WO2001098227A1 - Construction material - Google Patents

Construction material Download PDF

Info

Publication number
WO2001098227A1
WO2001098227A1 PCT/SE2001/000682 SE0100682W WO0198227A1 WO 2001098227 A1 WO2001098227 A1 WO 2001098227A1 SE 0100682 W SE0100682 W SE 0100682W WO 0198227 A1 WO0198227 A1 WO 0198227A1
Authority
WO
WIPO (PCT)
Prior art keywords
construction material
aluminium
modified
silica
colloidal silica
Prior art date
Application number
PCT/SE2001/000682
Other languages
French (fr)
Inventor
Peter Greenwood
Hans Bergqvist
Ulf Skarp
Original Assignee
Akzo Nobel N.V.
Eka Chemicals Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP01916049A priority Critical patent/EP1292547B1/en
Priority to DE60115642T priority patent/DE60115642T2/en
Application filed by Akzo Nobel N.V., Eka Chemicals Ab filed Critical Akzo Nobel N.V.
Priority to CA002412949A priority patent/CA2412949C/en
Priority to AU2001242988A priority patent/AU2001242988B2/en
Priority to US10/311,744 priority patent/US6800130B2/en
Priority to JP2002503670A priority patent/JP4146719B2/en
Priority to IL15333801A priority patent/IL153338A0/en
Priority to MXPA02012245A priority patent/MXPA02012245A/en
Priority to NZ523239A priority patent/NZ523239A/en
Priority to KR10-2002-7016852A priority patent/KR100502205B1/en
Priority to BRPI0111774-2A priority patent/BR0111774B1/en
Priority to AU4298801A priority patent/AU4298801A/en
Priority to AT01916049T priority patent/ATE312062T1/en
Priority to KR10-2002-7016851A priority patent/KR100498784B1/en
Publication of WO2001098227A1 publication Critical patent/WO2001098227A1/en
Priority to NO20026110A priority patent/NO20026110L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/04Alkali metal or ammonium silicate cements ; Alkyl silicate cements; Silica sol cements; Soluble silicate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/062Microsilica, e.g. colloïdal silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/606Agents for neutralising Ca(OH)2 liberated during cement hardening

Definitions

  • Construction material The invention relates to a construction material suitable for constructions such as roads, bridges, tunnels and buildings.
  • the invention also relates to a method for producing such material and the use thereof.
  • Construction materials and methods for preparing such materials comprising concrete compositions for constructing bridges, roads, tunnels, buildings, marine constructions are known in the art from US 5,932,000, in which a method for preparing concrete from a mixture of a hydraulic binder, aggregates, water, and colloidal silica is disclosed.
  • US 5,149,370 discloses a cement slurry comprising an aqueous colloidal silicic acid suspension suitable for oil well applications. It has been desired in the art to provide new compositions suitable for construction materials resulting in even stronger construction materials than produced hitherto. It has also been desired to provide construction materials containing lower amounts of additives, which may lead to reduced production costs. Furthermore, it has been desired to prepare e.g. concrete mixtures which can maintain their high workability throughout the period of time preceding the setting of the concrete mixture.
  • the present invention intends to solve the problems described above.
  • the invention relates to a construction material comprising a hydraulic binder, water, and an aluminium-modified colloidal silica.
  • construction material is meant a material, especially which has not yet set, suitable for construction of e.g. roads, tunnels, bridges, buildings, concrete pipes, well cementing, subterranean constructions and other cementitious grouting, and marine constructions such as quays, piers, and jetties.
  • aluminium-modified colloidal silica aluminium-modified colloidal silica in any form, where the colloidal silica may be e.g. silica sol, precipitated silica, silica gel, fumed silica, silica fume or mixtures thereof.
  • the other forms may replace or be mixed with aluminium-modified silica sols as additives in the construction material.
  • Aluminium-modified silica sols can be prepared by adding an appropriate amount of aluminate ions, AI(OH) 4 " , to a conventional non-modified silica sol under agitation.
  • the aluminate ion solution is suitably a diluted sodium or potassium aluminate solution.
  • the silica particles suitably have from about 0.05 to about 2, preferably from about 0.1 to about 2 Al atoms/nm 2 surface area of the silica particles.
  • the aluminium-modified silica particles comprise inserted or exchanged aluminate ions, creating aluminosilicate sites having a fixed negative surface charge.
  • the aluminium-modified silica particles remain their high negative surface charge down to pH 3 in contrast to conventional non-modified silica sols, for which the negative surface charge decreases when the pH decreases, normally down to a pH of about 2, which is the point of zero charge for a non-modified silica sol.
  • the surface charge is thus lower for non-modified silica particles than aluminium-modified silica sol at a pH below about 8.
  • the pH of the aluminium-modified silica sol can be adjusted, preferably by means of an ion exchange resin, suitably to a pH ranging from about 3 to about 11 , preferably from about 4 to about 10.
  • the aluminium modified silica sol can thereafter be concentrated to yield a silica content from about 1 to about 60 wt%, preferably from about 5 to about 50 wt%.
  • the aluminium modified silica particles suitably have an AI 2 O 3 content of from about 0.05 to about 3, preferably from about 0.1 to about 2, and most preferably from about 0.1 to about 1 wt%.
  • the diameter of the aluminium-modified silica particles suitably ranges from about 2 to about 200 nm, preferably from about 3 nm to about 100 nm.
  • the procedure of preparing aluminium- modified silica sol is further described e.g. in "The Chemistry of Silica", by Her, K. Ralph, pages 407-409, John Wiley & Sons (1979) and in US 5 368 833.
  • aluminium-modified colloidal silica is also meant to comprise reaction products of colloidal silica which has reacted chemically with a hydraulic binder or other components present in the construction material or mixture forming the construction material, e.g. calcium silicate hydrate gel.
  • the aluminium-modified silica particles are suitably dispersed in water or other solvents such as organic solvents, e.g. alcohols, or mixtures of water and organic solvents.
  • the aluminium-modified silica particles are suitably stabilised by cations such as K + , Na + , Li + , NH 4 + or mixtures thereof.
  • the specific surface area of the aluminium-modified silica sol is suitably from about 10 to about 1200 m 2 /g, preferably from about 30 to about 1000 m 2 /g, and most preferably from about 60 to about 900 m 2 /g.
  • the mixture of components making up the construction material may be sensitive to the water/hydraulic binder ratio. If too much water is present, this may render the composition unstable leading to bleeding and segregation.
  • aluminium- modified silica sol it is possible to avoid such effects and at the same time obtain a material having a high early strength and long term strength compared to compositions containing non-modified silica sol.
  • Aluminium-modified colloidal silica particles are distinguished from alumina coated silica particles, in which particles the silica surface is coated (covered) with a layer of alumina, resulting in particles showing the same properties as alumina particles. Both alumina particles and alumina-coated silica particles have e.g. a positive surface charge.
  • the hydraulic binder may be e.g. a cement such as Ordinary Portland Cement (OPC) or blended cements as further described in e.g. US 6,008,275.
  • OPC Ordinary Portland Cement
  • blended cements as further described in e.g. US 6,008,275.
  • the components making up the construction material i.e. hydraulic binder, aluminium-modified colloidal silica, and water suitably have a weight ratio according to the following: hydraulic binder (dry weight): aluminium-modified colloidal silica (dry weight) from about 1:0.0005 to about 1:0.2, preferably from about 1:0.001 to about 1:0.1.
  • the weight ratio hydraulic binder (dry weight): water suitably is from about 1:0.22 to about 1:4, preferably from about 1:0.25 to about 1:2.5.
  • aggregates may be comprised in the construction material.
  • aggregates material such as stone, gravel and sand, and other preferred inorganic material, suitably having an average particle diameter range from about 0.01 to about 100 mm, preferably from about 0.125 to about 100 mm.
  • Aggregates is suitably comprised in the construction material in a ratio from about 100 to about 1000 wt% based on the weight of the hydraulic binder. Aggregates contribute to a higher strength of the construction material and makes it less expensive to produce.
  • a fine filler can be comprised in the construction material, suitably in the range from about 0.1 to about 40 wt% based on the weight of the aggregates.
  • the addition of a fine filler can contribute to a denser and more stable composition.
  • fine filler particles of a maximum diameter of 125 ⁇ m.
  • Suitable fine fillers include limestone, sand, glass, fly ash and other inorganic materials such as calcium magnesium silicate.
  • the type of fine filler used depends on the application. In Swedish self compacting concrete (SCC), limestone is frequently used while in German SCC and in American residential concrete, fly ash is often used, whereas Swedish high strength concrete (HSC) often comprise sand as a fine filler etc.
  • the weight ratio of fine filler: aggregates is from about 0.001:1 to about 0.4:1, preferably from about 0.015:1 to about 0.3:1.
  • the construction material comprises a plasticiser and/or a superplasticiser, such as a sulphonated naphtalene formaldehyde condensate, a sulphonated melamine formaldehyde condensate, a polycarboxylate or mixtures thereof, preferably a polycarboxylate and/or a sulphonated naphthalene formaldehyde condensate.
  • a plasticiser and/or a superplasticiser such as a sulphonated naphtalene formaldehyde condensate, a sulphonated melamine formaldehyde condensate, a polycarboxylate or mixtures thereof, preferably a polycarboxylate and/or a sulphonated naphthalene formaldehyde condensate.
  • Sulphonated naphthalene formaldehyde condensates are especially preferred when used in construction material for well cementing applications, because these superplasticisers
  • polycarboxylate is here meant to comprise a group of polymer compounds comprising a backbone having carboxylic groups linked thereto.
  • the polycarboxylate molecular weight suitably ranges from about 1000 to about 2 000 000 g/mole, preferably from about 2000 to about 1 000 000 g/mole.
  • the backbone can also comprise other linked groups such as polyacrylic or polyether chains.
  • the molecular weight of the backbone suitably is from about 1000 to about 100 000 g/mole, preferably from about 5 000 to about 20 000 g/mole. Suitable polycarboxylates are further described in e.g. US 6,008,275.
  • additives can be comprised in the construction material, e.g. retarders, air-entraining agents, accelerators, emulsion latex, hydrophobising agents, shrinkage reducing agents, corrosion inhibitors etc.
  • the dosage of these additives suitably is in the range from about 0.1 to about 10 wt% (dry weight) based on the weight of the hydraulic binder.
  • the invention also relates to a construction material comprising the reaction products of hydraulic binder, aluminium-modified silica sol, and water.
  • the invention further relates to a method for preparing a construction material comprising mixing a hydraulic binder, water, and an aluminium-modified colloidal silica, preferably an aluminium-modified silica sol.
  • the components may be added in any order.
  • the aluminium-modified colloidal silica is added after the other components have been mixed.
  • the weight ratios between the components mixed suitably are as described hereabove.
  • the invention further relates to the use of the construction material as described above in constructions such as roads, tunnels, bridges, buildings such as residential and commercial concrete constructions, concrete pipes, well cementing, subterranean cementing including cementitious grouting, mining applications, and marine constructions.
  • constructions such as roads, tunnels, bridges, buildings such as residential and commercial concrete constructions, concrete pipes, well cementing, subterranean cementing including cementitious grouting, mining applications, and marine constructions.
  • silica sols used in examples 1-3 are listed below. All weight percentages of silica (SiO 2 ) and alumina (AI 2 O 3 ) contents are based on the weight of the entire silica sol product.
  • Silica sol 1 Al-modified silica sol, specific surface area of 850 m 2 /g, SiO 2 content: 7.7 wt%, AI 2 O 3 content: 0.33 wt%.
  • Silica sol 2 Non-modified silica sol, specific surface area of 900 m 2 /g, Si0 2 content: 10 wt%.
  • Silica sol 3 Non-modified silica sol, specific surface area of 750 m 2 /g, Si0 2 content: 15 wt%.
  • Silica sol 4 Al-modified silica sol, specific surface area of 80 m 2 /g, SiO 2 content: 47 wt%, AI 2 O 3 content: 0.25 wt%.
  • Silica sol 5 Non-modified silica sol, specific surface area of 80 m 2 /g, Si0 2 content: 50 wt%.
  • Silica sol 6 Al-modified silica sol, specific surface area of 220 m 2 /g, Si0 2 content: 30 wt%,
  • silica sol 7 Non-modified silica sol, specific surface area of 220 m 2 /g, SiO 2 content: 30 wt%.
  • the specific surface areas of the silica sols were determined by Sear's method, described in "The Chemistry of Silica", Her, Ralph K. (1979), p. 203-206, 353-354.
  • Example 1 In the preparation of samples 1-6 below, an aluminium-modified or a non- modified silica sol and a superplasticiser (Glenium 51) were added in amounts as set out in table 1 to a class II cement (Bygg Cement-Sk ⁇ vde CEM II/A-L42.R). 200 kg water, 120 kg fine filler (limestone), aggregates and a superplasticiser (Glenium 51) were- added thereto (cf. table 1). Aggregates were added so the total weight of cement, limestone and aggregates became 2140 kg/m 3 .
  • a class II cement Bogg Cement-Sk ⁇ vde CEM II/A-L42.R
  • the workability of the prepared samples was estimated by measuring the initial spread.
  • the initial spread is measured by placing a freshly mixed concrete composition in a slump cone having a certain cone diameter, which cone is subsequently turned upside- down so that the mass after removal of the cone starts to flow out (according to Standard Test Method ASTM C 143).
  • High spread indicates high workability, which ensures that the concrete mass easily can flow out on the place where it is to set. High workability also ensures that the concrete mass can be stored for a certain period of time without losing the initial fluidity properties it had just after the preparation.
  • sample 1 comprising an aluminium-modified silica sol has a higher early strength (after 24 hours) and long term strength (after 28 days) than has sample 2, comprising a non-modified silica sol, even though the silica content of sample 1 is slightly lower than that of sample 2.
  • sample 3 comprising an aluminium-modified silica sol
  • sample 4 shows higher early strength than sample 4 comprising a non-modified silica sol (the two samples have substantially the same silica content).
  • Sample 6, comprising an aluminium-modified silica sol, shows higher early strength and long term strength than sample 5, even though the silica content is lower in sample 5 than in sample 6.
  • Example 2 In the preparation of samples 1-6 below, an aluminium-modified or a non- modified silica sol was added to a class II cement (Bygg Cement-Skovde CEM ll/A- L42.R). 200 kg water, 120 kg fine filler (limestone), aggregates and a superplasticiser (Glenium 51) were added thereto (cf. table 2). Aggregates were added so that the total weight of cement, limestone and aggregates became 2140 kg/m 3 . The superplastisicer and the silica sols were added in amounts as set out in table 2. The workability of the concrete was estimated by measuring the initial spread (cf. example 1). The spread was also measured after 90 minutes (slump spread). The workability loss, i.e. the difference between the initial spread and the spread after 90 minutes was also calculated. The higher the slump spread, i.e. the spread 90 minutes after the measurement of the initial spread, the lower the workability loss.
  • a class II cement Bogg Cement-Skovde CEM ll
  • sample 1 comprising an aluminium-modified silica sol
  • sample 4 comprising an aluminium-modified silica sol
  • sample 3 has lower workability loss than sample 3 (same silica content in samples 3 and 4).
  • sample 5 comprising an aluminium-modified silica sol
  • sample 6 has a lower workability loss than sample 6, even though the silica content of sample 5 is slightly lower.
  • the loss in workability is only about 60 percent for the samples containing aluminium-modified silica sols in relation to the samples containing non-modified silica sols.
  • slurries were prepared from class I cement (Anlaggningscement Degerhamn CEM I 42,5BV/SR/LA). The slurries had a water/cement weight ratio of 0.35. 2 wt% of a silica sol and 1 wt% of a superplasticiser (a 30wt% sulphonated naphthalene formaldehyde condensate solution), based on the cement weight, were added to the slurries.
  • the slurries were mixed with moderate agitation.
  • the yield value and the plastic viscosity were then evaluated by means of a ConTec Viscometer Model 4 (BML Viscometer) after 15,30, 60 and 90 minutes respectively.
  • the yield value is a measure of the force needed to make e.g. a cement slurry move.
  • Table 4 shows great differences in plastic viscosity between the samples containing alumina-modified silica sols and non-modified silica sols.
  • sample 1 containing an aluminium-modified silica sol
  • sample 3 containing aluminium-modified silica sol
  • sample 4 has substantially same silica content.
  • Low plastic viscosity means good flow properties, good penetration and bonding properties.

Abstract

The invention relates to a construction material comprising a hydraulic binder, water, and an aluminium-modified colloidal silica. The invention also relates to a method for preparing such materials and the use thereof.

Description

Construction material The invention relates to a construction material suitable for constructions such as roads, bridges, tunnels and buildings. The invention also relates to a method for producing such material and the use thereof.
Background of the invention
Construction materials and methods for preparing such materials comprising concrete compositions for constructing bridges, roads, tunnels, buildings, marine constructions are known in the art from US 5,932,000, in which a method for preparing concrete from a mixture of a hydraulic binder, aggregates, water, and colloidal silica is disclosed.
US 5,149,370 discloses a cement slurry comprising an aqueous colloidal silicic acid suspension suitable for oil well applications. It has been desired in the art to provide new compositions suitable for construction materials resulting in even stronger construction materials than produced hitherto. It has also been desired to provide construction materials containing lower amounts of additives, which may lead to reduced production costs. Furthermore, it has been desired to prepare e.g. concrete mixtures which can maintain their high workability throughout the period of time preceding the setting of the concrete mixture.
The present invention intends to solve the problems described above.
The invention The invention relates to a construction material comprising a hydraulic binder, water, and an aluminium-modified colloidal silica.
It has been surprisingly found that a construction material comprising said components increases the early strength, as well as the long term strength of the construction material. Furthermore, it has been found that the construction material comprising the aluminium-modified colloidal silica maintains a high and stable workability. By the term "construction material" is meant a material, especially which has not yet set, suitable for construction of e.g. roads, tunnels, bridges, buildings, concrete pipes, well cementing, subterranean constructions and other cementitious grouting, and marine constructions such as quays, piers, and jetties.
By the term "aluminium-modified colloidal silica" is meant aluminium-modified colloidal silica in any form, where the colloidal silica may be e.g. silica sol, precipitated silica, silica gel, fumed silica, silica fume or mixtures thereof. Even though aluminium- modified silica sol is the preferred form, and the only form discussed in detail hereunder, the other forms may replace or be mixed with aluminium-modified silica sols as additives in the construction material.
Aluminium-modified silica sols, sometimes also referred to as aluminate or alumina modified silica sols, can be prepared by adding an appropriate amount of aluminate ions, AI(OH)4 ", to a conventional non-modified silica sol under agitation. The aluminate ion solution is suitably a diluted sodium or potassium aluminate solution. The silica particles suitably have from about 0.05 to about 2, preferably from about 0.1 to about 2 Al atoms/nm2 surface area of the silica particles. The aluminium-modified silica particles comprise inserted or exchanged aluminate ions, creating aluminosilicate sites having a fixed negative surface charge. The aluminium-modified silica particles remain their high negative surface charge down to pH 3 in contrast to conventional non-modified silica sols, for which the negative surface charge decreases when the pH decreases, normally down to a pH of about 2, which is the point of zero charge for a non-modified silica sol. The surface charge is thus lower for non-modified silica particles than aluminium-modified silica sol at a pH below about 8. The pH of the aluminium-modified silica sol can be adjusted, preferably by means of an ion exchange resin, suitably to a pH ranging from about 3 to about 11 , preferably from about 4 to about 10. The aluminium modified silica sol can thereafter be concentrated to yield a silica content from about 1 to about 60 wt%, preferably from about 5 to about 50 wt%. The aluminium modified silica particles suitably have an AI2O3 content of from about 0.05 to about 3, preferably from about 0.1 to about 2, and most preferably from about 0.1 to about 1 wt%. The diameter of the aluminium-modified silica particles suitably ranges from about 2 to about 200 nm, preferably from about 3 nm to about 100 nm. The procedure of preparing aluminium- modified silica sol is further described e.g. in "The Chemistry of Silica", by Her, K. Ralph, pages 407-409, John Wiley & Sons (1979) and in US 5 368 833.
In this context, by aluminium-modified colloidal silica is also meant to comprise reaction products of colloidal silica which has reacted chemically with a hydraulic binder or other components present in the construction material or mixture forming the construction material, e.g. calcium silicate hydrate gel. The aluminium-modified silica particles are suitably dispersed in water or other solvents such as organic solvents, e.g. alcohols, or mixtures of water and organic solvents. The aluminium-modified silica particles are suitably stabilised by cations such as K+, Na+, Li+, NH4 + or mixtures thereof.
The specific surface area of the aluminium-modified silica sol is suitably from about 10 to about 1200 m2/g, preferably from about 30 to about 1000 m2/g, and most preferably from about 60 to about 900 m2/g. The mixture of components making up the construction material may be sensitive to the water/hydraulic binder ratio. If too much water is present, this may render the composition unstable leading to bleeding and segregation. By addition of aluminium- modified silica sol, it is possible to avoid such effects and at the same time obtain a material having a high early strength and long term strength compared to compositions containing non-modified silica sol.
Aluminium-modified colloidal silica particles are distinguished from alumina coated silica particles, in which particles the silica surface is coated (covered) with a layer of alumina, resulting in particles showing the same properties as alumina particles. Both alumina particles and alumina-coated silica particles have e.g. a positive surface charge.
The hydraulic binder may be e.g. a cement such as Ordinary Portland Cement (OPC) or blended cements as further described in e.g. US 6,008,275.
The components making up the construction material, i.e. hydraulic binder, aluminium-modified colloidal silica, and water suitably have a weight ratio according to the following: hydraulic binder (dry weight): aluminium-modified colloidal silica (dry weight) from about 1:0.0005 to about 1:0.2, preferably from about 1:0.001 to about 1:0.1. The weight ratio hydraulic binder (dry weight): water suitably is from about 1:0.22 to about 1:4, preferably from about 1:0.25 to about 1:2.5.
According to a preferred embodiment, aggregates may be comprised in the construction material. By the term "aggregates" is meant material such as stone, gravel and sand, and other preferred inorganic material, suitably having an average particle diameter range from about 0.01 to about 100 mm, preferably from about 0.125 to about 100 mm. Aggregates is suitably comprised in the construction material in a ratio from about 100 to about 1000 wt% based on the weight of the hydraulic binder. Aggregates contribute to a higher strength of the construction material and makes it less expensive to produce.
Preferably, a fine filler can be comprised in the construction material, suitably in the range from about 0.1 to about 40 wt% based on the weight of the aggregates. The addition of a fine filler can contribute to a denser and more stable composition.
By the term "fine filler" is meant particles of a maximum diameter of 125 μm. Suitable fine fillers include limestone, sand, glass, fly ash and other inorganic materials such as calcium magnesium silicate. The type of fine filler used depends on the application. In Swedish self compacting concrete (SCC), limestone is frequently used while in German SCC and in American residential concrete, fly ash is often used, whereas Swedish high strength concrete (HSC) often comprise sand as a fine filler etc. Preferably, the weight ratio of fine filler: aggregates is from about 0.001:1 to about 0.4:1, preferably from about 0.015:1 to about 0.3:1. According to a preferred embodiment, the construction material comprises a plasticiser and/or a superplasticiser, such as a sulphonated naphtalene formaldehyde condensate, a sulphonated melamine formaldehyde condensate, a polycarboxylate or mixtures thereof, preferably a polycarboxylate and/or a sulphonated naphthalene formaldehyde condensate. Sulphonated naphthalene formaldehyde condensates are especially preferred when used in construction material for well cementing applications, because these superplasticisers are not so sensitive to the high temperatures occurring in wells.
By the term "polycarboxylate" is here meant to comprise a group of polymer compounds comprising a backbone having carboxylic groups linked thereto. The polycarboxylate molecular weight suitably ranges from about 1000 to about 2 000 000 g/mole, preferably from about 2000 to about 1 000 000 g/mole. The backbone can also comprise other linked groups such as polyacrylic or polyether chains. The molecular weight of the backbone suitably is from about 1000 to about 100 000 g/mole, preferably from about 5 000 to about 20 000 g/mole. Suitable polycarboxylates are further described in e.g. US 6,008,275.
Also other additives can be comprised in the construction material, e.g. retarders, air-entraining agents, accelerators, emulsion latex, hydrophobising agents, shrinkage reducing agents, corrosion inhibitors etc. The dosage of these additives suitably is in the range from about 0.1 to about 10 wt% (dry weight) based on the weight of the hydraulic binder.
The invention also relates to a construction material comprising the reaction products of hydraulic binder, aluminium-modified silica sol, and water.
The invention further relates to a method for preparing a construction material comprising mixing a hydraulic binder, water, and an aluminium-modified colloidal silica, preferably an aluminium-modified silica sol.
The components may be added in any order. Preferably, the aluminium-modified colloidal silica is added after the other components have been mixed. The weight ratios between the components mixed suitably are as described hereabove. The invention further relates to the use of the construction material as described above in constructions such as roads, tunnels, bridges, buildings such as residential and commercial concrete constructions, concrete pipes, well cementing, subterranean cementing including cementitious grouting, mining applications, and marine constructions. The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the gist and scope of the present invention, and all such modifications as would be obvious to a person skilled in the art are intended to be included within the scope of the claims. The following examples will further illustrate how the described invention may be performed without limiting the scope of it.
The following silica sols used in examples 1-3 are listed below. All weight percentages of silica (SiO2) and alumina (AI2O3 ) contents are based on the weight of the entire silica sol product.
Silica sol 1: Al-modified silica sol, specific surface area of 850 m2/g, SiO2 content: 7.7 wt%, AI2O3 content: 0.33 wt%. Silica sol 2: Non-modified silica sol, specific surface area of 900 m2/g, Si02 content: 10 wt%.
Silica sol 3: Non-modified silica sol, specific surface area of 750 m2/g, Si02 content: 15 wt%.
Silica sol 4: Al-modified silica sol, specific surface area of 80 m2/g, SiO2 content: 47 wt%, AI2O3 content: 0.25 wt%.
Silica sol 5: Non-modified silica sol, specific surface area of 80 m2/g, Si02 content: 50 wt%.
Silica sol 6: Al-modified silica sol, specific surface area of 220 m2/g, Si02 content: 30 wt%,
AI2O3 content: 0.2 wt%. Silica sol 7: Non-modified silica sol, specific surface area of 220 m2/g, SiO2 content: 30 wt%.
The specific surface areas of the silica sols were determined by Sear's method, described in "The Chemistry of Silica", Her, Ralph K. (1979), p. 203-206, 353-354.
Example 1 In the preparation of samples 1-6 below,, an aluminium-modified or a non- modified silica sol and a superplasticiser (Glenium 51) were added in amounts as set out in table 1 to a class II cement (Bygg Cement-Skόvde CEM II/A-L42.R). 200 kg water, 120 kg fine filler (limestone), aggregates and a superplasticiser (Glenium 51) were- added thereto (cf. table 1). Aggregates were added so the total weight of cement, limestone and aggregates became 2140 kg/m3.
The workability of the prepared samples was estimated by measuring the initial spread. The initial spread is measured by placing a freshly mixed concrete composition in a slump cone having a certain cone diameter, which cone is subsequently turned upside- down so that the mass after removal of the cone starts to flow out (according to Standard Test Method ASTM C 143). High spread indicates high workability, which ensures that the concrete mass easily can flow out on the place where it is to set. High workability also ensures that the concrete mass can be stored for a certain period of time without losing the initial fluidity properties it had just after the preparation.
Table 1
Figure imgf000007_0001
Returning to table 1, it can be concluded that sample 1 comprising an aluminium-modified silica sol has a higher early strength (after 24 hours) and long term strength (after 28 days) than has sample 2, comprising a non-modified silica sol, even though the silica content of sample 1 is slightly lower than that of sample 2.
In the same way, sample 3, comprising an aluminium-modified silica sol, shows higher early strength than sample 4 comprising a non-modified silica sol (the two samples have substantially the same silica content). Sample 6, comprising an aluminium-modified silica sol, shows higher early strength and long term strength than sample 5, even though the silica content is lower in sample 5 than in sample 6.
Example 2 In the preparation of samples 1-6 below, an aluminium-modified or a non- modified silica sol was added to a class II cement (Bygg Cement-Skovde CEM ll/A- L42.R). 200 kg water, 120 kg fine filler (limestone), aggregates and a superplasticiser (Glenium 51) were added thereto (cf. table 2). Aggregates were added so that the total weight of cement, limestone and aggregates became 2140 kg/m3. The superplastisicer and the silica sols were added in amounts as set out in table 2. The workability of the concrete was estimated by measuring the initial spread (cf. example 1). The spread was also measured after 90 minutes (slump spread). The workability loss, i.e. the difference between the initial spread and the spread after 90 minutes was also calculated. The higher the slump spread, i.e. the spread 90 minutes after the measurement of the initial spread, the lower the workability loss.
Table 2
Figure imgf000009_0001
In table 2, it can be seen that sample 1, comprising an aluminium-modified silica sol, shows lower workability loss than sample 2 (sample 1 has slightly lower content of silica). It can be further seen that sample 4, comprising an aluminium-modified silica sol, has lower workability loss than sample 3 (same silica content in samples 3 and 4). It can further be seen that sample 5, comprising an aluminium-modified silica sol, has a lower workability loss than sample 6, even though the silica content of sample 5 is slightly lower. Generally, from the results obtained, one can conclude that the loss in workability is only about 60 percent for the samples containing aluminium-modified silica sols in relation to the samples containing non-modified silica sols.
Example 3
In order to evaluate the fluidity of a cement slurry comprising either aluminium- modified silica sols or non-modified silica sols, 4 slurries were prepared from class I cement (Anlaggningscement Degerhamn CEM I 42,5BV/SR/LA). The slurries had a water/cement weight ratio of 0.35. 2 wt% of a silica sol and 1 wt% of a superplasticiser (a 30wt% sulphonated naphthalene formaldehyde condensate solution), based on the cement weight, were added to the slurries.
The slurries were mixed with moderate agitation. The yield value and the plastic viscosity (a measure of the rheology of the slurry) were then evaluated by means of a ConTec Viscometer Model 4 (BML Viscometer) after 15,30, 60 and 90 minutes respectively. The yield value is a measure of the force needed to make e.g. a cement slurry move.
Table 3
Figure imgf000010_0001
Comparing the samples of table 3, the yield value of samples 1 an 4, comprising aluminium-modified silica sols, are somewhat lower than samples 2 and 3. The slurries must have a minimal yield value to obtain substantially zero free water (no bleeding). Table 4
Figure imgf000011_0001
Table 4 shows great differences in plastic viscosity between the samples containing alumina-modified silica sols and non-modified silica sols. When comparing samples 1 and 2, having substantially same silica content, it is seen that sample 1 (containing an aluminium-modified silica sol) has a lower plastic viscosity than sample 2. It can also be seen that sample 3 (containing aluminium-modified silica sol) has a lower plastic viscosity than sample 4 (samples 3 and 4 have substantially same silica content). A slurry with good flow properties and substantially zero free water, i.e. not liable to bleeding, is highly advantageous, especially in well cementing. Low plastic viscosity means good flow properties, good penetration and bonding properties.

Claims

Claims 1. Construction material comprising a hydraulic binder, water, and an aluminium-modified colloidal silica.
2. Construction material as claimed in claim 1 , wherein the colloidal silica is an aluminium-modified silica sol.
3. Construction material as claimed in any of claims 1-2, wherein the weight ratio between hydraulic binder and aluminium-modified colloidal silica is from about 1 : 0.0005 to about 1 :0.2.
4. Construction material as claimed in any of claims 1-3, wherein the weight ratio between hydraulic binder and water is from about 1:0.22 to about 1 :4.
5. Construction material as claimed in any of the preceding claims, wherein the hydraulic binder is a cement.
6. Construction material as claimed in any of the preceding claims, wherein the construction material comprises aggregates.
7. Construction material as claimed in any of the preceding claims, wherein the construction material comprises a fine filler.
8. Construction material as claimed in any of the preceding claims, wherein the weight ratio between fine filler and aggregates is from about from about 0.001 to about 0.4.
9. Construction material as claimed in any of the preceding claims, wherein the colloidal silica has an AI2O3 content of from about 0.05 to about 3 wt%.
10. Construction material as claimed in any of the preceding claims, further comprising a plasticiser and/or a superplasticiser.
11. Construction material according to claim 10, wherein the superplasticiser is a polycarboxylate and/or a sulphonated naphtalene formaldehyde condensate.
12. Construction material, wherein the material comprises the reaction products of claim 1.
13. Method for preparing a construction material as claimed in any of claims 1- 10, comprising mixing a hydraulic binder, water, and aluminium-modified colloidal silica.
14. Method as claimed in claim 13, wherein the colloidal silica is an aluminium- modified silica sol.
15. Method as claimed in any of claims 13-14, wherein the aluminium-modified colloidal silica is added after the other components have been mixed.
16. Use of a construction material as defined in any of claims 1-12 for roads, tunnels, bridges, buildings, concrete pipes, well cementing, subterranean cementing, marine constructions, and mining applications.
PCT/SE2001/000682 2000-06-22 2001-03-28 Construction material WO2001098227A1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
NZ523239A NZ523239A (en) 2000-06-22 2001-03-28 Construction material comprising a hydraulic binder, water and an aluminium-modified colloidal silica that has increased early strength and long-term strength
MXPA02012245A MXPA02012245A (en) 2000-06-22 2001-03-28 Construction material.
CA002412949A CA2412949C (en) 2000-06-22 2001-03-28 Construction material
DE60115642T DE60115642T2 (en) 2000-06-22 2001-03-28 BUILDING MATERIALS
US10/311,744 US6800130B2 (en) 2000-06-22 2001-03-28 Construction material
JP2002503670A JP4146719B2 (en) 2000-06-22 2001-03-28 Building materials
KR10-2002-7016852A KR100502205B1 (en) 2000-06-22 2001-03-28 Construction material
EP01916049A EP1292547B1 (en) 2000-06-22 2001-03-28 Construction material
AU2001242988A AU2001242988B2 (en) 2000-06-22 2001-03-28 Construction material
IL15333801A IL153338A0 (en) 2000-06-22 2001-03-28 Construction material
BRPI0111774-2A BR0111774B1 (en) 2000-06-22 2001-03-28 building material.
AU4298801A AU4298801A (en) 2000-06-22 2001-03-28 Construction material
AT01916049T ATE312062T1 (en) 2000-06-22 2001-03-28 CONSTRUCTION MATERIAL
KR10-2002-7016851A KR100498784B1 (en) 2000-06-22 2001-04-06 Mixture of silica sols
NO20026110A NO20026110L (en) 2000-06-22 2002-12-19 Construction material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US21351700P 2000-06-22 2000-06-22
EP00850116 2000-06-22
EP00850116.5 2000-06-22
US60/213,517 2000-06-22

Publications (1)

Publication Number Publication Date
WO2001098227A1 true WO2001098227A1 (en) 2001-12-27

Family

ID=32523995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2001/000682 WO2001098227A1 (en) 2000-06-22 2001-03-28 Construction material

Country Status (16)

Country Link
EP (1) EP1292547B1 (en)
JP (1) JP4146719B2 (en)
KR (2) KR100502205B1 (en)
CN (1) CN1195698C (en)
AR (2) AR035033A1 (en)
AT (1) ATE312062T1 (en)
AU (2) AU4298801A (en)
BR (1) BR0111774B1 (en)
CA (1) CA2412949C (en)
DE (1) DE60115642T2 (en)
DK (1) DK1292547T3 (en)
ES (1) ES2254381T3 (en)
MX (1) MXPA02012245A (en)
NZ (1) NZ523239A (en)
WO (1) WO2001098227A1 (en)
ZA (2) ZA200209962B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046831A1 (en) * 2006-10-20 2008-04-24 Evonik Degussa Gmbh Aqueous dispersions of silica for increasing early strength in cementitious preparations
WO2013150145A1 (en) 2012-04-05 2013-10-10 Chryso Adjuvant for hydraulic compositions
EP3744683A1 (en) 2019-05-29 2020-12-02 Nouryon Chemicals International B.V. Porous silica particles
EP3744684A1 (en) 2019-05-29 2020-12-02 Nouryon Chemicals International B.V. Porous silica particles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20031983A1 (en) * 2003-10-14 2005-04-15 Mapei Spa ACCELERATING FOR HYDRAULIC BINDERS
JP7342044B2 (en) * 2018-03-09 2023-09-11 ダスティン エイ ハートマン Novel compositions to improve concrete performance
US11795363B2 (en) 2018-09-18 2023-10-24 Nissan Chemical Corporation Silica-based additive for cementing composition, cementing composition, and cementing method
WO2023182180A1 (en) * 2022-03-23 2023-09-28 日産化学株式会社 Cementing composition containing aluminum-atom-containing silica particles, and cementing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1652316A1 (en) * 1989-02-09 1991-05-30 Внуковский Завод Огнеупорных Изделий Refractory body
EP0533235A1 (en) * 1991-09-20 1993-03-24 Eka Nobel Ab A method of protecting a surface
US5368833A (en) * 1989-11-09 1994-11-29 Eka Nobel Ab Silica sols having high surface area
US5932000A (en) * 1996-09-19 1999-08-03 Eka Chemicals Ab Method for preparation of a hardening composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1652316A1 (en) * 1989-02-09 1991-05-30 Внуковский Завод Огнеупорных Изделий Refractory body
US5368833A (en) * 1989-11-09 1994-11-29 Eka Nobel Ab Silica sols having high surface area
EP0533235A1 (en) * 1991-09-20 1993-03-24 Eka Nobel Ab A method of protecting a surface
US5932000A (en) * 1996-09-19 1999-08-03 Eka Chemicals Ab Method for preparation of a hardening composition

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 108, no. 2, 11 January 1988, Columbus, Ohio, US; abstract no. 10435h, T. KUZNETSOVA ET AL. page 276; XP000157735 *
DATABASE WPI Week 199210, Derwent World Patents Index; AN 1992-077691, XP002175435 *
ZH. PRIKL. KHIM., vol. 60, no. 10, 1987, Leningrad, pages 2351 - 2354 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046831A1 (en) * 2006-10-20 2008-04-24 Evonik Degussa Gmbh Aqueous dispersions of silica for increasing early strength in cementitious preparations
US8835535B2 (en) 2006-10-20 2014-09-16 Evonik Degussa Gmbh Aqueous dispersions of silica for increasing early strength in cementitious preparations
WO2013150145A1 (en) 2012-04-05 2013-10-10 Chryso Adjuvant for hydraulic compositions
EP3744683A1 (en) 2019-05-29 2020-12-02 Nouryon Chemicals International B.V. Porous silica particles
EP3744684A1 (en) 2019-05-29 2020-12-02 Nouryon Chemicals International B.V. Porous silica particles
US11794165B2 (en) 2019-05-29 2023-10-24 Nouryon Chemicals International B.V. Porous silica particles

Also Published As

Publication number Publication date
JP2003535808A (en) 2003-12-02
AU2001242988B2 (en) 2004-03-25
CN1437567A (en) 2003-08-20
AR028745A1 (en) 2003-05-21
JP4146719B2 (en) 2008-09-10
CA2412949C (en) 2007-08-14
BR0111774A (en) 2003-05-13
DE60115642D1 (en) 2006-01-12
BR0111774B1 (en) 2010-02-23
ZA200209961B (en) 2003-12-09
ATE312062T1 (en) 2005-12-15
CN1195698C (en) 2005-04-06
KR20030011090A (en) 2003-02-06
DE60115642T2 (en) 2006-07-13
EP1292547B1 (en) 2005-12-07
KR20030036221A (en) 2003-05-09
ES2254381T3 (en) 2006-06-16
EP1292547A1 (en) 2003-03-19
AR035033A1 (en) 2004-04-14
KR100498784B1 (en) 2005-07-01
ZA200209962B (en) 2003-12-09
DK1292547T3 (en) 2006-04-18
KR100502205B1 (en) 2005-07-21
MXPA02012245A (en) 2003-04-25
CA2412949A1 (en) 2001-12-27
AU4298801A (en) 2002-01-02
NZ523239A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
US6800130B2 (en) Construction material
EP1286929B1 (en) Composition and method to prepare a concrete composition
AU2010323416B2 (en) Inorganic binder system for the production of chemically resistant construction chemistry products
JP7307055B2 (en) Set control composition for cementitious systems
AU2001247005A1 (en) Composition and method to prepare a concrete composition
AU2001247006A1 (en) Mixture of silica sols
EP1292547B1 (en) Construction material
AU2001242988A1 (en) Construction material
AU8222498A (en) Aqueous suspensions of metakaolin and a method of producing cementitious compositions
TWI233921B (en) Construction material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1200201183

Country of ref document: VN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001916049

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002/09961

Country of ref document: ZA

Ref document number: 153338

Country of ref document: IL

Ref document number: 200209961

Country of ref document: ZA

Ref document number: 2001242988

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/012245

Country of ref document: MX

Ref document number: 1020027016852

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/2076/CHE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2412949

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 523239

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2002 503670

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 018114865

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10311744

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020027016852

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001916049

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 523239

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 523239

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 2001242988

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020027016852

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001916049

Country of ref document: EP