WO2002002182A2 - Shelf storage stable iontophoresis reservoir-electrode and iontophoretic system - Google Patents

Shelf storage stable iontophoresis reservoir-electrode and iontophoretic system Download PDF

Info

Publication number
WO2002002182A2
WO2002002182A2 PCT/US2001/020886 US0120886W WO0202182A2 WO 2002002182 A2 WO2002002182 A2 WO 2002002182A2 US 0120886 W US0120886 W US 0120886W WO 0202182 A2 WO0202182 A2 WO 0202182A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
reservoir
polymeric material
patient
medicament
Prior art date
Application number
PCT/US2001/020886
Other languages
French (fr)
Other versions
WO2002002182A3 (en
Inventor
Udayk Jain
Vilambi Nrk Reddy
Bruce M. Eliash
Kevin John Carey
Vitaly Falevich
Preston Keusch
Original Assignee
Vyteris, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vyteris, Inc. filed Critical Vyteris, Inc.
Priority to AU2001273104A priority Critical patent/AU2001273104A1/en
Priority to JP2002506803A priority patent/JP4024673B2/en
Priority to CA002413624A priority patent/CA2413624C/en
Priority to DE60129965T priority patent/DE60129965T2/en
Priority to EP01952340A priority patent/EP1294439B1/en
Publication of WO2002002182A2 publication Critical patent/WO2002002182A2/en
Publication of WO2002002182A3 publication Critical patent/WO2002002182A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0428Specially adapted for iontophoresis, e.g. AC, DC or including drug reservoirs
    • A61N1/0448Drug reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0428Specially adapted for iontophoresis, e.g. AC, DC or including drug reservoirs
    • A61N1/0432Anode and cathode
    • A61N1/0436Material of the electrode

Definitions

  • the present invention is generally related to transdermal drug delivery and more particularly to a reservoir-electrode for iontophoresis that has enhanced stability properties.
  • Iontophoretic delivery of a medicament is accomplished by application of a voltage to a medicament loaded reservoir-electrode, sufficient to maintain a current between the medicament loaded reservoir-electrode and a return electrode (another electrode) applied to a patient's skin so that an ionic form of the desired medicament is delivered to the patient.
  • shelf storage stability problems for many of the iontophoresis devices reported in the literature require that the medicament be stored separately from the reservoir- electrode until immediately prior to use.
  • Iontophoretic delivery of medicaments is recognized as desirable for many medicaments, but it is not widely used because no devices are commercially available that meet all of the needs of the potential user population.
  • An important requirement for a product to enjoy widespread usage is shelf storage stability. In an iontophoretic drug delivery system, one needs to be concerned not only with the drug stability, but also the stability of the delivery device and any interaction between the several components.
  • shelf storage stability is an important part of a drug product's regulatory approval process. If there are difficulties with storage stability, regulatory approval may be withheld. Often, in iontophoretic devices the reservoir-electrode also is maintained in a dry (unhydrated) condition prior to use also because of the tendency of the active electrode material to undergo physical and chemical changes during shelf storage.
  • US Patent No. 5,320,598 discloses a dry-state iontophoretic drug delivery device that has drug and electrolyte reservoirs that are initially in a non-hydrated condition.
  • the device has a liquid containing pouch or breakable capsules that contain water or other liquid, the liquid being releasable by disrupting the liquid containers prior to use.
  • Commercial manufacture of a device utilizing this disclosure would be complex.
  • US Patent No 5,385,543 also discloses a dry-state iontophoretic drug delivery device that has drug and electrolyte reservoirs.
  • the disclosed device includes a backing layer with at least one passageway therethrough that allows the introduction of water or other liquids into the drug and electrolyte reservoirs prior to use followed by joining the reservoirs to the electrodes.
  • the patent teaches that by joining the reservoirs to the electrodes after hydration, delamination problems are reduced.
  • the device is divided or otherwise separated into at least two portions, with one portion containing the electrode reservoir and the other containing the drug reservoir, which may include a medication in a dry form.
  • the user causes the two portions to come into electrical conducting contact with one another to at least partially hydrate one of the reservoirs, by either folding the device to bring the two portions into contact with one another or by removing a barrier dividing the two portions. While this device seems to be somewhat easier to use than the devices disclosed in the above patents, there currently is no commercial device that utilizes this disclosure.
  • International Application WO 98/208869 discloses an iontophoretic device for delivery of epinephrine and lidocaine HC1.
  • the disclosed device includes materials that deter microbial growth and anti-oxidants to enhance the stability of epinephrine. While this disclosure recognizes the need for shelf storage stability and addresses the problem of epinephrine stability by including anti-oxidants, there is no recognition of the need to prevent corrosion of the electrodes during manufacture and shelf storage. Again, there is no commercial product based on the information in this disclosure.
  • a commercial iontophoretic device for delivery of lidocaine and epinephrine is provided under the tradename "Numby Stuff by the Iomed Corp., Salt Lake City, UT.
  • the "Numby Stuff device kit includes a vial sealed with a rubber septum containing a trademarked "Iontocaine” solution that includes Lidocaine HC12% and Epinephrine 1:100,000 that is used for charging the "Phoresor" system immediately prior to use.
  • the "Numby Stuff device lists U.S. Patent Nos.4,752,285; 5,374,241; 4,416,274; 5,135,477; and 5,415,628 that describe aspects of the device. None of these patents disclose a medicament-charged iontophoretic device with a useful shelf life. The patents are directed toward aspects of the delivery process and reservoir-electrode design.
  • the effect on the open circuit potential is about 60 millivolts ( V) per decade (10 1 ) in concentration of chloride ion.
  • Silver/silver chloride electrodes are the most common iontophoretic electrodes, and these electrodes require chloride ion to function.
  • Most iontophoretic medicaments are provided as the hydrochloride salt and are added to the reservoir at some point prior to use. The practical effect of this phenomenon is, since the log of zero is infinity, that when chloride ion is added to the device before use, before the concentration of chloride ion can fully equilibrate, there is likely already some corrosive damage to the patch due to concentration differentials.
  • Another way to minimize the effect of the rapid onset of corrosion due to a chloride ion concentration gradient is to form the reservoir electrode from a very absorbent material, so that the hydration process occurs rapidly, minimizing the duration of any concentration gradient. While a very absorbent reservoir reduces the problem of corrosion when loading, such an absorbent material generally readily expresses liquid upon compression and, additionally, does not have any self-adhesive properties that helps the adherence of the reservoir material to the electrode or to the patient's skin. Most commonly, an iontophoretic reservoir is formed from a hydrogel.
  • Hydrogels are absorbent and generally do not express liquid upon compression, but a medicament may be slow to absorb into the hydrogel, and as a result, the slow rate of absorption amplifies the problem of concentration gradient induced corrosion before equilibrium concentration is achieved.
  • a hydrogel reservoir may be incorporated into an iontophoretic reservoir-electrode is to charge the hydrogel reservoir with the desired aliquot of medicament independently of the electrode, allow the medicament solution to equilibrate within the hydrogel, a process which can easily require several days and then laminate the loaded hydrogel to the electrode to form the reservoir-electrode.
  • the separate hydrogel loading process is not amenable to continuous high-speed manufacturing and adversely effects the potential for commercialization of hydrogel based reservoir-electrodes.
  • a reservoir-electrode were available that addressed the problem of corrosion between the electron conductor and the ion conductor interface due to electrolyte concentration imbalances so that the device could be preloaded with medicament and still have acceptable shelf storage stability, the practicability of iontophoretic drug delivery would be enhanced. If such a reservoir-electrode also had sufficient adhesive properties to enhance adherence of the reservoir material to the electrode and to the patient's skin, the art of iontophoresis would be further enhanced. Such a reservoir-electrode is disclosed hereinbelow.
  • a reservoir-electrode for an iontophoretic delivery device of the present invention includes an electrode having a surface; and a hydrophilic reservoir situated in electrically conductive relation to the electrode.
  • the reservoir is formed from an absorbent material having a substantially uniform concentration of an alkali metal salt therein thereby substantially eliminating concentration gradients of the salt with respect to the electrode surface so that when an aliquot of a medicament solution including ions of the salt is added to the reservoir substantially no corrosion potential develops at the surface of the electrode, thereby substantially eliminating a corrosive effect on the electrode.
  • An iontophoretic system of the present invention includes a first-reservoir electrode including at least one medicament for delivery to a patient.
  • the first reservoir- electrode includes a first hydrophilic reservoir situated in electrically conductive relation to a first electrode with a surface.
  • the first reservoir is formed from a bibulous hydrophilic cross-linked polymeric material having a substantially uniform concentration of an alkali metal chloride salt therein thereby substantially eliminating concentration gradients of the salt with respect to the electrode surface when an aliquot of at least one medicament including ions of the alkali metal chloride salt is added to the reservoir electrode.
  • the polymeric material has a first surface and a second surface that is adhesively adherent to the electrode.
  • the first surface of the polymeric material is releasably adhesive to an applied area of a patient's skin.
  • the polymeric material has a cohesive strength, wherein a bond strength of an adhesive bond between the second surface of said polymeric material to the first electrode is greater than the cohesive strength of said polymeric material and an adhesive bond strength of the first surface of the polymeric material to the applied area of the patient is less than the cohesive strength of said polymeric material so that upon removal of the first reservoir-electrode from the applied area of the patient, substantially no polymeric material remains on the applied the said first electrode.
  • the iontophoretic system of the invention also includes a second reservoir- electrode including a second hydrophilic reservoir situated in electrically conductive relation to a second electrode with a surface.
  • the second reservoir is formed from a bibulous hydrophilic cross-linked polymeric material having a substantially uniform concentration of an alkali metal chloride salt therein thereby substantially eliminating concentration gradients of the salt with respect to the second electrode.
  • the polymeric material has a first surface and a second surface is adhesively adherent to the second electrode. The first surface of the polymeric material is releasably adhesive to an applied area of a patient's skin.
  • the polymeric material has a cohesive strength, wherein a bond strength of an adhesive bond between the second surface of the polymeric material to the second electrode is greater than the cohesive strength of said polymeric material and an adhesive bond strength of the first surface of the polymeric material to the applied area of the patient is less than the cohesive strength of the polymeric material so that upon removal of the second reservoir-electrode from the applied area of the patient, substantially no polymeric material remains on the applied area and the second reservoir remains substantially intact and adhesively adherent to said second electrode.
  • the iontophoretic system of the invention further includes a power supply disposed in electrically conductive contact with the first reservoir-electrode and the second reservoir- electrode to supply a preselected current so that when the first reservoir-electrode and the second reservoir-electrode are each applied to a patient, a complete electrical circuit is formed with the first reservoir-electrode operating as an anode and the second reservoir- electrode operating as a cathode, thereby delivering the at least one medicament to the patient.
  • the reservoir-electrode of the invention and the iontophoretic device incorporating reservoir-electrodes of the invention as both the active and the return reservoir-electrodes have demonstrated satisfactory shelf storage stability.
  • the reservoir- electrode of the invention can be efficiently produced and, with the satisfactory shelf storage stability provided by overcoming the problem of electrode corrosion during storage, provides the opportunity for a previously unavailable commercial iontophoretic device that answers the both the needs of patients and commercial distribution requirements.
  • Fig. 1 is a schematic view of an iontophoretic device positioned on a patient
  • Fig. 2 is a perspective view of an iontophoretic device of the invention incorporating an active reservoir-electrode and a return reservoir-electrode of the invention
  • Fig. 3 is a cross-sectional view of a reservoir-electrode of the invention, taken from Fig. 2 along the line 3-3;
  • Fig. 4a is a schematic bottom plan view of a control sample of a reservoir- electrode similar to the reservoir-electrode of the invention after a period of shelf storage;
  • Fig. 4b is a schematic bottom plan view, analogous to Fig.4a, of the reservoir-electrode of the invention after an identical period of shelf storage to the control of Fig. 4a.
  • a generalized schematic iontophoretic device 10 is illustrated mounted on an applied area 12 of the arm of a patient.
  • Iontophoretic device 10 When iontophoretic device 10 is applied to skin 12 of a patient a completed circuit is formed between an anode 14 and a cathode 16 of device 10 and the patient.
  • Iontophoretic device 10 includes a power supply 20 and a supply 22 of an ionized medicament to be delivered to the patient.
  • power supply 10 is activated and causes a current to flow between the electrodes, the ionized medicament is delivered into the patient and another ion 24 is removed from the patient.
  • ionized medicaments are positively charged (cations).
  • the active electrode is generally anode 14. In the instance where the medicament being delivered is an anion, cathode 16 is the active electrode and anode 14 is the return electrode.
  • Preferred Device 100 includes a first reservoir-electrode 104 (anode) charged with lidocaine HCl and epinephrine bitartrate and a second reservoir-electrode 108 intended to function as a cathode or return electrode as illustrated in Fig. 2.
  • Device 100 includes a flexible backing 110 with first reservoir-electrode 104 and second reservoir-electrode 108 mounted thereon.
  • Device 100 includes two electrodes 112 and 114, each having an electrode surface 113 and electrode interconnects 112a and 114a.
  • Electrodes 112 , 114 and electrode interconnects 112a and 114a are formed as a thin film deposited as traces onto flexible backing 110 with an inside surface 111.
  • electrodes 112 and 114 and electrode interconnects 112a and 114a are formed from conductive ink 115 applied as a thin film to inside surface 111.
  • Conductive ink 115 preferably includes silver and silver chloride in a suitable binder material.
  • Electrodes 112 and 114 each mounted with a preferred bibulous reservoirs, 120 and 122 respectively, formed from a cross-linked polymeric material such as cross-linked ⁇ oly(vinylpyrolidone) hydrogel that each include a substantially uniform concentration of an alkali metal salt, preferably sodium chloride.
  • lidocaine HCl and epinephrine bitartrate used in this prototype are considered exemplary for the purpose of this disclosure and not limitative of the instant invention of a reservoir- electrode with the substantially uniform concentration of the alkali metal salt to eliminate concentration gradients that cause corrosion of the electrode.
  • the Inventors believe that there is general applicability of the uniform concentration of the alkali metal salt as a corrosion preventative to substantially all reservoir-electrode material combinations and to other medicaments than those cited as examples in this disclosure.
  • the cross-linked poly(vinyl ⁇ yrolidone) preferably includes a reinforcement 116, preferably a low basis weight non-woven scrim to provide shape retention to the hydrogel.
  • the preferred reservoirs 120, 122 each have adhesive and cohesive properties that provide for a first surface 121, and a second surface 123.
  • First surface 121 is preferably releasably adherent to an applied area 124 of a patient's skin.
  • Second surface 123 is adhesively adherent to electrodes 112 and 114.
  • a bond strength of an adhesive bond formed between first surface 121 and applied area 124 of the patient's skin is less than the strength of an adhesive bond formed between second surface 123 and electrodes 112 and 1 14.
  • the strength of the releasable adhesive bond formed between first surface 121 and the patient's skin is less than the cohesive strength of the preferred reservoirs 120 and 122.
  • These preferred adhesive and cohesive properties of reservoirs 120, 122 have the effect that when reservoir-electrodes 104, 108 of device 100 are removed from applied area 124 of the patient's skin, the reservoirs substantially cleanly come off patient's skin 124, leaving substantially no residue, stay substantially intact and do not come off of electrodes 112, 114 or backing 110.
  • Preferred device 100 also includes a power supply 130 that preferably supplies a preselected current or currents to the device when reservoir electrodes 104 and 108 are mounted on the patient's skin to form a completed circuit.
  • backing 110 includes an extended portion 132 with electrode interconnects 112a and 114a formed from conductive ink 115 extended thereon to connectors 134.
  • Power supply 130 preferably includes a receptacle 136 with mating connectors 138 to receive extended portion 132 and connectors 134. Extended portion 132 with connectors 134 allows power supply 130 to be refitted with fresh backings 110 having reservoir-electrodes 104 and 108 thereon.
  • Power supply 130 and backing 110 preferably includes a circuit 139 to identify the particular type of reservoir- electrodes and medicament to power supply 130.
  • reservoir-electrode 104 includes electrode 112 and an absorbent reservoir 120 having a substantially uniform concentration of an alkali metal salt situated in electrically conductive relation to electrode 112 at electrode surface 113.
  • absorbent reservoir 120 is formed from a hydrophilic material, such as a bibulous hydrophilic cross-linked polymeric material, that has an alkali metal salt, preferably sodium chloride or other physiologically acceptable alkali metal salt.
  • bibulous hydrophilic cross-linked polymeric material of reservoir 120 has a first surface 121 and a second surface 123 that is adhesively adherent to electrode 112.
  • first surface 121 of reservoir 120 is releasably adhesively adherent when applied to an area 124 of a patient's skin.
  • Preferred 120 has a cohesive strength and forms an adhesive bond with a bond strength between second surface 123 of the polymeric material to electrode 112 that is greater than the cohesive strength of the polymeric material.
  • an adhesive bond strength of first surface 121 of preferred polymeric reservoir 120 material to applied area 124 of the patient is less than the cohesive strength of polymeric reservoir 120 so that upon removal of reservoir- electrode 104 of the invention from applied area 124 of the patient, substantially no preferred polymeric reservoir 120 material remains on applied area 124 of the patient's skin and hydrophilic reservoir 120 remains substantially intact and adhesively adherent to electrode 112.
  • the preferred material for forming hydrophilic reservoir 120 is a cross-linked poly(vinylpyrolidone).
  • the preferred material is prepared as a viscous aqueous syrup that incorporates the selected alkali halide, preferably sodium chloride, in the desired concentration.
  • the active reservoir-electrode i.e., containing the lidocaine and the epinephrine
  • the concentration of the sodium chloride is between about 0.001 to about one percent by weight (w/w).
  • the concentration is about 0.06 percent (w/w).
  • concentrations and other pharmaceutically acceptable alkali metal salts may be preferred, and are considered within the scope of the invention.
  • the concentration of the alkali metal salt again preferably sodium chloride, may be between about 0.001 percent to about one percent (w/w), with about 0.06 percent being preferred.
  • a preferred material for forming hydrophilic reservoir 120 is poly(vinylpyrolidone) ( PVP) with a number average molecular weight greater than about 360,000 daltons.
  • PVP poly(vinylpyrolidone)
  • a suitable PVP is available from BASF, NJ as PVP K-90F.
  • this material When this material is prepared as a concentrated aqueous solution it forms a viscous syrup which is preferably applied to both sides of the reinforcement 116, placed between two release webs to a thickness of about of about 40 mils and subjected to conditions, preferably ionizing radiation, sufficient to cross-link the PVP sufficiently to substantially be shape retaining, flexible and having a preferred degree of tack.
  • a preferred ionizing radiation is an electron beam having at least about a 1 MeV to deliver between about 1.0 and 2.5 megarads.
  • the degree of cross-link has considerable effect on the degree of tack.
  • a low degree of cross-link results in high tack values, while a high degree of cross-link results in a low degree of tack.
  • resultant PVP reservoir 120 does not retain shape, may detach from reinforcement 116 and is extremely difficult to handle. If the degree of cross-linking is too great, the resultant PVP reservoir 120 has insufficient tack to adhere to electrode 112 or to patient contact area 124.
  • the degree of cross-link is preferably optimized so that the degree of swelling is controlled.
  • the use of the electron beam for cross-linking the PVP for reservoir 120 has a particular benefit to the present invention. Unlike gamma radiation that has a potential penetration of several feet of concrete, the electron beam penetration depth is described in the units of cm of water.
  • This property of the electron beam can be utilized in controlling the degree of cross-link in reservoir 120.
  • the exposure can be controlled so that there is a differential degree of tack on surface 121 than on surface 123 of reservoir 120.
  • the differential degree of tack on the first surface and the second surface may be preselected to allow a sufficient degree of tack on surface 120 to ensure a sufficiently strong bond between electrode 112 and reservoir 120 to substantially prevent separation of the electrode and the reservoir while allowing the reservoir to be removed from the patient's skin.
  • the application of ionizing radiation to cross-link the PVP has the added benefit of substantially eliminating any microorganisms present in the material so that if the material is subsequently handled under conditions that substantially prevent further introduction of microorganisms, the final packaged product is substantially free of microorganisms.
  • the preferred degree of cross-link is that which results in a swelling ratio of greater than 3. Additionally, because the bibulous material is constrained in the "x" and "y" directions by the reinforcement 116, best seen in Fig. 3, the swelling that occurs upon imbibement of aqueous solution during the charging of the reservoir-electrode with the medicament after crosslinking, preferably occurs substantially only in the "z" direction, i.e., to increase the distance between first surface 121 and second surface 123. Additionally, the degree of cross-link is preferably optimized so that the degree of swelling is controlled. If there is insufficient cross-linking, the swelling that occurs when the medicament is added may allow the formation of concentration imbalances about the electrodes thereby amplifying the corrosion process.
  • medicaments including both the preferred medicaments, lidocaine and epinephrine are not stable to ionizing radiation, consequently in preparing the reservoir- electrode of the invention, medicaments generally cannot be incorporated into the aqueous poly(vinylpyrolidone) prior to the application of ionizing radiation for the cross-linking. Since the cross-linked poly(vinylpyrolidone) is a hydrogel, the addition of any medicaments subsequent to the cross-linking is an elastic swelling process which is ultimately diffusion controlled that requires considerable time to reach equilibrium.
  • a preselected amount of sodium chloride which is unchanged by the ionizing radiation used for the cross-linking, is mixed with the poly(vinylpyrolidone) prior to the cross-linking ensuring a substantially uniform concentration of the chloride ion about electrode 112 or 114.
  • the degree of cross-linking is preferably controlled to provide a preselected degree of adhesivity and cohesivity to the poly(vinylpyrolidone) hydrogel formed.
  • the degree of crosslinking between one surface and another surface of the hydrogel is described by a gradient, so that a releasable adhesive bond may be formed between the surface applied to the patient's skin and an adhesive bond with a greater strength than the cohesive strength of the poly(vinylpyrolidone) hydrogel is formed between the electrode and the hydrogel.
  • Preferred iontophoretic device 100 is prepared by forming reservoir electrode into the crosslinked hydrogel as described above. Formed reservoir-electrode 104 that is intended to be the anode is then charged with the preferred aqueous lidocaine hydrochloride, epinephrine bitartrate and other excipients.
  • the lidocaine hydrochloride is present in an amount between about 50 mg to about 150 mg. Other amounts or other medicaments may be preferred for particular applications. In the prototype, about 100 mg of lidocaine hydrochloride is present. Epinephrine bitartrate is preferably present in an amount equivalent to about one-half to about one and one-half mg, and more preferably about one mg of the free base. Additionally, glycerin, sodium metabisulfite, editate disodium, citric acid, phenoxy ethanol, alkyl esters of hydroxybenzoic acid are included as humectants, antioxidants and antimicrobial preservatives in the preferred prototype active electrode 104.
  • FIG. 4a and 4b were identically charged with aliquots of the preferred lidocaine hydrochloride, epinephrine bitartrate and excipients, sealed in a proposed final package and subjected to identical storage conditions (25° C, One year duration).
  • Fig. 4a a representation is shown of reservoir-electrode 104 prepared without the sodium chloride being mixed with the poly(vinylpyrolidone) prior to the cross-linking with ionizing radiation.
  • the cross-hatched area 140 indicates a discolored area that developed during storage at ambient conditions.
  • Fig. 4b is a schematic representation of reservoir-electrode 104 prepared with the preferred 0.06 percent sodium chloride (w/w) stored under identical conditions to the reservoir-electrode illustrated in Fig.
  • the discolored area 140 seen in Fig. 4a is indicative of corrosion of the electrode material with the result that the cross-hatched portion of may be expected that a reservoir-electrode exhibiting the type of degradation schematically illustrated as 140 in Fig. 4a during storage may not deliver the expected amount of medicament to the patient.
  • the reservoir-electrode In order for an iontophoretic system to be commercially viable and meet the necessary regulatory requirements, the reservoir-electrode must not substantially degrade during manufacture and shelf storage.
  • the present invention which substantially eliminates the corrosion of active electrodes caused by concentration gradients about the active electrode, allows a user to prepare for an iontophoretic delivery of a medicament by simply opening a package, applying the device to the skin and activating the power supply to initiate the preselected delivery of the medicament.
  • the preferred iontophoretic reservoir-electrode and the complete iontophoretic device utilizing the reservoir-electrode of the invention are advances to the iontophoresis art and greatly improve the availability and efficiency of iontophoretic delivery of medicaments.

Abstract

A reservoir-electrode for an iontophoretic delivery device of the present invention includes an electrode; and a hydrophilic reservoir situated in electrically conductive relation to the electrode. The reservoir is formed from a bibulous hydrophilic cross-linked polymeric material having a substantially uniform concentration of an alkali metal chloride salt therein thereby substantially eliminating concentration gradients of the salt with respect to the electrode. The polymeric material has a first surface and a second surface that is adhesively adherent to the electrode. The first surface of the polymeric material is releasably adhesive to an applied area of a patient's skin. The polymeric material has a cohesive strength, wherein a bond strength of an adhesive bond between the second surface of the polymeric material to the electrode is greater than the cohesive strength of the polymeric material and an adhesive bond strength of the first surface of the polymeric material to the applied area of the patient is less than the cohesive strength of the polymeric material so that upon removal of the reservoir-electrode from the applied area of the patient, substantially no polymeric material remains on the applied area and the reservoir remains substantially intact and adhesively adherent to the electrode.

Description

Title: Shelf Storage Stable Iontophoresis Reservoir-Electrode and Iontophoretic System Incorporating the Reservoir-Electrode
Field of the Invention: The present invention is generally related to transdermal drug delivery and more particularly to a reservoir-electrode for iontophoresis that has enhanced stability properties.
Background
Iontophoretic delivery of a medicament is accomplished by application of a voltage to a medicament loaded reservoir-electrode, sufficient to maintain a current between the medicament loaded reservoir-electrode and a return electrode (another electrode) applied to a patient's skin so that an ionic form of the desired medicament is delivered to the patient.
Shelf storage stability problems for many of the iontophoresis devices reported in the literature require that the medicament be stored separately from the reservoir- electrode until immediately prior to use. Iontophoretic delivery of medicaments is recognized as desirable for many medicaments, but it is not widely used because no devices are commercially available that meet all of the needs of the potential user population. An important requirement for a product to enjoy widespread usage is shelf storage stability. In an iontophoretic drug delivery system, one needs to be concerned not only with the drug stability, but also the stability of the delivery device and any interaction between the several components.
If a drug product is not stable under normal shelf storage conditions, it is unlikely to be a successfully commercial product because the short shelf life limits the products utility to most potential users as most of the product's useful life is exhausted during the time required for manufacturing and the distribution process. Thus, determination of shelf storage stability is an important part of a drug product's regulatory approval process. If there are difficulties with storage stability, regulatory approval may be withheld. Often, in iontophoretic devices the reservoir-electrode also is maintained in a dry (unhydrated) condition prior to use also because of the tendency of the active electrode material to undergo physical and chemical changes during shelf storage. Many drugs are not particularly stable to ambient conditions as the free base compound and as a result are formulated as salts that may react unfavorably with electrodes in iontophoretic devices. The need to store the several components separately has limited the use of iontophoretic devices, since in order to use the device, the reservoir-electrode needs to be charged with the medicament and hydrated either by a practitioner or user immediately prior to use.
Several United States Patents disclose devices that attempt to overcome the problem of shelf storage stability and facilitate the preparation of the device for use. US Patent No. 5,320,598 discloses a dry-state iontophoretic drug delivery device that has drug and electrolyte reservoirs that are initially in a non-hydrated condition. The device has a liquid containing pouch or breakable capsules that contain water or other liquid, the liquid being releasable by disrupting the liquid containers prior to use. Commercial manufacture of a device utilizing this disclosure would be complex.
US Patent No 5,385,543 also discloses a dry-state iontophoretic drug delivery device that has drug and electrolyte reservoirs. The disclosed device includes a backing layer with at least one passageway therethrough that allows the introduction of water or other liquids into the drug and electrolyte reservoirs prior to use followed by joining the reservoirs to the electrodes. The patent teaches that by joining the reservoirs to the electrodes after hydration, delamination problems are reduced.
No commercial products utilizing the technology disclosed either in the '598 or the '543 patents have been produced.
A different approach to the shelf storage stability problem is disclosed in US Patent No. 5,817,044. In this disclosure, the device is divided or otherwise separated into at least two portions, with one portion containing the electrode reservoir and the other containing the drug reservoir, which may include a medication in a dry form. In this disclosure, the user causes the two portions to come into electrical conducting contact with one another to at least partially hydrate one of the reservoirs, by either folding the device to bring the two portions into contact with one another or by removing a barrier dividing the two portions. While this device seems to be somewhat easier to use than the devices disclosed in the above patents, there currently is no commercial device that utilizes this disclosure.
International Application WO 98/208869 discloses an iontophoretic device for delivery of epinephrine and lidocaine HC1. The disclosed device includes materials that deter microbial growth and anti-oxidants to enhance the stability of epinephrine. While this disclosure recognizes the need for shelf storage stability and addresses the problem of epinephrine stability by including anti-oxidants, there is no recognition of the need to prevent corrosion of the electrodes during manufacture and shelf storage. Again, there is no commercial product based on the information in this disclosure. A commercial iontophoretic device for delivery of lidocaine and epinephrine is provided under the tradename "Numby Stuff by the Iomed Corp., Salt Lake City, UT. The "Numby Stuff device kit includes a vial sealed with a rubber septum containing a trademarked "Iontocaine" solution that includes Lidocaine HC12% and Epinephrine 1:100,000 that is used for charging the "Phoresor" system immediately prior to use. The "Numby Stuff device lists U.S. Patent Nos.4,752,285; 5,374,241; 4,416,274; 5,135,477; and 5,415,628 that describe aspects of the device. None of these patents disclose a medicament-charged iontophoretic device with a useful shelf life. The patents are directed toward aspects of the delivery process and reservoir-electrode design. While these disclosures do potentially address the problem of keeping the medicament stable by isolating it from moisture, oxidation or from other components of the device, there is the problem, not previously recognized in the literature, corrosion of the active electrode during manufacture and storage. This problem is best understood by considering an electrochemical cell consisting of the silver/silver chloride electrode system commonly used in iontophoretic devices. In the cell considered, the Ag/AgCl electrode can be surround by solution of different chloride ion concentrations ( Cli and Cl2 . The electrode reaction is illustrated by Ag + Cl* = AgCl + e". The Nernst equation describing this cell is ΔEo = RT/nF In [Cli ] / [Cl2 ] .
The Nernst equation illustrates that a chloride concentration gradient ([Clj ] not equal to [Cl ] ) results in an open circuit potential, commonly called a concentration potential, that results in corrosion. ΔEo = open circuit potential as the concentration of Cf moves away from unit concentration or activity.
Based on the Nernst equation's dependency on the log of the chloride ion concentration, the effect on the open circuit potential is about 60 millivolts ( V) per decade (101) in concentration of chloride ion. Silver/silver chloride electrodes are the most common iontophoretic electrodes, and these electrodes require chloride ion to function. Most iontophoretic medicaments are provided as the hydrochloride salt and are added to the reservoir at some point prior to use. The practical effect of this phenomenon is, since the log of zero is infinity, that when chloride ion is added to the device before use, before the concentration of chloride ion can fully equilibrate, there is likely already some corrosive damage to the patch due to concentration differentials. Thus, there is often some corrosive damage to the reservoir-electrode interface almost immediately upon the addition of chloride ion containing constituents to the reservoir. Additionally, if the chloride ion addition is non-uniform, some corrosive conversion of silver to silver chloride is almost guaranteed to occur. Several problems can arise from this corrosion to the electrode including: a loss of pharmaceutical elegance; a cut-off of the operation of the reservoir-electrode because of an open circuit; localized pH changes in the reservoir- electrode during operation; a reduction in the amount of silver available to the desired electrochemical reaction during iontophoresis; and actual delivery of silver ion to the patient resulting in a "tattoo". One way to deal with this chloride concentration gradient problem is to use sufficient excess amounts of silver so that the reservoir-electrode is still substantially functional despite some corrosion. Often, even if excess silver is used, localized corrosion can produce in a break in the electrode continuity at a junction point and result in, at least, a partially non-functional reservoir-electrode. A further safety related problem may occur if a portion of the reservoir electrode is non-functional. When a portion of the reservoir electrode is non-functional, the full current of the controller is applied to a smaller area of the reservoir-electrode resulting in an undesirably high current density. The higher current density may cause undesirable effects to the patient ranging from a "tingling" sensation from the increased current to damage to the skin contact area. Additionally, since silver is a "precious" metal, the use of excess silver also adversely effects the cost, and ultimately, the possible commercialization of iontophoretic drug delivery.
Another way to minimize the effect of the rapid onset of corrosion due to a chloride ion concentration gradient is to form the reservoir electrode from a very absorbent material, so that the hydration process occurs rapidly, minimizing the duration of any concentration gradient. While a very absorbent reservoir reduces the problem of corrosion when loading, such an absorbent material generally readily expresses liquid upon compression and, additionally, does not have any self-adhesive properties that helps the adherence of the reservoir material to the electrode or to the patient's skin. Most commonly, an iontophoretic reservoir is formed from a hydrogel. Hydrogels are absorbent and generally do not express liquid upon compression, but a medicament may be slow to absorb into the hydrogel, and as a result, the slow rate of absorption amplifies the problem of concentration gradient induced corrosion before equilibrium concentration is achieved. Currently, the only way a hydrogel reservoir may be incorporated into an iontophoretic reservoir-electrode is to charge the hydrogel reservoir with the desired aliquot of medicament independently of the electrode, allow the medicament solution to equilibrate within the hydrogel, a process which can easily require several days and then laminate the loaded hydrogel to the electrode to form the reservoir-electrode. The separate hydrogel loading process is not amenable to continuous high-speed manufacturing and adversely effects the potential for commercialization of hydrogel based reservoir-electrodes.
If a reservoir-electrode were available that addressed the problem of corrosion between the electron conductor and the ion conductor interface due to electrolyte concentration imbalances so that the device could be preloaded with medicament and still have acceptable shelf storage stability, the practicability of iontophoretic drug delivery would be enhanced. If such a reservoir-electrode also had sufficient adhesive properties to enhance adherence of the reservoir material to the electrode and to the patient's skin, the art of iontophoresis would be further enhanced. Such a reservoir-electrode is disclosed hereinbelow.
Summary
A reservoir-electrode for an iontophoretic delivery device of the present invention includes an electrode having a surface; and a hydrophilic reservoir situated in electrically conductive relation to the electrode. The reservoir is formed from an absorbent material having a substantially uniform concentration of an alkali metal salt therein thereby substantially eliminating concentration gradients of the salt with respect to the electrode surface so that when an aliquot of a medicament solution including ions of the salt is added to the reservoir substantially no corrosion potential develops at the surface of the electrode, thereby substantially eliminating a corrosive effect on the electrode.
An iontophoretic system of the present invention includes a first-reservoir electrode including at least one medicament for delivery to a patient. The first reservoir- electrode includes a first hydrophilic reservoir situated in electrically conductive relation to a first electrode with a surface. The first reservoir is formed from a bibulous hydrophilic cross-linked polymeric material having a substantially uniform concentration of an alkali metal chloride salt therein thereby substantially eliminating concentration gradients of the salt with respect to the electrode surface when an aliquot of at least one medicament including ions of the alkali metal chloride salt is added to the reservoir electrode. The polymeric material has a first surface and a second surface that is adhesively adherent to the electrode. The first surface of the polymeric material is releasably adhesive to an applied area of a patient's skin. The polymeric material has a cohesive strength, wherein a bond strength of an adhesive bond between the second surface of said polymeric material to the first electrode is greater than the cohesive strength of said polymeric material and an adhesive bond strength of the first surface of the polymeric material to the applied area of the patient is less than the cohesive strength of said polymeric material so that upon removal of the first reservoir-electrode from the applied area of the patient, substantially no polymeric material remains on the applied the said first electrode.
The iontophoretic system of the invention also includes a second reservoir- electrode including a second hydrophilic reservoir situated in electrically conductive relation to a second electrode with a surface. The second reservoir is formed from a bibulous hydrophilic cross-linked polymeric material having a substantially uniform concentration of an alkali metal chloride salt therein thereby substantially eliminating concentration gradients of the salt with respect to the second electrode. The polymeric material has a first surface and a second surface is adhesively adherent to the second electrode. The first surface of the polymeric material is releasably adhesive to an applied area of a patient's skin. The polymeric material has a cohesive strength, wherein a bond strength of an adhesive bond between the second surface of the polymeric material to the second electrode is greater than the cohesive strength of said polymeric material and an adhesive bond strength of the first surface of the polymeric material to the applied area of the patient is less than the cohesive strength of the polymeric material so that upon removal of the second reservoir-electrode from the applied area of the patient, substantially no polymeric material remains on the applied area and the second reservoir remains substantially intact and adhesively adherent to said second electrode. The iontophoretic system of the invention further includes a power supply disposed in electrically conductive contact with the first reservoir-electrode and the second reservoir- electrode to supply a preselected current so that when the first reservoir-electrode and the second reservoir-electrode are each applied to a patient, a complete electrical circuit is formed with the first reservoir-electrode operating as an anode and the second reservoir- electrode operating as a cathode, thereby delivering the at least one medicament to the patient.
The reservoir-electrode of the invention and the iontophoretic device incorporating reservoir-electrodes of the invention as both the active and the return reservoir-electrodes have demonstrated satisfactory shelf storage stability. The reservoir- electrode of the invention can be efficiently produced and, with the satisfactory shelf storage stability provided by overcoming the problem of electrode corrosion during storage, provides the opportunity for a previously unavailable commercial iontophoretic device that answers the both the needs of patients and commercial distribution requirements.
Brief Description of the Drawings
Fig. 1 is a schematic view of an iontophoretic device positioned on a patient; Fig. 2 is a perspective view of an iontophoretic device of the invention incorporating an active reservoir-electrode and a return reservoir-electrode of the invention;
Fig. 3 is a cross-sectional view of a reservoir-electrode of the invention, taken from Fig. 2 along the line 3-3;
Fig. 4a is a schematic bottom plan view of a control sample of a reservoir- electrode similar to the reservoir-electrode of the invention after a period of shelf storage; and
Fig. 4b is a schematic bottom plan view, analogous to Fig.4a, of the reservoir-electrode of the invention after an identical period of shelf storage to the control of Fig. 4a. Detailed Description
While this invention is satisfied by embodiments in many different forms, there are shown in the drawings and herein described in detail, embodiments of the invention with the understanding that the present disclosure to be considered as exemplary of the principles of the present invention and is not intended to limit the scope of the invention to the embodiments illustrated. The scope of the invention is measured by the appended claims and the equivalents.
Referring to Fig. 1, a generalized schematic iontophoretic device 10 is illustrated mounted on an applied area 12 of the arm of a patient. When iontophoretic device 10 is applied to skin 12 of a patient a completed circuit is formed between an anode 14 and a cathode 16 of device 10 and the patient. Iontophoretic device 10 includes a power supply 20 and a supply 22 of an ionized medicament to be delivered to the patient. When power supply 10 is activated and causes a current to flow between the electrodes, the ionized medicament is delivered into the patient and another ion 24 is removed from the patient. Generally, ionized medicaments are positively charged (cations). Thus, the active electrode is generally anode 14. In the instance where the medicament being delivered is an anion, cathode 16 is the active electrode and anode 14 is the return electrode.
A complete preferred prototype commercial iontophoretic device 100 is illustrated in Figs.2 and 3. Preferred Device 100 includes a first reservoir-electrode 104 (anode) charged with lidocaine HCl and epinephrine bitartrate and a second reservoir-electrode 108 intended to function as a cathode or return electrode as illustrated in Fig. 2. Device 100 includes a flexible backing 110 with first reservoir-electrode 104 and second reservoir-electrode 108 mounted thereon. Device 100 includes two electrodes 112 and 114, each having an electrode surface 113 and electrode interconnects 112a and 114a. Electrodes 112 , 114 and electrode interconnects 112a and 114a are formed as a thin film deposited as traces onto flexible backing 110 with an inside surface 111. Preferably, electrodes 112 and 114 and electrode interconnects 112a and 114a are formed from conductive ink 115 applied as a thin film to inside surface 111. Conductive ink 115 preferably includes silver and silver chloride in a suitable binder material. Electrodes 112 and 114 each mounted with a preferred bibulous reservoirs, 120 and 122 respectively, formed from a cross-linked polymeric material such as cross-linked ρoly(vinylpyrolidone) hydrogel that each include a substantially uniform concentration of an alkali metal salt, preferably sodium chloride. The selection of the lidocaine HCl and epinephrine bitartrate used in this prototype are considered exemplary for the purpose of this disclosure and not limitative of the instant invention of a reservoir- electrode with the substantially uniform concentration of the alkali metal salt to eliminate concentration gradients that cause corrosion of the electrode. The Inventors believe that there is general applicability of the uniform concentration of the alkali metal salt as a corrosion preventative to substantially all reservoir-electrode material combinations and to other medicaments than those cited as examples in this disclosure.
The cross-linked poly(vinylρyrolidone) preferably includes a reinforcement 116, preferably a low basis weight non-woven scrim to provide shape retention to the hydrogel. The preferred reservoirs 120, 122 each have adhesive and cohesive properties that provide for a first surface 121, and a second surface 123. First surface 121 is preferably releasably adherent to an applied area 124 of a patient's skin. Second surface 123 is adhesively adherent to electrodes 112 and 114. In the device 100 of the invention, it is preferred that a bond strength of an adhesive bond formed between first surface 121 and applied area 124 of the patient's skin is less than the strength of an adhesive bond formed between second surface 123 and electrodes 112 and 1 14. Further, it is preferred that the strength of the releasable adhesive bond formed between first surface 121 and the patient's skin is less than the cohesive strength of the preferred reservoirs 120 and 122. These preferred adhesive and cohesive properties of reservoirs 120, 122 have the effect that when reservoir-electrodes 104, 108 of device 100 are removed from applied area 124 of the patient's skin, the reservoirs substantially cleanly come off patient's skin 124, leaving substantially no residue, stay substantially intact and do not come off of electrodes 112, 114 or backing 110.
Preferred device 100 also includes a power supply 130 that preferably supplies a preselected current or currents to the device when reservoir electrodes 104 and 108 are mounted on the patient's skin to form a completed circuit. Preferably, backing 110 includes an extended portion 132 with electrode interconnects 112a and 114a formed from conductive ink 115 extended thereon to connectors 134. Power supply 130 preferably includes a receptacle 136 with mating connectors 138 to receive extended portion 132 and connectors 134. Extended portion 132 with connectors 134 allows power supply 130 to be refitted with fresh backings 110 having reservoir-electrodes 104 and 108 thereon. Power supply 130 and backing 110 preferably includes a circuit 139 to identify the particular type of reservoir- electrodes and medicament to power supply 130.
In Fig. 3, a cross-sectional view of one reservoir-electrode of device 100 is shown. In this view, reservoir-electrode 104 includes electrode 112 and an absorbent reservoir 120 having a substantially uniform concentration of an alkali metal salt situated in electrically conductive relation to electrode 112 at electrode surface 113. Preferably, absorbent reservoir 120 is formed from a hydrophilic material, such as a bibulous hydrophilic cross-linked polymeric material, that has an alkali metal salt, preferably sodium chloride or other physiologically acceptable alkali metal salt. Preferably, bibulous hydrophilic cross-linked polymeric material of reservoir 120 has a first surface 121 and a second surface 123 that is adhesively adherent to electrode 112. Preferably, first surface 121 of reservoir 120 is releasably adhesively adherent when applied to an area 124 of a patient's skin. Preferred 120 has a cohesive strength and forms an adhesive bond with a bond strength between second surface 123 of the polymeric material to electrode 112 that is greater than the cohesive strength of the polymeric material. Additionally, an adhesive bond strength of first surface 121 of preferred polymeric reservoir 120 material to applied area 124 of the patient is less than the cohesive strength of polymeric reservoir 120 so that upon removal of reservoir- electrode 104 of the invention from applied area 124 of the patient, substantially no preferred polymeric reservoir 120 material remains on applied area 124 of the patient's skin and hydrophilic reservoir 120 remains substantially intact and adhesively adherent to electrode 112. The preferred material for forming hydrophilic reservoir 120 is a cross-linked poly(vinylpyrolidone). The preferred material is prepared as a viscous aqueous syrup that incorporates the selected alkali halide, preferably sodium chloride, in the desired concentration. In the preferred embodiment of the invention, where the medicament to be delivered is lidocaine as the hydrochloride and epinephrine as the bitartrate, the active reservoir-electrode, i.e., containing the lidocaine and the epinephrine, is the anode because the medicaments being delivered are positive ions, the concentration of the sodium chloride is between about 0.001 to about one percent by weight (w/w). Preferably, in this application, the concentration is about 0.06 percent (w/w). For other applications, other concentrations and other pharmaceutically acceptable alkali metal salts may be preferred, and are considered within the scope of the invention. Additionally, in the case of the return reservoir-electrode 108 for the preferred embodiment of the invention, the same poly(vinylpyrolidone) is used. For the cathode application 108, the concentration of the alkali metal salt, again preferably sodium chloride, may be between about 0.001 percent to about one percent (w/w), with about 0.06 percent being preferred.
A preferred material for forming hydrophilic reservoir 120 is poly(vinylpyrolidone) ( PVP) with a number average molecular weight greater than about 360,000 daltons. A suitable PVP is available from BASF, NJ as PVP K-90F. When this material is prepared as a concentrated aqueous solution it forms a viscous syrup which is preferably applied to both sides of the reinforcement 116, placed between two release webs to a thickness of about of about 40 mils and subjected to conditions, preferably ionizing radiation, sufficient to cross-link the PVP sufficiently to substantially be shape retaining, flexible and having a preferred degree of tack. A preferred ionizing radiation is an electron beam having at least about a 1 MeV to deliver between about 1.0 and 2.5 megarads. Other sources of ionizing radiation such as 60Co or 137Csmay be used for particular applications. The degree of cross-link has considerable effect on the degree of tack. A low degree of cross-link results in high tack values, while a high degree of cross-link results in a low degree of tack. If there is insufficient cross-linking, resultant PVP reservoir 120 does not retain shape, may detach from reinforcement 116 and is extremely difficult to handle. If the degree of cross-linking is too great, the resultant PVP reservoir 120 has insufficient tack to adhere to electrode 112 or to patient contact area 124. Additionally, the degree of cross-link is preferably optimized so that the degree of swelling is controlled.
The use of the electron beam for cross-linking the PVP for reservoir 120 has a particular benefit to the present invention. Unlike gamma radiation that has a potential penetration of several feet of concrete, the electron beam penetration depth is described in the units of cm of water. This property of the electron beam can be utilized in controlling the degree of cross-link in reservoir 120. The exposure can be controlled so that there is a differential degree of tack on surface 121 than on surface 123 of reservoir 120. The differential degree of tack on the first surface and the second surface may be preselected to allow a sufficient degree of tack on surface 120 to ensure a sufficiently strong bond between electrode 112 and reservoir 120 to substantially prevent separation of the electrode and the reservoir while allowing the reservoir to be removed from the patient's skin. The application of ionizing radiation to cross-link the PVP has the added benefit of substantially eliminating any microorganisms present in the material so that if the material is subsequently handled under conditions that substantially prevent further introduction of microorganisms, the final packaged product is substantially free of microorganisms.
The preferred degree of cross-link is that which results in a swelling ratio of greater than 3. Additionally, because the bibulous material is constrained in the "x" and "y" directions by the reinforcement 116, best seen in Fig. 3, the swelling that occurs upon imbibement of aqueous solution during the charging of the reservoir-electrode with the medicament after crosslinking, preferably occurs substantially only in the "z" direction, i.e., to increase the distance between first surface 121 and second surface 123. Additionally, the degree of cross-link is preferably optimized so that the degree of swelling is controlled. If there is insufficient cross-linking, the swelling that occurs when the medicament is added may allow the formation of concentration imbalances about the electrodes thereby amplifying the corrosion process. Most medicaments, including both the preferred medicaments, lidocaine and epinephrine are not stable to ionizing radiation, consequently in preparing the reservoir- electrode of the invention, medicaments generally cannot be incorporated into the aqueous poly(vinylpyrolidone) prior to the application of ionizing radiation for the cross-linking. Since the cross-linked poly(vinylpyrolidone) is a hydrogel, the addition of any medicaments subsequent to the cross-linking is an elastic swelling process which is ultimately diffusion controlled that requires considerable time to reach equilibrium. Because of the recognition that the presence of chloride ion concentration gradients foster corrosion of the active electrode, a preselected amount of sodium chloride, which is unchanged by the ionizing radiation used for the cross-linking, is mixed with the poly(vinylpyrolidone) prior to the cross-linking ensuring a substantially uniform concentration of the chloride ion about electrode 112 or 114. The degree of cross-linking is preferably controlled to provide a preselected degree of adhesivity and cohesivity to the poly(vinylpyrolidone) hydrogel formed. When the preferred electron beam irradiation is used, preferably, the degree of crosslinking between one surface and another surface of the hydrogel is described by a gradient, so that a releasable adhesive bond may be formed between the surface applied to the patient's skin and an adhesive bond with a greater strength than the cohesive strength of the poly(vinylpyrolidone) hydrogel is formed between the electrode and the hydrogel. Preferred iontophoretic device 100 is prepared by forming reservoir electrode into the crosslinked hydrogel as described above. Formed reservoir-electrode 104 that is intended to be the anode is then charged with the preferred aqueous lidocaine hydrochloride, epinephrine bitartrate and other excipients. Preferably, the lidocaine hydrochloride is present in an amount between about 50 mg to about 150 mg. Other amounts or other medicaments may be preferred for particular applications. In the prototype, about 100 mg of lidocaine hydrochloride is present. Epinephrine bitartrate is preferably present in an amount equivalent to about one-half to about one and one-half mg, and more preferably about one mg of the free base. Additionally, glycerin, sodium metabisulfite, editate disodium, citric acid, phenoxy ethanol, alkyl esters of hydroxybenzoic acid are included as humectants, antioxidants and antimicrobial preservatives in the preferred prototype active electrode 104. The prototype return electrode 108 has a preferred concentration of about 0.06 percent sodium chloride. Additionally, return electrode 108 may include excipients such as monobasic sodium phosphate, phenoxyethanol, alkyl esters of hydroxybenzoic acid, additional sodium chloride, glycerin and the like. For particular applications, other excipients are known, may be preferred and are considered within the scope of the invention. Referring to Figs. 4a and 4b, schematic representations of photographs of reservoir- electrode 104 are shown. These schematic representations are indicative of the appearance of the reservoir-electrodes after storage for one year at 25° C. Samples (n=5) of both of the reservoir-electrodes in illustrated in Figs. 4a and 4b were identically charged with aliquots of the preferred lidocaine hydrochloride, epinephrine bitartrate and excipients, sealed in a proposed final package and subjected to identical storage conditions (25° C, One year duration). In Fig. 4a a representation is shown of reservoir-electrode 104 prepared without the sodium chloride being mixed with the poly(vinylpyrolidone) prior to the cross-linking with ionizing radiation. The cross-hatched area 140 indicates a discolored area that developed during storage at ambient conditions. Fig. 4b is a schematic representation of reservoir-electrode 104 prepared with the preferred 0.06 percent sodium chloride (w/w) stored under identical conditions to the reservoir-electrode illustrated in Fig. 4b. The discolored area 140 seen in Fig. 4a is indicative of corrosion of the electrode material with the result that the cross-hatched portion of may be expected that a reservoir-electrode exhibiting the type of degradation schematically illustrated as 140 in Fig. 4a during storage may not deliver the expected amount of medicament to the patient. In order for an iontophoretic system to be commercially viable and meet the necessary regulatory requirements, the reservoir-electrode must not substantially degrade during manufacture and shelf storage. The present invention, which substantially eliminates the corrosion of active electrodes caused by concentration gradients about the active electrode, allows a user to prepare for an iontophoretic delivery of a medicament by simply opening a package, applying the device to the skin and activating the power supply to initiate the preselected delivery of the medicament. The preferred iontophoretic reservoir-electrode and the complete iontophoretic device utilizing the reservoir-electrode of the invention are advances to the iontophoresis art and greatly improve the availability and efficiency of iontophoretic delivery of medicaments.

Claims

What is Claimed is:
1. A reservoir-electrode for an iontophoretic delivery device comprising: an electrode having a surface; and a reservoir situated in electrically conductive relation to said electrode, said reservoir being formed from an absorbent material having a substantially uniform concentration of an alkali metal halide salt therein thereby substantially eliminating concentration gradients of said salt between with respect to said electrode surface so that when an aliquot of a medicament solution including ions of said salt is added to said reservoir substantially no corrosion potential develops at said surface of said electrode, thereby substantially eliminating a corrosive effect on said electrode.
2. The reservoir-electrode of Claim 1 wherein said reservoir comprises a bibulous hydrophilic cross-linked material.
3. The reservoir-electrode of Claim 2 wherein said bibulous hydrophilic cross-linked material further comprises poly(vinylpyrolidone).
4. The reservoir-electrode of Claim 1 wherein said electrode comprises a metal/metal halide.
5. The reservoir-electrode of Claim 4 wherein said metal/metal halide electrode comprises silver and silver chloride.
6. The reservoir-electrode of Claim 1 further comprising at least one medicament added as said aliquot of said medicament solution.
7. The reservoir-electrode of Claim 6 wherein said at least one medicament comprises a pharmacologically effective amount of lidocaine hydrochloride and epinephrine bitartrate.
8. A reservoir-electrode for an iontophoretic delivery device comprising: an electrode; and a hydrophilic reservoir situated in electrically conductive relation to said electrode, said reservoir being formed from a bibulous hydrophilic cross-linked polymeric material having a substantially uniform concentration of an alkali metal chloride salt therein thereby substantially eliminating concentration gradients of said salt with respect to said electrode when an aliquot of a solution including at least one medicament and chloride ion is added to said reservoir, said polymeric material having a first surface and a second surface being adhesively adherent to said electrode, said first surface of said polymeric material being releasably adhesive to an applied area of a patient's skin, said polymeric material having a cohesive strength, wherein a bond strength of an adhesive bond between said second surface of said polymeric material to said electrode is greater than the cohesive strength of said polymeric material and an adhesive bond strength of said first surface of said polymeric material to the applied area of the patient is less than the cohesive strength of said polymeric material so that upon removal of said reservoir-electrode from the applied area of the patient, substantially no polymeric material remains on the applied area and said reservoir remains substantially intact and adhesively adherent to said electrode.
9. The reservoir-electrode of Claim 8 wherein said bibulous hydrophilic cross-linked polymeric material comprises poly(vinylpyrolidone).
10. The reservoir-electrode of Claim 9 wherein said poly(vinylpyrolidone) further comprises a substantially uniform concentration of sodium chloride between about 0.001 to about one percent (w/w).
11. The reservoir-electrode of Claim 9 wherein said poly(vinylpyrolidone) further comprises a concentration of sodium chloride about 0.06 percent (w/w).
12. The reservoir-electrode of Claim 8 further comprising at least one medicament for iontophoretic delivery to a patient.
13. The reservoir-electrode of Claim 12 wherein said at least one medicament comprises lidocaine HCl and epinephrine bitartrate.
14. The reservoir-electrode of Claim 13 wherein said lidocaine HCl is present in an amount between about 50 mg to about 150 mg and said epinephrine bitartrate is present in an amount equivalent to between about one-half mg to about one and one-half mg of the free base.
15. The reservoir-electrode of Claim 14 wherein said lidocaine HCl is present in an amount about 100 mg and said epinephrine bitartrate is present in amount equivalent to about 1 mg of the free base.
16. The reservoir-electrode of Claim 15 wherein said reservoir-electrode further comprises glycerin, sodium metabisulfate, editate disodium, citric acid, phenoxy ethanol and alkyl esters of hydroxybenzoic acid.
17. The reservoir-electrode of Claim 8 wherein said electrode further comprises silver/silver chloride.
18. The reservoir-electrode of Claim 17 further comprising a backing material having an inside surface and an outside surface, said inside surface having said silver/silver chloride electrode being formed thereon in a thin film trace.
19. The reservoir-electrode of Claim 18 wherein said reservoir-electrode is a first electrode disposed in an iontophoretic system as an active reservoir-electrode including a power source and a second electrode disposed as a return electrode so that said first reservoir-electrode operates as an anode when said iontophoretic system is placed on a patient for delivery of a medicament.
20. An iontophoretic system comprising: a first-reservoir electrode including at least one medicament for delivery to a patient, said first reservoir-electrode comprising a first hydrophilic reservoir situated in electrically conductive relation to a first electrode, said first reservoir being formed from a bibulous hydrophilic cross-linked polymeric material having a substantially uniform concentration of an alkali metal chloride salt therein thereby substantially eliminating concentration gradients of said salt with respect to said electrode, said polymeric material having a first surface and a second surface, said second surface being adhesively adherent to said electrode, said first surface of said polymeric material being releasably adhesive to an applied area of a patient's skin, said polymeric material having a cohesive strength, wherein a bond strength of an adhesive bond between said second surface of said polymeric material to said first electrode is greater than the cohesive strength of said polymeric material and an adhesive bond strength of said first surface of said polymeric material to the applied area of the patient is less than the cohesive strength of said polymeric material so that upon removal of said first reservoir-electrode from the applied area of the patient, substantially no polymeric material remains on the applied area and ' said first reservoir remains substantially intact and adhesively adherent to said first electrode; a second reservoir-electrode including a second hydrophilic reservoir situated in electrically conductive relation to a second electrode, said second reservoir being formed from a bibulous hydrophilic cross-linked polymeric material having a substantially uniform concentration of an alkali metal chloride salt therein thereby substantially eliminating concentration gradients of said salt with respect to said second electrode, said polymeric material having a first surface and a second surface, said second surface being adhesively adherent to said second electrode, said first surface of said polymeric material being releasably adhesive to an applied area of a patient's skin, said polymeric material having a cohesive strength, wherein a bond strength of an adhesive bond between said second surface of said polymeric material to said second electrode is greater than the cohesive strength of said polymeric material and an adhesive bond strength of said first surface of said polymeric material to the applied area of the patient is less than the cohesive strength of said polymeric material so that upon removal of said second reservoir-electrode from the applied area of the patient, substantially no polymeric material remains on the applied area and said second reservoir remains substantially intact and adhesively adherent to said second electrode; and a power supply disposed in electrically conductive contact with said first reservoir-electrode and said second reservoir-electrode to supply a preselected current so that when said first reservoir-electrode and said second reservoir-electrode are each applied to a patient, a complete electrical circuit is formed with said first reservoir- electrode operating as an anode and said second reservoir-electrode operating as a cathode, thereby delivering said at least one medicament to the patient.
21. The iontophoretic system of Claim 20 wherein said bibulous hydrophilic cross-linked polymeric material of said first reservoir-electrode further comprises poly(vinylpyrolidone) having a substantially uniform concentration of sodium chloride between about 0.006 percent to about 0.9 percent (w/w).
22. The iontophoretic system of Claim 21 wherein said first reservoir- electrode including at least one medicament further comprises an aqueous vehicle having lidocaine HCl present in an amount about 100 mg and epinephrine bitartrate present in amount equivalent to about 1 mg of the free base and excipients selected from the group consisting of glycerin, sodium metabisulfite, editate disodium, citric acid and phenoxy ethanol, alkyl esters of hydroxy benzoic acid and combinations thereof.
23. The iontophoretic system of Claim 20 wherein said bibulous hydrophilic cross-linked polymeric material of said second reservoir-electrode further comprises poly(vinylpyrolidone) having a substantially uniform concentration of sodium chloride between about 0.001 percent to about one percent (w/w).
24. The iontophoretic system of Claim 23 wherein said second reservoir- electrode further comprises an aqueous vehicle having about 3 mg sodium chloride and excipients selected from the group consisting of glycerin, monobasic sodium phosphate, phenoxy ethanol, alkyl esters of hydroxy benzoic acid and combinations thereof.
25. The iontophoretic system of Claim 20 wherein said first reservoir- electrode and said second reservoir-electrode each include a backing material having an inside surface and an outside surface, said inside surface having said electrode formed thereon as a thin film trace.
26. The iontophoretic system of Claim 25 wherein said backing material is a unitary article having said first reservoir-electrode and said second reservoir-electrode disposed on said inside surface thereof in electrically isolated relation to each other thereby forming a reservoir-electrode unit, so that an electrical circuit between said first reservoir-electrode and said second reservoir-electrode is completed by placement of said reservoir-electrodes on a patient for delivery of a medicament.
27. The iontophoretic system of Claim 26 wherein said reservoir-electrode unit is releasably attachable to said power supply.
28. A method for making an reservoir-electrode for iontophoresis, comprising the step of charging a polymer hydrogel reservoir containing a salt with an aqueous solution containg a medicament.
29. An iontophoresis electrode assembly for charging with a medicament comprising
(a) an anode having a reservoir containing a salt in electrical contact therewith; and
(b) a cathode having a reservoir containing a salt in electrical contact therewith.
PCT/US2001/020886 2000-06-30 2001-06-29 Shelf storage stable iontophoresis reservoir-electrode and iontophoretic system WO2002002182A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2001273104A AU2001273104A1 (en) 2000-06-30 2001-06-29 Shelf storage stable iontophoresis reservoir-electrode and iontophoretic system incorporating the reservoir-electrode
JP2002506803A JP4024673B2 (en) 2000-06-30 2001-06-29 Reservoir-stable iontophoresis reservoir electrode and iontophoresis system comprising the reservoir electrode
CA002413624A CA2413624C (en) 2000-06-30 2001-06-29 Shelf storage stable iontophoresis reservoir-electrode and iontophoretic system incorporating the reservoir-electrode
DE60129965T DE60129965T2 (en) 2000-06-30 2001-06-29 STORAGE STABLE IONTOPHORESIS RESERVOIR ELECTRODE AND IONTOPHORETIC SYSTEM
EP01952340A EP1294439B1 (en) 2000-06-30 2001-06-29 Shelf storage stable iontophoresis reservoir-electrode and iontophoretic system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/610,563 US6629968B1 (en) 2000-06-30 2000-06-30 Shelf storage stable iontophoresis reservoir-electrode and iontophoretic system incorporating the reservoir-electrode
US09/610,563 2000-06-30

Publications (2)

Publication Number Publication Date
WO2002002182A2 true WO2002002182A2 (en) 2002-01-10
WO2002002182A3 WO2002002182A3 (en) 2002-06-27

Family

ID=24445534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/020886 WO2002002182A2 (en) 2000-06-30 2001-06-29 Shelf storage stable iontophoresis reservoir-electrode and iontophoretic system

Country Status (8)

Country Link
US (2) US6629968B1 (en)
EP (1) EP1294439B1 (en)
JP (1) JP4024673B2 (en)
AT (1) ATE369891T1 (en)
AU (1) AU2001273104A1 (en)
CA (1) CA2413624C (en)
DE (1) DE60129965T2 (en)
WO (1) WO2002002182A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1707236A2 (en) 2005-03-31 2006-10-04 Iomed, Inc. Device for iontophoresis
WO2007055279A1 (en) 2005-11-14 2007-05-18 Teikoku Seiyaku Co., Ltd. Iontophoresis preparation
US7247288B2 (en) 2002-04-18 2007-07-24 Carnegie Mellon University Method of manufacturing hydroxyapatite and uses therefor in delivery of nucleic acids
JPWO2005020967A1 (en) * 2003-08-29 2007-11-01 久光製薬株式会社 Electrical drug delivery formulation
WO2008101171A2 (en) * 2007-02-16 2008-08-21 Thermage, Inc. Temperature sensing apparatus and methods for treatment devices used to deliver high frequency energy to tissue
US7776600B2 (en) 2002-04-18 2010-08-17 Carnegie Mellon University Method of manufacturing hydroxyapatite and uses therefor in delivery of nucleic acids
WO2011078071A1 (en) 2009-12-22 2011-06-30 帝國製薬株式会社 Electrode device used for iontophoresis therapy
US8467880B2 (en) 2007-08-23 2013-06-18 Bioness Inc. System for transmitting electrical current to a bodily tissue
US8738137B2 (en) 2007-08-23 2014-05-27 Bioness Inc. System for transmitting electrical current to a bodily tissue
GB2524777A (en) * 2014-04-02 2015-10-07 Microarray Ltd Dressing comprising electrodes
WO2016142176A1 (en) * 2015-03-09 2016-09-15 Koninklijke Philips N.V. Iontophoretic device, arrangement and method
US9757554B2 (en) 2007-08-23 2017-09-12 Bioness Inc. System for transmitting electrical current to a bodily tissue

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6757560B1 (en) * 1999-04-09 2004-06-29 Novosis Pharma Ag Transdermal delivery system (TDS) with electrode network
JP4033382B2 (en) * 2002-04-08 2008-01-16 久光製薬株式会社 Insulin administration device
JP4089875B2 (en) * 2002-06-12 2008-05-28 共同印刷株式会社 Electrode device including a recess
JP3493359B1 (en) * 2003-03-20 2004-02-03 宣美 辛島 Iontophoretic therapy device
US7917205B2 (en) * 2003-03-20 2011-03-29 Nobuyoshi Karashima Iontophoresis-based medical device
CN100551463C (en) * 2003-03-31 2009-10-21 阿尔萨公司 Electrotransport device with reservoir housing of band flexible conductive element
CA2553901C (en) 2004-01-22 2015-01-20 Rehabtronics Inc. Method of routing electrical current to bodily tissues via implanted passive conductors
US20100016929A1 (en) * 2004-01-22 2010-01-21 Arthur Prochazka Method and system for controlled nerve ablation
FR2866240B1 (en) * 2004-02-16 2006-06-23 Oreal TREATMENT KIT COMPRISING A COMPOSITE STRUCTURE TO BE APPLIED TO THE SKIN AND AN ELECTRIC EXCITATOR
US20050234516A1 (en) * 2004-02-16 2005-10-20 Gueret Jean-Louis H Treatment kit, composite structure, electric exciter, and cosmetic treatment method
US20050228336A1 (en) * 2004-04-07 2005-10-13 Preston Keusch Electrically assisted lidocaine and epinephrine delivery device having extended shelf-stability
US20050228335A1 (en) * 2004-04-07 2005-10-13 Reddy Vilambi N Physical, structural, mechanical, electrical and electromechanical features for use in association with electrically assisted delivery devices and systems
US7537590B2 (en) * 2004-07-30 2009-05-26 Microchips, Inc. Multi-reservoir device for transdermal drug delivery and sensing
JP4728631B2 (en) * 2004-11-30 2011-07-20 Tti・エルビュー株式会社 Iontophoresis device
US7590444B2 (en) * 2004-12-09 2009-09-15 Tti Ellebeau, Inc. Iontophoresis device
JP4731931B2 (en) * 2005-02-03 2011-07-27 Tti・エルビュー株式会社 Iontophoresis device
JP4793806B2 (en) * 2005-03-22 2011-10-12 Tti・エルビュー株式会社 Iontophoresis device
US20070027426A1 (en) * 2005-06-24 2007-02-01 Transcutaneous Technologies Inc. Iontophoresis device to deliver active agents to biological interfaces
US8295922B2 (en) 2005-08-08 2012-10-23 Tti Ellebeau, Inc. Iontophoresis device
US8386030B2 (en) 2005-08-08 2013-02-26 Tti Ellebeau, Inc. Iontophoresis device
US20070088331A1 (en) * 2005-08-18 2007-04-19 Transcutaneous Technologies Inc. Method and apparatus for managing active agent usage, and active agent injecting device
BRPI0616165A2 (en) 2005-09-15 2011-06-07 Tti Ellebeau Inc rod type iontophoresis device
WO2007041476A2 (en) * 2005-09-30 2007-04-12 Vyteris, Inc. Indications for local transport of anaesthetic agents by electrotransport devices
WO2007041526A2 (en) * 2005-09-30 2007-04-12 Transcutaneous Technologies Inc. Iontophoresis apparatus and method to deliver antibiotics to biological interfaces
US20070093743A1 (en) * 2005-09-30 2007-04-26 Vyteris, Inc. Iontophoresis Drug Delivery Device Providing Acceptable Depth and Duration of Dermal Anesthesia
US20070078372A1 (en) * 2005-09-30 2007-04-05 Vyteris, Inc. Iontophoresis Drug Delivery Formulation Providing Acceptable Sensation and Dermal Anesthesia
RU2008117167A (en) * 2005-09-30 2009-11-10 ТиТиАй ЭЛЛЕБО, ИНК. (JP) METHOD AND DEVICE FOR IONTOPHORESIS FOR SYSTEM DELIVERY OF ACTIVE COMPONENTS
EP2269689A1 (en) 2005-09-30 2011-01-05 Vyteris Inc. Pulsatile delivery of gonadotropin-releasing hormone from a pre-loaded integrated electrotransport patch
WO2007079193A2 (en) 2005-12-30 2007-07-12 Tti Ellebeau, Inc. Iontophoretic systems, devices, and methods of delivery of active agents to biological interface
US8483820B2 (en) * 2006-10-05 2013-07-09 Bioness Inc. System and method for percutaneous delivery of electrical stimulation to a target body tissue
US8332028B2 (en) * 2006-11-28 2012-12-11 Polyplus Battery Company Protected lithium electrodes for electro-transport drug delivery
CA2671069A1 (en) 2006-12-01 2008-06-12 Tti Ellebeau, Inc. Systems, devices, and methods for powering and/or controlling devices, for instance transdermal delivery devices
EP2123259A1 (en) * 2007-01-16 2009-11-25 Hokkaido University Liposome preparation for iontophoresis having antioxidant component encapsulated therein
US7844345B2 (en) 2007-02-08 2010-11-30 Neuropace, Inc. Drug eluting lead systems
US7813811B2 (en) 2007-02-08 2010-10-12 Neuropace, Inc. Refillable reservoir lead systems
US8197844B2 (en) 2007-06-08 2012-06-12 Activatek, Inc. Active electrode for transdermal medicament administration
WO2009006349A2 (en) * 2007-06-29 2009-01-08 Polyplus Battery Company Electrotransport devices, methods and drug electrode assemblies
EP2178598A4 (en) * 2007-08-17 2012-08-15 Isis Biopolymer Llc Iontophoretic drug delivery system
US20090069740A1 (en) * 2007-09-07 2009-03-12 Polyplus Battery Company Protected donor electrodes for electro-transport drug delivery
US8862223B2 (en) 2008-01-18 2014-10-14 Activatek, Inc. Active transdermal medicament patch and circuit board for same
EP2329255A4 (en) 2008-08-27 2014-04-09 Edwards Lifesciences Corp Analyte sensor
JP5653942B2 (en) 2009-02-26 2015-01-14 ザ ユニバーシティ オブ ノース キャロライナ アット チャペル ヒル Intervention drug delivery system
US20110092881A1 (en) * 2009-05-08 2011-04-21 Isis Biopolymer Inc. Iontophoretic device with contact sensor
US20100286590A1 (en) * 2009-05-08 2010-11-11 Isis Biopolymer Llc Iontophoretic device with improved counterelectrode
US20100331812A1 (en) * 2009-06-29 2010-12-30 Nitric Biotherapeutics, Inc. Pharmaceutical Formulations for Iontophoretic Delivery of an Immunomodulator
JP5870037B2 (en) * 2010-12-22 2016-02-24 帝國製薬株式会社 Electrode pads for iontophoresis
US9610440B2 (en) * 2013-06-10 2017-04-04 Iontera, Inc Systems, devices, and methods for transdermal delivery
CN104287714A (en) * 2014-11-10 2015-01-21 青岛柏恩鸿泰电子科技有限公司 Silver/ silver chloride powder electrode
US11571567B2 (en) * 2016-01-05 2023-02-07 Biosensor Laboratories Inc. Iontophoresis device for drug delivery and method for manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416274A (en) 1981-02-23 1983-11-22 Motion Control, Inc. Ion mobility limiting iontophoretic bioelectrode
US4752285A (en) 1986-03-19 1988-06-21 The University Of Utah Research Foundation Methods and apparatus for iontophoresis application of medicaments
US5135477A (en) 1984-10-29 1992-08-04 Medtronic, Inc. Iontophoretic drug delivery
US5320598A (en) 1990-10-29 1994-06-14 Alza Corporation Iontophoretic delivery device and method of hydrating same
US5374241A (en) 1989-07-21 1994-12-20 Iomed, Inc. Electrodes for iontophoresis
US5385543A (en) 1990-10-29 1995-01-31 Alza Corporation Iontophoretic delivery device and method of hydrating same
WO1998020869A2 (en) 1996-11-14 1998-05-22 Alza Corporation Formulation for electrically assisted delivery of lidocaine and epinephrine
US5817044A (en) 1992-11-05 1998-10-06 Becton Dickenson And Company User activated iontophoertic device

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810066A (en) * 1981-07-10 1983-01-20 株式会社アドバンス Plaster structure for ion tofuorese
CA1262564A (en) * 1983-09-01 1989-10-31 Minoru Sasaki Iontophoresis device
US5496266A (en) * 1990-04-30 1996-03-05 Alza Corporation Device and method of iontophoretic drug delivery
US4989607A (en) * 1989-03-30 1991-02-05 Preston Keusch Highly conductive non-stringy adhesive hydrophilic gels and medical electrode assemblies manufactured therefrom
US5143071A (en) * 1989-03-30 1992-09-01 Nepera, Inc. Non-stringy adhesive hydrophilic gels
US5328455A (en) * 1989-07-21 1994-07-12 Iomed, Inc. Rehydratable product and method of preparation thereof
US5084008A (en) * 1989-12-22 1992-01-28 Medtronic, Inc. Iontophoresis electrode
US5125894A (en) * 1990-03-30 1992-06-30 Alza Corporation Method and apparatus for controlled environment electrotransport
US5362308A (en) * 1990-09-25 1994-11-08 Rutgers, The State University Of New Jersey Disposable dosage unit for iontophoresis-facilitated transdermal delivery, related devices and processes
MX9201029A (en) * 1991-03-11 1992-09-01 Alza Corp IONTOPHORETICAL SUPPLY DEVICE AND METHOD FOR MANUFACTURING THE SAME.
US5405317A (en) * 1991-05-03 1995-04-11 Alza Corporation Iontophoretic delivery device
US5464387A (en) * 1991-07-24 1995-11-07 Alza Corporation Transdermal delivery device
US5203768A (en) * 1991-07-24 1993-04-20 Alza Corporation Transdermal delivery device
US5310404A (en) * 1992-06-01 1994-05-10 Alza Corporation Iontophoretic delivery device and method of hydrating same
US6377847B1 (en) 1993-09-30 2002-04-23 Vyteris, Inc. Iontophoretic drug delivery device and reservoir and method of making same
WO1995027530A1 (en) * 1994-04-08 1995-10-19 Alza Corporation Electrotransport system with ion exchange competitive ion capture
JPH08155041A (en) * 1994-12-05 1996-06-18 Advance Co Ltd New high-efficiency electrode system for iontophoresis
US5837281A (en) * 1995-03-17 1998-11-17 Takeda Chemical Industries, Ltd. Stabilized interface for iontophoresis
US5990179A (en) * 1995-04-28 1999-11-23 Alza Corporation Composition and method of enhancing electrotransport agent delivery
US5853383A (en) * 1995-05-03 1998-12-29 Alza Corporation Preparation for formulations for electrotransport drug delivery
US5983130A (en) * 1995-06-07 1999-11-09 Alza Corporation Electrotransport agent delivery method and apparatus
CN1095681C (en) * 1996-06-20 2002-12-11 久光制药株式会社 Device structure for iontophoresis
US6350259B1 (en) * 1996-09-30 2002-02-26 Vyteris, Inc. Selected drug delivery profiles using competing ions
FR2755372B1 (en) * 1996-11-07 1998-12-24 Elf Aquitaine IONOPHORESIS DEVICE COMPRISING AT LEAST ONE MEMBRANE ELECTRODE ASSEMBLY FOR THE TRANSCUTANEOUS ADMINISTRATION OF ACTIVE PRINCIPLES TO A SUBJECT
US6004577A (en) * 1997-08-12 1999-12-21 Murdock; Thomas O. Enhanced electrotransport of therapeutic agents having polybasic anionic counter ions
US5882677A (en) * 1997-09-30 1999-03-16 Becton Dickinson And Company Iontophoretic patch with hydrogel reservoir
US6295469B1 (en) * 1997-11-14 2001-09-25 Alza Corporation Formulation for electrically assisted delivery of lidocaine and epinephrine
US6496727B1 (en) 2000-05-31 2002-12-17 Becton, Dickinson And Company Medicament-loaded transdermal reservoir and method for its formation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416274A (en) 1981-02-23 1983-11-22 Motion Control, Inc. Ion mobility limiting iontophoretic bioelectrode
US5135477A (en) 1984-10-29 1992-08-04 Medtronic, Inc. Iontophoretic drug delivery
US5415628A (en) 1984-10-29 1995-05-16 Alza Corporation Iontophorett drug delivery
US4752285A (en) 1986-03-19 1988-06-21 The University Of Utah Research Foundation Methods and apparatus for iontophoresis application of medicaments
US4752285B1 (en) 1986-03-19 1995-08-22 Univ Utah Res Found Methods and apparatus for iontophoresis application of medicaments
US5374241A (en) 1989-07-21 1994-12-20 Iomed, Inc. Electrodes for iontophoresis
US5320598A (en) 1990-10-29 1994-06-14 Alza Corporation Iontophoretic delivery device and method of hydrating same
US5385543A (en) 1990-10-29 1995-01-31 Alza Corporation Iontophoretic delivery device and method of hydrating same
US5817044A (en) 1992-11-05 1998-10-06 Becton Dickenson And Company User activated iontophoertic device
WO1998020869A2 (en) 1996-11-14 1998-05-22 Alza Corporation Formulation for electrically assisted delivery of lidocaine and epinephrine

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776600B2 (en) 2002-04-18 2010-08-17 Carnegie Mellon University Method of manufacturing hydroxyapatite and uses therefor in delivery of nucleic acids
US7247288B2 (en) 2002-04-18 2007-07-24 Carnegie Mellon University Method of manufacturing hydroxyapatite and uses therefor in delivery of nucleic acids
JPWO2005020967A1 (en) * 2003-08-29 2007-11-01 久光製薬株式会社 Electrical drug delivery formulation
EP1707236A2 (en) 2005-03-31 2006-10-04 Iomed, Inc. Device for iontophoresis
US11541226B2 (en) 2005-03-31 2023-01-03 Encore Medical Asset Corporation Method and apparatus for electrotherapy drug delivery
US8781572B2 (en) 2005-03-31 2014-07-15 Encore Medical Asset Corporation Method and apparatus for electrotherapy drug delivery
EP1707236A3 (en) * 2005-03-31 2009-10-28 Iomed, Inc. Device for iontophoresis
US10478610B2 (en) 2005-03-31 2019-11-19 Encore Medical Asset Corporation Method for electrotherapy drug delivery
US9468757B2 (en) 2005-03-31 2016-10-18 Encore Medical Asset Corporation Method and apparatus for electrotherapy drug delivery
US8386029B2 (en) 2005-03-31 2013-02-26 Encore Medical Asset Corporation Apparatus for electrotherapy drug delivery with added impurities
EP1949895A1 (en) * 2005-11-14 2008-07-30 Teikoku Seiyaku Co., Ltd. Iontophoresis preparation
WO2007055279A1 (en) 2005-11-14 2007-05-18 Teikoku Seiyaku Co., Ltd. Iontophoresis preparation
EP1949895A4 (en) * 2005-11-14 2013-01-02 Teikoku Seiyaku Kk Iontophoresis preparation
WO2008101171A3 (en) * 2007-02-16 2008-10-09 Thermage Inc Temperature sensing apparatus and methods for treatment devices used to deliver high frequency energy to tissue
WO2008101171A2 (en) * 2007-02-16 2008-08-21 Thermage, Inc. Temperature sensing apparatus and methods for treatment devices used to deliver high frequency energy to tissue
US8738137B2 (en) 2007-08-23 2014-05-27 Bioness Inc. System for transmitting electrical current to a bodily tissue
US8467880B2 (en) 2007-08-23 2013-06-18 Bioness Inc. System for transmitting electrical current to a bodily tissue
US9072896B2 (en) 2007-08-23 2015-07-07 Bioness Inc. System for transmitting electrical current to a bodily tissue
US9757554B2 (en) 2007-08-23 2017-09-12 Bioness Inc. System for transmitting electrical current to a bodily tissue
US9433772B2 (en) 2009-12-22 2016-09-06 Teikoku Seiyaku Co., Ltd. Electrode device used in iontophoresis treatment
KR20120101700A (en) 2009-12-22 2012-09-14 데이고꾸세이약꾸가부시끼가이샤 Electrode device used for iontophoresis therapy
WO2011078071A1 (en) 2009-12-22 2011-06-30 帝國製薬株式会社 Electrode device used for iontophoresis therapy
GB2524777A (en) * 2014-04-02 2015-10-07 Microarray Ltd Dressing comprising electrodes
WO2016142176A1 (en) * 2015-03-09 2016-09-15 Koninklijke Philips N.V. Iontophoretic device, arrangement and method
CN107405483A (en) * 2015-03-09 2017-11-28 皇家飞利浦有限公司 The unit and method of iontophoresis

Also Published As

Publication number Publication date
ATE369891T1 (en) 2007-09-15
DE60129965T2 (en) 2008-05-15
EP1294439A2 (en) 2003-03-26
DE60129965D1 (en) 2007-09-27
US6635045B2 (en) 2003-10-21
EP1294439B1 (en) 2007-08-15
AU2001273104A1 (en) 2002-01-14
JP4024673B2 (en) 2007-12-19
US6629968B1 (en) 2003-10-07
CA2413624C (en) 2007-09-18
JP2004501727A (en) 2004-01-22
CA2413624A1 (en) 2002-01-10
WO2002002182A3 (en) 2002-06-27
US20020062102A1 (en) 2002-05-23

Similar Documents

Publication Publication Date Title
EP1294439B1 (en) Shelf storage stable iontophoresis reservoir-electrode and iontophoretic system
CA2410675C (en) Medicament-loaded transdermal reservoir and method for its formation
US6862473B2 (en) Iontophoretic drug delivery device and reservoir and method of making same
AU658246B2 (en) Control device for electrotransport drug delivery
US5240995A (en) Electrotransport adhesive
CA2356197C (en) Thin polymer film drug reservoirs
US7043297B2 (en) Iontophoretic drug delivery device and reservoir and method of making same
EP1586347A1 (en) Electrically assisted lidocaine and epinephrine delivery device having extended shelf-stability
AU2001275019A1 (en) Medicament-loaded transdermal reservoir and method for its formation
EP0457849B1 (en) Electrotransport adhesive
US20070078373A1 (en) Pulsatile delivery of gonadotropin-releasing hormone from a pre-loaded integrated electrotransport patch
US20080154230A1 (en) Anode for electrotransport of cationic drug

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2001952340

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2413624

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2001952340

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001952340

Country of ref document: EP