WO2002002692A1 - Composition copolymere styrene - Google Patents

Composition copolymere styrene Download PDF

Info

Publication number
WO2002002692A1
WO2002002692A1 PCT/JP2000/004372 JP0004372W WO0202692A1 WO 2002002692 A1 WO2002002692 A1 WO 2002002692A1 JP 0004372 W JP0004372 W JP 0004372W WO 0202692 A1 WO0202692 A1 WO 0202692A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
copolymer
block
styrene
aromatic hydrocarbon
Prior art date
Application number
PCT/JP2000/004372
Other languages
English (en)
French (fr)
Inventor
Susumu Hoshi
Nobuaki Kubo
Original Assignee
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kabushiki Kaisha filed Critical Asahi Kasei Kabushiki Kaisha
Priority to DE60039916T priority Critical patent/DE60039916D1/de
Priority to PCT/JP2000/004372 priority patent/WO2002002692A1/ja
Priority to KR10-2002-7002831A priority patent/KR100501988B1/ko
Priority to CN00813477A priority patent/CN1376179A/zh
Priority to EP00942436A priority patent/EP1266935B1/en
Publication of WO2002002692A1 publication Critical patent/WO2002002692A1/ja
Priority to US10/180,524 priority patent/US7323512B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/04Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof

Definitions

  • the present invention relates to a styrene comprising a styrene / 7- n-butyl acrylate copolymer (I) and a block copolymer (II) containing a vinyl aromatic hydrocarbon monomer unit and a conjugated diene monomer unit.
  • the present invention relates to a copolymer composition. More specifically, the present invention relates to a styrene Z-n-butyl acrylate copolymer (I) containing a styrene monomer unit and an n-butyl acrylate monomer unit in a specific ratio, and a vinyl aromatic carbonized copolymer.
  • a styrene-based copolymer composition comprising a vinyl aromatic hydrocarbon monomer unit and a conjugated diene monomer unit in a specific ratio, and a block copolymer (II).
  • the ratio of the short segment comprising 1 to 3 vinyl aromatic hydrocarbon monomer units to the total amount of the vinyl aromatic hydrocarbon contained in the polymer (II) is in a specific range, and the ratio of the short segment is at least two.
  • the Gerupamie comprises a maximum peak molecular weight polymer block having a maximum peak molecular weight in one to Nkuroma preparative grams, said maximum peak molecular weight polymer proc is
  • the chromatogram has at least one peak molecular weight in a specific molecular weight range, and the content of the maximum peak molecular weight polymer block in the at least two polymer blocks (A) is in a specific range;
  • the weight ratio of the largest weight polymer block to the smallest weight polymer block in at least two polymer blocks (A) is relatively large, and the styrene Z n-acrylic acid n-butyl copolymer (I) and the block
  • the present invention relates to a styrenic copolymer composition characterized in that the weight ratio with the copolymer (II) is in a specific range.
  • the present invention also provides a styrene Z n-butyl acrylate copolymer (I) containing a styrene monomer unit and an n-butyl acrylate monomer unit in a specific ratio, and a vinyl aromatic hydrocarbon. It has a block structure containing at least two polymer blocks (A) mainly composed of monomer units and at least one vinyl aromatic hydrocarbon nonconjugated copolymer block (B).
  • a styrene-based copolymer composition comprising a block copolymer (II) containing an aromatic hydrocarbon monomer unit and a conjugated diene monomer unit in a specific ratio, wherein the block copolymer
  • the ratio of the short segment composed of 1 to 3 vinyl aromatic hydrocarbon monomer units to the total amount of the vinyl aromatic hydrocarbon contained in (II) is within a specific range, and the at least two polymer blocks ( A)
  • the gel permeation chromatogram has a polymer block having at least one peak molecular weight in a specific molecular weight range, and the peak of the at least two polymer blocks (A).
  • the content of the polymer block having a molecular weight is in a specific range, and the weight ratio of the maximum weight polymer block to the minimum weight polymer block in the at least two polymer blocks (A) is relatively small;
  • the present invention relates to a styrenic copolymer composition characterized in that the weight ratio between the n-butyl acrylate copolymer (I) and the block copolymer (II) is in a specific range. (Often, the weight ratio of the largest polymer block to the smallest polymer block is relatively large, at least two polymer blocks.
  • the block copolymer (II) containing (A) is referred to as “asymmetric block copolymer (II)”, and the weight ratio of the largest polymer block to the smallest polymer block is at least two polymers that are relatively small.
  • the block copolymer (II) containing the coalesced block (A) is referred to as “symmetric block copolymer ( ⁇ )”.
  • the molded article obtained from the styrenic copolymer composition of the present invention has a large tensile modulus, high elongation at break, transparency, natural non-shrinkage (small shrinkage at ambient temperature), and non-fusible hot water ( (Eg, less fusion in hot water at 85 ° C).
  • a molded article obtained from the styrene-based copolymer composition containing the asymmetric block copolymer (II) also has excellent surface impact strength. Further, the molded article obtained from the styrene-based copolymer composition containing the symmetric block copolymer (II) has a small anisotropy. Furthermore, a specific stabilizer is added to the styrenic copolymer composition of the present invention. Molded articles (sheets, films, etc.) obtained from such compositions have even lower FE.
  • the heat shrinkable film obtained from the styrene copolymer composition of the present invention has low FE and excellent low-temperature shrinkability.
  • a block copolymer containing a vinyl aromatic hydrocarbon monomer unit and a conjugated diene monomer unit and having a relatively high content of the vinyl aromatic hydrocarbon monomer unit has high transparency and impact resistance. Because of its properties, it is used for injection molding and extrusion molding (sheets, films, etc.).
  • a composition containing the above block copolymer and a vinyl aromatic hydrocarbon Z aliphatic unsaturated carboxylic acid derivative copolymer is excellent in transparency, mechanical properties, and shrinkability, so that a sheet, It is used as a film.
  • Japanese Patent Application Laid-Open No. 59-221348 discloses a composition having high tensile strength, elastic modulus and impact strength, and having excellent optical properties, stretching properties, crack resistance and the like.
  • a vinyl aromatic hydrocarbon / aliphatic unsaturated carboxylic acid derivative copolymer having an unsaturated carboxylic acid derivative content of 5 to 80% by weight and a vicat softening point of 90 ° C or less, at least One vinyl aromatic hydrocarbon polymer block And a copolymer having at least one polymer block mainly composed of a conjugated diene.
  • 61-25819 discloses low-temperature shrinkage (for example, shrinkage at 80 ° C of at least 20%), optical properties, crack resistance, and dimensions.
  • a heat-shrinkable film with excellent stability vinyl aromatic hydrocarbon / aliphatic with a vinyl aromatic hydrocarbon content of 20 to 95% by weight and a vicat softening point of 90 ° C or less It has an unsaturated carboxylic acid derivative copolymer and at least one vinyl aromatic hydrocarbon polymer block and a polymer block mainly composed of a conjugated diene derivative.
  • the resulting low temperature shrinkable film is disclosed. Also, Japanese Patent Application Laid-Open No.
  • Hei 5-104630 discloses that a transparent heat-shrinkable film having excellent stability over time and impact resistance has a vicat softening point of 105 ° C or less. It has a vinyl aromatic hydrocarbon Z aliphatic unsaturated carboxylic acid derivative copolymer, at least one vinyl aromatic hydrocarbon polymer block and at least one polymer block mainly composed of a conjugated diene derivative.
  • a heat-shrinkable hard film which is a film of a composition containing a copolymer and has a heat shrink force in a specific direction in a specific range, is disclosed. Also, Japanese Patent Application Laid-Open No.
  • 6-220278 discloses a block copolymer having a vinyl aromatic hydrocarbon and a conjugated gen as a composition having excellent transparency, rigidity and low-temperature surface impact properties.
  • a copolymer having a specific block structure and a specific molecular weight distribution, and a vinyl aromatic hydrocarbon Z (meth E) A composition containing an acrylate copolymer resin has been disclosed.
  • Japanese Patent Application Laid-Open No. 7-216187 discloses a resin composition having excellent transparency and impact resistance, comprising two vinyl aromatic hydrocarbon polymer blocks and two vinyl aromatic hydrocarbon blocks.
  • a transparent and high-strength resin composition comprising a block copolymer having a hydrocarbon Z conjugated gen copolymer block and a vinyl aromatic hydrocarbon Z (meth) acrylic ester copolymer is disclosed. You.
  • a composition containing the above-mentioned block copolymer containing a vinyl aromatic hydrocarbon and a conjugated gen and a copolymer of a vinyl aromatic hydrocarbon and an aliphatic unsaturated carboxylic acid-based derivative is as follows: When used for the production of relatively thin sheets and films, they have high tensile modulus, elongation at break, and high surface impact strength, and are excellent in transparency, natural non-shrinkage property, hot water non-fusion property, and low FE. They have the problem that they cannot get sheets or films. Moreover, the above document does not describe a method for solving this problem. Summary of the Invention
  • the at least two polymer blocks (A) comprise the largest peak molecular weight polymer block having the largest peak molecular weight in the gel permeation chromatogram;
  • the high molecular weight polymer block has at least one peak molecular weight in a specific molecular weight range in the chromatogram, and the maximum peak molecular weight polymer block content of the at least two polymer blocks (A) is at a specific level.
  • the weight ratio of the largest polymer block to the smallest polymer block in the at least two polymer blocks (A) is relatively large (1.2 to 4.5), and the styrene / acrylic acid n—
  • the present inventors have also proposed a styrene Z-n-butyl acrylate copolymer (I) containing a styrene monomer unit and an n-butyl acrylate monomer unit in a specific ratio, and vinyl A block structure containing at least two polymer blocks (A) mainly containing aromatic hydrocarbon monomer units and at least one vinyl aromatic hydrocarbon Z-conjugated gen copolymer block (B) A styrene-based copolymer composition comprising a block copolymer (II) containing a vinyl aromatic hydrocarbon monomer unit and a conjugated diene monomer unit in a specific ratio.
  • the ratio of the short segment comprising 1 to 3 vinyl aromatic hydrocarbon monomer units to the total amount of the vinyl aromatic hydrocarbon contained in the block copolymer (II) is in a specific range, At least two polymer blocks (A)
  • the gel block chromatogram has a polymer block having at least one peak molecular weight within a specific molecular weight range, and the polymer block having a peak molecular weight of at least two polymer blocks (A).
  • the coalesced block content is in a specific range, and the weight ratio of the largest polymer block to the smallest polymer block in the at least two polymer blocks (A) is relatively small (1.0 or more and less than 1.2 A) a styrene-based copolymer composition characterized in that the weight ratio thereof to the block copolymer (II) such as the n-butyl styrene acrylate copolymer (I) is in a specific range; Tensile modulus, high elongation at break, low anisotropy, transparency, natural non-shrinkage, hot water It has been found that the composition is not only excellent in non-fusibility, but also can provide molded articles (sheets, films, etc.) with low FE. The present invention has been completed based on these findings.
  • one object of the present invention is to obtain a molded article such as a sheet or a film having not only excellent tensile elastic modulus and elongation at break, excellent transparency, natural non-shrinkage property and hot-water non-fusion property but also low FE.
  • a styrenic copolymer composition that can Another object of the present invention is to provide a styrenic copolymer composition capable of obtaining a molded article having a slightly large anisotropy but excellent surface impact strength in addition to the above excellent properties. is there.
  • Still another object of the present invention is to provide a styrenic copolymer composition capable of obtaining a molded article having small anisotropy in addition to the above excellent properties.
  • FIG. 1 is a graph for explaining a preferred range of the melt viscosity at 180 to 240 ° C. of the styrene / acrylic acid ⁇ _butyl copolymer (I) used in the present invention.
  • the solid line represents the lower limit of the above preferable melt viscosity range by the following equation.
  • a styrene / n-butyl acrylate copolymer with a styrene monomer unit content of 80 to 89% by weight and an n-butyl acrylate monomer unit content of 20 to 11% by weight Coalescing (I), and
  • a plot containing at least two polymer blocks (A) mainly composed of vinyl aromatic hydrocarbon monomer units and at least one vinyl aromatic hydrocarbon Z-conjugated gen copolymer block (B).
  • Block Copolymer Having Block Structure (II) A styrenic copolymer composition comprising:
  • the block copolymer (II) has a vinyl aromatic hydrocarbon monomer unit content of 65 to 90% by weight and a conjugated diene monomer unit content of 35 to 10% by weight.
  • the short segment ratio of the vinyl aromatic hydrocarbon monomer unit defined by the weight% of the vinyl aromatic hydrocarbon monomer unit is: ⁇ 25% by weight
  • the at least two polymer blocks (A) include a maximum peak molecular weight polymer block having a maximum peak molecular weight in the gel permeation chromatogram, and the maximum peak molecular weight polymer block is included in the chromatogram. It has a fraction with at least one peak molecular weight in the range of 30,000 to 150,000, and the maximum in the at least two polymer blocks (A).
  • the peak molecular weight polymer block content is 20 to 50% by weight
  • the at least two polymer blocks (A) have a maximum weight polymer block and a minimum weight polymer block, and the weight ratio of the maximum weight polymer block to the minimum weight polymer block is from 1.2 to 4%. 5 and
  • the styrene Z n-acrylic acid n-butyl copolymer (I) and the broth A styrene-based copolymer composition characterized by having a weight ratio of 10/90 to 90/10 with the block copolymer (II).
  • a styrene / n-butyl acrylate copolymer with a styrene monomer unit content of 80 to 89% by weight and a n-butyl acrylate monomer unit content of 20 to 11% by weight Coalescing (I), and
  • a styrenic copolymer composition comprising:
  • the block copolymer (II) has a content of vinyl aromatic hydrocarbon monomer units of 75 to 85% by weight and a content of conjugated diene monomer units of 25 to 15% by weight.
  • At least one short segment consisting of 1 to 3 vinyl aromatic hydrocarbon monomer units based on the total weight of the vinyl aromatic hydrocarbon monomer units contained in the block copolymer (II)
  • the short segment ratio of the vinyl aromatic hydrocarbon monomer unit, defined as the weight% of the contained vinyl aromatic hydrocarbon monomer unit, is 10 to 20% by weight
  • the at least two polymer blocks (A) are represented in the gel permeation chromatogram by a scale of 200,000 to 70,0,0.
  • the at least two polymer blocks (A) have a maximum weight polymer block and a minimum weight polymer block, and the weight ratio of the maximum weight polymer block to the minimum weight polymer block is 1.0 or more and 1.2 Less than,
  • the weight ratio of the styrene Z n-butyl acrylate copolymer (I) to the block copolymer (II) is 20Z80 to 60Z40.
  • a styrenic copolymer composition is provided.
  • basic features and preferred embodiments of the present invention will be listed.
  • a styrenic copolymer composition comprising:
  • the block copolymer (II) has a vinyl aromatic hydrocarbon monomer unit content of 65 to 90% by weight and a conjugated diene monomer unit content of 35 to 10% by weight.
  • At least one short segment consisting of 1 to 3 vinyl aromatic hydrocarbon monomer units based on the total weight of the Bier aromatic hydrocarbon monomer units contained in the block copolymer (II).
  • the short segment ratio of the vinyl aromatic hydrocarbon monomer unit, defined by the weight% of the contained vinyl aromatic hydrocarbon monomer unit, is 1 to 25% by weight
  • the at least two polymer blocks (A) include a maximum peak molecular weight polymer block having a maximum peak molecular weight in the gel permeation chromatogram, and the maximum peak molecular weight polymer block has a molecular weight in the chromatogram. Having at least one peak molecular weight in the range of 30,000 to 150,000, and the content of the maximum peak molecular weight polymer block in the at least two polymer blocks (A) Is 20 to 50% by weight,
  • the at least two polymer blocks (A) have a maximum weight polymer block and a minimum weight polymer block, and the weight ratio of the maximum weight polymer block to the minimum weight polymer block is from 1.2 to 4. 5 and
  • the n-butyl styrene noacrylate copolymer (I) has a styrene monomer unit content of 83 to 89% by weight and an n-butyl acrylate monomer unit content of 17 to 89% by weight. 11.
  • melt viscosity P (T) of the styrene / n-butyl acrylate copolymer (I) at 180 to 240 ° C. is represented by the following relational expression:
  • a styrenic copolymer composition comprising:
  • the block copolymer (II) has a vinyl aromatic hydrocarbon monomer unit content of 75 to 85% by weight, and a conjugated diene monomer unit. The content is 25 to 15% by weight,
  • At least one short segment consisting of 1 to 3 vinyl aromatic hydrocarbon monomer units based on the total weight of the vinyl aromatic hydrocarbon monomer units contained in the block copolymer (II)
  • the short segment ratio of the vinyl aromatic hydrocarbon monomer unit defined by the weight% of the contained vinyl aromatic hydrocarbon monomer unit is 10 to 20% by weight
  • the at least two polymer blocks (A) have a polymer block having at least one peak molecular weight in the range of 200,000 to 70,000 in the gel permeation chromatogram.
  • the content of the polymer block having a peak molecular weight of at least two polymer blocks (A) is 25 to 35% by weight;
  • the at least two polymer blocks (A) have a maximum weight polymer block and a minimum weight polymer block, and the weight ratio of the maximum weight polymer block to the minimum weight polymer block is 1.
  • the styrene / ⁇ -butyl acrylate copolymer (I) has a styrene monomer unit content of 83 to 89% by weight, and an acrylate / ⁇ -butyl acrylate 8.
  • melt viscosity P (T) of the styrene-no-acrylic acid n-butyl copolymer (I) at 180 to 240 ° C. is represented by the following relational formula:
  • T represents the melt viscosity measurement temperature C
  • P (T) represents the melt viscosity (void) at the measurement temperature ⁇ C).
  • 0 storage modulus at ° C is 1. 5 X 1 0 9 ⁇ 2. in the range of 5 X 1 0 9 P a, the copolymer (I) is, 3 0 a 5 0 of storage modulus at C %, Characterized in that the temperature at which the storage elastic modulus is in the range of 75 to 100 ° C. To ⁇ 10 A len copolymer composition.
  • each monomer unit constituting the polymer follows the nomenclature of the monomer from which the monomer unit is derived. Therefore, “vinyl aromatic hydrocarbon monomer unit” means a structural unit of a polymer resulting from polymerization of a monomer, vinyl aromatic hydrocarbon, and its structure is a substituted vinyl. This is a molecular structure in which two carbons of the substituted ethylene group derived from the group are binding sites. Further, “conjugated diene monomer unit” means a constituent unit of a polymer obtained by polymerizing a conjugated diene monomer which is a monomer, and its structure is derived from the conjugated diene monomer. It is a molecular structure in which two carbons of the olefin are binding sites.
  • a styrene monomer unit and a n-butyl acrylate monomer unit in a specific ratio are contained.
  • a styrenic copolymer composition is provided.
  • This styrenic copolymer composition is characterized in that the block copolymer (II) is the above-mentioned “asymmetric block copolymer (II)” and the above-mentioned “symmetric block copolymer (II)”.
  • the copolymer according to the second embodiment which is a copolymer (II) ".
  • the n-butyl styrene noacrylate copolymer (I) used in the present invention contains 80 to 89% by weight of styrene monomer unit and 20 to 11% by weight of n-butyl acrylate monomer unit, respectively. % Of the copolymer.
  • the content of the styrene monomer unit is preferably 83 to 89% by weight. If the content of the styrene monomer unit is less than 80% by weight, the sheet or film obtained from the styrene copolymer composition is unfavorably fused at a low temperature.
  • melt viscosity P (T) of the styrene noacrylic acid n-butyl copolymer (I) used in the present invention at 180 to 240 ° C. is represented by the following relational expression:
  • T represents the measurement temperature (° C.) of the melt viscosity
  • P (T) represents the melt viscosity (boys) at the measurement temperature T (° C.)
  • FIG. 1 is a graph for explaining a preferable range of the melt viscosity of the styrene / acrylic acid n-butyl copolymer used in the present invention at 180 to 240 ° C. of (I). is there.
  • the solid line represents the lower limit of the above-mentioned preferred melt viscosity range.
  • melt viscosity P (T) When the melt viscosity P (T) is larger than the upper limit of the above relational expression, relatively small FE tends to be generated in a sheet obtained from the styrene-based copolymer composition. When the melt viscosity P (T) is smaller than the lower limit of the above relational expression, relatively large FE tends to be generated in a sheet obtained from the styrene-based copolymer composition.
  • the melt viscosity of the styrene Z n-butyl acrylate copolymer (I) at 180 to 240 ° C was measured by a capillarograph (manufactured by Toyo Seiki Co., Ltd., Japan). ) Is 6
  • the temperature at which 50% of the storage elastic modulus at 0 ° C is preferably in the range of 75 to 100 ° C is 30 ° C of the styrene Z n-butyl acrylate copolymer (I).
  • the temperature at which the storage elastic modulus reaches 50% of the storage elastic modulus at 30 ° C is more preferably in the range of 75 to 85 ° C.
  • 3 0 ° definitive to C storage elastic modulus of the styrene-Z ⁇ click acrylic acid n- butyl acrylate copolymer (I) is 1. less than 5 X 1 0 9 P a from styrene alkylene copolymer composition There is a tendency that the rigidity of the obtained molded product is not sufficiently improved. Meanwhile, 2. 5 XI 0 9 If P a is greater than the improvement over the elongation at break of a molded article obtained from the styrene copolymer composition tends not sufficient.
  • the styrene-based copolymer composition When the temperature at which the storage elastic modulus reaches 50% of the storage elastic modulus at 30 ° C is lower than 75 ° C, the styrene-based copolymer composition was formed into a sheet or film. Sometimes, the low-temperature non-fusibility tends to be insufficiently improved. On the other hand, when the temperature at which the storage elastic modulus reaches 50% of the storage elastic modulus at 30 ° C exceeds 100 ° C, the heat-shrinkable film obtained from the styrene-based copolymer composition is There is a tendency that improvement in low-temperature shrinkage is not sufficient.
  • the storage elastic modulus of the styrene-n-butyl acrylate copolymer (I) used in the present invention is a value measured by a DMA 983 (manufactured by DUPONT, USA) at a resonance frequency and a heating rate Z ⁇ Zmin. It is. Melt viscosity of the styrene-n-butyl acrylate copolymer (I) used in the present invention at 180 to 240 ° C, storage elastic modulus at 30 ° C, and storage elastic modulus at 30 ° C
  • the temperature at which the storage elastic modulus reaches 50% is determined by producing the copolymer by the following polymerization method. In this case, it can be controlled by adjusting the addition amount of styrene and n-butyl acrylate, the addition amount of the molecular weight modifier, the residence time in the polymerization vessel, the polymerization temperature, and the like.
  • the styrene Z n-butyl acrylate copolymer (I) used in the present invention may be prepared by a known method for producing a styrene resin, for example, a bulk polymerization method, a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, or the like. It can be manufactured using
  • the melt-to-mouth ratio of the styrene-z-n-butyl acrylate copolymer (I) (hereinafter referred to as MFR) [
  • MFR melt-to-mouth ratio of the styrene-z-n-butyl acrylate copolymer
  • the asymmetric block copolymer (II) in the composition according to the first embodiment of the present invention contains 65 to 90% by weight of a vinyl aromatic hydrocarbon monomer unit and 65 to 90% by weight of a conjugated gen monomer unit. It is a copolymer (II) containing 5 to 10% by weight.
  • the contents of the vinyl aromatic hydrocarbon monomer unit and the conjugated diene monomer unit are preferably 70 to 85% by weight and 30 to 25% by weight, respectively.
  • the asymmetric block copolymer in the composition of the first embodiment (I When the content of the vinyl aromatic hydrocarbon monomer unit of I) is less than 65% by weight and the content of the conjugated diene monomer unit is more than 35% by weight, the composition obtained from the composition of the first embodiment is used. It is not preferable because the FE in the molded article to be produced increases. On the other hand, if the Bier aromatic hydrocarbon content is more than 90% by weight and the conjugated gen content is less than 10% by weight, the elongation at break of the molded article is undesirably reduced.
  • the symmetric block copolymer (II) in the composition of the second embodiment of the present invention contains 75 to 85% by weight of a pinyl aromatic hydrocarbon monomer unit and 75 to 85% by weight of a conjugated diene monomer unit, respectively. It is a copolymer containing up to 15% by weight, preferably 77 to 83% by weight, and 23 to 17% by weight, respectively.
  • the block copolymer (II) has a vinyl aromatic hydrocarbon monomer unit content of less than 75% by weight and a conjugated diene monomer unit content of more than 25% by weight. In this case, the FE in the molded article obtained from the composition of the second embodiment is undesirably increased.
  • each of the asymmetric and symmetric block copolymers (II) in the compositions of the first and second embodiments at least two polymers mainly composed of vinyl aromatic hydrocarbon monomer units are used. It has a block structure containing a block (A) and at least one vinyl aromatic hydrocarbon / conjugated gen copolymer block (B).
  • a polymer block mainly composed of a vinyl aromatic hydrocarbon monomer unit refers to a polymer block having a vinyl aromatic hydrocarbon monomer unit content of 70% or more.
  • a vinyl aromatic hydrocarbon / conjugated gen copolymer block is a vinyl aromatic hydrocarbon nonconjugated copolymer having a vinyl aromatic hydrocarbon monomer unit content of less than 70%. It means a united block.
  • examples include the following formulas (1), (2) or (3):
  • X is silicon tetrachloride, tin tetrachloride, epoxidized soybean oil, tetraglycidyl-1,3-bisaminomethylcyclohexane, polyhalogenated hydrocarbon, carboxyl
  • a coupling agent such as an acid ester or a polyvinyl compound, or a residue of an initiator such as a polyfunctional organolithium compound, where n, k and m are natural numbers and generally 1 to 5.
  • branched block copolymer refers to a structure in which a plurality of polymer chains are bound by a residue of a 3 to 8 functional coupling agent or a residue of an initiator such as a 3 to 8 functional organic lithium compound. Means a block copolymer having a modified structure.
  • Both the asymmetric block copolymer and the symmetric block copolymer (II) in the compositions of the first and second embodiments can be prepared by using an organic lithium compound as an initiator in a hydrocarbon solvent to form a vinyl aromatic hydrocarbon and a conjugated diene. It is obtained by polymerizing the ene.
  • the polymerization temperature for producing the block copolymer (II) is generally 110 to 150 ° C, preferably 40 to 120 ° C.
  • the time required for the polymerization varies depending on the conditions, but is usually within 10 hours, particularly preferably 0.5 to 5 hours.
  • the polymerization system is an inert gas such as nitrogen gas. It is desirable to substitute the atmosphere.
  • the polymerization pressure is not particularly limited as long as it is within a range of a pressure sufficient to maintain the monomer and the solvent in a liquid phase within the above-mentioned polymerization temperature range.
  • impurities such as water, oxygen, carbon dioxide, etc., which inactivate the catalyst-living polymer are not mixed in the polymerization system.
  • a block copolymer was used to improve the miscibility between the styrene-n-butyl acrylate copolymer (I) and the block copolymer (II).
  • (II) represents the following polar groups (a) to (f): (a) a polar group containing active hydrogen, (b) a polar group containing nitrogen, (c) a polar group containing an epoxy group or a thiopoxy group.
  • Examples of the terminal modifier include a carboxy group, a thiocarbonyl group, an acid halide group, an acid anhydride group, an aldehyde group, a thioaldehyde group, a carboxylic acid ester group, an amide group, a sulfonic acid group, a phosphoric acid group, Phosphoric acid ester group, amino group, imino group, nitrile group, pyridyl group, Examples thereof include compounds having a norin group, an epoxy group, a thioepoxy group, an isocyanate group, an isothiocyanate group, a halogen-containing silicon compound, and a halogen-containing tin compound. More specifically, a terminal modifying agent described in Japanese Patent Publication No. 4-39495 (corresponding to US Pat. No. 5,150,355) can be mentioned.
  • At least two polymer blocks (A) mainly composed of a vinyl aromatic hydrocarbon of the asymmetric block copolymer (II) are included in the gel permeation-short mouth matogram.
  • a maximum peak molecular weight polymer block having a maximum peak molecular weight wherein the maximum peak molecular weight polymer block has a molecular weight in the chromatogram ranging from 30,000 to 150,500, preferably It has a peak molecular weight in the range of 300,000 to 130,000, and the maximum peak molecular weight polymer block content in the at least two polymer blocks (A) is 20 to 5 0% by weight, preferably 25-45% by weight.
  • the peak molecular weight of the maximum peak molecular weight polymer block is less than 30,000, or when the content of the maximum peak molecular weight polymer block is less than 20% by weight, it is obtained from the composition. It is not preferable because the rigidity of the molded product is reduced and the film is fused and formed at a low temperature when formed into a film.
  • the peak molecular weight of the maximum peak molecular weight polymer block exceeds 150,000, or when the peak molecular weight polymer block content exceeds 50% by weight, In this case, the heat-shrinkable film obtained from the composition of the first embodiment is inferior in the 80 ° C. shrinkage and the natural shrinkage, which is not preferable.
  • At least two polymer blocks (A) mainly composed of vinyl aromatic hydrocarbons of the symmetric block copolymer (II) in the composition according to the second embodiment of the present invention have a gel perm.
  • the content of the polymer block having a peak molecular weight of the at least two polymer blocks (A) is 25 to 35% by weight.
  • the peak molecular weight of the polymer block is less than 200,000, or when the content of the polymer block is less than 25% by weight, the rigidity of a molded article obtained from the composition decreases.
  • the film when the film is formed, it becomes unfavorable because it becomes fused at a low temperature.
  • the peak molecular weight of the maximum peak molecular weight polymer block exceeds 70,000, or when the maximum peak molecular weight polymer block content exceeds 35% by weight, the composition according to the first embodiment is used.
  • the heat-shrinkable film obtained from the above is not preferred because the 80 ° C shrinkage and the natural shrinkage are inferior.
  • each of the asymmetric and symmetric block copolymers (II) in the compositions of the first and second embodiments at least two polymers mainly composed of vinyl aromatic hydrocarbon monomer units are used.
  • the polymer block content having a block molecular weight is used to form the molecular weight distribution of the polymer block constituting the block copolymer and the polymer block constituting the block copolymer, respectively. It can be determined from the weight ratio of the vinyl aromatic hydrocarbon.
  • the at least two polymer blocks (A) mainly composed of vinyl aromatic hydrocarbon monomer units are vinyl aromatic hydrocarbon monopolymer blocks
  • the at least two polymer blocks (A) are used.
  • the measurement of the peak molecular weight of the maximum peak molecular weight polymer block and the content of the maximum peak molecular weight polymer block in A) can also be performed by the following method.
  • the block copolymer (II) is oxidatively decomposed with oxamium tetroxide as a catalyst by means of Shari-butyl hydroperoxide, and a vinyl aromatic hydrocarbon polymer block component (however, the average degree of polymerization is about 30 or less.
  • the vinyl aromatic hydrocarbon polymer component is removed) [I. M.
  • Vinyl aromatic hydrocarbon polymer block with peak molecular weight The peak molecular weight can be adjusted by changing the amount of catalyst and the amount of vinyl aromatic hydrocarbon to be added when producing the vinyl aromatic hydrocarbon polymer block.
  • the content of the polymer block having the peak molecular weight can be determined from the area ratio of each peak in the GPC curve, or the vinyl content added when polymerizing the vinyl aromatic hydrocarbon homopolymer block.
  • the vinyl aromatic hydrocarbon At least two polymer blocks (A) based on monomer units have a maximum weight polymer block and a minimum weight polymer block. The weight ratio of the maximum weight polymer block to the minimum weight polymer block is sometimes hereinafter referred to as the "maximum / minimum block weight ratio".
  • the maximum weight block of the at least two polymer blocks (A) is the same as the above-mentioned maximum peak molecular weight polymer block.
  • the maximum / minimum block weight ratio is 1.2 to 4.5, preferably 1.5 to 4.0. Since the block copolymer (II) in the composition of the first embodiment of the present invention has a large maximum / minimum block weight ratio, the molded article obtained from the composition of the first embodiment has a slightly large anisotropy. Has excellent impact resistance such as surface impact strength. When the maximum / minimum block weight ratio is less than 1.2, the impact resistance of a molded article obtained from the composition of the first embodiment is lowered, which is not preferable. On the other hand, when the maximum / minimum block weight ratio exceeds 4.5, the transparency of the sheet obtained from the composition of the first embodiment is undesirably reduced.
  • the maximum Z minimum block weight ratio needs to be 1.0 or more and less than 1.2. Since the block copolymer (II) in the composition of the second embodiment of the present invention has a small maximum Z-to-minimum block weight ratio, the sheet obtained from the composition of the second embodiment has a small anisotropy. If the maximum Z minimum block weight ratio is not less than 1.2, the sheet obtained from the composition of the second embodiment has a large anisotropy and the sheet is liable to crack in the extrusion direction.
  • the maximum and minimum block weight ratios are calculated from the weight of Biel aromatic hydrocarbon added to form a polymer block mainly composed of vinyl aromatic hydrocarbons when producing the block copolymer (II).
  • the GPC curve obtained by the method of oxidatively decomposing the block copolymer with tertiary butyl octadropoxide using osmium tetroxide as a catalyst is used.
  • the area of each peak can also be calculated from.
  • hydrocarbon solvent used for producing any of the lock copolymers (II) include aliphatic hydrocarbons such as butane, pentane, hexane, hexane, isopentane, heptane, octane, and isooctane. Hydrogens; alicyclic hydrocarbons such as cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane; aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene Can be mentioned. These may be used alone or as a mixture of two or more.
  • examples of the vinyl aromatic hydrocarbon monomer unit used include styrene and o.
  • Monomer units derived from methylstyrene, p-methylstyrene, p-tert-butylstyrene, 2,4-dimethylstyrene, ⁇ -methylstyrene, vinylnaphthalene, vinylanthracene, 1,1-diphenylethylene, etc. Can be.
  • a monomer unit derived from styrene is particularly preferred. These may be used alone or as a mixture of two or more.
  • conjugated diene monomer units used for the block copolymer (II) are 1,3-butadiene, 2-methyl-1,3, -butanediene (isoprene), 2,3-dimethyl-1,3 One butadiene, 1, 3 — Penguin, 1, 3 — Hexagen Coming monomer units. These may be used alone or in combination of two or more.
  • the conjugated gen'-monomer unit is preferably a monomer unit derived from at least one kind of conjugated gen selected from the group consisting of 1,3-butadiene and isoprene.
  • the block copolymer (II) is isoprene from the viewpoint of enhancing the FE suppressing effect of the molded article.
  • the block copolymer (II) preferably contains an isoprene homopolymer block.
  • the aliphatic double bond of the conjugated diene monomer unit of the block copolymer (II) is It is partially hydrogenated, and its hydrogenation rate (hydrogenation rate) is preferably 1 to 50%, more preferably 3 to 40%, and more preferably 5 to 30%. Is more preferable.
  • the hydrogenation rate (hydrogenation rate) of the aliphatic double bond part of the conjugated dimer unit of the block copolymer (II) refers to the conjugated dimer content contained in the block copolymer (II). Percentage of aliphatic double bonds in monomer units that have been hydrogenated and converted to saturated hydrocarbon bonds.
  • Hydrogenation rate is measured by infrared spectrophotometer, nuclear magnetic resonance equipment, etc. can do.
  • Catalysts used in the hydrogenation reaction include heterogeneous catalysts and homogeneous "catalysts.
  • heterogeneous catalysts include supported catalysts in which metals such as Ni, Pt :, Pd, and Ru are supported on carriers such as carbon, silica, alumina, and diatomaceous earth. .
  • the homogeneous catalyst examples include a so-called Ziegler catalyst using an organic salt such as Ni, Co, Fe, or Cr or an acetylacetone salt and a reducing agent such as organic A1, or Ru,
  • the catalyst examples include so-called organic complex catalysts such as organometallic compounds such as Rh, and catalysts that use organic Li, organic A1, organic Mg, or the like as a reducing agent for the thiocyanocene compound.
  • Japanese Patent Publication No. 42-8 Japanese Patent Publication No. 704 (corresponding to AU 645 3 173, CA 8155 755, and DE 1 222 2 260), Japanese Patent Publication No. 43-6666 (Japanese) U.S. Pat. No. 3,333,024), preferably Japanese Patent Publication No. 63-48141 (corresponding to U.S. Pat. No. 4,501,857).
  • Japanese Patent Publication No. 63-54001 corresponding to US Pat. No. 4,501,857.
  • the amount of the asymmetric block copolymer (II) contained in the block copolymer (II) with respect to the total weight of the vinyl aromatic hydrocarbon monomer units Vinyl aromatic hydrocarbon monomer, defined as the weight percent of vinyl aromatic hydrocarbon monomer units contained in at least one short segment consisting of one to three vinyl aromatic hydrocarbon monomer units
  • the percentage of short segments in the body unit is 1 to 25% by weight, preferably 5 to 20% by weight.
  • the short segment ratio of the vinyl aromatic hydrocarbon monomer unit is less than 1% by weight, the elongation of a sheet or film obtained from the composition of the first embodiment is not preferred.
  • it exceeds 25% by weight the deformation of the sheet or film during heating becomes large, and the dimensional stability is poor, which is not preferable.
  • the short segment ratio of the vinyl aromatic hydrocarbon monomer unit defined as above is 10 to 20. % By weight. If the short segment ratio of the vinyl aromatic hydrocarbon monomer unit is less than 10% by weight, the elongation of a sheet or film obtained from the composition of the second embodiment is not preferred. On the other hand, when the short segment ratio of the vinyl aromatic hydrocarbon monomer unit exceeds 20% by weight, deformation of the sheet or film during heating becomes large, and the dimensional stability is poor, which is not preferable.
  • the short segment ratio of vinyl aromatic hydrocarbon monomer units is The block copolymer was dissolved in dichloromethane, after oxidative decomposition by ozone ( ⁇ 3), in Jechirue one ether the Ozonido obtained ': at reduced at lithium aluminum hydride, the hydrolysis is carried out with pure water Can be determined by performing gel permeation chromatography (GPC) measurement of the obtained vinyl aromatic hydrocarbon component and calculating the area ratio of the obtained peaks (Yasuyuki Tanaka, Toshiya Sato , Yasunobu Nakatami, “Preprints of the Society of Polymer Science,” pp. 29, 210, 1989.
  • GPC gel permeation chromatography
  • the short segment ratio of the vinyl aromatic hydrocarbon monomer unit was determined by the block copolymerization.
  • Amount of Vinyl Aromatic Hydrocarbon Monomer and Conjugated Gen Monomer in Production of Vinyl Aromatic Hydrocarbon Z Conjugated Gen Copolymer of Isolate (II) It can be adjusted by changing the polymerization reactivity ratio and the like.
  • a method in which a mixture of a vinyl aromatic hydrocarbon monomer and a conjugated diene monomer is continuously supplied to a polymerization system to carry out polymerization, a vinyl aromatic compound using a polar compound or a randomizing agent By using a method of copolymerizing a hydrocarbon monomer and a conjugated diene monomer alone or in combination, the short segment ratio of the pinyl aromatic hydrocarbon monomer unit can be adjusted. it can.
  • polar compounds and randomizers include tetrahydrofuran, diethylene glycol dimethyl ether, diethylene dali
  • examples include ethers such as coal dibutyl ether, amines such as triethylamine and tetramethylethylenediamine, thioethers, phosphines, phosphoramides, alkylbenzene sulfonates, and alkoxides of potassium and sodium. it can.
  • Both the asymmetric and symmetric block copolymers (II) in the compositions of the first and second embodiments usually have a number average molecular weight of 100,000 to 500,000. Having. The number average molecular weight of the block copolymer (II) can be determined by GPC based on standard polystyrene.
  • the MFR of the block copolymer (II) is in the range of 0.1 to 50 g Zl0 min from the viewpoint of enhancing moldability. It is more preferable that it is in the range of 1-2 OgZlOmin.
  • the weight ratio of the styrene-monoacrylate n-butyl copolymer (I) to the block copolymer (II) is i oZ 90 to 90/10, preferably s ozs oso
  • the amount of the styrene / acrylic acid ⁇ -butyl copolymer (I) is 90% by weight of the total amount of the copolymer (I) and the block copolymer (II).
  • the ratio exceeds the above range, the impact resistance of a molded article obtained from the composition is undesirably reduced. If the content is less than 10% by weight, the rigidity of the molded article decreases. I don't like it.
  • the weight ratio of the styrene-monoacrylic acid n-butyl copolymer (I) and the block copolymer (II) is 20/80 to 60 / ⁇ 0. .
  • the amount of the styrene-no-acrylic acid n-butyl copolymer (I) is 60% by weight of the total amount of the copolymer (I) and the block copolymer (II). If the amount exceeds the above range, the impact resistance of a molded article obtained from the composition is undesirably reduced. On the other hand, if it is less than 20% by weight, the rigidity of the molded article is lowered, which is not preferable.
  • the molded article obtained from the composition preferably has a haze value of 1.2% or less, more preferably 1.0% or less. If the haze exceeds 1.2%, the contents tend to look a little whitish, for example when used in blister cases.
  • the haze value is determined by molding the composition of the present invention into a sheet having a thickness of 0.6 mm using a sheet extruder or a compression molding machine, and applying a mineral oil to the surface of the sheet to measure the haze.
  • composition of the present invention 2— [1- (2-hydroxy-3,5—di-t-pentylphenyl) ethyl] 1-416—Gt-pentylphenylacrylate is used as a stabilizer.
  • the styrene Z 0.05 to 3 parts by weight, more preferably 0.1 to 2 parts by weight, based on 100 parts by weight of the total of the n-butyl acrylate copolymer (I) and the block copolymer (II) By adding it, a further FE suppressing effect can be obtained. If the amount of the stabilizer is less than 0.05 part by weight, the effect of suppressing FE by the stabilizer is not obtained. Further, even if it is added in an amount exceeding 3 parts by weight, the effect of suppressing FE is less than that in the case where 0.05 to 3 parts by weight is added.
  • the composition of the present invention contains at least one phenolic stabilizer in an amount of 0.05 to 3 parts by weight based on 100 parts by weight of the copolymer (I) and the copolymer (II) in total. Parts can be added. Further, at least one kind of the organic phosphite-based and organic phosphite-based stabilizers is used in an amount of 0.05 to 3 parts by weight based on 100 parts by weight of the copolymer (I) and the copolymer (II) in total. Parts by weight can be added.
  • phenolic stabilizers examples include n-octadecyl 3 _ (3: 5-di-tert-butyl-4-hydroxyphenyl) probionate, 2-t-butyl-6- (3-t-butyl-2-hydroxy- 5-1-methylbenzyl)-1-methylphenylacrylate, 2,4-bis [(octylthio) methyl] 10-cresol, tetrakis [methylene-3- (3,5-di-t-butyl-4) 1-Hydroxyphenyl) probionet] Methane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, 2,4-bis ( n-octylthio) mono- (4-hydroxy-3, 5-ge-t Luanilino) 1,1,3,5-triazine and the like.
  • organic phosphate and organic phosphate stabilizers include tris (nonylphenyl) phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, and 2—C [2, 4,8,10—Tetrakis (1,1 dimethylethyl) dibenzo [d, f] [1,3,2] dioxaphosphene-1-6-yl] oxy] 1-N, N-bis [2— [ [2,4,8,10—Tetrakis (1,1-dimethylethyl) dibenzo [d, f] [1,3,2] dioxafosphenfin — 6-yl] ethyl] —— Examples include ethaneamine and tris (2,4-di-t-butylphenyl) phosphite. .
  • the styrenic copolymer composition of the present invention can be produced by any conventional compounding method.
  • a melt kneading method using a general kneader such as an open mixer, an intensive mixer, an internal mixer, a continuous kneader with a coneder, a twin-screw mixer, and an extruder.
  • the solvent can be removed by heating and the like.
  • additives can be added to the styrenic copolymer composition of the present invention.
  • the polymer used as the additive include a Biel aromatic hydrocarbon / conjugated genblock copolymer having a vinyl aromatic hydrocarbon content of 50% by weight or less.
  • examples thereof include polymers, rubber-modified styrene-based copolymers, non-rubber-modified styrene-based polymers, and polyethylene terephthalate.
  • additives generally used for blending plastics can be used as additives.
  • additives include inorganic reinforcing agents such as glass fibers, glass beads, silica, calcium carbonate, talc, organic reinforcing agents such as organic fibers, coumarone-indene resin, organic peroxides, inorganic solvents.
  • Crosslinking agents such as oxides, pigments such as titanium white, carbon black and iron oxide, dyes, flame retardants, antioxidants, ultraviolet absorbers, antistatic agents, lubricants, plasticizers, other bulking agents, and mixtures thereof Can be mentioned.
  • the styrenic copolymer composition of the present invention can be used as it is or colored and molded by the same processing means as ordinary thermoplastic resins, and used in a wide range of applications.
  • it can be molded by injection molding, blow molding, etc., and used for containers such as OA equipment parts, daily necessities, foods, sundries, and light electrical components.
  • it can be suitably used as a transparent sheet such as a heat-shrinkable film, a thin film such as a laminating film, or a blister case for foods and weakly-electric components.
  • the melt viscosity is a value measured by a capillograph (manufactured by Toyo Seiki Co., Ltd.) at a shear rate (SR) of 61 sec- 1 .
  • SR shear rate
  • the storage elastic modulus of the copolymer was DMA 983 (manufactured by DUPONT), the frequency was the resonance frequency, the heating rate was 2 ° C / min, the thickness was about 3 mm, and the width was about 12 mm.
  • the amplitude was measured at 0.2 mm.
  • the measurement was performed using a nuclear magnetic resonance apparatus (NMR) [DPX-400 manufactured by BRUCKER (Germany)].
  • a dichloromethane solution of the block copolymer was passed through ozone (0 3) concentration 1. 5% oxygen at 1 5 0 ml / min to oxidative decomposition, the obtained Ozonido was mixed lithium aluminum hydride di GPC measurement of the vinyl aromatic hydrocarbon component obtained by adding potassium carbonate, performing salting out, and filtering was performed after dropping and reducing pure water to add water, and then reducing the resulting mixture. It was obtained by calculating the area ratio of the peaks obtained (see Yasuyuki Tanaka, Toshiya Sato, Yasunobu Nakatami, “Preprints of the Society of Polymer Science,” pp. 29, 210, 1989).
  • the ozone generator used was OT-31R-2, manufactured by Japan Ozone Co., Ltd.
  • GPC measurement was carried out using a chromate form as the solvent, and the columns were shimpack HSG-400H and shimpack GPC-80 2, Shimpack GPC-801 (manufactured by Shimadzu Corporation, Japan).
  • Sheet or heat-shrinkable film obtained in Examples and Comparative Examples was measured or evaluated by the following methods.
  • the sheet was extruded at a tensile speed of S mmZmin and measured in the direction perpendicular to the sheet.
  • the width of the test piece was 12.7 mm and the distance between the marked lines was 50 mm.
  • the tensile modulus in the extrusion direction [measured in item (1) above] was divided by the tensile modulus in the perpendicular direction [measured in item (1)] to evaluate.
  • the evaluation criteria are as follows.
  • the shape of the weight was a radius of 1/2 inch, it was measured at 23 according to ASTM D-179, and a 50% destruction value was obtained.
  • Liquid paraffin was applied to the sheet surface, and the measurement was performed according to ASTM D1003. ⁇
  • Vicat softening point ' (a measure of heat resistance) Approximately 7 to 8 sheets of 0.6 mm stacked together are compression-molded to a thickness of 3 mm, and the test pieces are measured according to ASTM D-1525 (load: l Kg, temperature rise Speed: 2 ° C / min).
  • a stretched film obtained by the same method as used in the above item (6) (the shrinkage at 80 ° C is 40%) is left at 35 ° C for 5 days, and the following formula:
  • the stretched film obtained by the same method as used in the above item (6) is wound around a glass bottle with a diameter of about 8 cm, and left in a stack of 3 bales in 85 ° C warm water for 5 minutes to fuse the film.
  • the state was visually determined.
  • the criteria are as follows.
  • a sheet with a thickness of 0.3 mm was continuously formed for 6 hours using a sheet extruder (extrusion temperature: 235 ° C) with a screw diameter of 40 mm, and 5 minutes and 6 hours after the start of operation.
  • the difference in the number of FEs of 0.5 mm or more per 300 cm 2 of sheet area was counted and evaluated as follows:
  • Table 1 shows the physical properties of styrene Z-n-butyl acrylate copolymer A-1 to A-5.
  • the block copolymer B-1 used in Examples and Comparative Examples was produced as follows.
  • a cyclohexane solution containing 1,3-butadiene (8 parts by weight) at a concentration of 25% by weight was charged into a closed 30 L reactor with a jacket, and 0.055 parts by weight of n-butyllithium was added thereto. Then, the inside of the reactor was replaced with nitrogen gas, and polymerization was carried out at 80 ° C. for 15 minutes while maintaining the pressure at 3 to 5 Kg Z cm 2 G. Thereafter, a cyclohexane solution containing 21 parts by weight of styrene at a concentration of 25% by weight was added at a time and polymerized at 80 ° C. for 20 minutes, and then 4 parts by weight of 1,3-butadiene was added to 20% by weight.
  • Block copolymers B—2 to B4 were prepared in the same manner as block copolymer B—
  • the MFR of the block copolymer B—B-14 was in the range of 5-10. Examples 1 to 5 and Comparative Examples 1 to 6
  • a styrene-based copolymer composition having the composition shown in Table 3 was extruded with a sheet extruder having a screw diameter of 40 mm (extrusion temperature: 200 ° C), and a sheet having a thickness of 0.25 mm was extruded. Molded.
  • the tensile elastic modulus (a measure of rigidity), elongation at break, and haze value of the obtained sheet were measured by the above methods.
  • the sheet was stretched to obtain a heat-shrinkable film, and the shrinkage at 80 ° C (a measure of low-temperature shrinkage), the natural shrinkage, and the hot-water non-fusion property were measured by the above-described methods.
  • a sheet having a thickness of 0.6 mm was formed in the same manner, and the surface impact strength (impact resistance) of the obtained sheet was measured by the above method.
  • the above composition was continuously molded into a 0.3 mm-thick sheet for 6 hours using a sheet extruder (extrusion temperature: 235 ° C) with a screw diameter of 40 mm, and the above method was used. FE was evaluated. Examples 6 to 9 and Comparative Examples 7 to 12
  • a styrenic copolymer composition having the composition shown in Table 4 was molded in the same manner as in Example 1 to obtain a tensile modulus (a measure of rigidity), elongation at break, haze value, and shrinkage at 80 ° C. (Estimated low-temperature shrinkage), natural shrinkage, hot-water non-fusion property, and surface impact strength (improved impact resistance) were measured by the above-mentioned methods. The sheet anisotropy was calculated by the above method. Table 4 shows the results. 'Example 10.
  • a part of the aliphatic double bond of the butadiene monomer unit of the block copolymer B-1 is removed using a Ti-based hydrogenation catalyst described in JP-B-63-5401. It was hydrogenated to obtain a hydrogenated block copolymer C-11. Its hydrogenation rate was 12% by weight.
  • a styrenic copolymer composition having the composition shown in Table 5 was molded in the same manner as in Example 1, and the physical properties were measured or evaluated. Table 5 shows the results.
  • block copolymer B-1 Similar to the production of block copolymer B-1, except that the block copolymer having active riving ends is terminal-modified by adding epoxidized soybean oil as a terminal modifier immediately before adding methanol.
  • a block copolymer D-1 having a terminal modifier residue at the polymer terminal was obtained.
  • the amount of the terminal modifier was 1 molecule per 1 atom of lithium of the polymerization initiator used for producing the block copolymer B-1.
  • a styrenic copolymer composition having the composition shown in Table 5 was molded in the same manner as in Example 1.1, and the physical properties were measured or evaluated. Table 5 shows the results.
  • the block copolymer having an active living terminal is terminal-modified.
  • a block copolymer D-3 having a terminal modifying agent residue at the polymer terminal was obtained in the same manner as in the production of the block copolymer B-3 except that the copolymer had the property of having properties.
  • the amount of the terminal modifier added was 1 molecule per 1 atom of lithium of the polymerization initiator used for producing the block copolymer B-3.
  • Example 14 A styrenic copolymer composition having the composition shown in Table 5 was molded in the same manner as in Example 1, and the physical properties were measured or evaluated. Table 5 shows the results.
  • Example 14 A styrenic copolymer composition having the composition shown in Table 5 was molded in the same manner as in Example 1, and the physical properties were measured or evaluated. Table 5 shows the results.
  • Example 14 A styrenic copolymer composition having the composition shown in Table 5 was molded in the same manner as in Example 1, and the physical properties were measured or evaluated. Table 5 shows the results.
  • Example 14 A styrenic copolymer composition having the composition shown in Table 5 was molded in the same manner as in Example 1, and the physical properties were measured or evaluated. Table 5 shows the results.
  • Example 14 A styrenic copolymer composition having the composition shown in Table 5 was molded in the same manner as in Example 1, and the physical properties were measured or evaluated. Table 5 shows the results.
  • Example 14 A styrenic
  • Example 16 A part of the aliphatic double bond of the butadiene monomer unit of the block copolymer B-7 was removed using a Ti-based hydrogenation catalyst described in Japanese Patent Publication No. 63-54001. Hydrogenated, hydrogenated block A copolymer C-17 was obtained. Its hydrogenation rate was 44% by weight.
  • a styrenic copolymer composition having the composition shown in Table 6 was molded in the same manner as in Example 1, and the physical properties were measured or evaluated. The sheet anisotropy was calculated by the above method. Table 6 shows the results.
  • Example 16 A part of the aliphatic double bond of the butadiene monomer unit of the block copolymer B-7 was removed using a Ti-based hydrogenation catalyst described in Japanese Patent Publication No. 63-54001. Hydrogenated, hydrogenated block A copolymer C-17 was obtained. Its hydrogenation rate was 44% by weight.
  • a styrenic copolymer composition having the composition shown in Table 6 was molded in the same
  • block copolymer B-8 Same as in the preparation of block copolymer B-8 except that the block copolymer having an active riving terminal is terminal-modified by adding epoxidized soybean oil as a terminal modifier immediately before adding methanol.
  • a block copolymer D-8 having a terminal modifier residue at the polymer terminal was obtained.
  • the amount of the terminal modifier was 1 molecule per 1 atom of lithium of the polymerization initiator used for producing the block copolymer B_8.
  • a styrenic copolymer composition having the composition shown in Table 6 was molded in the same manner as in Example 1, and the physical properties were measured or evaluated. The sheet anisotropy was calculated by the above method. Table 6 shows the results.
  • the terminal copolymer is modified by adding tetraglycidyl-1,3-bisaminomethylcyclohexane as a terminal modifier.
  • a block copolymer D-6 having a terminal modifier residue at the polymer terminal was obtained in the same manner as in the production of the block copolymer B-6 except that the block copolymer B-6 was produced.
  • the amount of the terminal modifier was 1 molecule per 1 atom of lithium of the polymerization initiator used for producing the block copolymer B-6.
  • a styrenic copolymer composition having the composition shown in Table 5 was molded in the same manner as in Example 1, and the physical properties were measured or evaluated.
  • the sheet anisotropy was calculated by the above method. Table 6 shows the results.
  • I represents an isoprene polymer block
  • B represents a butadiene polymer block
  • I / B represents an isoprene / 1,3-butadiene copolymer block
  • IZB / S represents isoprene and 1,3— Represents a copolymer block of butadiene and styrene
  • S represents a styrene polymer block
  • X represents a residue of tetraglycidyl-1,3-bisaminomethylcyclohexane
  • Y represents a residue of silicon tetrachloride.
  • the number in () indicates the composition amount (% by weight).
  • B- 4 B- 14 was added ethyl alcohol under number polymerizable active terminals at the time of the addition of 5 parts by weight of 2 parts of S, molecular weight subsequent to continue polymerization of the remaining S 2 parts of styrene polymer block was adjusted.
  • Stabilizer a 2 [1- (2-hydroxy-3,5-di-t-pentylphenyl) ethyl] -1 4-—6-t-pentylphenyl acrylate
  • Stabilizer bn tactyldecyl- 3— (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionate
  • the amount of stabilizer is the amount added to the total of 100 parts by weight of the styrene / n-butyl acrylate copolymer and the block copolymer.
  • Stabilizer a 2— [1- (2-hydroxy-3,5-di-t-pentylphenyl) ethyl] -1 4-1-6-t-pentylphenylacrylate
  • Stabilizer c Tris-1 (nonylphenyl) phosphite
  • the amount of the stabilizer is the amount added to 100 parts by weight of the total of the styrene / n-butyl acrylate copolymer and the block copolymer.
  • Stabilizer a 2— [1- (2-hydroxy-3,5-di-t-pentylphenyl) ethyl] —4-16-—g-t-pentylphenylacrylate
  • Stabilizer b n_octyldecyl-3_ (3,5-di-t-butyl-4-hydroxyphenyl) propionate
  • Stabilizer c Tris (nonylphenyl) phosphite
  • the amount of stabilizer is the amount added to the total of 100 parts by weight of the styrene / n-butyl acrylate copolymer and the block copolymer.
  • Stabilizer a 2— [1- (2-hydroxy-3,5-di-t-pentylphenyl) ethyl] -1 4 _ 6-g-t-pentylphenylacrylate
  • Stabilizer b n-octadecyl 3- (3-, 5-di-tert-butyl-4-hydroxyphenyl) propionate
  • Stabilizer c Tris (nonylphenyl) phosphite
  • the amount of the stabilizer is the amount added to 100 parts by weight of the total of the styrene / n-butyl acrylate copolymer and the block copolymer.
  • the molded article obtained from the styrenic copolymer composition of the present invention has not only excellent tensile elastic modulus and elongation at break, excellent transparency, natural non-shrinkage property, hot water non-fusion property, but also fish eye (FE).
  • the molded article obtained from the composition of the first embodiment (including the asymmetric block copolymer (II)) included in the composition of the present invention has a slightly large anisotropy
  • the molded article obtained from the composition of the second embodiment (including the symmetric block copolymer (II)) has excellent impact strength and low anisotropy.
  • the heat-shrinkable film obtained from the composition of the present invention has low FE and excellent low-temperature shrinkability.
  • the composition of the present invention can be suitably used for various uses such as a wrapping film application and a film laminated on a foam container.

Description

明 細 書 スチレン系共重合体組成物 技術分野
本発明は、 スチレン/7アク リル酸 n ブチル共重合体 ( I ) とビニル芳香族炭化水素単量体単位及び共役ジェン単量体単位 を含有するブロック共重合体 ( I I ) とを包含するスチレン系 共重合体組成物に関する。 さらに詳しくは、 本発明は、 スチレ ン単量体単位とアクリル酸 n ブチル単量体単位とを特定の比 で含有するスチレン Zアク リル酸 n ブチル共重合体 ( I ) と、 ビニル芳香族炭化水素単量体単位を主体とする少なく とも 2つ の重合体ブロック (A) と少なく とも 1つのビニル芳香族炭化 水素 Z共役ジェン共重合体ブロック (B) とを含有するブロッ ク構造を有し、 ビニル芳香族炭化水素単量体単位と共役ジェン 単量体単位とを特定の比で含有するブロック共重合体 ( I I ) とを包含するスチレン系共重合体組成物であって、 該ブロック 共重合体 ( I I ) に含まれるビニル芳香族炭化水素全量に対す る 1 〜 3個のビニル芳香族炭化水素単量体単位からなるショー トセグメン トの割合が特定の範囲にあり、 該少なく とも 2つの 重合体ブロック ( A ) は、 そのゲルパーミエ一シヨ ンクロマ ト グラムにおいて最大のピーク分子量を有する最大ピーク分子量 重合体ブロックを含み、 該最大ピーク分子量重合体プロックは 該クロマ トグラムにおいて特定の分子量範囲に少なく とも 1つ のピーク分子量を有し、 該少なく とも 2 つの重合体ブロック ( A ) における該最大ピーク分子量重合体ブロックの含有率は 特定の範囲にあり、 該少なく とも 2つの重合体ブロック (A ) における最大重量重合体ブロックの最小重量重合体ブロックに 対する重量比が比較的大きく、 該スチレン Zアク リル酸 n —ブ チル共重合体 ( I ) と該ブロック共重合体 ( I I ) との重量比 が特定の範囲にあることを特徴とする、 スチレン系共重合体組 成物に関する。 本発明はまた、 スチレン単量体単位とアクリル 酸 n —ブチル単量体単位とを特定の比で含有するスチレン Zァ ク リル酸 n —ブチル共重合体 ( I ) と、 ビニル芳香族炭化水素 単量体単位を主体とする少なく とも 2つの重合体ブロック(A ) と少なく とも 1 つのビニル芳香族炭化水素ノ共役ジェン共重合 体ブロック (B ) とを含有するブロック構造を有し、 ビニル芳 香族炭化水素単量体単位と共役ジェン単量体単位とを特定の比 で含有するブロック共重合体 ( I I ) とを包含するスチレン系 共重合体組成物であって、 該ブロック共重合体 ( I I ) に含ま れるビニル芳香族炭化水素全量に対する 1 〜 3個のビニル芳香 族炭化水素単量体単位からなるショートセグメントの割合が特 定の範囲にあり、 該少なく とも 2つの重合体ブロック (A ) は、 そのゲルパーミエーショ ンクロマトグラムにおいて特定の分子 量範囲に少なく とも 1つのピーク分子量を有する重合体ブロッ クを有し、 該少なく とも 2つの重合体ブロック (A ) のピーク 分子量を有する該重合体ブロック含有率は特定の範囲にあり、 該少なく とも 2つの重合体ブロック (A) における最大重量重' 合体ブロックの最小重量重合体ブロックに対する重量比が比較 的小さく、 該スチレン Zアク リル酸 n—ブチル共重合体 ( I ) と該ブロック共重合体 ( I I ) との重量比が特定の範囲にある ことを特徵とする、 スチレン系共重合体組成物に関する。 (以 下屡々、 最大重量重合体ブロックの最小重量重合体プロックに 対する重量比が比較的大きな少なく とも 2つの重合体ブロック
(A) を含むブロック共重合体 (II) を 「非対称型ブロック共 重合体 (II) 」 と称し、 最大重量重合体ブロックの最小重量重 合体ブロックに対する重量比が比較的小さな少なく とも 2つの 重合体プロック (A) を含むブロック共重合体 (II) を 「対称 型ブロック共重合体 (Π) 」 と称する。 )
本発明のスチレン系共重合体組成物から得られる成形品は、 引張弾性率、 破断伸びが大きく、 透明性、 自然非収縮性 (周囲 温度での収縮度が小さい) 、 温水非融着性 (例えば、 85°Cの温 水中での融着が少ない) に優れるだけでなく、 フィ ッシュアイ
( f i s h e y e , 以下屡々 「F E」 と略す) も少ない。 また 上記の非対称型ブロック共重合体 (II) を含むスチレン系共重 合体組成物から得られる成形品は、 面衝撃強度にも優れる。 ま た、 上記の対称型ブロック共重合体 (II) を含むスチレン系共 重合体組成物から得られる成形品は、 異方性が小さい。 さ らに、 本発明のスチレン系共重合体組成物に特定の安定剤を添加して なる組成物から得られる成形品 (シー ト、 フィルムなど) は、 F Eがさらに少ない。
また、 本発明のスチレン系共重合体組成物から得られる熱収 縮性フィルムは、 F Eが少ない上に、 低温収縮性にも優れてい る。 従来技術
ビニル芳香族炭化水素単量体単位と共役ジェン単量体単位と を含有する、 ビニル芳香族炭化水素単量体単位含有量が比較的 高いブロック共重合体は、 透明性、 耐衝撃性などの特性を有す るので、 射出成形用途、 押し出し成形用途 (シート、 フィルム など) などに使われている。 とりわけ、 上記ブロック共重合体 とビニル芳香族炭化水素 Z脂肪族不飽和カルボン酸系誘導体共 重合体とを包含する組成物は、 透明性、 機械特性及び収縮性に 優れているので、 シー ト、 フィルムなどとして用いられている。
該組成物、 または該組成物から得られるシートやフィルムに 関し、 従来からいくつかの提案がなされている。 たとえば、 日 本国特開昭 5 9 — 2 2 1 3 4 8号公報には、 引張強度、 弾性率、 衝撃強度が大きく、 光学特性、 延伸特性、 耐クラック特性など に優れる組成物として、 脂肪族不飽和カルボン酸系誘導体含有 量が 5 ~ 8 0重量 で、 ビカツ ト軟化点が 9 0 °C以下であるビ ニル芳香族炭化水素/脂肪族不飽和カルボン酸系誘導体共重合 体と、 少なく とも 1つのビニル芳香族炭化水素重合体ブロック 及び共役ジェンを主体とする少なく とも 1 つの重合体ブロック を有する共重合体とを包含する組成物が開示されている。また、 日本国特開昭 6 1 — 2 5 8 1 9号公報には、 低温収縮性 (例え ば、 80 °Cでの収縮率が少なく とも 20 % ) 、 光学特性、 耐クラッ ク特性、 寸法安定性などに優れる熱収縮性フィルムとして、 ビ ニル芳香族炭化水素含有量が 2 0 〜 9 5重量%で、 ビカツ ト軟 化点が 9 0 °C以下であるビニル芳香族炭化水素/脂肪族不飽和 カルボン酸系誘導体共重合体と、 少なく とも 1つのビニル芳香 族炭化水素重合体ブロックと共役ジェン誘導体を主体とする重 合体ブロックを有する.共重合体とを包含する組成物を延伸して 得られる低温収縮性フィルムが開示されている。 また、 日本国 特開平 5 — 1 0 4 6 3 0号公報には、 経時安定性と耐衝擊性に 優れた透明な熱収縮性フィルムとして、 ビカッ ト軟化点が 1 0 5 °C以下であるビニル芳香族炭化水素 Z脂肪族不飽和カルボン 酸系誘導体共重合体と、 少なく とも 1 つのビニル芳香族炭化水 素重合体ブロック及び共役ジェン誘導体を主体とする少なく と も 1つの重合体ブロックを有する共重合体とを包含する組成物 のフィルムで、 特定方向の熱収縮力が特定の範囲にある熱収縮 性硬質フィルムが開示されている。 また、 日本国特開平 6 — 2 2 0 2 7 8号公報には、 透明性、 剛性及び低温面衝撃性に優れ た組成物として、 ビニル芳香族炭化水素及び共役ジェンを有す るブロック共重合体であって、 特定のプロ ック構造と特定の分 子量分布とを有する共重合体と、 ビニル芳香族炭化水素 Z (メ 夕) アク リル酸エステル共重合体樹脂とを包含する組成物が開 示されている。 また、 日本国特開平 7— 2 1 6 1 8 7号公報に は, 透明性と耐衝撃性に優れた樹脂組成物として、 2つのビニ ル芳香族炭化水素重合体ブロック及び 2つのビニル芳香族炭化 水素 Z共役ジェン共重合体ブロックを有するブロック共重合体 と、 ビニル芳香族炭化水素 Z (メタ) アク リル酸エステル共重 合体とを包含する、 透明で高強度の樹脂組成物が開示されてい る。
しかしながら、 上に挙げた従来の、 ビニル芳香族炭化水素及 び共役ジェンを含有するブロック共重合体とビニル芳香族炭化 水素 Z脂肪族不飽和カルボン酸系誘導体共重合体とを包含する 組成物は、 比較的薄いシートやフィルムの製造に用いると、 引 張弾性率、 破断伸び、 面衝撃強度が大きく、 透明性、 自然非収 縮性、 温水非融着性に優れるだけでなく、 F Eも少ないシー ト やフィルムを得ることはできない、 という問題を抱えている。 しかも、 上 Ϊ3の文献にはこの問題を解決するための方法は記載 されていない。 発明の概要
このような状況の下で、 本発明者らは、 従来技術に伴う上記 の問題を解決するために鋭意研究を重ねた。 その結果、 意外に も、 スチレン単量体単位とァク リル酸 η―ブチル単量体単位と を特定の比で含有するスチレン/アクリル酸 η —ブチル共重合 体 ( I ) と、 ビニル芳香族炭化水素単量体単位を主体とする少 なく とも 2つの重合体ブロック ( A ) と少なく とも 1つのビニ ル芳香族炭化水素ノ共役ジェン共重合体ブロック (B ) とを含 有するブロック構造を有し、 ビニル芳香族炭化水素単量体単位 と共役ジェン単量体単位とを特定の比で含有するプロック共重 合体 ( I I ) とを包含するスチレン系共重合体組成物であって、 該ブロック共重合体 ( I I ) に含まれるビニル芳香族炭化水素 全量に対する 1〜 3個のビニル芳香族炭化水素単量体単位から なるショー トセグメントの割合が特定の範囲にあり、 該少なく とも 2つの重合体ブロック ( A ) は、 そのゲルパーミエ一ショ ンクロマ トグラムにおいて最大のピーク分子量を有する最大ピ ーク分子量重合体ブロックを含み、 該最大ピーク分子量重合体 ブロックは窣クロマ トグラムにおいて特定の分子量範囲に少な く とも 1 つのピーク分子量を有し、 該少なく とも 2つの重合体 ブロック (A) の該最大ピーク分子量重合体ブロック含有率は 特定の範囲にあり、 該少なく とも 2つの重合体ブロック (A) における最大重量重合体ブロックの最小重量重合体ブロックに 対する重量比が比較的大きく (1.2〜4.5) 、 該スチレン/ァク リル酸 n—ブチル共重合体 ( I ) と該ブロック共重合体 ( I I ) との重量比が特定の範囲にあることを特徴とするスチレン系共 重合体組成物が、 引張弾性率、 破断伸び、 面衝撃強度が大きく、 透明性、 自然非収縮性、 温水非融着性に優れるだけでなく、 F Eも少ない成形品 (シー ト、 フィルムなど) を提供することの できる組成物であることを見出した。 本発明者らはまた、 スチ レン単量体単位とァク リル酸 n—ブチル単量体単位とを特定の 比で含有するスチレン Zアク リル酸 n—ブチル共重合体 ( I ) と、 ビニル芳香族炭化水素単量体単位を主体とする少なく とも 2つの重合体ブロック (A) と少なく とも 1つのビニル芳香族 炭化水素 Z共役ジェン共重合体ブロック ( B ) とを含有するブ ロック構造を有し、 ビニル芳香族炭化水素単量体単位と共役ジ ェン単量体単位とを特定の比で含有するブロック共重合体 ( I I ) とを包含するスチレン系共重合体組成物であって、 該ブロ ック共重合体 ( I I ) に含まれるビニル芳香族炭化水素全量に 対する 1 〜 3個のビニル芳香族炭化水素単量体単位からなるシ ョートセグメントの割合が特定の範囲にあり、 該少なく とも 2 つの重合体ブロック ( A ) は、 そのゲルパ一ミエ一シヨ ンクロ マ トグラムにおいて特定の分子量範囲に少なく とも 1つのピー ク分子量を有する重合体ブロックを有し、 該少なく とも 2つの 重合体ブロック (A) のピーク分子量を有する該重合体ブロッ ク含有率は特定の範囲にあり、 該少なく とも 2つの重合体プロ ック (A) における最大重量重合体ブロックの最小重量重合体 ブロックに対する重量比が比較的小さく (1.0 以上かつ 1.2 未 満) 、 該スチレン アク リル酸 n _ブチル共重合体 ( I ) ど該 ブロック共重合体 ( I I ) との重量比が特定の範囲にあること を特徴とするスチレン系共重合体組成物が、 引張弾性率、 破断 伸びが大きく、 異方性が小さく、 透明性、 自然非収縮性、 温水 非融着性に優れるだけでなく、 F Eも少ない成形品 (シート、 フィルムなど) を提供することのできる組成物であることを見 出した。 これらの知見に基づき、 本発明は完成された。
したがって、 本発明の 1つの目的は、 引張弾性率、 破断伸び に優れ、 透明性、 自然非収縮性、 温水非融着性に優れるだけで なく、 F Eも少ないシートやフィルムなどの成形品を得ること ができるスチレン系共重合体組成物を提供することである。 本発明の他の 1つの目的は、 上記の優れた特性に加え、 異方 性は若干大きいが面衝撃強度に優れる成形品を得ることができ るスチレン系共重合体組成物を提供することである。
本発明の更に他の 1つの目的は、 上記の優れた特性に加え、 異方性の小さい成形品を得ることができるスチレン系共重合体 組成物を提 ί共することである。
本発明の上記及びその他の諸目的、諸特徴ならびに諸利益は、 添付の図面を参照しながら行う以下の詳細な説明及び請求の範 囲の記載から明らかとなる。
'図面の簡単な説明
添付の図面において :
図 1は、 本発明で用いられるスチレン/アクリル酸 η _プチ ル共重合体 ( I ) の 1 8 0〜 2 4 0 °Cにおける溶融粘度の好ま しい範囲を説明するためのグラフである。 図 1 において、 実線 は、 上記の好ましい溶融粘度範囲の下限を示す次の式 溶融粘度範囲の下限
= 1 .4 6 X 1 0 5 - 1 1 1 9. 2 XT + 2. 2 5 6 XT 2 (式中、 Tは温度 (°C) を示す) で表される曲線である。 破線は、 上記の好ましい溶融粘度範囲 の上限を示す次の式 溶融粘度範囲の上限
= 2. 9 1 X 1 0 5 - 2 3 5 0 XT + 5 XT
(式中、 Τは温度 (°C) を示す) で表される曲線である。 発明の詳細な説明
本発明の 1つの態様によれば、
スチレン単量体単位の含有量が 8 0〜 8 9重量%、 アクリル 酸 n—ブチル単量体単位の含有量が 2 0〜 1 1重量%であるス チレン/アク リル酸 n—ブチル共重合体 ( I ) 、 及び
ビニル芳香族炭化水素単量体単位を主体とする少なく とも 2 つの重合体ブロック (A) と少なく とも 1つのビニル芳香族炭 化水素 Z共役ジェン共重合体ブロック (B ) とを含有するプロ ック構造を有するブロック共重合体 ( I I ) を包含するスチレン系共重合体組成物であって、
該ブロック共重合体 ( I I ) は、 ビニル芳香族炭化水素単量 体単位の含有量が 6 5〜 9 0重量%、 共役ジェン単量体単位の 含有量が 3 5〜 1 0重量%であり、
該ブロック共重合体 ( I I ) に含まれるビニル芳香族炭化水 素単量体単位の総重量に対する、 1 ~ 3個のビニル芳香族炭化 水素単量体単位からなる少なく とも 1つのショートセグメント に含まれるビニル芳香族炭化水素単量体単位の重量%で定義さ れる、 ビニル芳香族炭化水素単量体単位のショートセグメント 率が:! 〜 2 5重量%であり、
該少なく とも 2つの重合体ブロック ( A ) は、 そのゲルパ一 ミエーショ ンクロマ トグラムにおいて最大のピーク分子量を有 する最大ピーク分子量重合体ブロックを含み、 該最大ピーク分 子量重合体ブロックは該クロマトグラムにおいて分子量 3 0, 0 0 0 〜 1 5 0 , 0 0 0 の範囲に少なく とも 1つのピ一ク分子 量を有するフラクショ ンを有し、 該少なく とも 2つの重合体ブ ロック (A ) における該最大ピーク分子量重合体ブロック含有 率は 2 0 〜 5 0重量%であり、
該少なく とも 2つの重合体ブロック (A ) は最大重量重合体 ブロック及び最小重量重合体ブロックを有し、 該最大重量重合 体ブロッ クの該最小重量重合体ブロックに対する重量比は 1 . 2〜 4 . 5であり、
該スチレン Zアク リル酸 n —プチル共重合体 ( I ) と該ブロ ック共重合体 ( I I ) との重量比が 1 0 / 9 0〜 9 0 / 1 0で ある、 ―' ことを特徴とするスチレン系共重合体組成物が提供される。 本発明の他の 1つの態様によれば、
スチレン単量体単位の含有量が 8 0〜 8 9重量%、 アク リル 酸 n—ブチル単量体単位の含有量が 2 0〜 1 1重量%であるス チレン/アクリル酸 n—ブチル共重合体 ( I ) 、 及び
ビニル芳香族炭化水素単量体単位を主体とする少なく とも 2 つの重合体ブロック (A) と少なく とも 1つのビニル芳香族炭 化水素/共役ジェン共重合体ブロック (B ) とを含有するプロ ック構造を有するブロック共重合体 ( I I )
を包含するスチレン系共重合体組成物であって、
該ブロック共重合体 ( I I ) は、 ビニル芳香族炭化水素単量 体単位の含有量が 7 5〜 8 5重量%、 共役ジェン単量体単位の 含有量が 2 5〜 1 5重量%であり、
該ブロック共重合体 ( I I ) に含まれるビニル芳香族炭化水 素単量体単位の総重量に対する、 1〜 3個のビニル芳香族炭化 水素単量体単位からなる少なく とも 1つのショートセグメン ト に含まれるビニル芳香族炭化水素単量体単位の重量%で定義さ れる、 ビニル芳香族炭化水素単量体単位のショー トセグメン ト 率が 1 0〜 2 0重量%であり、
該少なく とも 2つの重合体ブロック ( A ) は、 そのゲルパー ミエーシヨ ンクロマトグラムにおいて 2 0 , 0 0 0〜 7 0, 0 0 0の範囲に少なく とも 1つのピーク分子量を有する重合体ブ ロックを有し、 該少なく とも 2つの重合体ブロック (A) のピ ーク分子量を有する該重合体ブロック含有率は 2 5〜 3 5重 量%であり、
該少なく とも 2つの重合体ブロック (A) は最大重量重合体 ブロック及び最小重量重合体ブロックを有し、 該最大重量重合 体ブロックの該最小重量重合体ブロックに対する重量比は 1. 0以上かつ 1.2未満であり、
該スチレン Zアク リル酸 n—ブチル共重合体 ( I ) と該ブロ ック共重合体 ( I I ) との重量比が 2 0 Z 8 0〜 6 0 Z4 0で ある、
ことを特徴とするスチレン系共重合体組成物が提供される。 本発明の理解を容易にするために、 以下、 本発明の基本的特 徵及び好ましい諸態様を列挙する。
1. スチレン単量体単位の含有量が 8 0〜 8 9重量%、 ァクリ ル酸 n—ブチル単量体単位の含有量が 2 0〜 1 1重量%である スチレン Zアク リル酸 n—ブチル共重合体 ( I ) 、 及び
ビニル芳香族炭化水素単量体単位を主体とする少なく とも 2 つの重合体ブロック (A) と少なく とも 1つのビニル芳香族炭 化水素ノ共役ジェン共重合体ブロック (B) とを含有するプロ ック構造を有するブロック共重合体 ( I I )
を包含するスチレン系共重合体組成物であって、 該ブロック共重合体 ( I I ) は、 ビニル芳香族炭化水素単量 体単位の含有量が 6 5〜 9 0重量%、 共役ジェン単量体単位の 含有量が 3 5〜 1 0重量%であり、
該ブロック共重合体 ( I I ) に含まれるビエル芳香族炭化水 素単量体単位の総重量に対する、 1〜 3個のビニル芳香族炭化 水素単量体単位からなる少なく とも 1つのショー トセグメン ト に含まれるビニル芳香族炭化水素単量体単位の重量%で定義さ れる、 ビニル芳香族炭化水素単量体単位のショートセグメント 率が 1 〜 2 5重量%であり、
該少なく とも 2つの重合体ブロック ( A ) は、 そのゲルパー ミエーショ ンクロマ トグラムにおいて最大のピーク分子量を有 する最大ピーク分子量重合体ブロックを含み、 該最大ピーク分 子量重合体ブロックは該クロマトグラムにおいて分子量 3 0, 0 0 0〜 1 5 0 , 0 0 0の範囲に少なく とも 1つのピーク分子 量を有し、 該少なく とも 2つの重合体ブロック (A) における 該最大ピーク分子量重合体ブロックの含有率は 2 0〜 5 0重 量%であり、
該少なく とも 2つの重合体ブロック (A) は最大重量重合体 ブロック及び最小重量重合体ブロックを有し、 該最大重量重合 体ブロックの該最小重量重合体ブロックに対する重量比は 1 . 2〜 4. 5であり、
該スチレンノアク リル酸 n—ブチル共重合体 ( I ) と該ブロ ック共重合体 ( I I ) との重量比が 1 079 0〜 9 0 / 1 0で あることを特徴とする、 スチレン系共重合体組成物。
2. 該スチレンノアク リル酸 n—ブチル共重合体 ( I ) のスチ レン単量体単位の含有量が 8 3〜 8 9重量%、 アクリル酸 n— ブチル単量体単位の含有量が 1 7〜 1 1重量%であることを特 徴とする、 前項 1 に記載のスチレン系共重合体組成物。
3.曇価が 1. 2 %以下である成形品を提供することを特徴とす る、 前項 1又は 2 に記載のスチレン系共重合体組成物。
4. 該スチレン/アク リル酸 n _ブチル共重合体 ( I ) の 1 8 0〜 2 4 0 °Cにおける溶融粘度 P (T)が、 次の関係式 :
1 . 4 6 X 1 0 ° - 1 1 1 9. 2 XT + 2. 2 5 6 XT 2
≤ Ρ (Τ) ≤
2. 9 1 X 1 0 ° - 2 3 5 0 ΧΤ + 5 ΧΤ
(ただし、 Τは溶融粘度の測定温度 C) を表し、 Ρ (Τ)は測 定温度 T (°c) における溶融粘度 (ボイズ) を表す。 ) を満足することを特徴とする、 前項 1〜 3 のいずれかに記載の スチレン系共重合体組成物。
5. 該スチレン Zアク リル酸 n—ブチル共重合体( I )の 3 0 °C における貯蔵弾性率が 1 . 5 X 1 0 9〜 2. 5 X 1 0 9 P aの範 囲であり、 該共重合体 ( I ) が、 3 0 °Cにおける貯蔵弾性率の'
5 0 %の貯蔵弾性率を示す温度が 7 5〜 1 0 0 °Cの範囲である ことを特徴とする、 前項 1〜 4のいずれかに記載のスチレン系 共重合体組成物。
6. 安定剤として 2 — [ 1 一 ( 2 —ヒ ドロキシー 3, 5 —ジー t 一ペンチルフエニル) ェチル] — 4— 6 —ジー t —ペンチル フエニルァク リ レー トを、 該スチレンノアク リル酸 n—ブチル 共重合体 ( I ) と該ブロック共重合体 ( I I ) との合計 1 0 0 重量部に対して 0. 0 5〜 3重量部含むことを特徴とする、 前 項 1〜 5のいずれかに記載のスチレン系共重合体組成物。
7. スチレン単量体単位の含有量が 8 0〜 8 9重量%、 アタリ ル酸 n—ブチル単量体単位の含有量が 2 0〜 1 1重量%である スチレンノアク リル酸 n—ブチル共重合体 ( I ) 、 及び
ビニル芳香族炭化水素単量体単位を主体とする.少なく とも 2 つの重合体ブロック (A) と少なく とも 1つのビニル芳香族炭 化水素/共役ジェン共重合体ブロック (B ) とを含有するプロ ック構造を有するブロック共重合体 ( I I )
を包含するスチレン系共重合体組成物であって、
該ブロック共重合体 ( I I ) は、 ビニル芳香族炭化水素単量 体単位の含有量が 7 5〜 8 5重量%、 共役ジェン単量体単位の 含有量が 2 5〜 1 5重量%であり、
該ブロック共重合体 ( I I ) に含まれるビニル芳香族炭化水 素単量体単位の総重量に対する、 1〜 3個のビニル芳香族炭化 水素単量体単位からなる少なく とも 1つのショートセグメン ト に含まれるビニル芳香族炭化水素単量体単位の重量%で定義さ れる、 ビニル芳香族炭化水素単量体単位のショートセグメント 率が 1 0〜 2 0重量%であり、
該少なく とも 2つの重合体ブロック ( A ) は、 そのゲルパー ミエーシヨ ンクロマ トグラムにおいて 2 0, 0 0 0〜 7 0, 0 0 0の範囲に少なく とも 1つのピーク分子量を有する重合体ブ ロックを有し、 該少なく とも 2つの重合体ブロック (A) のピ —ク分子量を有する該重合体ブロ ック含有率は 2 5〜 3 5重 量%であり、 ,
該少なく とも 2つの重合体ブロック (A) は最大重量重合体 プロック及び最小重量重合体プロックを有し、 該最大重量重合 体ブロックの該最小重量重合体ブロックに対する重量比は 1.
0以上かつ 1.2未満であり、
該スチレンノアク リル酸 n—ブチル共重合体 ( I ) と該ブロ ック共重合体 ( I I ) との重量比が 2 0 Z 8 0〜 6 0 / 4 0で あることを特徴とする、 スチレン系共重合体組成物。
8. 該スチレン Ζアクリル酸 η—ブチル共重合体 ( I ) のスチ レン単畺体単位の含有量が 8 3〜 8 9重量%、 ァクリル酸 η— ブチル単量体単位の含有量が 1 7〜 1 1重量%であることを特 徴とする、 前項 7 に記載のスチレン系共重合体組成物。 .
9. 曇価が 1 . 2 %以下である成形品を提供することを特徴と する、 前項 7又は 8 に記載のスチレン系共重合体組成物。
1 0. 該スチレンノアク リル酸 n—ブチル共重合体 ( I ) の 1 8 0〜 2 4 0 °Cにおける溶融粘度 P (T)が、 次の関係式 :
1 . 4 6 X 1 0 5 - 1 1 1 9 . 2 XT + 2. 2 5 6 X T 2
< P (T) ≤
2. 9 1 X 1 0 " - 2 3 5 0 XT + 5 XT 2
(ただし、 Tは溶融粘度の測定温度 C) を表し、 P (T)は測 定温度 Τ C) における溶融粘度 (ボイズ) を表す。 ) を満足することを特徴とする、 前項 7〜 9 のいずれかに記載の スチレン系共重合体組成物。
1 1. 該スチレン Ζアク リル酸 η—ブチル共重合体 ( I ) の 3
0 °Cにおける貯蔵弾性率が 1 . 5 X 1 0 9〜 2. 5 X 1 0 9 P a の範囲であり、 該共重合体 ( I ) が、 3 0 aCにおける貯蔵弾性 率の 5 0 %の貯蔵弾性率を示す温度が 7 5〜 1 0 0 °Cの範囲で あることを特徴とする、 前項?〜 1 0のいずれかに記載のスチ レン系共重合体組成物。
1 2 . 安定剤として 2 — [ 1 — ( 2 —ヒ ドロキシー 3 , 5 —ジ 一 t 一ペンチルフエニル) ェチル] 一 4 一 6 —ジー t 一ペンチ ルフエ二ルァク リ レートを、 該スチレンノアク リル酸 n—プチ ル共重合体 ( I ) と該ブロック共重合体 ( I I ) との合計 1 0 0重量部に対して 0 . 0 5 〜 3重量部含むことを特徴とする、前 項 7 〜 1 1 のいずれかに記載のスチレン系共重合体組成物。 以下、 本発明について詳しく説明する。
尚、 本発明において、 重合体を構成する各単量体単位の -叩 名は、該単量体単位が由来する単量体の命名に従っている。 それ故、 「ビニル芳香族炭化水素単量体単位」 とは、 単量体 である ビ.ニル芳香族炭化水素を重合した結果生ずる、重合体 の構成単位を意味し、 その構造は、 置換ビニル基に由来する 置換エチ レン基の二つの炭素が結合部位となっている分子 構造である。 又、 「共役ジェン単量体単位」 とは、 単量体で ある共役ジェン単量体を重合した結果生ずる、重合体の構成 単位を意味し、 その構造は、 共役ジェン単量体に由来するォ レフ イ ンの二つの炭素が結合部位となっ ている分子構造で ある。
本発明においては、 上記のように、 スチレン単量体単位とァ ク リル酸 n —ブチル単量体単位とを特定の比で含有するスチレ ン Zアクリル酸 n—ブチル共重合体 ( I ) と、 ビニル芳香族炭 化水素単量体単位を主体とする少なく とも 2つの重合体ブロツ · ク (A) と少なく とも 1つのビニル芳香族炭化水素 Z共役ジェ ン共重合体ブロック (B ) とを含有するブロック構造を有し、 ビニル芳香族炭化水素単量体単位と共役ジェン単量体単位とを 特定の比で含有するブロック共重合体 ( I I ) とを包含する、 スチレン系共重合体組成物が提供される。 このスチレン系共重 合体組成物は、 そのブロック共重合体 ( I I ) が、 上記の 「非 対称型ブロック共重合体 ( I I ) 」 である第 1 の態様の組成物 と上記の 「対称型ブロック共重合体 ( I I ) 」 である第 2 の態 様の組成物を包含する。
まず、 第 1 と第 2の態様の組成物に共通のスチレン/ァク リ ル酸 n—ブチル共重合体 ( I ) について説明する。
本発明で用いられるスチレンノアク リル酸 n—ブチル共重合 体 ( I ) は、 スチレン単量体単位、 アクリル酸 n—ブチル単量 体単位をそれぞれ 8 0〜 8 9重量%、 2 0〜 1 1重量%含有す る共重合体である。 スチレン単量体単位の含有量は、 好ましく は 8 3〜 8 9重量%である。 スチレン単量体単位の含有量が 8 0重量%未満である場合には、 スチレン系共重合体組成物から 得られるシートやフィルムは低温で融着するため、 好ましくな い。 また、 スチレン単量体単位の含有量が 8 9重量%より大き い場合には、 スチレン系共重合体組成物から得られる成形品の 透明性が悪化するため、 好ましくない。 本発明で用いられるスチレンノアク リル酸 n—プチル共重合 体 ( I ) の 1 8 0〜 2 4 0 °Cにおける溶融粘度 P (T ) は、 次の- 関係式 :
1. 4 6 X 1 0 J - 1 1 1 9. 2 XT + 2. 2 5 6 XT 2
≤ P (T) <
2. 9 1 X 1 0 " - 2 3 5 0 XT + 5 XT 2
(ただし、 Tは溶融粘度の測定温度 (°C) を表し、 P (T)は測 定温度 T (°C) における溶融粘度 (ボイズ) を表す。 ) を満足することが好ましい。
図 1 は、 本発明で用いられるスチレン/ァク リル酸 n—プチ ル共重合体 .( I ) の 1 8 0〜 2 4 0 °Cにおける溶融粘度の好ま しい範囲を説明するためのグラフである。 図 1 において、 実線 は、 上記の好ましい溶融粘度範囲の下限を示す次の式 溶融粘度範囲の下限
= 1.4 6 X 1 0 5 - 1 1 1 9. 2 XT + 2. 2 5 6 X T 2
(式中、 Tは温度 (°C) を示す) で表される曲線である。 破線は、 上記の好ましい溶融粘度範囲 の上限を示す次の式 溶融粘度範囲の上限
= 2. 9 1 X 1 0 5 - 2 3 5 0 XT + 5 XT 2
(式中、 Τは'温度 (°C) を示す) で表される曲線である。
溶融粘度 P (T)が上記関係式の上限値より大きい場合には、 スチレン系共重合体組成物から得られるシー トに比較的小さな F Eが発生する傾向がある。 また、 溶融粘度 P (T)が上記関係 式の下限値より小さい場合には、 スチレン系共重合体組成物か ら得られるシー トに比較的大きな F Eが発生する傾向がある。 なお、 スチレン Zアクリル酸 n—ブチル共重合体 ( I ) の 1 8 0〜 2 4 0 °Cにおける溶融粘度は、 キヤピログラフ (日本国 東洋精機 (株) 社製) で測定した、 シェアレート ( S R) が 6
1 s e c — 1 における値である。 この測定は、 キヤ ビラリ一長 さ ( L ) が 1 0. 0 m m、 キヤビラリ一径 ( D ) が 1. 0 0 m m、 バレル径 ( B ) が 9. 5 0 m mであるという条件で、 1 8 0〜 2 4 0 °Cの温度範囲で行われる。
スチレンノアク リル酸 n—ブチル共重合体 ( I ) の貯蔵弾性 率については、 3 0 °Cにおける貯蔵弾性率が 1. 5 X I 0 9〜 2. 5 X 1 0 9 P aの範囲にあり、 3 0 °Cにおける貯蔵弾性率の 5 0 %となる温度が 7 5〜 1 0 0 °Cの範囲にあることが好ましい スチレン Zアク リル酸 n—ブチル共重合体 ( I ) の 3 0 °Cにお ける貯蔵弾性率は、 1. 7 X 1 0 9〜 2. 3 X 1 0 9 P aの範囲で あることがさらに好ましい。 貯蔵弾性率が 3 0 °Cにおける貯蔵 弾性率の 5 0 %となる温度は、 7 5〜 8 5 °Cの範囲にあること' がさらに好ましい。
スチレン Zァク リル酸 n—ブチル共重合体 ( I ) の 3 0 °Cに おける貯蔵弾性率が 1. 5 X 1 0 9 P a未満である場合は、 スチ レン系共重合体組成物から得られる成形品の剛性の向上が十分 でない傾向がある。 一方、 2. 5 X I 0 9 P aより大きい場合は、 スチレン系共重合体組成物から得られる成形品の破断伸びの向 上が十分でない傾向がある。 また、 貯蔵弾性率が 3 0 °Cにおけ る貯蔵弾性率の 5 0 %となる温度が 7 5 °C未満である場合は、 スチレン系共重合体組成物を成形してシートやフィルムとした ときに低温非融着性の向上が十分でない傾向がある。 一方、 貯 蔵弾性率が 3 0 °Cにおける貯蔵弾性率の 5 0 %となる温度が 1 0 0 °Cを超える場合は、 スチレン系共重合体組成物から得られ る熱収縮性フィルムは、 低温収縮性の向上が十分でない傾向が ある。
本発明に使用するスチレン一アクリル酸 n—ブチル共重合体 ( I ) の貯蔵弾性率は、 DMA 9 8 3 (米国 D U P O N T社製) で、 共鳴周波数、 昇温速度 Z ^Zm i nで測定した値である。 本発明に使用するスチレン一アクリル酸 n—ブチル共重合体 ( I ) の 1 8 0〜 2 4 0 °Cにおける溶融粘度、 3 0 °Cにおける 貯蔵弾性率、 及び貯蔵弾性率 3 0 °Cにおける貯蔵弾性率の 5 0 %となる温度は、 該共重合体を下記の重合方法によって製造 する際の、 スチレン及びアク リル酸 n—ブチルの添加量、 分子 量調整剤の添加量、 重合器中での滞留時間、 重合温度などを調 '· 整する ことにより、 制御することができる。
本発明で用いられるスチレン Zアク リル酸 n—ブチル共重合 体 ( I ) は、 スチレン系樹脂の公知の製造方法、 例えば、 塊状 重合法、 溶液重合法、 懸濁重合法、 乳化重合法などを用いて製 造する ことができる。
また、 スチレン系共重合体組成物の成形加工性を高めるとい う観点からは、 スチレン Zアクリル酸 n—ブチル共重合体 ( I ) のメル トフ口一レ一 ト (以下、 M F Rと記す) [ J I S K— 6 8 7 0 に準拠し、 G条件 (温度 : 2 0 0 ° (:、 荷重 : 5 K g ) で 測定] は 0 . 1〜 2 0 g / 1 0 m i nであることが好ましく、 1 〜 1 0 g Z l 0 m i nであることがさらに好ましい。
次に、 第 1 の態様の組成物における非対称型ブロック共重合 体 ( I I ) と第 2の態様の組成物における対称型ブロック共重 合体 ( I I ) について説明する。
本発明の第 1 の態様の組成物における非対称型ブロック共重 合体 ( I I ) は、 ビニル芳香族炭化水素単量体単位、 共役ジェ ン単量体単位をそれぞれ 6 5〜 9 0重量%、 3 5〜 1 0重量% 含有する共重合体 ( I I ) である。 該ビニル芳香族炭化水素単 量体単位、 共役ジェン単量体単位の含有量は、 好ましくは、 そ れぞれ 7 0〜 8 5重量%、 3 0〜 2 5重量%でぁる。
第 1 の態様の組成物における非対称型ブロック共重合体 ( I I ) のビニル芳香族炭化水素単量体単位含有量が 6 5重量%未 満、共役ジェン単量体単位含有量が 3 5重量%を超える場合は、 · 第 1 の態様の組成物から得られる成形品中の F Eが多くなるの で好ま しくない。 一方、 ビエル芳香族炭化水素含有量が 9 0重 量%を超え、共役ジェン含有量が 1 0重量%未満である場合は、 成形品の破断伸びが低下するため好ましくない。
本発明の第 2の態様の組成物における対称型ブロック共重合 体 ( I I ) は、 ピニル芳香族炭化水素単量体単位、 共役ジェン 単量体単位をそれぞれ 7 5〜 8 5重量%、 2 5〜 1 5重量%、 好ましくはそれぞれ 7 7〜 8 3重量%、 2 3〜 1 7重量%含有 する共重合体である。 第 2の態様の組成物におけるブロック共 重合体 ( I I ) のビニル芳香族炭化水素単量体単位含有量が 7 5重量%未満で共役ジェン単量体単位含有量が 2 5重量%を超 える場合は、 第 2の態様の組成物から得られる成形品中の F E が多くなるので好ましくない。 一方、 第 2の態様の組成物にお けるブロック共重合体 ( I I ) のビニル芳香族炭化水素含有量 が 8 5重量%を超え、 共役ジェン含有量が 1 5重量%未満であ る場合は、 成形品の破断伸びが低下するため好ましくない。 第 1 と第 2の態様の組成物における非対称型及び対称型のブ ロック共重合体 ( I I ) のいずれについても、 ビニル芳香族炭 化水素単量体単位を主体とする少なく とも 2つの重合体ブロッ ク (A) と少なく とも 1つのビニル芳香族炭化水素/共役ジェ ン共重合体ブロック (B ) とを含有するブロック構造を有する。 本発明において、 ビニル芳香族炭化水素単量体単位を主体とす る重合体ブロックとは、 ビニル芳香族炭化水素単量体単位の含 '· 有量が 7 0 %以上である重合体ブロックを意味する。 また、 ビ ニル芳香族炭化水素/共役ジェン共重合体ブロック とは、 ビニ ル芳香族炭化水素単量体単位の含有量が 7 0 %未満であるよう なビニル芳香族炭化水素ノ共役ジェン共重合体ブロックを意味 する。
第 1 と第 2の態様の組成物における非対称型及び対称型のブ ロック共重合体 ( I I ) のいずれについても、 その例として、 次の式 ( 1 ) 、 ( 2 ) または ( 3 ) :
( 1 ) A— ( B - A) n
( 2 ) A - .(B - A) n — B
( 3 ) B - (A - B) n + 1 で表されるブロック構造を有する線状ブロック共重合体、 及び 次の式 ( 4 ) 、 ( 5 ) または ( 6 ) :
( 4 ) [ (A - B ) k] m + 2 - X
( 5 ) [ (A- B ) k - A] m + 2 - X
( 6 ) [ ( B - A) k] m + 2 - X
( 7 ) [ ( B - A) k - B ] m + 2 - X で表されるブロック構造を有する分岐ブロック共重合体を挙げ ることができる。 ただし、 上記式 ( 1〉 〜 ( 7 ) において、 Α·· はビニル芳香族炭化水素単量体単位を主体とする重合体ブロッ クを表す。 Bは、 ビニル芳香族炭化水素/共役ジェン共重合体 ブロック、 または共役ジェン重合体ブロックを表す。 Xは四塩 化ケィ素、 四塩化スズ、 エポキシ化大豆油、 テトラグリシジル- 1, 3 -ビスアミノメチルシクロへキサン、 ポリハロゲン化炭化 水素、 カルボン酸エステル、 ポリ ビニル化合物などのカツプリ ング剤の残基、 または多官能有機リチウム化合物などの開始剤 の残基を表す。 n、 k及び mは自然数であり、 一般には 1〜 5 である。
本発明において、 「分岐ブロック共重合体」 とは、 複数の重 合体鎖が 3〜 8官能のカップリング剤の残基または 3〜 8官能 の有機リチウム化合物などの開始剤の残基で結合された構造を 有するブロック共重合体を意味する。
第 1 と第 2の態様の組成物における非対称型及び対称型のブ ロック共重合体 ( I I ) のいずれも、 炭化水素溶媒中、 有機リ チウム化合物を開始剤としてビニル芳香族炭化水素及び共役ジ ェンを重合することによって得られる。 ブロック共重合体 ( I I ) を製造する際の重合温度は一般に一 1 0 ~ 1 5 0 °C、 好ま しくは 4 0〜 1 2 0 °Cであ'る。 重合に要する時間は条件によつ て異なるが、 通常は 1 0時間以内であり、 特に好ましくは 0 . 5〜 5時間である。 また、 重合系は窒素ガスなどの不活性ガス 雰囲気に置換するのが望ましい。 重合圧力については、 上記重 合温度範囲でモノマ一及び溶媒を液層に維持するに充分な圧力' - の範囲である限り、 特に制限はない。 また、 重合系内には触媒 ゃリ ビングポリマ一を不活性化させるような不純物、例えば水、 酸素、 炭酸ガスなどが混入しないよう留意する必要がある。
第 1 と第 2の態様の組成物のいずれについても、 スチレン一 アク リル酸 n—ブチル共重合体 ( I ) とブロック共重合体 ( I I ) との混和性を改良するため、 ブロック共重合体 ( I I ) は 次の極性基 ( a ) 〜 ( f ) : ( a ) 活性水素を含有する極性基、 ( b ) 窒素を含有する極性基、 ( c ) エポキシ基又はチォェポ キシ基を含有する極性基、 ( d ) カルボニル基又はチォカルボ 二ル基を含有する極性基、 ( e ) リ ンを含有する極性基、 ( f ) 次の式で表される構造単位 _ MX 3 、 — MX 2 R、 一 MX R 2 、 - M R 3 (ただし、 Mは S i 、 G e、 S n、 P bを表し、 Xは ノ\ロゲンを表し、 Rはアルキル基、 フエノール基又はアルコキ シ基を表し ; 2つの構造単位は相互に隣接していてもよいし ; 2個以上同一末端変性剤残基の中に存在していてもよい。 ) から選ばれる少なく とも 1種の極性基を有する末端変性剤の残 基を、 重合体末端に有せしめることができる。 末端変性剤の例 としては、 カルポニル基、 チォカルポニル基、 酸ハロゲン化物 基、 酸無水物基、 アルデヒ ド基、 チォアルデヒ ド基、 カルボン 酸エステル基、 アミ ド基、 スルホン酸基、 リ ン酸基、 リ ン酸ェ ステル基、 アミノ基、 イ ミノ基、 二トリル基、 ピリ ジル基、 キ ノ リ ン基、 エポキシ基、 チォエポキシ基、 イソシァネート基、 イソチオシァネート基などを有する化合物、 ハロゲンを含有す '· るケィ素化合物、 ハロゲンを含有するスズ化合物などを挙げる ことができる。 より具体的には、 日本国特公平 4 — 3 9 4 9 5 (米国特許第 5 1 1 5 0 3 5号に対応) に記載された末端変性 剤を挙げることができる。
本発明の第 1 の態様の組成物における非対称型ブロック共重 合体 ( I I ) のビニル芳香族炭化水素を主体とする少なく とも 2つの重合体ブロック ( A ) は、 そのゲルパーミエ一シヨ ンク 口マトグラムにおいて最大のピーク分子量を有する最大ピーク 分子量重合体ブロックを含み、 該最大ピーク分子量重合体プロ ックは該クロマ トグラムにおいて分子量 3 0 , 0 0 0〜 1 5 0 , 0 0 0の範 に、 好ましくは 3 0 , 0 0 0〜 1 3 0 , 0 0 0の 範囲にピーク分子量を有し、 該少なく とも 2つの重合体ブロッ ク (A) における該最大ピーク分子量重合体ブロック含有率は 2 0〜 5 0重量%、 好ましくは 2 5〜 4 5重量%である。 該最 大ピーク分子量重合体ブロックのピーク分子量が 3 0 , 0 0 0 未満である場合、 または、 該最大ピーク分子量重合体プロック 含有量が 2 0重量%未満である場合は、 組成物から得られる成 形品の剛性が低下し、 フィルムとした際に低温で融着しゃすく なるため、 好ましくない。 また、 該最大ピーク分子量重合体ブ ロックのピーク分子量が 1 5 0, 0 0 0 を超える場合、 または 該ピーク分子量重合体ブロック含有量が 5 0重量%を超える場 合は、 第 1 態様の組成物から得られる熱収縮性フィルムの 8 0 °C収縮率及び自然収縮性が劣るため、 好ましくない。 '· 本発明の第 2 の態様の組成物における対称型ブロック共重合 体 ( I I ) のビニル芳香族炭化水素を主体とする少なく とも 2 つの重合体ブロック ( A ) は、 そのゲルパー.ミエーシヨ ンクロ マ トグラムにおいて 2 0, 0 0 0〜 7 0 , 0 0 0 の範囲に、 好 ましくは 2 5, 0 0 0〜 6 5 , 0 0 0 の範囲にピーク分子量を 有する重合体ブロックを有し、 該少なく とも 2つの重合体プロ ック (A) のピーク分子量を有する該重合体ブロック含有率は 2 5〜 3 5重量%である。 該重合体ブロックのピーク分子量が 2 0, 0 0 0未満である場合、 または、 該重合体ブロック含有 量が 2 5重量%未満である場合は、 組成物から得られる成形品 の剛性が低下し、 フィルムとした際に低温で融着しゃすくなる ため、 好ましくない,。 また、 該最大ピーク分子量重合体ブロッ クのピーク分子量が 7 0 , 0 0 0 を超える場合、 または該最大 ピーク分子量重合体ブロック含有量が 3 5重量%を超える場合 は、 第 1態様の組成物から得られる熱収縮性フィルムの 8 0 °C 収縮率及び自然収縮性が劣るため、 好ましくない。
第 1 と第 2 の態様の組成物における非対称型及び対称型のブ ロック共重合体 ( I I ) のいずれについても、 ビニル芳香族炭 化水素単量体単位を主体とする少なく とも 2つの重合体ブロッ ク (A) のピーク分子量を有する重合体ブロックのピーク分子 量、 及び該少なく とも 2つの重合体ブロック (A) におけるピ ーク分子量を有する該重合体ブロック含有率は、 それぞれ、 ブ ロック共重合体を構成する重合体プロックの分子量分布、 プロ '- ック共重合体を構成する重合体ブロックを形成するのに用いら れるビニル芳香族炭化水素重量比から求めることができる。
また、 ビニル芳香族炭化水素単量体単位を主体とする少なく とも 2つの重合体ブロック ( A ) がビニル芳香族炭化水素独重 合体ブロックである場合は、 該少なく とも 2つの重合体ブロッ ク (A) の該最大ピーク分子量重合体ブロックのピーク分子量 と該最大ピーク分子量重合体ブロック含有率の測定は、 次のよ うな方法によっても行う ことができる。 まず、 ブロック共重合 体 ( I I ) を、 四酸化オスミウムを触媒として夕一シャリーブ チルハイ ドロパーォキサイ ドによって酸化分解し、 ビニル芳香 族炭化水素重合体ブロック成分 (ただし、 平均重合度が約 3 0 以下であるビニル芳香族炭化水素重合体成分は除かれている) を得る [ I . M. KO L TH O F F , e t a 1 - , J . P o l y m. S c i . 1 , 4 2 9 ( 1 9 4 6 ) 参照] 。 次に、 得られ たビニル芳香族炭化水素重合体ブロック成分を G P Cにかけて G P C曲線を得る。 続いて、 単分散ポリスチレンを G P Cにか けてそのピークカウント数と分子量から作成した検量線を用い 定法 [例えば、 「ゲルパ一ミエーショ ンクロマ トグラフィ一」 、 ( 1 9 7 6年、 丸善株式会社発行) を参照] に従ってピーク分 子量を求めることができる。
ピーク分子量を有するビニル芳香族炭化水素重合体ブロック のピーク分子量は、 ビニル芳香族炭化水素重合体ブロックを製 造する際の触媒量、 ビニル芳香族炭化水素の添加量を変えるこ '· とによって、 調整することができる。
また、 ピーク分子量を有する重合体ブロックの含有率は、 G P C曲線の各ピ一クの面積比から求めることもできるし、 ビニ ル芳香族炭化水素単独重合体ブロックを重合するときに添加す るビニル芳香族炭化水素の添加重量比から求めることができる, 第 1 と第 2の態様の組成物における非対称型及び対称型のブ ロック共重合体 ( I I ) のいずれにおいても、 該ビニル芳香族 炭化水素単量体単位を主体とする少なく とも 2つの重合体プロ ック (A ) は、 最大重量重合体ブロック及び最小重量重合体ブ ロックを有する。 該最大重量重合体ブロックの該最小重量重合 体ブロックに対する重量比を以下屡々 「最大ノ最小ブロック重 量比」 と称する。
なお、 第 1 の態様の組成物において、 該少なく とも 2つの重 合体ブロック (A ) の最大重量ブロックは、 上記の最大ピーク 分子量重合体ブロックと同じである。
第 1 の態様の組成物における非対称型プロック共重合体 ( I ェ) においては、 上記最大/最小ブロック重量比は 1 . 2〜 4 . 5、 好ましくは 1 . 5〜 4 . 0である。 本発明の第 1の態様の組 成物におけるブロック共重合体 ( I I ) は最大/最小ブロック 重量比が大きいので、 第 1 の態様の組成物から得られる成形品 は、異方性は若干大きいが面衝擊強度などの耐衝撃性に優れる。 最大ノ最小ブロック重量比が 1 . 2未満である場合は、第 1 の態 様の組成物から得られる成形品の耐衝撃性が低下するため好ま': しくない。 一方、 最大/最小ブロック重量比が 4 . 5を超える場 合は、 第 1 の態様の組成物から得られるシートの透明性が低下 するため好ましくない。
本発明の第 2 の態様の組成物における対称型ブロック共重合 体 ( I I ) においては、 最大 Z最小ブロック重量比は 1 . 0以 上かつ 1 . 2未満であることが必要である。 本発明の第 2の態 様の組成物におけるブロック共重合体 ( I I ) は最大 Z最小ブ ロック重量比が小さいので、 第 2の態様の組成物から得られる シー トは異方性が小さい。最大 Z最小ブロック重量比が 1 . 2以 上である場合は、 第 2の態様の組成物から得られるシートの異 方性が大きくなり、 シー 卜が押出方向に割れやすくなるため、 好ましくない。
最大 最小プロック重量比の値は、 ブロック共重合体 ( I I ) を製造する際の、 ビニル芳香族炭化水素を主体とする重合体ブ ロックを形成するためのビエル芳香族炭化水素の添加重量から 算出することができるが、 前記したビニル芳香族炭化水素単独 重合体ブロックの場合は四酸化オスミウムを触媒としてターシ ャリ ーブチル八ィ ドロパーォキサイ ドによりブロック共重合体 を酸化分解する方法によって得た G P C曲線の各ピークの面積 をから算出することもできる。
第 1 と第 2の態様の組成物における非対称型及び対称型のブ ロック共重合体 ( I I ) のいずれについても、 それを製造する 際に用いる炭化水素溶媒の例としては、 ブタン、 ペンタン、 へ- · キサン、 イ ソペンタ ン、 ヘプタン、 オクタン、 イソオクタンな どの脂肪族炭化水素類 ; シクロペンタン、 メチルシクロペン夕 ン、 シクロへキサン、 メチルシクロへキサン、 ェチルシク ロへ キサンなどの脂環式炭化水素類 ; ベンゼン、 トルエン、 ェチル ベンゼン、 キシレンなどの芳香族炭化水素類などを挙げること ができる。 これらは単独で使用してもよいし、 2種以上混合し て使用してもよい。
第 1 と第 2 の態様の組成物における非対称型及び対称型の ブロッ ク共重合体 ( I I ) のいずれについても、 用いられるビ ニル芳香族炭化水素単量体単位の例としては、 スチレン、 o — メチルスチレン、 p —メチルスチレン、 p — t e r t —ブチル スチレン、 2 , 4 —ジメチルスチレン、 α —メチルスチレン、 ビニルナフタ レン、 ビニルアン トラセン、 1 , 1 ージフエニル エチレンなどに由来する単量体単位を挙げるこ とができる。 こ れらの中で、 スチレンに由来する単量体単位が特に好ましい。 これらは単独で使用してもよいし、 2種以上混合して使用して もよい。
ブロック共重合体 ( I I ) に用いられる共役ジェン単量体単 位の例として、 1, 3 —ブタジエン、 2 —メチルー 1 , 3 —ブ 夕ジェン (イ ソプレン) 、 2 , 3 —ジメチルー 1 , 3 一ブタジ ェン、 1 , 3 —ペン夕ジェン、 1 , 3 —へキサジェンなどに由 来する単量体単位を挙げることができる。 これらは単独で使用 してもよいし、 2種'以上混合して使用してもよい。 共役ジェン '- 単量体単位は、 1 , 3 —ブタジエン及びイソプレンからなる群 から選ばれる少なく とも 1種の共役ジェンに由来する単量体単 位であることが好ましい。
第 1 と第 2の態様の組成物のいずれについても、 成形品の F E抑制効果を高めるという観点からは、 ブロック共重合体 ( I I ) における共役ジェン単量体単位の少なく とも一部がイソプ レンに由来することが好ましい。 また、 その場合、 ブロック共 重合体 ( I I ) は、 イソプレン単独重合体ブロックを含むこと が好ましい。
第 1 と第 2の態様の組成物のいずれについても、 F E抑制効 果を高める いうという観点からは、 また、 ブロック共重合体 ( I I ) の共役ジェン単量体単位の脂肪族二重結合が部分的に 水添されており、 その水添率 (水素添加率) は 1〜 5 0 %であ ることが好ましく、 3〜 4 0 %であることがさ らに好ましく、 5〜 3 0 %であることがさらに好ましい。
本発明において、 ブロック共重合体 ( I I ) の共役ジェン単 量体単位の脂肪族二重結合部分の水添率 (水素添加率) とは、 ブロック共重合体 ( I I ) に含まれる共役ジェン単量体単位の 脂肪族二重結合のうち、 水添されて飽和炭化水素結合に転換さ れているものの割合である。
水添率は赤外分光光度計、 核磁気共鳴装置などによって測定 することができる。
水添反応に使用される触媒としては、 不均一系触媒と均一系" 触媒とがある。
不均一系触媒の例としては、 N i 、 P t: 、 P d、 R uなどの 金属を力一ボン、 シリカ、 アルミナ、 ケイソゥ土などの担体に 担持させた担持型触媒を挙げることができる。
均一系触媒の例としては、 N i 、 C o、 F e、 C rなどの有 機塩又はァセチルアセトン塩と有機 A 1 などの還元剤とを用い るいわゆるチーグラー型触媒、 又は R u、 R hなどの有機金属 化合物などのいわゆる有機錯体触媒、 或いはチ夕ノセン化合物 に還元剤として有機 L i 、 有機 A 1 、 有機 M gなどを用いる触 媒を挙げることができる。
本発明に用いられるブロック共'重合体 ( I I ) の共役ジェン 単量体単位の脂肪族二重結合を部分的に水添するための具体的 な方法としては、 日本国特公昭 4 2 - 8 7 0 4号公報 (AU 6 4 5 3 1 7 3、 C A 8 1 5 5 7 5 , 及び D E 1 2 2 2 2 6 0 に 対応) 、 日本国特公昭 4 3 — 6 6 3 6号公報 (米国特許第 3 3 3 3 0 2 4号に対応) に記載された方法、 好ましくは日本国特 公昭 6 3 一 4 8 4 1号公報 (米国特許第 4 5 0 1 8 5 7号に対 応) 、 日本国特公昭 6 3 - 5 4 0 1号公報 (米国特許第 4 5 0 1 8 5 7号に対応) に記載された方法を用いて、 不活性溶媒中 で水素添加触媒の存在下で水素添加を行う という方法を挙げる ことができる。 本発明の第 1 の態様の組成物における非対称型ブロック共重 合体 ( I I ) については、 該ブロック共重合体 ( I I ) に含ま': れるビニル芳香族炭化水素単量体単位の総重量に対する、 1〜 3個のビニル芳香族炭化水素単量体単位からなる少なく とも 1 つのショー トセグメントに含まれるビニル芳香族炭化水素単量 体単位の重量%で定義される、 ビニル芳香族炭化水素単量体単 位のショートセグメント率は 1〜 2 5重量%、 好ましくは 5〜 2 0重量%である。 ビニル芳香族炭化水素単量体単位のショー トセグメント率が 1重量%未満である場合は、 第 1 の態様の組 成物から得られるシートやフィルムの伸びが低下するため好ま しくない。 一方 2 5重量%を超える場合は、 シートやフィルム の加熱時の変形が大きくなり、 寸法安定性に劣るため好ましく ない。
本発明の第 2 の態様の組成物における対称型プロック共重合 体 ( I I ) については、 上記と同じに定義されるビニル芳香族 炭化水素単量体単位のショー トセグメン ト率は 1 0 ~ 2 0重 量%である。 ビニル芳香族炭化水素単量体単位のショ一トセグ メント率が 1 0重量%未満である場合は、 第 2の態様の組成物 から得られるシートやフィルムの伸びが低下するため好ましく ない。 一方、 ビニル芳香族炭化水素単量体単位のショートセグ メント率が 2 0重量%を超える場合は、 シートやフィルムの加 熱時の変形が大きくなり、寸法安定性に劣るため好ましくない。
ビニル芳香族炭化水素単量体単位のショートセグメント率は ブロック共重合体をジクロロメタンに溶解し、 オゾン (〇 3 ) にて酸化分解した後、 得られたォゾニドをジェチルェ一テル中' : で水素化アルミニウムリチウムにて還元し、 純水で加水分解を 行う ことにより得られたビニル芳香族炭化水素成分のゲルパー ミエ一シヨ ンクロマトグラフィー ( G P C ) 測定を行い、 得ら れたピークの面積比を算出することにより定'量できる (田中康 之、 佐藤寿弥、 仲二見泰伸 「高分子学会予稿集」 2 9 、 2 0 5 1頁、 1 9 8 0年、 を参照) 。
第 1 と第 2の態様の組成物における非対称型及び対称型のブ ロック共重合体 ( I I ) のいずれについても、 ビニル芳香族炭 化水素単量体単位のショートセグメン ト率は、 ブロック共重合 体 ( I I ) のビニル芳香族炭化水素 Z共役ジェン共重合体プロ ックを製造するときの、 ビニル芳香族炭化水素単量体及び共役 ジェン単量体の添加量、 重合する複数の単量体の重合反応性比 などを変えることによって調整することができる。具体的には、 ビニル芳香族炭化水素単量体と共役ジェン単量体との混合物を 連続的に重合系に供給しながら重合する方法、 極性化合物或は ランダム化剤を使用してビニル芳香族炭化水素単量体と共役ジ ェン単量体とを共重合する方法などを、 単独または組み合わせ て用いることによって、 ピニル芳香族炭化水素単量体単位のシ ョー トセグメント率を調整することができる。
極性化合物やランダム化剤の例としては、 テトラヒ ドロフラ ン、 ジエチレングリ コールジメチルエーテル、 ジエチレンダリ コールジブチルエーテルなどのエーテル類、 卜 リエチルァミン、 テトラメチルエチレンジァミンなどのアミン類、 チォエーテル 類、 ホスフィ ン類、 ホスホルアミ ド類、 アルキルベンゼンスル ホン酸塩、 カリウムやナト リウムのアルコキシドなどを挙げる ことができる。
.第 1 と第 2の態様の組成物における非対称型及び対称型のブ ロック共重合体 ( I I ) のいずれも、 通常、 1 0 , 0 0 0〜 5 0 0, 0 0 0 の数平均分子量を有する。 ブロック共重合体 ( I I ) の数平均分子量は、 標準ポリスチレンを基準にして G P C によって求めることができる。
第 1 と第 2の態様の組成物のいずれについても、 成形加工性 を高めるという観点からは、 ブロック共重合体 ( I I ) の M F Rは 0. 1 〜 5 0 g Z l 0 m i nの範囲であることが好ましく、 1 〜 2 O g Z l O m i nの範囲であることがさらに好ましい。 第 1 の態様の組成物において、 スチレン一アクリル酸 n—ブ チル共重合体 ( I ) とブロック共重合体 ( I I ) との重量比は i oZ 90〜 9 0 / 1 0であり、 好ましく は s ozs o s o
/ 2 0である。
第 1 の態様の組成物において、 スチレン Ζアクリル酸 η—ブ チル共重合体 ( I ) の量が該共重合体 ( I ) とブロック共重合 体 ( I I ) との合計量の 9 0重量%を超える場合は、 組成物か ら得られる成形品の耐衝撃性が低下するので好ましくない。 ま た、 1 0重量%未満である場合は、 成形品の剛性が低下するの で好ましくな,い。
第 2 の態様の組成物において、 スチレン一アク リル酸 n—ブ チル共重合体 ( I ) とブロック共重合体 ( I I ) との重量比は 2 0 / 8 0〜 6 0 / Λ 0である。
第 2 の態様の組成物において、 スチレンノアク リル酸 n—ブ チル共重合体 ( I ) の量が該共重合体 ( I ) とブロック共重合 体 ( I I ) との合計量の 6 0重量%を超える場合は、 組成物か ら得られる成形品の耐衝撃性が低下するので好ましくない。 ま た、 2 0重量%未満である場合は、 成形品の剛性が低下するの で好ましくない。
第 1 と第 2の態様の組成物のいずれについても、 組成物から 得られる成形品の曇価は 1 . 2 %以下であることが好ましく、 1. 0 %以下であることがさらに好ましい。曇価が 1. 2 %を超える 場合、 例えばブリスターケースなどに使用されたときに、 内容 物がやや白っぽく見える傾向がある。
曇価は、 本発明の組成物をシート押出機或いは圧縮成形機を 用いて 0. 6 mmの厚さのシ一 トに成形し、そのシ一トの表面に ミネラルオイルを塗布してヘーズメーター (COLOR AND COLOR DIFFERENCE METER MODEL 1001DP : NIPPON DENSHO U KOGYO CO, .LTD.) で測定した値である。
本発明の組成物には安定剤として 2 — [ 1 一 ( 2 —ヒ ドロキ シー 3 , 5 —ジ— t 一ペンチルフエニル) ェチル] 一 4 一 6 — ジー t 一ペンチルフエ二ルァク リ レートを、 該スチレン Zァク リル酸 n—ブチル共重合体 ( I ) と該ブロック共重合体 ( I I ) との合計 1 0 0重量部に対して 0.0 5〜 3重量部、更に好まし くは 0. 1〜 2重量部添加することによって、一層の F E抑制効 果を得ることができる。安定剤の添加量が 0.0 5重量部未満で は、 安定剤による F E抑制効果はない。 また、 3重量部を超え て添加しても、 0.0 5〜 3重量部添加した場合以上の F E抑制 効果はない。
本発明の組成物にはフエノール系安定剤の少なく とも 1種を 該共重合体 ( I ) と該共重合体 ( I I ) との合計 1 0 0重量部 に対して 0. 0 5〜 3重量部添加することができる。 また、 有機 ホスフエ一 ト系、 有機ホスファイ ト系安定剤の少なく とも 1種 を該共重合体 ( I ) と該共重合体 ( I I ) との合計 1 0 0重量 部に対して 0.0 5〜 3重量部添加することができる。
フエノール系安定剤の例としては、 n—ォクタデシル 3 _( 3: 5 -ジ― t ーブチルー 4ーヒ ドロキシフエニル) プロビオネ一 ト、 2— t —ブチルー 6— ( 3— t 一プチルー 2—ヒ ドロキシ - 5一メチルベンジル) ― 一メチルフエ二ルァク リ レー 卜、 2, 4一ビス 〔 (ォクチルチオ) メチル〕 一 0—ク レゾ一ル、 テトラキス 〔メチレン— 3— (3, 5—ジ— t —ブチルー 4一 ヒ ドロキシフエニル) プロビオネ一ト〕 メタン、 1, 3 , 5— トリメチルー 2, 4, 6— トリス ( 3, 5—ジ— t 一プチルー 4ーヒ ドロキシベンジル) ベンゼン、 2 , 4—ビス一 (n—ォ クチルチオ) 一 ら — (4ーヒ ドロキシー 3 , 5—ジー t 一プチ ルァニリ ノ) 一 1 , 3, 5— ト リアジンなどを挙げることがで きる。
有機ホスフェー ト系、 有機ホスフアイ ト系安定剤の例として は、 ト リスー (ノニルフエニル) フォスファイ ト、 2, 2 —メ チレンビス ( 4 , 6 —ジー t 一ブチルフエニル) ォクチルホス ファイ ト、 2 — C 〔 2 , 4, 8 , 1 0 —テ トラキス ( 1, 1 一 ジメチルェチル) ジベンゾ [ d、 f ] [ 1, 3 , 2 ] ジォキサ フォスフエフィ ン一 6 —ィル〕 ォキシ〕 一 N, N— ビス 〔 2— 〔 〔 2 , 4 , 8, 1 0 —テ トラキス ( 1, 1 ージメチルェチル) ジベンゾ [ d、 f ] [ 1 , 3 , 2 ] ジォキサフォスフエフィ ン — 6 —ィル〕 才キシ〕 ーェチル〕 —エタンァミ ン、 ト リス ( 2, 4—ジ— t 一ブチルフエニル) フォスフアイ トなどを挙げるこ とができる。.
本発明のスチレン系共重合体組成物は、 従来のどんな配合方 法によっても製造することができる。 たとえば、 オープン口一 ル、 イ ンテンシブミキサー、 イ ンタ一ナルミキサー、 コニーダ 一、 二軸口一夕一付の連続混練機、 押出機などの一般的な混和 機を用いた溶融混練方法、 各成分を溶剤に溶解又は分散混合後 溶剤を加熱除去する方法などによって製造する ことができる。
本発明のスチレン系共重合体組成物には、 望まれるならば、 添加剤を配合する ことができる。 添加剤として用いられる重合 体としては、 ビニル芳香族炭化水素含有量が 5 0重量%以下で あるビエル芳香族炭化水素/共役ジェンブロ ック共重合体エラ ス トマ一、 ゴム変性スチレン系共重合体、 非ゴム変性スチレン 系重合体、 ポリエチレンテレフタレ一 トなどを挙げることがで さる。
添加剤と してはさ らに、 プラスチックの配合に一般的に用い られる添加剤を用いるこ とができる。 そのような添加剤の例と しては、 ガラス繊維、 ガラスビーズ、 シリカ、 炭酸カルシウム、 タルクなどの無機補強剤、 有機繊維、 クマロンイ ンデン榭脂な どの有機補強剤、 有機パーオキサイ ド、 無機パ一オキサイ ドな どの架橋剤、 チタン白、 カーボンブラック、 酸化鉄などの顔料、 染料、 難燃剤、 酸化防止剤、 紫外線吸収剤、 帯電防止剤、 滑剤、 可塑剤、 その他の増量剤、 及びこれらの混合物を挙げる ことが できる。
本発明のスチレン系共重合体組成物は、 そのままで又は着色 して通常の熱可塑性樹脂と同様の加工手段によつ.て成形し、 広 範な用途に使用できる。 例えば、 射出成形、 吹込成形方法など によって成形し、 O A機器部品、 日用品、 食品、 雑貨、 弱電部 品などの容器に使用する ことができる。 特に、 熱収縮性フィル ム、 ラミネー ト用フィルムなどの薄いフィルム、 食品 ' 弱電部 品などのブリスターケースなどの透明シー トとして好適に使用 する ことができる。 発明を実施するための最良の形態
以下、 実施例及び比較例によって本発明を具体的に説明する が、本発明はこれらの例によって何ら限定されるものではない。 実施例及び比較例に使用した共重合体の物性は次のような方 法によつて測定した。
( 1 ) 溶融粘度
溶融粘度 (ボイズ) は、 キヤピログラフ (東洋精機 (株) 社 製) で測定した、 シェア一 ( S R ) が 6 1 s e c — 1における 値である。 この測定は、 キヤピラリー長さ ( L ) が 1 0. 0 m m、 キヤビラリ一径 ( D ) が 1. 0 0 m m、 バレル径 ( B ) が 9. 5 0 mmであるという条件で、 1 8 0 〜 2 4 0 °Cの範囲で 1 0 °C 毎に行った。
( 2 ) 貯蔵弾性率
共重合体の貯蔵弾性率は、 D MA 9 8 3 (D U P O N T社製) を用い、 周波数は共鳴周波数、 昇温速度は 2 °C/m i nで、 厚 さ約 3 mm、 '幅約 1 2 m mの圧縮成形品をスパンが約 1 5 mm であるアームに取り付け、 振幅 0. 2 mmで測定した。
( 3 ) M F R
J I S K— 6 8 7 0 に基づき、 G条件 (温度 2 0 0 °C、 荷重 5 K g ) で測定した
( 4 ) 水添率 '
核磁気共鳴装置 (NM R) [ B RU C K E R社 (ドイツ国) 製 D P X— 4 0 0 ] を用いて測定した。
( 5 ) ブロック共重合体における 1〜 3個のビニル芳香族炭化 水素単量体単位からなるショートセグメント率
ブロック共重合体のジクロロメタン溶液にオゾン ( 03 ) 濃 度 1. 5 %の酸素を 1 5 0 m l /分で通過させて酸化分解し、得 られたォゾニドを、 水素化アルミニウムリチウムを混合したジ ェチルエーテル中に滴下して還元した後、 純水を滴下して加水 分解し、 炭酸カリウムを添加し、 塩析、 濾過を行う ことにより 得られたビニル芳香族炭化水素成分の G P C測定を行い、 得ら れたピークの面積比を算出することによって得た (田中康之、 佐藤寿弥、 仲二見泰伸 「高分子学会予稿集」 2 9、 2 0 5 1頁、 1 9 8 0年、 を参照) 。 なおオゾン発生機は日本オゾン (株) 製 O T— 3 1 R— 2型を用い、 G P C測定は、 クロ口ホルムを 溶媒とし、 カラムは流れ方向に s h i m p a c k H S G - 4 0 H、 s h i m p a c k G P C - 8 0 2 , s h i m p a c k G P C - 8 0 1 (日本国島津製作所製) を用いて測定した。 実施例及び比較例で得られたシートまたは熱収縮性フィルム の物性は次の方法によって測定あるいは評価した。
( 1 ) 引張弾性率 (剛性の目安) 及び破断伸び
引張速度 S mmZm i nでシート押出方向およびその直角方 向について測定した。 試験片は幅を 1 2. 7 m m、 標線間を 5 0 m mとした。
( 2 ) 異方性
押出方向の引張弾性率 [上記項目 ( 1 ) で測定] を直角方向 の引張弾性率 [上記項目 ( 1 ) で測定] で除した数値により評 価した。 評価基準は次の通りである。
〇 : 1. 2 5未満
X : 1. 2 5以上
( 3 ) 面衝撃強度 (耐衝撃性の目安)
重錘形状を半径 1 / 2インチとした以外は A S T MD— 1 7 0 9 に準拠して 2 3 で測定し、 5 0 %破壊値を求めた。
( 4 ) 曇り価 ( h a z e )
シート表面に流動パラフィ ンを塗布し、 A S TM D 1 0 0 3に準拠して測定した。 ·
( 5 ) ビカッ ト軟化点 '(耐熱性の目安) 0. 6 mmのシー トを約 7〜 8枚重ねて厚さ 3 mmに圧縮成 形したものを試験片とし、 A S T M D— 1 5 2 5 に準じて測 定 (荷重 : l K g、 昇温速度 : 2 °C/m i n ) した。
( 6 ) 8 0 °C収縮率 (低温収縮性の目安)
厚さ 0. 2 5 mmのシートをテンター延伸機で押出方向の直 角方向に 5倍に一軸延伸して得た厚さ約 6 0 ^ mの延伸フィル ムを、 8 0 °Cの温水中に 5分間浸漬し、 次の式 :
8 0 収縮率 ( % ) = { ( L - L ! ) / L } X 1 0 0
(ただし、 Lは収縮前の長さを表し、 L iは収縮後の長さを表 す。 ) によって算出した。
( 7 ) 自然収縮率
上記項目 ( 6 ) で用いたのと同様の方法で得た延伸フィルム (ただし、 8 0 °C収縮率は 4 0 %である) を 3 5 °Cで 5 日間放 置し、 次の式 :
'自然収縮率 ( ) = { (L 2 - L 3 ) L' 2 } 1 0 0 (ただし、 L 2は放置前の長さであり、 L 3は放置後の長さで ある) によって算出した。
( 8 ) 温水非融着性
上記項目 ( 6 ) で用いたのと同様の方法で得た延伸フィルム を直径約 8 c mのガラス瓶に巻き付け、 8 5 °Cの温水中に 3本 俵積みで 5分間放置し、 フィルムの融着状態を目視判定した。 判定基準は次の通りである。
◎ : 全く融着していない
〇 : 融着はわずかで、 すぐ離れる、
X : 融着しており、 すぐには離れない。
( 9 ) フィ ッシュアイ ( F E ) (小さな球状の塊)
スクリューの径が 4 0 mmであるシート押出機 (押出温度 2 3 5 °C) で厚さ 0. 3 mmのシートを 6時間連続成形し、 運転開 始 5分後と 6時間後とにおける、 シート面積 3 0 0 c m 2当た りの 0. 5 mm以上の F Eの個数の差を数え、次のように評価し た :
〇 : 差が 5 0個未満、
△ : 差が 5 0〜 ; I 0 0個、
X : 差が 1 0 0個を超える。 · 実施例や比較例において用いたスチレンノアク リル酸 n—ブ チル共重合体 A— 1〜A _ 5 は次のように製造した。
撹拌器付き 1 0 Lオートクレープに、 スチレンとアクリル酸 n—ブチルとを表 1 に示す比率で合計 5 k g添加し、 同時にェ チルベンゼン 0. 3 k gと、 MF Rを調整するための 1 , 1 ビス ( t 一ブチルパーォキシ)シクロへキサンの所定量とを仕込み、 1 1 0〜 1 5 0 °Cで 2〜 1 0時間重合した後、 ベント押出機で 未反応のスチレン、 ァクリル酸 n—ブチル、 及びェチルベンゼ ンを取り除き、 スチレン/アクリル酸 n _ブチル共重合体を得 た。
スチレン Zァクリル酸 n—プチル共重合体 A— 1〜A— 5の 物性を表 1 に示す。 実施例や比較例において用いるブロック共重合体 B— 1は次 のように製造した。
ジャケッ ト付き 3 0 L密閉反応器に 1, 3 —ブタジエン 8重 量部を 2 5重量%の濃度で含むシクロへキサン溶液を仕込み、 それに n—ブチルリチウム 0. 0 5 5重量部を添加し、反応器内 を窒素ガスで置換し、 圧力を 3〜 5 K g Z c m2 Gに維持しな がら 8 0 °Cで 1 5分間重合した。 その後スチレン 2 1重量部を 2 5重量%の濃度で含むシクロへキサン溶液を一度に添加して 8 0 °Cで 2 0分間重合し、 その後 1 , 3—ブタジエン 4重量部 を 2 0重量%の濃度で含むシクロへキサン溶液を一度に添加し て 8 0 °Cで 5分間重合し、 次に 1 , 3 —ブタジエン 1 8重量部 とスチレン 4重量部を 2 0重量%の濃度で含むシクロへキサン 溶液を 2 5分間かけて連続的に添加しながら 8 0 °Cで重合し、 次にスチレン 4 5重量部を 2 0重量%の濃度で含むシクロへキ サン溶液を一度に.添加して 8 0 °Cで 3 5分間重合した。その後、 反応器中にメタノールを n _ブチルリチウムに対して 0. 9倍 モル添加して数分 ( 1〜 5分) 間攪拌した後、 安定剤を添加し、 溶媒を除去することによって、 安定剤を含むブロック共重合体
B— 1 を回収した。
ブロック共重合体 B— 2〜 B 4はブロック共重合体 B— と同様の方法で製造した
ブロック共重合体 B— B - 1 4の M F Rは 5〜 1 0 の範 囲であった。 実施例 1〜 5及び比較例 1〜 6
表 3 に示す配合組成を有するスチレン系共重合体組成物を、 スクリユーの径が 4 0 mmであるシート押出機 (押出温度 2 0 0 °C) で押し出し、 厚さ 0. 2 5 mmのシー トを成形した。 得ら れたシートの引張弾性率 (剛性の目安) 、 破断伸び、 曇り価を 上記の方法で測定した。 また、 シートを延伸して熱収縮フィル ムを得、 上記の方法で 8 0 °C収縮率 (低温収縮性の目安) 、 自 然収縮率、 温水非融着性を測定した。 ' また、 同様に厚さ 0. 6 m mのシートを成形し、 得られたシー トの面衝撃強度 (耐衝撃性) を上記の方法で測定した。 また、 上記組成物をスクリユーの径が 4 0 m mであるシート 押出機 (押出温度 2 3 5 °C ) を用いて厚さ 0 . 3 m mのシー トを 6時間連続成形し、 上記の方法で F Eを評価した。 実施例 6〜 9及び比較例 7〜 1 2
表 4に示す配合組成を有するスチレン系共重合体組成物を実 施例 1 と同様の方法で成形し、 引張弾性率 (剛性の目安) 、 破 断伸び、 曇り価、 8 0 °C収縮率 (低温収縮性の目安) 、 自然収 縮率、 温水非融着性、 面衝撃強度 (耐衝撃性の目安) を上記の 方法で測定した。 また、 シ一ト異方性を上記の方法で算出した。 結果を表 4に示す。 ' 実施例 1 0 .
日本国特公昭 6 3— 5 4 0 1号公報に記載されている T i 系 水素添加触媒を用いてブロック共重合体 B— 1 のブタジエン単 量体単位の脂肪族二重結合の一部を水添し、 水添されたブロッ ク共重合体 C 一 1 を得た。 その水添率は 1 2重量%であった。 表 5 に示す配合組成を有するスチレン系共重合体組成物を実 施例 1 と同様の方法で成形し、 物性を測定あるいは評価した。 結果を表 5 に示す。 実施例 1 1
日本国特公昭 6 3— 5 4 0 1号公報に記載されている T i 系 水素添加触媒を用いてブロック共重合体 B— 2のブタジエン単 量体単位の脂肪族二重結合の一部を水添し、 水添されたブロッ ク共重合体 C 一 2 を得た。 その水添率は 4 2重量%であった。 表 5 に示す配合組成を有するスチレン系共重合体組成物を実 施例 1 と同様の方法で成形し、 物性を測定あるいは評価した。 結果を表 5 に示す。 実施例 1 2
メタノールを添加する直前に末端変性剤としてエポキシ化大 豆油を添加することによって活性リ ビング末端を有するブロッ ク共重合体を末端変性すること以外はブロック共重合体 B — 1 を製造するのと同様の方法で、 末端変性剤残基を重合体末端に 有するブロック共重合体 D— 1 を得た。 なお、 末端変性剤の添 加量は、 ブロック共重合体 B— 1 を製造するのに使用した重合 開始剤のリチウム 1原子に対して 1分子の割合であった 。 表 5 に示す配合組成を有するスチレン系共重合体組成物を実 施例 .1 と同様の方法で成形し、 物性を測定あるいは評価した。 結果を表 5 に示す。 実施例 1 3
メタノールを添加する直前に末端変性剤としてテトラグリシ ジル一 1 , 3 ビスアミノメチルシクロへキサンを添加する こと によって活性リ ビング末端を有するブロック共重合体を末端変 性すること以外はブロック共重合体 B— 3 を製造するのと同様 の方法で、 末端変性剤残基を重合体末端に有するブロック共重 合体 D— 3 を得た。 なお、 末端変性剤の添加量は、 ブロック共 重合体 B— 3 を製造するのに使用した重合開始剤のリチウム 1 原子に対して 1分子の割合であった 。
表 5 に示す配合組成を有するスチレン系共重合体組成物を実 施例 1 と同様の方法で成形し、 物性を測定あるいは評価した。 結果を表 5 に示す。 実施例 1 4
日本国特公昭 6 3 — 5 4 0 1号公報に記載されている T i 系 水素添加触媒を用いてブロック共重合体 B— 6のブタジエン単 量体単位の脂肪族二重結合の一部を水添し、 水添されたブロッ ク共重合体 C— 6 を得た。 その水添率は 1 0重量%であった。 表 6 に示す配合組成を有するスチレン系共重合体組成物を実 施例 1 と同様の方法で成形し、 物性を測定あるいは評価した。 また、 シート異方性を上記の方法で算出した。 結果を表 6 に示 す。 実施例 1 5
日本国特公昭 6 3 - 5 4 0 1号公報に記載されている T i 系 水素添加触媒を用いてブロック共重合体 B— 7 のブタジエン単 量体単位の脂肪族二重結合の一部を水添し、 水添されたブロッ ク共重合体 C 一 7を得た。 その水添率は 4 4重量%であった。 表 6 に示す配合組成を有するスチレン系共重合体組成物を実 施例 1 と同様の方法で成形し、 物性を測定あるいは評価した。 また、 シート異方性を上記の方法で算出した。 結果を表 6に示 す。 実施例 1 6
メタノールを添加する直前に末端変性剤としてエポキシ化大 豆油を添加することによって活性リ ビング末端を有するブロッ ク共重合体を末端変性すること以外はブロック共重合体 B— 8 を製造するのと同様の方法で、 末端変性剤残基を重合体末端に 有するブロック共重合体 D— 8を得た。 なお、 末端変性剤の添 加量は、 ブロック共重合体 B _ 8 を製造するのに使用した重合 開始剤のリチウム 1原子に対して 1分子の割合であった 。 表 6 に示す配合組成を有するスチレン系共重合体組成物を実 施例 1 と同様の方法で成形し、 物性を測定あるいは評価した。 また、 シ一ト異方性を上記の方法で算出した。 結果を表 6 に示 す。 実施例 1 7
メ夕ノールを添加する直前に末'端変性剤としてテトラグリシ ジルー 1, 3 ビスアミノメチルシクロへキサンを添加すること によって活性リ ビング末端を有するブロック共重合体を末端変 性すること以外はブロック共重合体 B — 6 を製造するのと同様 の方法で、 末端変性剤残基を重合体末端に有するプロック共重 合体 D— 6 を得た。 なお、 末端変性剤の添加量は、 ブロック共 重合体 B — 6 を製造するのに使用した重合開始剤のリチウム 1 原子に対して 1分子の割合であった 。
表 5に示す配合組成を有するスチレン系共重合体組成物を実 施例 1 と同様の方法で成形し、 物性を測定あるいは評価した。 また、 シー ト異方性を上記の方法で算出した。 結果を表 6 に示 す。
表 1
A— 1 A— 2 A— 3 A— 4 A— 5 スチレン含量 (重量%) 88 83 78 90 96
30 C貯蔵弾性率 (P a) 1.85 X 10 J 1. 80 10 1. 70X10 1. 88 X 109 1. 91 X 109 貯蔵弾性率が 30°Cの貯蔵
弾性率の 50%となる温度 82 76 70 86 91 CO
MFR (g/lOmin) 3. 5 4. 0 4. 8 2. 8 2. 1
180 C 28, 000 18, 500 16, 800 32, 000 36, 000 溶
19 O : 24, 500 15, 600 13, 800 27, 500 30, 100 融
200°C 20, 200 12, 800 12, 000 22, 500 25, 100 粘
210°C 17, 700 11, 100 10, 200 19, 500 22, 200
220°C 15 , 50 ΰ 10, 100 8,400 17, 200 20, 200 ィ 230°C 14, 700 9, 300 7, 500 16, 500 19, 100 ズ
240"C 14, 200 9, 000 7, 120 16, 100 18, 700
表 2
Figure imgf000059_0001
* 1 : Iはイソプレン重合体ブロックを表し、 Bはブタジエン重合体ブロックを表し、 I/Bはイソプレン /1, 3—ブタジエン共重合重合体ブロックを 表し、 IZB/Sはイソプレンと 1, 3—ブタジエンとスチレンの共重合体ブロックを表し、 Sはスチレン重合体ブロックを表し、 Xはテトラグリシ ジル- 1, 3-ビスアミノメチルシクロへキサンの残基を表し、 Yは四塩化ケィ素の残基を表し、 ( ) 内は組成量 (重量%) を表す。 また、 B— 4 B— 14は S2部を 5重量部添加した時点で重合活性末端数未満のエチルアルコールを添加し、 その後残りの S2部の重合を継続してスチレン重 合体ブロックの分子量を調整した。
* 2 ブロック共重合体のスチレン重合体ブロックのゲルパーミエ一ションクロマトグラムにおけるピーク分子量。
B_ l B— 2 B— 3 B— 4 B— 5 B— 10 B— 12 B— 13 B— 14については最大ピーク分子量を有する重合体ブロックのピーク 分子量。
* 3 プロック共重合体のスチレン重合体プロックの最大重量重合体プロックの最小重量重合体プロックに対する重量比。
表 3
Figure imgf000060_0001
(注) 安定剤 a 2— [ 1一 (2—ヒドロキシー 3 , 5—ジ一 t一ペンチルフエニル) ェチル]一 4— 6—ジー t一ペンチルフエ二ルァクリレート 安定剤 b n—才クタデシルー 3— ( 3 , 5—ジー t一プチルー 4ーヒドロキシフエニル) プロピオネート
安定剤 c トリス一 (ノニルフエニル) フォスファイト
* 1 スチレン /ァクリル酸 n -プチル共重合体とプロック共重合体との合計重量に占める重量%
* 2 安定剤量は、 スチレン/アクリル酸 n-ブチル共重合体とブロック共重合体との合計 1 0 0重量部に対する添加量。
表 4
Figure imgf000061_0001
(注) 安定剤 a : 2— [ 1一 (2—ヒドロキシー 3 , 5—ジ— t—ペンチルフエニル) ェチル ]一 4一 6—ジー t一ペンチルフエ二ルァクリレート
安定剤 b n—ォクタデシルー 3— ( 3 , 5—ジー t _プチル一4—ヒドロキシフエニル) プロピオネート
安定剤 c : 卜リス一(ノニルフエニル) フォスファイト
* 1 :スチレン/アクリル酸 n-ブチル共重合体とブロック共重合体との合計重量に占める重量%。 但し、 実施例 9においては、 スチレンノアクリル酸 n . -プチル 共重合体、 ブロック共重合体、 及びタフプレン 1 2 5 (旭化成工業 (株) 社製:スチレン含有量 4 0重量%) の合計重量に占める重量%。
* 2 :安定剤量は、 スチレン/アクリル酸 n-ブチル共重合体とブロック共重合体との合計 1 0 0重量部に対する添加量。
表 5
Figure imgf000062_0001
(注) 安定剤 a : 2— [1一 (2—ヒドロキシー 3, 5—ジ一 t一ペンチルフエ二ル) ェチル ]—4一 6— ジー t一ペンチルフエ二ルァクリレート
安定剤 b : n_ォク夕デシルー 3_ (3, 5—ジ— t—プチルー 4—ヒドロキシフエニル) プロピ ォネー卜
安定剤 c : トリスー (ノニルフエニル) フォスファイト
* 1 :スチレン/アクリル酸 n-プチル共重合体とブロック共重合体との合計重量に占める
* 2 :安定剤量は、 スチレン/アクリル酸 n-ブチル共重合体とブロック共重合体との合計 100重量部に対する添加量。 表 6
Figure imgf000063_0001
(注) 安定剤 a : 2— [ 1一 (2—ヒドロキシ— 3 , 5—ジ _ t—ペンチルフエニル) ェチル ]一 4一 6 _ ジー t一ペンチルフエ二ルァクリレー卜
安定剤 b : n—ォクタデシルー 3— (3 , 5—ジー t一プチルー 4—ヒドロキシフエニル) プロピ ォネ一卜
安定剤 c : トリスー (ノニルフエニル) フォスファイト
* 1 :スチレン/アクリル酸 n-ブチル共重合体とブロック共重合体との合計重量に占める
* 2 :安定剤量は、 スチレン/アクリル酸 n-ブチル共重合体とブロック共重合体との合計 1 0 0重量部に対する添加量。 産業上の利用可能性
本発明のスチレン系共重合体組成物から得られる成形品は、 引張弾性率、 破断伸びが大きく、 透明性、 自然非収縮性、 温水 非融着性に優れるだけでなく、 フィ ッシュアイ (F E ) も少な レ また、本発明の組成物に包含される第 1 の態様の組成物(非 対称型ブロック共重合体 ( I I ) を含む) から得られる成形品 は、 異方性は若干大きいが面衝撃強度に優れ、 第 2の態様の組 成物 (対称型ブロック共重合体 ( I I ) を含む) から得られる 成形品は、 異方性が小さい。 さらに、 本発明の組成物から得ら れる熱収縮性フィルムは、 F Eが少ない上に、 低温収縮性に優 れている。 本発明の組成物は、 ラッピングフィルム用途、 発泡 容器などにラミネートするフィルムなどの種々の用途に好適に 用いることができる。

Claims

3冃 求 の 範 囲
1 . スチレン単量体単位の含有量が 8 0〜 8 9重量%、 ァクリ ル酸 n—ブチル単量体単位の含有量が 2 0〜 1 1重量%である スチレン Zアク リル酸 n—ブチル共重合体 ( I ) 、 及び
ビニル芳香族炭化水素単量体単位を主体とする少なく とも 2 つの重合体ブロック (A) と少なく とも 1つのビニル芳香族炭 化水素 Z共役ジェン共重合体ブロック (B ) とを含有するプロ ック構造を有するブロック共重合体 ( I I )
を包含するスチレン系共重合体組成物であって、
該ブロック共重合体 ( I I ) は、 ビニル芳香族炭化水素単量 体単位の含有量が 6 5〜 9 0重量%、 共役ジェン単量体単位の 含有量が 3 5〜 1 0重量%であり、
該ブロック共重合体 ( I I ) に含まれるビニル芳香族炭化水 素単量体単位の総重量に対する、 1〜 3個のビニル芳香族炭化 水素単量体単位からなる少なく とも 1つのショートセグメント に含まれるビニル芳香族炭化水素単量体単位の重量%で定義さ れる、 ビニル芳香族炭化水素単量体単位のショートセグメント 率が 1〜 2 5重量%であり、
該少なく とも 2つの重合体ブロック ( A ) は、 そのゲルパー ミエ一ショ ンクロマ トグラム'において最大のピーク分子量を有 する最大ピーク分子量重合体ブロックを含み、 該最大ピーク分 子量重合体ブロックは該クロマトグラムにおいて分子量 3 0 , 0 0 0〜 1 5 0, 0 0 0 の範囲に少なく とも 1つのピーク分子 量を有し、 該少なく とも 2つの重合体ブロック (A) における 該最大ピーク分子量重合体ブロックの含有率は 2 0〜 5 0重 量%であり、
該少なく とも 2つの重合体ブロック (A) は最大重量重合体 ブロック及び最小重量重合体ブロックを有し、 該最大重量重合 体ブロックの該最小重量重合体ブロックに対する重量比は 1.
2〜 4. 5であり、
該スチレン Zアクリル酸 n—ブチル共重合体 ( I ) と該ブロ ック共蓴合体 ( I I ) との重量比が 1 0 / 9 0〜 9 0 / 1 0で あることを特徴とする、 スチレン系共重合体組成物。
2. 該スチレン Zァク リル酸 n—ブチル共重合体 ( I ) のスチ レン単量体単位の含有量が 8 3〜 8 9重量%、 アクリル酸 n— ブチル単量体単位の含有量が 1 7〜 1 1重量%であることを特 徴とする、 請求項 1 に記載のスチレン系共重合体組成物。
3.曇価が 1. 2 %以下である成形品'を提供することを特徴とす る、 請求項 1又は 2に記載のスチレン系共重合体組成物。
4. 該スチレン Zアク リル酸 n」ブチル共重合体 ( I ) の 1 8 0〜 2 4 0 °Cにおける溶融粘度 P (T )が、 次の関係式 :
1. 4 6 X 1 0 5 - 1 1 1 9. 2 X T + 2. 2 5 6 X T 2
≤ P (T) ≤
2. 9 1 X 1 0 5 - 2 3 5 0 XT + 5 XT 2
(ただし、 Tは溶融粘度の測定温度 (で) を表し、 P (T)は測 定温度 T (°C) における溶融粘度 (ボイズ) を表す。 ) を満足することを特徴とする、 請求項 1〜 3 のいずれかに記載 のスチレン系共重合体組成物。
5. 該スチレン Zアクリル酸 n—ブチル共重合体( I )の 3 0 °C における貯蔵弾性率が 1. 5 X 1 0 9〜 2. 5 X 1 0 9 P aの範 囲であり、 該共重合体 ( I ) が、 3 0 °Cにおける貯蔵弾性率の
5 0 %の貯蔵弾性率を示す温度が 7 5〜 1 0 0 °Cの範囲である ことを特徴とする、 請求項 1〜 4のいずれかに記載のスチレン 系共重合体組成物。
6. 安定剤として 2 — [ 1 一 ( 2 —ヒ ドロキシー 3, 5—ジー t —ペンチルフエ二ル) ェチル] — 4— 6 —ジ— t —ペンチル フエニルァクリ レートを、 該スチレン/ァク リル酸 n—ブチル 共重合体 ( I ) と該ブロック共重合体 ( I I ) との合計 1 0 0 重量部に対して 0. 0 5〜 3重量部含むことを特徴とする、 請 求項 1〜 5 のいずれかに記載のスチレン系共重合体組成物。
7. スチレン単量体単位の含有量が 8 0〜 8 9重量%、 ァク リ ル酸 n—ブチル単量体単位の含有量が 2 0〜 1 1重量%である スチレン Zアク リル酸 n—ブチル共重合体 ( I ) 、 及び
ビニル芳香族炭化水素単量体単位を主体とする少なく とも 2 つの重合体ブロック (A) と少なく とも 1つのビニル芳香族炭 化水素/共役ジェン共重合'体ブロック (B ) とを含有するプロ ック構造を有するブロック共重合体 ( I I )
を包含するスチレン系共重合体組成物であって、
該ブロック共重合体 ( I I ) は、 ビニル芳香族炭化水素単量 体単位の含有量が 7 5〜 8 5重量%、 共役ジェン単量体単位の 含有量が 2 5〜 1 5重量%であり、
該ブロック共重合体 ( I I ) に含まれるビニル芳香族炭化水 素単量体単位の総重量に対する、 1〜 3個のビニル芳香族炭化 水素単量体単位からなる少なく とも 1つのショー トセグメン ト に含まれる ビニル芳香族炭化水素単量体単位の重量%で定義さ れる、 ビニル芳香族炭化水素単量体単位のショー トセグメン ト 率が 1 0〜 2 0重量%であり、
該少なく とも 2つの重合体ブロック (A) は、 そのゲルパー ミエ一シヨ ンク ロマ トグラムにおいて 2 0 , 0 0 0〜 7 0 , 0 0 0の範囲に少なく とも 1つのピーク分子量を有する重合体ブ 'ロックを有し、 該少なく とも 2つの重合体ブロック (A) のピ ーク分子量を有する該重合体ブロ ック含有率は 2 5〜 3 5重 量%であり 、 該少なく とも 2つの重合体ブロック (A) は最大重量重合体 プロック及び最小重量重合体プロックを有し、 該最大重量重合 体ブロックの該最小重量重合体ブロックに対する重量比は 1.
0以上かつ 1. 2未満であり、
該スチレンノアクリル酸 n—ブチル共重合体 ( I ) と該ブロ ック共重合体 ( I I ) との重量比が 2 0 Z 8 0〜 6 0 / 4 0で あることを特徴とする、 スチレン系共重合体組成物。
8. 該スチレンノアクリル酸 n _ブチル共重合体 ( I ) のスチ レン単量体単位の含有量が 8 3〜 8 9重量%、 アクリル酸 n— プチル単量体単位の含有量が 1 7〜 1 1重量%であることを特 徴とする、 請求項 7に記載のスチレン系共重合体組成物。
9. 曇価が 1 . 2 %以下である成形品を提供することを特徴.:'と する、 請求項 7又は 8 に記載のスチレン系共重合体組成物。
1 0. 該スチレン/アクリル酸 n —ブチル共重合体 ( I ) の 1 8 0〜 2 4 0 °Cにおける溶融粘度 P (T)が、 次の関係式 :
1. 4 6 X 1 0 5 - 1 1 1 9. 2 X T + 2. 2 5 6 X T 2
≤ P (T) < '
2. 9 1 X 1 0 5 - 2 3 5 0 XT + 5 XT 2
(ただし、 Tは溶融粘度の測定温度 (°C) ,を表し、 P (T)は 定温度 T (で) における溶融粘度 (ボイズ) を表す。 ) を満足することを特徴とする、 請求項 7〜 9のいずれかに記載 のスチレン系共重合体組成物。
1 1. 該スチレン/アクリル酸 n—ブチル共重合体 ( I ) の 3
0 °Cにおける貯蔵弾性率が 1. 5 X 1 0 9〜 2. 5 X 1 0 9 P a の範囲であり、 該共重合体 ( I ) が、 3 0 °Cにおける貯蔵弾性 率の 5 0 %の貯蔵弾性率を示す温度が 7 5〜 1 0 0 °Cの範囲で あることを特徵とする、 請求項 7〜 1 0のいずれかに記載のス チレン系共重合体組成物。
1 2. 安定剤として 2 — [ 1 一 ( 2 —ヒ ドロキシー 3 , 5 —ジ — t 一ペンチルフエエル) ェチル] 一 4一 6—ジ— t —ペンチ ルフエニルァク リ レートを、 該スチレン/アク リル酸 n—プチ ル共重合体 ( I ) と該ブロック共重合体 ( I I ) との合計 1 0 0重量部に対して 0. 0 5〜 3重量部含むことを特徴とする、請 求項 7〜 1 1 のいずれかに記載のスチレン系共重合体組成物。
PCT/JP2000/004372 2000-06-30 2000-06-30 Composition copolymere styrene WO2002002692A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60039916T DE60039916D1 (de) 2000-06-30 2000-06-30 Styrol-copolymerzusammensetzung
PCT/JP2000/004372 WO2002002692A1 (fr) 2000-06-30 2000-06-30 Composition copolymere styrene
KR10-2002-7002831A KR100501988B1 (ko) 2000-06-30 2000-06-30 스티렌계 공중합체 조성물
CN00813477A CN1376179A (zh) 2000-06-30 2000-06-30 苯乙烯共聚物组合物
EP00942436A EP1266935B1 (en) 2000-06-30 2000-06-30 Styrene copolymer composition
US10/180,524 US7323512B2 (en) 2000-06-30 2002-06-27 Styrene copolymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/004372 WO2002002692A1 (fr) 2000-06-30 2000-06-30 Composition copolymere styrene

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10069764 A-371-Of-International 2000-06-30
US10/180,524 Continuation-In-Part US7323512B2 (en) 2000-06-30 2002-06-27 Styrene copolymer composition

Publications (1)

Publication Number Publication Date
WO2002002692A1 true WO2002002692A1 (fr) 2002-01-10

Family

ID=11736208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004372 WO2002002692A1 (fr) 2000-06-30 2000-06-30 Composition copolymere styrene

Country Status (6)

Country Link
US (1) US7323512B2 (ja)
EP (1) EP1266935B1 (ja)
KR (1) KR100501988B1 (ja)
CN (1) CN1376179A (ja)
DE (1) DE60039916D1 (ja)
WO (1) WO2002002692A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003091303A1 (ja) * 2002-04-25 2005-09-02 旭化成ケミカルズ株式会社 ブロック共重合体及びその組成物

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844383B2 (en) * 2000-05-25 2005-01-18 Asahi Kasei Kabushiki Kaisha Block copolymer and composition thereof
KR100501988B1 (ko) * 2000-06-30 2005-07-18 아사히 가세이 가부시키가이샤 스티렌계 공중합체 조성물
KR100425243B1 (ko) 2001-11-14 2004-03-30 주식회사 엘지화학 선형의 블록 공중합체의 제조방법
US20050012235A1 (en) * 2001-11-30 2005-01-20 Schregenberger Sandra D Oxygen tailoring of polyethylene resins
EP1473595A1 (en) * 2003-04-29 2004-11-03 KRATON Polymers Research B.V. Photopolymerizable compositions and flexographic printing plates derived therefrom
US7351767B2 (en) * 2004-02-20 2008-04-01 Chevron Phillips Chemical Company, Lp Composition for monovinylrenic-based shrink label films
US7193014B2 (en) * 2004-02-20 2007-03-20 Chevron Phillips Chemical Company, Lp Binary and ternary blends comprising monovinylarene/conjugated diene block copolymers and monovinylarene/alkyl (meth)acrylate copolymers
US8039553B2 (en) * 2004-08-05 2011-10-18 Japan Elastomer Co., Ltd. Pressure-sensitive adhesive composition
US20060038315A1 (en) * 2004-08-19 2006-02-23 Tunnell Herbert R Iii Oxygen tailoring of polyethylene resins
US8202940B2 (en) 2004-08-19 2012-06-19 Univation Technologies, Llc Bimodal polyethylene compositions for blow molding applications
US7892466B2 (en) 2004-08-19 2011-02-22 Univation Technologies, Llc Oxygen tailoring of polyethylene resins
US7451600B2 (en) * 2005-07-06 2008-11-18 Pratt & Whitney Canada Corp. Gas turbine engine combustor with improved cooling
US7737216B2 (en) * 2006-01-26 2010-06-15 Chevron Phillips Chemical Company Lp Monovinylarene conjugated diene block copolymer compositions for shrinkable films
US20100272975A1 (en) * 2009-04-23 2010-10-28 Chevron Phillips Chemical Company Lp System and method for the production and use of lamination films
NL2008952A (en) 2011-06-23 2013-01-02 Asml Netherlands Bv Self-assemblable polymer and method for use in lithography.
NL2008951A (en) * 2011-06-23 2013-01-02 Asml Netherlands Bv Self -assemblable polymer and methods for use in lithography.
JP5767202B2 (ja) * 2012-12-18 2015-08-19 旭化成ケミカルズ株式会社 エチレン重合体並びに延伸成形体、微多孔膜、及び電池用セパレータ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220278A (ja) * 1993-01-27 1994-08-09 Asahi Chem Ind Co Ltd 樹脂組成物
JPH07179696A (ja) * 1993-12-24 1995-07-18 Asahi Chem Ind Co Ltd 透明樹脂組成物
JPH09151285A (ja) * 1995-11-29 1997-06-10 Asahi Chem Ind Co Ltd 透明な樹脂組成物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639517A (en) * 1969-09-22 1972-02-01 Phillips Petroleum Co Resinous branched block copolymers
JPS59221348A (ja) 1983-05-31 1984-12-12 Asahi Chem Ind Co Ltd ビニル芳香族炭化水素系組成物
JPS6125819A (ja) 1984-07-16 1986-02-04 Asahi Chem Ind Co Ltd 低温収縮性フイルム及びその製造方法
JP3270503B2 (ja) 1991-08-19 2002-04-02 旭化成株式会社 熱収縮性硬質フィルム
JP3332281B2 (ja) * 1994-01-31 2002-10-07 電気化学工業株式会社 透明高強度樹脂組成物
JPH0841281A (ja) * 1994-07-28 1996-02-13 Nippon Steel Chem Co Ltd 耐衝撃性樹脂組成物
EP1022296B1 (en) * 1998-08-03 2009-11-04 Asahi Kasei Kabushiki Kaisha Linear block copolymer and resin composition containing the same
JP4454082B2 (ja) * 1999-04-21 2010-04-21 旭化成ケミカルズ株式会社 スチレン系重合体組成物
US6844383B2 (en) * 2000-05-25 2005-01-18 Asahi Kasei Kabushiki Kaisha Block copolymer and composition thereof
KR100501988B1 (ko) * 2000-06-30 2005-07-18 아사히 가세이 가부시키가이샤 스티렌계 공중합체 조성물
DE10084998B4 (de) * 2000-06-30 2011-02-03 Asahi Kasei Kabushiki Kaisha Styrolpolymer-Zusammensetzung
CN1219819C (zh) * 2001-03-15 2005-09-21 旭化成株式会社 嵌段共聚物组合物
ATE478902T1 (de) * 2002-04-25 2010-09-15 Asahi Kasei Chemicals Corp Blockcopolymer und zusammensetzung davon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220278A (ja) * 1993-01-27 1994-08-09 Asahi Chem Ind Co Ltd 樹脂組成物
JPH07179696A (ja) * 1993-12-24 1995-07-18 Asahi Chem Ind Co Ltd 透明樹脂組成物
JPH09151285A (ja) * 1995-11-29 1997-06-10 Asahi Chem Ind Co Ltd 透明な樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1266935A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003091303A1 (ja) * 2002-04-25 2005-09-02 旭化成ケミカルズ株式会社 ブロック共重合体及びその組成物
JP4530669B2 (ja) * 2002-04-25 2010-08-25 旭化成ケミカルズ株式会社 ブロック共重合体及びその組成物
US7893156B2 (en) 2002-04-25 2011-02-22 Asahi Kasei Chemicals Corporation Block copolymer and composition thereof

Also Published As

Publication number Publication date
KR20020029395A (ko) 2002-04-18
EP1266935A4 (en) 2006-07-26
KR100501988B1 (ko) 2005-07-18
DE60039916D1 (de) 2008-09-25
CN1376179A (zh) 2002-10-23
EP1266935B1 (en) 2008-08-13
EP1266935A1 (en) 2002-12-18
US20030166774A1 (en) 2003-09-04
US7323512B2 (en) 2008-01-29

Similar Documents

Publication Publication Date Title
JP4530669B2 (ja) ブロック共重合体及びその組成物
JP5534642B2 (ja) ブロック共重合体水添物、又はそのシート、フィルム
WO2002002692A1 (fr) Composition copolymere styrene
JPWO2003035705A1 (ja) 水添共重合体
JP5225704B2 (ja) ビニル芳香族炭化水素系樹脂シート
JP5062936B2 (ja) ブロック共重合体及びその組成物
JP5046469B2 (ja) ブロック共重合体組成物
JPWO2006075665A1 (ja) ブロック共重合体混合物及びそれを用いた熱収縮性フィルム
JP2005105032A (ja) 重合体組成物からなる熱収縮性フィルム
WO2002002693A1 (fr) Composition de polymere styrenique
JP4425602B2 (ja) ブロック共重合体水添物、又はフィルム
JP5295068B2 (ja) 熱収縮性積層フィルム
JP4392809B2 (ja) スチレン系樹脂組成物及びフィルム
JP4587528B2 (ja) ブロック共重合体組成物及び熱収縮性フィルム
JP4381747B2 (ja) ブロック共重合体及びその熱収縮性フィルム
JP2021193169A (ja) 制電性樹脂組成物、制電性樹脂組成物の製造方法、及び電子部品包装材
JP4641636B2 (ja) ブロック共重合体組成物
JP4454082B2 (ja) スチレン系重合体組成物
JP4841060B2 (ja) ブロック共重合体及びその組成物
JP5051936B2 (ja) スチレン系樹脂組成物
JP4502434B2 (ja) スチレン系共重合体組成物
JP4761690B2 (ja) 熱収縮性フィルム
JP2002105154A (ja) ブロック共重合体及びその組成物
JP2011079238A (ja) 熱収縮性積層フィルム
JPH06263943A (ja) スチレン系樹脂組成物およびそのシート

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000942436

Country of ref document: EP

Ref document number: 10069764

Country of ref document: US

Ref document number: 1020027002831

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 008134774

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027002831

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000942436

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027002831

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2000942436

Country of ref document: EP