois isolées des cuvettes, et- depositing at least one electrically conductive material (62, 63, 64) on the insulated walls of the bowls, and
- amincir la plaquette de silicium (50), par abrasion chimique et/ou mécanique de sa face arrière, jusqu'à atteindre le matériau conducteur (62, 63, 64) déposé dans les cuvettes.- thin the silicon wafer (50), by chemical and / or mechanical abrasion of its rear face, until reaching the conductive material (62, 63, 64) deposited in the cuvettes.
2. Procédé selon la revendication 1, dans lequel l'étape de dépôt sur les parois des cuvettes (60) d'un matériau conducteur comprend une étape de remplissage des cuvettes avec au moins un matériau conducteur (63, 64) .2. The method of claim 1, wherein the step of depositing on the walls of the cuvettes (60) of a conductive material comprises a step of filling the cuvettes with at least one conductive material (63, 64).
3. Procédé selon l'une des revendications 1 et 2, dans lequel les cuvettes (60) sont réalisées avant l'implantation d'une région de circuit intégré (51) sur la plaquette de silicium.3. Method according to one of claims 1 and 2, wherein the cuvettes (60) are produced before the implantation of an integrated circuit region (51) on the silicon wafer.
4. Procédé selon l'une des revendications 1 et 2, dans lequel les cuvettes (70) sont réalisées après l'implantation d'une région de circuit intégré (51) sur la plaquette de silicium.4. Method according to one of claims 1 and 2, wherein the cuvettes (70) are produced after the implantation of an integrated circuit region (51) on the silicon wafer.
5. Procédé selon l'une des revendications 1 à 4, comprenant une étape consistant à céposer sur la face arrière de la plaquette au moins une couche d'un matériau électriquement isolant (53), et une étape consistant à réaliser sur la face arrière des plages de contact (65, 66) connectées aux traversées conductrices (60, 70).5. Method according to one of claims 1 to 4, comprising a step consisting in plastering on the rear face of the wafer at least one layer of an electrically insulating material (53), and a step consisting in make contact pads (65, 66) connected to the conductive bushings (60, 70) on the rear face.
6. Procédé selon l'une des revendications 1 à 5, comprenant une étape de découpe de la plaquette de silicium (50) en passant par le milieu des traversées conductrices (60, 70, 80-84) pour obtenir au moins une plaquette de silicium (58) comportant des traversées conductrices (85) sectionnées selon leur axe longitudinal, longeant les flancs de la plaquette (58).6. Method according to one of claims 1 to 5, comprising a step of cutting the silicon wafer (50) through the middle of the conductive bushings (60, 70, 80-84) to obtain at least one wafer silicon (58) comprising conductive bushings (85) sectioned along their longitudinal axis, along the sides of the wafer (58).
7. Procédé pour interconnecter au moins deux plaquettes de circuits intégrés, caractérisé en ce qu'il comprend les étapes consistant à : - prévoir une plaquette de circuit intégré (91-93, 96-98) comprenant des contacts (65, 66) en face arrière reliés électriquement à une région de circuit intégré (51) en face avant par des traversées conductrices (60, 70, 80- 85) traversant la plaquette de part en part, et - souder ou coller les contacts (65, 66) en face arrière de la plaquette à des contacts (64) en face avant d'une autre plaquette de silicium.7. Method for interconnecting at least two integrated circuit boards, characterized in that it comprises the steps consisting in: - providing an integrated circuit board (91-93, 96-98) comprising contacts (65, 66) in rear face electrically connected to an integrated circuit region (51) on the front face by conductive bushings (60, 70, 80- 85) passing through the board, and - soldering or gluing the contacts (65, 66) in rear face of the wafer with contacts (64) on the front face of another silicon wafer.
8. Procédé selon la revendication 7, dans lequel les traversées conductrices comprennent des orifices (60,8. The method of claim 7, wherein the conductive bushings comprise orifices (60,
70) pratiqués dans la plaquette de silicium, une couche électriquement isolante (61, 71, 72) recouvrant les parois de l'orifice, et au moins un matériau électriquement conducteur (62, 63, 64) recouvrant les parois isolées de l'orifice ou remplissant entièrement 1 ' orifice .70) formed in the silicon wafer, an electrically insulating layer (61, 71, 72) covering the walls of the orifice, and at least one electrically conductive material (62, 63, 64) covering the insulated walls of the orifice or completely filling the orifice.
9. Procédé selon l'une des revendications 7 et 8, dans lequel les traversées conductrices sont sectionnées (85) selon leur axe longitudinal et longent les flancs des plaquettes. 9. Method according to one of claims 7 and 8, wherein the conductive bushings are sectioned (85) along their longitudinal axis and along the sides of the plates.
10. Plaquette de silicium (50, 58) comportant une région de circuit intégré (51) implantée sur sa face avant, caractérisée en ce qu'elle comprend des traversées conductrices (60, 70, 80-85) connectées à la région de circuit intégré, traversant la plaquette de part en part et débouchant sur sa face arrière.10. Silicon wafer (50, 58) comprising an integrated circuit region (51) located on its front face, characterized in that it comprises conductive bushings (60, 70, 80-85) connected to the circuit region integrated, crossing the plate from side to side and opening onto its rear face.
