WO2001079340A1 - Light stable articles - Google Patents

Light stable articles Download PDF

Info

Publication number
WO2001079340A1
WO2001079340A1 PCT/US2000/021314 US0021314W WO0179340A1 WO 2001079340 A1 WO2001079340 A1 WO 2001079340A1 US 0021314 W US0021314 W US 0021314W WO 0179340 A1 WO0179340 A1 WO 0179340A1
Authority
WO
WIPO (PCT)
Prior art keywords
article
film
light absorbing
composition
hals
Prior art date
Application number
PCT/US2000/021314
Other languages
French (fr)
Inventor
Stephen A. Johnson
Dan J. Mcgurran
Terry R. Bailey
John W. Frank
Original Assignee
3M Innovative Properties Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Company filed Critical 3M Innovative Properties Company
Priority to EP00953835A priority Critical patent/EP1274784B1/en
Priority to DE60023353T priority patent/DE60023353T2/en
Priority to AU2000266214A priority patent/AU2000266214A1/en
Priority to JP2001576930A priority patent/JP2003532752A/en
Priority to AT00953835T priority patent/ATE307165T1/en
Publication of WO2001079340A1 publication Critical patent/WO2001079340A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3435Piperidines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to light stable articles, including light stable polymeric articles and light stable optical bodies. More particularly, the present invention relates to articles comprised of at least one layer of a polymer film.
  • Polymeric films are widely used and widely useful in a broad range of industrial and consumer applications. Such films, for example, can be employed as transparent or tinted barrier films to protect myriad underlying substrates.
  • Polymeric films, and particularly polymeric films made of a polyester material offer many characteristics desirable in a barrier film. Among other properties, they exhibit clarity, durability, toughness, pliability, formability and affordability.
  • the present invention provides a light stable article that comprises at least one single or multiple layer polyester film and an effective amount of a light absorbing composition comprising an ultraviolet light absorbing compound and a hindered amine light stabilizer (HALS) composition, wherein the weight ratio of the light absorbing compound to the HALS composition is greater than about 2:1.
  • the invention provides a light stable article comprising at least one single or multiple layer polyester film and an effective amount each of a phosphonate stabilizing compound and a light absorbing composition comprising a hydroxy-functional tris-arr l triazine compound.
  • the present invention provides a light stable article comprising at least one single or multiple layer polyester film and an effective amount of a light absorbing composition consisting essentially of a hydroxy-functional t ⁇ s-aryl triazine compound having the formula:
  • each R .1 is, the same or different and is selected from the group consisting of substituted or unsubstituted, branched or unbranched alkyl, aryl, alkaryl or alkoxy groups having from 1 to about 18 carbon atoms.
  • the present invention provides various composite articles and constructions made utilizing the above light stable articles.
  • the articles of the invention generally comprise at least one single or multilayer polyester (i.e., polyester-containing) film and an effective amount of at least one light stabilizing composition.
  • the light stabilizing composition can comprise an ultraviolet absorbing compound alone or in combination with one or more hindered amine light stabilizing ("HALS") compounds.
  • HALS hindered amine light stabilizing
  • the polyester film can be oriented and/or can be part of a multilayer optical film construction.
  • the polyester film can also incorporate one or more phosphonate stabilizing compositions to aid in melt stability and/or weather resistance.
  • polyester films of the invention can incorporate any polyester-containing polymer.
  • Useful polyester polymers include, for example, polymers having terephthalate, isophthalate, and/or naphthalate comonomer units, e.g., polyethylene naphthalate (PEN), polyethylene terephthalate (PET) and copolymers and blends thereof. Examples of other suitable polyester copolymers are provided in published patent application WO 99/36262 and in WO 99/36248, both of which are incorporated herein by reference.
  • polyester materials include polycarbonates, polyarylates, and other naphthalate and terephthalate-containing polymers, such as, for example, polybutylene naphthalate (PBN), polypropylene naphthalate (PPN), polybutylene terephthalate (PBT), polypropylene terephthalate (PPT), and blends and copolymers of any of the above with each other, with other polyesters, or with non-polyester polymers, h a generally preferred embodiment, the light stabilizing compositions are incorporated directly into the polyester resin (e.g., a PET or PEN-based resin). This presents a relatively simple method of effectively, and maximally, protecting standard polyester films from the deterioration upon exposure to sources of ultraviolet radiation.
  • the polyester resin e.g., a PET or PEN-based resin
  • the polymer films can contain multiple layers of the same or different polyester materials, or can be comprised of one or more non-polyester layers.
  • Most commercially available UV-protected polyester films are made either by applying a UV-protective coating to a polyester substrate, by preparing a multilayered film (as by coextrusion) in which a non-polyester layer contains the UV-protecting agent, or by imbibing a UV-protecting agent into a polyester film after film formation.
  • the current invention can have a significant advantage over such films in that the light stabilizing compositions may be extruded directly in the polyester resin, thus providing simplicity of manufacture, cost reduction, permanence of the light stabilizing additive(s), and uniformity of protection throughout the polyester layer into which the compositions are incorporated.
  • Polyester films of the invention can be monolayer, bilayer, trilayer or any other non-alternating layered construction.
  • the films can comprise alternating or repeating multi-layer structures, or can include combinations of both.
  • the manufacture of polyester films is well-known in the art, and any of the known methods for forming such films are appropriate to forming the light stabilized articles of this invention.
  • the articles, thus made, can be useful in all applications requiring weatherability, including signing and outdoor protective applications.
  • the polyester films can include or be comprised of a multi-layer optical film.
  • multi-layer optical films are used to create optical interference filters that reflect light via designed constructive interferences between a multiplicity of layers with alternating low and high indices of refraction.
  • Such films can be composed of either isotropic or birefringement layers, or both.
  • Birefringent optical films are constructed in multi-layer "stacks" for which the Brewster angle (the angle at which reflectance of p-polarized light goes to zero) is controlled to a desired value by control of the relative values of the various indices of refraction in the layers.
  • Multi-layer constructions are disclosed, for example, in the following published patent applications, all of whose descriptions are incorporated herein by reference: WO 95/17303, WO 96/19347, and WO 97/01440.
  • a co- polymer of PEN for example a 70-naphthalate/30-terephthalate co-polyester (co-PEN), or other polymers having a lower refractive index than PEN.
  • the ability to achieve properties desired in a single or multi-layer polymeric body is influenced by the processing conditions used to prepare it.
  • the polymeric optical body for example, can be formed by a casting process wherein a molten polymer composition is extruded through a die and cast as a film upon a cooled casting wheel.
  • the desired casting thickness of the cast film will depend in part on the desired use for the optical body, and may be achieved by control of the process conditions under which the body is formed. Typical casting thicknesses range from about 0.3 mm to as much as 3.0 mm, though, depending on the particular end use, thinner or thicker castings can be made.
  • a cast polymeric body (or film) can optionally be oriented, again depending on the particular set of properties desired.
  • an oriented body is oriented after a quenching process in either or both the lengthwise (sometimes referred to as machine) direction and the transverse (or cross-machine) direction.
  • typically stretching dimensions vary between 2.5 and 5.0 times the body's cast dimensions.
  • a cast polymeric body can also be heated before or during orientation, e.g., by infrared lamps or forced convection, to raise its temperature to slightly above its glass transition temperature.
  • infrared lamps or forced convection to raise its temperature to slightly above its glass transition temperature.
  • this is accomplished by preparing the polymer films by co-extruding the individual polymers to form a multilayer film and then orienting the film by stretching at a selected temperature, optionally followed by heat-setting at a selected temperature. Alternatively, the extrusion and orientation steps may be performed simultaneously.
  • the multilayer film typically is stretched substantially in one direction (uniaxial orientation), hi the case of multilayer optical bodies in the form of a mirror, the film is stretched substantially in two directions (biaxial orientation).
  • the core polymeric body When stretched, the core polymeric body may also be allowed to dimensionally relax in the cross-stretch direction from the natural reduction in cross-stretch (equal to the square root of the stretch ratio) or may also be constrained (i.e., no substantial change in cross-stretch dimensions).
  • the core film may be stretched in the machine direction, as with a length orienter, and in the width direction using a tenter, or at diagonal angles. It will be understood with respect to such stretching and orientation processes, that the pre-stretch temperature, stretch temperature, stretch rate, stretch ratio, heat set temperature, heat set time, heat set relaxation, and cross-stretch relaxation are selected to yield a film having desired properties, including a desired refractive index relationship.
  • a relatively low stretch rate could be used or coupled with, e.g., a relatively low stretch temperature. It will be apparent to one of ordinary skill how to select the appropriate combination of these variables to achieve a desired multilayer device.
  • preferred stretch ratios are 1:2-10 (more preferably 1:3-7) along one axis and 1:0.5-1 (more preferably 1:1-7, most preferably 1:3-6) along a second axis.
  • the stretch ratio along both axes (which can be the same or different from one another) be in the range of 1:2-10 (more preferably 1:2-8, and most preferably 1:3-7).
  • any known ultraviolet light absorbing compound can be suitable for incorporation into the light stabilizing compositions of the invention.
  • the most useful ultraviolet light absorbing compounds will include triazine compounds, and in particular hydroxy-functional tris-ar l triazine compounds.
  • these compositions will correspond to the chemical formula:
  • each R 1 is the same or different and is selected from the group consisting of substituted or unsubstituted, branched or unbranched alkyl, aryl, alkaryl or alkoxy groups having from 1 to about 18 carbon atoms.
  • Particularly preferred ultraviolet light absorbing compounds include 2,4-diphenyl-
  • Suitable ultraviolet absorbing compounds are available commercially, including, e.g., CyasorbTM UV-1164, available from Cytec Technology
  • the ultraviolet light absorbing compound (or "UVA” as it is sometimes called) is present in the light stable article in an amount between about 0.25 and about 5 percent by weight of the polyester film, preferably between about 0.5 and about 4 weight percent, even more preferably between about 1 and about 3 percent by weight.
  • UVA ultraviolet light absorbing compound
  • Many hindered amine light stabilizing compositions (or "HALS") useful in the light stabilizing compositions of the invention are known in the art. Generally, the most useful HALS are those derived from a tetramethyl piperidine, and those that can be considered polymeric tertiary amines.
  • these include high molecular weight (i.e., above about 500), oligomeric, and polymeric compounds that contain a polyalkylpiperidine constituent, including polyesters, polyethers, polyamides, polyamines, polyurethanes, polyureas, polyaminotriazines and copolymers thereof.
  • Preferred HALS compositions are those containing polymeric compounds made of substituted hydroxypiperidines, including the polycondensation product of a hydroxypiperidines with a suitable acid or with a triazine.
  • a particularly preferred HALS compound is the polycondensation product of l-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine with succinic acid.
  • Suitable HALS compositions are available commercially, for example, under the "Tinuvin" tradename from Ciba Specialty Chemicals Corporation of Tarrytown, New York.
  • One such useful HALS composition is Tinuvin 622.
  • the hindered amine light stabilizing composition will be present in the light stable article in an amount between about 0.05 and about 1 percent by weight of the polyester film, preferably between about 0.1 and about 0.5 weight percent.
  • one or more additional phosphonate stabilizing agents are incorporated into the polyester film. These agents can be added to the polyester either before or during the polymerization reaction or, alternatively, to the polyester resin prior to its extrusion or casting into film form.
  • Phosphonate stabilizers can prove particularly useful to stabilize catalysts used during the polyester forming polymerization reaction. These catalysts, if left unstabilized, can degrade the polyester during extrusion and/or aging and lead to decreased melt stability and, ultimately, to increased haze. Any conventional phosphonate stabilizer is considered useful in the practice of the invention. Triethyl phosphono acetate (“TEPA”) is preferred and is available commercially from Albright & Wilson Co. of Glen Allen, Virginia. Typically, the phosphonate stabilizer will be added at levels less than about 0.25 weight percent, preferably less than about 0.1 weight percent, and more preferably between about 0.025 and 0.075 percent by weight.
  • TEPA Triethyl phosphono acetate
  • the phosphonate stabilizer will be added at levels less than about 0.25 weight percent, preferably less than about 0.1 weight percent, and more preferably between about 0.025 and 0.075 percent by weight.
  • One or more additional additives known generally in the art can further be incorporated into the articles of the invention. These would include, for example, lubricants and other melt processing aids, pigments, dyes and other colorants, supplemental ultraviolet light stabilizers, antioxidants, nucleating agents, fillers, plasticizers, whitening agents, flame retardants, antistatic and slip agents, and the like.
  • an effective amount of the light stabilizing composition can be incorporated into the light stable article comprising the polyester film in any manner that facilitates the ability of the composition to retard deleterious effects of exposure to unwanted radiation, in particular ultraviolet radiation.
  • the light stabilizing compositions can, for example, be incorporated along with any additional additives and adjuvants directly into the polyester resin either before, during or after its formation into a polyester film. Such incorporation can take place using any conventional method of mixing or dispersing additives into a polymer resin or film, such as by milling or extrusion.
  • the light stable articles in their most essential form, constitute at least one single or multilayer polyester film used alone or in combination with a suitable substrate.
  • the polyester film can itself include one or more additional polyester or non-polyester layers.
  • at least one additional surface layer can be placed in contact with at least one outer surface of the polyester film to form a composite film construction. This surface layer can act to reduce the surface roughness of the overall construction and maintain the clarity and low haze of the optical body.
  • These surface, or "skin,” layers can be coextruded onto one or both outer surfaces of the polyester core, or the skin layers can be coated or laminated onto the polyester core film using a suitable pressure sensitive or non- pressure sensitive adhesive.
  • the polyester film constructions of the invention can also include one or more coatings, such as hardcoats, adhesives, antistatics, adhesion promoting primers, additional ultraviolet stabilizing coatings, etc. It will be understood, however, that the light stabilizing compositions themselves can be incorporated into the polyester film or into one or more additional layers or components making up the composite article.
  • the light stable articles can be used in any application that requires increased resistance to weathering. Generally, the articles will exhibit no significant deterioration (e.g., no noticeable or objectionable change in color) for at least three years, preferably at least five years, upon exposure to outdoor conditions.
  • the light stable articles can incorporate or be applied to other optical articles or films to combine multiple optical effects.
  • the articles can be incorporated along with one or more additional optically active layers to form a retroreflective sign or article, an IR mirror, a protective overlay (for, e.g., commercial graphics applications), a UV absorption construction, or a solar control construction, polarizer, or decorative construction.
  • Pigmented articles of the invention can also be used to tint automotive or window glazings, such as glass or polycarbonates.
  • Pigmented and non-pigmented optical bodies find application in the construction of puncture or tear- resistant films, safety and security films, and as contrast enhancement layers for optical displays such as computer monitors, television screens, and the like.
  • One particularly useful article construction includes a retroreflective base sheeting and the light stable article.
  • the light stable article comprising the polyester film can be overlaid on the retroreflective base sheeting to provide a road or traffic signage material or a similar article with improved weathering properties.
  • a base sheeting can be rendered retroreflective, for example, by forming retroreflective elements on one side of a composite article or, alternatively, by attaching a retroreflective base sheet to the composite construction by means of a transparent adhesive or by direct lamination.
  • the retroreflective composite structure may also comprise or include a member with cube corner retroreflective elements or may comprise or include a microsphere-based retroreflective structure (e.g., a monolayer of transparent microspheres and reflective means).
  • Useful retroreflective articles would include those of both rigid and flexible form. The following examples are offered to aid in the understanding of the present invention and are not to be construed as limiting the scope thereof. Unless otherwise indicated, all parts and percentages are
  • PET- A was made using 0.02% by weight Cobalt Acetate, 0.02% by weight Zinc Acetate, and 0.03% by weight Antimony Triacetate as catalysts.
  • PET-A also contained 0.04% by weight Triethyl Phosphono Acetate (TEPA) obtained from Albright and Wilson Co., Glen Allen, VA, USA. TEPA is believed to serve as a catalyst scavenger during subsequent extrusion processing, stabilizing the resin and preventing formation of chemically reactive sites on the polymer chains.
  • TEPA Triethyl Phosphono Acetate
  • the second resin, designated PET-B was made using 0.05% by weight Manganese Acetate and 0.07% by weight Antimony Triacetate as catalysts, and 0.05% by weight TEPA.
  • UVAs Ultraviolet Absorbers
  • Bis-2(4-benzoyl-3-hydroxyphenoxyethyl)ether, "UVA-1” was prepared in- house.
  • 2,2'-methylenebis(6-(2H-benzotriazol-2-yl)-4-l,l,3,3-tetramethylbutyl)phenol) (TINUVINTM 360), 2-(2-Hydroxy-3,5-di(l , l-dimethylbenzyl)phenyl)-2H-benzotriazole (TINUVINTM 900), and 2-(2-Hydroxy-3-dimethylbenzyl-5-(l, 1,3,3- tetramethylbutyl)phenyl)-2H-benzotriazole (TINUVINTM 928), were obtained from Ciba Specialty Chemicals Corp., Tarrytown, NY, USA.
  • HALS Hindered Amine Light Stabilizers
  • the Gloss Retention test employs fluorescent UV exposure according to ASTM G-53, using UVA 340 lamps. Tests were conducted to a radiant exposure of 1008 MJ/m 2 at 340 nm. Values reported in Tables 3 and 4 represent the final gloss as a percent of the gloss measured before exposure.

Abstract

The invention provides, generally, light stable article containing at least one single or multiple layer polyester film and an effective amount of a light absorbing composition comprising one or more of an ultraviolet light absorbing compound, a hindered amine light stabilizer (HALS) composition, and a phosphonate stabilizing compound. Generally, the weight ratio of the light absorbing compound to the HALS composition is greater than about 2:1. Various composite articles and constructions made utilizing the above light stable articles are also provided.

Description

Light Stable Articles
FIELD OF THE INVENTION
The present invention relates to light stable articles, including light stable polymeric articles and light stable optical bodies. More particularly, the present invention relates to articles comprised of at least one layer of a polymer film.
BACKGROUND OF THE INVENTION
Polymeric films are widely used and widely useful in a broad range of industrial and consumer applications. Such films, for example, can be employed as transparent or tinted barrier films to protect myriad underlying substrates. Polymeric films, and particularly polymeric films made of a polyester material, offer many characteristics desirable in a barrier film. Among other properties, they exhibit clarity, durability, toughness, pliability, formability and affordability.
Use of some of the most desirable polymeric films, however, can be severely limited for outdoor applications and other applications where the films are exposed to a source of light. For example, many polymeric films degrade when subjected to prolonged exposure to ultraviolet radiation (which occurs naturally during outdoor use or by exposure to fluorescent light or other UV-emitting light source).
There remains, therefore, a desire for articles containing at least one layer of a polymeric film that exhibit improved light stability.
SUMMARY OF THE INVENTION Briefly, in one aspect, the present invention provides a light stable article that comprises at least one single or multiple layer polyester film and an effective amount of a light absorbing composition comprising an ultraviolet light absorbing compound and a hindered amine light stabilizer (HALS) composition, wherein the weight ratio of the light absorbing compound to the HALS composition is greater than about 2:1. In another aspect, the invention provides a light stable article comprising at least one single or multiple layer polyester film and an effective amount each of a phosphonate stabilizing compound and a light absorbing composition comprising a hydroxy-functional tris-arr l triazine compound. hi yet another aspect, the present invention provides a light stable article comprising at least one single or multiple layer polyester film and an effective amount of a light absorbing composition consisting essentially of a hydroxy-functional tπs-aryl triazine compound having the formula:
Figure imgf000003_0001
wherein each R .1 is, the same or different and is selected from the group consisting of substituted or unsubstituted, branched or unbranched alkyl, aryl, alkaryl or alkoxy groups having from 1 to about 18 carbon atoms.
In still other respects, the present invention provides various composite articles and constructions made utilizing the above light stable articles.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
The articles of the invention generally comprise at least one single or multilayer polyester (i.e., polyester-containing) film and an effective amount of at least one light stabilizing composition. The light stabilizing composition can comprise an ultraviolet absorbing compound alone or in combination with one or more hindered amine light stabilizing ("HALS") compounds. The polyester film can be oriented and/or can be part of a multilayer optical film construction. The polyester film can also incorporate one or more phosphonate stabilizing compositions to aid in melt stability and/or weather resistance.
The polyester films of the invention can incorporate any polyester-containing polymer. Useful polyester polymers include, for example, polymers having terephthalate, isophthalate, and/or naphthalate comonomer units, e.g., polyethylene naphthalate (PEN), polyethylene terephthalate (PET) and copolymers and blends thereof. Examples of other suitable polyester copolymers are provided in published patent application WO 99/36262 and in WO 99/36248, both of which are incorporated herein by reference. Other suitable polyester materials include polycarbonates, polyarylates, and other naphthalate and terephthalate-containing polymers, such as, for example, polybutylene naphthalate (PBN), polypropylene naphthalate (PPN), polybutylene terephthalate (PBT), polypropylene terephthalate (PPT), and blends and copolymers of any of the above with each other, with other polyesters, or with non-polyester polymers, h a generally preferred embodiment, the light stabilizing compositions are incorporated directly into the polyester resin (e.g., a PET or PEN-based resin). This presents a relatively simple method of effectively, and maximally, protecting standard polyester films from the deterioration upon exposure to sources of ultraviolet radiation. The polymer films can contain multiple layers of the same or different polyester materials, or can be comprised of one or more non-polyester layers. Most commercially available UV-protected polyester films are made either by applying a UV-protective coating to a polyester substrate, by preparing a multilayered film (as by coextrusion) in which a non-polyester layer contains the UV-protecting agent, or by imbibing a UV-protecting agent into a polyester film after film formation. The current invention can have a significant advantage over such films in that the light stabilizing compositions may be extruded directly in the polyester resin, thus providing simplicity of manufacture, cost reduction, permanence of the light stabilizing additive(s), and uniformity of protection throughout the polyester layer into which the compositions are incorporated.
Polyester films of the invention can be monolayer, bilayer, trilayer or any other non-alternating layered construction. The films can comprise alternating or repeating multi-layer structures, or can include combinations of both. The manufacture of polyester films is well-known in the art, and any of the known methods for forming such films are appropriate to forming the light stabilized articles of this invention. The articles, thus made, can be useful in all applications requiring weatherability, including signing and outdoor protective applications.
Additionally, the polyester films can include or be comprised of a multi-layer optical film. Generally speaking, multi-layer optical films are used to create optical interference filters that reflect light via designed constructive interferences between a multiplicity of layers with alternating low and high indices of refraction. Such films can be composed of either isotropic or birefringement layers, or both. Birefringent optical films are constructed in multi-layer "stacks" for which the Brewster angle (the angle at which reflectance of p-polarized light goes to zero) is controlled to a desired value by control of the relative values of the various indices of refraction in the layers. This property allows for the construction of multilayer mirrors and polarizers whose reflectivity for p-polarized light decreases slowly with angle of incidence, are independent of angle of incidence, or that increases with angle of incidence away from the normal. As a result, multilayer films having high reflectivity (for both s- and p-polarized light for any incident direction in the case of mirrors, and for the selected polarization in the case of polarizers) over a wide bandwidth, can be achieved.
Useful multilayer constructions are disclosed, for example, in the following published patent applications, all of whose descriptions are incorporated herein by reference: WO 95/17303, WO 96/19347, and WO 97/01440. Among the most useful films are multi-layer constructions made of alternating thin layers of PEN and a co- polymer of PEN, for example a 70-naphthalate/30-terephthalate co-polyester (co-PEN), or other polymers having a lower refractive index than PEN.
Often, the ability to achieve properties desired in a single or multi-layer polymeric body is influenced by the processing conditions used to prepare it. The polymeric optical body, for example, can be formed by a casting process wherein a molten polymer composition is extruded through a die and cast as a film upon a cooled casting wheel. The desired casting thickness of the cast film will depend in part on the desired use for the optical body, and may be achieved by control of the process conditions under which the body is formed. Typical casting thicknesses range from about 0.3 mm to as much as 3.0 mm, though, depending on the particular end use, thinner or thicker castings can be made. A cast polymeric body (or film) can optionally be oriented, again depending on the particular set of properties desired. Typically, an oriented body is oriented after a quenching process in either or both the lengthwise (sometimes referred to as machine) direction and the transverse (or cross-machine) direction. Although the degree of orientation in either direction can vary greatly (and are not necessarily the same), typically stretching dimensions vary between 2.5 and 5.0 times the body's cast dimensions. A cast polymeric body can also be heated before or during orientation, e.g., by infrared lamps or forced convection, to raise its temperature to slightly above its glass transition temperature. When multi-layer optical films are employed, for example, it may be necessary to achieve given relationships among the various indices of refraction (and thus the optical properties) of the multilayer device. In the case of organic polymer films, these properties can be obtained and/or controlled by stretching or orientation. Generally, this is accomplished by preparing the polymer films by co-extruding the individual polymers to form a multilayer film and then orienting the film by stretching at a selected temperature, optionally followed by heat-setting at a selected temperature. Alternatively, the extrusion and orientation steps may be performed simultaneously. In the case of multilayer optical bodies in the form of a polarizer, the multilayer film typically is stretched substantially in one direction (uniaxial orientation), hi the case of multilayer optical bodies in the form of a mirror, the film is stretched substantially in two directions (biaxial orientation). When stretched, the core polymeric body may also be allowed to dimensionally relax in the cross-stretch direction from the natural reduction in cross-stretch (equal to the square root of the stretch ratio) or may also be constrained (i.e., no substantial change in cross-stretch dimensions). The core film may be stretched in the machine direction, as with a length orienter, and in the width direction using a tenter, or at diagonal angles. It will be understood with respect to such stretching and orientation processes, that the pre-stretch temperature, stretch temperature, stretch rate, stretch ratio, heat set temperature, heat set time, heat set relaxation, and cross-stretch relaxation are selected to yield a film having desired properties, including a desired refractive index relationship. These variables are inter-dependent; thus, for example, a relatively low stretch rate could be used or coupled with, e.g., a relatively low stretch temperature. It will be apparent to one of ordinary skill how to select the appropriate combination of these variables to achieve a desired multilayer device. In general, in the case of multilayer films that are in the form of polarizers, preferred stretch ratios are 1:2-10 (more preferably 1:3-7) along one axis and 1:0.5-1 (more preferably 1:1-7, most preferably 1:3-6) along a second axis. In the case of mirror films, it is generally preferred that the stretch ratio along both axes (which can be the same or different from one another) be in the range of 1:2-10 (more preferably 1:2-8, and most preferably 1:3-7).
Any known ultraviolet light absorbing compound can be suitable for incorporation into the light stabilizing compositions of the invention. Generally, however, in practice the most useful ultraviolet light absorbing compounds will include triazine compounds, and in particular hydroxy-functional tris-ar l triazine compounds. Generally, these compositions will correspond to the chemical formula:
Figure imgf000007_0001
wherein each R1 is the same or different and is selected from the group consisting of substituted or unsubstituted, branched or unbranched alkyl, aryl, alkaryl or alkoxy groups having from 1 to about 18 carbon atoms.
Particularly preferred ultraviolet light absorbing compounds include 2,4-diphenyl-
6-(2-hydroxy-4-hexyloxyphenyl)-_v-triazine and 2,4-bis(2,4-dimethylphenyl)-6-(2-hydroxy- 4-octyloxyphenyl)-^-triazine. Suitable ultraviolet absorbing compounds are available commercially, including, e.g., Cyasorb™ UV-1164, available from Cytec Technology
Corporation of Wilmington, Delaware. Generally, the ultraviolet light absorbing compound (or "UVA" as it is sometimes called) is present in the light stable article in an amount between about 0.25 and about 5 percent by weight of the polyester film, preferably between about 0.5 and about 4 weight percent, even more preferably between about 1 and about 3 percent by weight. Many hindered amine light stabilizing compositions (or "HALS") useful in the light stabilizing compositions of the invention are known in the art. Generally, the most useful HALS are those derived from a tetramethyl piperidine, and those that can be considered polymeric tertiary amines. Broadly, these include high molecular weight (i.e., above about 500), oligomeric, and polymeric compounds that contain a polyalkylpiperidine constituent, including polyesters, polyethers, polyamides, polyamines, polyurethanes, polyureas, polyaminotriazines and copolymers thereof. Preferred HALS compositions are those containing polymeric compounds made of substituted hydroxypiperidines, including the polycondensation product of a hydroxypiperidines with a suitable acid or with a triazine. A particularly preferred HALS compound is the polycondensation product of l-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine with succinic acid. Suitable HALS compositions are available commercially, for example, under the "Tinuvin" tradename from Ciba Specialty Chemicals Corporation of Tarrytown, New York. One such useful HALS composition is Tinuvin 622.
Generally, the hindered amine light stabilizing composition will be present in the light stable article in an amount between about 0.05 and about 1 percent by weight of the polyester film, preferably between about 0.1 and about 0.5 weight percent.
In accordance with some embodiments of the invention, one or more additional phosphonate stabilizing agents are incorporated into the polyester film. These agents can be added to the polyester either before or during the polymerization reaction or, alternatively, to the polyester resin prior to its extrusion or casting into film form.
Phosphonate stabilizers can prove particularly useful to stabilize catalysts used during the polyester forming polymerization reaction. These catalysts, if left unstabilized, can degrade the polyester during extrusion and/or aging and lead to decreased melt stability and, ultimately, to increased haze. Any conventional phosphonate stabilizer is considered useful in the practice of the invention. Triethyl phosphono acetate ("TEPA") is preferred and is available commercially from Albright & Wilson Co. of Glen Allen, Virginia. Typically, the phosphonate stabilizer will be added at levels less than about 0.25 weight percent, preferably less than about 0.1 weight percent, and more preferably between about 0.025 and 0.075 percent by weight.
One or more additional additives known generally in the art can further be incorporated into the articles of the invention. These would include, for example, lubricants and other melt processing aids, pigments, dyes and other colorants, supplemental ultraviolet light stabilizers, antioxidants, nucleating agents, fillers, plasticizers, whitening agents, flame retardants, antistatic and slip agents, and the like.
An effective amount of the light stabilizing composition can be incorporated into the light stable article comprising the polyester film in any manner that facilitates the ability of the composition to retard deleterious effects of exposure to unwanted radiation, in particular ultraviolet radiation. The light stabilizing compositions can, for example, be incorporated along with any additional additives and adjuvants directly into the polyester resin either before, during or after its formation into a polyester film. Such incorporation can take place using any conventional method of mixing or dispersing additives into a polymer resin or film, such as by milling or extrusion.
The light stable articles, in their most essential form, constitute at least one single or multilayer polyester film used alone or in combination with a suitable substrate. The polyester film can itself include one or more additional polyester or non-polyester layers. For example, at least one additional surface layer can be placed in contact with at least one outer surface of the polyester film to form a composite film construction. This surface layer can act to reduce the surface roughness of the overall construction and maintain the clarity and low haze of the optical body. These surface, or "skin," layers can be coextruded onto one or both outer surfaces of the polyester core, or the skin layers can be coated or laminated onto the polyester core film using a suitable pressure sensitive or non- pressure sensitive adhesive. The polyester film constructions of the invention can also include one or more coatings, such as hardcoats, adhesives, antistatics, adhesion promoting primers, additional ultraviolet stabilizing coatings, etc. It will be understood, however, that the light stabilizing compositions themselves can be incorporated into the polyester film or into one or more additional layers or components making up the composite article. The light stable articles can be used in any application that requires increased resistance to weathering. Generally, the articles will exhibit no significant deterioration (e.g., no noticeable or objectionable change in color) for at least three years, preferably at least five years, upon exposure to outdoor conditions.
Typically, the light stable articles can incorporate or be applied to other optical articles or films to combine multiple optical effects. For example, the articles can be incorporated along with one or more additional optically active layers to form a retroreflective sign or article, an IR mirror, a protective overlay (for, e.g., commercial graphics applications), a UV absorption construction, or a solar control construction, polarizer, or decorative construction. Pigmented articles of the invention can also be used to tint automotive or window glazings, such as glass or polycarbonates. Pigmented and non-pigmented optical bodies find application in the construction of puncture or tear- resistant films, safety and security films, and as contrast enhancement layers for optical displays such as computer monitors, television screens, and the like.
One particularly useful article construction includes a retroreflective base sheeting and the light stable article. For example, the light stable article comprising the polyester film can be overlaid on the retroreflective base sheeting to provide a road or traffic signage material or a similar article with improved weathering properties. Such a base sheeting can be rendered retroreflective, for example, by forming retroreflective elements on one side of a composite article or, alternatively, by attaching a retroreflective base sheet to the composite construction by means of a transparent adhesive or by direct lamination. The retroreflective composite structure may also comprise or include a member with cube corner retroreflective elements or may comprise or include a microsphere-based retroreflective structure (e.g., a monolayer of transparent microspheres and reflective means). Useful retroreflective articles would include those of both rigid and flexible form. The following examples are offered to aid in the understanding of the present invention and are not to be construed as limiting the scope thereof. Unless otherwise indicated, all parts and percentages are by weight.
EXAMPLES Two polyester resins were prepared for use in the Examples. Both were prepared in batch reactors using Ethylene Glycol and Dimethyl Terephthalate as starting materials. The first resin, designated PET- A, was made using 0.02% by weight Cobalt Acetate, 0.02% by weight Zinc Acetate, and 0.03% by weight Antimony Triacetate as catalysts. PET-A also contained 0.04% by weight Triethyl Phosphono Acetate (TEPA) obtained from Albright and Wilson Co., Glen Allen, VA, USA. TEPA is believed to serve as a catalyst scavenger during subsequent extrusion processing, stabilizing the resin and preventing formation of chemically reactive sites on the polymer chains. The second resin, designated PET-B, was made using 0.05% by weight Manganese Acetate and 0.07% by weight Antimony Triacetate as catalysts, and 0.05% by weight TEPA.
Several different Ultraviolet Absorbers ("UVAs") were obtained for use in the examples. Bis-2(4-benzoyl-3-hydroxyphenoxyethyl)ether, "UVA-1", was prepared in- house. 2,2'-methylenebis(6-(2H-benzotriazol-2-yl)-4-l,l,3,3-tetramethylbutyl)phenol) (TINUVIN™ 360), 2-(2-Hydroxy-3,5-di(l , l-dimethylbenzyl)phenyl)-2H-benzotriazole (TINUVIN™ 900), and 2-(2-Hydroxy-3-dimethylbenzyl-5-(l, 1,3,3- tetramethylbutyl)phenyl)-2H-benzotriazole (TINUVIN™ 928), were obtained from Ciba Specialty Chemicals Corp., Tarrytown, NY, USA. 2-(4,6-Bis(2,4-dimethylphenyl)-l,3,5- triazin-2-yl)-5-(octyloxy)phenol (CYASORB™ UV-1164) and 2,2'-(l,4- Phenylene)bis(4H-3,l-benzoxazin-4-one) (CYASORB™ UV-3638) were obtained from Cytec Industries, Inc., West Paterson, NJ, USA.
Several different Hindered Amine Light Stabilizers ("HALS") were obtained for use in the Examples. Butanedioic acid, dimethylester, polymer with 4~hydroxy-2,2,6,6- tetramethyl-1-ρiperidine ethanol (TINUVIN™ 622), l,3,5-Triazine-2,4,6-triamine, N,N'"- ( 1 ,2-ethane-diyl-bis(((4,6-bis-(butyl( 1 ,2,2,6,6-pentamethyl-4-piperidinyl)amino)- 1,3,5- triazine-2-yl)imino)-3 , 1 -propanediyl))bis(N',N"-dibutyl-N',N"-bis( 1 ,2,2,6,6-pentamethyl-4- piperidinyl)-) (CHIMASSORB™ 119), and Poly((6-((l,l,3,3-tetramethylbutyl)amino)-s- triazine-2,4-diyl)((2,2,6,6-tetramethyl-4-piperidyl)imino)hexamethylene((2,2,6,6- tetramethyl-4-piperidyl)imino)) (CHIMASSORB™ 944), were all obtained from Ciba Specialty Chemicals Corp., Tarrytown, NY, USA.
Accelerated UV weathering studies were performed on films of the examples using techniques similar to those described in ASTM G-151, "Standard Practice for Exposing Nonmetallic Materials in Accelerated Test Devices That Use Laboratory Light Sources." Other techniques could be used alternatively. The particular technique used is thought to be an excellent predictor of outdoor durability, i.e., ranking materials 'performance correctly. The technique involves following the absorbance at 350 nm wavelength with respect to time of exposure. An extrapolation of a plot of absorbance vs. time is made to predict the time at which absorbance would fall to a level of A = 1.00, and this time is recorded as the "Accelerated UV Weathering Time." Observation over time has indicated that outdoor material useful lifetimes are roughly ten to fifteen times the values given by our accelerated UV weathering test.
Another measure of the UV-weatherability of polymer films is the retention of gloss upon exposure to UV radiation. This method, too, provides a relative ranking of similar materials, based upon the retention (as a percentage) of each material's original gloss level when exposed to the same dose of radiation. The Gloss Retention test employs fluorescent UV exposure according to ASTM G-53, using UVA 340 lamps. Tests were conducted to a radiant exposure of 1008 MJ/m2 at 340 nm. Values reported in Tables 3 and 4 represent the final gloss as a percent of the gloss measured before exposure.
EXAMPLES 1-4
Four of the UVAs were evaluated in PET-B extrusion studies utilizing a twin- screw extruder and a station for casting unstretched webs. The cast webs were then stretched into biaxially oriented films of approximately 25 to 50 microns thickness, using a laboratory biaxial film stretching device. The stretching device was a custom-built instrument using a pantograph mechanism similar to that found in commercial instruments of its kind, such as the film stretchers available from T. M. Long Co. The films were evaluated subjectively on an A-B-C scale, with A signifying the best qualities and C signifying the worst. The films were evaluated for the amount of absorbance at 320 nm wavelength, the ability of the UVA to withstand temperatures of 290 °C, the solubility of the UVA in the resin, and lack of yellowness. Table 1 summarizes the results. TABLE 1
Figure imgf000013_0001
EXAMPLES 5-19 For Examples 5-19, films were made on a continuous pilot-plant-sized sequential biaxial orientation film manufacturing line. A 40 mm twin screw extruder, equipped with high shear mixing screws to enhance mixing of the polymer and additives, was used. A twin screw powder feeder was used to meter the additives to the extruder. A film die having manual die bolt adjustments was used. A chilled (20 °C) casting wheel was used. Electrostatic pinning was used to aid in quenching the cast web and providing even caliper. The cast web was stretched in the machine direction using a length orienter having preheating rolls and IR heating in the stretching gap. Transverse direction stretching and heat setting was performed in a tenter oven. In Examples 5-11, several loading levels of several UVAs were examined. In Examples 12-15, several HALS additives were examined to determine their melt-processability with PET into clear films. In Examples 16-19, several UV A/HALS combinations were examined. The results are summarized below in Tables 2 & 3.
TABLE 2
Figure imgf000014_0001
TABLE 3
Figure imgf000014_0002
EXAMPLES 20-24
Three additional films were made on a different film manufacturing line than that used in Examples 5-19. Resin PET-A was used. Similar film-making conditions were employed. The film of Example 20 contained 2.0 % by weight Cyasorb 1164 and 0.25 % by weight Tinuvin 622. The film of Example 21 contained only 2.0 % by weight of Cyasorb 1164. The film of Example 22 contained 2.2 % by weight of UVA-1 in Resin PET-A. For Examples 23, a commercially available UV-stabilized PET film was obtained; Courtgard UV-SR (Courtaulds Performance Films, Martinsville, VA, USA). The Accelerated UV Weatherability performance of these films is summarized in Table 4.
TABLE 4
Figure imgf000015_0001
Various modifications and alterations of this invention will be apparent to those skilled in the art without departing from the scope and spirit of this invention, and it should be understood that this invention is not limited to the illustrative embodiments set forth herein.

Claims

CLAIMSWe claim:
1. A light stable article comprising at least one single or multiple layer polyester film and an effective amount of a light absorbing composition comprising an ultraviolet light absorbing compound and a hindered amine light stabilizer (HALS) composition, wherein the weight ratio of the light absorbing compound to the HALS composition is grater than about 2:1.
2. The article of claim 1 wherein the ultraviolet light absorbing compound is present in an amount between about 0.5 and about 4 weight percent, and the HALS composition is present between about 0.05 and about 1.0 weight percent.
3. A light stable article comprising at least one single or multiple layer polyester film having dispersed therein an effective amount of each of a light absorbing composition comprising at least one ultraviolet light absorbing compound and a phosphonate stabilizing compound.
4. The article of claim 3 wherein the phosphonate stabilizing compound is triethyl phosphono acetate.
5. The article of claim 3 wherein the ultraviolet light absorbing compound is present in an amount between about 0.5 and about 4 weight percent, and the phosphonate stabilizing compound is present in an amount less than about 0.25 weight percent.
6. The article of claim 3 wherein the light stabilizing composition further comprises a hindered amine light stabilizer (HALS) composition.
7. The article of any one of the preceding claims wherein the ultraviolet light absorbing compound is a hydroxy-functional trø-aryl triazine.
8. The article of any one of the preceding claims wherein the ultraviolet light absorbing compound is 2,4-bis(2,4-dimethylphenyl)-6-(2-hydroxy-4-octyloxyphenyι)-1s- triazine.
9. The article of claim 1 or 6 wherein the HALS composition is derived from a tetramethyl piperidine or comprises butanedioic acid, dimethylester, polymer with 4- hydroxy-2,2,6,6-tetramethyl- 1 -piperidine ethanol.
10. A light stable article comprising at least one single or multiple layer polyester film having dispersed therein an effective amount of a light absorbing composition consisting essentially of a hydroxy-functional tri s-axy triazine according to the formula:
Figure imgf000017_0001
wherein each R1 is the same or different and is selected from the group consisting of substituted or unsubstituted, branched or unbranched alkyl, aryl, alkaryl or alkoxy groups having from 1 to about 18 carbon atoms.
11. The article of any one of the preceding claims wherein said polyester film comprises terephthalate monomer units.
12. The article of any one of the preceding claims wherein the article is rendered retroreflective.
13. The article of any one of the preceding claims wherein the article is an infrared mirror, window film, puncture resistant film, solar control film, security film, protective overlay film, or contrast enhancement film.
PCT/US2000/021314 2000-04-13 2000-08-04 Light stable articles WO2001079340A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP00953835A EP1274784B1 (en) 2000-04-13 2000-08-04 Light stable articles
DE60023353T DE60023353T2 (en) 2000-04-13 2000-08-04 LIGHT-RELATED OBJECTS
AU2000266214A AU2000266214A1 (en) 2000-04-13 2000-08-04 Light stable articles
JP2001576930A JP2003532752A (en) 2000-04-13 2000-08-04 Light stable products
AT00953835T ATE307165T1 (en) 2000-04-13 2000-08-04 LIGHT STABLE ITEMS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US54815500A 2000-04-13 2000-04-13
US09/548,155 2000-04-13

Publications (1)

Publication Number Publication Date
WO2001079340A1 true WO2001079340A1 (en) 2001-10-25

Family

ID=24187638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/021314 WO2001079340A1 (en) 2000-04-13 2000-08-04 Light stable articles

Country Status (8)

Country Link
US (1) US6613819B2 (en)
EP (1) EP1274784B1 (en)
JP (1) JP2003532752A (en)
KR (1) KR100650482B1 (en)
AT (1) ATE307165T1 (en)
AU (1) AU2000266214A1 (en)
DE (1) DE60023353T2 (en)
WO (1) WO2001079340A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002079314A1 (en) * 2001-04-02 2002-10-10 Ciba Specialty Chemicals Holding Inc. Candle wax stabilized with s-triazines/hals
EP1302309A2 (en) * 2001-10-12 2003-04-16 General Electric Company Multi-layer, weatherable compositions and method of manufacture thereof
EP1314755A2 (en) * 2001-11-20 2003-05-28 Takemoto Yushi Kabushiki Kaisha Ultraviolet radiation absorbents for thermoplastic polymers and methods of producing the same
ES2208018A1 (en) * 2000-07-26 2004-06-01 Ciba Specialty Chemicals Holding Inc. Transparent polymer articles of low thickness
WO2004094142A1 (en) * 2003-04-15 2004-11-04 3M Innovative Properties Company Uv-protected multilayered window panes
JP2004352803A (en) * 2003-05-28 2004-12-16 Daicel Chem Ind Ltd Hindered amine compound
JP2006077148A (en) * 2004-09-10 2006-03-23 Mitsubishi Polyester Film Copp Polyester film for optical film
US7297409B2 (en) 2001-10-12 2007-11-20 Sabic Innovative Plastics Ip Bv Multilayer, weatherable compositions and method of manufacture thereof
US7582690B2 (en) 2004-11-19 2009-09-01 Eastman Chemical Company Stabilized aliphatic polyester compositions
WO2010081625A2 (en) 2009-01-19 2010-07-22 Basf Se Organic black pigments and their preparation
US9561629B2 (en) 2005-04-06 2017-02-07 3M Innovative Properties Company Optical bodies including rough strippable boundary layers and asymmetric surface structures
US9709700B2 (en) 2005-04-06 2017-07-18 3M Innovative Properties Company Optical bodies including rough strippable boundary layers
US10228502B2 (en) 2005-04-06 2019-03-12 3M Innovative Properties Company Optical bodies including strippable boundary layers

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020030007A (en) * 2000-09-29 2002-04-22 힐커트 Hydrolysis-Resistant, Transparent, Biaxially Oriented Film Made From a Crystallizable Thermoplastic, and Process for Its Production
DE10227442A1 (en) * 2002-06-20 2004-01-08 Mitsubishi Polyester Film Gmbh Multi-layer, transparent, film made of polyethylene terephthalate (PET) and polyethylene naphthalate PEN) for the production of composite packaging with UV protection
CN100437164C (en) * 2004-05-12 2008-11-26 株式会社艾迪科 Optical film
DE102004046771A1 (en) * 2004-09-24 2006-04-06 Zimmer Ag Mixture, polyester composition, film and process for their preparation
CN101111585A (en) * 2004-12-06 2008-01-23 康斯达国际公司 Blends of oxygen scavenging polyamides with polyesters which contain zinc and cobalt
US7375154B2 (en) * 2004-12-06 2008-05-20 Eastman Chemical Company Polyester/polyamide blend having improved flavor retaining property and clarity
US7288586B2 (en) 2004-12-06 2007-10-30 Eastman Chemical Company Polyester based cobalt concentrates for oxygen scavenging compositions
US7557989B2 (en) * 2005-06-03 2009-07-07 3M Innovative Properties Company Reflective polarizer and display device having the same
US7586566B2 (en) * 2005-06-03 2009-09-08 3M Innovative Properties Company Brightness enhancing film and display device having the same
US20070203267A1 (en) 2006-02-28 2007-08-30 3M Innovative Properties Company Optical display with fluted optical plate
US7766531B2 (en) * 2006-03-29 2010-08-03 3M Innovative Properties Company Edge-lit optical display with fluted optical plate
US20080063900A1 (en) * 2006-09-11 2008-03-13 Hewlett-Packard Development Company Lp Optical storage medium
JP2008266470A (en) * 2007-04-20 2008-11-06 Unitika Ltd Polylactic acid-based resin composition and molded product made by molding the same
US20080292820A1 (en) 2007-05-23 2008-11-27 3M Innovative Properties Company Light diffusing solar control film
EP2245091B1 (en) * 2008-01-08 2019-12-18 3M Innovative Properties Company Nanoparticle dispersion, compositions containing the same, and articles made therefrom
US20090283133A1 (en) * 2008-05-14 2009-11-19 3M Innovative Properties Company Solar concentrating mirror
US20090283144A1 (en) * 2008-05-14 2009-11-19 3M Innovative Properties Company Solar concentrating mirror
KR101011009B1 (en) * 2008-06-20 2011-01-26 김태형 Purifier filter cartridge and thereof purifier apparatus
US8865293B2 (en) 2008-12-15 2014-10-21 3M Innovative Properties Company Optically active materials and articles and systems in which they may be used
US9523516B2 (en) 2008-12-30 2016-12-20 3M Innovative Properties Company Broadband reflectors, concentrated solar power systems, and methods of using the same
DE102009032820A1 (en) * 2009-07-13 2011-01-20 Mitsubishi Polyester Film Gmbh Single or multilayer, stabilized polyester film
WO2011062836A1 (en) * 2009-11-18 2011-05-26 3M Innovative Properties Company Multi-layer optical films
KR100971930B1 (en) * 2010-01-26 2010-07-22 조원재 Purifier tank and therefore gravity filtering type water purifier
GB201001947D0 (en) * 2010-02-05 2010-03-24 Dupont Teijin Films Us Ltd Polyester films
JP5650565B2 (en) * 2011-03-02 2015-01-07 帝人株式会社 Flame retardant transparent copolymer polyethylene naphthalate composition
US10137625B2 (en) 2011-07-08 2018-11-27 Toray Plastics (America), Inc. Biaxially oriented bio-based polyester films and laminates
US20130344345A1 (en) * 2011-07-08 2013-12-26 Toray Plastics (America), Inc. Biaxially oriented bio-based polyester window films and laminates
JP2013067811A (en) * 2012-12-06 2013-04-18 Adeka Corp Light-shielding film
TW201435830A (en) * 2012-12-11 2014-09-16 3M Innovative Properties Co Inconspicuous optical tags and methods therefor
KR101582369B1 (en) * 2012-12-27 2016-01-04 제일모직주식회사 Thermal transfer film and electroluminescence display device prepared using the same
US20150352810A1 (en) * 2013-03-05 2015-12-10 Jeffrey Green Graffiti covering skin
WO2016148141A1 (en) 2015-03-17 2016-09-22 東レ株式会社 Layered film, liquid crystal display using same, touch panel, and organic el display
DE102016200875A1 (en) * 2016-01-22 2017-07-27 Mitsubishi Polyester Film Gmbh Biaxially oriented, UV-stabilized, single or multi-layer polyester film with a combination of silicon dioxide particles as light scattering particles and a UV stabilizer as well as processes for their production and their use in greenhouse shade mats
EP3532538A1 (en) 2016-10-27 2019-09-04 3M Innovative Properties Company Crosslinkable composition including a (meth)acrylic polymer and methods of making a crosslinked composition
WO2019228959A1 (en) 2018-05-29 2019-12-05 Covestro Deutschland Ag Opaque multi-layer body made of polycarbonate and having weathering stability
CN114634652A (en) * 2022-01-07 2022-06-17 中国人民解放军国防科技大学 Efficient colored heat-insulating and cooling coating and preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024206A (en) * 1975-11-19 1977-05-17 Vistron Corporation Stabilized brominated polyesters
DE19630599A1 (en) * 1996-07-31 1998-02-05 Hoechst Ag Polyethylene terephthalate sheet with improved hydrolysis stability, process for its manufacture and use
US5824465A (en) * 1997-04-07 1998-10-20 Agfa-Gevaert, N.V. Polyalkylene naphthalate film comprising specific UV-absorber
WO1999048685A1 (en) * 1998-03-24 1999-09-30 General Electric Company Multilayer plastic articles
WO1999055772A1 (en) * 1998-04-24 1999-11-04 Ciba Specialty Chemicals Holding Inc. Increasing the molecular weight of polyesters
EP0982356A2 (en) * 1998-08-28 2000-03-01 Clariant Finance (BVI) Limited Improved stabilized coatings
WO2000045200A1 (en) * 1999-01-29 2000-08-03 3M Innovative Properties Company Improved angular brightness microprismatic retroreflective film or sheeting incorporating a syndiotactic vinyl aromatic polymer
WO2000064671A1 (en) * 1999-04-27 2000-11-02 Eastman Chemical Company Uv-stabilized polymeric structures
WO2001026891A1 (en) * 1999-10-12 2001-04-19 3M Innovative Properties Company Optical bodies made with a birefringent polymer

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US540768A (en) 1895-06-11 Richard walsingham western
US3124639A (en) 1964-03-10 figure
US3610729A (en) 1969-06-18 1971-10-05 Polaroid Corp Multilayered light polarizer
US3860036A (en) 1970-11-02 1975-01-14 Dow Chemical Co Variable geometry feed block for multilayer extrusion
US3711176A (en) 1971-01-14 1973-01-16 Dow Chemical Co Highly reflective thermoplastic bodies for infrared, visible or ultraviolet light
JPS5379935A (en) * 1976-12-24 1978-07-14 Adeka Argus Chem Co Ltd Stabilized synthetic resin composition
US4446305A (en) 1981-03-02 1984-05-01 Polaroid Corporation Optical device including birefringent polymer
US4520189A (en) 1981-03-02 1985-05-28 Polaroid Corporation Optical device including birefringent aromatic amino carboxylic acid polymer
US4525413A (en) 1981-03-02 1985-06-25 Polaroid Corporation Optical device including birefringent polymer
US4521588A (en) 1981-03-02 1985-06-04 Polaroid Corporation Optical device including birefringent polyhydrazide polymer
US4720426A (en) 1986-06-30 1988-01-19 General Electric Company Reflective coating for solid-state scintillator bar
US5211878A (en) 1988-03-10 1993-05-18 Merck Patent Gesellschaft Mit Beschrankter Haftung Difluorobenzonitrile derivatives
US5486949A (en) 1989-06-20 1996-01-23 The Dow Chemical Company Birefringent interference polarizer
US5235443A (en) 1989-07-10 1993-08-10 Hoffmann-La Roche Inc. Polarizer device
EP0452438A1 (en) 1989-11-01 1991-10-23 F. Hoffmann-La Roche Ag Light control devices with liquid crystals
NL9000808A (en) 1990-04-06 1991-11-01 Koninkl Philips Electronics Nv LIQUID CRYSTALLINE MATERIAL AND IMAGE DISPLAY CELL CONTAINING THIS MATERIAL.
DK0483488T3 (en) 1990-10-29 1997-04-01 Cytec Tech Corp Synergistic ultraviolet absorbing compositions containing hydroxyaryl triazines and tetraalkylpiperidines
US5217794A (en) 1991-01-22 1993-06-08 The Dow Chemical Company Lamellar polymeric body
US5294657A (en) 1992-05-15 1994-03-15 Melendy Peter S Adhesive composition with decorative glitter
DE4326521B4 (en) 1992-08-10 2005-12-22 Bridgestone Corp. Light scattering material and method for its production
US5269995A (en) 1992-10-02 1993-12-14 The Dow Chemical Company Coextrusion of multilayer articles using protective boundary layers and apparatus therefor
KR950704701A (en) 1992-10-29 1995-11-20 스티븐 에스. 그레이스 Formable reflective multilayer body
TW289095B (en) 1993-01-11 1996-10-21
EP0606939B1 (en) 1993-01-11 1998-05-06 Koninklijke Philips Electronics N.V. Illumination system and display device including such a system
FR2705679B1 (en) 1993-05-24 1998-07-10 Sandoz Sa New stabilizing compositions for polymeric materials, based on phosphonites or phosphites and a stabilizer against hydrolysis.
US5389324A (en) 1993-06-07 1995-02-14 The Dow Chemical Company Layer thickness gradient control in multilayer polymeric bodies
US5486935A (en) 1993-06-29 1996-01-23 Kaiser Aerospace And Electronics Corporation High efficiency chiral nematic liquid crystal rear polarizer for liquid crystal displays having a notch polarization bandwidth of 100 nm to 250 nm
MY121195A (en) 1993-12-21 2006-01-28 Minnesota Mining & Mfg Reflective polarizer with brightness enhancement
IL112070A0 (en) 1993-12-21 1995-03-15 Minnesota Mining & Mfg Optical display
WO1995017303A1 (en) 1993-12-21 1995-06-29 Minnesota Mining And Manufacturing Company Multilayered optical film
JP3621415B2 (en) 1993-12-21 2005-02-16 ミネソタ マイニング アンド マニュファクチャリング カンパニー Light transmissive liquid crystal display
US5882774A (en) 1993-12-21 1999-03-16 Minnesota Mining And Manufacturing Company Optical film
US5629055A (en) 1994-02-14 1997-05-13 Pulp And Paper Research Institute Of Canada Solidified liquid crystals of cellulose with optically variable properties
DE69527515T2 (en) 1994-04-06 2003-05-08 Minnesota Mining & Mfg POLARIZED LIGHT SOURCE
JP4034365B2 (en) 1995-03-09 2008-01-16 大日本印刷株式会社 Ultrafine particle-containing antireflection film, polarizing plate and liquid crystal display device
US5751388A (en) 1995-04-07 1998-05-12 Honeywell Inc. High efficiency polarized display
KR100468560B1 (en) * 1995-06-26 2005-08-04 미네소타 마이닝 앤드 매뉴팩춰링 캄파니 Multilayer polymer film with additional coatings or layers
US5686979A (en) 1995-06-26 1997-11-11 Minnesota Mining And Manufacturing Company Optical panel capable of switching between reflective and transmissive states
US5699188A (en) 1995-06-26 1997-12-16 Minnesota Mining And Manufacturing Co. Metal-coated multilayer mirror
US6080467A (en) 1995-06-26 2000-06-27 3M Innovative Properties Company High efficiency optical devices
EP0855043B1 (en) 1995-06-26 2003-02-05 Minnesota Mining And Manufacturing Company Diffusely reflecting multilayer polarizers and mirrors
US5767935A (en) 1995-08-31 1998-06-16 Sumitomo Chemical Company, Limited Light control sheet and liquid crystal display device comprising the same
US5825543A (en) 1996-02-29 1998-10-20 Minnesota Mining And Manufacturing Company Diffusely reflecting polarizing element including a first birefringent phase and a second phase
US5783120A (en) 1996-02-29 1998-07-21 Minnesota Mining And Manufacturing Company Method for making an optical film
DE19712788A1 (en) * 1996-03-29 1997-10-30 Ciba Geigy Ag Stabilization of polyamide, polyester and polyketone
US5808794A (en) 1996-07-31 1998-09-15 Weber; Michael F. Reflective polarizers having extended red band edge for controlled off axis color
JPH10182805A (en) * 1996-12-27 1998-07-07 Mitsui Chem Inc Production of polyethylene terephthalate
GB2322374B (en) * 1997-02-21 2001-04-04 Ciba Sc Holding Ag Stabilizer mixture for organic materials
US5940149A (en) 1997-12-11 1999-08-17 Minnesota Mining And Manufacturing Company Planar polarizer for LCD projectors
WO1999036248A2 (en) 1998-01-13 1999-07-22 Minnesota Mining And Manufacturing Company Process for making multilayer optical films
DE69924354T2 (en) * 1998-01-13 2006-03-09 Minnesota Mining & Manufacturing Company, St. Paul MODIFIED COPOLYESTER AND IMPROVED MULTILAYER REFLECTIVE FILM
BR9911401A (en) * 1998-06-22 2001-03-20 Cytec Tech Corp Compound, processes of stabilization of a material that is subject to degradation by actinic radiation, and protection of a substrate against degradation by actinic radiation, coating composition suitable for the formation of a film stabilized against degradation by actinic radiation, composition of stabilization of actinically radiation, photographic material, and cosmetic composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024206A (en) * 1975-11-19 1977-05-17 Vistron Corporation Stabilized brominated polyesters
DE19630599A1 (en) * 1996-07-31 1998-02-05 Hoechst Ag Polyethylene terephthalate sheet with improved hydrolysis stability, process for its manufacture and use
US5824465A (en) * 1997-04-07 1998-10-20 Agfa-Gevaert, N.V. Polyalkylene naphthalate film comprising specific UV-absorber
WO1999048685A1 (en) * 1998-03-24 1999-09-30 General Electric Company Multilayer plastic articles
WO1999055772A1 (en) * 1998-04-24 1999-11-04 Ciba Specialty Chemicals Holding Inc. Increasing the molecular weight of polyesters
EP0982356A2 (en) * 1998-08-28 2000-03-01 Clariant Finance (BVI) Limited Improved stabilized coatings
WO2000045200A1 (en) * 1999-01-29 2000-08-03 3M Innovative Properties Company Improved angular brightness microprismatic retroreflective film or sheeting incorporating a syndiotactic vinyl aromatic polymer
WO2000064671A1 (en) * 1999-04-27 2000-11-02 Eastman Chemical Company Uv-stabilized polymeric structures
WO2001026891A1 (en) * 1999-10-12 2001-04-19 3M Innovative Properties Company Optical bodies made with a birefringent polymer

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166653B2 (en) 2000-07-26 2007-01-23 Ciba Specialty Chemicals Corp. Transparent polymer articles of low thickness
ES2208018A1 (en) * 2000-07-26 2004-06-01 Ciba Specialty Chemicals Holding Inc. Transparent polymer articles of low thickness
US7265171B2 (en) 2000-07-26 2007-09-04 Ciba Specialty Chemicals Corp. Transparent polymer articles of low thickness
US6562083B2 (en) 2001-04-02 2003-05-13 Ciba Specialty Chemicals Corporation Candle wax stabilized with s-triazines/hals
WO2002079314A1 (en) * 2001-04-02 2002-10-10 Ciba Specialty Chemicals Holding Inc. Candle wax stabilized with s-triazines/hals
EP1302309A2 (en) * 2001-10-12 2003-04-16 General Electric Company Multi-layer, weatherable compositions and method of manufacture thereof
US7297409B2 (en) 2001-10-12 2007-11-20 Sabic Innovative Plastics Ip Bv Multilayer, weatherable compositions and method of manufacture thereof
EP1302309A3 (en) * 2001-10-12 2004-01-21 General Electric Company Multi-layer, weatherable compositions and method of manufacture thereof
EP1314755A3 (en) * 2001-11-20 2003-07-02 Takemoto Yushi Kabushiki Kaisha Ultraviolet radiation absorbents for thermoplastic polymers and methods of producing the same
EP1314755A2 (en) * 2001-11-20 2003-05-28 Takemoto Yushi Kabushiki Kaisha Ultraviolet radiation absorbents for thermoplastic polymers and methods of producing the same
WO2004094142A1 (en) * 2003-04-15 2004-11-04 3M Innovative Properties Company Uv-protected multilayered window panes
JP2004352803A (en) * 2003-05-28 2004-12-16 Daicel Chem Ind Ltd Hindered amine compound
JP2006077148A (en) * 2004-09-10 2006-03-23 Mitsubishi Polyester Film Copp Polyester film for optical film
US7582690B2 (en) 2004-11-19 2009-09-01 Eastman Chemical Company Stabilized aliphatic polyester compositions
US9561629B2 (en) 2005-04-06 2017-02-07 3M Innovative Properties Company Optical bodies including rough strippable boundary layers and asymmetric surface structures
US9709700B2 (en) 2005-04-06 2017-07-18 3M Innovative Properties Company Optical bodies including rough strippable boundary layers
US10228502B2 (en) 2005-04-06 2019-03-12 3M Innovative Properties Company Optical bodies including strippable boundary layers
WO2010081625A2 (en) 2009-01-19 2010-07-22 Basf Se Organic black pigments and their preparation

Also Published As

Publication number Publication date
EP1274784B1 (en) 2005-10-19
JP2003532752A (en) 2003-11-05
US6613819B2 (en) 2003-09-02
KR100650482B1 (en) 2006-11-28
AU2000266214A1 (en) 2001-10-30
ATE307165T1 (en) 2005-11-15
EP1274784A1 (en) 2003-01-15
DE60023353T2 (en) 2006-07-06
US20020028862A1 (en) 2002-03-07
KR20020091201A (en) 2002-12-05
DE60023353D1 (en) 2006-03-02

Similar Documents

Publication Publication Date Title
EP1274784B1 (en) Light stable articles
US5709929A (en) Plastic sheet, a process for the manufacture thereof and formed articles containing the sheet
US7803857B2 (en) Mono- or multilayer stabilized polyester film
KR20150055092A (en) Uv barrier film
US6902818B2 (en) Transparent, UV resistant, thermoformable film made from crystallizable thermoplastics, its use and process for its production
US10472480B2 (en) Biaxially oriented UV-resistant, single- or multilayer polyester film with at antireflective coating
KR20010085704A (en) White, biaxially oriented, flame-retardant and UV-resistant polyester film with cycloolefin copolymer, its use and process for its production
KR20120099186A (en) Transparent, biaxially oriented polyester film with a high portion of cyclohexanedimethanol and a primary and secondary dicarboxylic acid portion and a method for its production and its use
US9937525B2 (en) Method of making polyester film with a reduced iridescent primer layer
US8945703B2 (en) Single- or multilayer, stabilized polyester film
JP2001261858A (en) White opaque film
US6855435B2 (en) Transparent, UV-stabilized film made from a crystallizable thermoplastic
JP2009096107A (en) Decorative sheet
US20130108849A1 (en) Polyester film for protecting rear surface of solar cell
US6875803B2 (en) Transparent, flame-retardant, thermoformable, UV-resistant film made from crystallizable thermoplastic, its use, and process for its production
EP1302309B2 (en) Multi-layer, weatherable compositions and method of manufacture thereof
KR102571910B1 (en) greenhouse screen
CN112437787A (en) Photovoltaic element and polymer composition for front sheet thereof
KR102076182B1 (en) The house wrap with high durability and insulation performance for buildings
KR102287227B1 (en) Polyester film for back sheet of solar cell and solar cell module comprising the same
CN114316471A (en) Composite light stabilizer suitable for rigid polyvinyl chloride material, rigid polyvinyl chloride material and preparation method thereof
JP2020116948A (en) Biaxially oriented, uv-stabilized, single- or multi-layer polyester film with anti-glare and flame-retardant coating on at least one side and with transparency of at least 93.5%
KR20040041870A (en) Porous biaxially stretched polyester film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 576930

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000953835

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027013719

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027013719

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000953835

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000953835

Country of ref document: EP