WO2002001689A2 - Alternator testing method and system using timed application of load - Google Patents

Alternator testing method and system using timed application of load Download PDF

Info

Publication number
WO2002001689A2
WO2002001689A2 PCT/US2001/020186 US0120186W WO0201689A2 WO 2002001689 A2 WO2002001689 A2 WO 2002001689A2 US 0120186 W US0120186 W US 0120186W WO 0201689 A2 WO0201689 A2 WO 0201689A2
Authority
WO
WIPO (PCT)
Prior art keywords
alternator
load
coupled
predetermined period
output signal
Prior art date
Application number
PCT/US2001/020186
Other languages
French (fr)
Other versions
WO2002001689A3 (en
Inventor
Dennis G. Thibedeau
Richard J. Faehnrich
Alejandro P. Brott
Alan D. Goetzelmann
Paul A. Willems
Original Assignee
Snap-On Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snap-On Technologies, Inc. filed Critical Snap-On Technologies, Inc.
Priority to JP2002505730A priority Critical patent/JP2004502144A/en
Priority to CA002413039A priority patent/CA2413039A1/en
Priority to AU2001272994A priority patent/AU2001272994A1/en
Priority to EP01952213A priority patent/EP1295142A2/en
Priority to NZ523124A priority patent/NZ523124A/en
Priority to BR0112290-8A priority patent/BR0112290A/en
Publication of WO2002001689A2 publication Critical patent/WO2002001689A2/en
Publication of WO2002001689A3 publication Critical patent/WO2002001689A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • G01R23/14Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage by heterodyning; by beat-frequency comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks

Definitions

  • the present invention relates generally to testing alternators, and more specifically, to an alternator testing method and system controlling the coupling of a load to the alternator during the test.
  • An alternator converts mechanical motions into alternating current (AC) by electromagnetic induction.
  • the alternating current is then passed through a rectifier assembly, such as a full-wave rectifier bridge comprising diodes, to convert the AC into DC to power other electrical systems.
  • a rectifier assembly such as a full-wave rectifier bridge comprising diodes
  • an alternator in an automotive vehicle is driven by the engine to power the vehicle's electrical system, such as for charging the battery, powering headlights, and the like.
  • the alternator output is not perfectly smooth.
  • the waveform of an alternator output is similar to a low-magnitude ripple riding on a DC component.
  • Alternator tests are conducted when alternators are under load, i.e., a load is coupled to the output terminals of the alternator to draw current therefrom.
  • Alternator testers often have a set of probes or wires to couple to the output terminals of the alternator for detecting parameters of the alternator output, such as the output voltage, the ripple amplitude, the average current of the output, and so on.
  • handheld alternator testers for testing vehicle alternators use a load capable of drawing up to 10 amperes of current.
  • the test of alternator under load may be conducted by turning on electrical accessories powered by the alternator, such as the head lights, radio, air conditioner, and the like.
  • the ripple component of the alternator output is a small signal, the ripple waveform is subject to noise interference and may be difficult to observe.
  • the alternator output waveform may not respond to, or does not always respond to the change of load immediately. Accordingly, the alternator output is unstable until a certain period of time has elapsed. If the tester determines alternator operation based on parameters collected from the unstable waveform, error in test results will occur.
  • using electrical accessories on a vehicle as a load draws inconsistent currents from the alternator. The alternator output level therefore tends to fluctuate, which makes precise test difficult. In addition, the load used in alternator tests generates a lot of heat, which causes safety concerns.
  • the invention is an alternator testing method and system that provides high resolution signals and stable loads during alternator tests.
  • evaluation of the alternator operation is based on parameters collected after the load is coupled to the alternator for a predetermined period of time, so that the parameters reflect a stable alternator output.
  • the load is coupled to the alternator for a very short period of time to reduce the heat generated during the test.
  • the load is housed in a handheld housing and capable of drawing large currents, for example, 50 amperes, from the alternator in order to produce better signal resolution.
  • the method according to the present invention comprises the steps of: coupling a load to the alternator, evaluating the operation of the alternator based on parameters collected after the load has been coupled to the alternator for a first predetermined period of time.
  • the alternator may be driven by a motor, such as an engine powered by fossil fuels.
  • the method further includes a step of detecting motor speed or alternator speed. The load is applied to the alternator only after the motor speed or alternator speed reaches a predetermined level. In another aspect of the invention, the load is decoupled from the alternator after the load has been coupled to the alternator for a predetermined period of time.
  • the system of the present invention comprises a load, and a terminal for receiving an alternator output signal representative of an alternator characteristic, and a switch device for selectively coupling the load to the alternator.
  • a controller is configured for determining the characteristics of the alternator output signal and for generating a first switch operation signal to control the switch device to couple the load to the alternator.
  • the controller determines the characteristics of the alternator output signal based on parameters collected after the load has been coupled to the alternator for a predetermined period of time.
  • the system is contained in a housing having a size suitable to be held in one's hand.
  • the system may further include a cooling device, such as a fan, for dissipating the heat generated by the load.
  • the controller generates a second switch operation signal to control the switch device to decouple the load from the alternator after the load has been coupled to the alternator for a predetermined period of time.
  • Fig. 1 shows a block diagram of an alternator testing system implemented according to the present invention.
  • Fig. 2 shows an exemplary circuit of components used in an alternator testing system implemented according to the present invention.
  • Fig. 3 shows a flow chart illustrating the testing procedure carried out by an alternator testing system implemented according to the present invention.
  • Fig. 4 shows an example of the cooling arrangement implemented according to the present invention.
  • Fig. 1 shows a block diagram of an alternator testing system 100 implemented according to the present invention.
  • the operation of the testing system is described with an alternator in an automotive vehicle.
  • the alternator (not shown) is driven by the engine of the automotive vehicle to generate electricity.
  • the output of the alternator is coupled to a battery 123 via a set of battery terminals 125 and charges the battery therefrom.
  • Testing system 100 may be a handheld device and may have terminals for receiving an alternator output signal 113 representative of the alternator output.
  • the alternator output signal may be the electric current generated by the alternator charging battery 123.
  • alternator output signal 113 may be a signal from a data processing system representative of the alternator output.
  • the data processing system for example, may be an on-board vehicle computer or other testing equipment.
  • alternator output signal 113 may be a signal generated by a wireless transmission assembly that transmits signals representative of alternator characteristics wirelessly.
  • Testing system 100 has a microcontroller 101, an analog-to-digital converter 105 and a display 103.
  • Microcontroller 101 processes data and generates control signals.
  • Analog-to-digital converter 105 converts analog signals to digital signals.
  • Display 304 provides a communication interface with a user and may be an LCD screen, an LED indicator or the like.
  • Microcontroller 101 may control a switch device 121, such as an FET switch, that selectively couples a load 117 to the alternator. As illustrated in Fig. 1, switch device 121 and load 117 are serially connected and then coupled to the alternator in parallel via battery terminals 125. If switch device 121 is on, load 117 is coupled to the alternator; if switch device 121 is off, load 117 is decoupled from the alternator. Other circuit design techniques known to persons skilled in the art can be used for controlling the coupling of the load to the alternator.
  • Load 117 may be any component that is capable of drawing large currents from the alternator, while maintaining small voltage across it, for example, a Nichrome wire wound into a coil.
  • load 117 may be a Nichrome coil that draws 50 amperes of current from the alternator.
  • a Nichrome coil load is advantageous due to its ability to handle a substantial amount of current, while maintaining compact sizing.
  • a cooling device 115 such as a cooling fan, controlled by microcontroller 101, may be provided to help dissipate heat generated by load 117.
  • the alternator test may be conducted at any alternator speed or engine speed
  • the engine may be driven to a stable engine speed, such as 1500 rpm or above, to ensure the alternator generates a stable alternator output signal.
  • the test may be conducted at idle engine speed.
  • a user may indicate to the system that the engine speed has reached a certain level by observing readings from a tachometer.
  • experienced users may be able to determine the engine speed based on the audible noise generated by the engine.
  • the system may receive a signal representing an engine speed or an alternator speed from other data processing systems, such as a vehicle computer or other testing equipment or the like.
  • the signal representing the engine speed or the alternator speed may be fed to, and processed by, microcontroller 101.
  • microcontroller 101 Upon the engine speed or the alternator speed reaching a predetermined level, such as 1500 rpm for the engine speed, microcontroller 101 generates a first switch control signal to turn on switch 324 so that load 117 is coupled to the alternator via battery terminals 125. The alternator is now operating under load.
  • a predetermined level such as 1500 rpm for the engine speed
  • Alternator output signal 151 may first pass through a bandpass filter 113 in order to eliminate harmonics as well as noise picked up at battery terminals 125.
  • Bandpass filter 113 may have a pass band betweenlOO Hz and 4 kHz. Alternator output signal 151 may then pass through an amplifier 111 to amplify signal level.
  • Alternator output signal 151 is then fed to a detection circuit 109.
  • Detection circuit 109 generates a parameter signal 153 representative of parameters of the alternator output signal 151, such as ripple amplitude, voltage level and the like. This current may use conventional filtering and load detection to produce the desired alternator parameters.
  • microcontroller 101 will evaluate the alternator health based on parameters picked up only after load 117 has been coupled to the alternator for a predetermined period of time, such as 0.75 second.
  • the predetermined period of time chosen to occur when the alternator output signal is stable, may be set empirically based on parameters like alternator model, alternator rating, types of load.
  • microcontroller 101 after load 117 has been coupled to the alternator for a predetermined period of time, for example, one second, microcontroller 101 will issue a second switch control signal to turn off switch device 121, which in turn decouples load 1 17 from the alternator.
  • the predetermined period of time is chosen at a point of time before the load becomes too hot due to the current passing through it.
  • the predetermined period of time may be empirically set based on parameters like the threshold temperature, alternator model, alternator rating, types of load.
  • a cooling device 115 such as a fan, controlled by microcontroller 101, may be implemented to help dissipate the heat generated by load 117.
  • Testing system 100 may have a temperature sensor 119 disposed near load 117 for generating a temperature signal to microcontroller 101 indicating the temperature near or at load 117. Based on the detected temperature, microcontroller 101 controls the operation of cooling device 115: if the temperature is higher than a predetermined temperature, such as 70°C, microcontroller 101 issues a signal to turn on cooling device 115; if the temperature is lower than the predetermined temperature, microcontroller 101 issues a signal to turn off cooling device 115.
  • a predetermined temperature such as 70°C
  • Fig. 2 shows an example of a control circuit 207 for coupling load 117 to the alternator and a regulation circuit 205 for controlling operation of a fan for purpose of cooling.
  • Control circuit 207 includes a logic IC 206 that receives a control signal from microcontroller 101 and in response generates a switch control signal 208 to control the ON/OFF of a FET switch 121, which in turn controls the coupling of load 117 to the alternator.
  • Regulation circuit 205 controls the operation of a fan.
  • a transistor 204 regulates the voltage to the fan.
  • the fan couples to the power source through a FET switch 202, which is controlled by a control signal generated by microcontroller 101.
  • the FET switch 202 in response to the content of the control signal, turns on or off the power to the fan.
  • microcontroller When the temperature at load 117 is too high, microcontroller generates a control signal to control FET switch 202 to couple the fan to the power source and turns on the fan. If, the temperature of load 117 drops below a predetermined temperature, microcontroller 101 generates another control signal to control the FET switch 202 to turn off the power of the fan.
  • Fig. 3 shows a flow chart illustrating the testing procedure carried out by an alternator testing system implemented according to the present invention.
  • microcontroller 101 determines whether the engine speed or alternator speed has reached a predetermined speed. If not, microcontroller continues the determination. If yes, microcontroller 101 generates a switch control signal to turn on the switch and couple the load to the alternator.
  • Microcontroller lOl also turns on a timer (Step 305).
  • microcontroller 101 reads the timer and determines if the load has been coupled to the alternator for more than 0.75 second.
  • microcontroller 101 continues the determination; otherwise, microcontroller 101 starts to determine the health of the alternator based on parameters of the alternator output signal collected after 0.75 second (step 309). Then microcontroller 101 determines if the load has been coupled to the alternator for more than 1 second (step 311). If not, microcontroller 101 continues the determination; otherwise, microcontroller 101 issues a switch control signal to turn off the switch and decouple the load from the alternator (Step 313). Microcontroller 101 then generates a determination result to the display and resets the timer (steps 315 and 317).
  • Fig. 4 shows an example of the cooling arrangement implemented according to the present invention, with part of a housing 400.
  • Housing 400 has a size suitable to be held in one's hand and receives a circuit board 450 having microcontroller 101, detection circuit 109, bandpass filter 113, amplifier 111 and other components.
  • a temperature sensor 119 is disposed at a location near a Nichrome coil 117, as the load sensing element.
  • Switch 121 that may be an FET-type switch, is in serial connection with coil 117.
  • An air inlet 411 is disposed on one side of the housing and a fan 401 is disposed on the other side of the housing, so that a linear channel 413 between air inlet 411 and fan 401 forms an air flow path when fan 401 is in operation.
  • the channel is defined by a wall 410 that isolates the airflow path from the remainders of the housing.
  • the heat generated by coil 117 will be dissipated to the surrounding air and drawn out from the housing 400 through an outlet established by fan 401 itself, as depicted.
  • the embodiments described above may be used with any desired system or engine.
  • Those systems or engines may comprise items utilizing fossil fuels, such as gasoline, natural gas, propane and the like, wind and hybrids or combinations thereof.
  • Those systems or engines may be incorporated into other systems, such as an automobile, a truck, a boat or ship, a motorcycle, a generator, an airplane and the like.
  • the embodiments may include or be utilized with any appropriate voltage level, such as about 12 Volts, about 42 Volts and the like.

Abstract

An alternator testing method and system that provides high resolution signals and stable loads during alternator tests. The method according to the present invention comprises the steps of: coupling a load to the alternator, and evaluating the operation of the alternator based on parameters collected only after the load has been coupled to the alternator or motor driving it, and in one aspect, the load is applied to the alternator for a first predetermined period of time. The method may further include a step of detecting the speed of the alternator only after motor speed or alternator speed reaches a predetermined level. The load may be automatically decoupled from the alternator after the load has been coupled to the alternator for a second predetermined period of time.

Description

Alternator Testing Method and System Using Timed Application of Load
RELATED APPLICATION
The present application claims the benefit of priority from U.S. Provisional Patent Application Serial No. 60/214,254, entitled "AUTOMATIC ELECTRICAL SYSTEM TESTING APPARATUS AND METHODS," filed June 26, 2000.
FIELD OF THE INVENTION
The present invention relates generally to testing alternators, and more specifically, to an alternator testing method and system controlling the coupling of a load to the alternator during the test.
BACKGROUND OF THE INVENTION
An alternator converts mechanical motions into alternating current (AC) by electromagnetic induction. The alternating current is then passed through a rectifier assembly, such as a full-wave rectifier bridge comprising diodes, to convert the AC into DC to power other electrical systems. For example, an alternator in an automotive vehicle is driven by the engine to power the vehicle's electrical system, such as for charging the battery, powering headlights, and the like. The alternator output, however, is not perfectly smooth. The waveform of an alternator output is similar to a low-magnitude ripple riding on a DC component.
Alternator tests are conducted when alternators are under load, i.e., a load is coupled to the output terminals of the alternator to draw current therefrom. Alternator testers often have a set of probes or wires to couple to the output terminals of the alternator for detecting parameters of the alternator output, such as the output voltage, the ripple amplitude, the average current of the output, and so on. Usually, handheld alternator testers for testing vehicle alternators use a load capable of drawing up to 10 amperes of current. For alternators used in an automotive vehicle, the test of alternator under load may be conducted by turning on electrical accessories powered by the alternator, such as the head lights, radio, air conditioner, and the like. Several problems may occur when testing alternators. First, since the ripple component of the alternator output is a small signal, the ripple waveform is subject to noise interference and may be difficult to observe. Second, when the load is coupled to the alternator, the alternator output waveform may not respond to, or does not always respond to the change of load immediately. Accordingly, the alternator output is unstable until a certain period of time has elapsed. If the tester determines alternator operation based on parameters collected from the unstable waveform, error in test results will occur. Third, using electrical accessories on a vehicle as a load draws inconsistent currents from the alternator. The alternator output level therefore tends to fluctuate, which makes precise test difficult. In addition, the load used in alternator tests generates a lot of heat, which causes safety concerns.
SUMMARY OF THE INVENTION
Accordingly, there exists a need for accurately determining the health of an alternator. There is another need to provide a stable load for use in alternator tests. Still another exists for evaluating the health of an alternator based on a stable alternator output. An additional need exists for providing high resolution signals for testing an alternator. There is still another need for dissipating heat generated by the load during the alternator test.
These and other needs are addressed by the present invention. The invention is an alternator testing method and system that provides high resolution signals and stable loads during alternator tests. According to one aspect of the invention, evaluation of the alternator operation is based on parameters collected after the load is coupled to the alternator for a predetermined period of time, so that the parameters reflect a stable alternator output. In another aspect, the load is coupled to the alternator for a very short period of time to reduce the heat generated during the test. In still another aspect, the load is housed in a handheld housing and capable of drawing large currents, for example, 50 amperes, from the alternator in order to produce better signal resolution.
The method according to the present invention comprises the steps of: coupling a load to the alternator, evaluating the operation of the alternator based on parameters collected after the load has been coupled to the alternator for a first predetermined period of time.
In one aspect of the invention, the alternator may be driven by a motor, such as an engine powered by fossil fuels. According to one embodiment of the invention, the method further includes a step of detecting motor speed or alternator speed. The load is applied to the alternator only after the motor speed or alternator speed reaches a predetermined level. In another aspect of the invention, the load is decoupled from the alternator after the load has been coupled to the alternator for a predetermined period of time.
The system of the present invention comprises a load, and a terminal for receiving an alternator output signal representative of an alternator characteristic, and a switch device for selectively coupling the load to the alternator. A controller is configured for determining the characteristics of the alternator output signal and for generating a first switch operation signal to control the switch device to couple the load to the alternator. The controller determines the characteristics of the alternator output signal based on parameters collected after the load has been coupled to the alternator for a predetermined period of time.
According to one aspect of the invention, the system is contained in a housing having a size suitable to be held in one's hand. The system may further include a cooling device, such as a fan, for dissipating the heat generated by the load. The controller generates a second switch operation signal to control the switch device to decouple the load from the alternator after the load has been coupled to the alternator for a predetermined period of time.
Still other advantages and novel features of the present invention will be apparent from the following detailed description, simply by way of illustration of the invention and not limitation. As will be realized, the invention is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the invention. Accordingly, the drawing and description are to be regarded as illustrative in nature, and not as restrictive. BRIEF DESCRIPTION OF THE DRAWINGS
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which like reference numerals refer to similar elements and in which:
Fig. 1 shows a block diagram of an alternator testing system implemented according to the present invention.
Fig. 2 shows an exemplary circuit of components used in an alternator testing system implemented according to the present invention.
Fig. 3 shows a flow chart illustrating the testing procedure carried out by an alternator testing system implemented according to the present invention.
Fig. 4 shows an example of the cooling arrangement implemented according to the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT
In the following description, for purpose of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the present invention.
Fig. 1 shows a block diagram of an alternator testing system 100 implemented according to the present invention. For purpose of illustration, the operation of the testing system is described with an alternator in an automotive vehicle. In an automotive vehicle, the alternator (not shown) is driven by the engine of the automotive vehicle to generate electricity. The output of the alternator is coupled to a battery 123 via a set of battery terminals 125 and charges the battery therefrom.
Testing system 100 may be a handheld device and may have terminals for receiving an alternator output signal 113 representative of the alternator output. The alternator output signal may be the electric current generated by the alternator charging battery 123. Alternatively, alternator output signal 113 may be a signal from a data processing system representative of the alternator output. The data processing system, for example, may be an on-board vehicle computer or other testing equipment. In another aspect, alternator output signal 113 may be a signal generated by a wireless transmission assembly that transmits signals representative of alternator characteristics wirelessly.
Testing system 100 has a microcontroller 101, an analog-to-digital converter 105 and a display 103. Microcontroller 101 processes data and generates control signals. Analog-to-digital converter 105 converts analog signals to digital signals. Display 304 provides a communication interface with a user and may be an LCD screen, an LED indicator or the like. Microcontroller 101 may control a switch device 121, such as an FET switch, that selectively couples a load 117 to the alternator. As illustrated in Fig. 1, switch device 121 and load 117 are serially connected and then coupled to the alternator in parallel via battery terminals 125. If switch device 121 is on, load 117 is coupled to the alternator; if switch device 121 is off, load 117 is decoupled from the alternator. Other circuit design techniques known to persons skilled in the art can be used for controlling the coupling of the load to the alternator.
Load 117 may be any component that is capable of drawing large currents from the alternator, while maintaining small voltage across it, for example, a Nichrome wire wound into a coil. As an example, load 117 may be a Nichrome coil that draws 50 amperes of current from the alternator. A Nichrome coil load is advantageous due to its ability to handle a substantial amount of current, while maintaining compact sizing. A cooling device 115, such as a cooling fan, controlled by microcontroller 101, may be provided to help dissipate heat generated by load 117.
While the alternator test may be conducted at any alternator speed or engine speed, the engine may be driven to a stable engine speed, such as 1500 rpm or above, to ensure the alternator generates a stable alternator output signal. As an alternative, the test may be conducted at idle engine speed. A user may indicate to the system that the engine speed has reached a certain level by observing readings from a tachometer. Alternatively, experienced users may be able to determine the engine speed based on the audible noise generated by the engine. According to an embodiment, the system may receive a signal representing an engine speed or an alternator speed from other data processing systems, such as a vehicle computer or other testing equipment or the like. The signal representing the engine speed or the alternator speed may be fed to, and processed by, microcontroller 101.
Upon the engine speed or the alternator speed reaching a predetermined level, such as 1500 rpm for the engine speed, microcontroller 101 generates a first switch control signal to turn on switch 324 so that load 117 is coupled to the alternator via battery terminals 125. The alternator is now operating under load.
Alternator output signal 151 may first pass through a bandpass filter 113 in order to eliminate harmonics as well as noise picked up at battery terminals 125. Bandpass filter 113 may have a pass band betweenlOO Hz and 4 kHz. Alternator output signal 151 may then pass through an amplifier 111 to amplify signal level.
Alternator output signal 151 is then fed to a detection circuit 109. Detection circuit 109 generates a parameter signal 153 representative of parameters of the alternator output signal 151, such as ripple amplitude, voltage level and the like. This current may use conventional filtering and load detection to produce the desired alternator parameters.
Copending non-provisional patent application serial number , filed concurrently herewith and titled "Alternator Testing Method and System Using Ripple Detection," by the same inventors and commonly assigned, describes a particular ripple detection circuit and methodology that could be implemented. The disclosure incorporated herein by reference. The parameters are used by microcontroller 101 to determine the characteristics of the alternator. Techniques using parameters of alternator output signals to determine alternator operation are described in United States Patent 3, 629,704, 4,459,548, and 4,315,204, incorporated herein by reference. Parameter signal 153 is next sent to analog- to-digital converter 105 and then into microcontroller 101.
According to one embodiment of the invention, although parameters of alternator output signal 151 may be available upon load 117 coupling to the alternator via battery terminals 125, microcontroller 101 will evaluate the alternator health based on parameters picked up only after load 117 has been coupled to the alternator for a predetermined period of time, such as 0.75 second. The predetermined period of time, chosen to occur when the alternator output signal is stable, may be set empirically based on parameters like alternator model, alternator rating, types of load. In another aspect of the invention, after load 117 has been coupled to the alternator for a predetermined period of time, for example, one second, microcontroller 101 will issue a second switch control signal to turn off switch device 121, which in turn decouples load 1 17 from the alternator. Since load 117 is coupled to the alternator for a short period of time, heat generated by the current passing load 117 is minimal. The predetermined period of time is chosen at a point of time before the load becomes too hot due to the current passing through it. The predetermined period of time may be empirically set based on parameters like the threshold temperature, alternator model, alternator rating, types of load.
A cooling device 115, such as a fan, controlled by microcontroller 101, may be implemented to help dissipate the heat generated by load 117. Testing system 100 may have a temperature sensor 119 disposed near load 117 for generating a temperature signal to microcontroller 101 indicating the temperature near or at load 117. Based on the detected temperature, microcontroller 101 controls the operation of cooling device 115: if the temperature is higher than a predetermined temperature, such as 70°C, microcontroller 101 issues a signal to turn on cooling device 115; if the temperature is lower than the predetermined temperature, microcontroller 101 issues a signal to turn off cooling device 115.
Fig. 2 shows an example of a control circuit 207 for coupling load 117 to the alternator and a regulation circuit 205 for controlling operation of a fan for purpose of cooling. Control circuit 207 includes a logic IC 206 that receives a control signal from microcontroller 101 and in response generates a switch control signal 208 to control the ON/OFF of a FET switch 121, which in turn controls the coupling of load 117 to the alternator.
Regulation circuit 205 controls the operation of a fan. A transistor 204 regulates the voltage to the fan. The fan couples to the power source through a FET switch 202, which is controlled by a control signal generated by microcontroller 101. The FET switch 202, in response to the content of the control signal, turns on or off the power to the fan. When the temperature at load 117 is too high, microcontroller generates a control signal to control FET switch 202 to couple the fan to the power source and turns on the fan. If, the temperature of load 117 drops below a predetermined temperature, microcontroller 101 generates another control signal to control the FET switch 202 to turn off the power of the fan.
Fig. 3 shows a flow chart illustrating the testing procedure carried out by an alternator testing system implemented according to the present invention. At steps 301 and 303, microcontroller 101 determines whether the engine speed or alternator speed has reached a predetermined speed. If not, microcontroller continues the determination. If yes, microcontroller 101 generates a switch control signal to turn on the switch and couple the load to the alternator. Microcontroller lOlalso turns on a timer (Step 305). At step 307, microcontroller 101 reads the timer and determines if the load has been coupled to the alternator for more than 0.75 second. If not, microcontroller 101 continues the determination; otherwise, microcontroller 101 starts to determine the health of the alternator based on parameters of the alternator output signal collected after 0.75 second (step 309). Then microcontroller 101 determines if the load has been coupled to the alternator for more than 1 second (step 311). If not, microcontroller 101 continues the determination; otherwise, microcontroller 101 issues a switch control signal to turn off the switch and decouple the load from the alternator (Step 313). Microcontroller 101 then generates a determination result to the display and resets the timer (steps 315 and 317).
Fig. 4 shows an example of the cooling arrangement implemented according to the present invention, with part of a housing 400. Housing 400 has a size suitable to be held in one's hand and receives a circuit board 450 having microcontroller 101, detection circuit 109, bandpass filter 113, amplifier 111 and other components. A temperature sensor 119 is disposed at a location near a Nichrome coil 117, as the load sensing element. Switch 121, that may be an FET-type switch, is in serial connection with coil 117. An air inlet 411 is disposed on one side of the housing and a fan 401 is disposed on the other side of the housing, so that a linear channel 413 between air inlet 411 and fan 401 forms an air flow path when fan 401 is in operation. The channel is defined by a wall 410 that isolates the airflow path from the remainders of the housing. The heat generated by coil 117 will be dissipated to the surrounding air and drawn out from the housing 400 through an outlet established by fan 401 itself, as depicted.
The embodiments described above may be used with any desired system or engine. Those systems or engines may comprise items utilizing fossil fuels, such as gasoline, natural gas, propane and the like, wind and hybrids or combinations thereof. Those systems or engines may be incorporated into other systems, such as an automobile, a truck, a boat or ship, a motorcycle, a generator, an airplane and the like. The embodiments may include or be utilized with any appropriate voltage level, such as about 12 Volts, about 42 Volts and the like.
While this invention has been described in connection with an exemplary embodiment, it is to be understood that the invention is not limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims

CLAIMSWhat is claimed is:
1. A method for evaluating the operation of an alternator driven by a motor, comprising the steps of: detecting a motor speed or an alternator speed; coupling a load to the alternator upon the motor speed or the alternator speed reaching a predetermined level; and detecting characteristics of an alternator output signal representative of an alternator characteristic after the has been coupled to the alternator for a first predetermined period of time.
2. The method of claim 1, wherein the motor is the engine of a vehicle.
3. the method of claim 1, wherein the load is a Nichrome coil.
4. A method for evaluating the operation of an alternator, comprising the steps of: coupling a load to the alternator; and detecting characteristics of an alternator output signal representative of an output of the alternator only after the load has been coupled to the alternator for a first predetermined period of time.
5. The method of claim 4, further including a step of decoupling the load from the alternator after the load has been coupled to the alternator for a second predetermined period of time greater than the first.
6. A system for evaluating the operation of an alternator driven by a motor, comprising: a load; a terminal for receiving an alternator output signal representative of an alternator characteristic; a sensor for generating a speed signal representative of an engine speed or an alternator speed; a switch device for selectively coupling the load to the alternator; a controller for determining characteristics of the alternator output signal and for controlling operation of the switch device; wherein, in response to the speed signal indicating the engine speed or the alternator speed reaching a predetermined level, the controller generating a first switch operation signal to control the switch device to couple the load to the alternator, and the controller determines characteristics of the alternator output signal based on parameters collected after the load has been coupled to the alternator for a first predetermined period of time.
7. The system of claim 6, wherein the load is a Nichrome coil.
8. The system of claim 6, further comprising a cooling device for dissipating the heat generated by the load.
9. The system of claim 8, wherein the cooling device is a fan.
10. The system of claim 6, wherein the system is contained within a housing of the size suitable to be hand held.
1 1. The system of claim 6, wherein the load is constructed to draw at least 50 amperes of current from the alternator.
12. The system of claim 6, wherein the controller generates a second switch operation signal to control the switch device to decouple the load from the alternator after the load has been coupled to the alternator for a second predetermined period of time.
13. A system for evaluating the operation of an alternator, comprising: a load; a terminal for receiving an alternator output signal representative of an alternator characteristic; a switch device for selectively coupling the load to the alternator; and a controller for determining characteristics of the alternator output signal and for generating a first switch operation signal to control the switch device to couple the load to the alternator; and wherein the controller determines the characteristics of the alternator output signal based on parameters collected only after the load has been coupled to the alternator for a first predetermined period of time.
14. The system of claim 13, wherein the controller generates a second switch operation signal to control the switch device to decouple the load from the alternator after the load has been coupled to the alternator for a second predetermined period of time.
15. The system of claim 13, wherein the alternator is used in an automotive vehicle to charge a battery.
16. A method for evaluating the operation of an alternator, comprising the steps of: coupling a load to the alternator; and evaluating the operation of the alternator based on parameters collected after the load being coupled to the alternator for a first predetermined period of time.
17. A housing of an alternator tester, comprising: a first compartment for receiving a circuit board; a second compartment for housing a load; an air inlet disposed on one side of the second compartment; a fan forming an air outlet on the other side of the second compartment; and wherein the load, the air inlet and the fan are substantially in line, the air inlet and the fan form an air flow path, when the fan is in operation, the heat generated by the load is dissipated to the surrounding air and drawn out through the air outlet, and the housing has a size suitable to be held in one's hand.
18. The housing of claim 17, wherein the tester evaluates the operation of an alternator in the steps of: coupling the load to the alternator through a cord connected to the tester; and detecting characteristics of an alternator output signal representative of an alternator characteristic only after the load has been coupled to the alternator for a first predetermined period of time.
19. The method of claim 18, further including a step of decoupling the load from the alternator after the load has been coupled to the alternator for a second predetermined period of time greater than the first.
20. The housing of claim 17, wherein the tester has a terminal for receiving an alternator output signal representative of an alternator characteristic; a controller, disposed on the circuit board, for determining characteristics of the alternator output signal and for generating a first switch operation signal to control the switch to couple the load to the alternator; and the controller determines the characteristics of the alternator output signal based on parameters collected only after the load has been coupled to the alternator for a first predetermined period of time.
21. The housing of claim 20, wherein the controller generates a second switch operation signal to control the switch device to decouple the load from the alternator after the load has been coupled to the alternator for a second predetermined period of time.
22. The housing of claim 21, wherein the second compartment further houses a temperature sensor, disposed at a location near the load and coupled to the controller, for generating a temperature signal indicating the temperature in the second compartment, and a switch for coupling the load to the alternator, the controller generates a control signal for turning on the fan in response to the temperature signal indicating a temperature greater than a predetermined value.
23. A system of claim 13, wherein the terminal receives the alternator output signal through a wireless link.
24. A system of claim 23, wherein the wireless link is an infrared wireless link.
25. A system of claim 23, wherein the wireless link is a radio wave wireless link.
PCT/US2001/020186 2000-06-26 2001-06-26 Alternator testing method and system using timed application of load WO2002001689A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002505730A JP2004502144A (en) 2000-06-26 2001-06-26 Alternator testing method and system using timed application of load
CA002413039A CA2413039A1 (en) 2000-06-26 2001-06-26 Alternator testing method and system using timed application of load
AU2001272994A AU2001272994A1 (en) 2000-06-26 2001-06-26 Alternator testing method and system using timed application of load
EP01952213A EP1295142A2 (en) 2000-06-26 2001-06-26 Alternator testing method and system using timed application of load
NZ523124A NZ523124A (en) 2000-06-26 2001-06-26 Alternator testing method and system using timed application of load
BR0112290-8A BR0112290A (en) 2000-06-26 2001-06-26 Method and system for assessing the operation of an alternator and alternator test device enclosure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21425400P 2000-06-26 2000-06-26
US60/214,254 2000-06-26

Publications (2)

Publication Number Publication Date
WO2002001689A2 true WO2002001689A2 (en) 2002-01-03
WO2002001689A3 WO2002001689A3 (en) 2002-07-11

Family

ID=22798379

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2001/020186 WO2002001689A2 (en) 2000-06-26 2001-06-26 Alternator testing method and system using timed application of load
PCT/US2001/020187 WO2002001698A2 (en) 2000-06-26 2001-06-26 Alternator testing method and system using ripple detection

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2001/020187 WO2002001698A2 (en) 2000-06-26 2001-06-26 Alternator testing method and system using ripple detection

Country Status (11)

Country Link
US (3) US6777941B2 (en)
EP (2) EP1295141A2 (en)
JP (2) JP2004502145A (en)
KR (2) KR20030013467A (en)
CN (2) CN1439103A (en)
AU (3) AU2001271431B2 (en)
BR (2) BR0112290A (en)
CA (2) CA2413039A1 (en)
NZ (2) NZ523125A (en)
TW (2) TW546888B (en)
WO (2) WO2002001689A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042411A1 (en) * 2002-11-06 2004-05-21 Robert Bosch Gmbh Method and device for recognizing battery-less operation of a vehicle

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020143582A1 (en) * 2001-02-01 2002-10-03 Neuman Sherry L. System and method for creating prescriptions
JP3846336B2 (en) * 2001-06-07 2006-11-15 株式会社デンソー Abnormality detection device for vehicle alternator
JP4065685B2 (en) * 2001-12-11 2008-03-26 株式会社ジェイテクト Control device for electric power steering device
US6717282B1 (en) * 2002-07-03 2004-04-06 William J. Maxwell Combined motor and generator dynamometer system
US6862504B2 (en) 2002-09-10 2005-03-01 Bendix Commercial Vehicle Systems Llc System and method for detecting alternator condition
JP3833600B2 (en) * 2002-10-08 2006-10-11 三菱電機株式会社 Vehicle AC generator failure determination device
US6963216B2 (en) * 2003-06-13 2005-11-08 Illinois Tool Works Inc. Method and apparatus for detecting shorted rectifying control elements of an engine driven power source for welding-type system
DE10345305A1 (en) * 2003-09-30 2005-04-14 Robert Bosch Gmbh Parking brake with monitoring of on-board power system capabilities
US7162397B2 (en) * 2004-05-07 2007-01-09 Snap-On Incorporated Decoding an alternator output signal
DE102005012272A1 (en) * 2005-03-17 2006-09-21 Robert Bosch Gmbh Cooling air temperature measuring method for air-cooled vehicle generator, involves calculating cooling air temperature from information about vehicle by using cooling air temperature calculation model
US7565253B2 (en) 2005-09-01 2009-07-21 Hubbell Incorporated High-voltage power supply control system and wireless controller and method therefor
US7397222B2 (en) * 2006-08-30 2008-07-08 Westinghouse Electric Co Llc On-line testable solid state reversing DC motor starter
US7605569B2 (en) * 2007-01-31 2009-10-20 Infineon Technologies Ag Acquisition circuit and controller circuit for an alternator
JP2008304348A (en) * 2007-06-08 2008-12-18 Nippon Densan Corp Voltage signal converting circuit and motor
GB2459835B (en) 2008-04-30 2012-12-12 Tracker Network Uk Ltd Vehicle engine operation
US8310272B2 (en) * 2009-07-29 2012-11-13 GM Global Technology Operations LLC Method and system for testing electric automotive drive systems
CN101968531B (en) * 2010-09-29 2012-07-04 广州中船黄埔造船有限公司 Load cabinet system
KR101047048B1 (en) * 2010-12-23 2011-07-06 (주)와토코리아 Potable alternator tester and test method with the same
US8471589B2 (en) 2011-06-16 2013-06-25 GM Global Technology Operations LLC Method and apparatus for alternator stator turn-to-turn short detection
CN102841253A (en) * 2011-06-21 2012-12-26 朋程科技股份有限公司 Phase detecting device and method of alternative-current generator
US8626371B2 (en) * 2011-09-15 2014-01-07 General Electric Company Systems and methods for diagnosing auxiliary equipment associated with an engine
US20130113457A1 (en) * 2011-11-04 2013-05-09 Kohler Co. Method of sensing generator speed
US9606022B2 (en) 2012-08-31 2017-03-28 General Electric Company Systems and methods for diagnosing engine components and auxiliary equipment associated with an engine
EP2706367B1 (en) * 2012-09-07 2015-11-04 IVECO S.p.A. Diagnosis system for a vehicle battery charging apparatus
TW201416263A (en) * 2012-10-18 2014-05-01 Vehicle Semiconductor Technology Company Ltd E Universal signal detection circuit for various car power generators
US20140278159A1 (en) * 2013-03-15 2014-09-18 Bosch Automotive Service Solutions Llc Alternator Tester Having Belt Slip Detection
EP2894485B1 (en) * 2014-01-10 2019-10-16 Volvo Car Corporation Method for performing a diagnostic test of an alternator in a vehicle, test arrangement and vehicle
KR20160111185A (en) 2015-03-16 2016-09-26 현대자동차주식회사 System and Method for inspecting assembled condition of Alternator
US9793883B2 (en) * 2015-09-28 2017-10-17 Cypress Semiconductor Corporation Valley detection circuit and drive circuit
DE102015223387A1 (en) 2015-11-26 2017-06-01 Robert Bosch Gmbh Method for detecting a state of a vehicle electrical system
CN110557061A (en) * 2019-10-14 2019-12-10 珠海格力电器股份有限公司 Charging adjusting device and method for fan and fan
CN110824323B (en) * 2019-11-08 2022-02-22 陕西航空电气有限责任公司 Aviation brushless DC generator rectifier tube fault detection device
CN113358929B (en) * 2021-06-28 2022-04-12 深圳市武锋技术有限公司 Method for adjusting reference level, computer readable storage medium and spectrum receiver

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151647A (en) * 1991-05-15 1992-09-29 Chrysler Corporation Enhanced charging system diagnostic method
EP0591871A1 (en) * 1992-10-05 1994-04-13 IVECO FIAT S.p.A. A method and apparatus for the diagnostic testing of electrical equipment of a vehicle
US5677839A (en) * 1994-12-02 1997-10-14 Mitsubishi Denki Kabushiki Kaisha On-vehicle electronic control device and a method of detecting a failure thereof
US5701089A (en) * 1995-10-12 1997-12-23 Autozone, Inc. Alternator/starter testing device
EP0865143A2 (en) * 1997-03-14 1998-09-16 Denso Corporation Generation-stop detection system of alternator
US5811976A (en) * 1997-01-03 1998-09-22 Joy Mm Delaware, Inc. Method and apparatus to determine the location and resistance of an electrical leak within a battery without measuring individual battery cells

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3629704A (en) 1967-11-24 1971-12-21 Carlile R Stevens Automotive electrical system test apparatus
US3907398A (en) 1973-09-18 1975-09-23 Jr James O Hebert Load circuit and method
US3848181A (en) 1973-09-18 1974-11-12 J Hebert Battery tester with an improved load circuit
US4028616A (en) * 1976-03-10 1977-06-07 Stevens Carlile R Battery analyzer
US4178546A (en) 1978-01-06 1979-12-11 Rca Corporation Alternator test apparatus and method
US4242674A (en) 1979-01-08 1980-12-30 Wheeler Edward W Alternator failure warning indicator
GB2058367B (en) 1979-08-29 1983-11-23 Sheller Globe Corp Regulator tester
GB2073464A (en) 1980-04-01 1981-10-14 Contrology Techn Ltd Engine-alternator sets
US4314193A (en) 1980-05-22 1982-02-02 Motorola, Inc. Field coil fault detector for automotive alternator battery charging systems
US4348629A (en) * 1980-05-22 1982-09-07 Motorola, Inc. Stator fault detector for automotive alternator battery charging systems
US4315204A (en) * 1980-05-22 1982-02-09 Motorola, Inc. Ripple detector for automotive alternator battery charging systems
US4379990A (en) 1980-05-22 1983-04-12 Motorola Inc. Fault detection and diagnostic system for automotive battery charging systems
US4352067A (en) 1980-06-02 1982-09-28 Dc Electronic Industries, Inc. Battery analyzer
US4377786A (en) 1980-08-06 1983-03-22 Radco Industries, Inc. Battery testing apparatus
US4459548A (en) 1981-11-12 1984-07-10 Snap-On Tools Corporation Alternator testing apparatus
US4423378A (en) 1981-12-04 1983-12-27 Bear Automotive Service Equipment Company Automotive battery test apparatus
US4517833A (en) 1983-03-18 1985-05-21 Wesley William M Inductive adaptor/generator for diesel engines
ES538232A0 (en) 1984-12-04 1985-11-01 Vilas Llucia Antonio IMPROVEMENTS IN MANUAL TESTERS FOR ELECTRIC ACCUMULATOR BATTERIES.
US4686445A (en) 1986-07-10 1987-08-11 Textron Inc. Voltage regulator for lawn mower engine battery charger
US5004979A (en) 1987-11-03 1991-04-02 Bear Automotive Service Equipment Company Battery tach
JPH01190317A (en) * 1988-01-25 1989-07-31 Mutsuo Tanaka Full automatic coffee extractor
US4914387A (en) 1988-04-04 1990-04-03 The Torrington Company Magnetic speed sensor with an adaptive threshold circuit for use with a bearing assembly
DE3923532A1 (en) 1989-07-15 1991-01-24 Bosch Gmbh Robert METHOD FOR DETERMINING THE SPEEDS OF AN INTERNAL COMBUSTION ENGINE
US5254952A (en) 1989-09-11 1993-10-19 Snap-On Tools Corporation Automatic battery and charging system tester with motor-driven carbon pile loading
DE3932649A1 (en) 1989-09-29 1991-04-18 Bosch Gmbh Robert METHOD FOR DETERMINING THE RUNNING RUNNING OF AN INTERNAL COMBUSTION ENGINE
US5127747A (en) 1989-10-16 1992-07-07 The Torrington Company Bearing assembly speed sensor
FR2653192B1 (en) 1989-10-16 1995-01-20 Roulements Soc Nouvelle BEARING COMPRISING A SPEED DETECTION DEVICE.
US5200877A (en) 1990-04-04 1993-04-06 Baton Labs, Inc. Battery protection system
DE4012248A1 (en) 1990-04-14 1991-10-17 Telefunken Systemtechnik Electronic data processing installation for portable measurement unit - has encapsulation, graphics screen, baseplate of metal or insulating material with areas of insulation or metal cooling plates respectively
FR2669784A1 (en) 1990-11-27 1992-05-29 Valeo Equip Electr Moteur DEVICE FOR REGULATING THE CHARGING VOLTAGE OF A BATTERY DELIVERED BY AN ALTERNATOR.
FR2669783A1 (en) 1990-11-27 1992-05-29 Valeo Equip Electr Moteur DEVICE FOR REGULATING THE CHARGING VOLTAGE OF A BATTERY BY AN ALTERNATOR.
US5121066A (en) 1990-12-03 1992-06-09 Chrysler Corporation Variable load dump simulator system
DE69217007T2 (en) 1991-11-29 1997-06-05 Sgs Thomson Microelectronics Method and device for filtering the ripple of an alternator with synchronous scanning
US5424588A (en) 1992-04-07 1995-06-13 Cantor; Thomas L. Self-contained, portable compact load bank and testing method; compact load bank with improved power handling capability
US5257463A (en) 1992-05-05 1993-11-02 Eagle-Picher Industries, Inc. Method and apparatus for cooling or heating battery cells during electrical testing
US5477142A (en) 1994-02-22 1995-12-19 Delco Electronics Corporation Variable reluctance sensor interface using a differential input and digital adaptive control
US5510706A (en) 1994-02-22 1996-04-23 Delco Electronics Corporation Differential to single-ended conversion circuit for a magnetic wheel speed sensor
US5450008A (en) 1994-02-22 1995-09-12 Delco Electronics Corp. Adaptive loading circuit for a differential input magnetic wheel speed sensor
US5554948A (en) 1994-05-31 1996-09-10 Delco Electronics Corporation Adaptive threshold circuit with deceleration compensation
US5812429A (en) 1994-06-23 1998-09-22 Delco Electronics Corp. Adaptive digital filter for automotive applications
JP3201163B2 (en) * 1994-09-01 2001-08-20 トヨタ自動車株式会社 Motor evaluation method
US5497084A (en) 1995-03-03 1996-03-05 Honeywell Inc. Geartooth sensor with means for selecting a threshold magnitude as a function of the average and minimum values of a signal of magnetic field strength
GB9505540D0 (en) * 1995-03-18 1995-05-03 Sun Electric Uk Ltd Method and apparatus for engine analysis
DE19538309C2 (en) 1995-10-14 1998-10-15 Volkswagen Ag Radar method for measuring distances and relative speeds between a vehicle and one or more obstacles
FR2747860B1 (en) 1996-04-18 1998-05-22 Valeo Equip Electr Moteur METHOD OF REGULATING BY DIGITAL PROCESSING THE EXCITATION CURRENT OF A MOTOR VEHICLE ALTERNATOR AND REGULATING DEVICE IMPLEMENTING SUCH A METHOD
US5773977A (en) 1996-04-18 1998-06-30 Johnson Controls Technology Company Method of testing an electric storage battery by determining a bounce-back voltage after a load has been removed
US5700089A (en) 1996-05-08 1997-12-23 Ferret Instruments, Inc. Battery tester with load temperature detection
US6331762B1 (en) * 1997-11-03 2001-12-18 Midtronics, Inc. Energy management system for automotive vehicle
US6029512A (en) * 1996-09-18 2000-02-29 Toyota Jidosha Kabushiki Kaisha Slip-detecting device for a driving belt of a generator
FR2757325B1 (en) 1996-12-16 1999-03-05 Valeo Equip Electr Moteur METHOD FOR MANAGING THE EXCITATION OF A MOTOR VEHICLE ALTERNATOR BY A REGULATOR
US5899947A (en) 1997-06-30 1999-05-04 Daimlerchrysler Corporation Current check module for hand-held vehicle tester
US6133728A (en) 1998-05-18 2000-10-17 Delco Electronics Corporation Current mode differential to single-ended conversion circuit for a magnetic wheel speed sensor
US6040692A (en) 1998-05-18 2000-03-21 Delco Electronics Corporaiton Variable attenuation circuit for a differential variable reluctance sensor using current mode
US6191576B1 (en) 1998-06-30 2001-02-20 Honeywell Inc. Method of operating or constructing a geartooth sensor
US6002238A (en) 1998-09-11 1999-12-14 Champlin; Keith S. Method and apparatus for measuring complex impedance of cells and batteries
DE19944517A1 (en) 1998-09-18 2000-05-25 C K Electronics Sdn Bhd Method and device for determining the condition of automobile batteries
US6166548A (en) 1998-09-24 2000-12-26 Timex Corporation Method of detecting battery capacity in a zinc-air battery
DE19910590A1 (en) 1999-03-10 2000-09-14 Volkswagen Ag Distance control method and device for a vehicle
US6144185A (en) 1999-03-22 2000-11-07 Johnson Controls Technology Company Method and apparatus for determining the condition of a battery through the use of multiple battery tests
US6327144B1 (en) * 1999-12-21 2001-12-04 Hewlett-Packard Company Computing device with improved heat dissipation
US6161074A (en) 1999-12-22 2000-12-12 Visteon Global Technologies, Inc. Method and system for continued vehicle control in an adaptive speed control system at vehicle speeds below a minimum operating speed when a sensed target disappears
US6166523A (en) 2000-01-11 2000-12-26 Honeywell International Inc. Smart alternator method and apparatus for optimizing fuel efficiency and monitoring batteries in an automobile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151647A (en) * 1991-05-15 1992-09-29 Chrysler Corporation Enhanced charging system diagnostic method
EP0591871A1 (en) * 1992-10-05 1994-04-13 IVECO FIAT S.p.A. A method and apparatus for the diagnostic testing of electrical equipment of a vehicle
US5677839A (en) * 1994-12-02 1997-10-14 Mitsubishi Denki Kabushiki Kaisha On-vehicle electronic control device and a method of detecting a failure thereof
US5701089A (en) * 1995-10-12 1997-12-23 Autozone, Inc. Alternator/starter testing device
US5811976A (en) * 1997-01-03 1998-09-22 Joy Mm Delaware, Inc. Method and apparatus to determine the location and resistance of an electrical leak within a battery without measuring individual battery cells
EP0865143A2 (en) * 1997-03-14 1998-09-16 Denso Corporation Generation-stop detection system of alternator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042411A1 (en) * 2002-11-06 2004-05-21 Robert Bosch Gmbh Method and device for recognizing battery-less operation of a vehicle

Also Published As

Publication number Publication date
CN1439102A (en) 2003-08-27
KR20030069802A (en) 2003-08-27
BR0112290A (en) 2003-06-03
TW546888B (en) 2003-08-11
US20010054890A1 (en) 2001-12-27
CN1265207C (en) 2006-07-19
KR20030013467A (en) 2003-02-14
US6664791B2 (en) 2003-12-16
AU7143101A (en) 2002-01-08
AU2001272994A1 (en) 2002-01-08
WO2002001698A3 (en) 2002-04-11
EP1295142A2 (en) 2003-03-26
US20030117146A1 (en) 2003-06-26
US6777941B2 (en) 2004-08-17
WO2002001698A2 (en) 2002-01-03
CN1439103A (en) 2003-08-27
BR0112291A (en) 2003-05-06
US20020011829A1 (en) 2002-01-31
NZ523124A (en) 2004-08-27
NZ523125A (en) 2004-02-27
EP1295141A2 (en) 2003-03-26
CA2413043C (en) 2009-12-22
CA2413043A1 (en) 2002-01-03
JP2004502144A (en) 2004-01-22
US6806727B2 (en) 2004-10-19
AU2001271431B2 (en) 2005-10-27
JP2004502145A (en) 2004-01-22
TW552421B (en) 2003-09-11
WO2002001689A3 (en) 2002-07-11
CA2413039A1 (en) 2002-01-03

Similar Documents

Publication Publication Date Title
US6777941B2 (en) Alternator testing method and system using timed application of load
AU2001271431A1 (en) Alternator testing method and system using ripple detection
US6363303B1 (en) Alternator diagnostic system
US6466025B1 (en) Alternator tester
US6791332B2 (en) Alternator testing device and method
US4315204A (en) Ripple detector for automotive alternator battery charging systems
US7089127B2 (en) Integrated battery service system
US4314193A (en) Field coil fault detector for automotive alternator battery charging systems
WO1981003404A1 (en) Stator fault detector for automotive alternator battery charging systems
JPH06245325A (en) Communication control system for electric automobile
US6029512A (en) Slip-detecting device for a driving belt of a generator
JP3856059B2 (en) Engine start detection device for moving body
JPH0538075A (en) Alternator for vehicle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2001272994

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2001952213

Country of ref document: EP

Ref document number: 2413039

Country of ref document: CA

Ref document number: 523124

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1020027017666

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2002 505730

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 018118186

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027017666

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001952213

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 523124

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 523124

Country of ref document: NZ

WWW Wipo information: withdrawn in national office

Ref document number: 2001952213

Country of ref document: EP