11. Plaquette de silicium selon la revendication 10, dans laquelle une traversée conductrice comprend un orifice (60, 70) traversant la plaquette de silicium, une couche électriquement isolante (61, 71, 72) recouvrant les parois de l'orifice, et au moins un matériau électriquement conducteur (62, 63, 64) recouvrant les parois isolées de l'orifice ou remplissant entièrement 1 ' orifice .11. The silicon wafer according to claim 10, in which a conductive bushing comprises an orifice (60, 70) passing through the silicon wafer, an electrically insulating layer (61, 71, 72) covering the walls of the orifice, and at at least one electrically conductive material (62, 63, 64) covering the insulated walls of the orifice or completely filling the orifice.
12. Plaquette de silicium selon l'une des revendications 10 et 11, comprenant sur sa face arrière des contacts (65, 66) isolés électriquement de la plaquette (50) et reliés électriquement à des traversées conductrices (60, 70, 80-85).12. Silicon wafer according to one of claims 10 and 11, comprising on its rear face contacts (65, 66) electrically isolated from the wafer (50) and electrically connected to conductive bushings (60, 70, 80-85 ).
13. Plaquette de silicium selon l'une des revendications 10 à 12, comprenant en outre des traversées conductrices (82) qui ne sont pas connectées à la région de circuit intégré (51) .13. Silicon wafer according to one of claims 10 to 12, further comprising conductive bushings (82) which are not connected to the integrated circuit region (51).
14. Plaquette de silicium (58) selon l'une des revendications 10 à 13, comprenant des traversées conductrices (85) sectionnées selon leur axe longitudinal, longeant les flancs de la plaquette.14. Silicon wafer (58) according to one of claims 10 to 13, comprising conductive bushings (85) sectioned along their longitudinal axis, along the sides of the wafer.
15. Assemblage (90, 95) de plaquettes de silicium comprenant au moins un empilement de deux plaquettes de silicium (50, 58, 91-93, 96-98), chaque plaquette comprenant une région de circuit intégré (51) en face avant et des contacts (63, 64, 65, 66) soudés ou collés à des contacts de l'autre plaquette, caractérise en ce qu'au moins une plaquette (91-93, 97, 98) comprend des contacts en face arrière (65, 66) et des traversées conductrices (60, 70, 80-85) traversant la plaquette de part en part, reliant électriquement les contacts (65, 66) en face arrière a la région de circuit intègre (51) .15. Assembly (90, 95) of silicon wafers comprising at least one stack of two silicon wafers (50, 58, 91-93, 96-98), each wafer comprising an integrated circuit region (51) on the front face and contacts (63, 64, 65, 66) welded or glued to contacts of the other plate, characterized in that at least one plate (91-93, 97, 98) comprises contacts on the rear face (65, 66) and conductive bushings (60, 70, 80-85) crossing the wafer right through, electrically connecting the contacts (65, 66) on the rear face to the integrated circuit region (51).
16. Assemblage de plaquettes de silicium selon la revendication 15, dans laquelle des contacts (65, 66) en face arrière d'une plaquette sont soudes ou colles a des contacts (63, 64) en face avant de l'autre plaquette de silicium.16. An assembly of silicon wafers according to claim 15, in which contacts (65, 66) on the rear face of a wafer are welded or bonded to contacts (63, 64) on the front face of the other silicon wafer .
17. Assemblage de plaquettes de silicium selon l'une des revendications 15 et 16, dans lequel des traversées conductrices comprennent des orifices (60, 70) pratiques dans la plaquette de silicium, une couche électriquement isolante (61, 71, 72) recouvrant les parois de l'orifice, et au moins un matériau électriquement conducteur (62, 63, 64) recouvrant les parois isolées de l'orifice ou remplissant entièrement 1 ' orifice .17. An assembly of silicon wafers according to one of claims 15 and 16, in which conductive bushings comprise orifices (60, 70) practical in the silicon wafer, an electrically insulating layer (61, 71, 72) covering the walls of the orifice, and at least one electrically conductive material (62, 63, 64) covering the insulated walls of the orifice or completely filling the orifice.
18. Assemblage de plaquettes de silicium selon l'une des revendications 15 a 17, dans lequel au moins une plaquette de silicium comporte au moins une traversée conductrice (82) qui n'est pas connectée a sa région de circuit intègre (51) .18. An assembly of silicon wafers according to one of claims 15 to 17, in which at least one silicon wafer has at least one conductive bushing (82) which is not connected to its integrated circuit region (51).
19. Assemblage de plaquettes de silicium selon l'une des revendications 15 a 18, dans lequel au moins une plaquette (58) comprend des traversées conductrices sectionnées (85) selon leur axe longitudinal, longeant les flancs de la plaquette. 19. An assembly of silicon wafers according to one of claims 15 to 18, in which at least one wafer (58) comprises conductive cross-sections (85) along their longitudinal axis, along the sides of the wafer.
PCT/FR2000/003508 1999-12-14 2000-12-13 Method for interconnecting integrated circuits WO2001045164A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9915753A FR2802337A1 (en) 1999-12-14 1999-12-14 METHOD FOR INTERCONNECTING INTEGRATED CIRCUITS
FR99/15753 1999-12-14

Publications (1)

Publication Number Publication Date
WO2001045164A1 true WO2001045164A1 (en) 2001-06-21

Family

ID=9553238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/003508 WO2001045164A1 (en) 1999-12-14 2000-12-13 Method for interconnecting integrated circuits

Country Status (2)

Country Link
FR (1) FR2802337A1 (en)
WO (1) WO2001045164A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1788514A1 (en) * 2005-11-21 2007-05-23 Stmicroelectronics Sa Electronic micromodule and method of fabrication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627106A (en) * 1994-05-06 1997-05-06 United Microelectronics Corporation Trench method for three dimensional chip connecting during IC fabrication
US5628850A (en) * 1995-07-20 1997-05-13 Motorola, Inc. Method for producing input/output connections in a ceramic device
US5910687A (en) * 1997-01-24 1999-06-08 Chipscale, Inc. Wafer fabrication of die-bottom contacts for electronic devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627106A (en) * 1994-05-06 1997-05-06 United Microelectronics Corporation Trench method for three dimensional chip connecting during IC fabrication
US5628850A (en) * 1995-07-20 1997-05-13 Motorola, Inc. Method for producing input/output connections in a ceramic device
US5910687A (en) * 1997-01-24 1999-06-08 Chipscale, Inc. Wafer fabrication of die-bottom contacts for electronic devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1788514A1 (en) * 2005-11-21 2007-05-23 Stmicroelectronics Sa Electronic micromodule and method of fabrication
FR2893734A1 (en) * 2005-11-21 2007-05-25 St Microelectronics Sa ELECTRON MICROMODULE AND METHOD FOR MANUFACTURING SUCH A MICROMODULE
US7667329B2 (en) 2005-11-21 2010-02-23 Stmicroelectronics Sa Electronic micromodule and method for manufacturing the same

Also Published As

Publication number Publication date
FR2802337A1 (en) 2001-06-15

Similar Documents

Publication Publication Date Title
EP2192612B1 (en) Method for stacking and interconnecting integrated circuits
EP2054929B1 (en) Process for the collective manufacturing of electronic 3d modules
EP2053646A1 (en) Method for vertical interconnection inside 3D electronic modules using vias
CA2146868A1 (en) Method for interconnecting semi-conductor pads in three dimensions and component thus obtained
WO2008155231A1 (en) Device including integrated components imbedded in cavities of a reception semi-conductor plate and corresponding method
EP1008176B1 (en) Method for making an anisotropic conductive coating with conductive inserts
EP0982770B1 (en) Physical isolation of regions of a semiconductor substrate
EP2610907A1 (en) Stacked electronic device and method for manufacturing such an electronic device
EP0044247B1 (en) Method of producing a carrier for electronic components for the interconnection of integrated-circuit chips
FR2990297A1 (en) STACK OF SEMICONDUCTOR STRUCTURES AND METHOD OF MANUFACTURING THE SAME
EP3182450A1 (en) Inductance device and method for manufacturing same
EP0116791A1 (en) Method of manufacturing a matrix infra-red detector with front side illumination
WO2001045164A1 (en) Method for interconnecting integrated circuits
EP3742478B1 (en) Self-assembly method with hybrid molecular bonding
EP2162908B1 (en) Reconstituted electronic device fabrication process and corresponding reconstituted electronic device
EP3171395B1 (en) Formation of interconnections by curving conductive elements under a microelectronic device such as a chip
EP0793269B1 (en) Semiconductor device having a chip with via hole soldered on a support, and its method of fabrication
FR2667443A1 (en) METHOD FOR PRODUCING A HYBRID MODULE
WO2003088475A1 (en) Interconnection device for acoustic wave interface components
JP3405102B2 (en) Manufacturing method of solder bump connection element
EP3886159A1 (en) Interconnection chip
FR2978296A1 (en) ELECTRONIC CHIP COMPRISING CONNECTION PILLARS, AND METHOD OF MANUFACTURE
FR2790141A1 (en) Integrated circuit used for chip cards and smart cards comprises electronic components integrated on silicon chip and connectors providing metal wire welding areas
EP3832703A1 (en) Method for manufacturing electronic chips
FR2969381A1 (en) Electronic chip, has set of connection pillars electrically connected with vias, where pillars form protuberant regions relative to substrate and are provided with portion embedded in housing formed in thickness of substrate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP