WO2001093945A2 - Automated radioisotope seed cartridge - Google Patents

Automated radioisotope seed cartridge Download PDF

Info

Publication number
WO2001093945A2
WO2001093945A2 PCT/US2001/018095 US0118095W WO0193945A2 WO 2001093945 A2 WO2001093945 A2 WO 2001093945A2 US 0118095 W US0118095 W US 0118095W WO 0193945 A2 WO0193945 A2 WO 0193945A2
Authority
WO
WIPO (PCT)
Prior art keywords
cartridge
automated
radioisotope
seeds
chambers
Prior art date
Application number
PCT/US2001/018095
Other languages
French (fr)
Other versions
WO2001093945A3 (en
Inventor
Daniel M. Elliott
George M. Hoedeman
John J. Berkey
Jonathan D. Elliott
Original Assignee
Mentor Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mentor Corporation filed Critical Mentor Corporation
Priority to CA002410474A priority Critical patent/CA2410474C/en
Priority to AU2001271285A priority patent/AU2001271285A1/en
Priority to DE60116633T priority patent/DE60116633T2/en
Priority to EP01950271A priority patent/EP1286724B1/en
Priority to BRPI0111448-4A priority patent/BR0111448B1/en
Publication of WO2001093945A2 publication Critical patent/WO2001093945A2/en
Publication of WO2001093945A3 publication Critical patent/WO2001093945A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0069Devices for implanting pellets, e.g. markers or solid medicaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1007Arrangements or means for the introduction of sources into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1007Arrangements or means for the introduction of sources into the body
    • A61N2005/1009Apparatus for loading seeds into magazines or needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1007Arrangements or means for the introduction of sources into the body
    • A61N2005/101Magazines or cartridges for seeds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1007Arrangements or means for the introduction of sources into the body
    • A61N2005/1011Apparatus for permanent insertion of sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1027Interstitial radiation therapy

Definitions

  • the present invention relates generally to the field of medical devices for handling radioisotope materials. More specifically, the present invention relates to an automated radioisotope seed cartridge for transporting and handling low dose radioisotope seeds for use in brachytherapy procedures or the like.
  • radioisotopes for various medical procedures such as brachytherapy and the like are well known. Such uses fall into two general categories: (i) high dose radioisotopes which are temporarily positioned in relation to a patient's body for a relatively short period of time to effect the radiation treatment, and (ii) low dose radioisotopes which are permanently implanted in a patient's body with the duration of the radiation treatment determined by the strength and half-life of the radioisotope being implanted.
  • High dose radioisotopes are typically implanted using a catheter arrangement and a device commonly known as an afterloader that advances the high dose radioisotope located on the end of a source wire through the catheter to the desired location.
  • Low dose radioisotopes are implanted using an array of implant needles with the low dose radioisotopes being encapsulated in very small containers known as seeds that are manually loaded into a series of implant needles and then ejected to form a three- dimensional grid of radioisotopes in the patient that corresponds to a dose plan as determined by the physician.
  • the goal of the low dose brachytherapy procedure is to position this three- dimensional grid of radioisotopes seeds in and around a target cancerous tissue area.
  • Each of the radioisotope seeds consists of a radioactive source such as Iodine (1-125) or Palladium (Pd-103) inside a small tube-like titanium shell that is about the size of a grain of rice.
  • radioactive sources such as Iodine (1-125) or Palladium (Pd-103) inside a small tube-like titanium shell that is about the size of a grain of rice.
  • These types of low dose radioactive sources emit a very low energy radiation that is primarily absorbed by the tissue immediately surrounding the radioisotope seed. This constant low energy radiation is typically emitted by the radioisotope seeds for a period of up to six months as a way to kill the cancer cells in the target area without having to subject the patient to the discomfort and risks that often accompany high dose radioisotope procedures.
  • brachytherapy procedures using low dose radioisotopes can be applied to many different parts of the body, it is helpful to describe a particular treatment to gain a better understanding of these treatments.
  • a predetermined number of seeds (between 1-6) are positioned within each of a series of implant needles (up to 40), with the seeds being spaced apart in each needle by small spacers.
  • a small amount of bone wax is positioned on the tip _ of the implant needles to prevent the seeds and spacers from falling out until they are implanted in the patient.
  • the loaded implant needles are then positioned at the appropriate location for insertion into the perineal area of the patient using a stand that has an X-Y coordinate grid. Each needle is manually positioned in the appropriate chamber in the grid and is inserted into the patient. An ultrasound probe is used to assist the physician in guiding each of the needles to the desired location.
  • the seeds and spacers are delivered from the tip of the implant needle using a stylet and hollow needle arrangement where the hollow needle is preferably retracted while the stylet remains in place.
  • the implanted seeds form a three-dimensional grid of radioisotope sources that implements a predetermined dose plan for treating the prostate cancer in the patient.
  • U.S. Patent Nos. 4,150,298, 5,147,282, 5,851,172 and 6,048,300 describe replaceable cartridge assemblies that contain the source wire used in conjunction with specifically adapted afterloaders that advance the source wire into a catheter system for high dose radioisotope procedures.
  • U.S. Patent No. 4,759,345 describes a shielded loading assemblies for hand implanted hypodermic needles.
  • U.S. Patent Nos. 4,815,449 and 4,763,642 describe a seed carrier that prepositions and encases a series of seeds in a body absorbable material.
  • 5,906,574 describes a vacuum-assisted apparatus for manually handling and loading radioisotope seeds within a visible radiation shield.
  • the same company which provides the vacuum-assisted apparatus described in U.S. Patent No. 5,906,574, also provides an IndigoTM express seeding cartridge that is a tube with seeds prepositioned in the tube such that the tube accurately indexes and positions individual seeds in the well chamber of a radiation detector for purposes of calibrating the radioisotope seeds.
  • U.S. Patent Nos. 4,086,914, 5,242,373 and 5,860,909, as well as PCT Publ. No. WO 97/22379 describe manual seed injector arrangements for a low dose radioisotope procedure that utilize drop-in seed cartridges or seed magazines to supply the seeds directly to an implant needle arrangement that is specifically adapted to such cartridges or magazines.
  • U.S. Patent Nos. 4,086,914, 5,242,373 and PCT Publ. No. WO 97/22379 describe seed cartridges in which the radioisotope seeds are maintained in an end-to-end relation to each other within the cartridge.
  • the cartridge is positioned in an aligned, collinear relation with the bore of a needle and a manual push rod arrangement is used to eject the seeds from the cartridge, hi U.S. Patent No. 5,860,909, the cartridge is mounted above a magazine arrangement of an implant needle where the radioisotope seeds are maintained in a stacked side-by-side relation to each other within the cartridge. As a new seed is to be implanted, the bottom seed of the stack is released into the magazine and then ejected from the needle.
  • radioisotope seeds be sent to the hospitals by overnight delivery for use the next day. Because the number of radioisotope seeds varies from procedure to procedure depending upon the dose plan and because the cost of each low dose radioisotope seed is significant, it is not cost effective to order more radioisotope seeds than will be used in a given procedure.
  • the radioisotope seeds for a given dose plan are shipped in bulk in a protective container by overnight delivery to the hospital.
  • the radioisotope seeds are dumped from the container onto a tray where the radiophysicist manually loads the seeds one-by-one into a set of implant needles according to the dose plan.
  • the implant needles are positioned tip into a needle stand with the tips sealed with bone wax.
  • the radiophysicist picks up a single radioisotope seed using a tweezers, forceps or vacuum hose and deposits that seed in a needle. Next, a single spacer made of gut or similar absorbable material is deposited in the needle. This process is repeated depending upon the predetermined number of seeds and spacers prescribed by the dose plan.
  • the radiophysicist will use a well chamber to measure the strength of a sample of the radioisotope seeds (typically from only one seed to a sample of about 10%). While some needle stands are provided with a certain degree of shielding once the radioisotope seeds are loaded in the implant needles, there is very little shielding that protects the hands and fingers of the radiophysicist during the process of manually loading the implant needles.
  • radioisotope seed cartridge for transporting and handling low dose radioisotope seeds for use in low dose radioisotope procedures that could overcome these problems and enhance the safety and efficiency of this process.
  • the present invention is an automated cartridge for use in an automated system for low dose radioisotope procedures.
  • the replaceable automated cartridge has a housing that contains a selectively positionable member having a plurality of radioisotope seeds preloaded in chambers defined in the positionable member.
  • An aperture in the housing allows an elongated member to selectively eject radioisotope seeds from chambers in the positionable member when a given chamber is aligned with the aperture.
  • a mechanism in the cartridge automatically positions the selectively positionable member in alignment with the aperture.
  • a feedback mechanism generates a positional feedback signal of a position of the chambers of the positionable member relative to the aperture.
  • a machine readable storage medium accessible via an electrical connector stores indicia representing at least the quantity and location of the plurality of radioisotope seeds preloaded into the cartridge.
  • each radioisotope seed is located in a unique chamber defined in the positionable member and each chamber is adapted to receive a seed, a spacer, a plug, or any combination thereof.
  • the housing arrangement includes structure that mates with structure of the automated system.
  • the positionable member is a rotatable drum having chambers defined around a periphery of the rotatable drum.
  • a first stepper motor is operably connected to drive the rotatable drum
  • a second stepper motor is operably connected to drive a linear actuator that operably drives the elongated member along a line of travel through a selectively indexed one of the chambers spaced around the periphery of the rotatable drum.
  • An encoder is used to determine whether the stepper motor has rotated the rotatable drum to the correct chamber.
  • the stepper motor and encoder are selected such that the stepper motor steps in full steps with relation to the distance between chambers around the periphery.
  • the alignment of the aperture to the chambers in the drum is preferably initially accomplished at the time of assembly.
  • the automated cartridge is preloaded at a factory and shipped for usage with radioisotope seeds and spacers inside.
  • the loading clip is provided with a machine readable storage medium accessible via an electrical connector that stores indicia representing at least information about the radioisotope seeds located in the loading clip.
  • Figures 1 A and IB are perspective views of a preferred embodiment of the automated system for loading low dose radioisotope seeds and showing the preferred embodiment of the replaceable cartridge of the present invention in place within the automated loading system.
  • Figure 2 is a perspective of the automated system of Figure 1 with an enclosure and showing the receiving structure that mates with the replaceable cartridge of the preferred embodiment of the present invention.
  • Figures 3 A and 3B are exploded perspective views of the preferred embodiment of the replaceable cartridge of Figure 1 that loads needles from the rear.
  • Figure 4 is a schematic representation of the various combinations of radioisotope seeds, spacers and plugs as stored in the rotatable drum of the preferred embodiment of the replaceable cartridge of Figure 3.
  • Figure 5 is a detailed view of a capstan assembly for the push rod of the preferred embodiment of the replaceable cartridge of Figure 3.
  • Figure 6 is a perspective of the assembled replaceable cartridge of Figure 3 with a needle to be loaded from the rear.
  • Figure 7 is an exploded perspective view of an alternative embodiment of the replaceable cartridge that loads needles from the tip.
  • Figure 8 is a detailed cross-sectional view of a tip alignment structure, radiation sensor and needle sensing system of the replaceable cartridge of Figure 9.
  • Figure 9 is a perspective view of an assembled replaceable cartridge with a needle to be loaded from the tip.
  • Figure 10 is a perspective view of an assembled replaceable cartridge with a protective shield in place.
  • an automated system 10 for loading low dose radioisotope seeds into a plurality of implant needles is comprised of a loading station 12 into which a replaceable cartridge 14 may be positioned.
  • the loading station 12 includes structure defining a cartridge receiving structure 16 in a front side of the loading station oriented toward a user as shown in Figure 2.
  • the loading station 12 presents a front side toward a user with a corresponding longer dimension of the replaceable cartridge positioned in the cartridge receiving structure 16 parallel to this front side.
  • the cartridge 14 and cartridge receiving structure 16 could be oriented transverse to the front side of loading station 12 or even at a rear side of loading station 12.
  • the loading station 12 has a base 20 (as shown in Figure 1) and a cover 22 (as shown in Figure 2) preferably formed of molded plastic or metal.
  • a computer processor 30 for the automated system is preferably a motherboard having a microprocessor, internal bus, a PCI- compatible bus, DRAM and EPROM or battery backed SRAM, with appropriate external interfaces or mated PC boards for a video interface, multiple channel IDE interfaces, a floppy disk interface, an ethernet interface, COM and LPT interfaces, an external bidirectional parallel port and a serial port.
  • An automated motion control system 32 is preferably a Galil motion controller available from Galil Motion Control Inc. that interfaces to the computer processor 30 via the PCI-compatible bus.
  • the automated motion control system 32 with appropriate software drivers provides all functionality for the lowest level control of stepper motor position and feedback sensors.
  • a hard disc drive 34, floppy disk drive 36, high density removable media drive 37 and CD or CD-RW drive 38 are also provided for storing data and information to be used by the automated system 10.
  • a video display 40 which operates as the primary user interface is preferably a 1280 by 1024 resolution flat 18.1 inch flat panel LCD with a resistive touch screen, such as are available from National Display Systems. Alternatively, a conventional non-touch screen video display and mouse, keyboard or similar input devices could also be provided.
  • a proportional counter type radiation sensor 42 is positioned to be able to sense the passage of radioisotope seeds from the cartridge 14 into the implant needles and verify the radiation strength of the radioisotope seeds, h the preferred embodiment, the radiation sensor 42 is connected to a multi-channel analyzer card 43 that serves as a data acquisition device for information from this sensor.
  • Figure 2 shows one of a pair of handles 44 for carrying the loading station 12 and one of two fan units 46 for cooling the circuitry and components of the loading station 12.
  • Speakers 48 are also included in the front of the loading station 12. Referring specifically to Figure 2, the downwardly angled cartridge receiving structure
  • the cartridge receiving structure 16 includes an angled channel 24 with sides that define a downwardly angled path of travel for inserting at a preferred angle of approximately 45 degrees.
  • the loading station 12 locks the cartridge in place using an electrical solenoid 26 to prevent inadvertent removal of the cartridge 14 during operation of the automated system 10. Locking is initiated automatically once the presence of a cartridge 14 has been detected in the cartridge receiving structure 16 and the user has initiated a loading operation via display 40. Unlocking the cartridge is imtiated by the user selecting a remove cartridge operation via display 40, but only after computer processor 30 has confirmed completion of any critical motions that are part of the needle loading operation and removed power to the cartridge 14.
  • the only other interface between the cartridge 14 and the cartridge receiving structure 16 is a multiple pin-type electrical connector 28.
  • the connector 28 include a ground and power connection to provide power to the cartridge 14. The presence of cartridge 14 in cartridge receiving structure 16 is also detected via a contact on connector 28.
  • angled channel 24 is the preferred embodiment for interfacing the cartridge 14 with the cartridge receiving structure 16, it will be recognized that many other structures, such as guide rails, latches, pivoting arrangements, ball and detent locks, and orientations, such as horizontal or vertical, and comiectors, such as optical, infrared, RF, slide contacts, array contacts or the like, could be used to accomplish the same function of interfacing the cartridge 14 with the cartridge receiving structure 16.
  • the cartridge 14 contains a plurality of radioisotope seeds and a plurality of spacers preloaded into the cartridge.
  • the cartridge 14 has at least one aperture 50 into which an implant needle is positioned.
  • the radioisotope seeds and spacers are loaded into holes or chambers 52 located around the periphery of a rotatable drum 54.
  • the cartridge 14 includes a pair of stepper motors within the cartridge.
  • a first stepper motor 56 rotates the rotatable drum 54. It will be seen that stepper motor 56 preferably drives rotatable drum 54 directly without any intervening gearing arrangement.
  • a second stepper motor 58 has a capstan assembly 60 that rotates in engagement with a push rod 62 to slide the push rod 62.
  • an encoder detector 64 detects the position of a corresponding encoder disc 66 which is then communicated back to automated motion control system 32 ( Figure 1).
  • the stepper motor and encoder are selected such that the stepper motor steps in full steps with relation to the distance between chambers around the periphery.
  • the alignment of the aperture to the chambers in the drum is preferably initially accomplished at the time of assembly.
  • other motor drives other than stepper motors could be used with equivalent success in the present invention, such as servo motors, worm driven motors, or DC motors with appropriate indexing control.
  • an encoder with a higher degree of resolution can be used and the stepper motor can be incremented in less than full steps.
  • a first encoder for the rotatable drum generates a positional feedback signal of an index of the chambers of the rotatable drum relative to the line of travel of the linear actuator 60
  • a second encoder 68 with a second encoder disc 70 for the linear actuator 60 that generates a positional feedback signal of a position of the elongated member along the line of travel.
  • a series of position sensors 72 are positioned in line with the push rod 62 to detect the travel of push rod 62 as it is driven by capstan system 60 through its line of travel.
  • the sensors 72 are connected to sensor circuitry 74 to communicate this position information to the automated motion control system 32.
  • Each of the encoder detector 64 and sensor circuitry 74 are electrically connected to a circuit board 76 which has an appropriate connector 78 for mating with and connecting with a corresponding connector 28 ( Figure 2) in the cartridge receiving structure 16 of the housing 12.
  • the circuit board 76 is provided with an electrically erasable programmable read-only memory (EEPROM) 79 or similar non-volatile memory to store parameters and other data that are unique to the particular cartridge 14 and to the particular patient and dose plan that has been developed for that patient.
  • EEPROM 79 electrically erasable programmable read-only memory
  • the contents of EEPROM 79 are set up initially during loading and calibration of the cartridge 14 at the factory. These contents are updated by the automated system 10 so as to continually reflect the current state of the cartridge 14. For example, when the radioisotope seeds and/or spacers are ejected from a given chamber 52, then the data on the EEPROM 104 is updated to reflect that the given chamber 52 no longer contains any radioisotope seeds and or spacers.
  • the EEPROM 79 is capable of storing patient and hospital identification information, as well as seed inventory and manufacture information.
  • the EEPROM could also store the predetermined dose plan for the particular patient.
  • various housing elements enclose the cartridge 14 to create a single, enclosed drop-in cartridge to simplify operation and handling of the cartridge as shown in Figure 3.
  • the various housing elements are formed of machined stainless steel to enhance the protective aspect of the housing.
  • the housing could be formed of materials other than stainless steel.
  • the housing elements could be molded plastic with appropriate pieces having an internal lead lining or the like to provide sufficient shielding.
  • cartridge 14 may be separately enclosed or left unenclosed and operably connected together to accomplish the same functionality, such as allowing for mating with the cartridge receiving structure 16 and protecting movement of the push rod 62 along its line of travel.
  • a push rod sleeve 80 encloses the travel of push rod 62.
  • Cover 81 is a one piece unit that covers the capstan assembly 60 and its associated components.
  • a capstan motor mount 82 provides a mounting base for most of the main components of cartridge 14, including circuit board 76 and encoder detector 64.
  • Housing 83 houses the stepper motor 56 and the rotatable drum 54.
  • a cover plate 84 mounts to the housing plate 83. The motor mount 82 and the cover 81 are secured by internal screws (not shown) that are accessed when the cover plate 84 is removed.
  • a front plate 85 covers the circuit board 74 and is also mounted with screws between cover plate 84 and cover 81.
  • a needle housing 86 is also screwed on to the cover plate 84 and includes the aperture 50 through which the needle accesses the cartridge.
  • the contents are loaded into the rear 131 of the implant needle 130 which has its tip 132 plugged with bone wax or a similar plug material.
  • a crimp at the tip 132 could prevent the contents of chamber from being pushed out the tip 132 of the needle 132 as it is loaded from the rear 131.
  • the rear 131 of the needle 130 is preferably secured in place in the aperture 50 by a Luer lock or similar assembly.
  • the tip 132 does not extend beyond the side of loading station 12 as a safety measure.
  • the contents are loaded into the tip 132 of the needle 130, rather than into the rear 131 of the needle 130.
  • the housing elements are configured somewhat differently than in the rear loading embodiment.
  • a rod sleeve 80 encloses the travel of push rod 62.
  • Housing halves 87 mate to abase 88 to cover the capstan assembly/linear actuator 60 and its associated components.
  • the base 88 provides a mounting base for most of the main components of cartridge 14 of the tip loading embodiment, including circuit board 76 and encoder detector 64.
  • Plate 89 provides a mounting structure for stepper motor 56 and includes an aperture 90 through which push rod 62 slides to engage the radioisotope seeds and spacers located in the chambers 52 around the periphery of rotatable drum 54. Plate 89 also prevents radioisotope seeds and spacers from falling out of the chambers 52 on one side of rotatable drum 54.
  • a cap-like cover 92 is mounted over the other side of rotatable drum 54 and includes an aperture 94 by which access is provided to sensor circuitry 74 and through which push rod 62 slides to eject the radioisotope seeds and spacers into the implant needle (not shown) via an alignment tube 96.
  • An alignment structure 98 preferably comprising a beveled alignment needle guide has an internal channel that aligns a corresponding beveled implant needle with the alignment tube 96.
  • An electrical solenoid 100 is used to lock the implant needle in place relative to the cartridge 14 once the proper positioning of the implant needle in the alignment structure 98 has been confirmed, hi the this embodiment, the at least one aperture 50 is defined on an end of a shield tube 102 constructed of appropriate metal to shield the radioisotopes as they are being loaded into the implant needle.
  • the preferred embodiment of cartridge 14 is designed with minimum piece parts to allow for easy disassembly and sterilization to allow for potential re-use.
  • cartridge 14 is cleaned with alcohol or hydrogen peroxide to remove bioburden.
  • the entire cartridge 14 is preferably sterilized with a gas sterilization technique.
  • the ease of disassembly also provides a convenient mechanism by which emergency removal of the radioisotope seeds can be accomplished, simply be removing cover 92 and dumping the radioisotope seeds and spacers into an appropriate container.
  • a rotatable drum 54 also affords important advantages to the preferred embodiment of the present invention.
  • the positioning of the chambers 52 around the periphery of drum 54 reduces the concentration of radiation sources at any given point and provides an optimum separation of radioisotope seeds from each other, thereby enhancing the safety of cartridge 14.
  • each chamber 52 is long enough to accommodate any of a combinatorial set of radioisotope seeds, spacers and plugs.
  • various combinations of radioisotope seeds 110, full-length spacers 112, partial-length spacers 114 which can serve as blanks and plugs 116 can be positioned within a given chamber 52.
  • the length of one radioisotope seed 110 or one blank 114 is 4.5 mm
  • the length of one full length spacer 112 is 5.5 mm
  • the length of one plug 116 is 2 mm.
  • each of the seeds 110, spacers 112, 114 and plugs 116 allows for various combinations to be utilized that have the same overall length when positioned in an implant needle of 10 mm for seed and spacer or 12 mm for seed, spacer and plug.
  • the particular combination of each for a given cartridge is optimally determined at the time that the cartridge 14 is preloaded in accordance with a predetermined dose plan. This information can then be utilized by the automated station 10 to load the implant needles in accordance with that predetermined dose plan.
  • the rotatable drum 54 is provided with 200 chambers 52 spaced equidistant about the periphery of the rotatable drum 54.
  • the optical encoder disc 66 preferably has 400 or 1600 lines of resolutions which yields a resolution of 2 or 8 counts per chamber 52. hi an alternate embodiment with higher resolution as previously described, 72,000 lines of resolution are used which yields a resolution of 360 counts per chamber 52.
  • a home reference is provided by an index channel on the encoder disc 66. The alignment of the aperture 50 to the chambers 52 in the drum 54 using the index channel is preferably accomplished at the time of assembly. In the high resolution embodiment, an offset to a first chamber location clockwise from the home reference is stored as a parameter for the cartridge 14 to allow for individual cartridge tolerance calibration.
  • an optical sensor could be used to locate the center of a chamber 52 for purposes of calibrating an index.
  • the automated motion control system 32 uses the stepper motor 56 and encoder circuitry 64 to establish a reference to the first seed drum chamber 52. Motion of the drum 54 may take place bidirectionally (i.e., clockwise or counterclockwise) and as rapidly as possible in order to move to the nearest desired chamber location as determined by the computer processor 30 and automated motion control system 32 in the shortest possible time.
  • the automated motion control system 32 When requested by the computer processor 30, the automated motion control system 32 will index to the center of the desired chamber location in preparation for transfer of the contents of that chamber 52 to the implant needle. The drum 54 will remain at this location until it is commanded to a new position.
  • a pair of capstans 120, 121 are positioned above and below the line of travel of push rod 62.
  • the upper capstan 120 is preferably the shaft of stepper motor 58.
  • the lower capstan 121 is preferably a ball bearing 122 held in a biased pivot arm 123 biased by a spring 124.
  • the upper capstan 120 includes a radial channel 125 adapted to guide the push rod 62.
  • the pivot arm 123 pivots back to allow the push rod 62 to enter the capstan assembly 60. Once engaged, the channel 125 guides the push rod 62 as it is frictionally held between capstans 120, 121.
  • the channel 125 is aligned with respect to the chambers 52 by adjusting the motor 58 that drives the capstan assembly 60 to the desired depth.
  • a positive travel limit is preferably established using a first optical sensor 126 that is part of the structure of capstan assembly 60 which detects the back of the push rod 62 passing through a defined point.
  • a negative travel limit for the line of travel of push rod 62 is established by a second optical sensor 127 that doubles as a home reference.
  • the travel limits do not disable the stepper motor 58, but rather send an indication to the automated motion control system 32 that the respective travel limit has been exceeded. Once zeroed in relation to the home reference, the push rod 62 is moved forward and into an open chamber 52 in the drum 54.
  • the automated motion control system 32 activates the capstan assembly 60 to retract the push rod 62, thereby allowing the drum 54 to be rotated freely.
  • the automated motion control system 32 instructs the stepper motor 58 to move the push rod 62 forward to push the contents of the chamber 52 out of the drum 54 and into the tube 96 leading to the radiation sensor 42.
  • the distance the push rod will travel will be based on the total length of the contents in the given chamber and the location of the radiation sensor 42. Because the automated motion control system 32 knows the nature of the contents of each chamber 52, the push rod would be instructed to stop and position the radioisotope seed in front of the radiation sensor 42 if a radioisotope seed was present in the contents of a given chamber and if the computer processor 30 determined that a radiation measurement should be acquired based upon the radiation sensing parameters as set by the user of the automated system 10.
  • a message would be communicated from the automated motion control system 32 to the computer processor 30 when the radioisotope seed 110 was properly positioned indicating that a radiation measurement may be performed.
  • the automated motion control system instructs the stepper motor 58 to move the push rod 62 forward to deliver the contents into the implant needle 130.
  • the trailing one of the position sensors 72 is provided along the path of material transfer to allow for detection of the leading edge of the contents with relation to the tip of push rod 62.
  • the total length of the contents may be determined. This allows for a verification of the length of the contents of a given chamber 52 with the information the automated system has about what should be in that chamber 52 to prevent potential misloads.
  • an alarm or error message would be passed to the computer processor 30.
  • a stylet 134 that is preferably positioned in the implant needle 130 is pushed back by the advancing contents.
  • the needle 130 and stylet 134 are ready to use as soon as the loading process is completed and it is not necessary to insert a stylet into the implant needle after the loading process is completed, thereby incurring the risk that the stylet would dislodge the plug 116 or displace any of the loaded contents from the implant needle 130.
  • any given implant needle 130 may be loaded from the contents of one or more chambers 52, it is important that the contents of a given chamber 52 containing a plug to be inserted at the tip 132 of implant needle 130 be accurately aligned with the end of the tip 132.
  • the automated motion control system 32 preferably moves the contents of the chamber 52 containing a plug to an absolute location relative to the tip 132 of the implant needle 130, rather than moving the contents a relative distance based on the expected lengths of the contents of that chamber. In this way, the plugs 116 are always inserted so that they are flush with the ends of the tips 132 of the implant needles 130.
  • the alignment structure 98 is beveled to match a beveling on the tip 132 of the implant needle 130.
  • the user inserts the implant needle 130 into the aperture 50 until it abuts alignment structure 98 and then rotates the implant needle 130 until the optical sensor 140 indicates proper alignment.
  • the optical sensor 140 remains active during the loading process to confirm that there is no movement of implant needle 130 during this process.
  • an electrical solenoid 100 is activated to clamp the implant needle 130 in place relative to the cartridge 14. The force of the solenoid 100 is such that the implant needle 130 may not be moved during the loading operation, but not sufficient to crush the implant needle 130.
  • the solenoid 100 is automatically released once the loading of the implant needle 130 is complete and a plug 116 has been inserted into the tip 132 of the implant needle 130.
  • the protective shield 150 is preferably a transparent or semi- transparent molded thermo-plastic material that releasably attaches to the cartridge 14 at end portions 152, 154.
  • end portion 152 slides over push rod guide sleeve 80 and end portion 154 snaps over the aperture 50 and is secured by a Luer lock hub used to attach needle 130 to cartridge 14.
  • a periphery 156 around the shield 150 provides a mating against a corresponding raised portion 17 of mating structure 16 of the loading station 12.
  • the purpose of shield 150 is to reduce the possibility of contamination of cartridge 14 during normal operation and to preserve the sterility of cartridge 14 during handling and loading of cartridge 14 into loading station 14.
  • shield 150 is provided with hand hold formations 158 that allow for easy manual manipulation of cartridge 14 together with shield 150 during the loading of cartridge 14.
  • mechanical attachment arrangements other than the preferred embodiment, such as latches or the like or adhesive attachments such as glue or the like, could be used to releasably attach shield 150 to cartridge 14. While a simple abutting mating relationship is shown between the periphery 156 of shield 150 and the corresponding raised portion 17 of mating structure 16, it will be understood that other sealing arrangements with gaskets or adhesives or with the use of supplemental mechanical alignment and/or latching mechanisms could also be used to accomplish the intended mating of shield 150 against mating structure 16.
  • the cartridge 14 of the present invention has been described with respect to the automated station 10, it will be understood that the cartridge 14 of the present invention may also be used with other automated equipment as part of a low dose brachytherapy procedure.
  • the elongated member used to eject the radioisotope seeds in the preferred embodiment is a push rod 62 that loads the seeds into a plurality of implant needles.
  • the elongated member may be a trocar needle or similar cutting member that would first make an incision into the patient, then be withdrawn, and finally advanced through the aperture of the cartridge to eject the seeds.
  • the drum 64 has been described as the preferred embodiment of the positional member of the cartridge 14 with its movement controlled by stepper motor 56, it should be understood that other forms of this positional member and other motor arrangements would also work within the scope of the present invention.
  • the positionable member could be an X-Y grid of chambers with a pair of stepper motors used to drive the grid in X-Y directions to position the desired chamber in line with the aperture and push rod. 62.
  • stepper motors such as stepper motor 56
  • encoders such as encoder 58
  • stepper motor 56 and encoders, such as encoder 58
  • stepper motor 56 and encoders, such as encoder 58
  • other arrangements such as gears, drive belts and clutched motor shafts could be used in place of the stepper motor, and that contact sensors, optical sensors or registry from a known starting point could also be used in place of the encoder.
  • contact sensors, optical sensors or registry from a known starting point could also be used in place of the encoder.
  • contact sensors, optical sensors or registry from a known starting point could also be used in place of the encoder.
  • the preferred embodiment interfaces with an external microprocessor, it would also be possible to incorporate a microprocessor into the cartridge itself and to communicate externally by telecommunications, radio communications or the like, instead of by electrical connectors.

Abstract

An automated cartridge (14) for use in an automated system (12) for low dose radioisotope procedures is replaceable in the automated system and has a housing (80, 81, 82, 83, 84) that contains a selectively positionable member (54) having a plurality of radioisotope seeds (110) preloaded in chambers (54) defined in the positionable member. An aperture (50) in the housing allows an elongated member (62) to selectively eject radioisotope seeds from chambers in the positionable member when a given chamber is aligned with the aperture. A mechanism (32, 56) in the cartridge automatically positions the selectively positionable member in alignment with the aperture. Preferably, a feedback mechanism (64, 66) generates a positional feedback signal of a position of the chambers of the positionable member relative to the aperture.

Description

AUTOMATED RADIOISOTOPE SEED CARTRIDGE
FIELD OF THE INVENTION The present invention relates generally to the field of medical devices for handling radioisotope materials. More specifically, the present invention relates to an automated radioisotope seed cartridge for transporting and handling low dose radioisotope seeds for use in brachytherapy procedures or the like.
BACKGROUND OF THE INVENTION
The use of radioisotopes for various medical procedures such as brachytherapy and the like is well known. Such uses fall into two general categories: (i) high dose radioisotopes which are temporarily positioned in relation to a patient's body for a relatively short period of time to effect the radiation treatment, and (ii) low dose radioisotopes which are permanently implanted in a patient's body with the duration of the radiation treatment determined by the strength and half-life of the radioisotope being implanted. High dose radioisotopes are typically implanted using a catheter arrangement and a device commonly known as an afterloader that advances the high dose radioisotope located on the end of a source wire through the catheter to the desired location. Low dose radioisotopes, on the other hand, are implanted using an array of implant needles with the low dose radioisotopes being encapsulated in very small containers known as seeds that are manually loaded into a series of implant needles and then ejected to form a three- dimensional grid of radioisotopes in the patient that corresponds to a dose plan as determined by the physician. The goal of the low dose brachytherapy procedure is to position this three- dimensional grid of radioisotopes seeds in and around a target cancerous tissue area. Each of the radioisotope seeds consists of a radioactive source such as Iodine (1-125) or Palladium (Pd-103) inside a small tube-like titanium shell that is about the size of a grain of rice. These types of low dose radioactive sources emit a very low energy radiation that is primarily absorbed by the tissue immediately surrounding the radioisotope seed. This constant low energy radiation is typically emitted by the radioisotope seeds for a period of up to six months as a way to kill the cancer cells in the target area without having to subject the patient to the discomfort and risks that often accompany high dose radioisotope procedures.
One common brachytherapy procedure is the use of low dose radioisotopes to treat prostate cancer. Although brachytherapy procedures using low dose radioisotopes can be applied to many different parts of the body, it is helpful to describe a particular treatment to gain a better understanding of these treatments. In a typical prostate cancer procedure, a predetermined number of seeds (between 1-6) are positioned within each of a series of implant needles (up to 40), with the seeds being spaced apart in each needle by small spacers. A small amount of bone wax is positioned on the tip _ of the implant needles to prevent the seeds and spacers from falling out until they are implanted in the patient. The loaded implant needles are then positioned at the appropriate location for insertion into the perineal area of the patient using a stand that has an X-Y coordinate grid. Each needle is manually positioned in the appropriate chamber in the grid and is inserted into the patient. An ultrasound probe is used to assist the physician in guiding each of the needles to the desired location. The seeds and spacers are delivered from the tip of the implant needle using a stylet and hollow needle arrangement where the hollow needle is preferably retracted while the stylet remains in place. When completed, the implanted seeds form a three-dimensional grid of radioisotope sources that implements a predetermined dose plan for treating the prostate cancer in the patient. For a more detailed background of the procedures and equipment used in this type of prostate cancer treatment, reference is made to U.S. Patent No. 4,167,179.
Over the years there have been numerous advancements in the design of equipment for use in radioisotope procedures. U.S. Patent Nos. 4,150,298, 5,147,282, 5,851,172 and 6,048,300 describe replaceable cartridge assemblies that contain the source wire used in conjunction with specifically adapted afterloaders that advance the source wire into a catheter system for high dose radioisotope procedures. U.S. Patent No. 4,759,345 describes a shielded loading assemblies for hand implanted hypodermic needles. U.S. Patent Nos. 4,815,449 and 4,763,642 describe a seed carrier that prepositions and encases a series of seeds in a body absorbable material. U.S. Patent No. 5,906,574 describes a vacuum-assisted apparatus for manually handling and loading radioisotope seeds within a visible radiation shield. The same company which provides the vacuum-assisted apparatus described in U.S. Patent No. 5,906,574, also provides an Indigo™ express seeding cartridge that is a tube with seeds prepositioned in the tube such that the tube accurately indexes and positions individual seeds in the well chamber of a radiation detector for purposes of calibrating the radioisotope seeds.
U.S. Patent Nos. 4,086,914, 5,242,373 and 5,860,909, as well as PCT Publ. No. WO 97/22379, describe manual seed injector arrangements for a low dose radioisotope procedure that utilize drop-in seed cartridges or seed magazines to supply the seeds directly to an implant needle arrangement that is specifically adapted to such cartridges or magazines. U.S. Patent Nos. 4,086,914, 5,242,373 and PCT Publ. No. WO 97/22379 describe seed cartridges in which the radioisotope seeds are maintained in an end-to-end relation to each other within the cartridge. The cartridge is positioned in an aligned, collinear relation with the bore of a needle and a manual push rod arrangement is used to eject the seeds from the cartridge, hi U.S. Patent No. 5,860,909, the cartridge is mounted above a magazine arrangement of an implant needle where the radioisotope seeds are maintained in a stacked side-by-side relation to each other within the cartridge. As a new seed is to be implanted, the bottom seed of the stack is released into the magazine and then ejected from the needle.
Although such replaceable cartridges have been well received for use in connection with high dose radioisotope procedures, the standard techniques for low dose radioisotope procedures continue to utilize a series of preloaded implant needles that are manually loaded by a radiophysicist at the hospital just prior to the procedure. There are several reasons for why manual loading of the implant needles just prior to use in low dose radioisotope procedures is preferred. First, there are differences in the types of radioisotope sources that do not favor use of a cartridge arrangement for low dose radioisotope procedures. The source wires used for high dose radioisotope procedures use only one or a small number of very high power radioisotope sources having relatively long half-lives. As a result, it is cost effective and practical to provide for a cartridge arrangement for such a small number of high dose radioisotopes that can be preordered and maintained at the hospital well in advance of a procedure. In contrast, given the relatively short half-lives of the radioisotopes used in low dose radioisotope procedures it is preferable that the radioisotope seeds be sent to the hospitals by overnight delivery for use the next day. Because the number of radioisotope seeds varies from procedure to procedure depending upon the dose plan and because the cost of each low dose radioisotope seed is significant, it is not cost effective to order more radioisotope seeds than will be used in a given procedure. Second, it is important to minimize the time of the procedure, both in terms of the exposure time of the physician to the low dose radioisotope seeds and in terms of the total time of the procedure from the economics of medical practice. The existing drop-in cartridge and seed magazine systems described above take longer to perform the implant procedure than using conventional preloaded implant needles because the radioisotope seeds are implanted one-by- one, rather than being delivered simultaneously as a group from a preloaded needle. Third, it has been routine to employ a radiophysicist at the hospital to preload the implant needles and take a set of sample measurements of the strength of the radioisotope seeds to confirm that the seeds meet the requirements specified by the dose plan. Finally, due to the large number of low dose radioisotope seeds used in a given procedure (typically up to 150) and the need for the implanting physician to be able to modify the dose plan at the time of implant, it is generally considered that the flexibility afforded by manually loading the implant needles just prior to the operation provides the best possible treatment procedure for the patient and the most economically efficient procedure for the hospital.
Although manual preloading of implant needles at the hospital continues to be the norm for most low dose radioisotope procedures, relatively little attention has been paid to increasing the safety or efficiency of this process. Presently, the radioisotope seeds for a given dose plan are shipped in bulk in a protective container by overnight delivery to the hospital. At the hospital, the radioisotope seeds are dumped from the container onto a tray where the radiophysicist manually loads the seeds one-by-one into a set of implant needles according to the dose plan. Typically, the implant needles are positioned tip into a needle stand with the tips sealed with bone wax. The radiophysicist picks up a single radioisotope seed using a tweezers, forceps or vacuum hose and deposits that seed in a needle. Next, a single spacer made of gut or similar absorbable material is deposited in the needle. This process is repeated depending upon the predetermined number of seeds and spacers prescribed by the dose plan. The radiophysicist will use a well chamber to measure the strength of a sample of the radioisotope seeds (typically from only one seed to a sample of about 10%). While some needle stands are provided with a certain degree of shielding once the radioisotope seeds are loaded in the implant needles, there is very little shielding that protects the hands and fingers of the radiophysicist during the process of manually loading the implant needles.
Despite the various attempts to improve this process, the handling of radioisotope seeds for low dose radioisotope procedures remains a cumbersome process that can expose radiophysicists, physicians and other hospital personal to unshielded radioisotopes. It would be advantageous to provide for a radioisotope seed cartridge for transporting and handling low dose radioisotope seeds for use in low dose radioisotope procedures that could overcome these problems and enhance the safety and efficiency of this process.
SUMMARY OF THE INVENTION The present invention is an automated cartridge for use in an automated system for low dose radioisotope procedures. The replaceable automated cartridge has a housing that contains a selectively positionable member having a plurality of radioisotope seeds preloaded in chambers defined in the positionable member. An aperture in the housing allows an elongated member to selectively eject radioisotope seeds from chambers in the positionable member when a given chamber is aligned with the aperture. A mechanism in the cartridge automatically positions the selectively positionable member in alignment with the aperture. Preferably, a feedback mechanism generates a positional feedback signal of a position of the chambers of the positionable member relative to the aperture. hi the preferred embodiment, a machine readable storage medium accessible via an electrical connector stores indicia representing at least the quantity and location of the plurality of radioisotope seeds preloaded into the cartridge. In this embodiment, each radioisotope seed is located in a unique chamber defined in the positionable member and each chamber is adapted to receive a seed, a spacer, a plug, or any combination thereof. The housing arrangement includes structure that mates with structure of the automated system. The positionable member is a rotatable drum having chambers defined around a periphery of the rotatable drum. A first stepper motor is operably connected to drive the rotatable drum, and a second stepper motor is operably connected to drive a linear actuator that operably drives the elongated member along a line of travel through a selectively indexed one of the chambers spaced around the periphery of the rotatable drum. An encoder is used to determine whether the stepper motor has rotated the rotatable drum to the correct chamber. Preferably, the stepper motor and encoder are selected such that the stepper motor steps in full steps with relation to the distance between chambers around the periphery. The alignment of the aperture to the chambers in the drum is preferably initially accomplished at the time of assembly.
In one embodiment, the automated cartridge is preloaded at a factory and shipped for usage with radioisotope seeds and spacers inside. Preferably, the loading clip is provided with a machine readable storage medium accessible via an electrical connector that stores indicia representing at least information about the radioisotope seeds located in the loading clip.
BRIEF DESCRIPTION OF THE DRAWINGS
Figures 1 A and IB are perspective views of a preferred embodiment of the automated system for loading low dose radioisotope seeds and showing the preferred embodiment of the replaceable cartridge of the present invention in place within the automated loading system.
Figure 2 is a perspective of the automated system of Figure 1 with an enclosure and showing the receiving structure that mates with the replaceable cartridge of the preferred embodiment of the present invention. Figures 3 A and 3B are exploded perspective views of the preferred embodiment of the replaceable cartridge of Figure 1 that loads needles from the rear.
Figure 4 is a schematic representation of the various combinations of radioisotope seeds, spacers and plugs as stored in the rotatable drum of the preferred embodiment of the replaceable cartridge of Figure 3. Figure 5 is a detailed view of a capstan assembly for the push rod of the preferred embodiment of the replaceable cartridge of Figure 3.
Figure 6 is a perspective of the assembled replaceable cartridge of Figure 3 with a needle to be loaded from the rear. Figure 7 is an exploded perspective view of an alternative embodiment of the replaceable cartridge that loads needles from the tip.
Figure 8 is a detailed cross-sectional view of a tip alignment structure, radiation sensor and needle sensing system of the replaceable cartridge of Figure 9.
Figure 9 is a perspective view of an assembled replaceable cartridge with a needle to be loaded from the tip.
Figure 10 is a perspective view of an assembled replaceable cartridge with a protective shield in place.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to Figure 1, an automated system 10 for loading low dose radioisotope seeds into a plurality of implant needles is comprised of a loading station 12 into which a replaceable cartridge 14 may be positioned. Preferably, the loading station 12 includes structure defining a cartridge receiving structure 16 in a front side of the loading station oriented toward a user as shown in Figure 2. hi this embodiment, the loading station 12 presents a front side toward a user with a corresponding longer dimension of the replaceable cartridge positioned in the cartridge receiving structure 16 parallel to this front side. Alternatively, the cartridge 14 and cartridge receiving structure 16 could be oriented transverse to the front side of loading station 12 or even at a rear side of loading station 12.
The loading station 12 has a base 20 (as shown in Figure 1) and a cover 22 (as shown in Figure 2) preferably formed of molded plastic or metal. A computer processor 30 for the automated system is preferably a motherboard having a microprocessor, internal bus, a PCI- compatible bus, DRAM and EPROM or battery backed SRAM, with appropriate external interfaces or mated PC boards for a video interface, multiple channel IDE interfaces, a floppy disk interface, an ethernet interface, COM and LPT interfaces, an external bidirectional parallel port and a serial port. An automated motion control system 32 is preferably a Galil motion controller available from Galil Motion Control Inc. that interfaces to the computer processor 30 via the PCI-compatible bus. The automated motion control system 32 with appropriate software drivers provides all functionality for the lowest level control of stepper motor position and feedback sensors. A hard disc drive 34, floppy disk drive 36, high density removable media drive 37 and CD or CD-RW drive 38 are also provided for storing data and information to be used by the automated system 10. A video display 40 which operates as the primary user interface is preferably a 1280 by 1024 resolution flat 18.1 inch flat panel LCD with a resistive touch screen, such as are available from National Display Systems. Alternatively, a conventional non-touch screen video display and mouse, keyboard or similar input devices could also be provided. A proportional counter type radiation sensor 42 is positioned to be able to sense the passage of radioisotope seeds from the cartridge 14 into the implant needles and verify the radiation strength of the radioisotope seeds, h the preferred embodiment, the radiation sensor 42 is connected to a multi-channel analyzer card 43 that serves as a data acquisition device for information from this sensor. For clarity, none of the interconnections or cables among the various elements are shown in Figure 1. Figure 2 shows one of a pair of handles 44 for carrying the loading station 12 and one of two fan units 46 for cooling the circuitry and components of the loading station 12. Speakers 48 are also included in the front of the loading station 12. Referring specifically to Figure 2, the downwardly angled cartridge receiving structure
16 of the preferred embodiment will be described. The cartridge receiving structure 16 includes an angled channel 24 with sides that define a downwardly angled path of travel for inserting at a preferred angle of approximately 45 degrees. Once in position, the loading station 12 locks the cartridge in place using an electrical solenoid 26 to prevent inadvertent removal of the cartridge 14 during operation of the automated system 10. Locking is initiated automatically once the presence of a cartridge 14 has been detected in the cartridge receiving structure 16 and the user has initiated a loading operation via display 40. Unlocking the cartridge is imtiated by the user selecting a remove cartridge operation via display 40, but only after computer processor 30 has confirmed completion of any critical motions that are part of the needle loading operation and removed power to the cartridge 14. Preferably, the only other interface between the cartridge 14 and the cartridge receiving structure 16 is a multiple pin-type electrical connector 28. As the stepper motors and associated encoder discs are contained within the cartridge 14, the need for extremely tight tolerance matches between the channel 24 of the cartridge receiving structure 16 and the cartridge 14 is minimized. In addition to the necessary control and sensor signals, the connector 28 include a ground and power connection to provide power to the cartridge 14. The presence of cartridge 14 in cartridge receiving structure 16 is also detected via a contact on connector 28. Although an angled channel 24 is the preferred embodiment for interfacing the cartridge 14 with the cartridge receiving structure 16, it will be recognized that many other structures, such as guide rails, latches, pivoting arrangements, ball and detent locks, and orientations, such as horizontal or vertical, and comiectors, such as optical, infrared, RF, slide contacts, array contacts or the like, could be used to accomplish the same function of interfacing the cartridge 14 with the cartridge receiving structure 16.
Referring now to Figures 3 A and 3B, the cartridge 14 contains a plurality of radioisotope seeds and a plurality of spacers preloaded into the cartridge. The cartridge 14 has at least one aperture 50 into which an implant needle is positioned. Preferably, the radioisotope seeds and spacers are loaded into holes or chambers 52 located around the periphery of a rotatable drum 54. In this embodiment, the cartridge 14 includes a pair of stepper motors within the cartridge. A first stepper motor 56 rotates the rotatable drum 54. It will be seen that stepper motor 56 preferably drives rotatable drum 54 directly without any intervening gearing arrangement. A second stepper motor 58 has a capstan assembly 60 that rotates in engagement with a push rod 62 to slide the push rod 62. For the rotatable drum 54, an encoder detector 64 detects the position of a corresponding encoder disc 66 which is then communicated back to automated motion control system 32 (Figure 1). Preferably, the stepper motor and encoder are selected such that the stepper motor steps in full steps with relation to the distance between chambers around the periphery. The alignment of the aperture to the chambers in the drum is preferably initially accomplished at the time of assembly. It will also be seen that other motor drives other than stepper motors could be used with equivalent success in the present invention, such as servo motors, worm driven motors, or DC motors with appropriate indexing control. In an alternative embodiment as shown in Figure 7, an encoder with a higher degree of resolution can be used and the stepper motor can be incremented in less than full steps. In this embodiment, a first encoder for the rotatable drum generates a positional feedback signal of an index of the chambers of the rotatable drum relative to the line of travel of the linear actuator 60, and a second encoder 68 with a second encoder disc 70 for the linear actuator 60 that generates a positional feedback signal of a position of the elongated member along the line of travel.
Referring again to Figure 3, a series of position sensors 72 are positioned in line with the push rod 62 to detect the travel of push rod 62 as it is driven by capstan system 60 through its line of travel. The sensors 72 are connected to sensor circuitry 74 to communicate this position information to the automated motion control system 32. Each of the encoder detector 64 and sensor circuitry 74 are electrically connected to a circuit board 76 which has an appropriate connector 78 for mating with and connecting with a corresponding connector 28 (Figure 2) in the cartridge receiving structure 16 of the housing 12.
Preferably, the circuit board 76 is provided with an electrically erasable programmable read-only memory (EEPROM) 79 or similar non-volatile memory to store parameters and other data that are unique to the particular cartridge 14 and to the particular patient and dose plan that has been developed for that patient. The contents of EEPROM 79 are set up initially during loading and calibration of the cartridge 14 at the factory. These contents are updated by the automated system 10 so as to continually reflect the current state of the cartridge 14. For example, when the radioisotope seeds and/or spacers are ejected from a given chamber 52, then the data on the EEPROM 104 is updated to reflect that the given chamber 52 no longer contains any radioisotope seeds and or spacers. Preferably, the EEPROM 79 is capable of storing patient and hospital identification information, as well as seed inventory and manufacture information. Optionally, the EEPROM could also store the predetermined dose plan for the particular patient. In the preferred embodiment, various housing elements enclose the cartridge 14 to create a single, enclosed drop-in cartridge to simplify operation and handling of the cartridge as shown in Figure 3. Preferably, the various housing elements are formed of machined stainless steel to enhance the protective aspect of the housing. Alternatively, the housing could be formed of materials other than stainless steel. For example, the housing elements could be molded plastic with appropriate pieces having an internal lead lining or the like to provide sufficient shielding. Although the preferred embodiment is described as a single, enclosed drop-in cartridge, it will be understood by those skilled in the art that some or all of the functional components of cartridge 14 may be separately enclosed or left unenclosed and operably connected together to accomplish the same functionality, such as allowing for mating with the cartridge receiving structure 16 and protecting movement of the push rod 62 along its line of travel.
In the preferred embodiment of the rear loading cartridge 14 as shown in Figure 3, a push rod sleeve 80 encloses the travel of push rod 62. Cover 81 is a one piece unit that covers the capstan assembly 60 and its associated components. A capstan motor mount 82 provides a mounting base for most of the main components of cartridge 14, including circuit board 76 and encoder detector 64. Housing 83 houses the stepper motor 56 and the rotatable drum 54. A cover plate 84 mounts to the housing plate 83. The motor mount 82 and the cover 81 are secured by internal screws (not shown) that are accessed when the cover plate 84 is removed. A front plate 85 covers the circuit board 74 and is also mounted with screws between cover plate 84 and cover 81. A needle housing 86 is also screwed on to the cover plate 84 and includes the aperture 50 through which the needle accesses the cartridge.
In the preferred embodiment as shown in Figure 6, the contents are loaded into the rear 131 of the implant needle 130 which has its tip 132 plugged with bone wax or a similar plug material. Alternatively, a crimp at the tip 132 could prevent the contents of chamber from being pushed out the tip 132 of the needle 132 as it is loaded from the rear 131. In this embodiment, the rear 131 of the needle 130 is preferably secured in place in the aperture 50 by a Luer lock or similar assembly. Preferably, the tip 132 does not extend beyond the side of loading station 12 as a safety measure.
In an alternate embodiment as shown in Figures 7 and 9, the contents are loaded into the tip 132 of the needle 130, rather than into the rear 131 of the needle 130. In this embodiment, the housing elements are configured somewhat differently than in the rear loading embodiment. A rod sleeve 80 encloses the travel of push rod 62. Housing halves 87 mate to abase 88 to cover the capstan assembly/linear actuator 60 and its associated components. The base 88 provides a mounting base for most of the main components of cartridge 14 of the tip loading embodiment, including circuit board 76 and encoder detector 64. Plate 89 provides a mounting structure for stepper motor 56 and includes an aperture 90 through which push rod 62 slides to engage the radioisotope seeds and spacers located in the chambers 52 around the periphery of rotatable drum 54. Plate 89 also prevents radioisotope seeds and spacers from falling out of the chambers 52 on one side of rotatable drum 54. A cap-like cover 92 is mounted over the other side of rotatable drum 54 and includes an aperture 94 by which access is provided to sensor circuitry 74 and through which push rod 62 slides to eject the radioisotope seeds and spacers into the implant needle (not shown) via an alignment tube 96. An alignment structure 98 preferably comprising a beveled alignment needle guide has an internal channel that aligns a corresponding beveled implant needle with the alignment tube 96. An electrical solenoid 100 is used to lock the implant needle in place relative to the cartridge 14 once the proper positioning of the implant needle in the alignment structure 98 has been confirmed, hi the this embodiment, the at least one aperture 50 is defined on an end of a shield tube 102 constructed of appropriate metal to shield the radioisotopes as they are being loaded into the implant needle. hi addition to the advantages afforded by constructing cartridge 14 as a single, enclosed drop-in cartridge, the preferred embodiment of cartridge 14 is designed with minimum piece parts to allow for easy disassembly and sterilization to allow for potential re-use. Once the various covers and circuit assemblies are removed, the remaining portions of cartridge 14 are cleaned with alcohol or hydrogen peroxide to remove bioburden. When reassembled, the entire cartridge 14 is preferably sterilized with a gas sterilization technique. The ease of disassembly also provides a convenient mechanism by which emergency removal of the radioisotope seeds can be accomplished, simply be removing cover 92 and dumping the radioisotope seeds and spacers into an appropriate container.
The use of a rotatable drum 54 also affords important advantages to the preferred embodiment of the present invention. The positioning of the chambers 52 around the periphery of drum 54 reduces the concentration of radiation sources at any given point and provides an optimum separation of radioisotope seeds from each other, thereby enhancing the safety of cartridge 14.
In the preferred embodiment, each chamber 52 is long enough to accommodate any of a combinatorial set of radioisotope seeds, spacers and plugs. As shown in Figure 4, various combinations of radioisotope seeds 110, full-length spacers 112, partial-length spacers 114 which can serve as blanks and plugs 116 can be positioned within a given chamber 52. hi this embodiment, the length of one radioisotope seed 110 or one blank 114 is 4.5 mm, the length of one full length spacer 112 is 5.5 mm and the length of one plug 116 is 2 mm. As will be apparent, the selection of the lengths of each of the seeds 110, spacers 112, 114 and plugs 116 allows for various combinations to be utilized that have the same overall length when positioned in an implant needle of 10 mm for seed and spacer or 12 mm for seed, spacer and plug. The particular combination of each for a given cartridge is optimally determined at the time that the cartridge 14 is preloaded in accordance with a predetermined dose plan. This information can then be utilized by the automated station 10 to load the implant needles in accordance with that predetermined dose plan.
In the preferred embodiment, the rotatable drum 54 is provided with 200 chambers 52 spaced equidistant about the periphery of the rotatable drum 54. The optical encoder disc 66 preferably has 400 or 1600 lines of resolutions which yields a resolution of 2 or 8 counts per chamber 52. hi an alternate embodiment with higher resolution as previously described, 72,000 lines of resolution are used which yields a resolution of 360 counts per chamber 52. A home reference is provided by an index channel on the encoder disc 66. The alignment of the aperture 50 to the chambers 52 in the drum 54 using the index channel is preferably accomplished at the time of assembly. In the high resolution embodiment, an offset to a first chamber location clockwise from the home reference is stored as a parameter for the cartridge 14 to allow for individual cartridge tolerance calibration. Alternatively, an optical sensor could be used to locate the center of a chamber 52 for purposes of calibrating an index. In operation, the automated motion control system 32 uses the stepper motor 56 and encoder circuitry 64 to establish a reference to the first seed drum chamber 52. Motion of the drum 54 may take place bidirectionally (i.e., clockwise or counterclockwise) and as rapidly as possible in order to move to the nearest desired chamber location as determined by the computer processor 30 and automated motion control system 32 in the shortest possible time. When requested by the computer processor 30, the automated motion control system 32 will index to the center of the desired chamber location in preparation for transfer of the contents of that chamber 52 to the implant needle. The drum 54 will remain at this location until it is commanded to a new position.
Referring now to Figure 5, a preferred embodiment of the capstan assembly 60 will be described. A pair of capstans 120, 121 are positioned above and below the line of travel of push rod 62. The upper capstan 120 is preferably the shaft of stepper motor 58. The lower capstan 121 is preferably a ball bearing 122 held in a biased pivot arm 123 biased by a spring 124. Preferably, the upper capstan 120 includes a radial channel 125 adapted to guide the push rod 62. The pivot arm 123 pivots back to allow the push rod 62 to enter the capstan assembly 60. Once engaged, the channel 125 guides the push rod 62 as it is frictionally held between capstans 120, 121. h the preferred embodiment, the channel 125 is aligned with respect to the chambers 52 by adjusting the motor 58 that drives the capstan assembly 60 to the desired depth. A positive travel limit is preferably established using a first optical sensor 126 that is part of the structure of capstan assembly 60 which detects the back of the push rod 62 passing through a defined point. A negative travel limit for the line of travel of push rod 62 is established by a second optical sensor 127 that doubles as a home reference. Preferably, the travel limits do not disable the stepper motor 58, but rather send an indication to the automated motion control system 32 that the respective travel limit has been exceeded. Once zeroed in relation to the home reference, the push rod 62 is moved forward and into an open chamber 52 in the drum 54. This serves as a loose mechanical lock to prevent the drum 54 from being rotated unintentionally. When a request for a seed transfer is generated by the computer processor 30, the automated motion control system 32 activates the capstan assembly 60 to retract the push rod 62, thereby allowing the drum 54 to be rotated freely.
When the drum 54 has been indexed to the desired chamber location, the automated motion control system 32 instructs the stepper motor 58 to move the push rod 62 forward to push the contents of the chamber 52 out of the drum 54 and into the tube 96 leading to the radiation sensor 42. The distance the push rod will travel will be based on the total length of the contents in the given chamber and the location of the radiation sensor 42. Because the automated motion control system 32 knows the nature of the contents of each chamber 52, the push rod would be instructed to stop and position the radioisotope seed in front of the radiation sensor 42 if a radioisotope seed was present in the contents of a given chamber and if the computer processor 30 determined that a radiation measurement should be acquired based upon the radiation sensing parameters as set by the user of the automated system 10. In this case, a message would be communicated from the automated motion control system 32 to the computer processor 30 when the radioisotope seed 110 was properly positioned indicating that a radiation measurement may be performed. Once a radiation measurement has been taken, or if no radiation measurement is required, the automated motion control system instructs the stepper motor 58 to move the push rod 62 forward to deliver the contents into the implant needle 130.
The trailing one of the position sensors 72 is provided along the path of material transfer to allow for detection of the leading edge of the contents with relation to the tip of push rod 62. As the contents of a given chamber 52 are moved by the position sensor 72, the total length of the contents may be determined. This allows for a verification of the length of the contents of a given chamber 52 with the information the automated system has about what should be in that chamber 52 to prevent potential misloads. In the event of an early or late activation of the sensor 72 by the tip of the push rod 62 in relation to the expected activation based on the anticipated length of the contents of that given chamber 52, an alarm or error message would be passed to the computer processor 30.
In the tip loading embodiment as shown in Figure 9, as the contents are delivered into the implant needle 130, a stylet 134 that is preferably positioned in the implant needle 130 is pushed back by the advancing contents. In this way the needle 130 and stylet 134 are ready to use as soon as the loading process is completed and it is not necessary to insert a stylet into the implant needle after the loading process is completed, thereby incurring the risk that the stylet would dislodge the plug 116 or displace any of the loaded contents from the implant needle 130.
As any given implant needle 130 may be loaded from the contents of one or more chambers 52, it is important that the contents of a given chamber 52 containing a plug to be inserted at the tip 132 of implant needle 130 be accurately aligned with the end of the tip 132. In this case, the automated motion control system 32 preferably moves the contents of the chamber 52 containing a plug to an absolute location relative to the tip 132 of the implant needle 130, rather than moving the contents a relative distance based on the expected lengths of the contents of that chamber. In this way, the plugs 116 are always inserted so that they are flush with the ends of the tips 132 of the implant needles 130.
Referring now to Figure 8, an embodiment of the alignment structure 98 and the positioning of an implant needle 130 will be described. In order to begin a loading cycle, the needle tip 132 must be properly positioned by the user so that a known location is established for the needle tip 132. An optical sensor 140 is positioned precisely at the desired location of the needle tip 132 and is connected to the sensor circuitry 74 (Figure 1). Preferably, the alignment structure 98 is beveled to match a beveling on the tip 132 of the implant needle 130. To accomplish proper alignment, the user inserts the implant needle 130 into the aperture 50 until it abuts alignment structure 98 and then rotates the implant needle 130 until the optical sensor 140 indicates proper alignment. Preferably, the optical sensor 140 remains active during the loading process to confirm that there is no movement of implant needle 130 during this process. Once the proper positioning of the implant needle 130 has been confirmed, an electrical solenoid 100 is activated to clamp the implant needle 130 in place relative to the cartridge 14. The force of the solenoid 100 is such that the implant needle 130 may not be moved during the loading operation, but not sufficient to crush the implant needle 130. In the preferred embodiment, the solenoid 100 is automatically released once the loading of the implant needle 130 is complete and a plug 116 has been inserted into the tip 132 of the implant needle 130.
Referring now to Figure 10, an embodiment of the cartridge 14 that include a protective shield 150 will be described. The protective shield 150 is preferably a transparent or semi- transparent molded thermo-plastic material that releasably attaches to the cartridge 14 at end portions 152, 154. Preferably, end portion 152 slides over push rod guide sleeve 80 and end portion 154 snaps over the aperture 50 and is secured by a Luer lock hub used to attach needle 130 to cartridge 14. A periphery 156 around the shield 150 provides a mating against a corresponding raised portion 17 of mating structure 16 of the loading station 12. The purpose of shield 150 is to reduce the possibility of contamination of cartridge 14 during normal operation and to preserve the sterility of cartridge 14 during handling and loading of cartridge 14 into loading station 14. Preferably, shield 150 is provided with hand hold formations 158 that allow for easy manual manipulation of cartridge 14 together with shield 150 during the loading of cartridge 14. It will be understood that mechanical attachment arrangements other than the preferred embodiment, such as latches or the like or adhesive attachments such as glue or the like, could be used to releasably attach shield 150 to cartridge 14. While a simple abutting mating relationship is shown between the periphery 156 of shield 150 and the corresponding raised portion 17 of mating structure 16, it will be understood that other sealing arrangements with gaskets or adhesives or with the use of supplemental mechanical alignment and/or latching mechanisms could also be used to accomplish the intended mating of shield 150 against mating structure 16.
Although the cartridge 14 of the present invention has been described with respect to the automated station 10, it will be understood that the cartridge 14 of the present invention may also be used with other automated equipment as part of a low dose brachytherapy procedure. For example, the elongated member used to eject the radioisotope seeds in the preferred embodiment is a push rod 62 that loads the seeds into a plurality of implant needles. Where the cartridge 14 is used with an automated needle insertion system, the elongated member may be a trocar needle or similar cutting member that would first make an incision into the patient, then be withdrawn, and finally advanced through the aperture of the cartridge to eject the seeds.
Although the drum 64 has been described as the preferred embodiment of the positional member of the cartridge 14 with its movement controlled by stepper motor 56, it should be understood that other forms of this positional member and other motor arrangements would also work within the scope of the present invention. For example, the positionable member could be an X-Y grid of chambers with a pair of stepper motors used to drive the grid in X-Y directions to position the desired chamber in line with the aperture and push rod. 62. Although stepper motors, such as stepper motor 56, and encoders, such as encoder 58 are a convenient and economical manner of implementmg the present invention so that it may be controlled by an external microprocessor arrangement, it will be recognized that other arrangements such as gears, drive belts and clutched motor shafts could be used in place of the stepper motor, and that contact sensors, optical sensors or registry from a known starting point could also be used in place of the encoder. It will also be seen that while the preferred embodiment interfaces with an external microprocessor, it would also be possible to incorporate a microprocessor into the cartridge itself and to communicate externally by telecommunications, radio communications or the like, instead of by electrical connectors.

Claims

1. An automated cartridge (14) having a housing (80, 81, 82, 83, 84) for use with an automated system (12) for low dose radioisotope procedures involving implantation of at least a
5 plurality of radioisotopes seeds (110) characterized in that said housing includes structure that mates with structure (16) of said automated system and has a selectively positionable member (54) within said housing containing said plurality of radioisotope seeds preloaded in chambers (52) defined in said positionable member and an aperture (50) defined in said housing through which an elongated member (62) selectively ejects radioisotope seeds from said chambers in said 10 positionable member when a given chamber is aligned with said aperture and an automated means (32, 56, 64, 66) for positioning said positionable member relative to said aperture.
2. An automated cartridge as claimed in claim 1 further characterized in that said housing includes a machine readable storage medium (79) accessible via an electrical connector (28) that
15 stores indicia representing at least the quantity and location of said plurality of radioisotope . seeds preloaded in said positionable member.
3. An automated cartridge as claimed in claims 1 or 2 wherein said automated means includes means (56) for generating a positional feedback signals of a position of said chambers
20 of said positionable member relative to said aperture.
4. An automated cartridge as claimed in claim 3 wherein said positionable member is a rotatable drum and said means for generating a positional feedback signal is an encoder for said rotatable drum that generates a positional feedback signal of an index of said chambers of said
25 rotatable drum.
5. An automated cartridge as claimed in claim 1 further characterized in that said housing includes an automated means (32, 58, 60) for driving said elongated member along a line of travel through said given chamber.
30.
6. An automated cartridge as claimed in claim 5 wherein said automated means for driving said elongated member includes a position sensor (58) located in said line of travel to detect movement of said elongated member and generate a positional feedback signal of a position of said elongated member along said line of travel.
7. An automated cartridge as claimed in any one of the preceding claims further characterized in that said housing includes a detachable protective shield (150) surrounding at least a portion of said housing and adapted to mate with at least a portion of said structure of said automated system.
8. An automated cartridge as claimed in any one of the preceding claims wherein each of said plurality of radioisotope seeds is located in a unique one of said chambers in said positionable member.
9. An automated cartridge as claimed in any one of the preceding claims wherein said housing of said cartridge is substantially enclosed and said cartridge is a self-contained drop-in unit for use with said automated system.
10. An automated cartridge as claimed in any one of the preceding claims wherein said positionable member is a rotatable drum and said chambers are positioned around a periphery of said rotatable drum.
PCT/US2001/018095 2000-06-05 2001-06-05 Automated radioisotope seed cartridge WO2001093945A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002410474A CA2410474C (en) 2000-06-05 2001-06-05 Automated radioisotope seed cartridge
AU2001271285A AU2001271285A1 (en) 2000-06-05 2001-06-05 Automated radioisotope seed cartridge
DE60116633T DE60116633T2 (en) 2000-06-05 2001-06-05 AUTOMATIC CARDBOARD CARRIER FOR RADIO ISOTOPES
EP01950271A EP1286724B1 (en) 2000-06-05 2001-06-05 Automated radioisotope seed cartridge
BRPI0111448-4A BR0111448B1 (en) 2000-06-05 2001-06-05 automated cartridge.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/587,642 2000-06-05
US09/587,642 US6616593B1 (en) 2000-06-05 2000-06-05 Automated radioisotope seed cartridge

Publications (2)

Publication Number Publication Date
WO2001093945A2 true WO2001093945A2 (en) 2001-12-13
WO2001093945A3 WO2001093945A3 (en) 2002-06-20

Family

ID=24350613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/018095 WO2001093945A2 (en) 2000-06-05 2001-06-05 Automated radioisotope seed cartridge

Country Status (9)

Country Link
US (2) US6616593B1 (en)
EP (1) EP1286724B1 (en)
AT (1) ATE315424T1 (en)
AU (1) AU2001271285A1 (en)
BR (1) BR0111448B1 (en)
CA (1) CA2410474C (en)
DE (1) DE60116633T2 (en)
ES (1) ES2254448T3 (en)
WO (1) WO2001093945A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713765B2 (en) 2002-03-11 2004-03-30 Galileo Scientific, Inc. Scintillating fiber radiation detector for medical therapy
WO2004043541A2 (en) * 2002-10-16 2004-05-27 Bard Brachytherapy, Inc. (F/K/A Stm Acquisition Sub. Inc.) Apparatus and method for dose administration in brachytherapy

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7905832B1 (en) 2002-04-24 2011-03-15 Ipventure, Inc. Method and system for personalized medical monitoring and notifications therefor
US7218938B1 (en) 2002-04-24 2007-05-15 Chung Lau Methods and apparatus to analyze and present location information
US7366522B2 (en) 2000-02-28 2008-04-29 Thomas C Douglass Method and system for location tracking
US7212829B1 (en) 2000-02-28 2007-05-01 Chung Lau Method and system for providing shipment tracking and notifications
US6537192B1 (en) * 2000-06-05 2003-03-25 Mentor Corporation Automated radioisotope seed loader system for implant needles
EP1545705A4 (en) 2000-11-16 2010-04-28 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
DE10110513A1 (en) * 2001-01-29 2002-12-12 Ulrich Werth Implant and method and device for inserting the implant into living tissue
US6726617B1 (en) * 2001-04-09 2004-04-27 Bruno Schmidt Cartridge and applicator
US7074291B2 (en) 2001-11-02 2006-07-11 Worldwide Medical Technologies, L.L.C. Delivery system and method for interstitial radiation therapy using strands constructed with extruded strand housings
US7060020B2 (en) 2001-11-02 2006-06-13 Ideamatrix, Inc. Delivery system and method for interstitial radiation therapy
US6761680B2 (en) * 2001-11-02 2004-07-13 Richard A. Terwilliger Delivery system and method for interstitial radiation therapy using seed strands constructed with preformed strand housing
US9049571B2 (en) 2002-04-24 2015-06-02 Ipventure, Inc. Method and system for enhanced messaging
US9182238B2 (en) 2002-04-24 2015-11-10 Ipventure, Inc. Method and apparatus for intelligent acquisition of position information
WO2004004822A1 (en) * 2002-07-03 2004-01-15 Debiopharm S.A. Implant inserting device
US6997862B2 (en) 2003-05-13 2006-02-14 Ideamatrix, Inc. Delivery system and method for interstitial radiation therapy using seed strands with custom end spacing
US20050080314A1 (en) * 2003-10-09 2005-04-14 Terwilliger Richard A. Shielded transport for multiple brachytheapy implants with integrated measuring and cutting board
US20050267319A1 (en) * 2004-05-12 2005-12-01 White Jack C Brachytherapy seed loader and containers
US7351192B2 (en) * 2004-05-25 2008-04-01 Core Oncology, Inc. Selectively loadable/sealable bioresorbable carrier assembly for radioisotope seeds
US7566424B2 (en) * 2004-07-23 2009-07-28 Mazda Motor Corporation Exhaust gas purification catalyst
US7361135B2 (en) * 2004-08-24 2008-04-22 C R Bard, Inc Brachytherapy system for dispensing medication
US7588528B2 (en) * 2004-08-24 2009-09-15 C. R. Bard, Inc. Brachytherapy apparatus for dispensing medication
US7736293B2 (en) 2005-07-22 2010-06-15 Biocompatibles Uk Limited Implants for use in brachytherapy and other radiation therapy that resist migration and rotation
US8187159B2 (en) 2005-07-22 2012-05-29 Biocompatibles, UK Therapeutic member including a rail used in brachytherapy and other radiation therapy
US20070060801A1 (en) * 2005-08-31 2007-03-15 Isense Corporation Transcutaneous introducer assembly
BRPI0620043A2 (en) * 2005-12-19 2011-10-25 Coloplast As pump for an inflatable penile prosthesis
US20070265487A1 (en) * 2006-05-09 2007-11-15 Worldwide Medical Technologies Llc Applicators for use in positioning implants for use in brachytherapy and other radiation therapy
US7988611B2 (en) 2006-05-09 2011-08-02 Biocompatibles Uk Limited After-loader for positioning implants for needle delivery in brachytherapy and other radiation therapy
US7878964B1 (en) 2006-09-07 2011-02-01 Biocompatibles Uk Limited Echogenic spacers and strands
US7874976B1 (en) 2006-09-07 2011-01-25 Biocompatibles Uk Limited Echogenic strands and spacers therein
US20080269540A1 (en) * 2007-04-27 2008-10-30 Worldwide Medical Technologies Llc Seed cartridge adaptor and methods for use therewith
KR101409458B1 (en) * 2007-11-28 2014-06-19 삼성전자주식회사 Portable communication terminal having an aromatic function and apparatus for charging communication terminal having the same
DK200970206A (en) * 2009-11-16 2011-05-17 Coloplast As Penile prosthetic with anti-autoinflation mechanism
US8016746B2 (en) * 2010-02-03 2011-09-13 Coloplast A/S Inflatable penile implant
US8545393B2 (en) * 2010-02-04 2013-10-01 Coloplast A/S Inflatable penile implant
ES2376985T3 (en) * 2010-02-12 2012-03-21 Eckert & Ziegler Bebig Gmbh Link chain cartridge with radioactive sources and a link system and a cartridge
US9480576B2 (en) 2010-08-27 2016-11-01 Thompson Mis Methods and systems for interbody implant and bone graft delivery
US20120065613A1 (en) * 2010-08-27 2012-03-15 Pepper John R Methods and Systems for Interbody Implant and Bone Graft Delivery
US8852282B2 (en) 2010-08-27 2014-10-07 Daniel K. Farley Methods and systems for interbody implant and bone graft delivery
US8257246B1 (en) 2011-04-19 2012-09-04 Coloplast A/S Penile prosthetic system and pump having inlet valve with high velocity closure mechanism
US9554937B2 (en) 2014-06-16 2017-01-31 Coloplast A/S Penile prosthetic pump having an inlet valve with a lockout flange
US9649217B2 (en) 2014-07-08 2017-05-16 Coloplast A/S Implantable penile prosthetic lockout valve assembly
US10492925B2 (en) 2016-03-03 2019-12-03 Spine Wave, Inc. Graft delivery system
US9987136B2 (en) 2016-09-09 2018-06-05 Coloplast A/S Penile prosthetic pump with an inflation assembly including a rotary valve
EP3703804B1 (en) 2017-11-02 2022-02-16 IsoRay Medical, Inc. Device for loading brachytherapy seeds into implantation sleeves
CN108671382B (en) * 2018-07-12 2023-05-26 天津职业技术师范大学 Automatic loading device for radioactive seed source cartridge clip
CN109529184B (en) * 2019-01-16 2023-04-28 北京智博高科生物技术有限公司 Cartridge clip device for sealing seed source and application method thereof
CN114306914B (en) * 2022-02-17 2023-04-14 哈尔滨工业大学 Radiotherapy particle implantation robot end effector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150298A (en) 1976-04-20 1979-04-17 Cgr-Mev Apparatus for storing and ejecting radioactive sources used in radiotherapy
US4167179A (en) 1977-10-17 1979-09-11 Mark Kirsch Planar radioactive seed implanter
US4759345A (en) 1987-02-09 1988-07-26 Mistry Vitthalbhai D Radiation shielded seed loader for hand implanter hypodermic needles apparatus and method
US4763642A (en) 1986-04-07 1988-08-16 Horowitz Bruce S Intracavitational brachytherapy
US4815449A (en) 1984-11-21 1989-03-28 Horowitz Bruce S Delivery system for interstitial radiation therapy including substantially non-deflecting elongated member
US5147282A (en) 1989-05-04 1992-09-15 William Kan Irradiation loading apparatus
US5851172A (en) 1995-05-08 1998-12-22 Omnitron International, Inc. Afterloader with active force feedback
US6048300A (en) 1997-07-03 2000-04-11 Guidant Corporation Compact cartridge for afterloader

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1308041A (en) 1968-11-26 1973-02-21 Nat Res Dev Mobile dispenser for radioactive sources
US4086914A (en) 1977-02-11 1978-05-02 Edwin Bailey Moore Implant injector
US4401108A (en) 1980-02-13 1983-08-30 Thomas Jefferson University Radioactive material loading, calibration and injection systems
US4451254A (en) * 1982-03-15 1984-05-29 Eli Lilly And Company Implant system
US4488371A (en) * 1982-09-28 1984-12-18 Boyles Edward K Hold down latch apparatus
US4627420A (en) 1983-10-31 1986-12-09 Katz Harry R Needle inserting instrument for interstitial radiotherapy
US4586490A (en) 1984-02-27 1986-05-06 Katz Harry R Needle inserting instrument means for interstitial radiotherapy
US4649925A (en) 1985-01-14 1987-03-17 Technicare Corporation Ultrasonic transducer probe drive mechanism with position sensor
US4702228A (en) 1985-01-24 1987-10-27 Theragenics Corporation X-ray-emitting interstitial implants
US4673813A (en) 1985-05-30 1987-06-16 Nuclear Medical Products, Inc. Multi-dose radio-isotope container
US4869299A (en) 1986-01-29 1989-09-26 Halliburton Company Radioactivity shielding transportation assembly and method
NL8601808A (en) 1986-07-10 1988-02-01 Hooft Eric T METHOD FOR TREATING A BODY PART WITH RADIOACTIVE MATERIAL AND CART USED THEREIN
US4719715A (en) * 1987-04-17 1988-01-19 Howard William J Magazine charger
FR2609898B1 (en) 1987-01-28 1989-03-31 Commissariat Energie Atomique DEVICE FOR DRIVING AND POSITIONING A SOURCE HOLDER IN AN APPLICATOR USED IN CURIETHERAPY
US4994028A (en) 1987-03-18 1991-02-19 Endocon, Inc. Injector for inplanting multiple pellet medicaments
US4847505A (en) * 1987-11-02 1989-07-11 Best Industries, Inc. Storage and transport containers for radioactive medical materials
US5103395A (en) 1988-10-07 1992-04-07 Spako David W System for remote positioning of a radioactive source into a patient including means for protection against improper patient exposure to radiation
US5183455A (en) 1988-10-07 1993-02-02 Omnitron International, Inc. Apparatus for in situ radiotherapy
US5205289A (en) 1988-12-23 1993-04-27 Medical Instrumentation And Diagnostics Corporation Three-dimensional computer graphics simulation and computerized numerical optimization for dose delivery and treatment planning
US5415169A (en) 1989-11-21 1995-05-16 Fischer Imaging Corporation Motorized mammographic biopsy apparatus
DE9017649U1 (en) 1990-09-08 1991-06-20 Isotopen-Technik Dr. Sauerwein Gmbh, 5657 Haan, De
US5092834A (en) 1990-10-12 1992-03-03 Omnitron International, Inc. Apparatus and method for the remote handling of highly radioactive sources in the treatment of cancer
US5181514A (en) 1991-05-21 1993-01-26 Hewlett-Packard Company Transducer positioning system
US5279309A (en) 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5242373A (en) 1991-09-17 1993-09-07 Scott Walter P Medical seed implantation instrument
US5272349A (en) 1992-06-11 1993-12-21 Perry Iii Hugh L Source handling apparatus
US5361768A (en) 1992-06-30 1994-11-08 Cardiovascular Imaging Systems, Inc. Automated longitudinal position translator for ultrasonic imaging probes, and methods of using same
US5249386A (en) * 1992-08-26 1993-10-05 Switzer Robert D Cartridge clip reloader
US5391139A (en) 1992-09-03 1995-02-21 William Beaumont Hospital Real time radiation treatment planning system
US5355606A (en) * 1993-02-16 1994-10-18 Origoni Roberto E Apparatus for loading bullets into a clip
US5282472A (en) 1993-05-11 1994-02-01 Companion John A System and process for the detection, evaluation and treatment of prostate and urinary problems
US5540649A (en) 1993-10-08 1996-07-30 Leonard Medical, Inc. Positioner for medical instruments
US5470008A (en) * 1993-12-20 1995-11-28 United States Surgical Corporation Apparatus for applying surgical fasteners
US5460592A (en) 1994-01-24 1995-10-24 Amersham Holdings, Inc. Apparatus and method for making carrier assembly for radioactive seed carrier
US5552645A (en) 1994-06-08 1996-09-03 Siemens Medical Systems, Inc. Automatic probe activation
US5626829A (en) 1994-11-16 1997-05-06 Pgk, Enterprises, Inc. Method and apparatus for interstitial radiation of the prostate gland
US5522797A (en) * 1995-01-03 1996-06-04 Ivy Laboratories, Inc. Slide action veterinary implanter
US5833627A (en) 1995-04-13 1998-11-10 United States Surgical Corporation Image-guided biopsy apparatus and methods of use
JPH10502566A (en) 1995-04-26 1998-03-10 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Jig for positioning the instrument to be inserted into the object to be inspected
US5906574A (en) 1995-10-06 1999-05-25 Kan; William C. Apparatus for vacuum-assisted handling and loading of radioactive seeds and spacers into implant needles within an enclosed visible radiation shield for use in therapeutic radioactive seed implantation
US5713828A (en) 1995-11-27 1998-02-03 International Brachytherapy S.A Hollow-tube brachytherapy device
WO1997022379A2 (en) 1995-12-18 1997-06-26 Kerisma Medical Products, L.L.C. Fiberoptic-guided interstitial seed manual applicator and seed cartridge
US5800333A (en) 1996-02-20 1998-09-01 United States Surgical Corporation Afterloader provided with remote control unit
US5860909A (en) 1996-10-18 1999-01-19 Mick Radio Nuclear Instruments, Inc. Seed applicator for use in radiation therapy
US5961527A (en) 1997-01-22 1999-10-05 Barzell Whitmore Maroon Bells, Inc. Omni-directional precision instrument platform
US5830219A (en) 1997-02-24 1998-11-03 Trex Medical Corporation Apparatus for holding and driving a surgical cutting device using stereotactic mammography guidance
US5851173A (en) 1997-03-17 1998-12-22 Marlene H. Dugan Self securing Brachy tube cap
US5834788A (en) 1997-05-30 1998-11-10 Syncor International Corp. Tungsten container for radioactive iodine and the like
US5927351A (en) 1997-05-30 1999-07-27 Syncor International Corp. Drawing station system for radioactive material
US5931786A (en) 1997-06-13 1999-08-03 Barzell Whitmore Maroon Bells, Inc. Ultrasound probe support and stepping device
US5871448A (en) 1997-10-14 1999-02-16 Real World Design And Development Co. Stepper apparatus for use in the imaging/treatment of internal organs using an ultrasound probe
US6007474A (en) 1997-10-20 1999-12-28 Ablation Technologies, Inc. Radioactive and/or thermal seed implantation device
US6129670A (en) 1997-11-24 2000-10-10 Burdette Medical Systems Real time brachytherapy spatial registration and visualization system
CA2333583C (en) 1997-11-24 2005-11-08 Everette C. Burdette Real time brachytherapy spatial registration and visualization system
US6213932B1 (en) * 1997-12-12 2001-04-10 Bruno Schmidt Interstitial brachytherapy device and method
US5938583A (en) 1997-12-29 1999-08-17 Grimm; Peter D. Precision implant needle and method of using same in seed implant treatment of prostate cancer
US5928130A (en) 1998-03-16 1999-07-27 Schmidt; Bruno Apparatus and method for implanting radioactive seeds in tissue
US5957935A (en) 1998-04-15 1999-09-28 Brown; Samuel D. Guide and holding bracket for a prostate implant stabilization device
WO1999056825A1 (en) 1998-05-04 1999-11-11 Novoste Corporation Intraluminal radiation treatment system
US6010446A (en) 1998-05-20 2000-01-04 Grimm; Peter D. Spacer element for radioactive seed implant treatment of prostate cancer
US6036632A (en) 1998-05-28 2000-03-14 Barzell-Whitmore Maroon Bells, Inc. Sterile disposable template grid system
US6113529A (en) 1998-08-06 2000-09-05 Shi; Xiaolin Radioactive seed handling device
US6106455A (en) 1998-10-21 2000-08-22 Kan; William C. Radioactive seed vacuum pickup probe
US6270472B1 (en) * 1998-12-29 2001-08-07 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus and a method for automatically introducing implants into soft tissue with adjustable spacing
WO2000048664A2 (en) 1999-02-16 2000-08-24 Cordis Corporation Automatic ribbon delivery system for intravascular radiation therapy
ES2298153T3 (en) 1999-04-09 2008-05-16 Medi Physics, Inc. PROCEDURE AND APPLIANCE FOR LOADING SYSTEMS OF DISTRIBUTION OF SEEDS OF BRAQUITERAPIA.
US6258056B1 (en) * 1999-06-10 2001-07-10 Mark L. Anderson Implanter apparatus
US6241706B1 (en) 1999-07-16 2001-06-05 Datascope Investment Corporation Fast response intra-aortic balloon pump
US6454696B1 (en) 1999-07-23 2002-09-24 Nucletron B. V. Device and method for implanting radioactive seeds
US6221003B1 (en) * 1999-07-26 2001-04-24 Indigo Medical, Incorporated Brachytherapy cartridge including absorbable and autoclaveable spacer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150298A (en) 1976-04-20 1979-04-17 Cgr-Mev Apparatus for storing and ejecting radioactive sources used in radiotherapy
US4167179A (en) 1977-10-17 1979-09-11 Mark Kirsch Planar radioactive seed implanter
US4815449A (en) 1984-11-21 1989-03-28 Horowitz Bruce S Delivery system for interstitial radiation therapy including substantially non-deflecting elongated member
US4763642A (en) 1986-04-07 1988-08-16 Horowitz Bruce S Intracavitational brachytherapy
US4759345A (en) 1987-02-09 1988-07-26 Mistry Vitthalbhai D Radiation shielded seed loader for hand implanter hypodermic needles apparatus and method
US5147282A (en) 1989-05-04 1992-09-15 William Kan Irradiation loading apparatus
US5851172A (en) 1995-05-08 1998-12-22 Omnitron International, Inc. Afterloader with active force feedback
US6048300A (en) 1997-07-03 2000-04-11 Guidant Corporation Compact cartridge for afterloader

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713765B2 (en) 2002-03-11 2004-03-30 Galileo Scientific, Inc. Scintillating fiber radiation detector for medical therapy
WO2004043541A2 (en) * 2002-10-16 2004-05-27 Bard Brachytherapy, Inc. (F/K/A Stm Acquisition Sub. Inc.) Apparatus and method for dose administration in brachytherapy
WO2004043541A3 (en) * 2002-10-16 2004-08-12 Bard Brachytherapy Inc F K A S Apparatus and method for dose administration in brachytherapy
US7041048B2 (en) * 2002-10-16 2006-05-09 Sourcetech Medical, Llc Apparatus and method for dose administration in brachytherapy

Also Published As

Publication number Publication date
AU2001271285A1 (en) 2001-12-17
DE60116633T2 (en) 2006-09-21
CA2410474A1 (en) 2001-12-13
EP1286724B1 (en) 2006-01-11
ES2254448T3 (en) 2006-06-16
CA2410474C (en) 2008-01-15
BR0111448B1 (en) 2009-08-11
BR0111448A (en) 2003-06-03
DE60116633D1 (en) 2006-04-06
EP1286724A2 (en) 2003-03-05
US6616593B1 (en) 2003-09-09
WO2001093945A3 (en) 2002-06-20
ATE315424T1 (en) 2006-02-15
US6599231B1 (en) 2003-07-29

Similar Documents

Publication Publication Date Title
EP1286724B1 (en) Automated radioisotope seed cartridge
US7229400B2 (en) Automated radioisotope seed loader system for implant needles
US20030149328A1 (en) Automated radioisotope seed loader system for implant needles
US7959548B2 (en) Automated implantation system for radioisotope seeds
US6572527B2 (en) Radioactive seed-holding device
US7041048B2 (en) Apparatus and method for dose administration in brachytherapy
US6595908B2 (en) Method for analyzing amount of activity
US20020193656A1 (en) Fiberoptic-guided interstitial seed manual applicator and seed cartridge
US20100331600A1 (en) System for dispensing radio-pharmaceuticals and measuring radiation dosage of it
US7985172B2 (en) After-loader devices and kits
US20030139700A1 (en) User interface for an automated radioisotope system
WO2003092814A1 (en) Apparatus and method for loading a brachytherapy seed cartridge
US7025717B2 (en) Semi-automatic needle loader
US7097609B2 (en) After loader apparatus as well as a device for exchanging an after loader cartridge
CN115382115A (en) Radioactive particle bin and radioactive particle implantation gun
Moran Using the needle manipulation ruler

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2410474

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2001950271

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2001271285

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2001950271

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2001950271

Country of ref document: EP