WO2001087202A1 - Apparatus for bodily sensation of information - Google Patents

Apparatus for bodily sensation of information Download PDF

Info

Publication number
WO2001087202A1
WO2001087202A1 PCT/JP2001/004023 JP0104023W WO0187202A1 WO 2001087202 A1 WO2001087202 A1 WO 2001087202A1 JP 0104023 W JP0104023 W JP 0104023W WO 0187202 A1 WO0187202 A1 WO 0187202A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
road surface
height
intermittent
distance
Prior art date
Application number
PCT/JP2001/004023
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyoshi Takeuchi
Original Assignee
Take's Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Take's Corporation filed Critical Take's Corporation
Publication of WO2001087202A1 publication Critical patent/WO2001087202A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/34Footwear characterised by the shape or the use with electrical or electronic arrangements
    • A43B3/44Footwear characterised by the shape or the use with electrical or electronic arrangements with sensors, e.g. for detecting contact or position
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/34Footwear characterised by the shape or the use with electrical or electronic arrangements
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/34Footwear characterised by the shape or the use with electrical or electronic arrangements
    • A43B3/48Footwear characterised by the shape or the use with electrical or electronic arrangements with transmitting devices, e.g. GSM or WiFi
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes

Definitions

  • the present invention relates to a visual aid for walking of a visually impaired person.
  • the visually impaired can use the cane to walk safely while grasping the situation ahead.
  • a visual aid that can detect the situation of the feet without contact has been required.
  • Japanese Utility Model Application Publication No. 40-7272 discloses a technique for detecting the position of an object using an ultrasonic sensor attached to eyeglasses. However, this was to recognize the whole view ahead and not the situation at the feet.
  • Japanese Utility Model Application Publication No. 60-2525893 discloses that an infrared sensor is attached to the upper part, and the distance to the object is converted into the frequency and amplitude of the vibrator at hand to detect obstacles that can be sensed. The cane is released. However, this was to detect obstacles overhanging, not to grasp the situation at the feet.
  • Japanese Patent Application Laid-Open Publication No. Hei 9-3138725 discloses a system in which a magnetic sheet on a road surface is guided by a radio wave or magnetic detector. However, since this was to guide the way, it did not grasp the current situation.
  • the present invention has been made to solve the problems of the conventional example described above, and has as its object to provide a foot detector that can confirm the safety of the foot of a visually impaired person and that can be a visual aid to assist walking. And Disclosure of the invention
  • the foot detector according to the present invention includes a road surface height sensor for measuring a height from a road surface, an obstacle distance sensor for measuring a distance to an obstacle ahead, a shoe on which both sensors are mounted, and a road surface height and an obstacle distance. It consists of bodily sensations that can be perceived independently.
  • FIG. 1 is an overall perspective view in which a foot detector 1 according to a first embodiment of the present invention is mounted.
  • FIG. 2 is a diagram illustrating the principle of ultrasonic distance measurement used in the present invention.
  • FIG. 3 is a detailed configuration and timing diagram of the foot detector 1 according to the first embodiment of the present invention.
  • FIG. 4 is an overall perspective view showing a foot detector 26 according to a second embodiment of the present invention.
  • FIG. 5 is a perspective perspective view of the underside of the foot detector 38 according to the third embodiment of the present invention.
  • FIG. 6 is a diagram for explaining the configuration and operation of a fourth embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of the configuration and operation of a fifth embodiment of the present invention.
  • FIG. 1 is an overall perspective view in which a foot detector 1 according to a first embodiment of the present invention is mounted.
  • FIG. 2 is a diagram illustrating the principle of ultrasonic distance measurement used in the present invention.
  • FIG. 3 is a detailed configuration
  • FIG. 8 is a diagram for explaining the configuration and operation of a sixth embodiment of the present invention.
  • FIG. 9 is a structural explanatory view of an electromagnetic vibrator .56 applicable to the present invention.
  • FIG. 10 is a structural explanatory view of an ultrasonic distance measuring sensor 61 applicable to the present invention.
  • FIG. 11 is an overall perspective view of a foot detector 65 according to a ninth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows an overall perspective view of a foot detector 1 according to a first embodiment of the present invention.
  • An ultrasonic road surface height sensor 4 for measuring the road surface height from the shoe sole is mounted on the right sensor section 3 of the right shoe 2 downward from the lower left end near the toe.
  • An ultrasonic obstacle distance sensor 5 for measuring an obstacle distance to an obstacle in front is mounted inward from the front right end of the front surface.
  • the cycle trigger circuit 7 is activated by the output of the shock sensor 6, and starts measurement.
  • the signals of the road surface height and the obstacle distance are transmitted from the FM oscillator 8 to the left sensor unit 10 of the left shoe 9 by radio waves.
  • the radio wave from the FM oscillator 8 enters the FM receiver 13 and demodulates the signal of the road surface height and the obstacle distance of the right sensor unit 3.
  • the left sensor unit 10 incorporates a road surface height sensor 11 and an obstacle distance sensor 12, and the trigger circuit 14 is activated by the obstacle distance signal of the right sensor unit 3 to start measurement. .
  • the left and right signals are input to the intermittent oscillator 15 in the audible range.
  • the oscillation frequency is determined by the high left and right road surface heights that require attention.
  • the intermittent ratio is determined by the small left and right obstacle distances that require attention.
  • the output of the intermittent oscillator 15 is superimposed on the radio wave from the FM oscillator 16 and is received by the radio 17 near the pedestrian's ear to produce an intermittent vibration sound. From the oscillation frequency, the height of the road surface that requires attention can be recognized, and from the intermittent ratio, the distance of the obstacle that requires attention can be recognized.
  • FIG. 2 is a diagram illustrating the principle of ultrasonic distance measurement used in the present invention.
  • the trigger signal causes the monostable multivibrator 18 to generate a pulse of 0.2 ms, during which only the 40 kHz non-stable multivibrator 19 oscillates, and the acoustic horn gives directivity to the ultrasound.
  • Ultrasonic waves are emitted from the microphone 20.
  • Ultrasonic waves reflected from the road surface or obstacles are received by an ultrasonic microphone 21 with directivity by an acoustic horn, and are passed through an amplifier 22 and a rectifying / smoothing device 23 to a flip-flop 24.
  • the time difference T is output.
  • the length L (m) and the time difference T (s) are given by
  • the road height H or obstacle distance D is corrected to the length from the outer shape.
  • the road surface sensor is mounted above and around the feet to measure the road surface, avoiding poor soles such as muddy water and stress.
  • the flip-flop 24 is reset by the monostable multipibrator 25 having a time delay corresponding to the length assumed in the defensive limit.
  • a step delay of 2 ms which is equivalent to the defensive limit of 34 cm, is used as a step on the stairs.
  • Obstacle distance sensors 5 and 12 should have a time delay of 4 ms, which is equivalent to the defensive limit of 68 cm, considering the reach of the hand.
  • ultrasonic distance measuring device Since the ultrasonic distance measuring device outputs the distance with a time difference, there is an advantage that information is not easily degraded in post-processing.
  • Ultrasonic microphone 20 Since the ultrasonic distance measuring device outputs the distance with a time difference, there is an advantage that information is not easily degraded in post-processing.
  • the 21 has a resonance frequency of 40 kHz to improve sensitivity and serve as a frequency filter. Even when a plurality of ultrasonic distance measuring devices are close to each other, interference can be prevented by assigning different resonance frequencies to each ultrasonic distance measuring device, for example, by 500 Hz. To increase the measurement accuracy, the frequency should be higher than 40 kHz, for example, 200 kHz. If the amplification degree variable function for increasing the amplification degree of the amplifier 22 in accordance with the time difference T is provided, the sensitivity difference between near and far can be reduced.
  • FIG. 3 shows a detailed configuration / timing diagram of the foot detector 1 according to the first embodiment of the present invention.
  • the shock sensor 6 combines an acceleration clock and a peak detection circuit to generate a 2 s signal for each impact. It will run continuously until you stop walking for more than 2 seconds.
  • the feature is that the operation is started by the impact sensor, so that it can be used for a long time with reduced power consumption, and an information sensation device that can relax and relax when unnecessary. Note that a change in the time difference T may be used instead of the shock sensor 6 for performing the continuous operation.
  • the period trigger circuit 7 combines an astable multivibrator with a period of 40 ms and a monostable multivibrator with a period of 5 ms.
  • the road surface height sensor 4 is activated by the trigger signal of the 40 ms period, and the road surface time difference THR corresponding to the right road surface height HR is output.
  • the obstacle distance sensor 5 is activated by a trigger signal delayed by 5 ms, and the obstacle distance time difference TDR corresponding to the right obstacle distance DR is output.
  • the delay of 5 ms is because the ultrasonic wave is attenuated to such an extent that no interference occurs, and the time difference between the two, which is up to 4 ms, does not overlap.
  • the optimal value can be selected in the design.
  • the signal of the time difference between the two signals is combined in the positive and negative phases by the FM oscillator 8 and output from the antenna.
  • the signal output is only 1 m, so the radio wave output can be small, and it is near the road surface, so there is little risk of interfering with others.
  • infrared rays a type of electromagnetic wave
  • the soles should be insulated to avoid current leakage to the ground. Furthermore, if the soles are made of cushioning material, the impact of walking can be reduced, making it less likely to break down.
  • the FM receiver 13 receives radio waves and demodulates the right road surface time difference T HR and the obstacle distance time difference TDR.
  • Monostable circle The trigger circuit 14 combined with the chip generator outputs a trigger signal delayed by 5 ms from the signal of the right road surface time difference THR and a trigger signal delayed by 10 ms. With a trigger signal delayed by 5 ms, the left road surface height sensor 11 operates and outputs the road surface height time difference THL. A 10 ms delay trigger signal activates the left obstacle distance sensor 12 and outputs the obstacle distance time difference TDL.
  • the left and right road surface height and obstacle distance signals are input to the intermittent oscillator 15 in the audible range, and the intermittent vibration is skipped by the FM oscillator 16 by radio waves, and is converted to intermittent vibration sound by the radio 17.
  • each time difference signal is converted into a voltage corresponding to the time difference by the converter T-V conv., which also serves as a sampling and resetting function.
  • voltage conversion is performed exponentially with resistors and capacitors, for example.
  • the signal selector selector selects either the left or right high road surface voltage and the left or right low obstacle distance voltage.
  • the intermittent oscillator Vf% oscillates 2 to 6 kHz intermittently according to the high road surface voltage on either the left or right.
  • the frequency is raised to make it more stimulating.
  • Oscillation occurs at an intermittent frequency of 33 Hz, that is, an intermittent cycle of 30 ms, and the intermittent ratio changes continuously from 100% to 5% according to the lower left or right obstacle distance voltage.
  • the oscillation frequency is set to 2 to 6 kHz because the frequency range is sensitive to the human ear, so the range may be changed according to individual differences and age. The reason for the frequency change is that it is more sensitive to changes in timbre than to loudness.
  • the reason for setting the intermittent cycle to 30 ms is that the frequency of vibration can be sensed and the speed is high enough to cope with the walking speed. Depending on individual differences and age May be adjusted. Recognition is also possible by fixing the intermittent ratio to, for example, 30% and setting the intermittent period to, for example, 25 to 100 ms according to the lower left or right obstacle distance voltage.
  • an information sensation device that transmits the timing signal of the right sensor to the left sensor, selects the higher one of the two roads with the left sensor, and automatically selects the cautionary foot is used. Normally, one foot is on the road, so it is sufficient to pay attention to the height of one foot.
  • the oscillation frequency is 2 kHz when both feet are attached to the road surface, and 6 kHz when one foot is lifted and turned to the rear of nothing.
  • the intermittent ratio is 100% if there is no obstacle ahead, and 5% if one leg leans forward and points toward the road surface.
  • the cane To use the cane together, lay the cane horizontally at an angle of more than 45 ° to the ground, and the ultrasonic wave from the obstacle distance sensor will reflect away and will not be in the way. .
  • the road surface is flat and it can be recognized that it is safe to land as it is. If the foot is kept at a certain height and moved forward, and the oscillation frequency of the intermittent vibration noise increases, it indicates that the road surface height has increased, that is, there are holes and down stairs.
  • Defensive limit 3 4 cm phase At such an oscillating frequency, it is a platform at a station where it is difficult to reach the feet and there is a danger of falling.
  • the descending stairs can be recognized by moving the foot forward while keeping the foot at a certain height, and the oscillation frequency of the intermittent vibration sound is increased by about 20 cm.
  • the oscillation frequency of the intermittent vibration sound is increased by about 20 cm.
  • the ultrasonic waves may weaken due to interference, resulting in a defensive limit oscillation frequency or unstable fluctuation. Since such roads are unstable, you should walk carefully.
  • the road surface height sensor is placed near the tip of the toe that can stably support the weight, even when the vehicle lands on an uneven and unstable road surface, it can be prepared for rebalancing.
  • the foot If the foot is moved forward and the intermittent ratio of the intermittent vibration sound does not change and is continuous, it can be recognized that there is no obstacle within the defense limit of 68 cm and the user can walk as it is. Since the obstacle distance sensors are installed inward from the leftmost end of the left and right shoes, the entire width of the foot is set as the defense range.
  • FIG. 4 is an overall perspective view showing a foot detector 26 according to a second embodiment of the present invention.
  • the output of the impact sensor 6 of the right sensor unit 27 activates the timing oscillator 28 for only 2 seconds, and initially outputs, for example, an intermittent cycle t of, for example, 40 ms.
  • the intermittent period t drives the periodic trigger circuit 7 having a period of 40 ms, and drives the road surface height sensor 4 and the obstacle distance sensor 5.
  • the cycle trigger circuit 7 operates repeatedly.
  • the intermittent period t is transmitted to the bidirectional communicator 31 of the left sensor unit 30 by the bidirectional communicator 29 riding on a pulse-like human body current of 4 MHz from the electrode applied to the foot.
  • the intermittent period t output from the bidirectional communication device 31 activates the power supply circuit 32 for only 2 seconds. Further, the intermittent cycle t enters the trigger circuit 14 and drives the road surface height sensor 11 and the obstacle distance sensor 12. Furthermore, the intermittent period t drives a pulse generator 33 that generates pulses of 0.5 111 3 width and 0.5 ms intervals, and each time, according to the reciprocal of the distance of the obstacle distance sensor 12, Outputs the pulse number NR set to 7 to 0. A change in the pulse number NR is equivalent to a change in the intermittent ratio.
  • the output of the pulse generator 33 is applied to the electromagnetic vibrator vibrator 34 pressed against the foot, and the same intermittent period t as the right sensor 27 and the number of pulses of the left sensor 30 NL is transmitted to the pedestrian's left foot as vibration.
  • Left and right high road surface height at intermittent cycle t, left with pulse number NL Recognize obstacle distance in front of foot.
  • the road surface height time difference THL of the road surface height sensor 11 of the left sensor unit 30 is calculated by the bidirectional communication device 31 from the pulsed human body current of 4 MHz from the electrode placed on the foot. 7 to the two-way communicator 29. Since the transmission timing is shifted from the reception timing, there is no interference.
  • the left road surface time difference THL output from the bidirectional communication device 29 is calculated by the comparator 35 along with the data of the right road surface time difference THR. O ms to 100 ms. The optimal value can be selected by design.
  • the right sensor unit 27 drives the timing oscillator 28 with the intermittent period t obtained in this way, and drives the pulse generator 36 with the timing oscillator 28.
  • the number of pulses N R of each pulse of the pulse generator 36 is determined to be 7 to 0 according to the reciprocal of the distance of the obstacle distance sensor 5.
  • the output of the pulse generator 36 is applied to the vibrator 37 pressed against the right foot to be vibrated, and the intermittent cycle t and the number of pulses NR are transmitted to the pedestrian's right foot.
  • the left and right high road surface heights can be recognized with a short intermittent cycle t, and the obstacle distance ahead of the right foot can be recognized with a large number of pulses NR. In this way, by walking continuously, the entire left and right cycle can be continuously turned.
  • the usage of the second embodiment of the present invention is the same as that of the first embodiment except that the intermittent sound is replaced by pulse vibration. Pulses are generated in a nodular form and correspond to the obstacle distance, and the intermittent cycle corresponds to the road height.
  • An advantage of the second embodiment is that since no ear is used, it is possible to concentrate on approaching a vehicle, an alarm, and voice information. Because you can experience information near the target, you can quickly perform reflections on road conditions. The obstacle distance of the right foot can be felt by the right foot, and the obstacle distance of the left foot can be felt by the left foot. In this way, the sensational means is The information sensation device characterized by the above is effective.
  • Vibrators corresponding to the road height and obstacle distance may be separately provided at positions apart from the feet, and information may be given by the magnitude of the vibration. Since each oscillator is separated, it can be recognized as an independent sense. In addition, the displacement point can be used to move the pressing point on the foot to recognize the road surface height and obstacle distance.
  • FIG. 5 is a perspective bottom perspective view of a foot detector 38 according to a third embodiment of the present invention.
  • the road surface height sensor 41 of the right sensor section 40 of the right shoe 39 is connected to the transmitting and receiving ultrasonic microphones extended by the acoustic horn, and through the opening of each opening through the first and second toes of the foot. 4 2, the opening 4 3 is installed toward the indentation 4 4 of the shoe sole.
  • the open mouth 42, the open mouth 43 and the sole are provided with a clearance. The operation is the same as in the first embodiment.
  • the advantage of the third embodiment is that the difference between the road surface height measured by the road surface height sensor and the road surface height from the shoe sole can be reduced. In addition, because it is a part that can support the weight more stably, the stability of the feet can be increased. In addition, there is a gap between the opening 4 2 and the opening 4 3 and the sole, so that even when landing, ultrasonic waves reach from the opening 4 2 to the opening 4 3, ensuring a stable operation. Road surface height can be measured. Furthermore, even if the soles are reduced, the characteristics of the ultrasonic waves are less affected. In addition, since the sole recesses 44 are integrally surrounded, even when stepping into a puddle, the air in the sole recesses 4 4 does not escape and water enters the opening. There is little fear.
  • the information sensory device is characterized in that the measurement energy transmission / reception surface of the road surface height sensor is provided in the recess of the shoe sole with the gap provided with the shoe sole.
  • Embodiment 4 the measurement energy transmission / reception surface of the road surface height sensor is provided in the recess of the shoe sole with the gap provided with the shoe sole.
  • FIG. 6 shows a configuration and operation explanatory diagram of a fourth embodiment of the present invention.
  • the magnetic sensor 45 is embedded in the sole of the shoe, and its output is sent from the FM oscillator 16 to the radio 17 by radio.
  • a magnetic tape 46 on which road guidance such as roads and stairs is recorded is attached to the road surface, and can be traced to be heard on the radio 17. If a change signal from a traffic signal is sent to the magnetic coil 47 embedded in the road, a system can be heard just by putting your foot on.
  • a similar configuration is also possible by applying the output of the magnetic sensor 45 to a radio wave using the inverted phase input of the FM oscillator 8.
  • an information sensation device characterized by providing a magnetic sensor on a shoe and reproducing the output signal of the magnetic sensor by the sensation means is effective.
  • FIG. 7 shows a configuration and operation explanatory diagram of a fifth embodiment of the present invention.
  • the radio wave from the FM oscillator 8 of the foot detector 48 is received by the FM receiver 50 provided in the hat 49, and at that timing, the ultrasonic microwave transmitted obliquely downward from the tip of the hat 49
  • An ultrasonic type overhang obstacle sensor is constructed by transmitting ultrasonic waves from the phon 51 and receiving it with the ultrasonic micro phon 52 facing obliquely upward at the front end of the foot detector 48. It is.
  • the ultrasonic microphone 52 for reception may be replaced with an ultrasonic microphone 21 for reception of an obstacle distance sensor.
  • the signal reception timing of the radio wave receiver and the radio wave receiver An information sensor equipped with an overhang obstacle sensor consisting of a hat carrying an ultrasonic transmitter that operates by radio wave and a radio wave transmitter that outputs the reception timing of the ultrasonic receiver is effective. is there.
  • FIG. 8 shows a configuration and operation explanatory diagram of a sixth embodiment of the present invention.
  • the traffic signal 54 is controlled to be turned on by the FM receiver 53 that receives the radio wave from the FM oscillator 8 of the foot detector 1, and the timing that the user can walk with the speed force 55 is notified.
  • an external control system that includes a radio wave receiver that receives a radio wave from an information sensation device that transmits a timing signal by radio waves and a traffic signal device that is controlled by the output of the radio wave receiver is effective.
  • FIG. 9 is an explanatory diagram of a configuration of an electromagnetic vibrator 56 applied to the vibrator according to the second embodiment of the present invention.
  • the magnet 57 is pressed against the foot with the repulsive force of the rubber material 58, and is composed of an electromagnet 59 that directs magnetic force perpendicular to the magnet's SN direction.
  • the rubber material 58 is formed by closing the hole of the shoe 60.
  • current is applied to the electromagnet 59, a magnetic flux is generated, and the magnetic flux penetrates the rubber material 58 and reaches the magnet 57, attracts or repels the SN pole of the magnet 57, and rotates. Hits the body.
  • the motor rotates reversely.
  • the angle change is larger than the position change and the contact position changes, there is an advantage that the stimulus is more easily perceived than a simple vibration.
  • fine vibrations It is advantageous because it is easy to feel. Since the hole of the shoe 60 is closed by the rubber material 58, the hermeticity of the shoe is not impaired. It goes without saying that the electromagnetic vibrator 56 may be separated from the shoe 60 and applied directly to the foot inside the shoe 60.
  • FIG. 10 is a perspective bottom perspective view of a road surface height sensor 61 applied to the third embodiment of the present invention.
  • the transmitting and receiving ultrasonic microphone mouthpieces are extended with acoustic horns, and the respective open ports 62 and 63 are open to the collective acoustic horn 64.
  • the open port 6 2 and the open port 6 3 are square with one side being the wavelength of the ultrasonic wave; Further, the height of the collective acoustic horn 64 is also set to the ultrasonic wave wavelength;
  • the road surface height sensor 61 needs to be narrow enough so that it can be pinched by the toes, and it is desirable to use an acoustic horn and a square whose opening is small. It is known that the ultrasonic waves to the side emitted from an acoustic horn with a square opening are minimal when one side of the square is the wavelength of the ultrasonic wave. For this reason, the open port 62 and the open port 63 are square in one side with the wavelength ⁇ of the ultrasonic wave. However, there was still a problem that ultrasonic waves were emitted to the side, and the ultrasonic waves were directly transmitted as leaks to the opening 62 and the opening 63, so that it was not possible to measure a close distance.
  • the opening 6 2 and the opening 6 3 are opened inside the collective acoustic horn 6 4 and the height of the collective acoustic horn 6 4 is further adjusted to the wavelength ⁇ of the ultrasonic wave, It turns out that the ultrasonic waves cancel each other out, reducing the error. This has made it possible to measure nearby distances stably.
  • FIG. 11 shows a foot detector 65 according to a ninth embodiment of the present invention.
  • the sensor part 66 and the shoe 60 are separate parts.
  • the road surface height sensor 61 attached to the sensor unit 66 has an electrode 67 for two-way communication at a position between the fingers. Electrodes 67 are elastically supported to stabilize contact with the finger.
  • the shoe 60 has an open hole 68 through which the road surface height sensor 61 passes.
  • An eave 69 is mounted so as to cover the sensor part 66.
  • the electric system in the sensor unit 66 can be integrated, and there is an effect that failures can be reduced. In addition, in the event of a breakdown, there is an effect that replacement can be facilitated.
  • the eaves 69 can protect the sensor section 66 from direct sunlight and rain, and also have a role of a tactile sensation for detecting a point immediately before an obstacle ahead collides with the sensor section 66. It is also possible to receive the elastic deformation of the electrodes 67 with the power switch and turn on the power only when worn. In that case, it is convenient and there is a re-advantage if you do not forget to turn off the power.
  • Each embodiment is free to be used with or in conjunction with a cane or other visual aid.
  • the operation described in the analog circuit can be freely implemented in the digital circuit. It can be applied not only to feet but also to equipment worn on the hands and head. Furthermore, it can be applied to wheelchairs, robots, and remote control machines. Industrial applicability
  • the foot detector according to the present invention has a sensation means for quantifying a road surface height and an obstacle distance to provide a human body sensation, it is possible to safely walk while exploring the situation of the foot without contact. it can.

Abstract

In a footing detector (1), an ultrasonic road surface height sensor (4) for measuring the height of the bottom of a shoe from the road surface is provided in the vicinity of the toe in the right sensor section (3) of a right shoe (2) and an ultrasonic obstacle distance sensor (5) for measuring the distance to a forward obstacle is provided at the front right end. A periodical trigger circuit (7) is actuated by the output from an impact sensor (6) to start measurement. A signal is transmitted, by radio, from an FM oscillator (8) to the left sensor section (10) of a left shoe (9) to actuate a trigger circuit (14) and to start measurement by a rode surface height sensor (11) and an obstacle distance sensor (12). Left and right signals are processed through an intermittent oscillator (15) in an audible region, so that the left and right high road surface heights are converted into an oscillation frequency and the left and right short obstacle distances are converted into an intermittence ratio. The output is transmitted from an FM oscillator (16) by radio wave and converted by a radio (17) into an intermittent vibration sound. The road surface height and the obstacle distance can be recognized from the oscillation frequency and the intermittence ratio thereof, respectivery.

Description

明 細 書  Specification
情報体感器 技術分野 Information body sensory technology
この発明は、 視覚障害者の歩行のための視覚補助器に関するもので ある。 背景技術  The present invention relates to a visual aid for walking of a visually impaired person. Background art
視覚障害者は、 杖を使えば、 前方の状況を把握しながら、 安全に歩 行できる。 ところが、 混雑している場所では、 杖で人をたたく ことに 抵抗があった。 足元は、 足で触れて確認しないと、 転倒などの不安が あった。 このため、 非接触で足元の状況を探知する視覚補助器が求め られてきた。  The visually impaired can use the cane to walk safely while grasping the situation ahead. However, in crowded places, there was resistance to hitting people with canes. Unless the feet were touched and checked, there was anxiety such as falling. For this reason, a visual aid that can detect the situation of the feet without contact has been required.
実願昭 4 0 — 7 2 6 8号公報には、 メガネに付けた超音波センサ で、 物体の位置を知る技術が公開されている。 ところがこれは、 前方 の全景を認知するもので、 足元の状況をつかむものではなかった。 実開昭 6 0 — 2 5 9 8 3号公報には、 赤外線センサを上部に付け て、 物体までの距離を、 手元の振動子の周波数や振幅に変換して、 感 覚判断できる障害物探知用の杖が公開されている。 ところがこれは、 上に張り出した障害物を探知するもので、 足元の状況をつかむもので はなかった。  Japanese Utility Model Application Publication No. 40-7272 discloses a technique for detecting the position of an object using an ultrasonic sensor attached to eyeglasses. However, this was to recognize the whole view ahead and not the situation at the feet. Japanese Utility Model Application Publication No. 60-2525893 discloses that an infrared sensor is attached to the upper part, and the distance to the object is converted into the frequency and amplitude of the vibrator at hand to detect obstacles that can be sensed. The cane is released. However, this was to detect obstacles overhanging, not to grasp the situation at the feet.
特開平 9一 3 2 8 7 2 5号公報には、 路面の磁性シートを、 電波や 磁気の探知器で誘導するシステムが公開されている。 ところがこれ は、 道の案内をするものなので、 足元の状況をつかむものではなかつ た。  Japanese Patent Application Laid-Open Publication No. Hei 9-3138725 discloses a system in which a magnetic sheet on a road surface is guided by a radio wave or magnetic detector. However, since this was to guide the way, it did not grasp the current situation.
以上のよ うに、 従来の視覚捕助器だけでは十分な歩行補助の効果を 奏するものではなかった。 As described above, conventional visual aids alone can provide sufficient walking assist effects. It did not play.
本発明は、 以上の従来例が持つ課題を解決するためになされたもの で、 視覚障害者の足元の安全を確認し、 歩行を助ける視覚補助器にな る足元探知器を提供することを目的と している。 発明の開示  The present invention has been made to solve the problems of the conventional example described above, and has as its object to provide a foot detector that can confirm the safety of the foot of a visually impaired person and that can be a visual aid to assist walking. And Disclosure of the invention
この発明による足元探知器は、 路面からの高さを測る路面高センサ と、 前方の障害物までの距離を測る障害物距離センサと、 両センサを 載せた靴と、 路面高と障害物距離を独立に知覚できる感覚にする体感 手段からなっている。 図面の簡単な説明  The foot detector according to the present invention includes a road surface height sensor for measuring a height from a road surface, an obstacle distance sensor for measuring a distance to an obstacle ahead, a shoe on which both sensors are mounted, and a road surface height and an obstacle distance. It consists of bodily sensations that can be perceived independently. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明の第 1の実施形態による足元探知器 1を装着し た全体斜視図である。 第 2図は、 この発明に使われる超音波式距離計 測の原理説明図である。 第 3図は、 この発明の第 1の実施形態による 足元探知器 1の詳細構成 · タイ ミング図である。 第 4図は、 この発明 の第 2の実施形態による足元探知器 2 6 を装着した全体斜視図であ る。 第 5図は、 この発明の第 3の実施形態の足元探知器 3 8の下面斜 視透過図である。 第 6図は、 この発明の第 4の実施形態の構成と動作 説明図である。 第 7図は、 この発明の第 5の実施形態の構成と動作説 明図である。 第 8図は、 この発明の第 6の実施形態の構成と動作説明 図である。 第 9図は、 この発明に応用できる電磁バイブレータ.5 6の 構成説明図である。 第 1 0図は、 この発明に応用できる超音波式の距 離計測センサ 6 1の構成説明図である。 第 1 1図は、 この発明の第 9 の実施形態による足元探知器 6 5の全体斜視図である。 発明を実施するための最良の形態 FIG. 1 is an overall perspective view in which a foot detector 1 according to a first embodiment of the present invention is mounted. FIG. 2 is a diagram illustrating the principle of ultrasonic distance measurement used in the present invention. FIG. 3 is a detailed configuration and timing diagram of the foot detector 1 according to the first embodiment of the present invention. FIG. 4 is an overall perspective view showing a foot detector 26 according to a second embodiment of the present invention. FIG. 5 is a perspective perspective view of the underside of the foot detector 38 according to the third embodiment of the present invention. FIG. 6 is a diagram for explaining the configuration and operation of a fourth embodiment of the present invention. FIG. 7 is an explanatory diagram of the configuration and operation of a fifth embodiment of the present invention. FIG. 8 is a diagram for explaining the configuration and operation of a sixth embodiment of the present invention. FIG. 9 is a structural explanatory view of an electromagnetic vibrator .56 applicable to the present invention. FIG. 10 is a structural explanatory view of an ultrasonic distance measuring sensor 61 applicable to the present invention. FIG. 11 is an overall perspective view of a foot detector 65 according to a ninth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
実施形態 1 . Embodiment 1
第 1図は、 この発明の第 1の実施形態による足元探知器 1を装着し た全体斜視図を示す。 右靴 2の右センサ部 3には、 靴底からの路面高 を測る超音波式の路面高センサ 4が、 爪先付近の左端下部から下向き に搭載されている。 前方の障害物までの障害物距離を測る超音波式の 障害物距離センサ 5は、 前面右端の前方から内向きに搭載されてい る。 衝撃センサ 6の出力で、 周期トリガ回路 7が起動し、 計測を開始 する。 路面高と障害物距離の信号は、 F M発振器 8から電波で、 左靴 9の左センサ部 1 0に伝えられる。  FIG. 1 shows an overall perspective view of a foot detector 1 according to a first embodiment of the present invention. An ultrasonic road surface height sensor 4 for measuring the road surface height from the shoe sole is mounted on the right sensor section 3 of the right shoe 2 downward from the lower left end near the toe. An ultrasonic obstacle distance sensor 5 for measuring an obstacle distance to an obstacle in front is mounted inward from the front right end of the front surface. The cycle trigger circuit 7 is activated by the output of the shock sensor 6, and starts measurement. The signals of the road surface height and the obstacle distance are transmitted from the FM oscillator 8 to the left sensor unit 10 of the left shoe 9 by radio waves.
F M発振器 8からの電波は、 F M受信器 1 3に入り、 右センサ部 3 の路面高と障害物距離の信号を復調する。 左センサ部 1 0には、 路面 高センサ 1 1 と、 障害物距離センサ 1 2が内蔵され、 右センサ部 3の 障害物距離の信号によって、 トリガ回路 1 4が起動し、 計測を開始す る。 左右の信号は、 可聴音域の間欠発振器 1 5に入力する。 その発振 周波数は、 注意を要する左右の高い路面高に決められる。 間欠比は、 注意を要する左右の小さい障害物距離に決められる。  The radio wave from the FM oscillator 8 enters the FM receiver 13 and demodulates the signal of the road surface height and the obstacle distance of the right sensor unit 3. The left sensor unit 10 incorporates a road surface height sensor 11 and an obstacle distance sensor 12, and the trigger circuit 14 is activated by the obstacle distance signal of the right sensor unit 3 to start measurement. . The left and right signals are input to the intermittent oscillator 15 in the audible range. The oscillation frequency is determined by the high left and right road surface heights that require attention. The intermittent ratio is determined by the small left and right obstacle distances that require attention.
間欠発振器 1 5の出力は F M発振器 1 6から電波にのり、 歩行者の 耳近くのラジオ 1 7で受けて間欠振動音にされる。 その発振周波数か ら、 注意を要する路面高を、 間欠比から、 注意を要する障害物距離を 認識できる。  The output of the intermittent oscillator 15 is superimposed on the radio wave from the FM oscillator 16 and is received by the radio 17 near the pedestrian's ear to produce an intermittent vibration sound. From the oscillation frequency, the height of the road surface that requires attention can be recognized, and from the intermittent ratio, the distance of the obstacle that requires attention can be recognized.
第 2図は、 この発明に使われる超音波式の距離計測の原理説明図を 示す。 トリガ信号で単安定マルチバイブレータ 1 8が 0 . 2 m sのパ ルスを作り、 その間だけ 4 0 k H zの非安定マルチパイブレータ 1 9 を発振させ、 音響ホーンで指向性を持たせた超音波マイクロフォン 2 0から超音波を発射する。 路面や障害物から反射してきた超音波は、 音響ホーンで指向性を持 たせた超音波マイクロフオン 2 1で受けて、 増幅器 2 2と整流 ·平滑 器 2 3を通してフリ ップ · フロップ 2 4に入り、 時間差 Tが出力され る。 常温では、 長さ L (m) と時間差 T ( s ) は次式で与えられる。 FIG. 2 is a diagram illustrating the principle of ultrasonic distance measurement used in the present invention. The trigger signal causes the monostable multivibrator 18 to generate a pulse of 0.2 ms, during which only the 40 kHz non-stable multivibrator 19 oscillates, and the acoustic horn gives directivity to the ultrasound. Ultrasonic waves are emitted from the microphone 20. Ultrasonic waves reflected from the road surface or obstacles are received by an ultrasonic microphone 21 with directivity by an acoustic horn, and are passed through an amplifier 22 and a rectifying / smoothing device 23 to a flip-flop 24. And the time difference T is output. At room temperature, the length L (m) and the time difference T (s) are given by
L (m) =音速度 3 4 0 (m/ s ) XT ( s ) / 2  L (m) = sound velocity 3 4 0 (m / s) XT (s) / 2
路面高 Hまたは障害物距離 Dは、 外形からの長さに補正されてい る。 路面高センサは、 泥水や応力などの環境が悪い靴底を避けて、 足 の周囲の上方に搭載されて、 路面を計測している。  The road height H or obstacle distance D is corrected to the length from the outer shape. The road surface sensor is mounted above and around the feet to measure the road surface, avoiding poor soles such as muddy water and stress.
遠くや、 反射が小さい場合は、 守備限度に想定した長さ相当の時間 遅れを持つ単安定マルチパイブレータ 2 5で、 フリ ップ ' フロップ 2 4がリセッ ト される。 路面高センサ 4, 1 1では、 階段の段差と し て、 守備限度 3 4 c m相当の 2 m sの時間遅れにする。 障害物距離セ ンサ 5, 1 2は、 手が伸ばせる範囲を考えて、 守備限度 6 8 c m相当 の 4 m s の時間遅れにする。  If it is far away or the reflection is small, the flip-flop 24 is reset by the monostable multipibrator 25 having a time delay corresponding to the length assumed in the defensive limit. In the road surface height sensors 4 and 11, a step delay of 2 ms, which is equivalent to the defensive limit of 34 cm, is used as a step on the stairs. Obstacle distance sensors 5 and 12 should have a time delay of 4 ms, which is equivalent to the defensive limit of 68 cm, considering the reach of the hand.
超音波式距離計測器は、 距離を時間差で出力するので、 後段処理に おいて情報が劣化しにくい利点がある。 超音波マイクロフォン 2 0, Since the ultrasonic distance measuring device outputs the distance with a time difference, there is an advantage that information is not easily degraded in post-processing. Ultrasonic microphone 20
2 1は、 4 0 k H zの共振周波数を持たせて、 感度向上と周波数フィ ルタの役割をさせている。 複数の超音波式距離計測器が接近して存在 しても、 個々の超音波式距離計測器に、 例えば 5 0 0 H zずつ異なる 共振周波数を割り当てることで、 混信を防ぐことができる。 測定精度 を上げるには、 周波数を 4 0 k H z より高く、 例えば 2 0 0 k H zに すればよい。 増幅器 2 2の増幅度を時間差 Tに合わせて増加させる増 幅度可変機能をつければ、 遠近の感度差を小さくできる。 21 has a resonance frequency of 40 kHz to improve sensitivity and serve as a frequency filter. Even when a plurality of ultrasonic distance measuring devices are close to each other, interference can be prevented by assigning different resonance frequencies to each ultrasonic distance measuring device, for example, by 500 Hz. To increase the measurement accuracy, the frequency should be higher than 40 kHz, for example, 200 kHz. If the amplification degree variable function for increasing the amplification degree of the amplifier 22 in accordance with the time difference T is provided, the sensitivity difference between near and far can be reduced.
第 3図は、 この発明の第 1の実施形態による足元探知器 1の詳細構 成 · タイミング図を示す。 右センサ部 3において、 衝撃センサ 6は、 加速時計とピーク検出回路を組み合わせて、 衝撃の度に 2 sの信号を 出して、 2秒以上歩みを止めるまで連続動作する。 衝撃センサで動作 を開始することを特徴とするので、 消費電力を抑えて長時間の使用が できると ともに、 不要な時は緊張を解いて休息できる情報体感器が可 能になる。 なお、 連続動作をするための衝撃センサ 6の代わりに、 時 間差 Tの変化を用いてもよい。 FIG. 3 shows a detailed configuration / timing diagram of the foot detector 1 according to the first embodiment of the present invention. In the right sensor section 3, the shock sensor 6 combines an acceleration clock and a peak detection circuit to generate a 2 s signal for each impact. It will run continuously until you stop walking for more than 2 seconds. The feature is that the operation is started by the impact sensor, so that it can be used for a long time with reduced power consumption, and an information sensation device that can relax and relax when unnecessary. Note that a change in the time difference T may be used instead of the shock sensor 6 for performing the continuous operation.
周期トリガ回路 7は、 4 0 m s周期の非安定マルチバイブレータと 5 m sの単安定マルチバイブレータを組み合わせている。 4 0 m s周 期のト リガ信号で、 路面高センサ 4を動作させ、 右の路面高 HRに対 応する路面高時間差 THRを出力する。 さらに 5 m s遅れのト リガ信 号で障害物距離センサ 5を起動し、 右の障害物距離 D Rに対応する障 害物距離時間差 TD Rを出力する。 5 m s遅らせたのは、 混信が生じ ない程度に超音波が減衰する時間であることと、 最長 4 m sになる両 方の時間差が重ならないためである。 設計で最適値を選ぶことができ る。  The period trigger circuit 7 combines an astable multivibrator with a period of 40 ms and a monostable multivibrator with a period of 5 ms. The road surface height sensor 4 is activated by the trigger signal of the 40 ms period, and the road surface time difference THR corresponding to the right road surface height HR is output. Furthermore, the obstacle distance sensor 5 is activated by a trigger signal delayed by 5 ms, and the obstacle distance time difference TDR corresponding to the right obstacle distance DR is output. The delay of 5 ms is because the ultrasonic wave is attenuated to such an extent that no interference occurs, and the time difference between the two, which is up to 4 ms, does not overlap. The optimal value can be selected in the design.
両方の時間差の信号は、 FM発振器 8で正負逆相に合成されてアン テナから電波出力される。 1 m届けばよいので電波出力は小さくてよ く、 路面近く なので、 他へ電波妨害を与える恐れは小さい。  The signal of the time difference between the two signals is combined in the positive and negative phases by the FM oscillator 8 and output from the antenna. The signal output is only 1 m, so the radio wave output can be small, and it is near the road surface, so there is little risk of interfering with others.
時間遅れなく瞬時に信号伝送できればいいので、 電磁波の一種であ る赤外線を使うこともできる。 電線でつないでも構わないのはもちろ んである。 体に豊富な水分は、 1〜 1 0 0 MH zの高周波電流を通し やすいので、 体に近接する非接触の電極によって、 人体電流と して信 号を伝えることもできる。 大地への電流リークを避けるため、 靴底は 絶縁体と しておくのがよい。 さらに、 靴底をクッション材とすれば、 歩行の衝撃を和らげて、 故障しにく くできてよい。  As long as signals can be transmitted instantaneously with no time delay, infrared rays, a type of electromagnetic wave, can also be used. Of course, you can connect with electric wires. Since abundant moisture in the body easily passes high-frequency currents of 1 to 100 MHz, signals can be transmitted as human body currents by non-contact electrodes close to the body. The soles should be insulated to avoid current leakage to the ground. Furthermore, if the soles are made of cushioning material, the impact of walking can be reduced, making it less likely to break down.
左センサ部 1 0において、 FM受信器 1 3で電波を受けて、 右の路 面高時間差 T HRと障害物距離時間差 TD Rを復調する。 単安定マル チパイブレータを組み合わせた トリガ回路 1 4は、 右の路面高時間差 T H Rの信号から 5 m s遅れの ト リガ信号と、 1 0 m s遅れのトリガ 信号を出す。 5 m s遅れのト リガ信号で、 左の路面高センサ 1 1が動 作し、 路面高時間差 T H Lを出力する。 1 0 m s遅れの ト リガ信号 で、 左の障害物距離センサ 1 2を起動し、 障害物距離時間差 T D Lを 出力する。 In the left sensor section 10, the FM receiver 13 receives radio waves and demodulates the right road surface time difference T HR and the obstacle distance time difference TDR. Monostable circle The trigger circuit 14 combined with the chip generator outputs a trigger signal delayed by 5 ms from the signal of the right road surface time difference THR and a trigger signal delayed by 10 ms. With a trigger signal delayed by 5 ms, the left road surface height sensor 11 operates and outputs the road surface height time difference THL. A 10 ms delay trigger signal activates the left obstacle distance sensor 12 and outputs the obstacle distance time difference TDL.
左右の路面高と障害物距離の信号は、 可聴音域の間欠発振器 1 5に 入力され、 間欠振動が F M発振器 1 6から電波で飛ばされ、 ラジオ 1 7で間欠振動音にされる。  The left and right road surface height and obstacle distance signals are input to the intermittent oscillator 15 in the audible range, and the intermittent vibration is skipped by the FM oscillator 16 by radio waves, and is converted to intermittent vibration sound by the radio 17.
間欠発振器 1 5において、 変換器 T-V conv. によって、 各時間差 信号は、 サンプリングと リセッ トの役割も兼ねて、 時間差に応じた電 圧に変換される。 近くの感度を高くするため、 例えば抵抗とコンデン サで指数関数的に電圧変換している。  In the intermittent oscillator 15, each time difference signal is converted into a voltage corresponding to the time difference by the converter T-V conv., Which also serves as a sampling and resetting function. To increase the sensitivity near, voltage conversion is performed exponentially with resistors and capacitors, for example.
信号選択器 selector によって、 左右いずれか高い路面高電圧と、 左右いずれか低い障害物距離電圧を選択している。  The signal selector selector selects either the left or right high road surface voltage and the left or right low obstacle distance voltage.
間欠発振器 V-f % によって、 左右いずれか高い路面高電圧に従つ て、 2〜 6 k H zを間欠で発振する。 注意喚起のため、 路面高が高く なると周波数を高く して刺激的にする。 発振は、 間欠周波数の 3 3 H z、 つまり 3 0 m sの間欠周期で行われ、 間欠比は、 左右いずれか低 い障害物距離電圧に従って 1 0 0 %から 5 %まで連続変化する。 注意 喚起のため、 障害物が近いと間欠比を小さく して刺激的にしている。 発振周波数を 2〜 6 k H z にしたのは、 人間の耳に敏感な周波数帯 域だからで、 個人差や年令に応じて範囲を変えてよい。 周波数変化で 伝えるのは、 音の大きさより も音色の変化に敏感だからである。 間欠 周期を 3 0 m s にしたのは、 振動の頻度を感じ取れ、 かつ、 歩行スピ ードに対応できるほど高速だからである。 個人差や年令に応じて、 調 整してもよい。 間欠比を例えば 3 0 %に固定して、 左右いずれか低い 障害物距離電圧に従って間欠周期を例えば 2 5〜 1 0 0 m s にするこ とでも認識が可能である。 The intermittent oscillator Vf% oscillates 2 to 6 kHz intermittently according to the high road surface voltage on either the left or right. As a reminder, when the road surface is high, the frequency is raised to make it more stimulating. Oscillation occurs at an intermittent frequency of 33 Hz, that is, an intermittent cycle of 30 ms, and the intermittent ratio changes continuously from 100% to 5% according to the lower left or right obstacle distance voltage. As a reminder, if the obstacle is near, the intermittent ratio is reduced to make it more stimulating. The oscillation frequency is set to 2 to 6 kHz because the frequency range is sensitive to the human ear, so the range may be changed according to individual differences and age. The reason for the frequency change is that it is more sensitive to changes in timbre than to loudness. The reason for setting the intermittent cycle to 30 ms is that the frequency of vibration can be sensed and the speed is high enough to cope with the walking speed. Depending on individual differences and age May be adjusted. Recognition is also possible by fixing the intermittent ratio to, for example, 30% and setting the intermittent period to, for example, 25 to 100 ms according to the lower left or right obstacle distance voltage.
このよ うに、 右センサのタイ ミング信号を、 左センサに伝達して、 左センサで両者の路面高の高い方を選択し、 注意すべき足の選択を自 動でおこなう情報体感器ができる。 通常、 片方の足は路面についてい るため、 一方の足の路面高に注意すれば十分である。  In this way, an information sensation device that transmits the timing signal of the right sensor to the left sensor, selects the higher one of the two roads with the left sensor, and automatically selects the cautionary foot is used. Normally, one foot is on the road, so it is sufficient to pay attention to the height of one foot.
次に、 この発明の第 1 の実施形態による足元探知器 1の使い方につ いて説明する。  Next, how to use the foot detector 1 according to the first embodiment of the present invention will be described.
歩行を開始する度に、 右足で路面にたたいて衝撃センサ 6を作動さ せ、 足元探知器 1を起動する。 慣れるため、 間欠振動音を聞いて、 発 振周波数と路面高、 間欠比と障害物距離の関係を記憶しておく。 発振 周波数は、 両足を路面につけると 2 k H z、 片足を上げて何もない後 ろに向けると 6 k H zになる。 間欠比は、 前方に障害物がないと 1 0 0 %、 片足を前傾して路面に向けると 5 %になる。  Each time walking starts, the right foot strikes the road surface to activate the impact sensor 6 and activate the foot detector 1. To get used to it, listen to the intermittent vibration sound and memorize the relationship between the oscillation frequency and the road height, and the intermittent ratio and the obstacle distance. The oscillation frequency is 2 kHz when both feet are attached to the road surface, and 6 kHz when one foot is lifted and turned to the rear of nothing. The intermittent ratio is 100% if there is no obstacle ahead, and 5% if one leg leans forward and points toward the road surface.
使用中の信頼性を確保するため、 足を上下して、 間欠振動音の発振 周波数が変化するのを確認する。 さらに、 壁に向けて、 かかとを軸に して足を左右に振って、 間欠比が変化するのを確認する。  In order to ensure reliability during use, raise and lower your feet and check that the oscillation frequency of the intermittent vibration sound changes. In addition, swing the foot left and right around the heel toward the wall and observe that the intermittent ratio changes.
杖も併用するには、 地面となす角を 4 5 ° よりも水平に杖を寝かせ ておけば、 障害物距離センサからの超音波は反射して去っていく の で、 邪魔になることはない。  To use the cane together, lay the cane horizontally at an angle of more than 45 ° to the ground, and the ultrasonic wave from the obstacle distance sensor will reflect away and will not be in the way. .
足を一定の高さに保ったまま前方に動かして、 間欠振動音の発振周 波数が変化しなければ、 路面が平坦であり、 そのまま着地しても安全 なことが認識できる。 足を一定の高さに保ったまま前方に動かして、 間欠振動音の発振周波数が高くなるなら、 路面高が高くなつたこと、 つまり、 穴や下り階段などの存在が察知される。 守備限度 3 4 c m相 当の発振周波数なら、 足が届くのが困難な高さで、 落下の危険がある 駅のプラッ トホームなどである。 If the foot is moved forward while maintaining a constant height and the oscillation frequency of the intermittent vibration sound does not change, the road surface is flat and it can be recognized that it is safe to land as it is. If the foot is kept at a certain height and moved forward, and the oscillation frequency of the intermittent vibration noise increases, it indicates that the road surface height has increased, that is, there are holes and down stairs. Defensive limit 3 4 cm phase At such an oscillating frequency, it is a platform at a station where it is difficult to reach the feet and there is a danger of falling.
下り階段は、 足を一定の高さに保ったまま前方に動かして、 間欠振 動音の発振周波数が 2 0 c m相当く らい高くなることで認識できる。 足を下げる時には、 記憶の 2 k H zをめざして周波数変化を確認しな がら着地にそなえていく。 砂利地や雪面などで凹 ώがあると、 超音波 が干渉して弱くなつて、 守備限度の発振周波数が出たり、 不安定に変 動することがある。 そのような路面は不安定なので、 慎重に歩く こと である。  The descending stairs can be recognized by moving the foot forward while keeping the foot at a certain height, and the oscillation frequency of the intermittent vibration sound is increased by about 20 cm. When lowering the foot, prepare for landing while checking the frequency change for the memory of 2 kHz. If there is a depression on a gravel or snow surface, the ultrasonic waves may weaken due to interference, resulting in a defensive limit oscillation frequency or unstable fluctuation. Since such roads are unstable, you should walk carefully.
路面高センサが測定する路面高と、 靴底からの路面高とは微妙な違 いがある。 しかしながら、 安定に体重を支えられる爪先あたりに路面 高センサを配置したので、 凹凸で不安定な路面に着地しても、 パラン スの立て直しに備えることができる。  There is a slight difference between the road surface height measured by the road surface height sensor and the road surface height from the shoe sole. However, since the road surface height sensor is placed near the tip of the toe that can stably support the weight, even when the vehicle lands on an uneven and unstable road surface, it can be prepared for rebalancing.
足を前方に動かして、 間欠振動音の間欠比が変化せずに連続なら、 守備限度 6 8 c m以内に障害物はないことが認識でき、 そのまま歩い ていける。 障害物距離センサは左右の靴の最側端から内向きに搭載し ているので、 足の進む全幅を守備範囲にしている。  If the foot is moved forward and the intermittent ratio of the intermittent vibration sound does not change and is continuous, it can be recognized that there is no obstacle within the defense limit of 68 cm and the user can walk as it is. Since the obstacle distance sensors are installed inward from the leftmost end of the left and right shoes, the entire width of the foot is set as the defense range.
足を前方に動かして、 間欠振動音の間欠比が小さくなるなら、 前方 に障害物が認識できる。 かかとを軸として足を左右に振って、 間欠比 の変化から、 障害物の幅と形状を認識する。 障害物の幅が小さいな ら、 その横を歩いていける。 障害物の幅が広く平面なら、 壁の可能性 があるので、 地形を考え直す。 側方には音響ホーンの指向性が無く、 検知しないので、 壁に沿って歩く こともできる。  If the foot is moved forward and the intermittent ratio of the intermittent vibration sound decreases, an obstacle can be recognized ahead. Swing the foot left and right around the heel to recognize the width and shape of the obstacle from the change in the intermittent ratio. If the obstacle is narrow, you can walk beside it. If the obstacle is wide and flat, it may be a wall, so reconsider the terrain. There is no directivity of the acoustic horn on the side and no detection, so you can walk along the wall.
かかとを軸と して片足を上下に振って、 間欠比の変化から、 障害物 の高さと形状を認識する。 高さが連続的に変化するなら、 壁の可能性 が高まる。 高さが階段状に変化するなら、 上がり階段の可能性がある ので、 その端の手すりを探す。 上がり階段を上がるには、 間欠比で 3 0 c mほど障害物距離が急に遠ざかるまで足を水平に保ったまま上 げ、 その高さで、 間欠比で 0 c mほど障害物距離が近づくまで足を前 進させ、 発振周波数で 0 c mほどの路面高まで足を下げて着地する。 それを繰り返す。 Swing one leg up and down around the heel, and recognize the height and shape of the obstacle from the change in the intermittent ratio. If the height changes continuously, the possibility of the wall increases. If the height changes in steps, there is a possibility of climbing stairs So look for the railing at that end. To climb the stairs, keep your feet horizontal until the obstacle distance suddenly moves away by about 30 cm at the intermittent ratio, and at that height, move your feet until the obstacle distance approaches 0 cm at the intermittent ratio. And lower your foot to a road height of about 0 cm at the oscillation frequency to land. Repeat it.
実施形態 2. Embodiment 2.
第 4図は、 この発明の第 2の実施形態による足元探知器 2 6を装着 した全体斜視図を示す。 右センサ部 2 7の衝撃センサ 6の出力で、 2 秒間だけタイミ ング発振器 2 8を起動させ、 最初は例えば 4 0 m s の 間欠周期 tを出力する。 間欠周期 tは、 周期 4 0 m s の周期ト リガ回 路 7を駆動し、 路面高センサ 4 と障害物距離センサ 5 を駆動してい る。 間欠周期 tの間は、 周期トリガ回路 7は繰り返し動作している。 さらに、 間欠周期 tは、 双方向通信器 2 9によって、 足に当てた電極 から 4 MH zのパルス状の人体電流に乗って、 左センサ部 3 0の双方 向通信器 3 1へ伝えられる。  FIG. 4 is an overall perspective view showing a foot detector 26 according to a second embodiment of the present invention. The output of the impact sensor 6 of the right sensor unit 27 activates the timing oscillator 28 for only 2 seconds, and initially outputs, for example, an intermittent cycle t of, for example, 40 ms. The intermittent period t drives the periodic trigger circuit 7 having a period of 40 ms, and drives the road surface height sensor 4 and the obstacle distance sensor 5. During the intermittent cycle t, the cycle trigger circuit 7 operates repeatedly. Further, the intermittent period t is transmitted to the bidirectional communicator 31 of the left sensor unit 30 by the bidirectional communicator 29 riding on a pulse-like human body current of 4 MHz from the electrode applied to the foot.
左センサ部 3 0において、 双方向通信器 3 1から出力された間欠周 期 tは、 電源回路 3 2を 2秒間だけ起動させる。 さらに、 間欠周期 t はト リガ回路 1 4に入り、 路面高センサ 1 1 と、 障害物距離センサ 1 2を駆動する。 さらに、 間欠周期 tは、 0. 5 111 3幅で 0. 5 m s間 隔のパルスを発生するパルス発生器 3 3を駆動し、 障害物距離センサ 1 2の距離の逆数に応じて、 毎回のパルス数 N Rが 7発〜 0発に定め た出力を出す。 パルス数 N Rが変化するのは、 間欠比が変化するのと 等価になる。 パルス発生器 3 3の出力は、 足に押当てられた電磁バイ ブレータ式の振動子 3 4に加えられて、 右センサ部 2 7 と同じ間欠周 期 t と、 左センサ部 3 0のパルス数 N Lが、 振動と して歩行者の左足 に伝えられる。 間欠周期 tで左右の高い路面高を、 パルス数 N Lで左 足の前方の障害物距離を認識できる。 In the left sensor section 30, the intermittent period t output from the bidirectional communication device 31 activates the power supply circuit 32 for only 2 seconds. Further, the intermittent cycle t enters the trigger circuit 14 and drives the road surface height sensor 11 and the obstacle distance sensor 12. Furthermore, the intermittent period t drives a pulse generator 33 that generates pulses of 0.5 111 3 width and 0.5 ms intervals, and each time, according to the reciprocal of the distance of the obstacle distance sensor 12, Outputs the pulse number NR set to 7 to 0. A change in the pulse number NR is equivalent to a change in the intermittent ratio. The output of the pulse generator 33 is applied to the electromagnetic vibrator vibrator 34 pressed against the foot, and the same intermittent period t as the right sensor 27 and the number of pulses of the left sensor 30 NL is transmitted to the pedestrian's left foot as vibration. Left and right high road surface height at intermittent cycle t, left with pulse number NL Recognize obstacle distance in front of foot.
左センサ部 3 0の路面高センサ 1 1の路面高時間差 T H Lは、 双方 向通信器 3 1によって、 足に当てた電極から 4 M H zのパルス状の人 体電流に乗って、 右センサ部 2 7の双方向通信器 2 9へ伝えられる。 送信のタイ ミングは、 受信タイミングとずらされているため、 混信は ない。 双方向通信器 2 9から出力された左の路面高時間差 T H Lは、 右の路面高時間差 T H Rのデータとともに、 比較器 3 5によって両者 の大きい方の逆数に応じて、 次回の間欠周期 tが 4 O m s〜 1 0 0 0 m sに決められる。 設計で最適値を選ぶことができる。  The road surface height time difference THL of the road surface height sensor 11 of the left sensor unit 30 is calculated by the bidirectional communication device 31 from the pulsed human body current of 4 MHz from the electrode placed on the foot. 7 to the two-way communicator 29. Since the transmission timing is shifted from the reception timing, there is no interference. The left road surface time difference THL output from the bidirectional communication device 29 is calculated by the comparator 35 along with the data of the right road surface time difference THR. O ms to 100 ms. The optimal value can be selected by design.
右センサ部 2 7では、 このよ うに得られた間欠周期 tでタイミング 発振器 2 8を駆動して、 タイミング発振器 2 8によってパルス発生器 3 6を駆動する。 パルス発生器 3 6の毎回のパルス数 N Rは、 障害物 距離センサ 5の距離の逆数に応じて、 7発〜 0発に定められる。 パル ス発生器 3 6の出力は、 右足に押当てられた振動子 3 7に加えられて 振動になり、 間欠周期 t とパルス数 N Rが、 歩行者の右足に伝えられ る。 左右の高い路面高を短い間欠周期 tで、 右足の前方の障害物距離 を多いパルス数 N Rで認識できる。 このようにして、 継続して歩いて いけば、 連続的に左右全体のサイクルを回していく ことができる。  The right sensor unit 27 drives the timing oscillator 28 with the intermittent period t obtained in this way, and drives the pulse generator 36 with the timing oscillator 28. The number of pulses N R of each pulse of the pulse generator 36 is determined to be 7 to 0 according to the reciprocal of the distance of the obstacle distance sensor 5. The output of the pulse generator 36 is applied to the vibrator 37 pressed against the right foot to be vibrated, and the intermittent cycle t and the number of pulses NR are transmitted to the pedestrian's right foot. The left and right high road surface heights can be recognized with a short intermittent cycle t, and the obstacle distance ahead of the right foot can be recognized with a large number of pulses NR. In this way, by walking continuously, the entire left and right cycle can be continuously turned.
この発明の第 2の実施形態の使い方は、 間欠音をパルス振動で置き 換えれば、 第 1の実施形態と同様である。 パルスを団塊状に発生して 障害物距離に対応させ、 その間欠周期を路面高に対応させている。 第 2の実施形態の利点は、 耳を使わないので、 車両の接近や、 警報 や、 音声情報に集中できることがある。 対象近くで情報を体感できる ので、 路面状況に対する反射動作をすばやくできる。 右足の障害物距 離は右足で、 左足の障害物距離は左足で体感できるので、 注意すべき 足の認知が容易である。 このよ うに、 体感手段を、 足に接する電動体 にしたことを特徴とする情報体感器が有効である。 The usage of the second embodiment of the present invention is the same as that of the first embodiment except that the intermittent sound is replaced by pulse vibration. Pulses are generated in a nodular form and correspond to the obstacle distance, and the intermittent cycle corresponds to the road height. An advantage of the second embodiment is that since no ear is used, it is possible to concentrate on approaching a vehicle, an alarm, and voice information. Because you can experience information near the target, you can quickly perform reflections on road conditions. The obstacle distance of the right foot can be felt by the right foot, and the obstacle distance of the left foot can be felt by the left foot. In this way, the sensational means is The information sensation device characterized by the above is effective.
路面高と障害物距離に応じた振動子を足の離れた位置に別々に設け て、 それらの振動の大きさで情報を与えてもよい。 それぞれの振動子 は離れているので、 独立の感覚として認識できる。 さらに、 変位ァク チュエータで押圧点を足の上で移動させて、 路面高や障害物距離を認 識させることも可能である。  Vibrators corresponding to the road height and obstacle distance may be separately provided at positions apart from the feet, and information may be given by the magnitude of the vibration. Since each oscillator is separated, it can be recognized as an independent sense. In addition, the displacement point can be used to move the pressing point on the foot to recognize the road surface height and obstacle distance.
実施形態 3 . Embodiment 3.
第 5図は、 この発明の第 3の実施形態の足元探知器 3 8の下面斜視 透過図を示す。 右靴 3 9の右センサ部 4 0の路面高センサ 4 1は、 送 信と受信の超音波マイクロフォンが音響ホーンで延長され、 足の第 1 指と第 2指の間を通して、 それぞれの開放口 4 2、 開放口 4 3が靴底 くぼみ部 4 4に向けて搭載されている。 開放口 4 2、 開放口 4 3 と靴 底は、 すきまを空けて設けられている。 動作は第 1の実施形態と同様 である。  FIG. 5 is a perspective bottom perspective view of a foot detector 38 according to a third embodiment of the present invention. The road surface height sensor 41 of the right sensor section 40 of the right shoe 39 is connected to the transmitting and receiving ultrasonic microphones extended by the acoustic horn, and through the opening of each opening through the first and second toes of the foot. 4 2, the opening 4 3 is installed toward the indentation 4 4 of the shoe sole. The open mouth 42, the open mouth 43 and the sole are provided with a clearance. The operation is the same as in the first embodiment.
この第 3の実施形態の利点は、 路面高センサが測定する路面高と、 靴底からの路面高との違いを少なくできることである。 さらに、 より 安定に体重を支えられる部位なので、 足元の安定性を高くできる。 さ らに、 開放口 4 2、 開放口 4 3 と、 靴底の間に、 すきまがあるため、 着地している時でも開放口 4 2から開放口 4 3まで超音波が届いて、 安定に路面高の測定ができる。 さらに、 靴底が減っても超音波の特性 に影響が少ない。 さ らに、 靴底く ぼみ部 4 4を一体に囲んでいるた め、 水たまりに踏み入れても、 靴底くぼみ部 4 4の空気が留まって逃 げないので、 開放口に水が侵入する恐れは少ない。  The advantage of the third embodiment is that the difference between the road surface height measured by the road surface height sensor and the road surface height from the shoe sole can be reduced. In addition, because it is a part that can support the weight more stably, the stability of the feet can be increased. In addition, there is a gap between the opening 4 2 and the opening 4 3 and the sole, so that even when landing, ultrasonic waves reach from the opening 4 2 to the opening 4 3, ensuring a stable operation. Road surface height can be measured. Furthermore, even if the soles are reduced, the characteristics of the ultrasonic waves are less affected. In addition, since the sole recesses 44 are integrally surrounded, even when stepping into a puddle, the air in the sole recesses 4 4 does not escape and water enters the opening. There is little fear.
このよ うに、 路面高センサの測定エネルギー送受面を、 靴底とすき まをもたせて、 靴底のくぼみ内に設けたことを特徴とする情報体感器 は有効である。 実施形態 4 . As described above, the information sensory device is characterized in that the measurement energy transmission / reception surface of the road surface height sensor is provided in the recess of the shoe sole with the gap provided with the shoe sole. Embodiment 4.
第 6図は、 この発明の第 4の実施形態の構成と動作説明図を示す。 靴底に磁気センサ 4 5を埋め込み、 その出力を F M発振器 1 6から電 波でラジオ 1 7に送る。 路面には、 道路や階段などの道案内が記録さ れた磁気テープ 4 6が張り付けられ、 なぞってラジオ 1 7で聞く こと ができる。 路面に埋め込んだ磁気コイル 4 7に交通信号器などの変化 情報を流せば、 足を置くだけで情報を聞く システムができる。  FIG. 6 shows a configuration and operation explanatory diagram of a fourth embodiment of the present invention. The magnetic sensor 45 is embedded in the sole of the shoe, and its output is sent from the FM oscillator 16 to the radio 17 by radio. A magnetic tape 46 on which road guidance such as roads and stairs is recorded is attached to the road surface, and can be traced to be heard on the radio 17. If a change signal from a traffic signal is sent to the magnetic coil 47 embedded in the road, a system can be heard just by putting your foot on.
磁気センサ 4 5の出力を F M発振器 8の逆相入力を使って電波に乗 せることでも、 同様の構成が可能である。  A similar configuration is also possible by applying the output of the magnetic sensor 45 to a radio wave using the inverted phase input of the FM oscillator 8.
この発明の第 2の実施形態に応用するには、 磁気センサの信号を優 先して振動子に伝えることでも、 同様の構成を得ることができる。 専 用の第 3の振動子を設けて、 磁気センサの情報を伝えることもでき る。 このようにして、 靴に磁気センサを設け、 磁気センサの出力信号 を体感手段で再生することを特徴とする情報体感器が有効である。 実施形態 5 .  For application to the second embodiment of the present invention, a similar configuration can be obtained by transmitting the signal of the magnetic sensor to the vibrator with priority. A dedicated third transducer can be provided to convey information from the magnetic sensor. Thus, an information sensation device characterized by providing a magnetic sensor on a shoe and reproducing the output signal of the magnetic sensor by the sensation means is effective. Embodiment 5.
第 7図は、 この発明の第 5の実施形態の構成と動作説明図を示す。 足元探知器 4 8の F M発振器 8からの電波を、 帽子 4 9に設けた F M 受信器 5 0で受けて、 そのタイミングで、 帽子 4 9の先端から斜め下 方を向いた送信の超音波マイクロフオン 5 1から超音波を送信し、 足 元探知器 4 8の前端に斜め上方を向いた受信の超音波マイクロフオン 5 2で受信することによって、 超音波式の張出し障害物センサを構成 したものである。 受信の超音波マイクロフォン 5 2は、 障害物距離セ ンサの受信用の超音波マイクロフオン 2 1で代用してもよい。  FIG. 7 shows a configuration and operation explanatory diagram of a fifth embodiment of the present invention. The radio wave from the FM oscillator 8 of the foot detector 48 is received by the FM receiver 50 provided in the hat 49, and at that timing, the ultrasonic microwave transmitted obliquely downward from the tip of the hat 49 An ultrasonic type overhang obstacle sensor is constructed by transmitting ultrasonic waves from the phon 51 and receiving it with the ultrasonic micro phon 52 facing obliquely upward at the front end of the foot detector 48. It is. The ultrasonic microphone 52 for reception may be replaced with an ultrasonic microphone 21 for reception of an obstacle distance sensor.
この発明の第 5の実施形態によれば、 足元だけでなく、 机や車両な ど、 前方の上空に張出した障害物も探知できるので、 より安全に歩く ことができる。 このため、 電波受信器と電波受信器の信号受信タイミ ングで作動する超音波送信器とを載せた帽子、 および、 超音波受信器 とその受信タイ ミングを出力する電波送信器とで構成された張出し障 害物センサを搭載する情報体感器が有効である。 According to the fifth embodiment of the present invention, not only feet, but also obstacles, such as desks and vehicles, that protrude above the front of the vehicle can be detected, so that it is possible to walk more safely. Therefore, the signal reception timing of the radio wave receiver and the radio wave receiver An information sensor equipped with an overhang obstacle sensor consisting of a hat carrying an ultrasonic transmitter that operates by radio wave and a radio wave transmitter that outputs the reception timing of the ultrasonic receiver is effective. is there.
実施形態 6 . Embodiment 6.
第 8図は、 この発明の第 6の実施形態の構成と動作説明図を示す。 足元探知器 1の F M発振器 8からの電波を受信する F M受信器 5 3に よって、 交通信号器 5 4を点灯制御させ、 スピー力 5 5で歩行できる タイ ミングを知らせるものである。  FIG. 8 shows a configuration and operation explanatory diagram of a sixth embodiment of the present invention. The traffic signal 54 is controlled to be turned on by the FM receiver 53 that receives the radio wave from the FM oscillator 8 of the foot detector 1, and the timing that the user can walk with the speed force 55 is notified.
足元探知器 1を履いた歩行者が、 交通信号器 5 4に近づく と、 歩行 者の存在を検知して、 自動的に信号器の点灯を制御し、 スピーカ 5 5 からの指示を受けて、 安全に横断することができる。 このため、 電波 でタイミング信号を伝達する情報体感器からの電波を受ける電波受信 器と、 その電波受信器の出力で制御される交通信号器とを含む外部制 御システムが有効である。  When the pedestrian wearing the foot detector 1 approaches the traffic light 54, the presence of the pedestrian is detected, the lighting of the traffic light is automatically controlled, and the instruction from the speaker 55 is received. You can cross safely. For this reason, an external control system that includes a radio wave receiver that receives a radio wave from an information sensation device that transmits a timing signal by radio waves and a traffic signal device that is controlled by the output of the radio wave receiver is effective.
実施形態 7 . Embodiment 7.
第 9図は、 この発明の第 2の実施形態の振動子に応用した電磁バイ ブレータ 5 6の構成説明図を示す。 磁石 5 7をゴム材 5 8の反発力で 足に押当て、 磁石の S N方向と垂直に磁力を向けた電磁石 5 9で構成 している。 ゴム材 5 8は、 靴 6 0の孔を塞いで構成している。 電磁石 5 9に電流を加えると磁束が発生して、 磁束がゴム材 5 8を透過して 磁石 5 7まで届き、 磁石 5 7の S N極と引き合い、 または、 反発して 回転し、 その回転運動が体に当たる。 電磁石 5 9への電流極性を逆に すると逆回転する。  FIG. 9 is an explanatory diagram of a configuration of an electromagnetic vibrator 56 applied to the vibrator according to the second embodiment of the present invention. The magnet 57 is pressed against the foot with the repulsive force of the rubber material 58, and is composed of an electromagnet 59 that directs magnetic force perpendicular to the magnet's SN direction. The rubber material 58 is formed by closing the hole of the shoe 60. When current is applied to the electromagnet 59, a magnetic flux is generated, and the magnetic flux penetrates the rubber material 58 and reaches the magnet 57, attracts or repels the SN pole of the magnet 57, and rotates. Hits the body. When the polarity of the current to the electromagnet 59 is reversed, the motor rotates reversely.
位置変化より も角度変化のほう変化が大きくなり、 かつ、 接する位 置が変化するので、 単なる振動より も刺激を知覚しやすいという利点 がある。 指の上面のように、 骨が浅い部位に当たると、 細かい振動が 感じやすいので有利である。 靴 6 0の孔は、 ゴム材 5 8で塞がれてい るため、 靴の密閉性が損なわれることはない。 電磁バイブレータ 5 6 を靴 6 0 と別体として、 靴 6 0の内側で足に直接当ててもよいことは もちろんである。 Since the angle change is larger than the position change and the contact position changes, there is an advantage that the stimulus is more easily perceived than a simple vibration. When the bone hits a shallow part like the top of the finger, fine vibrations It is advantageous because it is easy to feel. Since the hole of the shoe 60 is closed by the rubber material 58, the hermeticity of the shoe is not impaired. It goes without saying that the electromagnetic vibrator 56 may be separated from the shoe 60 and applied directly to the foot inside the shoe 60.
実施形態 8 . Embodiment 8.
第 1 0図は、 この発明の第 3の実施形態に応用した路面高センサ 6 1の下面斜視透過図を示す。 送信と受信の超音波マイク口フォンが音 響ホーンで延長され、 それぞれの開放口 6 2、 開放口 6 3が集合音響 ホーン 6 4に向けて開放されている。 開放口 6 2と開放口 6 3は、 一 辺が超音波の波長; Iの正方形にしている。 さらに集合音響ホーン 6 4 の高さも、 超音波の波長; Lにしている。  FIG. 10 is a perspective bottom perspective view of a road surface height sensor 61 applied to the third embodiment of the present invention. The transmitting and receiving ultrasonic microphone mouthpieces are extended with acoustic horns, and the respective open ports 62 and 63 are open to the collective acoustic horn 64. The open port 6 2 and the open port 6 3 are square with one side being the wavelength of the ultrasonic wave; Further, the height of the collective acoustic horn 64 is also set to the ultrasonic wave wavelength;
路面高センサ 6 1は、 足の指で挟めるほど狭くする必要があり、 音 響ホーンと、 その開放口が小さくできる正方形が望ましい。 開放口が 正方形の音響ホーンから放出される側方への超音波は、 正方形の一辺 が超音波の波長えの場合に極小になることが知られている。 このた め、 開放口 6 2 と開放口 6 3は、 一辺が超音波の波長 λの正方形にし ている。 しかし、 それでも側方への超音波が出て、 開放口 6 2 と開放 口 6 3へ直接に漏れとして超音波が伝わってしまい、 近くの距離測定 ができないという問題があった。  The road surface height sensor 61 needs to be narrow enough so that it can be pinched by the toes, and it is desirable to use an acoustic horn and a square whose opening is small. It is known that the ultrasonic waves to the side emitted from an acoustic horn with a square opening are minimal when one side of the square is the wavelength of the ultrasonic wave. For this reason, the open port 62 and the open port 63 are square in one side with the wavelength λ of the ultrasonic wave. However, there was still a problem that ultrasonic waves were emitted to the side, and the ultrasonic waves were directly transmitted as leaks to the opening 62 and the opening 63, so that it was not possible to measure a close distance.
路面高センサ 6 1では、 開放口 6 2 と開放口 6 3を集合音響ホーン 6 4の内部に開放させて、 さらに集合音響ホーン 6 4の高さを超音波 の波長 λに合わせると、 漏れの超音波が打ち消し合って、 誤差が減る ことが分かった。 このため、 近くの距離測定が安定してできるように なった。  In the road surface height sensor 61, when the opening 6 2 and the opening 6 3 are opened inside the collective acoustic horn 6 4 and the height of the collective acoustic horn 6 4 is further adjusted to the wavelength λ of the ultrasonic wave, It turns out that the ultrasonic waves cancel each other out, reducing the error. This has made it possible to measure nearby distances stably.
実施形態 9 . Embodiment 9
第 1 1図は、 この発明の第 9の実施形態による足元探知器 6 5の全 体斜視図を示す。 センサ部 6 6 と、 靴 6 0が別体になっている。 セン サ部 6 6につけられる路面高センサ 6 1には、 指ではさまれる部位に 双方向通信用の電極 6 7が装着されている。 電極 6 7は、 弾性的に支 えられて、 指への接触を安定にしている。 靴 6 0には、 路面高センサ 6 1を通すための開放孔 6 8が開けられている。 ひさし 6 9が、 セン サ部 6 6を覆うように装着されている。 FIG. 11 shows a foot detector 65 according to a ninth embodiment of the present invention. FIG. The sensor part 66 and the shoe 60 are separate parts. The road surface height sensor 61 attached to the sensor unit 66 has an electrode 67 for two-way communication at a position between the fingers. Electrodes 67 are elastically supported to stabilize contact with the finger. The shoe 60 has an open hole 68 through which the road surface height sensor 61 passes. An eave 69 is mounted so as to cover the sensor part 66.
第 9の実施形態においては、 センサ部 6 6にある電気系統が一体化 でき、 故障が少なくできるという効果がある。 さらに、 故障した場合 に、 交換が楽にできるとレヽぅ効果もある。 ひさし 6 9は、 センサ部 6 6を直射日光や雨から保護できるとともに、 前方の障害物がセンサ部 6 6に衝突する直前を察知する触角の役割もある。 電極 6 7の弾性変 形を電源スィツチで受けて、 履いたときだけ電源を入れることもでき る。 そのよ うにすれば、 便利であるとともに、 電源の切り忘れがない とレヽぅ利点がある。  In the ninth embodiment, the electric system in the sensor unit 66 can be integrated, and there is an effect that failures can be reduced. In addition, in the event of a breakdown, there is an effect that replacement can be facilitated. The eaves 69 can protect the sensor section 66 from direct sunlight and rain, and also have a role of a tactile sensation for detecting a point immediately before an obstacle ahead collides with the sensor section 66. It is also possible to receive the elastic deformation of the electrodes 67 with the power switch and turn on the power only when worn. In that case, it is convenient and there is a re-advantage if you do not forget to turn off the power.
各々の実施形態は、 杖や、 他の視覚補助器と一緒や、 協調して使う ことは自由である。 アナログ回路で説明した動作を、 デジタル回路で 実現させることも自由である。 足に限らず、 手や頭に着用する機器に も応用できる。 さらに、 車椅子や、 ロボッ トや、 遠隔操作機械などに も応用できる。 産業上の利用可能性  Each embodiment is free to be used with or in conjunction with a cane or other visual aid. The operation described in the analog circuit can be freely implemented in the digital circuit. It can be applied not only to feet but also to equipment worn on the hands and head. Furthermore, it can be applied to wheelchairs, robots, and remote control machines. Industrial applicability
この発明による足元探知器は、 路面高と障害物距離を定量化して人 体感覚にする体感手段を有する構成になっているので、 足元の状況を 非接触で探査しながら、 安全歩行することができる。  Since the foot detector according to the present invention has a sensation means for quantifying a road surface height and an obstacle distance to provide a human body sensation, it is possible to safely walk while exploring the situation of the foot without contact. it can.

Claims

請 求 の 範 囲 The scope of the claims
1 . 垂直の高さを測る高さセンサと、 前方の物体までの距離を測る 距離センサと、 高さと距離を感覚にする体感手段とを含むことを特徴 とする情報体感器。 1. An information sensation device that includes a height sensor that measures the vertical height, a distance sensor that measures the distance to the object ahead, and sensation means that senses height and distance.
2 . 高さセンサと、 距離センサとを靴に載せたことを特徴とする請 求の範囲第 1項記載の情報体感器。  2. The information sensation device according to claim 1, wherein the height sensor and the distance sensor are mounted on shoes.
3 . 高さセンサを、 足の第 1指と第 2指の間を通して設けたことを 特徴とする請求の範囲第 2項記載の情報体感器。  3. The information sensation device according to claim 2, wherein the height sensor is provided between the first and second toes of the foot.
4 . 周波数あるいは間欠周期を高さに、 間欠比を距離に関連づけた 間欠振動信号を発生する体感手段とを含むことを特徴とする情報体感4. An information sensation characterized by including sensation means for generating an intermittent vibration signal in which a frequency or an intermittent cycle is related to a height and an intermittent ratio is related to a distance.
¾=。 ¾ =.
5 . 人体に機械的接触された磁石と、 磁石の磁束と直角に磁束を発 生する電磁コイルとで成る体感手段を含むことを特徴とする情報体感 器。  5. An information sensation device comprising sensation means comprising a magnet mechanically in contact with the human body and an electromagnetic coil for generating a magnetic flux perpendicular to the magnet's magnetic flux.
6 . 送信用の超音波マイク ロフォンの開放口と、 受信用の超音波マ イク口フォンの開放口を、 超音波の波長; Lの高さを持つ集合音響ホー ンの内部に開放した超音波センサを含むことを特徴とする情報体感  6. The open mouth of the ultrasonic microphone for transmission and the open mouth of the ultrasonic microphone mouth for reception are connected to the inside of the collective acoustic horn having the height of the ultrasonic wave; L. Information experience that includes a sensor
PCT/JP2001/004023 2000-05-18 2001-05-15 Apparatus for bodily sensation of information WO2001087202A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-147007 2000-05-18
JP2000147007A JP2004121267A (en) 2000-05-18 2000-05-18 Step detector, front step searching system and traffic control system

Publications (1)

Publication Number Publication Date
WO2001087202A1 true WO2001087202A1 (en) 2001-11-22

Family

ID=18653256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004023 WO2001087202A1 (en) 2000-05-18 2001-05-15 Apparatus for bodily sensation of information

Country Status (2)

Country Link
JP (1) JP2004121267A (en)
WO (1) WO2001087202A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103054694A (en) * 2012-12-28 2013-04-24 大连民族学院 Infrared sensing shoe card for blind persons
WO2014107653A1 (en) * 2013-01-04 2014-07-10 Hyneman James Franklin Powered shoes
CN105662795A (en) * 2016-03-08 2016-06-15 南昌大学 Miniature ultrasonic and near-infrared navigation wearing intelligent shoe for blind person
WO2016192302A1 (en) * 2015-06-05 2016-12-08 京东方科技集团股份有限公司 Intelligent shoe suitable for visually impaired person
IT201700012121A1 (en) * 2017-02-06 2018-08-06 Eng Team Srl SMART FOOTWEAR TO ASSIST OLD PEOPLE AND / OR WITH DISABILITY TO INCREASE AND DOWN THE STAIRS

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7671734B2 (en) * 2007-02-23 2010-03-02 National Taiwan University Footprint location system
JP5311389B2 (en) * 2009-01-09 2013-10-09 公立大学法人秋田県立大学 Walking support device for visually handicapped person and walking support system for visually handicapped person
US9855484B1 (en) 2009-04-24 2018-01-02 Mayfonk Athletic, Llc Systems, methods, and apparatus for measuring athletic performance characteristics
US8253586B1 (en) 2009-04-24 2012-08-28 Mayfonk Art, Inc. Athletic-wear having integral measuring sensors
CN103750985A (en) * 2014-01-24 2014-04-30 成都万先自动化科技有限责任公司 Blind-guide shoe
JP2015164498A (en) * 2014-02-28 2015-09-17 道芳 永島 View aiding bone-conduction glasses for visually handicapped person
CN104027225B (en) * 2014-07-02 2018-12-07 河北工业大学 A kind of road conditions recognition methods
CN108802739B (en) * 2018-05-31 2021-04-16 深圳臻迪信息技术有限公司 Underwater obstacle detection method and detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189197U (en) * 1984-05-28 1985-12-14 沖電気工業株式会社 Airborne ultrasonic transducer
JPH07334076A (en) * 1994-06-14 1995-12-22 Toyo Bussan Kk Identification device for visually impaired person
JPH0895487A (en) * 1994-09-22 1996-04-12 Sony Corp Obstacle detector for walking
US5894263A (en) * 1995-12-15 1999-04-13 Matsushita Electric Industrial Co., Ltd. Vibration generating apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189197U (en) * 1984-05-28 1985-12-14 沖電気工業株式会社 Airborne ultrasonic transducer
JPH07334076A (en) * 1994-06-14 1995-12-22 Toyo Bussan Kk Identification device for visually impaired person
JPH0895487A (en) * 1994-09-22 1996-04-12 Sony Corp Obstacle detector for walking
US5894263A (en) * 1995-12-15 1999-04-13 Matsushita Electric Industrial Co., Ltd. Vibration generating apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103054694A (en) * 2012-12-28 2013-04-24 大连民族学院 Infrared sensing shoe card for blind persons
WO2014107653A1 (en) * 2013-01-04 2014-07-10 Hyneman James Franklin Powered shoes
WO2016192302A1 (en) * 2015-06-05 2016-12-08 京东方科技集团股份有限公司 Intelligent shoe suitable for visually impaired person
US9799192B2 (en) 2015-06-05 2017-10-24 Boe Technology Group Co., Ltd. Intelligent shoe for the blind
CN105662795A (en) * 2016-03-08 2016-06-15 南昌大学 Miniature ultrasonic and near-infrared navigation wearing intelligent shoe for blind person
IT201700012121A1 (en) * 2017-02-06 2018-08-06 Eng Team Srl SMART FOOTWEAR TO ASSIST OLD PEOPLE AND / OR WITH DISABILITY TO INCREASE AND DOWN THE STAIRS

Also Published As

Publication number Publication date
JP2004121267A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
WO2001087202A1 (en) Apparatus for bodily sensation of information
EP3039660B1 (en) Method for detecting falls and a fall detection system
WO2016085341A4 (en) Wearable ultrasound device for signalling changes in human or animal body
US6710706B1 (en) Spatial awareness device
KR100998265B1 (en) Guiance method and system for walking way of a blind person using brailleblock have rfid tag thereof
KR101893374B1 (en) A stick for the blind
Whig IoT based novel smart blind guidance system
JP2008099720A (en) Alarming apparatus for blind person
JP2003144482A (en) Information bodily sensing appliance
KR100615670B1 (en) Guide equipment for the sight disabled
CN206791783U (en) A kind of shoes that can be detected barrier and warn
Jubril et al. Obstacle detection system for visually impaired persons: Initial design and usability testing
KR101881701B1 (en) Walking assist ultrasonic band for visually impaired person
CN112433463A (en) Intelligence wrist-watch with GPS tracks location and conversation function
CN210991618U (en) Blind-guiding watchband
JP2019170533A (en) Shoe
Shinde et al. Intelligent companion for blind: smart stick
KR20210004730A (en) A cane with various functions
CN210078239U (en) Blind stick applying ultrasonic wave to avoid obstacles
JP3205955U (en) Walking aid with step detection function
Wong et al. A novel design of integrated proximity sensors for the white cane
JP3002667U (en) Blind guidance device
CN105768326A (en) Intelligent shoes with function of giving alarm via ultrasonic waves when meeting obstacle
TW201902443A (en) Walking Assisted Wearable Device and Walking assisted Method
JP2007143943A (en) Walking guide device for blind person

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP