WO2001092936A1 - Method and device for encapsulating an optical fibre component - Google Patents

Method and device for encapsulating an optical fibre component Download PDF

Info

Publication number
WO2001092936A1
WO2001092936A1 PCT/FR2001/001655 FR0101655W WO0192936A1 WO 2001092936 A1 WO2001092936 A1 WO 2001092936A1 FR 0101655 W FR0101655 W FR 0101655W WO 0192936 A1 WO0192936 A1 WO 0192936A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
support substrate
thermosetting material
drop
optical fiber
Prior art date
Application number
PCT/FR2001/001655
Other languages
French (fr)
Inventor
Laurent Lablonde
Michel Boitel
Bruno Leguen
Original Assignee
Highwave Optical Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Highwave Optical Technologies filed Critical Highwave Optical Technologies
Priority to AU74140/01A priority Critical patent/AU7414001A/en
Priority to EP01940619A priority patent/EP1290478A1/en
Publication of WO2001092936A1 publication Critical patent/WO2001092936A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02195Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating
    • G02B6/022Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating using mechanical stress, e.g. tuning by compression or elongation, special geometrical shapes such as "dog-bone" or taper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables

Definitions

  • the present invention relates to the field of optical fibers, and in particular optical fibers comprising integrated components.
  • Optical fibers with integrated components are destined for great development and many industrial applications in the years to come.
  • components are particularly destined to play an important role as a sensor or in telecommunications networks [1].
  • such components can be used in the form of frequency filters, such as Bragg gratings [2] or filters for transmission lines [3].
  • Bragg grating filters or couplers are examples of components integrated into optical fibers.
  • a fiber support for the purpose, for example, of protecting a component, of stabilizing it in temperature [4], [5], [6] or of tuning a filter in wave length -
  • the glass brazing requires a special glass whose coefficient of expansion is close to the silica of the fiber with a melting temperature lower than the silica. This technique is therefore very restrictive.
  • a Bragg grating Used in a transmission line based on wavelength multiplexing [9], a Bragg grating must have a precise wavelength better than 50 ⁇ m. This precision must take into account the thermal drift of the filter or other environmental factors. The different stages followed by the Bragg grating during its manufacture (registration, effect of the diffusion of hydrogen) do not always make it possible to obtain sufficiently precise control of its wavelength. Each step brings a shift in wavelength marred by a significant uncertainty. Therefore, those skilled in the art know that it is necessary to adjust the wavelength of the Bragg grating, lastly, when fixing the optical fiber integrating the component, on a substrate.
  • the adjustment, during the fixing step, of a Bragg grating is based on the linear response of the wavelength with an axial mechanical stress.
  • a tensile stress of 1/1000 on the fiber leads to a shift of the Bragg wavelength of +1.2 nm around 1.55 ⁇ m [2].
  • a known method for carrying out this adjustment operation consists in using a support making it possible to adjust this constraint. The miniaturization of the support, in fact more complex, is then limited.
  • Another known method consists in applying a stress with a bench and to freeze this stress value by using glue on the support or any other fixing means.
  • thermosetting epoxy resins are common for fixing optical fibers, especially for this application.
  • the support and the bench heated, expand. This leads to a non-reproducible shift in the wavelength of the filter. This phenomenon was observed during bonding of a Bragg grating on a temperature compensation support or on a piezoelectric support.
  • the standard deviation of the measured wavelength offsets is 97 ⁇ m. This standard deviation, obtained by baking in the oven, is too large to ensure precise aiming at wavelength.
  • thermosetting resins used for fixing the optical fibers can modify the optical function of the component and complicate the handling of the samples (supports taken out of an oven for example ).
  • specialists today are not satisfied with the known techniques for fixing fibers, in particular using thermosetting resins, and are actively looking for new solutions.
  • the present invention now aims to propose new means for fixing an optical fiber on a support substrate to improve the performance of devices based on optical fibers, in particular optical fibers comprising integrated components.
  • An important aim of the present invention is in particular to propose means making it possible to freeze the wavelength of a Bragg grating at a precise value.
  • a method for manufacturing a device based on optical fiber in particular an optical fiber comprising an integrated component, consisting in:. depositing at least one drop of thermosetting material on a chosen area of a support substrate,
  • thermosetting material a chosen area of an optical fiber
  • the polymerization step consists in applying a localized laser beam to the drop of thermosetting material.
  • the use of a laser beam to ensure polymerization makes it possible to limit the heating by drop of thermosetting material or resin and to its very close environment, and in particular makes it possible to avoid heating. of the entire support substrate.
  • thermosetting material is advantageously an epoxy resin.
  • the support substrate is formed from a material having a high thermal resistance.
  • the present invention also relates to a system for implementing the above method, as well as the devices thus obtained.
  • FIG. 1 appended represents a bench according to the present invention, for fixing fiber on a support substrate by polymerization of a resin using a CO2 laser,
  • FIG. 2 represents a device in accordance with the present invention, comprising a support substrate capable of providing thermal compensation for a Bragg grating by assembly with a negative expansion coefficient
  • FIG. 3 shows another device in accordance with the present invention based on a support, most of which is unsuitable for polymerization by CO2 laser.
  • FIG. 4 represents another variant of a device in accordance with the present invention using an arrangement allowing tuning, by electrical control, of the wavelength of a Bragg grating, and.
  • FIG. 5 represents a histogram of the total shift of the wavelength observed on a device in accordance with FIG. 4, after polymerization of the epoxy resin.
  • FIG. 1 shows a polymerization bench in accordance with the present invention, suitable for locally heating a fiber support 10, in order to polymerize thermosetting resins 20 used for fixing an optical fiber 30, without heating the assembly of the assembly.
  • the support 10 can for example be made of silica.
  • the bench illustrated in Figure 1 is designed for bonding components integrated into optical fibers, on a substrate.
  • the optical fiber 30 to be fixed is plated on the substrate 10.
  • a drop of thermosetting resin 20 is placed on the substrate and coats the fiber 30.
  • the resin 20 is polymerized by means of a laser 40.
  • the beam 42 coming from the laser 40 may or may not be focused by a lens 44, on the resin 20.
  • the localized absorption of the laser radiation by the support 10 causes the heating necessary to reach the polymerization temperature of the resin 20.
  • the support 10 must have a sufficiently high thermal resistance to avoid thermal propagation in the support and thus avoid a general heating of the support 10, likely to be a source of disturbance for the optical function.
  • metal substrates are to be banned.
  • the substrate 10 can be produced for example based on ceramic or glass.
  • the process according to the present invention uses a thermosetting resin as a fixing means and a polymerization thereof by laser heating. This process allows localized firing of the support to polymerize the glue without heating the entire support, a source of non-reproducible shift in wavelength.
  • FIG. 2 shows the case of a temperature stabilization support 10, on which an optical fiber 30 is fixed at two points 32, 34, spaced along its length.
  • the thermal stabilization function is provided by an assembly 10 whose coefficient of equivalent thermal expansion between the 2 fixing points 32 and 34, serves to counterbalance the thermal response of the filter integrated on the fiber 30.
  • the support 10 consists of 2 elements 12, 16 formed using different materials.
  • a first element 12 has the general shape of an L, comprising a base 13 provided at one end with a protrusion 14 on which is fixed a first zone of the fiber 30 at a point 32.
  • the second element 16, fixed on the base 13, is generally symmetrical with the protrusion 14 and receives the fiber 30 at the second attachment point 34.
  • the material composing the first element 12 has a lower coefficient of expansion than the material composing the second element 16.
  • the material 16 can typically be aluminum, while the material
  • the 12 is typically a material of low thermal expansion, for example a ceramic or a glass ceramic.
  • thermosetting resin 32, 34 is deposited respectively on the protrusion 14 and on the element 16, the fiber under controlled traction is brought into contact with these drops of resin, then the resin 32, 34 is polymerized. More specifically, the drop 34 carried by the element 16 is polymerized first using any suitable means, then the drop 32 carried by the protrusion 14 is polymerized by localized heating with the laser, preferably a CO2 laser. The location of the heat source combined with the characteristic of the material
  • the element 12 may be metallic, subject to depositing on this element 12, at the connection zone 32, a ceramic or glass plate (or equivalent) 18 (as has been illustrated in figure 3).
  • a ceramic or glass plate (or equivalent) 18 as has been illustrated in figure 3. The results obtained are indicated, for the 2 types of assembly corresponding respectively to FIGS. 2 and 3, in tables 1 and 2 below.
  • the support 10 can be formed from a piezoelectric material to allow tuning in wavelength by electrical control.
  • the device comprises a support substrate 10 formed from a piezoelectric ceramic which carries an optical fiber 30 fixed to the substrate 10 by two drops of polymerized resin 32, 34.
  • the fiber 30 being fixed at the 2 ends 32 and 34, when an electrical voltage is applied to the terminals of the cables 19 driving the piezo ceramic electric, the wavelength of the Bragg grating carried by the fiber 30 is shifted by mechanical traction.
  • plates 18 of ceramic glass can be inserted between the bonding point 32, 34 and the piezo ceramic 10.
  • FIG. 4 thus illustrates a device in accordance with the present invention comprising a support substrate 10 formed from a piezoelectric ceramic which carries two plates 18 of ceramic glass, which themselves carry an optical fiber 30 fixed on the plates 18 by two drops of polymerized resin 32, 34.
  • the wavelength shift observed on a device according to the present invention thus formed of the type illustrated in FIG. 4, is in this case included in a range of 70 ⁇ m.
  • the result is shown in Figure 5 in the form of a histogram.
  • the present invention is not limited to the particular application variants described above, but can find application in general to all integrated components for which the axial stress on the fiber must be adjusted to a precise value.

Abstract

The invention concerns a method for making an optical fibre device (30), in particular an optical fibre comprising an integrated component which consists in: depositing at least a drop of thermosetting material (32, 34) on a selected zone of a support substrate (10); contacting with said thermosetting material (32, 34), a selected zone of an optical fibre (30), and polymerising the material (32, 34), to cause the fibre (30) to be fixed on the support substrate (10). The invention is characterised in that the polymerising step consists in locally applying a laser beam (42) on the drop of thermosetting material.

Description

PROCEDE ET DISPOSITIF DE CONDITIONNEMENT DE COMPOSANT A FIBRES OPTIQUESMETHOD AND DEVICE FOR PACKAGING OPTICAL FIBER COMPONENT
La présente invention concerne le domaine des fibres optiques, et en particulier des fibres optiques comprenant des composants intégrés. Les fibres optiques comprenant des composants intégrés sont vouées à un grand développement et de nombreuses applications industrielles dans les années à venir.The present invention relates to the field of optical fibers, and in particular optical fibers comprising integrated components. Optical fibers with integrated components are destined for great development and many industrial applications in the years to come.
Ces composants sont voués notamment à jouer un rôle important en tant que capteur ou dans les réseaux de télécommunications [1]. Tout particulièrement de tels composants peuvent être utilisés sous forme de filtres fréquentiels, comme des réseaux de Bragg [2] ou de filtres pour lignes de transmission [3].These components are particularly destined to play an important role as a sensor or in telecommunications networks [1]. In particular, such components can be used in the form of frequency filters, such as Bragg gratings [2] or filters for transmission lines [3].
La plupart des dispositifs formés à base de fibres optiques incorporant des composants intégrés requièrent la fixation des fibres optiques sur un substrat support.Most devices formed from optical fibers incorporating integrated components require the fixing of optical fibers on a support substrate.
De nombreuses techniques de fixation ont été proposées à cette fin et ce domaine a déjà donné lieu à une littérature très abondante.Many fixation techniques have been proposed for this purpose and this field has already given rise to a very abundant literature.
Cependant aucune technique connue ne donne encore pleinement satisfaction.However, no known technique is yet fully satisfactory.
Les filtres à réseaux de Bragg ou les coupleurs sont des exemples de composants intégrés dans des fibres optiques. Pour de tels dispositifs, il est utile de recourir à un support de fibre dans le but, par exemple, de protéger un composant, de le stabiliser en température [4], [5], [6] ou d'accorder un filtre en longueur d'onde -Bragg grating filters or couplers are examples of components integrated into optical fibers. For such devices, it is useful to use a fiber support for the purpose, for example, of protecting a component, of stabilizing it in temperature [4], [5], [6] or of tuning a filter in wave length -
Différentes techniques de fixation de la fibre sur le support ont été proposées pour ces applications, telles qu'une fixation mécanique, un collage ou une brasure verre [8].Different techniques for fixing the fiber to the support have been proposed for these applications, such as mechanical fixing, bonding or glass brazing [8].
Cependant les fixations mécaniques sont difficiles à mettre en œuvre et limitent la taille minimale du composant.However, mechanical fasteners are difficult to implement and limit the minimum size of the component.
Quant à la brasure verre, elle nécessite un verre spécial dont le coefficient de dilatation est proche de la silice de la fibre avec une température de fusion inférieure à la silice. Cette technique est donc très contraignante.As for the glass brazing, it requires a special glass whose coefficient of expansion is close to the silica of the fiber with a melting temperature lower than the silica. This technique is therefore very restrictive.
L'homme de l'art sait en particulier que la longueur d'onde centrale d'un filtre fréquentiel doit être ajustée d'autant plus précisément que la largeur spectrale du filtre est étroite. Utilisé dans une ligne de transmission basée sur le multiplexage en longueur d'onde [9], un réseau de Bragg doit avoir une longueur d'onde précise à mieux que 50 pm. Cette précision doit prendre en compte la dérive thermique du filtre ou d'autres facteurs environnementaux. Les différentes étapes suivies par le réseau de Bragg lors de sa fabrication (inscription, effet de la diffusion d'hydrogène) ne permettent pas toujours d'obtenir un contrôle suffisamment précis de sa longueur d'onde. Chaque étape amène un décalage en longueur d'onde entaché d'une incertitude non négligeable. De ce fait l'homme de l'art sait qu'il est nécessaire d'ajuster la longueur d'onde du réseau de Bragg, en dernier lieu, lors de la fixation de la fibre optique intégrant le composant, sur un substrat.Those skilled in the art know in particular that the central wavelength of a frequency filter must be adjusted all the more precisely as the spectral width of the filter is narrow. Used in a transmission line based on wavelength multiplexing [9], a Bragg grating must have a precise wavelength better than 50 µm. This precision must take into account the thermal drift of the filter or other environmental factors. The different stages followed by the Bragg grating during its manufacture (registration, effect of the diffusion of hydrogen) do not always make it possible to obtain sufficiently precise control of its wavelength. Each step brings a shift in wavelength marred by a significant uncertainty. Therefore, those skilled in the art know that it is necessary to adjust the wavelength of the Bragg grating, lastly, when fixing the optical fiber integrating the component, on a substrate.
L'ajustement, lors de l'étape de fixation, d'un réseau de Bragg, s'appuie sur la réponse linéaire de la longueur d'onde avec une contrainte mécanique axiale. Une contrainte en traction de 1/1000 sur la fibre entraîne un décalage de la longueur d'onde de Bragg de +1,2 nm autour de 1,55 μm [2]. Une méthode connue pour réaliser cette opération d'ajustement, consiste à utiliser un support permettant de régler cette contrainte. La miniaturisation du support, de fait plus complexe, en est alors limitée.The adjustment, during the fixing step, of a Bragg grating, is based on the linear response of the wavelength with an axial mechanical stress. A tensile stress of 1/1000 on the fiber leads to a shift of the Bragg wavelength of +1.2 nm around 1.55 μm [2]. A known method for carrying out this adjustment operation consists in using a support making it possible to adjust this constraint. The miniaturization of the support, in fact more complex, is then limited.
Une autre méthode connue consiste à appliquer une contrainte avec un banc et à figer cette valeur de contrainte en utilisant de la colle sur le support ou tout autre moyen de fixation.Another known method consists in applying a stress with a bench and to freeze this stress value by using glue on the support or any other fixing means.
L'utilisation de résines époxydes thermodurcissables est courante, pour la fixation des fibres optiques, notamment pour cette application. Cependant, lors de la polymérisation par convection (four) ou conduction (plaque chauffante), le support et le banc, échauffés, se dilatent. Ceci amène à un décalage non reproductible de la longueur d'onde du filtre. Ce phénomène a été constaté lors du collage d'un réseau de Bragg sur un support de compensation en température ou sur un support piézoélectrique. Sur un support de compensation en température, l'écart type des décalages en longueur d'onde mesurés est de 97 pm. Cet écart type, obtenu par cuisson au four, est trop important pour assurer une visée précise en longueur d'onde. Plus généralement il a été constaté que le chauffage du support occasionné lors de la polymérisation des résines thermodurcissables utilisées pour la fixation des fibres optiques, peut modifier la fonction optique du composant et compliquer la manipulation des échantillons (supports à sortir d'un four par exemple). Pour ces raisons, les spécialistes ne sont pas satisfaits de nos jours des techniques connues de fixation de fibres, notamment à l'aide de résines thermodurcissables, et recherchent activement de nouvelles solutions.The use of thermosetting epoxy resins is common for fixing optical fibers, especially for this application. However, during polymerization by convection (oven) or conduction (hot plate), the support and the bench, heated, expand. This leads to a non-reproducible shift in the wavelength of the filter. This phenomenon was observed during bonding of a Bragg grating on a temperature compensation support or on a piezoelectric support. On a temperature compensation medium, the standard deviation of the measured wavelength offsets is 97 µm. This standard deviation, obtained by baking in the oven, is too large to ensure precise aiming at wavelength. More generally, it has been found that the heating of the support caused during the polymerization of the thermosetting resins used for fixing the optical fibers, can modify the optical function of the component and complicate the handling of the samples (supports taken out of an oven for example ). For these reasons, specialists today are not satisfied with the known techniques for fixing fibers, in particular using thermosetting resins, and are actively looking for new solutions.
La présente invention a maintenant pour but de proposer de nouveaux moyens permettant de fixer une fibre optique sur un substrat support pour améliorer les performances des dispositifs à base de fibres optiques, notamment de fibres optiques comportant des composants intégrés.The present invention now aims to propose new means for fixing an optical fiber on a support substrate to improve the performance of devices based on optical fibers, in particular optical fibers comprising integrated components.
Un but important de la présente invention est en particulier de proposer des moyens permettant de figer la longueur d'onde d'un réseau de Bragg à une valeur précise.An important aim of the present invention is in particular to propose means making it possible to freeze the wavelength of a Bragg grating at a precise value.
Les buts précités sont atteints dans le cadre de la présente invention, grâce à un procédé de fabrication d'un dispositif à base de fibre optique, notamment d'une fibre optique comportant un composant intégré, consistant à : . déposer au moins une goutte de matériau thermoducissable sur une zone choisie d'un substrat support,The aforementioned aims are achieved within the framework of the present invention, by means of a method for manufacturing a device based on optical fiber, in particular an optical fiber comprising an integrated component, consisting in:. depositing at least one drop of thermosetting material on a chosen area of a support substrate,
. mettre en contact avec ce matériau thermoducissable, une zone choisie d'une fibre optique, et. bringing into contact with this thermosetting material, a chosen area of an optical fiber, and
. assurer la polymérisation du matériau, pour assurer la fixation de la fibre sur le substrat support, caractérisé par le fait que l'étape de polymérisation consiste à appliquer un faisceau laser localisé sur la goutte de matériau thermodurcissable.. ensuring the polymerization of the material, to ensure the fixing of the fiber on the support substrate, characterized in that the polymerization step consists in applying a localized laser beam to the drop of thermosetting material.
Comme on le précisera par la suite, l'utilisation d'un faisceau laser pour assurer la polymérisation, permet de limiter le chauffage à la goutte de matériau ou résine thermodurcissable et à son très proche environnement, et en particulier permet d'éviter un chauffage de l'ensemble du substrat support.As will be specified below, the use of a laser beam to ensure polymerization makes it possible to limit the heating by drop of thermosetting material or resin and to its very close environment, and in particular makes it possible to avoid heating. of the entire support substrate.
Le matériau thermodurcissable est avantageusement une résine époxyde. Selon une autre caractéristique avantageuse de la présente invention, le substrat support est formé en un matériau présentant une forte résistance thermique. La présente invention concerne également un système pour la mise en œuvre du procédé précité, ainsi que les dispositifs ainsi obtenus . D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre, et en regard des dessins annexés, donnés à titre d'exemples non limitatifs, et sur lesquels : . la figure 1 annexée représente un banc conforme à la présente invention, de fixation de fibre sur un substrat support par polymérisation d'une résine à l'aide d'un laser CO2,The thermosetting material is advantageously an epoxy resin. According to another advantageous characteristic of the present invention, the support substrate is formed from a material having a high thermal resistance. The present invention also relates to a system for implementing the above method, as well as the devices thus obtained. Other characteristics, objects and advantages of the present invention will appear on reading the detailed description which follows, and with reference to the appended drawings, given by way of nonlimiting examples, and in which:. FIG. 1 appended represents a bench according to the present invention, for fixing fiber on a support substrate by polymerization of a resin using a CO2 laser,
. la figure 2 représente un dispositif conforme à la présente invention, comprenant un substrat support apte à assurer une compensation thermique d'un réseau de Bragg par assemblage à coefficient de dilatation résultant négatif, . la figure 3 réprésente un autre dispositif conforme à la présente invention fondé sur un support dont l'essentiel est inadapté pour une polymérisation par laser CO2, . la figure 4 représente une autre variante d'un dispositif conforme à la présente invention à l'aide d'un montage permettant un accord, par commande électrique, de la longueur d'onde d'un réseau de Bragg, et . la figure 5 représente un histogramme du décalage total de la longueur d'onde observé sur un dispositif conforme à la figure 4, après polymérisation de la résine époxyde.. FIG. 2 represents a device in accordance with the present invention, comprising a support substrate capable of providing thermal compensation for a Bragg grating by assembly with a negative expansion coefficient,. FIG. 3 shows another device in accordance with the present invention based on a support, most of which is unsuitable for polymerization by CO2 laser. FIG. 4 represents another variant of a device in accordance with the present invention using an arrangement allowing tuning, by electrical control, of the wavelength of a Bragg grating, and. FIG. 5 represents a histogram of the total shift of the wavelength observed on a device in accordance with FIG. 4, after polymerization of the epoxy resin.
On va décrire tout d'abord le procédé conforme à la présente invention en regard de la figure 1 annexée. On a représenté sur la figure 1 un banc de polymérisation conforme à la présente invention, adapté pour échauffer localement un support de fibre 10, afin de polymériser des résines thermodurcissables 20 utilisées pour la fixation d'une fibre optique 30, sans échauffer l'ensemble du montage. Le support 10 peut être par exemple en silice. Le banc illustré sur la figure 1 est conçu pour le collage de composants intégrés dans des fibres optiques, sur un substrat.We will first describe the process according to the present invention with reference to Figure 1 attached. FIG. 1 shows a polymerization bench in accordance with the present invention, suitable for locally heating a fiber support 10, in order to polymerize thermosetting resins 20 used for fixing an optical fiber 30, without heating the assembly of the assembly. The support 10 can for example be made of silica. The bench illustrated in Figure 1 is designed for bonding components integrated into optical fibers, on a substrate.
La fibre optique 30 à fixer est plaquée sur le substrat 10 . Une goutte de résine thermodurcissable 20 est placée sur le substrat et enrobe la fibre 30.The optical fiber 30 to be fixed is plated on the substrate 10. A drop of thermosetting resin 20 is placed on the substrate and coats the fiber 30.
Selon l'invention, la résine 20 est polymérisée au moyen d'un laser 40. Le faisceau 42 issu du laser 40 peut être ou non focalisé par une lentille 44, sur la résine 20. L'absorption localisée du rayonnement laser par le support 10 provoque réchauffement nécessaire pour atteindre la température de polymérisation de la résine 20.According to the invention, the resin 20 is polymerized by means of a laser 40. The beam 42 coming from the laser 40 may or may not be focused by a lens 44, on the resin 20. The localized absorption of the laser radiation by the support 10 causes the heating necessary to reach the polymerization temperature of the resin 20.
Le support 10 doit présenter une résistance thermique suffisamment importante pour éviter une propagation thermique dans le support et éviter ainsi un chauffage général du support 10, susceptible d'être source de perturbation pour la fonction optique.The support 10 must have a sufficiently high thermal resistance to avoid thermal propagation in the support and thus avoid a general heating of the support 10, likely to be a source of disturbance for the optical function.
Dans le cadre de la présente invention, les substrats métalliques sont à bannir. Le substrat 10 peut être réalisé par exemple à base de céramique ou verre.In the context of the present invention, metal substrates are to be banned. The substrate 10 can be produced for example based on ceramic or glass.
Les caractéristiques de ces matériaux, alliées à la taille réduite du spot laser 42, permettent ainsi d'échauffer localement le support 10.The characteristics of these materials, combined with the reduced size of the laser spot 42, thus make it possible to locally heat the support 10.
Pour donner un exemple, des essais ont été effectués avec une résine époxyde et un laser CO2 de longueur d'onde 10,6 μm. La puissance du laser a été réglée de manière à avoir une température de substrat de l'ordre de 250°C. La durée d'émission laser était de 1 minute. Une analyse par calorimétrie différentielle à balayage a montré une température de transition vitreuse supérieure à 150°C.To give an example, tests were carried out with an epoxy resin and a CO2 laser with a wavelength of 10.6 μm. The power of the laser was adjusted so as to have a substrate temperature of the order of 250 ° C. The laser emission time was 1 minute. Analysis by differential scanning calorimetry showed a glass transition temperature above 150 ° C.
On va maintenant décrire, en regard des figures 2 et suivantes, des variantes de mise en œuvre conformes à la présente invention permettant de figer avec précision la longueur d'onde d'un réseau de Bragg sans augmenter la complexité du support de fibre.We will now describe, with reference to FIGS. 2 and following, implementation variants in accordance with the present invention making it possible to freeze with precision the wavelength of a Bragg grating without increasing the complexity of the fiber support.
Là encore comme indiqué précédemment, le procédé conforme à la présente invention, met en œuvre une résine thermodurcissable comme moyen de fixation et une polymérisation de celle-ci par chauffage au laser. Ce procédé permet une cuisson localisée du support pour polymériser la colle sans échauffer tout le support, source de décalage non reproductible de la longueur d'ondeAgain as indicated above, the process according to the present invention uses a thermosetting resin as a fixing means and a polymerization thereof by laser heating. This process allows localized firing of the support to polymerize the glue without heating the entire support, a source of non-reproducible shift in wavelength.
La figure 2 présente le cas d'un support 10 de stabilisation en température, sur lequel une fibre optique 30 est fixée en deux points 32, 34, espacés sur sa longueur. La fonction de stabilisation thermique est assurée par un montage 10 dont le coefficient de dilatation thermique équivalent entre les 2 points de fixation 32 et 34, sert à contrebalancer la réponse thermique du filtre intégré sur la fibre 30. Pour cela, le support 10 est constitué de 2 éléments 12, 16 formés à l'aide de matériaux différents.FIG. 2 shows the case of a temperature stabilization support 10, on which an optical fiber 30 is fixed at two points 32, 34, spaced along its length. The thermal stabilization function is provided by an assembly 10 whose coefficient of equivalent thermal expansion between the 2 fixing points 32 and 34, serves to counterbalance the thermal response of the filter integrated on the fiber 30. For this, the support 10 consists of 2 elements 12, 16 formed using different materials.
Un premier élément 12 a la forme général d'un L, comprenant une base 13 munie à une extrémité d'une excroissance 14 sur laquelle est fixée une première zone de la fibre 30 en un point 32. Le second élément 16, fixé sur la base 13, est globalement symétrique de l'excroissance 14 et reçoit la fibre 30 au niveau du second point de fixation 34.A first element 12 has the general shape of an L, comprising a base 13 provided at one end with a protrusion 14 on which is fixed a first zone of the fiber 30 at a point 32. The second element 16, fixed on the base 13, is generally symmetrical with the protrusion 14 and receives the fiber 30 at the second attachment point 34.
Le matériau composant le premier élément 12 possède un coefficient de dilatation inférieur au matériau composant le second élément 16. Le matériau 16 peut être typiquement de l'aluminium, tandis que le matériauThe material composing the first element 12 has a lower coefficient of expansion than the material composing the second element 16. The material 16 can typically be aluminum, while the material
12 est typiquement un matériau de faible dilatation thermique, par exemple une céramique ou une vitro-céramique.12 is typically a material of low thermal expansion, for example a ceramic or a glass ceramic.
Pour fixer une fibre 30 sur le support 10 ainsi formé, on dépose une goutte de résine thermodurcissable 32, 34 respectivement sur l'excroissance 14 et sur l'élément 16, la fibre sous traction contrôlée est mise en contact avec ces gouttes de résine, puis la résine 32, 34 est polymérisée. Plus précisément la goutte 34 portée par l'élément 16 est polymérisée en premier à l'aide de tout moyen approprié, puis la goutte 32 portée par l'excroissance 14 est polymérisée grâce à un chauffage localisé au laser, de préférence un laser CO2. La localisation de la source de chaleur alliée à la caractéristique du matériauTo fix a fiber 30 on the support 10 thus formed, a drop of thermosetting resin 32, 34 is deposited respectively on the protrusion 14 and on the element 16, the fiber under controlled traction is brought into contact with these drops of resin, then the resin 32, 34 is polymerized. More specifically, the drop 34 carried by the element 16 is polymerized first using any suitable means, then the drop 32 carried by the protrusion 14 is polymerized by localized heating with the laser, preferably a CO2 laser. The location of the heat source combined with the characteristic of the material
12 permet de polymériser la colle 32 sans quasiment modifier la contrainte appliquée sur la fibre 30.12 makes it possible to polymerize the adhesive 32 without practically modifying the stress applied to the fiber 30.
Lorsque lors de l'utilisation ultérieure, la température augmente, l'écart X entre les 2 points de fixation 32, 34 diminue. La fibre 30, fixée sous traction, est alors relâchée afin de compenser la dérive thermique du filtre. Ce dernier est inscrit dans la fibre 30 entre les points 32 et 34.When during subsequent use, the temperature increases, the difference X between the 2 fixing points 32, 34 decreases. The fiber 30, fixed under tension, is then released in order to compensate for the thermal drift of the filter. The latter is entered in fiber 30 between points 32 and 34.
En variante, l'essentiel de l'élément 12 peut être métallique, sous réserve de déposer sur cet élément 12, au niveau de la zone de liaison 32, une plaquette de céramique ou verre (ou équivalent) 18 (comme on l'a illustré sur la figure 3). Les résultats obtenus sont indiqués, pour les 2 types de montage correspondant respectivement aux figures 2 et 3, dans les tableaux 1 et 2 suivants.
Figure imgf000008_0001
Figure imgf000008_0002
Alternatively, most of the element 12 may be metallic, subject to depositing on this element 12, at the connection zone 32, a ceramic or glass plate (or equivalent) 18 (as has been illustrated in figure 3). The results obtained are indicated, for the 2 types of assembly corresponding respectively to FIGS. 2 and 3, in tables 1 and 2 below.
Figure imgf000008_0001
Figure imgf000008_0002
Selon une autre variante conforme à la présente invention, le support 10 peut être formé d'un matériau piézo-électrique pour permettre un accord en longueur d'onde par commande électrique.According to another variant in accordance with the present invention, the support 10 can be formed from a piezoelectric material to allow tuning in wavelength by electrical control.
Dans ce cas le dispositif comprend un substrat support 10 formé d'une céramique piezo-électrique qui porte une fibre optique 30 fixée sur le substrat 10 par deux gouttes de résine 32, 34 polymérisée.In this case, the device comprises a support substrate 10 formed from a piezoelectric ceramic which carries an optical fiber 30 fixed to the substrate 10 by two drops of polymerized resin 32, 34.
La fibre 30 étant fixée aux 2 extrémités 32 et 34, lorsqu'une tension électrique est appliquée aux bornes des câbles 19 pilotant la céramique piézo- électrique, la longueur d'onde du réseau de Bragg porté par la fibre 30 se décale par traction mécanique.The fiber 30 being fixed at the 2 ends 32 and 34, when an electrical voltage is applied to the terminals of the cables 19 driving the piezo ceramic electric, the wavelength of the Bragg grating carried by the fiber 30 is shifted by mechanical traction.
Une polymérisation, par convection, selon la technique classique connue de l'homme de l'art, des gouttes de résine 32, 34, conduirait à réchauffement de la céramique piezo 10 préjudiciable pour la longueur d'onde en raison de la dilatation et de l'effet pyroélectrique. Le décalage en longueur d'onde observé après polymérisation classique selon l'état de la technique, sur 17 échantillons, va de +220 à +460 pm.A polymerization, by convection, according to the conventional technique known to those skilled in the art, of the resin drops 32, 34, would lead to heating of the piezo ceramic 10 which is detrimental for the wavelength due to the expansion and the pyroelectric effect. The wavelength shift observed after conventional polymerization according to the state of the art, on 17 samples, ranges from +220 to +460 μm.
En revanche l'utilisation d'un laser pour polymériser les gouttes de résine 32, 34, comme préconisé dans le cadre de la présente invention, permet de localiser la cuisson pour polymériser la résine sans échauffer le support 10.On the other hand, the use of a laser to polymerize the drops of resin 32, 34, as recommended in the context of the present invention, makes it possible to locate the firing to polymerize the resin without heating the support 10.
Pour l'isolation thermique, des plaquettes 18 en vitro-céramique peuvent être insérées entre le point de collage 32, 34 et la céramique piezo 10.For thermal insulation, plates 18 of ceramic glass can be inserted between the bonding point 32, 34 and the piezo ceramic 10.
On a ainsi illustré sur la figure 4 un dispositif conforme à la présente invention comprenant un substrat support 10 formé d'une céramique piezo- électrique qui porte deux plaquettes 18 en vitro-céramique, lesquelles portent elles- mêmes une fibre optique 30 fixée sur les plaquettes 18 par deux gouttes de résine 32, 34 polymérisée.FIG. 4 thus illustrates a device in accordance with the present invention comprising a support substrate 10 formed from a piezoelectric ceramic which carries two plates 18 of ceramic glass, which themselves carry an optical fiber 30 fixed on the plates 18 by two drops of polymerized resin 32, 34.
Le décalage en longueur d'onde observé sur un dispositif conforme à la présente invention ainsi formé du type illustré sur la figure 4, est dans ce cas compris dans une fourchette de 70 pm. Le résultat est indiqué figure 5 sous forme d'histogramme.The wavelength shift observed on a device according to the present invention thus formed of the type illustrated in FIG. 4, is in this case included in a range of 70 μm. The result is shown in Figure 5 in the form of a histogram.
Bien entendu la présente invention n'est pas limitée aux modes de réalisation particuliers qui viennent d'être décrits, mais s'étend à toutes variantes conformes à son esprit.Of course the present invention is not limited to the particular embodiments which have just been described, but extends to all variants in accordance with its spirit.
En particulier la présente invention n'est pas limitée aux variantes d'application particulières, précédemment décrites, mais peut trouver application de façon générale à tous composants intégrés pour lesquels la contrainte axiale sur la fibre doit être ajustée à une valeur précise.In particular, the present invention is not limited to the particular application variants described above, but can find application in general to all integrated components for which the axial stress on the fiber must be adjusted to a precise value.
Références citées [1] L'Usine Nouvelle n°2641 du 14/05/98, rubrique « Télécommunications ». [2] Kersey A.D., Davis M.A., Patrick H.J., LeBlanc M., Koo K.P., Askins C.G.,References cited [1] L'Usine Nouvelle n ° 2641 dated 14/05/98, section "Telecommunications". [2] Kersey AD, Davis MA, Patrick HJ, LeBlanc M., Koo KP, Askins CG,
Putnam M. A., Friebele E.J., "Fiber grating sensors", J. of Lightwave Tech, vol.15, no8 (1997).Putnam M. A., Friebele E.J., "Fiber grating sensors", J. of Lightwave Tech, vol.15, no8 (1997).
[3] Mizrahi N., Erdogan T., DiGiovanni D.J., Lemaire P.J., MacDonald W.M., Kosinski S. G., Cabot S. , Sipe J.E., « Four channel fibre grating démultiplexer »,[3] Mizrahi N., Erdogan T., DiGiovanni D.J., Lemaire P.J., MacDonald W.M., Kosinski S. G., Cabot S., Sipe J.E., "Four channel fiber grating demultiplexer",
Electron. Let. 30(10),p7810-781 (1994).Electron. Let. 30 (10), p7810-781 (1994).
[4] US 5042898.[4] US 5042898.
[5] US 6044189.[5] US 6044189.
[6] Yoffe et al., « Passive temperature-compensating package for optical fiber gratings », Applied Optics 34(30), pp 6859-6861.[6] Yoffe et al., “Passive temperature-compensating package for optical fiber gratings”, Applied Optics 34 (30), pp 6859-6861.
[7] Quetel L. , "Etude et réalisation de dispositifs actifs ou passifs utilisant des réseaux de Bragg photinscrits dans des fibres optiques monomodes", Thèse de doctorat, p.157, 1997.[7] Quetel L., "Study and production of active or passive devices using Bragg gratings photinscribed in single-mode optical fibers", Doctoral thesis, p.157, 1997.
[8] US 5 500 917 et US 5 682 453. [9] « La transmission multicolore fait exploser les débits », L'Usine Nouvelle, no[8] US 5,500,917 and US 5,682,453. [9] "Multicolored transmission makes data speeds explode", L'Usine Nouvelle, no
2631, 03/05/98. 2631, 05/03/98.

Claims

R E V E N D I C A T I O N S
1. Procédé de fabrication d'un dispositif à base de fibre optique (30), notamment d'une fibre optique comportant un composant intégré, consistant à : . déposer au moins une goutte de matériau thermodurcissable (32, 34) sur une zone choisie d'un substrat support (10),1. A method of manufacturing a device based on optical fiber (30), in particular an optical fiber comprising an integrated component, consisting in:. depositing at least one drop of thermosetting material (32, 34) on a chosen area of a support substrate (10),
. mettre en contact avec ce matériau thermodurcissable (32, 34), une zone choisie d'une fibre optique (30), et . assurer la polymérisation du matériau (32, 34), pour assurer la fixation de la fibre (30) sur le substrat support (10), caractérisé par le fait que l'étape de polymérisation consiste à appliquer un faisceau laser (42) localisé sur la goutte de matériau thermodurcissable (32, 34).. bringing into contact with this thermosetting material (32, 34), a chosen area of an optical fiber (30), and. ensuring the polymerization of the material (32, 34), to ensure the fixing of the fiber (30) on the support substrate (10), characterized in that the polymerization step consists in applying a laser beam (42) located on the drop of thermosetting material (32, 34).
2. Procédé selon la revendication 1, caractérisé par le fait que le matériau thermodurcissable (32, 34) est une résine époxyde.2. Method according to claim 1, characterized in that the thermosetting material (32, 34) is an epoxy resin.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé par le fait que le substrat support (10) est formé en un matériau présentant une forte résistance thermique.3. Method according to one of claims 1 or 2, characterized in that the support substrate (10) is formed of a material having a high thermal resistance.
4. Procédé selon l'une des revendications 1 à 3, caractérisé par le fait que le substrat support (10) est formé de silice.4. Method according to one of claims 1 to 3, characterized in that the support substrate (10) is formed of silica.
5. Procédé selon l'une des revendications 1 à 4, caractérisé par le fait que le substrat support (10) est à base de céramique ou de verre.5. Method according to one of claims 1 to 4, characterized in that the support substrate (10) is based on ceramic or glass.
6. Procédé selon l'une des revendications 1 à 5, caractérisé par le fait que le substrat support (10) est formé d'un matériau piézo-électrique. 6. Method according to one of claims 1 to 5, characterized in that the support substrate (10) is formed of a piezoelectric material.
7. Procédé selon l'une des revendications 1 à 6, caractérisé par le fait que le substrat support (10) comprend un élément de base revêtu d'au moins une plaquette (18) en un matériau à forte résistance thermique, tel que céramique ou verre, sur laquelle est déposée une goutte de matériau thermodurcissable (32) pour assurer la fixation de la fibre (30). 7. Method according to one of claims 1 to 6, characterized in that the support substrate (10) comprises a base element coated with at least one plate (18) made of a material with high thermal resistance, such as ceramic or glass, on which a drop of thermosetting material (32) is deposited to secure the fiber (30).
8. Procédé selon l'une des revendications 1 à 7, caractérisé par le fait que le substrat support (10) comprend un élément de base revêtu de deux plaquettes (18) en un matériau à forte résistance thermique, tel que céramique ou verre, sur lesquelles sont déposées des gouttes de matériau thermodurcissable (32, 34) pour assurer la fixation de la fibre (30).8. Method according to one of claims 1 to 7, characterized in that the support substrate (10) comprises a base element coated with two plates (18) made of a material with high thermal resistance, such as ceramic or glass, sure which are deposited drops of thermosetting material (32, 34) to secure the fiber (30).
9. Procédé selon l'une des revendications 1 à 8, caractérisé par le fait que le laser (40) est un laser CO2. 9. Method according to one of claims 1 to 8, characterized in that the laser (40) is a CO2 laser.
10. Procédé selon l'une des revendications 1 à 9, caractérisé par le fait que le faisceau (42) du laser (40) est focalisé par une lentille (44) sur une goutte de matériau thermodurcissable (32, 34) à polymériser.10. Method according to one of claims 1 to 9, characterized in that the beam (42) of the laser (40) is focused by a lens (44) on a drop of thermosetting material (32, 34) to be polymerized.
11. Procédé selon l'une des revendications 1 à 10, caractérisé par le fait que la fibre optique (30) porte un réseau de Bragg. 11. Method according to one of claims 1 to 10, characterized in that the optical fiber (30) carries a Bragg grating.
12. Procédé selon l'une des revendications 1 à 11, caractérisé par le fait qu'une goutte unique (20) de matériau thermodurcissable, est déposée sur le substrat (10).12. Method according to one of claims 1 to 11, characterized in that a single drop (20) of thermosetting material, is deposited on the substrate (10).
13. Procédé selon l'une des revendications 1 à 11, caractérisé par le fait que deux gouttes (32, 34) de matériau thermodurcissable, sont déposées sur le substrat (10).13. Method according to one of claims 1 to 11, characterized in that two drops (32, 34) of thermosetting material, are deposited on the substrate (10).
14. Procédé selon l'une des revendications 1 à 13, caractérisé par le fait que le support (10) est constitué de 2 éléments (12, 16) formés à l'aide de matériaux différents.14. Method according to one of claims 1 to 13, characterized in that the support (10) consists of 2 elements (12, 16) formed using different materials.
15. Procédé selon la revendication 14, caractérisé par le fait qu'un premier élément (12) a la forme général d'un L, comprenant une base (13) munie à une extrémité d'une excroissance (14) sur laquelle est fixée une première zone (32) de la fibre (30) et un second élément (16), fixé sur la base (13), globalement symétrique de l'excroissance (14), reçoit la fibre (30) au niveau d'un second point de fixation (34). 15. The method of claim 14, characterized in that a first element (12) has the general shape of an L, comprising a base (13) provided at one end with a protrusion (14) on which is fixed a first zone (32) of the fiber (30) and a second element (16), fixed on the base (13), generally symmetrical with the protrusion (14), receives the fiber (30) at a second attachment point (34).
16. Procédé selon l'une des revendications 14 ou 15, caractérisé par le fait que le matériau composant un premier élément (12) possède un coefficient de dilatation inférieur au matériau composant un second élément (16).16. Method according to one of claims 14 or 15, characterized in that the material making up a first element (12) has a lower coefficient of expansion than the material making up a second element (16).
17. Procédé selon l'une des revendications 1 à 11, caractérisé par le fait que le premier matériau (12) est un matériau de faible dilatation thermique, par exemple une céramique ou une vitro-céramique, tandis que le second matériau (16) est de l'aluminium.17. Method according to one of claims 1 to 11, characterized in that the first material (12) is a material of low thermal expansion, for example a ceramic or a vitro-ceramic, while the second material (16) is aluminum.
18. Procédé selon l'une des revendications 1 à 17, caractérisé par le fait que la fibre (30) est placée sous traction contrôlée lors de sa fixation sur le support (10). 18. Method according to one of claims 1 to 17, characterized in that the fiber (30) is placed under controlled traction when it is fixed to the support (10).
19. Dispositif de fabrication d'un dispositif à base de fibre optique (30), notamment d'une fibre optique comportant un composant intégré, pour la mise en œuvre du procédé conforme à l'une des revendications 1 à 18, comprenant : . des moyens aptes à déposer au moins une goutte de matériau thermodurcissable (32, 34) sur une zone choisie d'un substrat support (10),19. Device for manufacturing a device based on optical fiber (30), in particular an optical fiber comprising an integrated component, for implementing the method according to one of claims 1 to 18, comprising: means capable of depositing at least one drop of thermosetting material (32, 34) on a chosen area of a support substrate (10),
. des moyens aptes à mettre en contact avec cette goutte de matériau thermodurcissable (32, 34), une zone choisie d'une fibre optique (30), et . des moyens aptes à assurer la polymérisation du matériau thermodurcissable (32, 34), pour assurer la fixation de la fibre (30) sur le substrat support (10), caractérisé par le fait que les moyens de polymérisation comprennent un laser (40) apte à appliquer un faisceau laser (42) localisé sur la goutte de matériau thermodurcissable (32, 34).. means capable of bringing this drop of thermosetting material (32, 34) into contact with a chosen area of an optical fiber (30), and. means capable of ensuring the polymerization of the thermosetting material (32, 34), to ensure the fixing of the fiber (30) on the support substrate (10), characterized in that the polymerization means comprise a laser (40) capable applying a laser beam (42) located on the drop of thermosetting material (32, 34).
20. Dispositif à base de fibre optique (30), notamment d'une fibre optique comportant un composant intégré, comprenant: . une fibre optique (30), . un substrat support (10) et20. Device based on optical fiber (30), in particular on an optical fiber comprising an integrated component, comprising: an optical fiber (30),. a support substrate (10) and
. au moins une goutte de matériau thermodurcissable (32, 34) déposée sur une zone choisie du substrat support (10), enrobant au moins partiellement une zone choisie de la fibre (30) et polymérisée, caractérisé par le fait que la goutte de matériau thermodurcissable (32, 34) est polymérisée par faisceau laser. . at least one drop of thermosetting material (32, 34) deposited on a selected area of the support substrate (10), at least partially coating a selected area of the fiber (30) and polymerized, characterized in that the drop of thermosetting material (32, 34) is polymerized by laser beam.
PCT/FR2001/001655 2000-05-29 2001-05-29 Method and device for encapsulating an optical fibre component WO2001092936A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU74140/01A AU7414001A (en) 2000-05-29 2001-05-29 Method and device for encapsulating an optical fibre component
EP01940619A EP1290478A1 (en) 2000-05-29 2001-05-29 Method and device for encapsulating an optical fibre component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0006826A FR2809500B1 (en) 2000-05-29 2000-05-29 METHOD AND DEVICE FOR PACKAGING FIBER OPTIC COMPONENT
FR00/06826 2000-05-29

Publications (1)

Publication Number Publication Date
WO2001092936A1 true WO2001092936A1 (en) 2001-12-06

Family

ID=8850706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/001655 WO2001092936A1 (en) 2000-05-29 2001-05-29 Method and device for encapsulating an optical fibre component

Country Status (4)

Country Link
EP (1) EP1290478A1 (en)
AU (1) AU7414001A (en)
FR (1) FR2809500B1 (en)
WO (1) WO2001092936A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340868A (en) * 1986-08-05 1988-02-22 Mitsubishi Electric Corp Optical integration spectrum analyser
EP0428049A2 (en) * 1989-11-08 1991-05-22 Fujitsu Limited Connecting method between waveguide substrate and optical fiber
US5042898A (en) * 1989-12-26 1991-08-27 United Technologies Corporation Incorporated Bragg filter temperature compensated optical waveguide device
US5402511A (en) * 1993-06-11 1995-03-28 The United States Of America As Represented By The Secretary Of The Army Method of forming an improved tapered waveguide by selectively irradiating a viscous adhesive resin prepolymer with ultra-violet light
US5682453A (en) * 1994-04-18 1997-10-28 Gould Electronics Inc. Method of securing optical fiber components, devices and fibers to the same or to mounting fixtures
US6044189A (en) * 1996-12-03 2000-03-28 Micron Optics, Inc. Temperature compensated fiber Bragg gratings

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340868A (en) * 1986-08-05 1988-02-22 Mitsubishi Electric Corp Optical integration spectrum analyser
EP0428049A2 (en) * 1989-11-08 1991-05-22 Fujitsu Limited Connecting method between waveguide substrate and optical fiber
US5042898A (en) * 1989-12-26 1991-08-27 United Technologies Corporation Incorporated Bragg filter temperature compensated optical waveguide device
US5402511A (en) * 1993-06-11 1995-03-28 The United States Of America As Represented By The Secretary Of The Army Method of forming an improved tapered waveguide by selectively irradiating a viscous adhesive resin prepolymer with ultra-violet light
US5682453A (en) * 1994-04-18 1997-10-28 Gould Electronics Inc. Method of securing optical fiber components, devices and fibers to the same or to mounting fixtures
US6044189A (en) * 1996-12-03 2000-03-28 Micron Optics, Inc. Temperature compensated fiber Bragg gratings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 012, no. 249 (P - 730) 14 July 1988 (1988-07-14) *

Also Published As

Publication number Publication date
AU7414001A (en) 2001-12-11
FR2809500A1 (en) 2001-11-30
EP1290478A1 (en) 2003-03-12
FR2809500B1 (en) 2003-09-26

Similar Documents

Publication Publication Date Title
US7081981B2 (en) Thermally tuned filter having a pre-stressed membrane
FR2772487A1 (en) METHOD FOR PRODUCING A BRAGG NETWORK STABILIZATION DEVICE WITH RESPECT TO TEMPERATURE
EP0588675A1 (en) Method of hybridization and positioning of an optoelectronic component in relation to an integral optical waveguide
EP0944851B1 (en) Assembly of optical components optically aligned and method for making this assembly
EP0968446A1 (en) Device for demultiplexing light paths contained in an optical spectrum
US20030133656A1 (en) Thermally tunable fiber devices with microcapillary heaters
WO2001092936A1 (en) Method and device for encapsulating an optical fibre component
CA2442528A1 (en) Integrated high spectral resolution optical spectrometer with, in particular for high-speed telecommunications and metrology, and method for making same
JP2000019334A (en) Formation of fiber grating
FR2772488A1 (en) Device for stabilising Bragg network with respect to temperature variations
EP1371470A1 (en) Manufacturing process for polymeric part with negative thermal expansion coefficient and part obtained from that process
FR2834350A1 (en) COLLIMATOR HAVING A SUPPORT DEVICE USED TO CONNECT A CYLINDRICAL LENS TO A CAPILLARY HANDLING OPTICAL FIBERS
EP1186915A2 (en) Optical filter which counteracts a tendancy to shift optical wavelengh with change in temperature
EP2909898B1 (en) Fibre laser and fabrication method thereof
WO2019243752A1 (en) Method for producing an optical fibre for a distributed measurement of temperature or deformation in a harsh environment using the rayleigh backscattered signal
EP2728682B1 (en) A method for manufacturing an optical fibre laser
EP1621906B1 (en) Device including a flush-mounted optoelectronic element covered by a waveguide
EP1063546A1 (en) Method of stabilization and wavelength tuning of Bragg gratings
Karatutlu et al. Low‐Temperature Synthesis of Silicon Oxynitride‐Doped Si for Tunable Bragg Gratings Homogeneously Deposited on Si, SiO2, and Borosilicate Substrates and the tip of SM and PM Optical Fibers
FR2822240A1 (en) Fibre optic domain with integrated component having fibre optic support and two elements providing differential coefficient expansion perpendicular fibre axis
WO2021152272A1 (en) Monolithic fabry-perot fibre microcavity with a high level of passive stability
FR2748328A1 (en) Outer cover construction for optical guide or Bragg network
CA3216068A1 (en) Method for high-precision coupling of an optical fiber to a photonic device and microstructure used to implement said method
FR2574567A1 (en) Method for assembling elements made from infrared-transparent materials and infrared optical devices assembled thereby
Qu et al. Tunable fiber gratings and their application in sensor systems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 2001940619

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001940619

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP