WO2001059819A1 - Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts, and gallium nitride semiconductor structures fabricated thereby - Google Patents

Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts, and gallium nitride semiconductor structures fabricated thereby Download PDF

Info

Publication number
WO2001059819A1
WO2001059819A1 PCT/US2000/040724 US0040724W WO0159819A1 WO 2001059819 A1 WO2001059819 A1 WO 2001059819A1 US 0040724 W US0040724 W US 0040724W WO 0159819 A1 WO0159819 A1 WO 0159819A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium nitride
growing
pyramids
posts
tops
Prior art date
Application number
PCT/US2000/040724
Other languages
French (fr)
Inventor
Robert F. Davis
Kevin J. Linthicum
Thomas Gehrke
Original Assignee
North Carolina State University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North Carolina State University filed Critical North Carolina State University
Priority to JP2001559046A priority Critical patent/JP4801306B2/en
Priority to AU2001218182A priority patent/AU2001218182A1/en
Publication of WO2001059819A1 publication Critical patent/WO2001059819A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • H01L21/0265Pendeoepitaxy

Definitions

  • This invention relates to microelectronic devices and fabrication methods, and more particularly to gallium nitride semiconductor devices and fabrication methods therefor.
  • gallium nitride is being widely investigated for microelectronic devices including but not limited to transistors, field emitters and optoelectronic devices. It will be understood that, as used herein, gallium nitride also includes alloys of gallium nitride such as aluminum gallium nitride, indium gallium nitride and aluminum indium gallium nitride.
  • a major problem in fabricating gallium nitride-based microelectronic devices is the fabrication of gallium nitride semiconductor layers having low defect densities. It is known that one contributor to defect density is the substrate on which the gallium nitride layer is grown. Accordingly, although gallium nitride layers have been grown on sapphire substrates, it is known to reduce defect density by growing gallium nitride layers on aluminum nitride buffer layers which are themselves formed on silicon carbide substrates. Notwithstanding these advances, continued reduction in defect density is desirable.
  • This technique often is referred to as "Epitaxial Lateral Overgrowth" (ELO).
  • ELO Epiaxial Lateral Overgrowth
  • the layer of gallium nitride may be laterally grown until the gallium nitride coalesces on the mask to form a single layer on the mask.
  • a second mask may be formed on the laterally overgrown gallium nitride layer, that includes at least one opening that is offset from the opening in the underlying mask. ELO then again is performed through the openings in the second mask to thereby overgrow a second low defect density continuous gallium nitride layer. Microelectronic devices then may be formed in this second overgrown layer.
  • ELO of gallium nitride is described, for example, in the publications entitled Lateral Epitaxy of Low Defect Density GaN Layers Via OrganometalUc Vapor Phase Epitaxy to Nam et al., Appl. Phys. Lett. Vol. 71 , No.
  • Lateral growth also preferably continues until the gallium nitride layer that is grown from the sidewalls laterally overgrows onto the tops of the posts.
  • the top of the posts and/or the trench floors may be masked.
  • Lateral growth from the sidewalls of trenches and/or posts also is referred to as "pendeoepitaxy" and is described, for example, in publications entitled Pendeo-Epitaxy: A New Approach for Lateral Growth of
  • the present invention provides a substrate including non-gallium nitride posts that define trenches therebetween, wherein the non-gallium nitride posts include non- gallium nitride sidewalls and non-gallium nitride tops, and the trenches include non- gallium floors. These substrates also may be referred to herein as "textured" substrates.
  • gallium nitride is grown on the non-gallium nitride posts, including on the non-gallium nitride tops.
  • gallium nitride pyramids are grown on the non-gallium nitride tops and gallium nitride then is grown on the gallium mtride pyramids.
  • the gallium nitride pyramids preferably are grown at a first temperature and the gallium nitride preferably is grown on the pyramids at a second temperature that is higher than the first temperature.
  • the first temperature preferably is about 1000°C or less and the second temperature preferably is about 1100°C or more.
  • the same processing conditions preferably are used for both growth steps.
  • the grown gallium nitride on the pyramids preferably coalesces to form a continuous gallium nitride layer.
  • gallium nitride pyramids also may be simultaneously grown on the non-gallium mtride floors.
  • a conformal gallium nitride layer also may be formed simultaneously on the sidewalls, between the gallium nitride pyramids on the non- gallium nitride tops and on the non-gallium nitride floors.
  • the trenches Upon growing the gallium nitride on the pyramids, the trenches also may be simultaneously filled with gallium nitride.
  • a conformal buffer layer may be formed on the substrate including on the non-gallium nitride sidewalls, the non-gallium nitride tops and the non-gallium nitride floors, prior to growing the gallium nitride pyramids.
  • a conformal layer of aluminum nitride may be used.
  • Gallium nitride semiconductor structures therefore may be fabricated, according to the present invention, by providing a textured substrate, including a plurality of non-gallium nitride posts that define trenches therebetween, wherein the non-gallium nitride posts include non-gallium nitride sidewalls and non-gallium nitride tops, and the trenches include non-gallium nitride floors.
  • the substrate preferably is free of masking materials on the non-gallium nitride floors and on the non-gallium nitride tops.
  • Gallium nitride then is grown at a first temperature and the growth of gallium nitride then is continued at a second temperature that is higher than the first temperature. Growth at the second temperature preferably continues until the gallium nitride forms a continuous gallium nitride layer on the substrate.
  • Gallium nitride semiconductor structures preferably comprise a textured substrate including a plurality of non-gallium nitride posts that define trenches therebetween, the non-gallium nitride posts including non- gallium nitride sidewalls and non-gallium nitride tops, and the trenches including non- gallium nitride floors.
  • a gallium nitride layer is provided on the non-gallium nitride posts including on the non-gallium nitride tops.
  • the gallium nitride semiconductor structure preferably is free of a masking layer on the non-gallium nitride tops and on the non-gallium nitride floors.
  • the present invention most preferably may be used to provide methods of fabricating gallium nitride semiconductor structures that need not include masking or interruptions during gallium nitride epitaxial growth. Accordingly, simplified processes for fabricating gallium nitride semiconductor structures may be provided, to thereby fulfill a need in the fledgling gallium nitride semiconductor industry.
  • the present invention may be used to fabricate non-gallium nitride semiconductor structures wherein a textured substrate of a first material is provided and a second semiconductor material is grown on the posts including on the tops that comprise the first material.
  • semiconductor structures may be provided including a textured substrate that comprises a first material and a layer of second semiconductor material on the posts that comprise the first material.
  • Figures 1-6 are cross-sectional views of gallium nitride semiconductor structures during intermediate fabrication steps, according to the present invention.
  • a substrate 100 also referred to as a "textured substrate” including a plurality of non-gallium nitride posts 100a that define trenches 100b therebetween.
  • the non-gallium nitride posts 100a include non- gallium nitride sidewalls 100c and non-gallium nitride tops lOOd.
  • the trenches 100b also include non-gallium nitride floors lOOe.
  • the substrate 100 may be a monocrystalline substrate or a substrate including one or more monocrystalline layers thereon, from which the posts 100a and trenches 100b are defined.
  • monocrystalline substrates and monocrystalline layers include, but are not limited to, monocrystalline silicon, silicon carbide and or sapphire.
  • the posts 100a and trenches 100b may be defined using selective etching and/or selective epitaxial growth. Etching may be performed using standard dry or wet etching techniques, preferably using a mask, which then preferably is removed. The fabrication of a substrate including trenches and posts is well known to those having skill in the art and need not be described in detail herein.
  • the trenches 100b preferably are sufficiently deep so that undesirable growth of poor quality gallium nitride from the trench floor lOOe will not interfere with growth of high quality gallium nitride, as will be described below.
  • the posts 100a preferably are grown in the form of stripes that preferably are sufficiently narrow, for example less than or equal to one micron in width, so that small gallium nitride seed pyramids can be formed on the non-gallium nitride tops lOOd.
