WO2001087264A2 - Rapidly disintegrating solid oral dosage form - Google Patents

Rapidly disintegrating solid oral dosage form Download PDF

Info

Publication number
WO2001087264A2
WO2001087264A2 PCT/US2001/015983 US0115983W WO0187264A2 WO 2001087264 A2 WO2001087264 A2 WO 2001087264A2 US 0115983 W US0115983 W US 0115983W WO 0187264 A2 WO0187264 A2 WO 0187264A2
Authority
WO
WIPO (PCT)
Prior art keywords
less
composition
nanoparticulate
water
active agent
Prior art date
Application number
PCT/US2001/015983
Other languages
French (fr)
Other versions
WO2001087264A3 (en
Inventor
Rajeev A. Jain
Stephen B. Ruddy
Kenneth Iain Cumming
Maurice Joseph Anthony Clancy
Janet Elizabeth Codd
Original Assignee
Elan Pharma International Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA002408848A priority Critical patent/CA2408848C/en
Priority to US10/276,400 priority patent/US20040013613A1/en
Priority to AU2001263228A priority patent/AU2001263228A1/en
Priority to DE60121570T priority patent/DE60121570T2/en
Priority to EP01937497A priority patent/EP1282399B1/en
Priority to JP2001583733A priority patent/JP2003533465A/en
Application filed by Elan Pharma International Ltd. filed Critical Elan Pharma International Ltd.
Publication of WO2001087264A2 publication Critical patent/WO2001087264A2/en
Publication of WO2001087264A3 publication Critical patent/WO2001087264A3/en
Priority to US10/701,064 priority patent/US8236352B2/en
Priority to US11/980,720 priority patent/US20090047209A1/en
Priority to US11/979,240 priority patent/US20090130213A1/en
Priority to US12/068,706 priority patent/US20080213371A1/en
Priority to US12/292,395 priority patent/US20090104273A1/en
Priority to US13/291,873 priority patent/US20120114754A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/145Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • A61K9/1623Sugars or sugar alcohols, e.g. lactose; Derivatives thereof; Homeopathic globules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2077Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2077Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
    • A61K9/2081Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets with microcapsules or coated microparticles according to A61K9/50
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/906Drug delivery

Definitions

  • the present invention relates to a rapidly disintegrating or dissolving solid oral dosage form comprising a poorly soluble, nanoparticulate active ingredient.
  • Nanoparticulate compositions are desirable because with a decrease in particle size, and a consequent increase in surface area, a composition is rapidly dissolved and absorbed following administration. Methods of making such compositions are described in U.S. Patent Nos. 5,518,187 and 5,862,999, both for "Method of Grinding Pharmaceutical Substances," U.S. Patent No. 5,718,388, for "Continuous Method of Grinding Pharmaceutical Substances;” and U.S. Patent No. 5,510,118 for "Process of Preparing Therapeutic Compositions Containing Nanoparticles.”
  • Nanoparticulate compositions are also described in, for example, U.S. Patent No. 5,318,767 for "X-Ray Contrast Compositions Useful in Medical Imaging;” U.S. Patent Nos. 5,399,363 and 5,494,683 for "Surface Modified Anticancer Nanoparticles;” U.S. Patent No. 5,429,824 for ' ⁇ se of Tyloxapol as a Nanoparticulate Stabilizer;” U.S. Patent No. 5,518,738 for "Nanoparticulate NSAID Formulations;” U.S. Patent No.
  • Cima Labs markets OraSolv ® , which is an effervescent direct compression tablet having an oral dissolution time of five to thirty seconds, and DuraSolv ® , which is a direct compression tablet having a taste-masked active agent and an oral dissolution time of 15 to 45 seconds.
  • the microparticle core has a pharmaceutical agent and one or more sweet-tasting compounds having a negative heat of solution selected from mannitol, sorbitol, a mixture of an artificial sweetener and menthol, a mixture of sugar and menthol, and methyl salicylate.
  • the microparticle core is coated, at least partially, with a material that retards dissolution in the mouth and masks the taste of the pharmaceutical agent.
  • the microparticles are then compressed to form a tablet.
  • Other excipients can also be added to the tablet formulation.
  • WO 98/46215 for "Rapidly Dissolving Robust Dosage Form," assigned to Cima
  • Labs is directed to a hard, compressed, fast melt formulation having an active ingredient and a matrix of at least a non-direct compression filler and lubricant.
  • a non-direct compression filler is typically not free-flowing, in contrast to a direct compression (DC grade) filler, and usually requires additionally processing to form free-flowing granules.
  • Cima also has U.S. patents and international patent applications directed to effervescent dosage forms (U.S. Patent Nos. 5,503,846, 5,223,264, and 5,178,878) and tableting aids for rapidly dissolving dosage forms (U.S. Patent Nos. 5,401,513 and 5,219,574), and rapidly dissolving dosage forms for water soluble drugs (WO 98/14179 for "Taste-Masked Microcapsule Composition and Methods of Manufacture").
  • Flashtab ® which is a fast melt tablet having a disintegrating agent such as carboxymethyl cellulose, a swelling agent such as a modified starch, and a taste-masked active agent.
  • the tablets have an oral disintegration time of under one minute (U.S. Patent No. 5,464,632).
  • R.P. Scherer markets Zydis ® which is a freeze-dried tablet having an oral dissolution time of 2 to 5 seconds. Lyophilized tablets are costly to manufacture and difficult to package because of the tablets sensitivity to moisture and temperature.
  • U.S. Patent No. 4,642,903 (R.P. Scherer Corp.) refers to a fast melt dosage formulation prepared by dispersing a gas throughout a solution or suspension to be freeze-dried.
  • U.S. Patent No. 5,188,825 (R.P. Scherer Corp.) refers to freeze-dried dosage forms prepared by bonding or complexing a water-soluble active agent to or with an ion exchange resin to form a substantially water insoluble complex, which is then mixed with an appropriate carrier and freeze dried.
  • U.S. Patent No. 5,631,023 refers to freeze-dried drug dosage forms made by adding xanthan gum to a suspension of gelatin and active agent.
  • U.S. Patent No. 5,827,541 discloses a process for preparing solid pharmaceutical dosage forms of hydrophobic substances. The process involves freeze-drying a dispersion containing a hydrophobic active ingredient and a surfactant, in a non-aqueous phase; and a carrier material, in an aqueous phase.
  • Schering Corporation has technology relating to buccal tablets having an active agent, an excipient (which can be a surfactant) or at least one of sucrose, lactose, or sorbitol, and either magnesium stearate or sodium dodecyl sulfate (U.S. Patent Nos. 5,112,616 and 5,073,374).
  • Laboratoire L. LaFon owns technology directed to conventional dosage forms made by lyophilization of an oil-in- water emulsion in which at least one of the two phases contains a surfactant (U.S. Patent No. 4,616,047).
  • the active ingredient is maintained in a frozen suspension state and is tableted without micronization or compression, as such processes could damage the active agent.
  • Takeda Chemicals Inc., Ltd. owns technology directed to a method of making a fast dissolving tablet in which an active agent and a moistened, soluble carbohydrate are compression molded into a tablet, followed by drying of the tablets.
  • This invention is directed to the surprising and unexpected discovery of new rapidly disintegrating or dissolving solid dose oral formulations of nanoparticulate compositions of poorly soluble drugs.
  • the rapidly disintegrating or dissolving solid dose oral formulations provide an unexpectedly fast onset of therapeutic activity combined with substantially complete disintegration or dissolution of the formulation in less than about 3 minutes.
  • the rapidly disintegrating or dissolving solid dose formulations of nanoparticulate compositions comprise a poorly soluble nanoparticulate drug or other agent to be administered, having an effective average particle size of less than about 2000 nm, and a surface stabilizer adsorbed on the surface thereof.
  • the nanoparticulate drug can be in a crystalline form, semi-crystalline form, amorphous form, or a combination thereof.
  • the rapidly disintegrating or dissolving solid dose nanoparticulate compositions comprise at least one pharmaceutically acceptable water- soluble or water-dispersible excipient, which functions to rapidly disintegrate or dissolve the solid dose matrix surrounding the nanoparticulate active agent upon contact with saliva, thereby presenting the nanoparticulate active agent for absorption.
  • the effective average particle size of the nanoparticulate active agent in the composition is less than about 2000 nm, less than about 1500 nm, less than about 1000 nm, less than about 600 nm, less than about 400 nm, less than about 300 nm, less than about 250 nm, less than about 100 nm, or less than about 50 nm.
  • a method of preparing rapidly disintegrating or dissolving nanoparticulate solid dose oral formulations comprises: (1) forming a nanoparticulate composition comprising an active agent to be administered and a surface stabilizer; (2) adding at least one pharmaceutically acceptable water-soluble or water-dispersible excipient, and (3) forming a solid dose form of the composition for oral administration. Additional pharmaceutically acceptable excipients can also be added to the composition for administration.
  • Methods of making nanoparticulate compositions which can comprise mechanical grinding, precipitation, or any other suitable size reduction process, are known in the art and are described in, for example, the '684 patent.
  • Yet another aspect of the present invention provides a method of treating a mammal, including a human, requiring rapid onset of therapeutic activity with a rapidly disintegrating nanoparticulate composition of the invention.
  • Figure 1 Shows the rate of dissolution over time for three rapidly disintegrating or dissolving nanoparticulate dosage forms of Compound A, which is a COX-2 inhibitor type nonsteroidal anti-inflammatory drug (NSAID), having anti-inflammatory, analgesic, and antipyretic activities.
  • NSAID nonsteroidal anti-inflammatory drug
  • This invention is directed to the surprising and unexpected discovery of new solid dose rapidly disintegrating or dissolving nanoparticulate compositions of poorly soluble drugs having fast onset of drug activity.
  • the rapidly disintegrating or dissolving solid oral dosage form of the invention has the advantage of combining rapid presentation of the poorly soluble active agent as a result of the rapid disintegration, and rapid dissolution of the poorly soluble drug in the oral cavity as a result of the nanoparticulate size of the drug. This combination of rapid disintegration and rapid dissolution reduces the delay in the onset of therapeutic action associated with prior known rapidly dissolving dosage forms of poorly soluble drugs. Further, the opportunity for buccal absorption of the poorly soluble active ingredient is enhanced with the present invention. Yet another advantage of nanoparticulate rapidly disintegrating or dissolving solid dose forms is that the use of nanoparticulate drug particles eliminates or minimizes the feeling of grittiness found with prior art fast melt formulations of poorly soluble drugs.
  • Rapidly disintegrating or dissolving dosage forms also known as fast dissolve, fast or rapid melt, and quick disintegrating dosage forms, dissolve or disintegrate rapidly in the patient's mouth without chewing or the need for water within a short time frame. Because of their ease of administration, such compositions are particularly useful for the specific needs of pediatrics, geriatrics, and patients with dysphagia. Rapidly dissolving dosage forms can be beneficial because of their ease of administration, convenience, and patient-friendly nature. It is estimated that 35% to 50% of the population finds it difficult to swallow tablets and hard gelatin capsules, particularly pediatric and geriatric patients. Rapidly disintegrating or dissolving dosage forms eliminate the need to swallow a tablet or capsule.
  • rapidly disintegrating or dissolving dosage forms do not require the addition of water or chewing.
  • One advantage typically associated with fast melt dosage forms is a reduction of the time lag between administration of a dose and the physical presentation of the active ingredient. This lag time is usually associated with the break up of the dosage form and the distribution of the active ingredient thereafter.
  • a second advantage of fast melt dosage forms is that the rapid presentation of the drug in the mouth upon administration may facilitate buccal absorption of the active ingredient directly into the blood stream, thus reducing the first pass effect of the liver on the overall bioavailability of active ingredient from a unit dose. This second advantage is dramatically enhanced for the fast melt formulations of the invention, as the nanoparticulate size of the active agent enables rapid dissolution in the oral cavity.
  • the solid dose rapidly disintegrating nanoparticulate formulations of the invention comprise a poorly soluble nanoparticulate active agent to be administered, having an effective average particle size prior to inclusion in the dosage form of less than about 2000 nm, at least one surface stabilizer adsorbed on the surface thereof, and at least one pharmaceutically acceptable water-soluble or water-dispersible excipient, which functions to rapidly disintegrate the matrix of the solid dose form upon contact with saliva, thereby presenting the nanoparticulate active agent for absorption.
  • the poorly soluble nanoparticulate active agent can be in a crystalline form, semi-crystalline form, amorphous form, or a combination thereof.
  • the effective average particle size of the nanoparticulate active agent prior to inclusion in the dosage form is less than about 1500 nm, less than about 1000 nm, less than about 600 nm, less than about 400 nm, less than about 300 nm, less than about 250 nm, less than about 100 nm, or less than about 50 nm.
  • Nanoparticulate compositions were first described in the '684 patent.
  • a rapidly disintegrating nanoparticulate solid oral dosage form according to the invention has a disintegration time of less than about 3 minutes upon addition to an aqueous medium. More preferably, the fast melt nanoparticulate solid oral dosage form has a disintegration or dissolution time upon addition to an aqueous medium of less than about 2 minutes, less than about 90 seconds, less than about 60 seconds, less than about 45 seconds, less than about 30 seconds, less than about 20 seconds, less than about 15 seconds, less than about 10 seconds, or less than about 5 seconds.
  • the rapidly disintegrating or dissolving nanoparticulate dosage forms can have a relatively high degree of tensile strength. Tensile strength is determined by the hardness, size, and geometry of the solid dose. This is significant because if a solid does (i.e., a tablet) is too brittle it will crumble or fragment. Such brittle tablets can also be difficult and expensive to package. Thus, the ideal rapidly disintegrating solid oral dose should have a degree of tensile strength to allow ease of packaging while also rapidly disintegrating upon administration.
  • the rapidly disintegrating or dissolving solid dose nanoparticulate compositions can be formulated to mask the unpleasant taste of an active agent.
  • Such taste masking can be accomplished, for example, by the addition of one or more sweet tasting excipients, by coating the poorly soluble nanoparticulate active agent and stabilizer with a sweet tasting excipient, and/or by coating a dosage form of poorly soluble nanoparticulate active agent, stabilizer, and excipients with a sweet tasting excipient.
  • the starting nanoparticulate composition (prior to formulation into a fast melt dosage form) comprises a poorly soluble active agent to be administered and at least one surface stabilizer adsorbed on the surface thereof. a. Poorly Soluble Active Agent
  • the nanoparticles of the invention comprise a poorly soluble therapeutic agent, diagnostic agent, or other active agent to be administered for rapid onset of activity.
  • a therapeutic agent can be a drug or pharmaceutical and a diagnostic agent is typically a contrast agent, such as an x-ray contrast agent, or any other type of diagnostic material.
  • the invention can be practiced with a wide variety of poorly soluble drugs or diagnostic agents.
  • the drug or diagnostic agent is preferably present in an essentially pure form, is poorly water soluble, and is dispersible in at least one liquid medium.
  • the drug or diagnostic agent has a solubility in the liquid dispersion medium of less than about 30 mg/ml, preferably less than about 10 mg/ml, and more preferably less than about 1 mg/ml.
  • the poorly soluble active agent can be selected from a variety of known classes of drugs or diagnostic agents, including, for example, analgesics, anti-inflammatory agents, anthelmintics, anti-arrhythmic agents, antibiotics (including penicillins), anticoagulants, antidepressants, antidiabetic agents, antiepileptics, antihistamines, antihypertensive agents, antimuscarinic agents, antimycobacterial agents, antineoplastic agents, immunosuppressants, antithyroid agents, antiviral agents, anxiolytic sedatives (hypnotics and neuroleptics), astringents, beta-adrenoceptor blocking agents, blood products and substitutes, cardiac inotropic agents, contrast media, corticosteroids, cough suppressants (expectorants and mucolytics), diagnostic agents, diagnostic imaging agents, diuretics, dopaminergics (antiparkinsonian agents), haemostatics, immuriological agents, lipid regulating agents, muscle relaxants, parasympat
  • the poorly soluble active ingredient may be present in any amount which is sufficient to elicit a therapeutic effect and, where applicable, may be present either substantially in the form of one optically pure enantiomer or as a mixture, racemic or otherwise, of enantiomers.
  • Useful surface stabilizers which are known in the art and described in the '684 patent, are believed to include those which physically adhere to the surface of the active agent but do not chemically bond to or interact with the active agent.
  • the surface stabilizer is adsorbed on the surface of the active agent in an amount sufficient to maintain an effective average particle size of less than about 2000 nm for the active agent.
  • the individually adsorbed molecules of the surface stabilizer are essentially free of mtermolecular cross-linkages. Two or more surface stabilizers can be employed in the compositions and methods of the invention.
  • Suitable surface stabilizers can preferably be selected from known organic and inorganic pharmaceutical excipients. Such excipients include various polymers, low molecular weight oligomers, natural products, and surfactants. Preferred surface stabilizers include nonionic and ionic surfactants.
  • surface stabilizers include gelatin, casein, lecithin (phosphatides), dextran, gum acacia, cholesterol, tragacanth, stearic acid, benzalkonium chloride, calcium stearate, glycerol monostearate, cetostearyl alcohol, cetomacrogol emulsifying wax, sorbitan esters, polyoxyethylene alkyl ethers (e.g., macrogol ethers such as cetomacrogol 1000), polyoxyethylene castor oil derivatives, polyoxyethylene sorbitan fatty acid esters (e.g., the commercially available Tweens ® such as e.g., Tween 20 ® and Tween 80 ® (ICI Speciality Chemicals)); polyethylene glycols (e.g., Carbowaxs 3550 ® and 934 ® (Union Carbide)), polyoxyethylene stearates, colloidal silicon dioxide, phosphates, sodium dodecylsulfate,
  • Crodestas F-l 10 ® which is a mixture of sucrose stearate and sucrose distearate (Croda Inc.); p-isononylphenoxypoly-(glycidol), also known as Olin-IOG ® or Surfactant 10-G ® (Olin Chemicals, Stamford, CT); Crodestas SL-40 ® (Croda, Inc.); and SA9OHCO, which is C ⁇ 8H37CH2(CON(CH3)-CH2(CHOH)4(CH20H)2 (Eastman Kodak Co.); decanoyl-N-methylglucamide; n-decyl ⁇ -D-glucopyranoside; n-decyl ⁇ -D- maltopyranoside; n-dodecyl ⁇ -D-glucopyranoside; n-dodecyl ⁇ -D-maltoside; heptanoy
  • particle size is determined on the basis of the weight average particle size as measured by conventional particle size measuring techniques well known to those skilled in the art. Such techniques include, for example, sedimentation field flow fractionation, photon correlation spectroscopy, light scattering, and disk centrifugation.
  • an effective average particle size of less than about 2000 nm it is meant that at least 50% of the active agent particles have an average particle size of less than about 2000 nm when measured by the above techniques.
  • at least 70% of the particles have an average particle size of less than the effective average, i.e., about 2000 nm, more preferably at least about 90% of the particles have an average particle size of less than the effective average.
  • the effective average particle size is less than about 1500 nm, less than about 1000 nm, less than about 600 nm, less than about 400 nm, less than about 300 nm, less than about 250 nm, less than about 100 nm, or less than about 50 nm.
  • the pharmaceutically acceptable water-soluble or water-dispersible excipient is typically a sugar, such as sucrose, maltose, lactose, glucose, or mannose; a sugar alcohol, such as mannitol, sorbitol, xylitol, erythritol, lactitol, or maltitol; a starch or modified starch, such as corn starch, potato starch, or maize starch; a natural polymer or a synthetic derivative of a natural polymer, such as gelatin, carrageenin, an alginate, dextran, maltodextran, dextrates, dextrin, polydextrose, or tragacanth; a natural gum such as acacia, guar gum, or xanthan gum; a synthetic polymer, such as polyethylene glycol, polyvinylpyrrolidone, polyvinylalcohol, polyoxyethylene
  • compositions according to the invention may also comprise one or more binding agents, filling agents, lubricating agents, suspending agents, sweeteners, flavoring agents, preservatives, buffers, wetting agents, disintegrants, effervescent agents, and other excipients.
  • excipients are known in the art.
  • filling agents are lactose monohydrate, lactose anhydrous, and various starches
  • binding agents are various celluloses and cross-linked polyvinylpyrrolidone, microcrystalline cellulose, such as Avicel ® PHI 01 and Avicel ® PHI 02, microcrystalline cellulose, and silicifized microcrystalline cellulose (SMCC).
  • Suitable lubricants including agents that act on the flowability of the powder to be compressed, are colloidal silicon dioxide, such as Aerosil ® 200; talc, stearic acid, magnesium stearate, calcium stearate, and silica gel.
  • sweeteners are any natural or artificial sweetener, such as sucrose, xylitol, sodium saccharin, cyclamate, aspartame, and acsulfame.
  • flavoring agents are Magnasweet ® (trademark of MAFCO), bubble gum flavor, and fruit flavors, and the like.
  • preservatives are potassium sorbate, methylparaben, propylparaben, benzoic acid and its salts, other esters of parahydroxybenzoic acid such as butylparaben, alcohols such as ethyl or benzyl alcohol, phenolic compounds such as phenol, or quarternary compounds such as benzalkonium chloride.
  • Suitable diluents include pharmaceutically acceptable inert fillers, such as microcrystalline cellulose, lactose, dibasic calcium phosphate, saccharides, and or mixtures of any of the foregoing.
  • examples of diluents include microcrystalline cellulose, such as Avicel ® PH101 and Avicel ® PH102; lactose such as lactose monohydrate, lactose anhydrous, and Pharmatose ® DCL21; dibasic calcium phosphate such as Emcompress ® ; mannitol; starch; sorbitol; sucrose; and glucose.
  • Suitable disintegrants include lightly crosslinked polyvinyl pyrrolidone, corn starch, potato starch, maize starch, and modified starches, croscarmellose sodium, cross- povidone, sodium starch glycolate, and mixtures thereof.
  • effervescent agents are effervescent couples such as an organic acid and a carbonate or bicarbonate.
  • Suitable organic acids include, for example, citric, tartaric, malic, fumaric, adipic, succinic, and alginic acids and anhydrides and acid salts.
  • Suitable carbonates and bicarbonates include, for example, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium glycine carbonate, L-lysine carbonate, and arginine carbonate.
  • only the acid component of the effervescent couple may be present.
  • the relative amount of nanoparticulate composition in the rapidly disintegrating formulations of the invention can vary widely and can depend upon, for example, the compound selected for delivery, the melting point of the compound, the water solubility of the compound, the surface tension of water solutions of the compound, etc.
  • the poorly soluble active agent or pharmaceutically acceptable salt thereof may be present in any amount which is sufficient to elicit a therapeutic effect and, where applicable, may be present either substantially in the form of one optically pure enantiomer or as a mixture, racemic or otherwise, of enantiomers.
  • the nanoparticulate active agent composition can be present in the rapidly disintegrating formulations of the invention in an amount of about 0.1% to about 99.9% (w/w), preferably about 5% to about 70% (w/w), and most preferably about 15% to about 40% (w/w), based on the total weight of the dry composition.
  • the one or more pharmaceutically acceptable water-soluble or water-dispersible excipients can be present in an amount of about 99.9% to about 0.1% (w/w), preferably about 95% to about 30% (w/w), and most preferably about 85% to about 60% (w/w), by weight based on the total weight of the dry composition.
  • a method of preparing rapidly disintegrating or dissolving nanoparticulate solid dose oral formulations comprises: (1) forming a nanoparticulate composition comprising an active agent to be administered and at least one surface stabilizer; (2) adding one or more pharmaceutically acceptable water-soluble or water-dispersible excipients, and (3) forming a solid dose form of the composition for administration. Pharmaceutically acceptable excipients can also be added to the composition for administration.
  • nanoparticulate compositions which can comprise mechanical grinding, precipitation, or any other suitable size reduction process, are known in the art and are described in, for example, the '684 patent.
  • Methods of making solid dose pharmaceutical formulations are known in the art, and such methods can be employed in the present invention.
  • Exemplary rapidly disintegrating or dissolving solid dose formulations of the invention can be prepared by, for example, combining the one or more pharmaceutically acceptable water-soluble or water-dispersible excipients with a raw nanoparticulate dispersion obtained after size reduction of an agent to be administered.
  • the resultant composition can be formulated into tablets for oral administration.
  • the nanoparticulate dispersion can be spray dried, followed by blending with one or more pharmaceutically acceptable water- soluble or water-dispersible excipients and tableting.
  • the nanoparticulate dispersion and desired excipients can also be lyophilized to form a fast melt formulation, or the nanoparticulate dispersion can be granulated to form a powder, followed by tableting.
  • Solid dose forms of nanoparticulate dispersions can be prepared by drying the nanoparticulate formulation following size reduction.
  • a preferred drying method is spray drying.
  • the spray drying process is used to obtain a nanoparticulate powder following the size reduction process used to transform the active agent into nanoparticulate sized particles.
  • Such a nanoparticulate powder can be formulated into tablets for oral administration.
  • the nanoparticulate active agent suspension is fed to an atomizer using a peristaltic pump and atomized into a fine spray of droplets.
  • the spray is contacted with hot air in the drying chamber resulting in the evaporation of moisture from the droplets.
  • the resulting spray is passed into a cyclone where the powder is separated and collected.
  • the nanoparticulate dispersion can be spray-dried in the presence or absence of excipients to give the spray-dried intermediate powder.
  • a rapidly disintegrating solid oral dosage form of the invention can be prepared by lyopbilizing a nanoparticulate dispersion of the poorly soluble active agent and stabilizer.
  • Suitable lyophilization conditions include, for example, those described in EP 0,363,365 (McNeil-PPC Inc.), U.S. Patent No. 4,178,695 (A. Erbeia), and U.S. Patent No. 5,384,124 (Farmalyoc), all of which are incorporated herein by reference.
  • the nanoparticulate dispersion is placed in a suitable vessel and frozen to a temperature of between about -5°C to about -100°C. The frozen dispersion is then subjected to reduced pressure for a period of up to about 48 hours.
  • a rapidly disintegrating solid oral dosage form of the invention can be prepared by granulating in a fluidized bed an admixture comprising a nanoparticulate dispersion of active agent and at least one surface stabilizer with a solution of at least one pharmaceutically acceptable water-soluble or water-dispersible excipient, to form a granulate. This is followed by tableting of the granulate to form a solid oral dosage form.
  • Granulation of the nanoparticulate composition and at least one water-soluble or water-dispersible excipient can be accomplished using a fluid bed granulator or by using high shear granulation. Fluid bed drying can also be used in making a nanoparticulate dry powder for processing into a dosage formulation.
  • the rapidly disintegrating nanoparticulate solid formulations of the invention can be in the form of tablets for oral administration. Preparation of such tablets can be by pharmaceutical compression or molding techniques known in the art.
  • the tablets of the invention may take any appropriate shape, such as discoid, round, oval, oblong, cylindrical, triangular, hexagonal, and the like.
  • Powders for tableting can be formulated into tablets by any method known in the art. Suitable methods include, but are not limited to, milling, fluid bed granulation, dry granulation, direct compression, spheronization, spray congealing, and spray-dying. Detailed descriptions of tableting methods are provided in Remington: The Science and Practice of Pharmacy, 19th ed. Vol. 11 (1995) (Mack Publishing Co., Pennsylvania); said Remington's Pharmaceutical Sciences, Chapter 89, pp. 1633-1658 (Mach Publishing Company, 1990), both of which are specifically incorporated by reference.
  • a rapidly disintegrating dosage form can be prepared by blending a nanoparticulate composition, comprising a poorly soluble active agent and at least one surface stabilizer, with at least one pharmaceutically acceptable water- soluble or water-dispersible excipient, and, optionally, other excipients to form a blend which is then directly compressed into tablets.
  • a nanoparticulate composition comprising a poorly soluble active agent and at least one surface stabilizer
  • at least one pharmaceutically acceptable water- soluble or water-dispersible excipient and, optionally, other excipients
  • spray-dried nanoparticulate powder can be blended with tablet excipients using a V-blender ® (Blend Master Lab Blender, Patterson Kelley Co.) or high-shear mixer, followed by compression of the powder using, for example, an automated Carver press (Carver Laboratory Equipment), single station Korsch ® press, or a high-speed Fette ® tablet press.
  • compositions of the invention will be administered orally to a mammalian subject in need thereof using a level of drug or active agent that is sufficient to provide the desired physiological effect.
  • the mammalian subject may be a domestic animal or pet but preferably is a human subject.
  • the level of drug or active agent needed to give the desired physiological result is readily determined by one of ordinary skill in the art by referring to standard texts, such as Goodman and Gillman and the Physician 's Desk Reference.
  • the purpose of this example was to prepare a rapidly disintegrating nanoparticulate dosage form of Compound A using a fluid bed granulation process.
  • Compound A is a COX-2 inhibitor type nonsteroidal anti-inflammatory drag (NSAID), having anti-inflammatory, analgesic, and antipyretic activities.
  • the fluid bed granulation process comprises fluidizing a binder dispersion and or solution and spraying the resultant composition over a Fluidized power bed to form granules. It is also possible to dry and coat pharmaceuticals using a fluid bed granulator.
  • An exemplary fluid bed granulation process is shown below:
  • a dispersion of Compound A having 20% drug, 4% hydroxypropyl cellulose SL (HPC-SL), and 0.12% sodium lauryl sulfate (SLS), was used for the fluid bed granulation process. 100 g of the dispersion was sprayed on 125.0 g of fluidized lactose powder in a fluidized bed granulator (Aeromatic Fielder, Inc., Model STREA-1). Compound A had a mean particle size of 120 nm
  • the tubings of the granulator were washed with approximately 10 g of deionized water. The washings were also sprayed on the granules of nanoparticulate Compound A and lactose. The granules were dried for approximately 10 min, followed by sieving through a #16 mesh screen. The sieved granules were used for preparing rapidly disintegrating tablets having the composition shown in Table 1.
  • the fluidized bed granules of nanoparticulate Compound A (Compound A, HPC-SL, and SLS) and lactose were blended with all of the excipients except magnesium stearate in a V-blender for about 20 minutes, followed by the addition of magnesium stearate and blending for 2 minutes.
  • the powder blend was compressed to form tablets using a Carver press using 1 inch tooling under the conditions given in Table 2.
  • the purpose of this example was to test the disintegration, hardness, and dissolution of the Compound A tablets prepared in Example 1.
  • Tablets A, B, and C were first evaluated for hardness and disintegration. An average of two tablets for each formulation were used for the data. Tablets A and B had a hardness of less than 1 kP and Tablet C had a hardness of 1.7 kP.
  • a Haake disintegration tester containing 710 micron sieves were used to test Tablet A, B, and C in a 1000 ml deionized water bath at 37°C. Disintegration and dissolution measurements were performed in accordance with USP 20. The disintegration results are shown below in Table 3.
  • Tablets A, B, and C were evaluated for dissolution in a 1% solution of SLS at 37°C in a Distek dissolution system.
  • the rotation speed of the paddle of the Distek dissolution system was 50 rpm.
  • the results, given in Figure 1, show that all of the tablets had at least about 80% dissolution after 10 minutes, with complete dissolution at from 15 to 20 minutes.
  • Ketoprofen is an nonsteroidal anti-inflammatory drug used to treat mild to moderate pain resulting from arthritis, sunburn treatment, menstrual pain, and fever.
  • a nanoparticulate dispersion of ketoprofen was prepared, having 30% drug, 3% polyvinylpyrrolidone (PVP), and 0.15 % sodium lauryl sulfate (SLS).
  • the ketoprofen had a mean particle size of about 151 nm.
  • the ketoprofen nanoparticulate dispersion After spraying the ketoprofen nanoparticulate dispersion on the fluidized mannitol to form granules, approximately 20 g of deionized water was passed through the feed tubing and sprayed on the granules. At the end of the spraying process the granules were dried by fluidizing for 5-7 minutes. Finally, the granules were harvested, passed through a #35 sieve, and weighed, for a yield of 186.7 g.
  • the fluidized bed granules of nanoparticulate ketoprofen were combined with magnesium stearate in a V-blender as shown below for about 2 minutes to form a powder blend.
  • Troche tooling refers to a tablet having a slightly indented center.
  • the purpose of this example was to prepare a rapidly disintegrating nanoparticulate dosage form of ketoprofen using fluidized bed granules of nanoparticulate ketoprofen.
  • the fluidized bed granules of nanoparticulate ketoprofen prepared in Example 3 were used in this example.
  • the fluidized bed granules of nanoparticulate ketoprofen were combined with spray-dried mannitol powder (Pearlitol ® SD200, Roquette, Inc.) and blended in a V-blender for about 20 minutes, followed by the addition of magnesium stearate and blending for 2 minutes to form a powder blend, in the amounts shown below in Table 6.
  • the powder blend was compressed to form tablets using a Carver press having 5/8 inch Troche tooling under the conditions shown in Table 7.
  • the purpose of this example was to prepare a rapidly disintegrating nanoparticulate dosage form of ketoprofen using fluidized bed granules of nanoparticulate ketoprofen.
  • the fluidized bed granules of nanoparticulate ketoprofen prepared in Example 3 were used in this example.
  • the fluidized bed granules of nanoparticulate ketoprofen were combined with spray-dried mannitol powder (Pearlitol ® SD200, Roquette, Inc.) and croscarmellose sodium (Ac-di-sol ® ) and blended in a V-blender for about 20 minutes, followed by the addition of magnesium stearate and blending for 2 minutes to form a powder blend, in the amounts shown in Table 8.
  • the powder blend was compressed to form tablets using a Carver press using 5/8 inch tooling under the conditions shown in Table 9.
  • the purpose of this example was to test the hardness and disintegration of the ketoprofen tablets prepared in Examples 3, 4, and 5.
  • Tablets D-L were first evaluated for their hardness. Two tablets of each sample were tested. The results of the hardness testing are given in Table 10.
  • Tablets J, K, and L having additional spray-dried mannitol blended with the fluidized bed ketoprofen granules, showed the most rapid disintegration, with complete disintegration obtained after slightly more than 1 minute, demonstrating the rapid disintegration characteristic of the nanoparticulate dosage form.
  • the purpose of this example was to prepare a rapidly disintegrating nanoparticulate dosage form of ketoprofen using fluidized bed granules of nanoparticulate ketoprofen.
  • the fluidized bed granules of nanoparticulate ketoprofen prepared in Example 3 were used in this example.
  • the fluidized bed granules of nanoparticulate ketoprofen were combined with spray-dried mannitol powder (Pearlitol ® SD200, Roquette, Inc.) and croscarmellose sodium (Ac-di-sol ® ) and blended in a V-blender for about 20 minutes, followed by the addition of magnesium stearate and blending for 2 minutes to form a powder blend, in the amounts shown below in Table 12.
  • the powder blend was compressed to form tablets using a Carver press using 5/8 inch Troche tooling under the conditions shown in Table 13.
  • the purpose of this example was to prepare a rapidly disintegrating nanoparticulate dosage form of ketoprofen using fluidized bed granules of nanoparticulate ketoprofen.
  • the fluidized bed granules of nanoparticulate ketoprofen prepared in Example 3 were used in this example.
  • the fluidized bed granules of nanoparticulate ketoprofen were combined with spray-dried mannitol powder (Pearlitol ® SD200, Roquette, Inc.) and croscarmellose sodium (Ac-di-sol ® ) and blended in a V-blender for about 20 minutes, followed by the addition of magnesium stearate and blending for 2 minutes to form a powder blend, in the amounts shown below in Table 14.
  • the powder blend was compressed to form tablets using a Carver press and 3/8 inch Troche tooling under the conditions shown in Table 15.
  • the purpose of this example was to test the hardness and disintegration of the ketoprofen tablets prepared in Examples 7 and 8.
  • Tablets M-R were first evaluated for their hardness. Two tablets of each formulation were tested. The results are shown below in Table 16.
  • the purpose of this example was to prepare a rapidly disintegrating nanoparticulate dosage form of ketoprofen using fluidized bed granules of nanoparticulate ketoprofen.
  • the fluidized bed granules of nanoparticulate ketoprofen prepared in Example 3 were used in this example.
  • the fluidized bed granules of nanoparticulate ketoprofen were combined with spray-dried mannitol powder (Pearlitol ® SD200, Roquette, Inc.), Aspartame ® , anhydrous citric acid, orange type natural flavor, and croscarmellose sodium (Ac-di-sol ® ) and blended in a V-blender for about 20 minutes, followed by the addition of magnesium stearate and blending for 2 minutes to form a powder blend, in the amounts shown below.
  • the powder blend was compressed to form tablets using a Carver press under the conditions shown in Table 19.
  • the purpose of this example was to test the hardness and disintegration of the ketoprofen tablets prepared in Example 10.
  • Tablets S-AA were first evaluated for their hardness. One tablet was evaluated for each formulation. The hardness results are shown below in Table 20.
  • the purpose of this example was to prepare a rapidly disintegrating nanoparticulate dosage form of naproxen using fluidized bed granules of nanoparticulate naproxen and spray-dried lactose (Fast Flo ® lactose, Foremost Whey Products, Baraboo, Wis. 53913) as an excipient.
  • Spray-dried lactose powder is a direct compression (DC) grade powder.
  • Naproxen is a well-known anti-inflammatory, analgesic, and antipyretic agent.
  • the FBG were used to prepare two fast-melt tablet formulations, as shown in Table 22.
  • the tablets were prepared using a 5/8 inch Troche tooling and a compression force of 1300 lbs.
  • Tablets of each formulation were analyzed for hardness and disintegration (Haake disintegration tester) as before. An average of two readings for each study was determined, with the results shown in Table 23.
  • Nifedipine is a calcium channel blocker used to treat angina pectoris and high blood pressure. It is marketed under the trade names Procardia ® (Pfizer, Inc.), Adalat (Latoxan), and others.
  • a colloidal dispersion of nifedipine in water was prepared having 10% (w/w) nifedipine, 2% (w/w) hydroxypropyl cellulose (HPC), and 0.1 % (w/w) sodium lauryl sulphate (SLS).
  • the nanoparticulate nifedipine dispersion was prepared for spray drying by diluting 1 : 1 with purified water followed by homogenisation, and the addition of 10% (w/w) mannitol followed by homogenisation.
  • the mixture obtained was spray-dried using a Buchi Mini B-191 spray drier system (Buchi, Switzerland).
  • Table 24 below shows a 10 mg nifidipine tablet formulation made by compression of the spray-dried nanoparticulate nifidipine powder.
  • the fast melt 10 mg nifidipine tablet was prepared by first blending the ingredients given in the above table.
  • the mannitol, xylitol, Aspartame ® , half of the citric acid, and half of the sodium bicarbonate were mixed in a Uni-glatt (Glatt GmbH, Dresden, Germany).
  • a 10% solution of PEG 4000 polyethylene glycol having a molecular weight of about 4000 was used to granulate the mix at a spray rate of 10 g/min.
  • the resultant granulate was dried for 30 minutes at about 40°C after which the remainder of the citric acid and sodium bicarbonate, the spray-dried nifedipine nanocrystals, and the sodium stearyl fumerate were added and mixed.
  • the resultant blend was tableted to form nifedipine 10 mg tablets using a Piccalo RTS tablet press with 10.0 mm normal concave round tooling (Piccola Industria, Argentina).
  • the tablets produced had a mean tablet weight of 304.2 ⁇ 3.9 mg and a mean hardness of 53.55 ⁇ 6.85 N.
  • Disintegration testing was carried out on five representative tablets from each batch of tablets pressed. Disintegration testing was carried out in purified water using a VanKel disintegration apparatus (VanKel, Edison, New Jersey) at 32 oscillations per min. Results from the dismtegration tests are given in Table 25 below.
  • Glipizide is a sulfonylurea drug used to lower blood sugar levels in people with non-insulin-dependent (type II) diabetes. It is marketed in the U.S. under the brand name Glucotrol ® (Pratt Pharmaceuticals, Inc.).
  • a colloidal dispersion of glipizide in water was prepared having 10% (w/w) glipizide and 2% (w/w) hydroxypropyl cellulose (HPC).
  • a blend was prepared according to the formulation detailed in Table 26.
  • the mannitol, xylitol, Aspartame ® , half of the citric acid, and half of the sodium bicarbonate were mixed in a Uni-glatt (Glatt GmbH, Dresden, Germany).
  • a 10% solution of PEG 4000 was used to granulate the mix at a spray rate of 10 g/min.
  • the resultant granulate was dried for 30 minutes at about 40°C, after which the remainder of the citric acid and sodium bicarbonate, the spray-dried glipizide nanocrystals, and the sodium stearyl fumerate were added and mixed.
  • the resultant blend was tableted to form glipizide 5 mg tablets using a Piccalo RTS tablet press with 10.0 mm normal concave round tooling (Piccola Industria, Argentina).
  • the tablets produced had a mean tablet weight of 287.91 ⁇ 11.14 mg and a mean hardness of 39.4 ⁇ 8 N.
  • Disintegration testing was carried out on representative tablets and as described above in Example 14 at 37 °C. The average tablet disintegration time was found to be 43 seconds.
  • the purpose of this example was to prepare a rapidly disintegrating nanoparticulate dosage form of Compound B using a fluid bed granulation process.
  • Compound B has anti-inflammatory, analgesic, and antipyretic activities.
  • a nanoparticulate dispersion of Compound B was prepared, having 30% drug, 6% hydroxypropyl methylcellulose (HPMC), and 1.2 % docusate sodium (DOSS).
  • Compound B had a mean particle size of about 142 nm. 1332.42 g of the nanoparticulate dispersion of Compound B was sprayed using a Masterflex pump (Cole-Parmer Instrument Co., Chicago, 111.) on 506.5 g of fluidized spray-dried lactose powder (Fast-Flo ® 316, Foremost, Inc.) in a fluidized bed granulator (Vector Corporation, Model FLM-1). Spray-dried lactose powder is a direct compression grade powder. Fast-Flo ® is spray-dried lactose, which is a free-flowing, direct compression material.
  • the granules were harvested and passed through a cone mill, (Quadro Corporation, Model Comil 193) equipped with a 0.018" screen.
  • the fluidized bed granules of nanoparticulate Compound B were combined with croscarmellose sodium (Ac-Di-Sol ® , FMC, Inc.) and spray dried mannitol powder (Pearlitol SD200 ® , Roquette, Inc.) in a V-blender for 10 minutes to form a powder pre- blend.
  • croscarmellose sodium Ac-Di-Sol ® , FMC, Inc.
  • spray dried mannitol powder Pearlitol SD200 ® , Roquette, Inc.
  • Magnesium stearate was sieved through a 30 mesh screen, added to the same V- blender, and mixed for 2 minutes to form a final powder blend.
  • the powder blend was compressed to form tablets using a Riva Piccola press using 5/16 inch flat-faced, beveled edge tooling under the conditions shown in Table 28.
  • the purpose of this example was to test the hardness, friability and disintegration of the Compound B tablets prepared in Example 15.
  • Tablets A-D were first evaluated for their hardness. Five tablets of each formulation were tested. The results are shown below in Table 29.
  • Tablets A and B showed complete disintegration in approximately 90 seconds or less, demonstrating the rapid disintegration characteristic of the nanoparticulate dosage form.

Abstract

Disclosed is a rapidly disintegrating solid oral dosage form of a poorly soluble active ingredient and at least one pharmaceutically acceptable water-soluble or water dispersible excipient, wherein the poorly soluble active ingredient particles have an average diameter, prior to inclusion in the dosage form, of less than about 2000 nm. The dosage form of the invention has the advantage of combining rapid presentation and rapid dissolution of the active ingredient in the oral cavity.

Description

RAPIDLY DISINTEGRATING SOLID ORAL DOSAGE FORM
FIELD OF THE INVENTION
The present invention relates to a rapidly disintegrating or dissolving solid oral dosage form comprising a poorly soluble, nanoparticulate active ingredient.
BACKGROUND OF THE INVENTION Nanoparticulate compositions, first described in U.S. Patent No. 5,145,684 ("the
'684 patent"), are particles consisting of a poorly soluble active agent having adsorbed onto the surface thereof a non-crosslinked surface stabilizer. The '684 patent also describes methods of making such nanoparticulate compositions. Nanoparticulate compositions are desirable because with a decrease in particle size, and a consequent increase in surface area, a composition is rapidly dissolved and absorbed following administration. Methods of making such compositions are described in U.S. Patent Nos. 5,518,187 and 5,862,999, both for "Method of Grinding Pharmaceutical Substances," U.S. Patent No. 5,718,388, for "Continuous Method of Grinding Pharmaceutical Substances;" and U.S. Patent No. 5,510,118 for "Process of Preparing Therapeutic Compositions Containing Nanoparticles."
Nanoparticulate compositions are also described in, for example, U.S. Patent No. 5,318,767 for "X-Ray Contrast Compositions Useful in Medical Imaging;" U.S. Patent Nos. 5,399,363 and 5,494,683 for "Surface Modified Anticancer Nanoparticles;" U.S. Patent No. 5,429,824 for 'Ηse of Tyloxapol as a Nanoparticulate Stabilizer;" U.S. Patent No. 5,518,738 for "Nanoparticulate NSAID Formulations;" U.S. Patent No.
5,552,160 for "Surface Modified NSAID Nanoparticles;" and U.S. Patent No. 5,747,001 for "Aerosols Containing Beclomethasone Nanoparticle Dispersions." None of these references, or any other reference that describes nanoparticulate compositions, relates to a rapidly disintegrating or dissolving solid oral dosage form containing a nanoparticulate active ingredient.
Current manufacturers of rapidly disintegrating or dissolving solid dose oral formulations include Cima Labs, Fuisz Technologies Ltd., Prographarm, R.P. Scherer, and Yamanouchi-Shaklee. All of these manufacturers market different types of rapidly dissolving solid oral dosage forms.
Cima Labs markets OraSolv®, which is an effervescent direct compression tablet having an oral dissolution time of five to thirty seconds, and DuraSolv®, which is a direct compression tablet having a taste-masked active agent and an oral dissolution time of 15 to 45 seconds. Cima's U.S. Patent No. 5,607,697, for "Taste Masking Microparticles for Oral Dosage Forms," describes a solid dosage form consisting of coated microparticles that disintegrate in the mouth. The microparticle core has a pharmaceutical agent and one or more sweet-tasting compounds having a negative heat of solution selected from mannitol, sorbitol, a mixture of an artificial sweetener and menthol, a mixture of sugar and menthol, and methyl salicylate. The microparticle core is coated, at least partially, with a material that retards dissolution in the mouth and masks the taste of the pharmaceutical agent. The microparticles are then compressed to form a tablet. Other excipients can also be added to the tablet formulation. WO 98/46215 for "Rapidly Dissolving Robust Dosage Form," assigned to Cima
Labs, is directed to a hard, compressed, fast melt formulation having an active ingredient and a matrix of at least a non-direct compression filler and lubricant. A non- direct compression filler is typically not free-flowing, in contrast to a direct compression (DC grade) filler, and usually requires additionally processing to form free-flowing granules.
Cima also has U.S. patents and international patent applications directed to effervescent dosage forms (U.S. Patent Nos. 5,503,846, 5,223,264, and 5,178,878) and tableting aids for rapidly dissolving dosage forms (U.S. Patent Nos. 5,401,513 and 5,219,574), and rapidly dissolving dosage forms for water soluble drugs (WO 98/14179 for "Taste-Masked Microcapsule Composition and Methods of Manufacture").
Fuisz Technologies, now part of Bio Vail, markets Flash Dose®, which is a direct compression tablet containing a processed excipient called Shearforrή®. Shearforrn® is a cotton candy-like substance of mixed polysaccharides converted to amorphous fibers. U.S. patents describing this technology include U.S. Patent No. 5,871,781 for "Apparatus for Making Rapidly Dissolving Dosage Units;" U.S. Patent No. 5,869,098 for "Fast-Dissolving Comestible Units Formed Under High-Speed/High-Pressure Conditions;" U.S. Patent Nos. 5,866,163, 5,851,553, and 5,622,719, all for "Process and Apparatus for Making Rapidly Dissolving Dosage Units and Product Therefrom;" U.S. Patent No. 5,567,439 for "Delivery of Controlled-Release Systems;" and U.S. Patent No. 5,587,172 for "Process for Forming Quickly Dispersing Comestible Unit and Product Therefrom."
Prographarm markets Flashtab®, which is a fast melt tablet having a disintegrating agent such as carboxymethyl cellulose, a swelling agent such as a modified starch, and a taste-masked active agent. The tablets have an oral disintegration time of under one minute (U.S. Patent No. 5,464,632).
R.P. Scherer markets Zydis®, which is a freeze-dried tablet having an oral dissolution time of 2 to 5 seconds. Lyophilized tablets are costly to manufacture and difficult to package because of the tablets sensitivity to moisture and temperature. U.S. Patent No. 4,642,903 (R.P. Scherer Corp.) refers to a fast melt dosage formulation prepared by dispersing a gas throughout a solution or suspension to be freeze-dried. U.S. Patent No. 5,188,825 (R.P. Scherer Corp.) refers to freeze-dried dosage forms prepared by bonding or complexing a water-soluble active agent to or with an ion exchange resin to form a substantially water insoluble complex, which is then mixed with an appropriate carrier and freeze dried. U.S. Patent No. 5,631,023 (R. P. Scherer Corp.) refers to freeze-dried drug dosage forms made by adding xanthan gum to a suspension of gelatin and active agent. U.S. Patent No. 5,827,541 (R.P. Scherer Corp.) discloses a process for preparing solid pharmaceutical dosage forms of hydrophobic substances. The process involves freeze-drying a dispersion containing a hydrophobic active ingredient and a surfactant, in a non-aqueous phase; and a carrier material, in an aqueous phase.
Yamanouchi-Shaklee markets Wowtab®, which is a tablet having a combination of a low moldability and a high moldability saccharide. U.S. Patents covering this technology include U.S. Patent No. 5,576,014 for "Intrabuccally Dissolving
Compressed Moldings and Production Process Thereof," and U.S. Patent No. 5,446,464 for "Intrabuccally Disintegrating Preparation and Production Thereof."
Other companies owning rapidly dissolving technology include Janssen Pharmaceutica. U.S. patents assigned to Janssen describe rapidly dissolving tablets having two polypeptide (or gelatin) components and a bulking agent, wherein the two components have a net charge of the same sign, and the first component is more soluble in aqueous solution than the second component. See U.S. Patent No. 5,807,576 for "Rapidly Dissolving Tablet;" U.S. Patent No. 5,635,210 for "Method of Making a Rapidly Dissolving Tablet;" U.S. Patent No. 5,595,761 for "Particulate Support Matrix for Making a Rapidly Dissolving Tablet;" U.S. Patent No. 5,587,180 for "Process for Making a Particulate Support Matrix for Making a Rapidly Dissolving Tablet;" and U.S. Patent No. 5,776,491 for "Rapidly Dissolving Dosage Form." Eurand America, Inc. has U.S. patents directed to a rapidly dissolving effervescent composition having a mixture of sodium bicarbonate, citric acid, and ethylcellulose (U.S. Patent Nos. 5,639,475 and 5,709,886).
L.A.B. Pharmaceutical Research owns U.S. patents directed to effervescent- based rapidly dissolving formulations having an effervescent couple of an effervescent acid and an effervescent base (U.S. Patent Nos. 5,807,578 and 5,807,577).
Schering Corporation has technology relating to buccal tablets having an active agent, an excipient (which can be a surfactant) or at least one of sucrose, lactose, or sorbitol, and either magnesium stearate or sodium dodecyl sulfate (U.S. Patent Nos. 5,112,616 and 5,073,374). Laboratoire L. LaFon owns technology directed to conventional dosage forms made by lyophilization of an oil-in- water emulsion in which at least one of the two phases contains a surfactant (U.S. Patent No. 4,616,047). For this type of formulation, the active ingredient is maintained in a frozen suspension state and is tableted without micronization or compression, as such processes could damage the active agent. Finally, Takeda Chemicals Inc., Ltd. owns technology directed to a method of making a fast dissolving tablet in which an active agent and a moistened, soluble carbohydrate are compression molded into a tablet, followed by drying of the tablets.
None of the described prior art teaches a rapidly disintegrating or dissolving, or "fast melt," dosage form in which a poorly soluble active ingredient is in a nanoparticulate form. This is significant because the prior art fast melt formulations do not address the problems associated with the bioavailability of poorly soluble drugs. While prior art fast melt dosage forms may provide rapid presentation of a drug, frequently there is an undesirable lag in the onset of therapeutic action because of the poor solubility and associated slow dissolution rate of the drug. Thus, while prior art fast melt dosage forms may exhibit rapid disintegration of the drug carrier matrix, this does not result in rapid dissolution and absorption of the poorly soluble drug contained within the dosage form. There is a need in the art for rapidly disintegrating or dissolving dosage forms having rapid onset of action for poorly soluble drugs. The present invention satisfies this need.
SUMMARY OF THE INVENTION
This invention is directed to the surprising and unexpected discovery of new rapidly disintegrating or dissolving solid dose oral formulations of nanoparticulate compositions of poorly soluble drugs. The rapidly disintegrating or dissolving solid dose oral formulations provide an unexpectedly fast onset of therapeutic activity combined with substantially complete disintegration or dissolution of the formulation in less than about 3 minutes.
The rapidly disintegrating or dissolving solid dose formulations of nanoparticulate compositions comprise a poorly soluble nanoparticulate drug or other agent to be administered, having an effective average particle size of less than about 2000 nm, and a surface stabilizer adsorbed on the surface thereof. The nanoparticulate drug can be in a crystalline form, semi-crystalline form, amorphous form, or a combination thereof. In addition, the rapidly disintegrating or dissolving solid dose nanoparticulate compositions comprise at least one pharmaceutically acceptable water- soluble or water-dispersible excipient, which functions to rapidly disintegrate or dissolve the solid dose matrix surrounding the nanoparticulate active agent upon contact with saliva, thereby presenting the nanoparticulate active agent for absorption.
Preferably, the effective average particle size of the nanoparticulate active agent in the composition is less than about 2000 nm, less than about 1500 nm, less than about 1000 nm, less than about 600 nm, less than about 400 nm, less than about 300 nm, less than about 250 nm, less than about 100 nm, or less than about 50 nm.
In another aspect of the invention there is provided a method of preparing rapidly disintegrating or dissolving nanoparticulate solid dose oral formulations. The method comprises: (1) forming a nanoparticulate composition comprising an active agent to be administered and a surface stabilizer; (2) adding at least one pharmaceutically acceptable water-soluble or water-dispersible excipient, and (3) forming a solid dose form of the composition for oral administration. Additional pharmaceutically acceptable excipients can also be added to the composition for administration. Methods of making nanoparticulate compositions, which can comprise mechanical grinding, precipitation, or any other suitable size reduction process, are known in the art and are described in, for example, the '684 patent.
Yet another aspect of the present invention provides a method of treating a mammal, including a human, requiring rapid onset of therapeutic activity with a rapidly disintegrating nanoparticulate composition of the invention.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. Other objects, advantages, and novel features will be readily apparent to those skilled in the art from the following detailed description of the invention.
BRIEF DESCRIPTION OF THE FIGURE
Figure 1 : Shows the rate of dissolution over time for three rapidly disintegrating or dissolving nanoparticulate dosage forms of Compound A, which is a COX-2 inhibitor type nonsteroidal anti-inflammatory drug (NSAID), having anti-inflammatory, analgesic, and antipyretic activities.
DETAILED DESCRIPTION OF THE INVENTION
A. RAPIDLY DISINTEGRATING OR DISSOLVING NANOPARTICULATE COMPOSITIONS
This invention is directed to the surprising and unexpected discovery of new solid dose rapidly disintegrating or dissolving nanoparticulate compositions of poorly soluble drugs having fast onset of drug activity. The rapidly disintegrating or dissolving solid oral dosage form of the invention has the advantage of combining rapid presentation of the poorly soluble active agent as a result of the rapid disintegration, and rapid dissolution of the poorly soluble drug in the oral cavity as a result of the nanoparticulate size of the drug. This combination of rapid disintegration and rapid dissolution reduces the delay in the onset of therapeutic action associated with prior known rapidly dissolving dosage forms of poorly soluble drugs. Further, the opportunity for buccal absorption of the poorly soluble active ingredient is enhanced with the present invention. Yet another advantage of nanoparticulate rapidly disintegrating or dissolving solid dose forms is that the use of nanoparticulate drug particles eliminates or minimizes the feeling of grittiness found with prior art fast melt formulations of poorly soluble drugs.
Rapidly disintegrating or dissolving dosage forms, also known as fast dissolve, fast or rapid melt, and quick disintegrating dosage forms, dissolve or disintegrate rapidly in the patient's mouth without chewing or the need for water within a short time frame. Because of their ease of administration, such compositions are particularly useful for the specific needs of pediatrics, geriatrics, and patients with dysphagia. Rapidly dissolving dosage forms can be beneficial because of their ease of administration, convenience, and patient-friendly nature. It is estimated that 35% to 50% of the population finds it difficult to swallow tablets and hard gelatin capsules, particularly pediatric and geriatric patients. Rapidly disintegrating or dissolving dosage forms eliminate the need to swallow a tablet or capsule. Moreover, rapidly disintegrating or dissolving dosage forms do not require the addition of water or chewing. One advantage typically associated with fast melt dosage forms is a reduction of the time lag between administration of a dose and the physical presentation of the active ingredient. This lag time is usually associated with the break up of the dosage form and the distribution of the active ingredient thereafter. A second advantage of fast melt dosage forms is that the rapid presentation of the drug in the mouth upon administration may facilitate buccal absorption of the active ingredient directly into the blood stream, thus reducing the first pass effect of the liver on the overall bioavailability of active ingredient from a unit dose. This second advantage is dramatically enhanced for the fast melt formulations of the invention, as the nanoparticulate size of the active agent enables rapid dissolution in the oral cavity. The solid dose rapidly disintegrating nanoparticulate formulations of the invention comprise a poorly soluble nanoparticulate active agent to be administered, having an effective average particle size prior to inclusion in the dosage form of less than about 2000 nm, at least one surface stabilizer adsorbed on the surface thereof, and at least one pharmaceutically acceptable water-soluble or water-dispersible excipient, which functions to rapidly disintegrate the matrix of the solid dose form upon contact with saliva, thereby presenting the nanoparticulate active agent for absorption. The poorly soluble nanoparticulate active agent can be in a crystalline form, semi-crystalline form, amorphous form, or a combination thereof. Preferably, the effective average particle size of the nanoparticulate active agent prior to inclusion in the dosage form is less than about 1500 nm, less than about 1000 nm, less than about 600 nm, less than about 400 nm, less than about 300 nm, less than about 250 nm, less than about 100 nm, or less than about 50 nm. Nanoparticulate compositions were first described in the '684 patent.
A rapidly disintegrating nanoparticulate solid oral dosage form according to the invention has a disintegration time of less than about 3 minutes upon addition to an aqueous medium. More preferably, the fast melt nanoparticulate solid oral dosage form has a disintegration or dissolution time upon addition to an aqueous medium of less than about 2 minutes, less than about 90 seconds, less than about 60 seconds, less than about 45 seconds, less than about 30 seconds, less than about 20 seconds, less than about 15 seconds, less than about 10 seconds, or less than about 5 seconds.
Surprisingly, the rapidly disintegrating or dissolving nanoparticulate dosage forms can have a relatively high degree of tensile strength. Tensile strength is determined by the hardness, size, and geometry of the solid dose. This is significant because if a solid does (i.e., a tablet) is too brittle it will crumble or fragment. Such brittle tablets can also be difficult and expensive to package. Thus, the ideal rapidly disintegrating solid oral dose should have a degree of tensile strength to allow ease of packaging while also rapidly disintegrating upon administration. The rapidly disintegrating or dissolving solid dose nanoparticulate compositions can be formulated to mask the unpleasant taste of an active agent. Such taste masking can be accomplished, for example, by the addition of one or more sweet tasting excipients, by coating the poorly soluble nanoparticulate active agent and stabilizer with a sweet tasting excipient, and/or by coating a dosage form of poorly soluble nanoparticulate active agent, stabilizer, and excipients with a sweet tasting excipient.
1. Nanoparticulate Compositions
The starting nanoparticulate composition (prior to formulation into a fast melt dosage form) comprises a poorly soluble active agent to be administered and at least one surface stabilizer adsorbed on the surface thereof. a. Poorly Soluble Active Agent
The nanoparticles of the invention comprise a poorly soluble therapeutic agent, diagnostic agent, or other active agent to be administered for rapid onset of activity. A therapeutic agent can be a drug or pharmaceutical and a diagnostic agent is typically a contrast agent, such as an x-ray contrast agent, or any other type of diagnostic material. The invention can be practiced with a wide variety of poorly soluble drugs or diagnostic agents. The drug or diagnostic agent is preferably present in an essentially pure form, is poorly water soluble, and is dispersible in at least one liquid medium. By "poorly water soluble" it is meant that the drug or diagnostic agent has a solubility in the liquid dispersion medium of less than about 30 mg/ml, preferably less than about 10 mg/ml, and more preferably less than about 1 mg/ml.
The poorly soluble active agent can be selected from a variety of known classes of drugs or diagnostic agents, including, for example, analgesics, anti-inflammatory agents, anthelmintics, anti-arrhythmic agents, antibiotics (including penicillins), anticoagulants, antidepressants, antidiabetic agents, antiepileptics, antihistamines, antihypertensive agents, antimuscarinic agents, antimycobacterial agents, antineoplastic agents, immunosuppressants, antithyroid agents, antiviral agents, anxiolytic sedatives (hypnotics and neuroleptics), astringents, beta-adrenoceptor blocking agents, blood products and substitutes, cardiac inotropic agents, contrast media, corticosteroids, cough suppressants (expectorants and mucolytics), diagnostic agents, diagnostic imaging agents, diuretics, dopaminergics (antiparkinsonian agents), haemostatics, immuriological agents, lipid regulating agents, muscle relaxants, parasympathomimetics, parathyroid calcitonin and biphosphonates, prostaglandins, radio-pharmaceuticals, sex hormones (including steroids), anti-allergic agents, stimulants and anoretics, sympathomimetics, thyroid agents, vasodilators, and xanthines.
A description of these classes of drugs and diagnostic agents and a listing of species within each class can be found in Martindale, The Extra Pharmacopoeia, Twenty-ninth Edition (The Pharmaceutical Press, London, 1989), specifically incorporated by reference. The drugs or diagnostic agents are commercially available and/or can be prepared by techniques known in the art.
The poorly soluble active ingredient may be present in any amount which is sufficient to elicit a therapeutic effect and, where applicable, may be present either substantially in the form of one optically pure enantiomer or as a mixture, racemic or otherwise, of enantiomers.
b. Surface Stabilizers
Useful surface stabilizers, which are known in the art and described in the '684 patent, are believed to include those which physically adhere to the surface of the active agent but do not chemically bond to or interact with the active agent. The surface stabilizer is adsorbed on the surface of the active agent in an amount sufficient to maintain an effective average particle size of less than about 2000 nm for the active agent. Furthermore, the individually adsorbed molecules of the surface stabilizer are essentially free of mtermolecular cross-linkages. Two or more surface stabilizers can be employed in the compositions and methods of the invention.
Suitable surface stabilizers can preferably be selected from known organic and inorganic pharmaceutical excipients. Such excipients include various polymers, low molecular weight oligomers, natural products, and surfactants. Preferred surface stabilizers include nonionic and ionic surfactants.
Representative examples of surface stabilizers include gelatin, casein, lecithin (phosphatides), dextran, gum acacia, cholesterol, tragacanth, stearic acid, benzalkonium chloride, calcium stearate, glycerol monostearate, cetostearyl alcohol, cetomacrogol emulsifying wax, sorbitan esters, polyoxyethylene alkyl ethers (e.g., macrogol ethers such as cetomacrogol 1000), polyoxyethylene castor oil derivatives, polyoxyethylene sorbitan fatty acid esters (e.g., the commercially available Tweens® such as e.g., Tween 20® and Tween 80® (ICI Speciality Chemicals)); polyethylene glycols (e.g., Carbowaxs 3550® and 934® (Union Carbide)), polyoxyethylene stearates, colloidal silicon dioxide, phosphates, sodium dodecylsulfate, carboxymethylcellulose calcium, carboxymethylcellulose sodium, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethyl-cellulose phthalate, noncrystalline cellulose, magnesium aluminium silicate, triemanolamine, polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), 4-(l,l,3,3-tetramethylbutyl)-phenol polymer with ethylene oxide and formaldehyde (also known as tyloxapol, superione, and triton), poloxamers (e.g., Pluronics F68® and F108®, which are block copolymers of ethylene oxide and propylene oxide); poloxamines (e.g., Tetronic 908®, also known as Poloxamine 908®, which is a tetrafunctional block copolymer derived from sequential addition of propylene oxide and ethylene oxide to ethylenediamine (BASF Wyandotte Corporation, Parsippany, NJ.)); Tetronic 1508® (T-1508) (BASF Wyandotte Corporation ), dialkylesters of sodium sulfosuccinic acid (e.g., Aerosol OT®, which is a dioctyl ester of sodium sulfosuccinic acid (American Cyanamid)); Duponol P®, which is a sodium lauryl sulfate (DuPont); Tritons X-200®, which is an alkyl aryl polyether sulfonate
(Rohm and Haas); Crodestas F-l 10®, which is a mixture of sucrose stearate and sucrose distearate (Croda Inc.); p-isononylphenoxypoly-(glycidol), also known as Olin-IOG® or Surfactant 10-G®(Olin Chemicals, Stamford, CT); Crodestas SL-40® (Croda, Inc.); and SA9OHCO, which is Cι 8H37CH2(CON(CH3)-CH2(CHOH)4(CH20H)2 (Eastman Kodak Co.); decanoyl-N-methylglucamide; n-decyl β-D-glucopyranoside; n-decyl β-D- maltopyranoside; n-dodecyl β-D-glucopyranoside; n-dodecyl β-D-maltoside; heptanoyl- N-methylglucamide; n-heptyl-β-D-glucopyranoside; n-heptyl β-D-thioglucoside; n- hexyl β-D-glucopyranoside; nonanoyl-N-methylglucamide; n-noyl β-D- glucopyranoside; octarioyl-N-methylglucamide; n-octyl-β-D-glucopyranoside; octyl β- D-thioglucopyranoside; and the like.
Most of these surface stabilizers are known pharmaceutical excipients and are described in detail in the Handbook of Pharmaceutical Excipients, published jointly by the American Pharmaceutical Association and The Pharmaceutical Society of Great Britain (The Pharmaceutical Press, 1986), specifically incorporated by reference.
c. Particle Size
As used herein, particle size is determined on the basis of the weight average particle size as measured by conventional particle size measuring techniques well known to those skilled in the art. Such techniques include, for example, sedimentation field flow fractionation, photon correlation spectroscopy, light scattering, and disk centrifugation.
By "an effective average particle size of less than about 2000 nm" it is meant that at least 50% of the active agent particles have an average particle size of less than about 2000 nm when measured by the above techniques. Preferably, at least 70% of the particles have an average particle size of less than the effective average, i.e., about 2000 nm, more preferably at least about 90% of the particles have an average particle size of less than the effective average. In preferred embodiments, the effective average particle size is less than about 1500 nm, less than about 1000 nm, less than about 600 nm, less than about 400 nm, less than about 300 nm, less than about 250 nm, less than about 100 nm, or less than about 50 nm.
2. Pharmaceutically Acceptable Water-Soluble or Water-Dispersible Excipient The pharmaceutically acceptable water-soluble or water-dispersible excipient is typically a sugar, such as sucrose, maltose, lactose, glucose, or mannose; a sugar alcohol, such as mannitol, sorbitol, xylitol, erythritol, lactitol, or maltitol; a starch or modified starch, such as corn starch, potato starch, or maize starch; a natural polymer or a synthetic derivative of a natural polymer, such as gelatin, carrageenin, an alginate, dextran, maltodextran, dextrates, dextrin, polydextrose, or tragacanth; a natural gum such as acacia, guar gum, or xanthan gum; a synthetic polymer, such as polyethylene glycol, polyvinylpyrrolidone, polyvinylalcohol, polyoxyethylene copolymers, polyoxypropylene copolymers, or polyethyleneoxide; or a mixture of any of these compounds. Other useful compounds include carbomers and cellulose-based polymers. The pharmaceutically acceptable water-soluble or water-dispersible excipient can be a direct compression or a non-direct compression disintegrant.
3. Other Pharmaceutical Excipients
Pharmaceutical compositions according to the invention may also comprise one or more binding agents, filling agents, lubricating agents, suspending agents, sweeteners, flavoring agents, preservatives, buffers, wetting agents, disintegrants, effervescent agents, and other excipients. Such excipients are known in the art.
Examples of filling agents are lactose monohydrate, lactose anhydrous, and various starches; examples of binding agents are various celluloses and cross-linked polyvinylpyrrolidone, microcrystalline cellulose, such as Avicel® PHI 01 and Avicel® PHI 02, microcrystalline cellulose, and silicifized microcrystalline cellulose (SMCC).
Suitable lubricants, including agents that act on the flowability of the powder to be compressed, are colloidal silicon dioxide, such as Aerosil® 200; talc, stearic acid, magnesium stearate, calcium stearate, and silica gel.
Examples of sweeteners are any natural or artificial sweetener, such as sucrose, xylitol, sodium saccharin, cyclamate, aspartame, and acsulfame. Examples of flavoring agents are Magnasweet® (trademark of MAFCO), bubble gum flavor, and fruit flavors, and the like. Examples of preservatives are potassium sorbate, methylparaben, propylparaben, benzoic acid and its salts, other esters of parahydroxybenzoic acid such as butylparaben, alcohols such as ethyl or benzyl alcohol, phenolic compounds such as phenol, or quarternary compounds such as benzalkonium chloride. Suitable diluents include pharmaceutically acceptable inert fillers, such as microcrystalline cellulose, lactose, dibasic calcium phosphate, saccharides, and or mixtures of any of the foregoing. Examples of diluents include microcrystalline cellulose, such as Avicel® PH101 and Avicel® PH102; lactose such as lactose monohydrate, lactose anhydrous, and Pharmatose® DCL21; dibasic calcium phosphate such as Emcompress®; mannitol; starch; sorbitol; sucrose; and glucose.
Suitable disintegrants include lightly crosslinked polyvinyl pyrrolidone, corn starch, potato starch, maize starch, and modified starches, croscarmellose sodium, cross- povidone, sodium starch glycolate, and mixtures thereof.
Examples of effervescent agents are effervescent couples such as an organic acid and a carbonate or bicarbonate. Suitable organic acids include, for example, citric, tartaric, malic, fumaric, adipic, succinic, and alginic acids and anhydrides and acid salts. Suitable carbonates and bicarbonates include, for example, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium glycine carbonate, L-lysine carbonate, and arginine carbonate. Alternatively, only the acid component of the effervescent couple may be present.
4. Quantities of Nanoparticulate Composition and Pharmaceutically Acceptable Water-Soluble or Water-Dispersible Excipient
The relative amount of nanoparticulate composition in the rapidly disintegrating formulations of the invention can vary widely and can depend upon, for example, the compound selected for delivery, the melting point of the compound, the water solubility of the compound, the surface tension of water solutions of the compound, etc. The poorly soluble active agent or pharmaceutically acceptable salt thereof may be present in any amount which is sufficient to elicit a therapeutic effect and, where applicable, may be present either substantially in the form of one optically pure enantiomer or as a mixture, racemic or otherwise, of enantiomers.
The nanoparticulate active agent composition can be present in the rapidly disintegrating formulations of the invention in an amount of about 0.1% to about 99.9% (w/w), preferably about 5% to about 70% (w/w), and most preferably about 15% to about 40% (w/w), based on the total weight of the dry composition.
The one or more pharmaceutically acceptable water-soluble or water-dispersible excipients can be present in an amount of about 99.9% to about 0.1% (w/w), preferably about 95% to about 30% (w/w), and most preferably about 85% to about 60% (w/w), by weight based on the total weight of the dry composition.
B. METHODS OF MAKING RAPIDLY DISINTEGRATING SQLΠ) DOSE NANOPARTICULATE COMPOSITIONS In another aspect of the invention there is provided a method of preparing rapidly disintegrating or dissolving nanoparticulate solid dose oral formulations. The method comprises: (1) forming a nanoparticulate composition comprising an active agent to be administered and at least one surface stabilizer; (2) adding one or more pharmaceutically acceptable water-soluble or water-dispersible excipients, and (3) forming a solid dose form of the composition for administration. Pharmaceutically acceptable excipients can also be added to the composition for administration. Methods of making nanoparticulate compositions, which can comprise mechanical grinding, precipitation, or any other suitable size reduction process, are known in the art and are described in, for example, the '684 patent. Methods of making solid dose pharmaceutical formulations are known in the art, and such methods can be employed in the present invention. Exemplary rapidly disintegrating or dissolving solid dose formulations of the invention can be prepared by, for example, combining the one or more pharmaceutically acceptable water-soluble or water-dispersible excipients with a raw nanoparticulate dispersion obtained after size reduction of an agent to be administered. The resultant composition can be formulated into tablets for oral administration. Alternatively, the nanoparticulate dispersion can be spray dried, followed by blending with one or more pharmaceutically acceptable water- soluble or water-dispersible excipients and tableting. The nanoparticulate dispersion and desired excipients can also be lyophilized to form a fast melt formulation, or the nanoparticulate dispersion can be granulated to form a powder, followed by tableting.
1. Spray Drying of Nanoparticulate Dispersions
Solid dose forms of nanoparticulate dispersions can be prepared by drying the nanoparticulate formulation following size reduction. A preferred drying method is spray drying. The spray drying process is used to obtain a nanoparticulate powder following the size reduction process used to transform the active agent into nanoparticulate sized particles. Such a nanoparticulate powder can be formulated into tablets for oral administration. In an exemplary spray drying process, the nanoparticulate active agent suspension is fed to an atomizer using a peristaltic pump and atomized into a fine spray of droplets. The spray is contacted with hot air in the drying chamber resulting in the evaporation of moisture from the droplets. The resulting spray is passed into a cyclone where the powder is separated and collected. The nanoparticulate dispersion can be spray-dried in the presence or absence of excipients to give the spray-dried intermediate powder.
2. Lyophilization
A rapidly disintegrating solid oral dosage form of the invention can be prepared by lyopbilizing a nanoparticulate dispersion of the poorly soluble active agent and stabilizer. Suitable lyophilization conditions include, for example, those described in EP 0,363,365 (McNeil-PPC Inc.), U.S. Patent No. 4,178,695 (A. Erbeia), and U.S. Patent No. 5,384,124 (Farmalyoc), all of which are incorporated herein by reference. Typically, the nanoparticulate dispersion is placed in a suitable vessel and frozen to a temperature of between about -5°C to about -100°C. The frozen dispersion is then subjected to reduced pressure for a period of up to about 48 hours. The combination of parameters such as temperature, pressure, dispersion medium, and batch size will impact the time required for the lyophiUzation process. Under conditions of reduced temperature and pressure, the frozen solvent is removed by sublimation yielding a solid, porous, rapidly disintegrating solid oral dosage form having the active ingredient distributed throughout.
3. Granulation
Alternatively, a rapidly disintegrating solid oral dosage form of the invention can be prepared by granulating in a fluidized bed an admixture comprising a nanoparticulate dispersion of active agent and at least one surface stabilizer with a solution of at least one pharmaceutically acceptable water-soluble or water-dispersible excipient, to form a granulate. This is followed by tableting of the granulate to form a solid oral dosage form. Granulation of the nanoparticulate composition and at least one water-soluble or water-dispersible excipient can be accomplished using a fluid bed granulator or by using high shear granulation. Fluid bed drying can also be used in making a nanoparticulate dry powder for processing into a dosage formulation.
4. Tableting
The rapidly disintegrating nanoparticulate solid formulations of the invention can be in the form of tablets for oral administration. Preparation of such tablets can be by pharmaceutical compression or molding techniques known in the art. The tablets of the invention may take any appropriate shape, such as discoid, round, oval, oblong, cylindrical, triangular, hexagonal, and the like.
Powders for tableting can be formulated into tablets by any method known in the art. Suitable methods include, but are not limited to, milling, fluid bed granulation, dry granulation, direct compression, spheronization, spray congealing, and spray-dying. Detailed descriptions of tableting methods are provided in Remington: The Science and Practice of Pharmacy, 19th ed. Vol. 11 (1995) (Mack Publishing Co., Pennsylvania); said Remington's Pharmaceutical Sciences, Chapter 89, pp. 1633-1658 (Mach Publishing Company, 1990), both of which are specifically incorporated by reference.
In an exemplary process, a rapidly disintegrating dosage form can be prepared by blending a nanoparticulate composition, comprising a poorly soluble active agent and at least one surface stabilizer, with at least one pharmaceutically acceptable water- soluble or water-dispersible excipient, and, optionally, other excipients to form a blend which is then directly compressed into tablets. For example, spray-dried nanoparticulate powder can be blended with tablet excipients using a V-blender® (Blend Master Lab Blender, Patterson Kelley Co.) or high-shear mixer, followed by compression of the powder using, for example, an automated Carver press (Carver Laboratory Equipment), single station Korsch® press, or a high-speed Fette® tablet press.
The tablets may be coated or uncoated. If coated they may be sugar-coated (to cover objectionable tastes or odors and to protect against oxidation) or film coated (a thin film of water soluble matter for similar purposes). C. ADMINISTRATION OF RAPIDLY DISINTEGRATING OR
DISSOLVING SOLID DOSE NANOPARTICULATE COMPOSITIONS
The present invention provides a method of treating a mammal, including a human, requiring the rapid availability of a poorly soluble active ingredient. The administered rapidly disintegrating or dissolving nanoparticulate compositions of the invention rapidly release an incorporated active agent resulting in fast onset of activity.
In general, the compositions of the invention will be administered orally to a mammalian subject in need thereof using a level of drug or active agent that is sufficient to provide the desired physiological effect. The mammalian subject may be a domestic animal or pet but preferably is a human subject. The level of drug or active agent needed to give the desired physiological result is readily determined by one of ordinary skill in the art by referring to standard texts, such as Goodman and Gillman and the Physician 's Desk Reference.
The following examples are given to illustrate the present invention. It should be understood, however, that the invention is not to be limited to the specific conditions or details described in these examples. Throughout the specification, any and all references to a publicly available documents are specifically incorporated into this patent application by reference. Example 1
The purpose of this example was to prepare a rapidly disintegrating nanoparticulate dosage form of Compound A using a fluid bed granulation process. Compound A is a COX-2 inhibitor type nonsteroidal anti-inflammatory drag (NSAID), having anti-inflammatory, analgesic, and antipyretic activities. The fluid bed granulation process comprises fluidizing a binder dispersion and or solution and spraying the resultant composition over a Fluidized power bed to form granules. It is also possible to dry and coat pharmaceuticals using a fluid bed granulator. An exemplary fluid bed granulation process is shown below:
Vacuum ulling fluidized pounder up to contact the
J, nanoparticulate dispersion
Nozzel spraying - ---> nanoparticulate dispersion of EXAMPLE OF ή FLUID BED hetoprof en + stabilizer GRήHULATIOH PROCESS
. : \ .
: I Ξ≡^
Fan blowing fluidized pouuder of encipieπts up
A dispersion of Compound A, having 20% drug, 4% hydroxypropyl cellulose SL (HPC-SL), and 0.12% sodium lauryl sulfate (SLS), was used for the fluid bed granulation process. 100 g of the dispersion was sprayed on 125.0 g of fluidized lactose powder in a fluidized bed granulator (Aeromatic Fielder, Inc., Model STREA-1). Compound A had a mean particle size of 120 nm
The instrument settings for the fluid bed granulator were as follows:
Inlet Temperature 49 - 52°C
Outlet Temperature: 25 - 34°C Atomizing Pressure: 1.5 bar Blow Out Pressure: 3 - 4 bar Blow Back Dwell Setting 2 bar Capacity of Fan 1 - 9
After spraying the dispersion on the fluidized lactose to form granules of nanoparticulate Compound A (comprising Compound A, HPC-SL, and SLS) and lactose, the tubings of the granulator were washed with approximately 10 g of deionized water. The washings were also sprayed on the granules of nanoparticulate Compound A and lactose. The granules were dried for approximately 10 min, followed by sieving through a #16 mesh screen. The sieved granules were used for preparing rapidly disintegrating tablets having the composition shown in Table 1.
Figure imgf000021_0001
The fluidized bed granules of nanoparticulate Compound A (Compound A, HPC-SL, and SLS) and lactose were blended with all of the excipients except magnesium stearate in a V-blender for about 20 minutes, followed by the addition of magnesium stearate and blending for 2 minutes. The powder blend was compressed to form tablets using a Carver press using 1 inch tooling under the conditions given in Table 2.
Figure imgf000021_0002
Example 2
The purpose of this example was to test the disintegration, hardness, and dissolution of the Compound A tablets prepared in Example 1.
Tablets A, B, and C were first evaluated for hardness and disintegration. An average of two tablets for each formulation were used for the data. Tablets A and B had a hardness of less than 1 kP and Tablet C had a hardness of 1.7 kP. For the disintegration determination, a Haake disintegration tester containing 710 micron sieves were used to test Tablet A, B, and C in a 1000 ml deionized water bath at 37°C. Disintegration and dissolution measurements were performed in accordance with USP 20. The disintegration results are shown below in Table 3.
Figure imgf000022_0001
All of the Compound A tablets completely disintegrated in less than 2 minutes, demonstrating the rapid disintegration characteristic of the nanoparticulate dosage form.
Tablets A, B, and C (100 mg each) were evaluated for dissolution in a 1% solution of SLS at 37°C in a Distek dissolution system. The rotation speed of the paddle of the Distek dissolution system was 50 rpm. The results, given in Figure 1, show that all of the tablets had at least about 80% dissolution after 10 minutes, with complete dissolution at from 15 to 20 minutes.
Example 3
The purpose of this example was to prepare a rapidly disintegrating nanoparticulate dosage form of ketoprofen using a fluid bed granulation process. Ketoprofen is an nonsteroidal anti-inflammatory drug used to treat mild to moderate pain resulting from arthritis, sunburn treatment, menstrual pain, and fever. A nanoparticulate dispersion of ketoprofen was prepared, having 30% drug, 3% polyvinylpyrrolidone (PVP), and 0.15 % sodium lauryl sulfate (SLS). The ketoprofen had a mean particle size of about 151 nm. 200.0 g of the nanoparticulate dispersion of ketoprofen was sprayed using a Masterflex pump (Cole-Parmer Instrument Co., Chicago, 111.) on 150.0 g of fluidized spray-dried mannitol powder (Pearlitol® SD200, Roquette, Inc.) in a fluidized bed granulator (Aeromatic Fielder, Inc., Model STREA- 1). Spray-dried mannitol powder is a direct compression grade powder. Pearlitol® is spray-dried mannitol, which is a free-flowing, direct compression material. The instrument settings for the fluid bed granulator were as follows: Inlet Temperature 49 - 52°C
Outlet Temperature: 25 - 34°C
Atomizing Pressure: 1.5 bar
Blow-Out Pressure: 4 - 6 bar
Blow-Back Dwell Setting 2 bar
Capacity of Fan 1 - 9
After spraying the ketoprofen nanoparticulate dispersion on the fluidized mannitol to form granules, approximately 20 g of deionized water was passed through the feed tubing and sprayed on the granules. At the end of the spraying process the granules were dried by fluidizing for 5-7 minutes. Finally, the granules were harvested, passed through a #35 sieve, and weighed, for a yield of 186.7 g.
The fluidized bed granules of nanoparticulate ketoprofen were combined with magnesium stearate in a V-blender as shown below for about 2 minutes to form a powder blend.
Figure imgf000023_0001
The powder blend was compressed to form tablets using a Carver press using 5/8 inch Troche tooling under the conditions shown in Table 5. Troche tooling refers to a tablet having a slightly indented center.
Figure imgf000023_0002
Example 4
The purpose of this example was to prepare a rapidly disintegrating nanoparticulate dosage form of ketoprofen using fluidized bed granules of nanoparticulate ketoprofen. The fluidized bed granules of nanoparticulate ketoprofen prepared in Example 3 were used in this example. The fluidized bed granules of nanoparticulate ketoprofen were combined with spray-dried mannitol powder (Pearlitol® SD200, Roquette, Inc.) and blended in a V-blender for about 20 minutes, followed by the addition of magnesium stearate and blending for 2 minutes to form a powder blend, in the amounts shown below in Table 6.
Figure imgf000024_0001
The powder blend was compressed to form tablets using a Carver press having 5/8 inch Troche tooling under the conditions shown in Table 7.
Figure imgf000024_0002
Example 5
The purpose of this example was to prepare a rapidly disintegrating nanoparticulate dosage form of ketoprofen using fluidized bed granules of nanoparticulate ketoprofen.
The fluidized bed granules of nanoparticulate ketoprofen prepared in Example 3 were used in this example. The fluidized bed granules of nanoparticulate ketoprofen were combined with spray-dried mannitol powder (Pearlitol® SD200, Roquette, Inc.) and croscarmellose sodium (Ac-di-sol®) and blended in a V-blender for about 20 minutes, followed by the addition of magnesium stearate and blending for 2 minutes to form a powder blend, in the amounts shown in Table 8.
Figure imgf000025_0001
The powder blend was compressed to form tablets using a Carver press using 5/8 inch tooling under the conditions shown in Table 9.
Figure imgf000025_0002
Example 6
The purpose of this example was to test the hardness and disintegration of the ketoprofen tablets prepared in Examples 3, 4, and 5.
Tablets D-L were first evaluated for their hardness. Two tablets of each sample were tested. The results of the hardness testing are given in Table 10.
Figure imgf000025_0003
For the disintegration determination, a Haake disintegration tester (Haake, Germany) was used to test the rate of dissolution of Tablets D-L in a 1000 ml deionized water bath at 37°C. For tablets made using Troche tooling (having an indented center), complete disintegration and dissolution was determined to be when all of the tablet surrounding the small core had disintegrated and dissolved. The disintegration results are shown below in Table 11.
Figure imgf000026_0001
Tablets J, K, and L, having additional spray-dried mannitol blended with the fluidized bed ketoprofen granules, showed the most rapid disintegration, with complete disintegration obtained after slightly more than 1 minute, demonstrating the rapid disintegration characteristic of the nanoparticulate dosage form.
Example 7
The purpose of this example was to prepare a rapidly disintegrating nanoparticulate dosage form of ketoprofen using fluidized bed granules of nanoparticulate ketoprofen.
The fluidized bed granules of nanoparticulate ketoprofen prepared in Example 3 were used in this example. The fluidized bed granules of nanoparticulate ketoprofen were combined with spray-dried mannitol powder (Pearlitol® SD200, Roquette, Inc.) and croscarmellose sodium (Ac-di-sol®) and blended in a V-blender for about 20 minutes, followed by the addition of magnesium stearate and blending for 2 minutes to form a powder blend, in the amounts shown below in Table 12.
Figure imgf000027_0001
The powder blend was compressed to form tablets using a Carver press using 5/8 inch Troche tooling under the conditions shown in Table 13.
Figure imgf000027_0002
Example 8
The purpose of this example was to prepare a rapidly disintegrating nanoparticulate dosage form of ketoprofen using fluidized bed granules of nanoparticulate ketoprofen.
The fluidized bed granules of nanoparticulate ketoprofen prepared in Example 3 were used in this example. The fluidized bed granules of nanoparticulate ketoprofen were combined with spray-dried mannitol powder (Pearlitol® SD200, Roquette, Inc.) and croscarmellose sodium (Ac-di-sol®) and blended in a V-blender for about 20 minutes, followed by the addition of magnesium stearate and blending for 2 minutes to form a powder blend, in the amounts shown below in Table 14.
Figure imgf000028_0001
The powder blend was compressed to form tablets using a Carver press and 3/8 inch Troche tooling under the conditions shown in Table 15.
Figure imgf000028_0002
Example 9
The purpose of this example was to test the hardness and disintegration of the ketoprofen tablets prepared in Examples 7 and 8.
Tablets M-R were first evaluated for their hardness. Two tablets of each formulation were tested. The results are shown below in Table 16.
Figure imgf000028_0003
For the disintegration determination, a Haake disintegration tester was used to test the rate of dissolution of Tablets M-R in a 1000 ml deionized water bath at 37°C. The disintegration results are shown below in Table 17.
Figure imgf000029_0001
All of the tablets showed complete disintegration in less than 90 seconds, demonstrating the rapid disintegration characteristic of the nanoparticulate dosage form.
Example 10
The purpose of this example was to prepare a rapidly disintegrating nanoparticulate dosage form of ketoprofen using fluidized bed granules of nanoparticulate ketoprofen. The fluidized bed granules of nanoparticulate ketoprofen prepared in Example 3 were used in this example. The fluidized bed granules of nanoparticulate ketoprofen were combined with spray-dried mannitol powder (Pearlitol® SD200, Roquette, Inc.), Aspartame®, anhydrous citric acid, orange type natural flavor, and croscarmellose sodium (Ac-di-sol®) and blended in a V-blender for about 20 minutes, followed by the addition of magnesium stearate and blending for 2 minutes to form a powder blend, in the amounts shown below.
Figure imgf000030_0001
The powder blend was compressed to form tablets using a Carver press under the conditions shown in Table 19.
Example 11
The purpose of this example was to test the hardness and disintegration of the ketoprofen tablets prepared in Example 10.
Tablets S-AA were first evaluated for their hardness. One tablet was evaluated for each formulation. The hardness results are shown below in Table 20.
Figure imgf000031_0001
For the disintegration determination, a Haake disintegration tester was used to test the rate of dissolution of Tablets S-AA in a 1000 ml deionized water bath at 37°C. The disintegration results are shown below in Table 21.
Figure imgf000031_0002
All of the tablets showed rapid disintegration, with 7 out of the 9 formulations showing disintegration in less than 90 seconds. Moreover, Tablets S-V and Y exhibited complete disintegration in less than 60 seconds, demonstrating the rapid disintegration characteristic of the nanoparticulate dosage form. Example 12
The purpose of this example was to prepare a rapidly disintegrating nanoparticulate dosage form of naproxen using fluidized bed granules of nanoparticulate naproxen and spray-dried lactose (Fast Flo® lactose, Foremost Whey Products, Baraboo, Wis. 53913) as an excipient. Spray-dried lactose powder is a direct compression (DC) grade powder. Naproxen is a well-known anti-inflammatory, analgesic, and antipyretic agent.
138.9 g of a naproxen nanoparticulate crystalline dispersion (28.5% naproxen (w/w) and 5/7% HPC (w/w)) was sprayed on 150.0 g of spray-dried lactose (Fast Flo® lactose) in a fluid bed granulator (Aeromatic Fielder, Inc., Model STREA-1). This was followed by sieving of the resultant granules through a 40# mesh screen to obtain the fluid bed granules (FBG).
The FBG were used to prepare two fast-melt tablet formulations, as shown in Table 22. The tablets were prepared using a 5/8 inch Troche tooling and a compression force of 1300 lbs.
Figure imgf000032_0001
Tablets of each formulation were analyzed for hardness and disintegration (Haake disintegration tester) as before. An average of two readings for each study was determined, with the results shown in Table 23.
Figure imgf000032_0002
Example 13
The purpose of this example was to prepare a fast melt formulation of nanoparticulate nifedipine. Nifedipine is a calcium channel blocker used to treat angina pectoris and high blood pressure. It is marketed under the trade names Procardia® (Pfizer, Inc.), Adalat (Latoxan), and others.
A colloidal dispersion of nifedipine in water was prepared having 10% (w/w) nifedipine, 2% (w/w) hydroxypropyl cellulose (HPC), and 0.1 % (w/w) sodium lauryl sulphate (SLS). Particle size analysis performed using a Malvem Mastersizer S2.14 (Malvern Instruments Ltd., Malvem, Worcestershire, UK) showed the following particle size characteristics: DV)1o = 160 nm; Dv,5o = 290 nm; and Dv,9o = 510 nm.
The nanoparticulate nifedipine dispersion was prepared for spray drying by diluting 1 : 1 with purified water followed by homogenisation, and the addition of 10% (w/w) mannitol followed by homogenisation. The mixture obtained was spray-dried using a Buchi Mini B-191 spray drier system (Buchi, Switzerland).
Table 24 below shows a 10 mg nifidipine tablet formulation made by compression of the spray-dried nanoparticulate nifidipine powder.
Figure imgf000033_0001
The fast melt 10 mg nifidipine tablet was prepared by first blending the ingredients given in the above table. The mannitol, xylitol, Aspartame®, half of the citric acid, and half of the sodium bicarbonate were mixed in a Uni-glatt (Glatt GmbH, Dresden, Germany). A 10% solution of PEG 4000 (polyethylene glycol having a molecular weight of about 4000) was used to granulate the mix at a spray rate of 10 g/min. The resultant granulate was dried for 30 minutes at about 40°C after which the remainder of the citric acid and sodium bicarbonate, the spray-dried nifedipine nanocrystals, and the sodium stearyl fumerate were added and mixed.
The resultant blend was tableted to form nifedipine 10 mg tablets using a Piccalo RTS tablet press with 10.0 mm normal concave round tooling (Piccola Industria, Argentina). The tablets produced had a mean tablet weight of 304.2 ± 3.9 mg and a mean hardness of 53.55 ± 6.85 N.
Disintegration testing was carried out on five representative tablets from each batch of tablets pressed. Disintegration testing was carried out in purified water using a VanKel disintegration apparatus (VanKel, Edison, New Jersey) at 32 oscillations per min. Results from the dismtegration tests are given in Table 25 below.
Figure imgf000034_0001
(*AU tests were carried out at 37°C except Tablet 3 tests, which were carried out at 38°C.)
Example 14
The purpose of this example was to prepare a fast melt formulation of nanoparticulate glipizide. Glipizide is a sulfonylurea drug used to lower blood sugar levels in people with non-insulin-dependent (type II) diabetes. It is marketed in the U.S. under the brand name Glucotrol® (Pratt Pharmaceuticals, Inc.). A colloidal dispersion of glipizide in water was prepared having 10% (w/w) glipizide and 2% (w/w) hydroxypropyl cellulose (HPC). Particle size analysis performed using a Malvern Mastersizer S2.14 (Malvern Instruments Ltd., Malvern, Worcestershire, UK) recorded by a wet method showed the following particle size characteristics: DV)10 = 270 nm; Dv>5o = 400 nm; and DV)90 = 660 nm. The nanoparticulate glipizide dispersion was prepared for spray drying by diluting 1:1 with purified water followed by homogenisation. Mannitol (10% (w/w)) was then added followed by homogenisation. The mixture obtained was spray-dried using a Buchi Mini B-191 spray drier system (Buchi, Switzerland).
A blend was prepared according to the formulation detailed in Table 26.
Figure imgf000035_0001
The mannitol, xylitol, Aspartame®, half of the citric acid, and half of the sodium bicarbonate were mixed in a Uni-glatt (Glatt GmbH, Dresden, Germany). A 10% solution of PEG 4000 was used to granulate the mix at a spray rate of 10 g/min. The resultant granulate was dried for 30 minutes at about 40°C, after which the remainder of the citric acid and sodium bicarbonate, the spray-dried glipizide nanocrystals, and the sodium stearyl fumerate were added and mixed.
The resultant blend was tableted to form glipizide 5 mg tablets using a Piccalo RTS tablet press with 10.0 mm normal concave round tooling (Piccola Industria, Argentina). The tablets produced had a mean tablet weight of 287.91 ± 11.14 mg and a mean hardness of 39.4 ± 8 N. Disintegration testing was carried out on representative tablets and as described above in Example 14 at 37 °C. The average tablet disintegration time was found to be 43 seconds.
Example 15
The purpose of this example was to prepare a rapidly disintegrating nanoparticulate dosage form of Compound B using a fluid bed granulation process. Compound B has anti-inflammatory, analgesic, and antipyretic activities.
A nanoparticulate dispersion of Compound B was prepared, having 30% drug, 6% hydroxypropyl methylcellulose (HPMC), and 1.2 % docusate sodium (DOSS). Compound B had a mean particle size of about 142 nm. 1332.42 g of the nanoparticulate dispersion of Compound B was sprayed using a Masterflex pump (Cole-Parmer Instrument Co., Chicago, 111.) on 506.5 g of fluidized spray-dried lactose powder (Fast-Flo® 316, Foremost, Inc.) in a fluidized bed granulator (Vector Corporation, Model FLM-1). Spray-dried lactose powder is a direct compression grade powder. Fast-Flo® is spray-dried lactose, which is a free-flowing, direct compression material.
The instrument settings for the fluid bed granulator were as follows:
Inlet Temperature 71 - 75°C
Outlet Temperature: 36 - 46°C
Atomizing Pressure: 20 ρsi
Process Air 30 cfm
After spraying the Compound B nanoparticulate dispersion on the fluidized lactose to form granules, the granules were harvested and passed through a cone mill, (Quadro Corporation, Model Comil 193) equipped with a 0.018" screen.
The fluidized bed granules of nanoparticulate Compound B were combined with croscarmellose sodium (Ac-Di-Sol®, FMC, Inc.) and spray dried mannitol powder (Pearlitol SD200®, Roquette, Inc.) in a V-blender for 10 minutes to form a powder pre- blend. Magnesium stearate was sieved through a 30 mesh screen, added to the same V- blender, and mixed for 2 minutes to form a final powder blend.
Figure imgf000036_0001
The powder blend was compressed to form tablets using a Riva Piccola press using 5/16 inch flat-faced, beveled edge tooling under the conditions shown in Table 28.
Figure imgf000037_0001
Example 16
The purpose of this example was to test the hardness, friability and disintegration of the Compound B tablets prepared in Example 15.
Tablets A-D were first evaluated for their hardness. Five tablets of each formulation were tested. The results are shown below in Table 29.
Figure imgf000037_0002
For the friability determination, a fiiabilator, Vankel, Model 45-2000, pre-set to 25 rpm, was used to test the rate of friability of Tablets A-D using 10 tablets with results recorded after 4 minutes of rotation. The friability results are shown below in Table 30.
Figure imgf000037_0003
For the disintegration determination, a Haake disintegration tester was used to test the rate of dissolution of Tablets A-D in a 900 ml deionized* water bath at 37°C. The disintegration results are shown below in Table 31.
Figure imgf000038_0001
Tablets A and B showed complete disintegration in approximately 90 seconds or less, demonstrating the rapid disintegration characteristic of the nanoparticulate dosage form.
* * * *
It will be apparent to those skilled in the art that various modifications and variations can be made in the methods and compositions of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims

WE CLAIM:
1. An oral solid dose rapidly disintegrating nanoparticulate formulation comprising: (a) a solid dose matrix comprising at least one pharmaceutically acceptable water-soluble or water-dispersible excipient, and (b) within the solid dose matrix a nanoparticulate active agent composition comprising:
(i) a poorly soluble active agent having an effective average particle size of less than about 2000 nm prior to inclusion in the dosage form; and (ii) at least one surface stabilizer adsorbed on the surface of the active agent; wherein the solid dose matrix surrounding the nanoparticulate active agent and at least one surface stabilizer substantially completely disintegrates or dissolves upon contact with saliva is less than about 3 minutes.
2. The composition of claim 1, wherein the effective average particle size of the active agent particles is selected from the group consisting of less than about 1500 nm, less than about 1000 nm, 600 nm, less than about 400 nm, less than about 300 nm, less than about 250 nm, less than about 100 nm, and less than about 50 nm.
3. The composition of claim 1, wherein the solid dose matrix substantially completely disintegrates or dissolves upon contact with saliva in a time period selected from the group consisting of less than about 2 minutes, less than about 90 seconds, less than about 60 seconds, less than about 45 seconds, less than about 30 seconds, less than about 20 seconds, less than about 15 seconds, less than about 10 seconds, and less than about 5 seconds.
4. The composition of claim 1 , wherein the concentration of the active agent is from about 0.1% to about 99.9% (w/w).
5. The composition of claim 4, wherein the concentration of the active agent is from about 5% to about 70% (w/w).
6. The composition of claim 5, wherein the concentration of the active agent is from about 15% to about 40% (w/w).
7. The composition of claim 1, wherein the concentration of the pharmaceutically acceptable water-soluble or water-dispersible excipient is from about 99.9% to about 0.1% (w/w).
8. The composition of claim 7, wherein the concentration of the pharmaceutically acceptable water-soluble or water-dispersible excipient is from about 95% to about 30% (w/w).
9. The composition of claim 8, wherein the concentration of the pharmaceutically acceptable water-soluble or water-dispersible excipient is from about 85% to about 60% (w/w).
10. The composition of claim 1 , wherein said at least one pharmaceutically acceptable water-soluble or water-dispersible excipient is selected from the group consisting of a sugar, a sugar alcohol, a starch, a natural gum, a natural polymer, a synthetic derivative of a natural polymer, a synthetic polymer, and mixtures thereof.
11. The composition of claim 10, wherein said at least one pharmaceutically acceptable water-soluble or water-dispersible excipient is selected from the group consisting of sucrose, maltose, dextrates, dextrin, guar gum, polydextrose, tragacanth, carbomers, cellulose-based polymers, lactose, glucose, mannose, mannitol, sorbitol, xylitol, erythritol, lactitol, maltitol, com starch, potato starch, maize starch, gelatin, carrageenin, acacia, xanthan gum, an alginate, dextran, maltodextran, polyethylene glycol, polyvinylpyrrolidone, polyvinylalcohol, polyoxyethylene copolymers, polyoxypropylene copolymers, polyethyleneoxide, and a mixture thereof.
12. The composition of claim 10, wherein said excipient is selected from the group consisting of a direct compression material and a non-direct compression material.
13. The composition of claim 12, wherein said excipient is selected from the group consisting of a spray-dried mannitol and spray-dried lactose.
14. The composition of claim 1, wherein the solid dose formulation is made by fluid bed granulation, spray drying, or high shear granulation.
15. The composition of claim 1 further comprising at least one effervescent agent.
16. The composition of claim 1 , wherein said composition has been lyophilized.
17. The composition of claim 1, wherein the poorly soluble active agent is in the form of crystalline particles, semi-crystalline particles, amorphous particles, or a mixture thereof.
18. A method of preparing an oral solid dose rapidly disintegrating nanoparticulate formulation comprising:
(a) combining (i) a nanoparticulate composition of a poorly soluble active agent and at least one surface stabilizer adsorbed to the surface thereof, wherein the active agent has an effective average particle size of less than about 2000 nm, and (ii) at least one pharmaceutically acceptable water-dispersible or water-soluble excipient, which forms a solid dose matrix surrounding the nanoparticulate composition; and
(b) forming a solid dose formulation, wherein the solid dose matrix surrounding the nanoparticulate active agent and surface stabilizer substantially completely disintegrates or dissolves upon contact with saliva is less than about 3 minutes.
19. The method of claim 18, wherein the effective average particle size of the active agent particles is selected from the group consisting of less than about 1500 nm, less than about 1000 nm, 600 nm, less than about 400 nm, less than about 300 nm, less than about 250 nm, less than about 100 nm, and less than about 50 nm.
20. The method of claim 18, wherein the solid dose matrix substantially completely disintegrates or dissolves upon contact with saliva in a time period selected from the group consisting of less than about 2 minutes, less than about 90 seconds, less than about 60 seconds, less than about 45 seconds, less than about 30 seconds, less than about 20 seconds, less than about 15 seconds, less than about 10 seconds, and less than about 5 seconds.
21. The method of claim 18 , wherein the nanoparticulate composition and the at least one water-dispersible or pharmaceutically acceptable water-soluble excipient are combined in step (a) using a method selected from the group consisting of:
(i) fluid bed granulation to form granules of the nanoparticulate composition and at least one water-soluble or water-dispersible excipient,
(ii) spray drying to form particles of the nanoparticulate composition and at least one water-soluble or water-dispersible excipient; and (iii) high shear granulation to form granules of the nanoparticulate composition and at least one water-soluble or water-dispersible excipient; which are then compressed in step (b) to form a solid dose formulation.
22. The method of claim 21 , comprising adding one or more additional pharmaceutically acceptable water-soluble or water-dispersible excipients to the granules or particles formed in (i), (ii), or (iii) in step (a) prior to compression of the granules in step (b) to form a solid dose formulation.
23. The method of claim 18 wherein step (b) comprises compression of the composition formed in step (a).
24. The method of claim 18 wherein step (b) comprises lyophilization of the composition formed in step (a).
25. The method of claim 18 additionally comprising adding at least one effervescent agent to the composition prior to step (b).
26. A method of treating a mammal comprising administering to the mammal an effective amount of a solid dose rapidly disintegrating nanoparticulate formulation wherein: (a) the formulation comprises a solid dose matrix comprising at least one pharmaceutically acceptable water-soluble or water-dispersible excipient, and (b) within the solid dose matrix a nanoparticulate active agent composition comprising: (i) a poorly soluble active agent having an effective average particle size of less than about 2000 nm prior to inclusion in the dosage form; and (ii) at least one surface stabilizer adsorbed on the surface of the active agent; wherein the solid dose matrix surrounding the nanoparticulate active agent and surface stabilizer substantially completely disintegrates or dissolves upon contact with saliva is less than about 3 minutes.
PCT/US2001/015983 1998-10-01 2001-05-18 Rapidly disintegrating solid oral dosage form WO2001087264A2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2001583733A JP2003533465A (en) 2000-05-18 2001-05-18 Rapidly disintegrating solid oral dosage form
US10/276,400 US20040013613A1 (en) 2001-05-18 2001-05-18 Rapidly disintegrating solid oral dosage form
AU2001263228A AU2001263228A1 (en) 2000-05-18 2001-05-18 Rapidly disintegrating solid oral dosage form
DE60121570T DE60121570T2 (en) 2000-05-18 2001-05-18 ORAL FASCINATING, FIXED PHARMACEUTICAL FORMS TO BE APPLIED ORIGINALLY
EP01937497A EP1282399B1 (en) 2000-05-18 2001-05-18 Rapidly disintegrating solid oral dosage form
CA002408848A CA2408848C (en) 2000-05-18 2001-05-18 Rapidly disintegrating solid oral dosage form
US10/701,064 US8236352B2 (en) 1998-10-01 2003-11-05 Glipizide compositions
US11/980,720 US20090047209A1 (en) 1999-06-22 2007-10-31 Novel nifedipine compositions
US11/979,240 US20090130213A1 (en) 2000-05-18 2007-10-31 Rapidly disintegrating solid oral dosage form
US12/068,706 US20080213371A1 (en) 2000-05-18 2008-02-11 Rapidly disintegrating solid oral dosage form
US12/292,395 US20090104273A1 (en) 1999-06-22 2008-11-18 Novel nifedipine compositions
US13/291,873 US20120114754A1 (en) 2001-05-18 2011-11-08 Rapidly disintegrating solid oral dosage form

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/572,961 US6316029B1 (en) 2000-05-18 2000-05-18 Rapidly disintegrating solid oral dosage form
US09/572,961 2000-05-18

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/572,961 Continuation-In-Part US6316029B1 (en) 2000-05-18 2000-05-18 Rapidly disintegrating solid oral dosage form

Related Child Applications (6)

Application Number Title Priority Date Filing Date
US10276400 A-371-Of-International 2001-05-18
US10/276,400 A-371-Of-International US20040013613A1 (en) 1998-10-01 2001-05-18 Rapidly disintegrating solid oral dosage form
US10/667,470 Continuation US20040057993A1 (en) 2000-05-18 2003-09-23 Rapidly disintegrating solid oral dosage form
US10/701,064 Continuation-In-Part US8236352B2 (en) 1998-10-01 2003-11-05 Glipizide compositions
US10/712,259 Continuation-In-Part US20040115134A1 (en) 1999-06-22 2003-11-14 Novel nifedipine compositions
US12/068,706 Continuation US20080213371A1 (en) 2000-05-18 2008-02-11 Rapidly disintegrating solid oral dosage form

Publications (2)

Publication Number Publication Date
WO2001087264A2 true WO2001087264A2 (en) 2001-11-22
WO2001087264A3 WO2001087264A3 (en) 2002-06-20

Family

ID=24290082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/015983 WO2001087264A2 (en) 1998-10-01 2001-05-18 Rapidly disintegrating solid oral dosage form

Country Status (8)

Country Link
US (1) US6316029B1 (en)
EP (1) EP1282399B1 (en)
JP (2) JP2003533465A (en)
AT (1) ATE333265T1 (en)
AU (1) AU2001263228A1 (en)
CA (1) CA2408848C (en)
DE (1) DE60121570T2 (en)
WO (1) WO2001087264A2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002015885A2 (en) * 2000-08-18 2002-02-28 Pharmacia Corporation Oral fast-melt formulation of a cyclooxygenase-2 inhibitor
WO2003026697A2 (en) * 2001-09-26 2003-04-03 Pharmacia Corporation Organoleptically acceptable intraorally disintegrating compositions
WO2003030876A1 (en) * 2001-10-10 2003-04-17 Pharmacia Corporation Intraorally disintegrating valdecoxib compositions prepared by spray drying process
US6835396B2 (en) 2001-09-26 2004-12-28 Baxter International Inc. Preparation of submicron sized nanoparticles via dispersion lyophilization
EP1935405A1 (en) * 2006-12-22 2008-06-25 LEK Pharmaceuticals D.D. Orally disintegrating tablets
US7815937B2 (en) 1998-10-27 2010-10-19 Biovail Laboratories International Srl Quick dissolve compositions and tablets based thereon
US7838033B2 (en) 2003-10-15 2010-11-23 Fuji Chemical Industry Co., Ltd. Composition for rapid disintegrating tablet in oral cavity
US8067032B2 (en) 2000-12-22 2011-11-29 Baxter International Inc. Method for preparing submicron particles of antineoplastic agents
JP4878839B2 (en) * 2002-09-11 2012-02-15 エラン ファーマ インターナショナル,リミティド Gel-stabilized nanoparticle active substance composition
US8349361B2 (en) 2003-10-15 2013-01-08 Fuji Chemical Industry Co., Ltd. Composition for rapid disintegrating tablet in oral cavity
US8722091B2 (en) 2001-09-26 2014-05-13 Baxter International Inc. Preparation of submicron sized nanoparticles via dispersion lyophilization
US9700866B2 (en) 2000-12-22 2017-07-11 Baxter International Inc. Surfactant systems for delivery of organic compounds
US10047072B2 (en) 2013-09-16 2018-08-14 Astrazeneca Ab Therapeutic polymeric nanoparticles and methods of making and using same
US11497736B2 (en) 2005-04-08 2022-11-15 Ptc Therapeutics, Inc. Compositions for an orally active 1,2,4-oxadiazole for the treatment of disease
US11737980B2 (en) 2020-05-18 2023-08-29 Orexo Ab Pharmaceutical composition for drug delivery
US11957647B2 (en) 2021-11-25 2024-04-16 Orexo Ab Pharmaceutical composition comprising adrenaline

Families Citing this family (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071128B2 (en) 1996-06-14 2011-12-06 Kyowa Hakko Kirin Co., Ltd. Intrabuccally rapidly disintegrating tablet and a production method of the tablets
US20030203036A1 (en) 2000-03-17 2003-10-30 Gordon Marc S. Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients
US20050004049A1 (en) * 1997-03-11 2005-01-06 Elan Pharma International Limited Novel griseofulvin compositions
US8293277B2 (en) * 1998-10-01 2012-10-23 Alkermes Pharma Ireland Limited Controlled-release nanoparticulate compositions
US8236352B2 (en) * 1998-10-01 2012-08-07 Alkermes Pharma Ireland Limited Glipizide compositions
WO2000018374A1 (en) * 1998-10-01 2000-04-06 Elan Pharma International, Ltd. Controlled release nanoparticulate compositions
US20040013613A1 (en) * 2001-05-18 2004-01-22 Jain Rajeev A Rapidly disintegrating solid oral dosage form
AU1323400A (en) * 1998-10-27 2000-05-15 Fuisz Technologies Ltd. Microparticles containing peg and/or peg glyceryl esters
DK1126826T6 (en) 1998-11-02 2019-06-24 Alkermes Pharma Ireland Ltd Multiparticulate modified release of methylphenidate
US6428814B1 (en) * 1999-10-08 2002-08-06 Elan Pharma International Ltd. Bioadhesive nanoparticulate compositions having cationic surface stabilizers
US7521068B2 (en) * 1998-11-12 2009-04-21 Elan Pharma International Ltd. Dry powder aerosols of nanoparticulate drugs
US20090104273A1 (en) * 1999-06-22 2009-04-23 Elan Pharma International Ltd. Novel nifedipine compositions
DE19931708A1 (en) * 1999-07-08 2001-01-18 Bayer Ag Process for the preparation of rapidly disintegrating solid pharmaceutical preparations
UY26615A1 (en) * 2000-03-16 2001-10-25 Pfizer Prod Inc GLUCOGEN PHOSPHORYLASE INHIBITOR.
US7575761B2 (en) * 2000-06-30 2009-08-18 Novartis Pharma Ag Spray drying process control of drying kinetics
US6656492B2 (en) * 2000-06-30 2003-12-02 Yamanouchi Pharmaceutical Co., Ltd. Quick disintegrating tablet in buccal cavity and manufacturing method thereof
US20100010101A1 (en) * 2000-07-05 2010-01-14 Capricorn Pharma, Inc. Rapid-Melt Compositions and Methods of Making Same
AU2001277230A1 (en) * 2000-08-01 2002-02-13 Inhale Therapeutic Systems, Inc. Apparatus and process to produce particles having a narrow size distribution andparticles made thereby
US20040043061A1 (en) * 2000-09-15 2004-03-04 Leon Daniel S. Dissolvable films comprising suspended, non-soluble pharmaceutically active ingredients, apparatus and methods for their manufacture and use
US7276249B2 (en) 2002-05-24 2007-10-02 Elan Pharma International, Ltd. Nanoparticulate fibrate formulations
US7198795B2 (en) 2000-09-21 2007-04-03 Elan Pharma International Ltd. In vitro methods for evaluating the in vivo effectiveness of dosage forms of microparticulate of nanoparticulate active agent compositions
US20030224058A1 (en) * 2002-05-24 2003-12-04 Elan Pharma International, Ltd. Nanoparticulate fibrate formulations
US7998507B2 (en) * 2000-09-21 2011-08-16 Elan Pharma International Ltd. Nanoparticulate compositions of mitogen-activated protein (MAP) kinase inhibitors
GB0027357D0 (en) 2000-11-09 2000-12-27 Bradford Particle Design Plc Particle formation methods and their products
US6982251B2 (en) * 2000-12-20 2006-01-03 Schering Corporation Substituted 2-azetidinones useful as hypocholesterolemic agents
US6559180B2 (en) 2001-03-27 2003-05-06 Yuri Busiashvili Nitroglycerin-menthol potentiation for treatment of angina
US6976647B2 (en) * 2001-06-05 2005-12-20 Elan Pharma International, Limited System and method for milling materials
JP2005504266A (en) * 2001-06-22 2005-02-10 エラン ファーマ インターナショナル,リミティド High-throughput screening methods using small-scale mills or microfluidics
ATE243028T1 (en) * 2001-07-11 2003-07-15 Applied Pharma Res GRANULES CONTAINING FAT-SOLUBLE SUBSTANCES AND METHOD FOR THE PRODUCTION THEREOF
GB0208742D0 (en) 2002-04-17 2002-05-29 Bradford Particle Design Ltd Particulate materials
DE60217367T2 (en) * 2001-09-19 2007-10-18 Elan Pharma International Ltd. NANOPARTICLE COMPOSITIONS CONTAINING INSULIN
US9358214B2 (en) 2001-10-04 2016-06-07 Adare Pharmaceuticals, Inc. Timed, sustained release systems for propranolol
JP2005508939A (en) * 2001-10-12 2005-04-07 エラン ファーマ インターナショナル,リミティド Composition having combined immediate release and sustained release characteristics
MY148466A (en) * 2001-10-26 2013-04-30 Merck Frosst Canada Ltd Granule formulation
CA2363528A1 (en) * 2001-11-19 2003-05-19 Merck Patent Gesellschaft Mit Beschraenkter Haftung Immediate release tablet containing naproxen sodium
US20030129250A1 (en) * 2001-11-20 2003-07-10 Advanced Inhalation Research Inc. Particulate compositions for improving solubility of poorly soluble agents
FR2834889B1 (en) * 2002-01-18 2004-04-02 Roquette Freres SOLID ORODISPERSIBLE PHARMACEUTICAL FORM
JP2005517690A (en) * 2002-02-01 2005-06-16 ファイザー・プロダクツ・インク Immediate release dosage form containing solid drug dispersion
CA2475092C (en) 2002-02-04 2012-05-01 Christian F. Wertz Nanoparticulate compositions having lysozyme as a surface stabilizer
AU2003209475A1 (en) * 2002-03-07 2003-09-16 Vectura Limited Fast melt multiparticulate formulations for oral delivery
US20050191357A1 (en) * 2002-03-20 2005-09-01 Yoshiaki Kawashima Method of manufacturing chemical-containing composite particles
US20030215502A1 (en) * 2002-03-20 2003-11-20 Elan Pharma International Limited Fast dissolving dosage forms having reduced friability
CA2479665C (en) * 2002-03-20 2011-08-30 Elan Pharma International Ltd. Nanoparticulate compositions of angiogenesis inhibitors
US20040105889A1 (en) * 2002-12-03 2004-06-03 Elan Pharma International Limited Low viscosity liquid dosage forms
US20100226989A1 (en) * 2002-04-12 2010-09-09 Elan Pharma International, Limited Nanoparticulate megestrol formulations
US9101540B2 (en) * 2002-04-12 2015-08-11 Alkermes Pharma Ireland Limited Nanoparticulate megestrol formulations
ES2380318T3 (en) 2002-04-12 2012-05-10 Alkermes Pharma Ireland Limited Megestrol nanoparticular formulations
US7101576B2 (en) * 2002-04-12 2006-09-05 Elan Pharma International Limited Nanoparticulate megestrol formulations
US6592852B1 (en) * 2002-04-25 2003-07-15 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Zinc citrate beads in oral compositions
GB0216562D0 (en) 2002-04-25 2002-08-28 Bradford Particle Design Ltd Particulate materials
US9339459B2 (en) 2003-04-24 2016-05-17 Nektar Therapeutics Particulate materials
AU2003234452A1 (en) * 2002-05-06 2003-11-11 Elan Pharma International Ltd. Nanoparticulate nystatin formulations
US20030215498A1 (en) * 2002-05-17 2003-11-20 Harland Ronald S. Rapidly disintegrating comressed tablets comprising biologically active compounds
AU2003241477A1 (en) * 2002-06-10 2003-12-22 Elan Pharma International, Ltd. Nanoparticulate polycosanol formulations and novel polycosanol combinations
US20030228370A1 (en) * 2002-06-11 2003-12-11 Michel Serpelloni Orodispersible solid pharmaceutical form
US20040258757A1 (en) * 2002-07-16 2004-12-23 Elan Pharma International, Ltd. Liquid dosage compositions of stable nanoparticulate active agents
US7445796B2 (en) * 2002-08-19 2008-11-04 L. Perrigo Company Pharmaceutically active particles of a monomodal particle size distribution and method
WO2004032980A1 (en) * 2002-10-04 2004-04-22 Elan Pharma International Limited Gamma irradiation of solid nanoparticulate active agents
US20060134195A1 (en) * 2002-11-25 2006-06-22 Yourong Fu Mannose-based fast dissolving tablets
US20040173696A1 (en) * 2002-12-17 2004-09-09 Elan Pharma International Ltd. Milling microgram quantities of nanoparticulate candidate compounds
MXPA05007154A (en) 2002-12-30 2005-09-21 Nektar Therapeutics Prefilming atomizer.
US8367111B2 (en) 2002-12-31 2013-02-05 Aptalis Pharmatech, Inc. Extended release dosage forms of propranolol hydrochloride
CA2513064C (en) * 2003-01-31 2009-11-10 Elan Pharma International, Ltd. Nanoparticulate topiramate formulations
US20040208833A1 (en) * 2003-02-04 2004-10-21 Elan Pharma International Ltd. Novel fluticasone formulations
US20100297252A1 (en) 2003-03-03 2010-11-25 Elan Pharma International Ltd. Nanoparticulate meloxicam formulations
US8512727B2 (en) * 2003-03-03 2013-08-20 Alkermes Pharma Ireland Limited Nanoparticulate meloxicam formulations
JP5137228B2 (en) 2003-03-07 2013-02-06 メルク・シャープ・アンド・ドーム・コーポレーション Substituted azetidinone compounds, substituted azetidinone formulations and their use for the treatment of hypercholesterolemia
DE602004018617D1 (en) 2003-03-07 2009-02-05 Schering Corp SUBSTITUTED AZETIDINONE DERIVATIVES, THEIR PHARMACEUTICAL FORMULATIONS AND THEIR USE FOR THE TREATMENT OF HYPERCHOLESTEROLMIA
EP1620075B1 (en) * 2003-05-07 2020-06-24 Samyang Biopharmaceuticals Corporation Highly plastic granules for making fast melting tablets
US7354601B2 (en) 2003-05-08 2008-04-08 Walker Stephen E Particulate materials
JP2007501683A (en) * 2003-05-22 2007-02-01 エラン ファーマ インターナショナル リミテッド Sterilization of nanoparticle active substance dispersions by gamma irradiation
US20060226234A1 (en) * 2003-06-11 2006-10-12 Kettinger Frederick R Pharmaceutical dosage forms having overt and covert markings for identification and authentification
FR2858556B1 (en) * 2003-08-06 2006-03-10 Galenix Innovations DISPERSIBLE AND / OR ORODISPERSIBLE SOLID PHARMACEUTICAL COMPOSITION, NOT PELLETIZED, CONTAINING AT LEAST THE METFORMIN ACTIVE INGREDIENT, AND PROCESS FOR PREPARING THE SAME
ES2318330T3 (en) * 2003-08-08 2009-05-01 Elan Pharma International Limited NEW COMPOSITIONS OF METAXALONA.
US20050036977A1 (en) * 2003-08-11 2005-02-17 Dilip Gole Taste-masked resinate and preparation thereof
US7390503B1 (en) 2003-08-22 2008-06-24 Barr Laboratories, Inc. Ondansetron orally disintegrating tablets
US20050053655A1 (en) * 2003-09-05 2005-03-10 Pharmaceutical Industry Technology And Development Center Rapid disintegrating tablets (RDTs) for pharmaceutical use and method for preparing the same
CA2540040C (en) * 2003-10-07 2012-09-11 Andrx Pharmaceuticals Llc Rapidly disintegrating formulation
US20050196441A1 (en) * 2003-11-05 2005-09-08 Dvorsky James E. Quick dissolving agrochemical and animal health products
ES2366646T3 (en) * 2003-11-05 2011-10-24 Elan Pharma International Limited COMPOSITIONS IN THE FORM OF NANOPARTICLES THAT HAVE A PEPTIDE AS A SURFACE STABILIZER.
JP2007517015A (en) * 2003-12-31 2007-06-28 ファイザー・プロダクツ・インク Stabilized pharmaceutical solid composition of low solubility drug, poloxamer and stabilizing polymer
WO2005065657A2 (en) * 2003-12-31 2005-07-21 Pfizer Products Inc. Solid compositions of low-solubility drugs and poloxamers
US7785619B2 (en) * 2004-04-08 2010-08-31 Micro Nutrient, Llc Pharmanutrient composition(s) and system(s) for individualized, responsive dosing regimens
US7850987B2 (en) * 2004-04-08 2010-12-14 Micronutrient, Llc Nutrient composition(s) and system(s) for individualized, responsive dosing regimens
WO2005097085A1 (en) * 2004-04-08 2005-10-20 Micro Nutrient, Llc Nutrient system for individualized responsive dosing regimens
US20060013873A1 (en) * 2004-07-16 2006-01-19 Chih-Chiang Yang Bioadhesive dosage form of steroids
US7956222B2 (en) * 2004-08-17 2011-06-07 Eisai R&D Management Co., Ltd Methods for producing dibromofluorobenzene derivatives
US20140162965A1 (en) 2004-08-25 2014-06-12 Aegis Therapeutics, Inc. Compositions for oral drug administration
US20060046962A1 (en) 2004-08-25 2006-03-02 Aegis Therapeutics Llc Absorption enhancers for drug administration
US20090047347A1 (en) * 2005-07-29 2009-02-19 Aegis Therapeutics, Inc. Compositions for Drug Administration
US9895444B2 (en) 2004-08-25 2018-02-20 Aegis Therapeutics, Llc Compositions for drug administration
US9114069B2 (en) * 2004-08-25 2015-08-25 Aegis Therapeutics, Llc Antibacterial compositions for drug administration
US8747895B2 (en) 2004-09-13 2014-06-10 Aptalis Pharmatech, Inc. Orally disintegrating tablets of atomoxetine
US9884014B2 (en) 2004-10-12 2018-02-06 Adare Pharmaceuticals, Inc. Taste-masked pharmaceutical compositions
NZ589750A (en) 2004-10-21 2012-07-27 Aptalis Pharmatech Inc Taste-masked pharmaceutical compositions with gastrosoluble pore-formers
EA200701065A1 (en) * 2004-11-16 2007-12-28 Элан Фарма Интернэшнл Лтд. INJECTABLE COMPOSITIONS CONTAINING NANODISPERS Olanzapine
UA89513C2 (en) * 2004-12-03 2010-02-10 Элан Фарма Интернешнл Лтд. Nanoparticulate raloxifene hydrochloride composition
WO2006062875A1 (en) * 2004-12-08 2006-06-15 Merck & Co., Inc. Ophthalmic nanoparticulate formulation of a cyclooxygenase-2 selective inhibitor
JP2008524239A (en) * 2004-12-15 2008-07-10 エラン ファーマ インターナショナル リミティド Nanoparticulate tacrolimus formulation
US20060159767A1 (en) * 2004-12-22 2006-07-20 Elan Pharma International Limited Nanoparticulate bicalutamide formulations
AU2012201630B8 (en) * 2004-12-31 2014-03-06 Iceutica Pty Ltd NanoParticle Composition(s) and Method for Synthesis Thereof
EP1835890A2 (en) * 2005-01-06 2007-09-26 Elan Pharma International Limited Nanoparticulate candesartan formulations
AU2006214443C1 (en) 2005-02-15 2011-11-24 Alkermes Pharma Ireland Limited Aerosol and injectable formulations of nanoparticulate benzodiazepine
WO2006099121A2 (en) * 2005-03-10 2006-09-21 Elan Pharma International Limited Formulations of a nanoparticulate finasteride, dutasteride and tamsulosin hydrochloride, and mixtures thereof
CA2601179A1 (en) * 2005-03-16 2006-09-21 Elan Pharma International Limited Nanoparticulate leukotriene receptor antagonist/corticosteroid formulations
JP2008533173A (en) * 2005-03-17 2008-08-21 エラン ファーマ インターナショナル リミテッド Nanoparticulate bisphosphonate composition
KR20070121786A (en) * 2005-03-23 2007-12-27 엘란 파마 인터내셔널 리미티드 Nanoparticulate corticosteroid and antihistamine formulations
BRPI0607537A2 (en) * 2005-04-12 2009-09-15 Elan Pharma Int Ltd nanoparticulate quinazoline derivative formulations
CN101171000A (en) * 2005-04-12 2008-04-30 依兰药物国际有限公司 Nanoparticulate and controlled release compositions comprising cyclosporine
US20060246141A1 (en) * 2005-04-12 2006-11-02 Elan Pharma International, Limited Nanoparticulate lipase inhibitor formulations
US9161918B2 (en) 2005-05-02 2015-10-20 Adare Pharmaceuticals, Inc. Timed, pulsatile release systems
JP2009517485A (en) 2005-06-08 2009-04-30 エラン・ファルマ・インターナショナル・リミテッド Nanoparticulate and controlled release compositions containing cefditoren
CA2617557A1 (en) 2005-08-04 2007-02-15 Sirtris Pharmaceuticals, Inc. Benzimidazole derivatives as sirtuin modulators
JP2009508859A (en) 2005-09-15 2009-03-05 エラン ファーマ インターナショナル リミテッド Nanoparticulate aripiprazole formulation
KR20080070848A (en) * 2005-11-03 2008-07-31 레드포인트 바이오 코포레이션 Hydrazone derivatives and uses thereof
US7811604B1 (en) 2005-11-14 2010-10-12 Barr Laboratories, Inc. Non-effervescent, orally disintegrating solid pharmaceutical dosage forms comprising clozapine and methods of making and using the same
EA017290B1 (en) * 2005-11-28 2012-11-30 Домейн Раша Инвестментс Лимитед Ganaxolone-based formulations
JP3884056B1 (en) * 2006-01-27 2007-02-21 秋山錠剤株式会社 Method for producing intraoral rapidly disintegrating tablet
US8367112B2 (en) * 2006-02-28 2013-02-05 Alkermes Pharma Ireland Limited Nanoparticulate carverdilol formulations
US20070243248A1 (en) * 2006-04-14 2007-10-18 Cherukuri S Rao Rapidly disintegrating solid oral dosage form of liquid dispersions
US8226949B2 (en) 2006-06-23 2012-07-24 Aegis Therapeutics Llc Stabilizing alkylglycoside compositions and methods thereof
AU2007265452A1 (en) * 2006-06-26 2008-01-03 Mutual Pharmaceutical Company, Inc. Active agent formulations, methods of making, and methods of use
JP5508003B2 (en) * 2006-06-30 2014-05-28 アイスイティカ ピーティーワイ リミテッド Process for the preparation of biologically active compounds in nanoparticulate form
EP1891938A1 (en) * 2006-07-24 2008-02-27 Cephalon France High dose orally dissolvable/disintegrable lyophilized dosage form
US20080031947A1 (en) * 2006-07-24 2008-02-07 Cima Labs Inc. Orally dissolvable/disintegrable lyophilized dosage forms containing protected
BRPI0716053A2 (en) * 2006-08-22 2013-08-06 Redpoint Bio Corp heterocyclic compounds as sweetener promoters
US8124598B2 (en) 2006-09-14 2012-02-28 Sharon Sageman 7-keto DHEA for psychiatric use
WO2008033545A2 (en) * 2006-09-15 2008-03-20 Redpoint Bio Corporation Triphenylphosphine oxide derivatives and uses thereof
US20080153845A1 (en) * 2006-10-27 2008-06-26 Redpoint Bio Corporation Trpv1 antagonists and uses thereof
JP2010510988A (en) * 2006-11-28 2010-04-08 マリナス ファーマシューティカルズ Nanoparticle formulation, method for producing the same and use thereof
ES2531929T3 (en) * 2006-12-20 2015-03-20 Teva Women's Health, Inc. Solid dosage forms that disintegrate in the mouth that comprise progestin and methods for making and using them
BRPI0808157A2 (en) * 2007-02-02 2014-07-01 Redpoint Bio Corp USE OF TRPM5 INHIBITOR FOR REGULATING INSULIN AND GLP-1 RELEASE
JP3967767B1 (en) * 2007-02-08 2007-08-29 秋山錠剤株式会社 Method for producing intraoral rapidly disintegrating tablet
KR20090129998A (en) 2007-02-11 2009-12-17 맵 파마슈티컬스, 인코포레이티드 Method of therapeutic administration of dhe to enable rapid relief of migraine while minimizing side effect profile
US20090004231A1 (en) 2007-06-30 2009-01-01 Popp Shane M Pharmaceutical dosage forms fabricated with nanomaterials for quality monitoring
US8968709B2 (en) 2007-07-25 2015-03-03 3M Innovative Properties Company Therapeutic dental composition and related methods
US20100160274A1 (en) * 2007-09-07 2010-06-24 Sharon Sageman 7-KETO DHEA for Psychiatric Use
WO2009082478A1 (en) 2007-12-20 2009-07-02 Duramed Pharmaceuticals, Inc. Dosage regimens and pharmaceutical compositions and packages for emergency contraception
CA2756690C (en) 2008-03-28 2016-08-16 Hale Biopharma Ventures, Llc Administration of benzodiazepine compositions
WO2009124357A1 (en) * 2008-04-10 2009-10-15 Malvin Leonard Eutick Fast dissolving oral formulations for critical drugs
EP2293779A1 (en) * 2008-04-24 2011-03-16 Evestra, Inc. Oral contraceptive dosage forms comprising a progestogen dispersed in an enteric polymer and further comprising an estrogen
TR201808694T4 (en) * 2008-06-20 2018-07-23 Merck Patent Gmbh Direct compressible and fast disintegrating tablet matrix.
DE102008047910A1 (en) 2008-09-19 2010-03-25 Molkerei Meggle Wasserburg Gmbh & Co. Kg Tabletting excipient based on lactose and cellulose
CA2750216A1 (en) * 2008-12-15 2010-07-08 Fleming And Company, Pharmaceuticals Rapidly dissolving vitamin formulation and methods of using the same
US8440631B2 (en) 2008-12-22 2013-05-14 Aegis Therapeutics, Llc Compositions for drug administration
US20100159010A1 (en) * 2008-12-24 2010-06-24 Mutual Pharmaceutical Company, Inc. Active Agent Formulations, Methods of Making, and Methods of Use
AU2010239081C1 (en) 2009-04-24 2014-11-06 Iceutica Pty Ltd A novel formulation of indomethacin
EP2253306A1 (en) 2009-05-18 2010-11-24 Royal College of Surgeons in Ireland Orodispersible dosage forms containing solid drug dispersions
FR2945950A1 (en) 2009-05-27 2010-12-03 Elan Pharma Int Ltd ANTICANCER NANOPARTICLE COMPOSITIONS AND METHODS FOR PREPARING THE SAME
AU2010254180B2 (en) 2009-05-27 2015-08-27 Alkermes Pharma Ireland Limited Reduction of flake-like aggregation in nanoparticulate active agent compositions
SG178376A1 (en) 2009-09-04 2012-03-29 Redpoint Bio Corp Sweetness enhancers including rebaudioside a or d
US9775819B2 (en) * 2009-09-16 2017-10-03 R.P. Scherer Technologies, Llc Oral solid dosage form containing nanoparticles and process of formulating the same using fish gelatin
US20120230922A1 (en) 2009-09-22 2012-09-13 Redpoint Bio Corporation Novel Polymorphs of Rebaudioside C and Methods for Making and Using the Same
JP5309262B2 (en) 2009-12-02 2013-10-09 アプタリス ファーマ リミテッド Fexofenadine microcapsule and composition containing the same
WO2011146583A2 (en) 2010-05-19 2011-11-24 Elan Pharma International Limited Nanoparticulate cinacalcet formulations
MX2013002430A (en) 2010-09-01 2013-07-22 Arena Pharm Inc Fast-dissolve dosage forms of 5-ht2c agonists.
US10238684B2 (en) 2010-11-18 2019-03-26 Foundational Biosystems, Llc Micro- and nano-quantity sleep enhancing nutrient composition and method of enhancing central nervous system protein clearance using same
MX350838B (en) 2011-02-11 2017-09-18 Grain Proc Corporation * Salt composition.
WO2012174158A2 (en) 2011-06-14 2012-12-20 Hale Biopharma Ventures, Llc Administration of benzodiazepine
CN103987840A (en) 2011-08-08 2014-08-13 国际香料香精公司 Compositions and methods for the biosynthesis of vanillin or vanillin beta-D-glucoside
TWI526210B (en) * 2012-02-15 2016-03-21 Taiho Pharmaceutical Co Ltd Oral pharmaceutical composition
JP5877778B2 (en) * 2012-05-28 2016-03-08 株式会社ホットアルバム炭酸泉タブレット Tablet manufacturing method and tablet
AU2014226290B2 (en) * 2013-03-04 2018-11-15 Vtv Therapeutics Llc Stable glucokinase activator compositions
JP6304896B2 (en) * 2013-07-30 2018-04-04 ライオン株式会社 tablet
KR20160108828A (en) 2013-11-11 2016-09-20 임팩스 라보라토리즈, 인코포레이티드 Rapidly disintegrating formulations and methods of use
EP2880992A3 (en) 2013-12-05 2015-06-17 International Flavors & Fragrances Inc. Rebaudioside C and its stereoisomers as natural product sweetness enhancers
CN105007904A (en) * 2014-02-07 2015-10-28 科学实验室药物公司 All natural, non-toxic sublingual drug delivery systems
US9526734B2 (en) 2014-06-09 2016-12-27 Iceutica Pty Ltd. Formulation of meloxicam
US10722468B2 (en) * 2014-08-14 2020-07-28 Brown University Compositions for stabilizing and delivering proteins
CN107249567B (en) 2014-11-21 2021-08-03 拜尔哈文制药股份有限公司 Sublingual administration of riluzole
US9925138B2 (en) 2015-01-20 2018-03-27 Handa Pharmaceuticals, Llc Stable solid fingolimod dosage forms
US20170042806A1 (en) 2015-04-29 2017-02-16 Dexcel Pharma Technologies Ltd. Orally disintegrating compositions
US10011629B2 (en) 2015-05-01 2018-07-03 Cocrystal Pharma, Inc. Nucleoside analogs for treatment of the flaviviridae family of viruses and cancer
US11173098B1 (en) 2016-02-05 2021-11-16 Gram Tactical Llc Magazines for tactical medicine dispensers
EP3458053B1 (en) 2016-05-20 2021-12-08 Biohaven Pharmaceutical Holding Company Ltd. Use of riluzole, riluzole prodrugs or riluzole analogs with immunotherapies to treat cancers
US10076494B2 (en) 2016-06-16 2018-09-18 Dexcel Pharma Technologies Ltd. Stable orally disintegrating pharmaceutical compositions
JP2019524816A (en) 2016-08-11 2019-09-05 オービッド・セラピューティクス・インコーポレイテッドOvid Therapeutics, Inc. Methods and compositions for the treatment of epileptic disorders
KR20240031326A (en) 2016-12-31 2024-03-07 바이오엑셀 테라퓨틱스 인코포레이티드 Use of Sublingual Dexmedetomidine for the treatment of Agitation
JP2019077644A (en) * 2017-10-25 2019-05-23 富士フイルム株式会社 Pharmaceutical composition and method of producing pharmaceutical composition
US20210023061A1 (en) 2017-11-12 2021-01-28 Biohaven Pharmaceutical Holding Company Ltd. Use of riluzole prodrugs to treat ataxias
EP3508199A1 (en) * 2018-01-05 2019-07-10 Dompé farmaceutici S.p.A. Immediate-release pharmaceutical compositions containing ketoprofen lysine salt
CA3103431A1 (en) 2018-06-27 2020-01-02 Bioxcel Therapeutics, Inc. Film formulations containing dexmedetomidine and methods of producing them
CN109125775B (en) * 2018-09-25 2021-02-09 广东爱车小屋电子商务科技有限公司 Air freshener with lasting fragrance and preparation method thereof
WO2020118142A1 (en) 2018-12-07 2020-06-11 Marinus Pharmaceuticals, Inc. Ganaxolone for use in prophylaxis and treatment of pospartum depression
CA3145388A1 (en) 2019-07-19 2021-01-28 Bioxcel Therapeutics, Inc. Non-sedating dexmedetomidine treatment regimens
WO2021026124A1 (en) 2019-08-05 2021-02-11 Marinus Pharmaceuticals, Inc. Ganaxolone for use in treatment of status epilepticus
KR20220134529A (en) 2019-12-06 2022-10-05 마리누스 파마슈티컬스 인코포레이티드 Ganaxolone for use in the treatment of complex tuberous sclerosis
WO2021222739A1 (en) 2020-04-30 2021-11-04 Nanocopoeia, Llc Orally disintegrating tablet comprising amorphous solid dispersion of nilotinib
EP3928772A1 (en) 2020-06-26 2021-12-29 Algiax Pharmaceuticals GmbH Nanoparticulate composition
IT202000025885A1 (en) * 2020-10-30 2022-04-30 Vacutest Kima S R L URINE PRESERVATIVE COMPOSITION, URINE SAMPLING DEVICE AND METHOD FOR PRODUCTION OF URINE SAMPLING DEVICE
US11672761B2 (en) 2020-11-16 2023-06-13 Orcosa Inc. Rapidly infusing platform and compositions for therapeutic treatment in humans

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025190A1 (en) * 1992-06-10 1993-12-23 Eastman Kodak Company Surface modified nsaid nanoparticles
WO1996013251A1 (en) * 1994-10-28 1996-05-09 R.P. Scherer Corporation Process for preparing solid pharmaceutical dosage forms of hydrophobic substances
WO1996024336A1 (en) * 1995-02-10 1996-08-15 Nanosystems L.L.C. Nsaid nanoparticles
WO1996024339A1 (en) * 1995-02-09 1996-08-15 Nanosystems L.L.C. Compositions comprising nanoparticles of nsaid
WO2001045674A1 (en) * 1999-12-20 2001-06-28 Cocensys, Inc. Process for producing nanometer particles by fluid bed spray-drying

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2403078A1 (en) 1977-09-19 1979-04-13 Lafon Labor NEW PROCESS FOR THE PREPARATION OF PHARMACEUTICAL, COSMETIC OR DIAGNOSIS FORMS
FR2561916B1 (en) 1984-03-30 1987-12-11 Lafon Labor GALENIC FORM FOR ORAL ADMINISTRATION AND METHOD FOR PREPARING IT BY LYOPHILIZATION OF AN OIL-TO-WATER EMISSION
US4642903A (en) 1985-03-26 1987-02-17 R. P. Scherer Corporation Freeze-dried foam dosage form
FR2634376B1 (en) 1988-07-21 1992-04-17 Farmalyoc NOVEL SOLID AND POROUS UNIT FORM COMPRISING MICROPARTICLES AND / OR NANOPARTICLES, AS WELL AS ITS PREPARATION
US5073374A (en) 1988-11-30 1991-12-17 Schering Corporation Fast dissolving buccal tablet
US5112616A (en) 1988-11-30 1992-05-12 Schering Corporation Fast dissolving buccal tablet
US5219574A (en) 1989-09-15 1993-06-15 Cima Labs. Inc. Magnesium carbonate and oil tableting aid and flavoring additive
US5178878A (en) 1989-10-02 1993-01-12 Cima Labs, Inc. Effervescent dosage form with microparticles
US5223264A (en) 1989-10-02 1993-06-29 Cima Labs, Inc. Pediatric effervescent dosage form
US5188825A (en) 1989-12-28 1993-02-23 Iles Martin C Freeze-dried dosage forms and methods for preparing the same
US5399363A (en) 1991-01-25 1995-03-21 Eastman Kodak Company Surface modified anticancer nanoparticles
AU642066B2 (en) 1991-01-25 1993-10-07 Nanosystems L.L.C. X-ray contrast compositions useful in medical imaging
US5145684A (en) * 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
US5552160A (en) 1991-01-25 1996-09-03 Nanosystems L.L.C. Surface modified NSAID nanoparticles
US5464632C1 (en) 1991-07-22 2001-02-20 Prographarm Lab Rapidly disintegratable multiparticular tablet
DE4203932A1 (en) 1992-02-11 1993-08-12 Deutsche Aerospace SEND / RECEIVE MODULE
JPH07112936A (en) * 1992-04-27 1995-05-02 Philippe Perovich Preparation of component for medical treatment, especially component based on aspirin
AU660852B2 (en) 1992-11-25 1995-07-06 Elan Pharma International Limited Method of grinding pharmaceutical substances
US5429824A (en) 1992-12-15 1995-07-04 Eastman Kodak Company Use of tyloxapole as a nanoparticle stabilizer and dispersant
US5503846A (en) 1993-03-17 1996-04-02 Cima Labs, Inc. Base coated acid particles and effervescent formulation incorporating same
ATE208615T1 (en) 1993-07-09 2001-11-15 Scherer Corp R P METHOD FOR PRODUCING FREEZE-DRIED MEDICINAL DOSAGE FORMS
US5895664A (en) 1993-09-10 1999-04-20 Fuisz Technologies Ltd. Process for forming quickly dispersing comestible unit and product therefrom
US5851553A (en) 1993-09-10 1998-12-22 Fuisz Technologies, Ltd. Process and apparatus for making rapidly dissolving dosage units and product therefrom
US5622719A (en) 1993-09-10 1997-04-22 Fuisz Technologies Ltd. Process and apparatus for making rapidly dissolving dosage units and product therefrom
US5595761A (en) 1994-01-27 1997-01-21 The Board Of Regents Of The University Of Oklahoma Particulate support matrix for making a rapidly dissolving tablet
US5576014A (en) 1994-01-31 1996-11-19 Yamanouchi Pharmaceutical Co., Ltd Intrabuccally dissolving compressed moldings and production process thereof
GB9401892D0 (en) * 1994-02-01 1994-03-30 Boots Co Plc Therapeutic agents
US5635210A (en) 1994-02-03 1997-06-03 The Board Of Regents Of The University Of Oklahoma Method of making a rapidly dissolving tablet
US5718388A (en) 1994-05-25 1998-02-17 Eastman Kodak Continuous method of grinding pharmaceutical substances
TW384224B (en) 1994-05-25 2000-03-11 Nano Sys Llc Method of preparing submicron particles of a therapeutic or diagnostic agent
US5567439A (en) 1994-06-14 1996-10-22 Fuisz Technologies Ltd. Delivery of controlled-release systems(s)
US5639475A (en) 1995-02-03 1997-06-17 Eurand America, Incorporated Effervescent microcapsules
US5510118A (en) 1995-02-14 1996-04-23 Nanosystems Llc Process for preparing therapeutic compositions containing nanoparticles
US5747001A (en) 1995-02-24 1998-05-05 Nanosystems, L.L.C. Aerosols containing beclomethazone nanoparticle dispersions
US5607697A (en) 1995-06-07 1997-03-04 Cima Labs, Incorporated Taste masking microparticles for oral dosage forms
US5807578A (en) 1995-11-22 1998-09-15 Lab Pharmaceutical Research International Inc. Fast-melt tablet and method of making same
US5807577A (en) 1995-11-22 1998-09-15 Lab Pharmaceutical Research International Inc. Fast-melt tablet and method of making same
DE69739967D1 (en) * 1996-06-14 2010-09-30 Kyowa Hakko Kirin Co Ltd A rapidly disintegrating tablet in the mouth
US5972389A (en) * 1996-09-19 1999-10-26 Depomed, Inc. Gastric-retentive, oral drug dosage forms for the controlled-release of sparingly soluble drugs and insoluble matter
EP1007012A4 (en) 1996-10-01 2006-01-18 Cima Labs Inc Taste-masked microcapsule compositions and methods of manufacture
US6045829A (en) * 1997-02-13 2000-04-04 Elan Pharma International Limited Nanocrystalline formulations of human immunodeficiency virus (HIV) protease inhibitors using cellulosic surface stabilizers
US6024981A (en) 1997-04-16 2000-02-15 Cima Labs Inc. Rapidly dissolving robust dosage form
US5869098A (en) 1997-08-20 1999-02-09 Fuisz Technologies Ltd. Fast-dissolving comestible units formed under high-speed/high-pressure conditions
JP3182404B2 (en) * 1998-01-14 2001-07-03 大日本製薬株式会社 Orally disintegrating tablet and method for producing the same
CA2525555A1 (en) * 1998-07-28 2000-02-10 Takeda Pharmaceutical Company Limited Rapidly disintegrable solid preparation
US6165506A (en) * 1998-09-04 2000-12-26 Elan Pharma International Ltd. Solid dose form of nanoparticulate naproxen
JP3435664B2 (en) * 1999-12-08 2003-08-11 ヤンセンファーマ株式会社 Oral fast disintegrating tablet and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025190A1 (en) * 1992-06-10 1993-12-23 Eastman Kodak Company Surface modified nsaid nanoparticles
WO1996013251A1 (en) * 1994-10-28 1996-05-09 R.P. Scherer Corporation Process for preparing solid pharmaceutical dosage forms of hydrophobic substances
WO1996024339A1 (en) * 1995-02-09 1996-08-15 Nanosystems L.L.C. Compositions comprising nanoparticles of nsaid
WO1996024336A1 (en) * 1995-02-10 1996-08-15 Nanosystems L.L.C. Nsaid nanoparticles
WO2001045674A1 (en) * 1999-12-20 2001-06-28 Cocensys, Inc. Process for producing nanometer particles by fluid bed spray-drying

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7815937B2 (en) 1998-10-27 2010-10-19 Biovail Laboratories International Srl Quick dissolve compositions and tablets based thereon
WO2002015885A3 (en) * 2000-08-18 2003-08-28 Pharmacia Corp Oral fast-melt formulation of a cyclooxygenase-2 inhibitor
WO2002015885A2 (en) * 2000-08-18 2002-02-28 Pharmacia Corporation Oral fast-melt formulation of a cyclooxygenase-2 inhibitor
US9700866B2 (en) 2000-12-22 2017-07-11 Baxter International Inc. Surfactant systems for delivery of organic compounds
US8067032B2 (en) 2000-12-22 2011-11-29 Baxter International Inc. Method for preparing submicron particles of antineoplastic agents
WO2003026697A3 (en) * 2001-09-26 2003-07-03 Pharmacia Corp Organoleptically acceptable intraorally disintegrating compositions
US6835396B2 (en) 2001-09-26 2004-12-28 Baxter International Inc. Preparation of submicron sized nanoparticles via dispersion lyophilization
WO2003026697A2 (en) * 2001-09-26 2003-04-03 Pharmacia Corporation Organoleptically acceptable intraorally disintegrating compositions
WO2003026623A1 (en) * 2001-09-26 2003-04-03 Pharmacia Corporation Intraorally disintegrating valdecoxib compositions
US8722091B2 (en) 2001-09-26 2014-05-13 Baxter International Inc. Preparation of submicron sized nanoparticles via dispersion lyophilization
WO2003030876A1 (en) * 2001-10-10 2003-04-17 Pharmacia Corporation Intraorally disintegrating valdecoxib compositions prepared by spray drying process
JP2011079864A (en) * 2002-06-21 2011-04-21 Biovail Lab Internatl Srl Quick dissolve compositions and tablets based thereon
JP4878839B2 (en) * 2002-09-11 2012-02-15 エラン ファーマ インターナショナル,リミティド Gel-stabilized nanoparticle active substance composition
US8349361B2 (en) 2003-10-15 2013-01-08 Fuji Chemical Industry Co., Ltd. Composition for rapid disintegrating tablet in oral cavity
US7838033B2 (en) 2003-10-15 2010-11-23 Fuji Chemical Industry Co., Ltd. Composition for rapid disintegrating tablet in oral cavity
US11497736B2 (en) 2005-04-08 2022-11-15 Ptc Therapeutics, Inc. Compositions for an orally active 1,2,4-oxadiazole for the treatment of disease
EP1935405A1 (en) * 2006-12-22 2008-06-25 LEK Pharmaceuticals D.D. Orally disintegrating tablets
US10047072B2 (en) 2013-09-16 2018-08-14 Astrazeneca Ab Therapeutic polymeric nanoparticles and methods of making and using same
US10577351B2 (en) 2013-09-16 2020-03-03 Astrazeneca Ab Therapeutic polymeric nanoparticles and methods of making and using same
US11737980B2 (en) 2020-05-18 2023-08-29 Orexo Ab Pharmaceutical composition for drug delivery
US11957647B2 (en) 2021-11-25 2024-04-16 Orexo Ab Pharmaceutical composition comprising adrenaline

Also Published As

Publication number Publication date
EP1282399B1 (en) 2006-07-19
DE60121570T2 (en) 2007-07-05
CA2408848A1 (en) 2001-11-22
CA2408848C (en) 2009-07-21
EP1282399A2 (en) 2003-02-12
JP2003533465A (en) 2003-11-11
JP2011037876A (en) 2011-02-24
WO2001087264A3 (en) 2002-06-20
ATE333265T1 (en) 2006-08-15
DE60121570D1 (en) 2006-08-31
AU2001263228A1 (en) 2001-11-26
US6316029B1 (en) 2001-11-13

Similar Documents

Publication Publication Date Title
EP1282399B1 (en) Rapidly disintegrating solid oral dosage form
US20080213371A1 (en) Rapidly disintegrating solid oral dosage form
US8293277B2 (en) Controlled-release nanoparticulate compositions
CA2346001C (en) Controlled release nanoparticulate compositions
Goel et al. Orally disintegrating systems: innovations in formulation and technology
US6592903B2 (en) Nanoparticulate dispersions comprising a synergistic combination of a polymeric surface stabilizer and dioctyl sodium sulfosuccinate
CA2479735C (en) Fast dissolving dosage forms having reduced friability
JP2017075182A (en) Composition having combination of immediate release and controlled release properties
US20040156895A1 (en) Solid dosage forms comprising pullulan
EP2133096A2 (en) Oral disintegrating tablet
JP2016529314A (en) Corticosteroid-containing orally disintegrating tablet composition for eosinophilic esophagitis
US20070243248A1 (en) Rapidly disintegrating solid oral dosage form of liquid dispersions
JPH11116464A (en) Rapidly dissolvable solid preparation and its production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2408848

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2001937497

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10276400

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001937497

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001937497

Country of ref document: EP