  • the initial gallium nitride seed pyramids that form on the non-gallium nitride tops lOOd may have defects, so that the reduced size gallium nitride seed pyramids can reduce the total amount of initial defective gallium nitride seed material.
  • the total mechanical stress on the pyramids due to the differences in coefficients of thermal expansion between the substrate, any conformal buffer layers and the grown gallium nitride also may be reduced, as well as the time to complete the pyramidal growth and initiate pendeoepitaxial growth as will be described below.
  • the stripes preferably extend along the 1 100 direction of a sapphire or silicon carbide substrate 100 and along the 110 direction of a silicon substrate 100, to thereby expose the 1120 plane of the subsequently grown gallium mtride layer.
  • the stripes should expose the 1120 plane of sapphire and silicon carbide substrates.
  • the wafer flat is the 0001 direction.
  • etching is performed parallel to the flat or the 0001 direction .
  • the sidewalls 100c may not be orthogonal to the substrate 100, but rather may be oblique thereto.
  • the posts 100a and trenches 100b may define elongated regions that are straight, V-shaped or have other shapes.
  • the spaced apart posts 100a also may be referred to as “mesas”, “pedestals” or “columns”.
  • the trenches 100b also may be referred to as "wells”.
  • an optional conformal buffer layer 102 then may be formed on the substrate 100 including on the non-gallium nitride sidewalls 100c, the non-gallium nitride tops lOOd and the non-gallium nitride floors lOOe.
  • the buffer layer may comprise silicon carbide and/or aluminum nitride.
  • the buffer layer 102 may comprise high temperature aluminum nitride.
  • the conformal buffer layer 102 may comprise low temperature gallium nitride and/or aluminum nitride.
  • Other buffer layers may be used with these and other non-gallium nitride posts 100a.
  • the fabrication of a buffer layer on a substrate is well known to those having skill in the art and need not be described in detail herein.
  • gallium nitride is grown on the non-gallium nitride posts 100a including on the non-gallium nitride tops lOOd. More specifically, a gallium nitride layer 110 is formed, wherein the gallium nitride layer includes gallium nitride pyramids 110a on the non-gallium nitride tops lOOd. These pyramids 110a also may be referred to as "seed forms". It will be understood that the seed forms need not be pyramidal in shape but rather may have flash tops. As also shown in Figure 3, second gallium nitride pyramids 110b also may be formed simultaneously on the non-gallium nitride floors lOOe.
  • a conformal region of gallium nitride 110c also may be formed simultaneously on the sidewalls 100c of the non-gallium nitride posts 100a.
  • Growth of the gallium nitride layer 110 preferably is performed using metalorganic vapor phase epitaxy (MOVPE) of triethylgallium (TEG), for example at 13-39 ⁇ mol/min andNH 3 at 1500 seem in combination with 3000 seem H 2 diluent, at low temperature, preferably at about 1000°C or less. Additional details of MOCVD growth of gallium nitride may be found in the above-cited publications to Nam et al, Zheleva et al., Zheleva et al. and Linthicum et al. Other growth techniques also may be used.
  • gallium nitride layer 110 preferably produces pyramidal gallium nitride seed forms 110a on the tops llOd of the gallium nitride posts 110a.
  • One region is a relatively high defect density gallium nitride area that converges at the apex of the pyramid. The other region is nearly defect-free and encapsulates the pyramid. See, for example, the publication by Nam et al.
  • the pyramids 110a on the tops lOOd of the non- gallium nitride posts 100a can form these same two regions.
  • the growth parameters can be changed to enhance lateral growth of gallium nitride from the relatively defect free regions of the pyramids, and that can result in nearly defect-free gallium nitride epilayers, as will be described below.
  • the pyramids preferably are formed at relatively low temperature, preferably about 1000°C or less using metalorganic vapor phase epitaxy, as was described above.
  • the pyramids may be grown to have a width of about 2 ⁇ m and a height of about 2 ⁇ m on posts that are 1 ⁇ m wide.
  • the interior portions 110a' of the pyramids 110a having a width of about 1 ⁇ m and a height of about 1 ⁇ m may have a high defect density of about 10 cm or more, whereas the outer portions 110a" of the pyramids 110a may be relatively low in defect, for example having defect density of about 10 5 cm "2 or less.
  • the conformal layer 110c on the sidewalls 100c of the posts 100 a also may have a high defect density and the second pyramids 110b on the floor lOOe also may have high defect density, for example greater than about 10 cm " . It also will be understood that in Figure 3, masks need not be used prior to or during the growth of the gallium nitride layer 110.
  • gallium mtride 120 then is preferentially laterally grown on the gallium mtride pyramids 110a. Moreover, as shown in Figure 4, vertical growth also may occur. It will be understood that, as used herein, the term “lateral” means a direction that is orthogonal to the sidewalls 100c. As used herein, the term “vertical” denotes a direction parallel to the sidewalls 100c.
  • the crystal morphology may change as the temperature increases.
  • a pyramidal cross-section may result as was shown in Figure 3.
  • a rectangular cross- section may result.
  • gallium nitride 120 is preferentially laterally grown from the outer portions 110" of the pyramids 110a. Similar to ELO or pendeoepitaxy of gallium nitride, growth from the low defect outer portions 110a" of the pyramids 110a may have a lower density of line and planar defects.
  • growth preferably is allowed to continue until the gallium nitride layer 120 coalesces on the tops lOOd of the posts 100a to form a continuous gallium nitride semiconductor layer 130.
  • the trenches 100b also preferably are filled with gallium nitride during this growth.
  • the III-V precursor ratio also may be changed during metalorganic vapor phase epitaxy to increase lateral growth relative to the vertical growth. It will be understood that the III-V precursor ratio also may be changed during seed form growth, to produce pointed or flat top seed forms. In particular, lateral growth may be enhanced by increasing the ammonia (Group V) flux and/or decreasing the gallium (Group III) flux, such that the overall V/III ratio increases.
  • gallium nitride layer 120 coalesces, vertical growth of the continuous gallium nitride layer 130 may be enhanced by decreasing the ammonia flux and/or by increasing the gallium flux, such that the overall VAII ratio decreases.
  • the growth of gallium nitride shown in Figures 3-6 need not use a mask Accordingly, a low defect continuous gallium nitride layer 130 may be fabricated without the need to form a mask on a gallium nitride layer. Process simplification thereby may occur.
  • the formation of the pyramids 110a and the subsequent formation of the gallium nitride layer 120 may be performed in a single growth chamber, preferably by increasing the temperature and by leaving the other process parameters unchanged. Simplified processing therefore also may be provided.
  • low defect density gallium nitride semiconductor layers having defect density of about 10 cm " or less may be grown on substrates including silicon, silicon carbide and/or other materials. Growth masks may be eliminated, and high quality gallium nitride may be formed in one growth run.
  • the gallium nitride seed pyramids 110a can confine the threading dislocations that stem from heteroepitaxial growth. Defect densities of less than about 10 5 cm '2 may be obtained within the volume of the laterally grown gallium nitride material.
  • the maximum volume of the low defect density gallium nitride layer 130 need only be limited by the size of the substrate.
  • gallium nitride structures comprise a substrate 100 including a plurality of non-gallium nitride posts 100a that define trenches 100b therebetween.
  • the non-gallium nitride posts 100a include non-gallium nitride sidewalls 100c and non-gallium nitride tops lOOd.
  • the trenches include non-gallium nitride floors lOOe.
  • a gallium nitride layer 100 is included on the non-gallium nitride posts 100a including on the non-gallium nitride tops lOOd.
  • the gallium nitride layer 110 preferably comprises gallium nitride pyramids 110a on the non-gallium nitride tops lOOd.
  • Gallium nitride regions 120 may be provided on the gallium nitride pyramids 110a.
  • Second gallium nitride pyramids 110b also may be provided on the non-gallium nitride floors lOOe.
  • a conformal gallium nitride layer 110c also may be provided on the sidewalls 100c between the gallium nitride pyramids 110a and the second gallium nitride pyramids 110b.
  • the gallium nitride regions 120 preferably form a continuous gallium nitride layer 130.
  • the gallium nitride layer 110 also preferably fills the trenches.
  • a conformal buffer layer 102 also may be provided on the substrate, wherein the gallium nitride layer 110 is on the conformal buffer layer 102 opposite the substrate 100.

Abstract

A substrate includes non-gallium nitride posts that define trenches therebetween, wherein the non-gallium nitride posts include non-gallium nitride sidewalls and non-gallium nitride tops and the trenches include non-gallium floors. Gallium nitride is grown on the non-gallium nitride posts, including on the non-gallium nitride tops. Preferably, gallium nitride pyramids are grown on the non-gallium nitride tops and gallium nitride then is grown on the gallium nitride pyramids. The gallium nitride pyramids preferably are grown at a first temperature and the gallium nitride preferably is grown on the pyramids at a second temperature that is higher than the first temperature. The first temperature preferably is about 1000 ºC or less and the second temperature preferably is about 1100ºC or more. However, other than temperature, the same processing conditions preferably are used for both growth steps. The grown gallium nitride on the pyramids preferably coalesces to form a continuous gallium nitride layer. Accordingly, gallium nitride may be grown without the need to form masks during the gallium nitride growth process. Moreover, the gallium nitride growth may be performed using the same processing conditions other than temperatures changes. Accordingly, uninterrupted gallium nitride growth may be performed.

Description

METHODS OF FABRICATING GALLIUM NITRIDE SEMICONDUCTOR LAYERS ON SUBSTRATES INCLUDING NON-GALLIUM NITRIDE POSTS, AND GALLIUM NITRIDE SEMICONDUCTOR STRUCTURES FABRICATED THEREBY Federally Sponsored Research This invention was made with Government support under Office of Naval Research Contract Nos. N00014-96-1-0765, N00014-98-1-0384, and N00014-98-1- 0654. The Government may have certain rights to this invention.
Field of the Invention
This invention relates to microelectronic devices and fabrication methods, and more particularly to gallium nitride semiconductor devices and fabrication methods therefor.
Background of the Invention
Gallium nitride is being widely investigated for microelectronic devices including but not limited to transistors, field emitters and optoelectronic devices. It will be understood that, as used herein, gallium nitride also includes alloys of gallium nitride such as aluminum gallium nitride, indium gallium nitride and aluminum indium gallium nitride.
A major problem in fabricating gallium nitride-based microelectronic devices is the fabrication of gallium nitride semiconductor layers having low defect densities. It is known that one contributor to defect density is the substrate on which the gallium nitride layer is grown. Accordingly, although gallium nitride layers have been grown on sapphire substrates, it is known to reduce defect density by growing gallium nitride layers on aluminum nitride buffer layers which are themselves formed on silicon carbide substrates. Notwithstanding these advances, continued reduction in defect density is desirable. It also is known to produce low defect density gallium nitride layers by forming a mask on a layer of gallium nitride, the mask including at least one opening therein that exposes the underlying layer of gallium nitride, and laterally growing the underlying layer of gallium nitride through the at least one opening and onto the mask. This technique often is referred to as "Epitaxial Lateral Overgrowth" (ELO). The layer of gallium nitride may be laterally grown until the gallium nitride coalesces on the mask to form a single layer on the mask. In order to form a continuous layer of gallium nitride with relatively low defect density, a second mask may be formed on the laterally overgrown gallium nitride layer, that includes at least one opening that is offset from the opening in the underlying mask. ELO then again is performed through the openings in the second mask to thereby overgrow a second low defect density continuous gallium nitride layer. Microelectronic devices then may be formed in this second overgrown layer. ELO of gallium nitride is described, for example, in the publications entitled Lateral Epitaxy of Low Defect Density GaN Layers Via OrganometalUc Vapor Phase Epitaxy to Nam et al., Appl. Phys. Lett. Vol. 71 , No. 18, November 3, 1997, pp. 2638-2640; and Dislocation Density Reduction Via Lateral Epitaxy in Selectively Grown GaN Structures to Zheleva et al, Appl. Phys. Lett., Vol. 71, No. 17, October 27, 1997, pp. 2472-2474, the disclosures of which are hereby incorporated herein by reference. It also is known to produce a layer of gallium nitride with low defect density by forming at least one trench or post in an underlying layer of gallium nitride to define at least one sidewall therein. A layer of gallium nitride is then laterally grown from the at least one sidewall. Lateral growth preferably takes place until the laterally grown layers coalesce within the trenches. Lateral growth also preferably continues until the gallium nitride layer that is grown from the sidewalls laterally overgrows onto the tops of the posts. In order to facilitate lateral growth and produce nucleation of gallium nitride and growth in the vertical direction, the top of the posts and/or the trench floors may be masked. Lateral growth from the sidewalls of trenches and/or posts also is referred to as "pendeoepitaxy" and is described, for example, in publications entitled Pendeo-Epitaxy: A New Approach for Lateral Growth of
Gallium Nitride Films by Zheleva et al, Journal of Electronic Materials, Vol. 28, No. 4, February 1999, pp. L5-L8; and Pendeoepitaxy of Gallium Nitride Thin Films by Linthicum et al., Applied Physics Letters, Vol. 75, No. 2, July 1999, pp. 196-198, the disclosures of which are hereby incorporated herein by reference. Unfortunately, both ELO and pendeoepitaxy may use one or more masks to mask portions of an underlying gallium nitride layer during ELO and/or pendeoepitaxy. These masks may complicate the fabrication process. Moreover, multiple growth steps of gallium nitride may be needed with mask formation therebetween. These multiple growth steps also may complicate the fabrication processes, because the structures may need to be removed from the gallium nitride growth chamber in order to form the mask or masks. Accordingly, notwithstanding the recent advances in ELO and pendeoepitaxy, there continues to be a need for methods of fabricating gallium nitride semiconductor layers that do not need masking layers and or need not interrupt the gallium nitride growth process.
Summary of the Invention
The present invention provides a substrate including non-gallium nitride posts that define trenches therebetween, wherein the non-gallium nitride posts include non- gallium nitride sidewalls and non-gallium nitride tops, and the trenches include non- gallium floors. These substrates also may be referred to herein as "textured" substrates. Then, gallium nitride is grown on the non-gallium nitride posts, including on the non-gallium nitride tops. Preferably, gallium nitride pyramids are grown on the non-gallium nitride tops and gallium nitride then is grown on the gallium mtride pyramids. The gallium nitride pyramids preferably are grown at a first temperature and the gallium nitride preferably is grown on the pyramids at a second temperature that is higher than the first temperature. The first temperature preferably is about 1000°C or less and the second temperature preferably is about 1100°C or more. However, other than temperature, the same processing conditions preferably are used for both growth steps. The grown gallium nitride on the pyramids preferably coalesces to form a continuous gallium nitride layer.
Accordingly, gallium nitride may be grown on a textured substrate, without the need to provide masks during the gallium mtride growth process. Moreover, the gallium nitride growth may be performed using the same processing conditions other than temperatures changes. Accordingly, uninterrupted gallium nitride growth may be performed. Simplified processing conditions therefore may be employed to grow a gallium nitride layer having low defect densities, for example defect densities of less than about 105 cm"2.
- j - During growth of the gallium nitride pyramids on the non-gallium nitride tops, gallium nitride pyramids also may be simultaneously grown on the non-gallium mtride floors. Moreover, a conformal gallium nitride layer also may be formed simultaneously on the sidewalls, between the gallium nitride pyramids on the non- gallium nitride tops and on the non-gallium nitride floors. Upon growing the gallium nitride on the pyramids, the trenches also may be simultaneously filled with gallium nitride. A conformal buffer layer may be formed on the substrate including on the non-gallium nitride sidewalls, the non-gallium nitride tops and the non-gallium nitride floors, prior to growing the gallium nitride pyramids. For example, a conformal layer of aluminum nitride may be used.
Gallium nitride semiconductor structures therefore may be fabricated, according to the present invention, by providing a textured substrate, including a plurality of non-gallium nitride posts that define trenches therebetween, wherein the non-gallium nitride posts include non-gallium nitride sidewalls and non-gallium nitride tops, and the trenches include non-gallium nitride floors. The substrate preferably is free of masking materials on the non-gallium nitride floors and on the non-gallium nitride tops. Gallium nitride then is grown at a first temperature and the growth of gallium nitride then is continued at a second temperature that is higher than the first temperature. Growth at the second temperature preferably continues until the gallium nitride forms a continuous gallium nitride layer on the substrate.
Gallium nitride semiconductor structures according to the present invention preferably comprise a textured substrate including a plurality of non-gallium nitride posts that define trenches therebetween, the non-gallium nitride posts including non- gallium nitride sidewalls and non-gallium nitride tops, and the trenches including non- gallium nitride floors. A gallium nitride layer is provided on the non-gallium nitride posts including on the non-gallium nitride tops. The gallium nitride semiconductor structure preferably is free of a masking layer on the non-gallium nitride tops and on the non-gallium nitride floors. The gallium nitride layer preferably comprises gallium nitride pyramids on the non-gallium nitride tops. The gallium nitride layer may also include gallium nitride regions on the gallium nitride pyramids. Second gallium nitride pyramids on the non-gallium nitride floors also may be provided. A conformal gallium nitride layer on the sidewalls, between the gallium nitride pyramids and the second gallium nitride pyramids also may be provided. The gallium nitride regions preferably form a continuous gallium nitride layer and the gallium nitride layer also preferably fills the trenches. A conformal buffer layer also may be provided on the substrate wherein the gallium mtride layer is on the conformal buffer layer opposite the substrate.
The present invention most preferably may be used to provide methods of fabricating gallium nitride semiconductor structures that need not include masking or interruptions during gallium nitride epitaxial growth. Accordingly, simplified processes for fabricating gallium nitride semiconductor structures may be provided, to thereby fulfill a need in the fledgling gallium nitride semiconductor industry. However, it also will be understood that the present invention may be used to fabricate non-gallium nitride semiconductor structures wherein a textured substrate of a first material is provided and a second semiconductor material is grown on the posts including on the tops that comprise the first material. Also, semiconductor structures may be provided including a textured substrate that comprises a first material and a layer of second semiconductor material on the posts that comprise the first material.
Brief Description of the Drawings Figures 1-6 are cross-sectional views of gallium nitride semiconductor structures during intermediate fabrication steps, according to the present invention.
Detailed Description of Preferred Embodiments
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the thickness of layers and regions are exaggerated for clarity. Like numbers refer to like elements throughout. It will be understood that when an element such as a layer, region or substrate is referred to as being "on" another element, it can be directly on the other element or intervening elements may also be present. Moreover, each embodiment described and illustrated herein includes its complementary conductivity type embodiment as well.
Referring now to Figures 1-6, methods of fabricating gallium nitride semiconductor structures according to embodiments of the present invention now will be described. As shown in Figure 1, a substrate 100, also referred to as a "textured substrate", is provided including a plurality of non-gallium nitride posts 100a that define trenches 100b therebetween. The non-gallium nitride posts 100a include non- gallium nitride sidewalls 100c and non-gallium nitride tops lOOd. The trenches 100b also include non-gallium nitride floors lOOe.
It will be understood by those having skill in the art that the substrate 100 may be a monocrystalline substrate or a substrate including one or more monocrystalline layers thereon, from which the posts 100a and trenches 100b are defined. Examples of monocrystalline substrates and monocrystalline layers include, but are not limited to, monocrystalline silicon, silicon carbide and or sapphire. It also will be understood that the posts 100a and trenches 100b may be defined using selective etching and/or selective epitaxial growth. Etching may be performed using standard dry or wet etching techniques, preferably using a mask, which then preferably is removed. The fabrication of a substrate including trenches and posts is well known to those having skill in the art and need not be described in detail herein.
As will be shown below, by texturing the substrate 100, the substrate surface area that is available to contribute to defect formation during subsequent gallium nitride seed deposition may be reduced and preferably minimized. Texturing also may reduce crack formation in the final gallium nitride semiconductor layer by providing stress relief during cooling. Stress may occur due to mismatches in the coefficients of thermal expansion between the substrate material and gallium nitride that is formed subsequently.
It also will be understood that the trenches 100b preferably are sufficiently deep so that undesirable growth of poor quality gallium nitride from the trench floor lOOe will not interfere with growth of high quality gallium nitride, as will be described below. Moreover, the posts 100a preferably are grown in the form of stripes that preferably are sufficiently narrow, for example less than or equal to one micron in width, so that small gallium nitride seed pyramids can be formed on the non-gallium nitride tops lOOd. As will be described below, the initial gallium nitride seed pyramids that form on the non-gallium nitride tops lOOd may have defects, so that the reduced size gallium nitride seed pyramids can reduce the total amount of initial defective gallium nitride seed material. The total mechanical stress on the pyramids due to the differences in coefficients of thermal expansion between the substrate, any conformal buffer layers and the grown gallium nitride also may be reduced, as well as the time to complete the pyramidal growth and initiate pendeoepitaxial growth as will be described below.
When the posts 100a are in the form of stripes, the stripes preferably extend along the 1 100 direction of a sapphire or silicon carbide substrate 100 and along the 110 direction of a silicon substrate 100, to thereby expose the 1120 plane of the subsequently grown gallium mtride layer. In general, the stripes should expose the 1120 plane of sapphire and silicon carbide substrates. For example, if A-plane sapphire is used, as opposed to C-plane sapphire which is more common, then the wafer flat is the 0001 direction. In order to expose the 1120 plane, etching is performed parallel to the flat or the 0001 direction . However, it also will be understood that the sidewalls 100c may not be orthogonal to the substrate 100, but rather may be oblique thereto. Finally, it also will be understood that, although the sidewalls 100c are shown in cross-section in Figure 1, the posts 100a and trenches 100b may define elongated regions that are straight, V-shaped or have other shapes. The spaced apart posts 100a also may be referred to as "mesas", "pedestals" or "columns". The trenches 100b also may be referred to as "wells".
Referring now to Figure 2, an optional conformal buffer layer 102 then may be formed on the substrate 100 including on the non-gallium nitride sidewalls 100c, the non-gallium nitride tops lOOd and the non-gallium nitride floors lOOe. When the non- gallium nitride posts 100a comprise silicon, the buffer layer may comprise silicon carbide and/or aluminum nitride. When the non-gallium nitride posts 100a comprise silicon carbide, the buffer layer 102 may comprise high temperature aluminum nitride. Finally, when the non-gallium nitride posts 100a comprise sapphire, the conformal buffer layer 102 may comprise low temperature gallium nitride and/or aluminum nitride. Other buffer layers may be used with these and other non-gallium nitride posts 100a. The fabrication of a buffer layer on a substrate is well known to those having skill in the art and need not be described in detail herein.
Referring now to Figure 3, gallium nitride is grown on the non-gallium nitride posts 100a including on the non-gallium nitride tops lOOd. More specifically, a gallium nitride layer 110 is formed, wherein the gallium nitride layer includes gallium nitride pyramids 110a on the non-gallium nitride tops lOOd. These pyramids 110a also may be referred to as "seed forms". It will be understood that the seed forms need not be pyramidal in shape but rather may have flash tops. As also shown in Figure 3, second gallium nitride pyramids 110b also may be formed simultaneously on the non-gallium nitride floors lOOe. Finally, a conformal region of gallium nitride 110c also may be formed simultaneously on the sidewalls 100c of the non-gallium nitride posts 100a. Growth of the gallium nitride layer 110 preferably is performed using metalorganic vapor phase epitaxy (MOVPE) of triethylgallium (TEG), for example at 13-39 μmol/min andNH3 at 1500 seem in combination with 3000 seem H2 diluent, at low temperature, preferably at about 1000°C or less. Additional details of MOCVD growth of gallium nitride may be found in the above-cited publications to Nam et al, Zheleva et al., Zheleva et al. and Linthicum et al. Other growth techniques also may be used.
Details of the growth of gallium nitride layer 110 now will be described. In particular, as shown in Figure 3, the present invention preferably produces pyramidal gallium nitride seed forms 110a on the tops llOd of the gallium nitride posts 110a. Earlier studies that were conducted on selective area growth of gallium nitride indicated that when gallium nitride pyramids are grown through mask windows, two regions of gallium nitride material result. One region is a relatively high defect density gallium nitride area that converges at the apex of the pyramid. The other region is nearly defect-free and encapsulates the pyramid. See, for example, the publication by Nam et al. entitled Lateral Epitaxial Overgrowth of GaN Films on Sz'O2 Areas via Metalorganic Vapor Phase Epitaxy, Journal of Electronic Materials, Vol. 27, No. 4, 1998, pp. 233-237, the disclosure of which is hereby incorporated herein by reference.
According to the invention, the pyramids 110a on the tops lOOd of the non- gallium nitride posts 100a can form these same two regions. Once the nearly defect- free region is formed, the growth parameters can be changed to enhance lateral growth of gallium nitride from the relatively defect free regions of the pyramids, and that can result in nearly defect-free gallium nitride epilayers, as will be described below.
In particular, the pyramids preferably are formed at relatively low temperature, preferably about 1000°C or less using metalorganic vapor phase epitaxy, as was described above. The pyramids may be grown to have a width of about 2μm and a height of about 2μm on posts that are 1 μm wide. In this case, the interior portions 110a' of the pyramids 110a having a width of about 1 μm and a height of about 1 μm, may have a high defect density of about 10 cm or more, whereas the outer portions 110a" of the pyramids 110a may be relatively low in defect, for example having defect density of about 105 cm"2 or less. The conformal layer 110c on the sidewalls 100c of the posts 100 a also may have a high defect density and the second pyramids 110b on the floor lOOe also may have high defect density, for example greater than about 10 cm" . It also will be understood that in Figure 3, masks need not be used prior to or during the growth of the gallium nitride layer 110.
Referring now to Figure 4, gallium mtride 120 then is preferentially laterally grown on the gallium mtride pyramids 110a. Moreover, as shown in Figure 4, vertical growth also may occur. It will be understood that, as used herein, the term "lateral" means a direction that is orthogonal to the sidewalls 100c. As used herein, the term "vertical" denotes a direction parallel to the sidewalls 100c.
For stripes oriented along the 1 100 direction, the crystal morphology may change as the temperature increases. Thus, at lower temperatures, for example at about 1000°C or less, a pyramidal cross-section may result as was shown in Figure 3. At higher temperatures, for example at about 1100°C or more, a rectangular cross- section may result. Thus, by increasing the temperature, for example to about 1100°C or more, and preferably without changing any other growth parameters, gallium nitride 120 is preferentially laterally grown from the outer portions 110" of the pyramids 110a. Similar to ELO or pendeoepitaxy of gallium nitride, growth from the low defect outer portions 110a" of the pyramids 110a may have a lower density of line and planar defects. As shown in Figures 5 and 6, growth preferably is allowed to continue until the gallium nitride layer 120 coalesces on the tops lOOd of the posts 100a to form a continuous gallium nitride semiconductor layer 130. The trenches 100b also preferably are filled with gallium nitride during this growth. It will be understood that the III-V precursor ratio also may be changed during metalorganic vapor phase epitaxy to increase lateral growth relative to the vertical growth. It will be understood that the III-V precursor ratio also may be changed during seed form growth, to produce pointed or flat top seed forms. In particular, lateral growth may be enhanced by increasing the ammonia (Group V) flux and/or decreasing the gallium (Group III) flux, such that the overall V/III ratio increases. Once the gallium nitride layer 120 coalesces, vertical growth of the continuous gallium nitride layer 130 may be enhanced by decreasing the ammonia flux and/or by increasing the gallium flux, such that the overall VAII ratio decreases. The growth of gallium nitride shown in Figures 3-6 need not use a mask Accordingly, a low defect continuous gallium nitride layer 130 may be fabricated without the need to form a mask on a gallium nitride layer. Process simplification thereby may occur. Moreover, the formation of the pyramids 110a and the subsequent formation of the gallium nitride layer 120 may be performed in a single growth chamber, preferably by increasing the temperature and by leaving the other process parameters unchanged. Simplified processing therefore also may be provided.
Accordingly, low defect density gallium nitride semiconductor layers, having defect density of about 10 cm" or less may be grown on substrates including silicon, silicon carbide and/or other materials. Growth masks may be eliminated, and high quality gallium nitride may be formed in one growth run. The gallium nitride seed pyramids 110a can confine the threading dislocations that stem from heteroepitaxial growth. Defect densities of less than about 105 cm'2 may be obtained within the volume of the laterally grown gallium nitride material. The maximum volume of the low defect density gallium nitride layer 130 need only be limited by the size of the substrate. Line defects that stem from the lattice misfit between the substrate and the epilayers preferably converge at the apex of the pyramid 110a*, thereby confining most of the defects to the interior portion 110a'. Referring again to Figure 6, gallium nitride structures according to the present invention comprise a substrate 100 including a plurality of non-gallium nitride posts 100a that define trenches 100b therebetween. The non-gallium nitride posts 100a include non-gallium nitride sidewalls 100c and non-gallium nitride tops lOOd. The trenches include non-gallium nitride floors lOOe. A gallium nitride layer 100 is included on the non-gallium nitride posts 100a including on the non-gallium nitride tops lOOd. The gallium nitride layer 110 preferably comprises gallium nitride pyramids 110a on the non-gallium nitride tops lOOd. Gallium nitride regions 120 may be provided on the gallium nitride pyramids 110a. Second gallium nitride pyramids 110b also may be provided on the non-gallium nitride floors lOOe. A conformal gallium nitride layer 110c also may be provided on the sidewalls 100c between the gallium nitride pyramids 110a and the second gallium nitride pyramids 110b. The gallium nitride regions 120 preferably form a continuous gallium nitride layer 130. The gallium nitride layer 110 also preferably fills the trenches. A conformal buffer layer 102 also may be provided on the substrate, wherein the gallium nitride layer 110 is on the conformal buffer layer 102 opposite the substrate 100.
In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.

Claims

What is Claimed is:
1. A method of fabricating gallium nitride semiconductor structures comprising the steps of: providing a substrate including a plurality of non-gallium nitride posts that define trenches therebetween, the non-gallium nitride posts including non-gallium nitride sidewalls and non-gallium nitride tops, and the trenches including non-gallium nitride floors; and growing gallium nitride on the non-gallium nitride posts, including on the non- gallium nitride tops.
2. A method according to Claim 1 wherein the growing step comprises the steps of: growing gallium nitride pyramids on the non-gallium nitride tops; and growing gallium nitride on the gallium nitride pyramids.
3. A method according to Claim 2 wherein the step of growing gallium nitride pyramids comprises the step of simultaneously growing gallium nitride pyramids on the non-gallium mtride tops and on the non-gallium nitride floors.
4. A method according to Claim 3 wherein the step of growing gallium nitride pyramids further comprises the step of simultaneously growing a conformal gallium nitride layer on the sidewalls, between the gallium nitride pyramids on the non-gallium nitride tops and on the non-gallium nitride floors.
5. A method according to Claim 2 wherein the step of growing gallium nitride on the gallium nitride pyramids comprises the step of growing gallium nitride on the gallium nitride pyramids until the grown gallium nitride coalesces to form a continuous gallium nitride layer.
6. A method according to Claim 5 wherein the step of growing gallium nitride on the gallium nitride pyramids further comprises the step of simultaneously filling the trenches with gallium nitride.
7. A method according to Claim 2 wherein the step of growing gallium nitride pyramids is performed at a first temperature and wherein the step of growing gallium nitride on the gallium nitride pyramids is performed at a second temperature that is higher than the first temperature.
8. A method according to Claim 7 wherein the step of growing gallium nitride pyramids and the step of growing gallium nitride on the gallium nitride pyramids are performed at same processing conditions other than temperature.
9. A method according to Claim 1 wherein the growing step comprises the steps of: first growing the gallium nitride at a first temperature; and then growing the gallium nitride at a second temperature that is higher than the first temperature.
10. A method according to Claim 1 wherein the following step is performed between the steps of providing and growing: forming a conformal buffer layer on the substrate including on the non- gallium nitride sidewalls, the non-gallium nitride tops and the non-gallium nitride floors.
11. A method according to Claim 1 wherein the providing step comprises the steps of: providing a non-gallium nitride substrate; and etching the non-gallium nitride substrate to define the plurality of non-gallium nitride posts and the trenches therebetween.
12. A method according to Claim 9 wherein the first temperature is at most about 1000°C and wherein the second temperature is at least about 1100°C.
13. A method according to Claim 1 wherein the growing step comprises the step of masklessly growing gallium nitride on the non-gallium mtride posts, including on the non-gallium nitride tops.
- 1 J
14. A method according to Claim 1 wherein the non-gallium nitride sidewalls expose a 1120 plane of the non-gallium nitride posts.
15. A method of fabricating gallium nitride semiconductor structures comprising the steps of: providing a substrate including a plurality of non-gallium nitride posts that define trenches therebetween, the non-gallium nitride posts including non-gallium nitride sidewalls and non-gallium nitride tops, and the trenches including non-gallium nitride floors; growing gallium nitride on the substrate at a first temperature; and then continuing growing gallium nitride on the substrate at a second temperature that is higher than the first temperature.
16. A method according to Claim 15 wherein the first temperature is at most about 1000°C and wherein the second temperature is at least about 1100°C.
17. A method according to Claim 15 wherein the step of continuing growing comprises the step of continuing growing gallium nitride on the substrate at the second temperature until the gallium nitride forms a continuous gallium nitride layer on the substrate.
18. A method according to Claim 15 wherein the step of growing gallium nitride and the step of continuing growing gallium nitride are performed at same processing conditions other man temperature.
19. A method according to Claim 15 wherein the following step is performed between the steps of providing and growing: forming a conformal buffer layer on the substrate including on the non- gallium nitride sidewalls, the non-gallium nitride tops and the non-gallium nitride floors.
20. A method according to Claim 15 wherein the providing step comprises the steps of: providing a non-gallium nitride substrate; and etching the non-gallium nitride substrate to define the plurality of non-gallium nitride posts and the trenches therebetween.
21. A method according to Claim 15 wherein the growing and continuing growing steps comprise the steps of masklessly growing gallium nitride and masklessly continuing growing gallium nitride.
22. A method according to Claim 1 wherein the non-gallium nitride sidewalls expose a 1120 plane of the non-gallium nitride posts.
23. A method of fabricating semiconductor structures comprising the steps of: providing a substrate comprising a first material, the substrate including a plurality of posts that comprise the first material and that define trenches therebetween, the posts including sidewalls and tops that comprise the first material, and the trenches including floors that comprise the first material; and growing a second semiconductor material on the posts, including on the tops that comprise the first material.
24. A method according to Claim 23 wherein the growing step comprises the steps of: growing pyramids of the second semiconductor material on the tops; and growing the second semiconductor material on the pyramids.
25. A method according to Claim 24 wherein the step of growing the second semiconductor material on the pyramids comprises the step of growing the second semiconductor material on the pyramids until the grown second semiconductor material coalesces to form a continuous layer of the second semiconductor material.
26. A method according to Claim 23 wherein the following step is performed between the steps of providing and growing: forming a conformal buffer layer on the substrate including on the sidewalls, the tops and the floors.
27. A method according to Claim 23 wherein the growing step comprises the step of masklessly growing the second semiconductor structure material on the posts, including on the tops that comprise the first material.
28. A method according to Claim 23 wherein the sidewalls expose a 1120 plane of the first material.
29. A gallium nitride semiconductor structure comprising: a substrate including a plurality of non-gallium nitride posts that define trenches therebetween, the non-gallium nitride posts including non-gallium nitride sidewalls and non-gallium nitride tops, and the trenches including non-gallium nitride floors; and a gallium nitride layer on the non-gallium nitride posts including on the non- gallium mtride tops.
30. A structure according to Claim 29 wherein the gallium nitride layer comprises gallium nitride pyramids on the non-gallium nitride tops.
31. A structure according to Claim 30 wherein the gallium nitride layer further comprises gallium nitride regions on the gallium nitride pyramids.
32. A structure according to Claim 30 wherein the gallium nitride layer further comprises second gallium nitride pyramids on the non-gallium nitride floors.
33. A stmcture according to Claim 32 wherein the gallium nitride layer further comprises a conformal gallium nitride layer on the sidewalls, between the gallium nitride pyramids and the second gallium nitride pyramids.
34. A structure according to Claim 31 wherein the gallium nitride regions form a continuous gallium nitride layer.
35. A structure according to Claim 30 wherein the gallium nitride layer fills the trenches.
36. A structure according to Claim 29 further comprising: a conformal buffer layer on the substrate including on the non-gallium nitride sidewalls, the non-gallium nitride tops and the non-gallium nitride floors, wherein the gallium nitride layer is on the conformal buffer layer opposite the substrate.
37. A structure according to Claim 29 wherein the structure is free of masking layers therein.
38. A structure according to Claim 29 wherein the non-gallium nitride sidewalls expose a 1120 plane of the non-gallium nitride posts.
39. A semiconductor structure comprising: a substrate comprising a first material, the substrate including a plurality of posts that comprise the first material and that define trenches therebetween, the posts including sidewalls and tops that comprise the first material, and the trenches including floors that comprise the first material; and a layer of second semiconductor material on the posts including on the tops that comprise the first material.
40. A structure according to Claim 39 wherein the layer of second semiconductor material comprises pyramids of the second semiconductor material on the tops.
41. A structure according to Claim 40 wherein the layer of second semiconductor material further comprises regions of the second material on the pyramids.
42. A structure according to Claim 40 wherein the layer of second semiconductor material further comprises second pyramids of the second material on the floors.
43. A structure according to Claim 42 wherein the layer of second semiconductor material further comprises a conformal layer of the second semiconductor material on the sidewalls, between the pyramids and the second pyramids.
44. A structure according to Claim 41 wherein the regions of the second semiconductor material form a continuous layer of the second semiconductor material.
45. A structure according to Claim 39 wherein the layer of second semiconductor material fills the trenches.
46. A structure according to Claim 39 further comprising: a conformal buffer layer on the substrate including on the sidewalls, the tops and the floors, wherein the layer of the second semiconductor material is on the conformal buffer layer opposite the substrate.
47. A structure according to Claim 39 wherein the structure is free of masking layers therein.
48. A structure according to Claim 39 wherein the sidewalls expose a 1120 plane of the first material.
PCT/US2000/040724 2000-02-09 2000-08-22 Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts, and gallium nitride semiconductor structures fabricated thereby WO2001059819A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001559046A JP4801306B2 (en) 2000-02-09 2000-08-22 Method for manufacturing gallium nitride semiconductor structure and gallium nitride semiconductor structure
AU2001218182A AU2001218182A1 (en) 2000-02-09 2000-08-22 Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts, and gallium nitride semiconductor structures fabricated thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50105700A 2000-02-09 2000-02-09
US09/501,057 2000-02-09

Publications (1)

Publication Number Publication Date
WO2001059819A1 true WO2001059819A1 (en) 2001-08-16

Family

ID=23991977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/040724 WO2001059819A1 (en) 2000-02-09 2000-08-22 Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts, and gallium nitride semiconductor structures fabricated thereby

Country Status (5)

Country Link
JP (2) JP4801306B2 (en)
KR (1) KR100865600B1 (en)
CN (1) CN1248288C (en)
AU (1) AU2001218182A1 (en)
WO (1) WO2001059819A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611002B2 (en) 2001-02-23 2003-08-26 Nitronex Corporation Gallium nitride material devices and methods including backside vias
US6617060B2 (en) 2000-12-14 2003-09-09 Nitronex Corporation Gallium nitride materials and methods
KR100454908B1 (en) * 2002-02-09 2004-11-06 엘지전자 주식회사 Method for manufacturing GaN substrate
US6956250B2 (en) 2001-02-23 2005-10-18 Nitronex Corporation Gallium nitride materials including thermally conductive regions
US7233028B2 (en) 2001-02-23 2007-06-19 Nitronex Corporation Gallium nitride material devices and methods of forming the same
US7361576B2 (en) 2005-05-31 2008-04-22 The Regents Of The University Of California Defect reduction of non-polar and semi-polar III-Nitrides with sidewall lateral epitaxial overgrowth (SLEO)
US7655090B2 (en) 2000-08-04 2010-02-02 The Regents Of The University Of California Method of controlling stress in gallium nitride films deposited on substrates
US8835902B2 (en) 2010-12-16 2014-09-16 Samsung Electronics Co., Ltd. Nano-structured light-emitting devices
US9209021B2 (en) 2013-05-31 2015-12-08 Toyoda Gosei Co., Ltd. Method for producing Group III nitride semiconductor and Group III nitride semiconductor
US9318326B2 (en) 2010-04-27 2016-04-19 Pilegrowth Tech S.R.L. Dislocation and stress management by mask-less processes using substrate patterning and methods for device fabrication
US9837494B2 (en) 2012-03-30 2017-12-05 Toyoda Gosei Co., Ltd. Production method for group III nitride semiconductor and group III nitride semiconductor
US10700023B2 (en) 2016-05-18 2020-06-30 Macom Technology Solutions Holdings, Inc. High-power amplifier package
US11367674B2 (en) 2016-08-10 2022-06-21 Macom Technology Solutions Holdings, Inc. High power transistors

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513446B2 (en) * 2004-07-23 2010-07-28 豊田合成株式会社 Crystal growth method of semiconductor crystal
CN100365767C (en) * 2004-09-17 2008-01-30 同济大学 Substrate processing method for improving gallium nitride base material epitaxial layer quality
JP4744245B2 (en) * 2004-11-05 2011-08-10 シャープ株式会社 Nitride semiconductor device
JP4793824B2 (en) * 2006-08-28 2011-10-12 シャープ株式会社 Method for forming nitride semiconductor layer
JP5003719B2 (en) * 2009-05-07 2012-08-15 豊田合成株式会社 Semiconductor device and crystal growth substrate
JP6485299B2 (en) * 2015-06-05 2019-03-20 豊田合成株式会社 Semiconductor device, method for manufacturing the same, and power conversion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0884767A2 (en) * 1997-06-13 1998-12-16 André Strittmatter Method of epitaxy of gallium nitride on silicon substrates
WO1999018617A1 (en) * 1997-10-07 1999-04-15 Cree, Inc. Group iii nitride photonic devices on silicon carbide substrates with conductive buffer interlayer structure
WO1999044224A1 (en) * 1998-02-27 1999-09-02 North Carolina State University Methods of fabricating gallium nitride semiconductor layers by lateral overgrowth through masks, and gallium nitride semiconductor structures fabricated thereby

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2569099B2 (en) * 1987-12-25 1997-01-08 株式会社日立製作所 Epitaxial growth method
JPH05234900A (en) * 1992-02-19 1993-09-10 Nec Corp Manufacture of semiconductor device
JP3930161B2 (en) * 1997-08-29 2007-06-13 株式会社東芝 Nitride-based semiconductor device, light-emitting device, and manufacturing method thereof
JP4005701B2 (en) * 1998-06-24 2007-11-14 シャープ株式会社 Method of forming nitrogen compound semiconductor film and nitrogen compound semiconductor element
JP4352473B2 (en) * 1998-06-26 2009-10-28 ソニー株式会社 Manufacturing method of semiconductor device
JP2000031068A (en) * 1998-07-14 2000-01-28 Mitsubishi Cable Ind Ltd SUBSTRATE FOR GaN CRYSTAL GROWTH
JP3471685B2 (en) * 1999-03-17 2003-12-02 三菱電線工業株式会社 Semiconductor substrate and manufacturing method thereof
JP3471700B2 (en) * 1999-03-17 2003-12-02 三菱電線工業株式会社 Semiconductor substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0884767A2 (en) * 1997-06-13 1998-12-16 André Strittmatter Method of epitaxy of gallium nitride on silicon substrates
WO1999018617A1 (en) * 1997-10-07 1999-04-15 Cree, Inc. Group iii nitride photonic devices on silicon carbide substrates with conductive buffer interlayer structure
WO1999044224A1 (en) * 1998-02-27 1999-09-02 North Carolina State University Methods of fabricating gallium nitride semiconductor layers by lateral overgrowth through masks, and gallium nitride semiconductor structures fabricated thereby

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZENG K C ET AL: "OPTICAL PROPERTIES OF GAN PYRAMIDS", APPLIED PHYSICS LETTERS,US,AMERICAN INSTITUTE OF PHYSICS. NEW YORK, vol. 74, no. 9, 1 March 1999 (1999-03-01), pages 1227 - 1229, XP000805887, ISSN: 0003-6951 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816764B2 (en) 2000-08-04 2010-10-19 The Regents Of The University Of California Method of controlling stress in gallium nitride films deposited on substrates
US9691712B2 (en) 2000-08-04 2017-06-27 The Regents Of The University Of California Method of controlling stress in group-III nitride films deposited on substrates
US7655090B2 (en) 2000-08-04 2010-02-02 The Regents Of The University Of California Method of controlling stress in gallium nitride films deposited on substrates
US7687888B2 (en) 2000-08-04 2010-03-30 The Regents Of The University Of California Method of controlling stress in gallium nitride films deposited on substrates
US9129977B2 (en) 2000-08-04 2015-09-08 The Regents Of The University Of California Method of controlling stress in group-III nitride films deposited on substrates
US8525230B2 (en) 2000-08-04 2013-09-03 The Regents Of The University Of California Field-effect transistor with compositionally graded nitride layer on a silicaon substrate
US6617060B2 (en) 2000-12-14 2003-09-09 Nitronex Corporation Gallium nitride materials and methods
US6649287B2 (en) 2000-12-14 2003-11-18 Nitronex Corporation Gallium nitride materials and methods
US8105921B2 (en) 2000-12-14 2012-01-31 International Rectifier Corporation Gallium nitride materials and methods
US6956250B2 (en) 2001-02-23 2005-10-18 Nitronex Corporation Gallium nitride materials including thermally conductive regions
US7233028B2 (en) 2001-02-23 2007-06-19 Nitronex Corporation Gallium nitride material devices and methods of forming the same
US6611002B2 (en) 2001-02-23 2003-08-26 Nitronex Corporation Gallium nitride material devices and methods including backside vias
KR100454908B1 (en) * 2002-02-09 2004-11-06 엘지전자 주식회사 Method for manufacturing GaN substrate
US7955983B2 (en) 2005-05-31 2011-06-07 The Regents Of The University Of California Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO)
US7361576B2 (en) 2005-05-31 2008-04-22 The Regents Of The University Of California Defect reduction of non-polar and semi-polar III-Nitrides with sidewall lateral epitaxial overgrowth (SLEO)
US9318326B2 (en) 2010-04-27 2016-04-19 Pilegrowth Tech S.R.L. Dislocation and stress management by mask-less processes using substrate patterning and methods for device fabrication
US8835902B2 (en) 2010-12-16 2014-09-16 Samsung Electronics Co., Ltd. Nano-structured light-emitting devices
US9837494B2 (en) 2012-03-30 2017-12-05 Toyoda Gosei Co., Ltd. Production method for group III nitride semiconductor and group III nitride semiconductor
US9209021B2 (en) 2013-05-31 2015-12-08 Toyoda Gosei Co., Ltd. Method for producing Group III nitride semiconductor and Group III nitride semiconductor
US10700023B2 (en) 2016-05-18 2020-06-30 Macom Technology Solutions Holdings, Inc. High-power amplifier package
US11367674B2 (en) 2016-08-10 2022-06-21 Macom Technology Solutions Holdings, Inc. High power transistors
US11862536B2 (en) 2016-08-10 2024-01-02 Macom Technology Solutions Holdings, Inc. High power transistors

Also Published As

Publication number Publication date
KR100865600B1 (en) 2008-10-27
KR20020086511A (en) 2002-11-18
CN1451173A (en) 2003-10-22
JP2003526907A (en) 2003-09-09
CN1248288C (en) 2006-03-29
JP4801306B2 (en) 2011-10-26
JP2010283398A (en) 2010-12-16
AU2001218182A1 (en) 2001-08-20
JP5323792B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
US6403451B1 (en) Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts
JP5323792B2 (en) Method for manufacturing gallium nitride semiconductor structure, method for manufacturing semiconductor structure, and semiconductor structure
US6521514B1 (en) Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates
EP1138063B1 (en) Fabrication of gallium nitride layers by lateral growth
JP3886341B2 (en) Method for manufacturing gallium nitride crystal substrate and gallium nitride crystal substrate
US7732306B2 (en) Methods for producing improved epitaxial materials
US6051849A (en) Gallium nitride semiconductor structures including a lateral gallium nitride layer that extends from an underlying gallium nitride layer
JP4581490B2 (en) III-V group nitride semiconductor free-standing substrate manufacturing method and III-V group nitride semiconductor manufacturing method
JP4088111B2 (en) Porous substrate and manufacturing method thereof, GaN-based semiconductor multilayer substrate and manufacturing method thereof
US20020031851A1 (en) Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby
US20010039102A1 (en) Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby
US20010009167A1 (en) Methods of fabricating gallium nitride semiconductor layers by lateral overgrowth through offset masks
JP4356208B2 (en) Vapor phase growth method of nitride semiconductor
KR102062381B1 (en) Method of growing nitride semiconductor layer and fabrication nitride semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 559046

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020027010250

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 00818903X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027010250

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase