WO2002003502A2 - High speed connector - Google Patents

High speed connector Download PDF

Info

Publication number
WO2002003502A2
WO2002003502A2 PCT/US2001/019848 US0119848W WO0203502A2 WO 2002003502 A2 WO2002003502 A2 WO 2002003502A2 US 0119848 W US0119848 W US 0119848W WO 0203502 A2 WO0203502 A2 WO 0203502A2
Authority
WO
WIPO (PCT)
Prior art keywords
contact
connector
shield
extending
contacts
Prior art date
Application number
PCT/US2001/019848
Other languages
French (fr)
Other versions
WO2002003502A3 (en
Inventor
Johannes Petrus Maria Kusters
Samuel C. Ramey
Original Assignee
3M Innovative Properties Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Company filed Critical 3M Innovative Properties Company
Priority to AU2001271371A priority Critical patent/AU2001271371A1/en
Priority to KR1020027017906A priority patent/KR100808728B1/en
Priority to AT01950373T priority patent/ATE293297T1/en
Priority to EP01950373A priority patent/EP1295363B1/en
Priority to JP2002507476A priority patent/JP2004503056A/en
Priority to DE60110070T priority patent/DE60110070T2/en
Publication of WO2002003502A2 publication Critical patent/WO2002003502A2/en
Publication of WO2002003502A3 publication Critical patent/WO2002003502A3/en
Priority to NO20026046A priority patent/NO20026046L/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6581Shield structure
    • H01R13/6585Shielding material individually surrounding or interposed between mutually spaced contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  

Definitions

  • This invention relates to two-part electrical connectors, and particularly to improvements in shielded two-part high-speed electrical connectors.
  • Conductors carrying high frequency signals and currents are subject to interference and cross talk when placed in close proximity to other conductors carrying high frequency signals and currents. This interference and cross talk can result in signal degradation and errors in signal reception.
  • Coaxial and shielded cables are available to carry signals from a transmission point to a reception point, and reduce the likelihood that the signal carried in one shielded or coaxial cable will interfere with the signal carried by another shielded or coaxial cable in close proximity.
  • the shielding is often lost allowing interference and crosstalk between signals.
  • the use of individual shielded wires and cables is not desirable at points of connections due to the need for making a large number of connections in a very small space. In these circumstances, two-part highspeed connectors containing multiple shielded conductive paths are used.
  • U.S. Patent No. 6,146,202 entitled “High Speed Connector Apparatus” discloses an illustrative shielded two-part high-speed connector comprising a socket connector and a header connector.
  • the illustrative socket connector includes a plurality of connector modules.
  • Each connector module includes an insulative housing encasing a plurality of longitudinally extending, vertically spaced signal contacts arranged in a column.
  • Each insulative housing is formed to include a plurality of laterally extending, vertically spaced openings which are interleaved with the plurality of longitudinally extending, vertically spaced signal contacts.
  • the socket connector further includes a plurality of vertical shields extending along the first sides of the plurality of connector modules, and a plurality of horizontal shields extending through the laterally extending, vertically spaced openings in the plurality of connector modules to form a coaxial shield around each signal contact.
  • an illustrative connector includes a plurality of connector modules.
  • Each connector module includes an insulative housing encasing a plurality of longitudinally extending, laterally spaced signal contacts arranged in a row.
  • Each insulative housing is formed to include a plurality of vertically extending, laterally spaced openings which are interleaved with the plurality of longitudinally extending, laterally spaced signal contacts.
  • the connector further includes a plurality of shields.
  • Each shield has a vertically extending flange portion for insertion into a vertically extending opening in the insulative housing and a laterally extending flange portion extending along and adjacent to a signal contact in the insulative housing.
  • the vertically and laterally extending flange portions are configured to form a coaxial shield around each signal contact.
  • the laterally extending flange portion extends along and above an adjacent signal contact in the insulative housing.
  • the insulative housings with contacts and shields assembled therein are configured for insertion into laterally extending, vertically spaced slots in a connector housing.
  • an illustrative connector includes a plurality of longitudinally extending, laterally spaced signal contacts ananged in a row.
  • Each signal contact includes a forwardly extending contact portion configured to engage a conesponding contact in a mating connector, an intermediate portion and a rearwardly extending tail portion.
  • An insulative housing encases the intermediate portions of the signal contacts.
  • the insulative housing includes laterally spaced, vertically extending slots between the contact intermediate portions.
  • a shield is provided for each signal contact.
  • Each shield has a vertically extending flange portion for insertion into a slot in the insulative housing and an upper laterally extending flange portion extending along and above the intermediate portion of an adjacent signal contact.
  • the vertically and laterally extending flange portions form a coaxial shield around each signal contact.
  • the insulative housings with contacts and shields assembled therein form connector modules which are configured for insertion into a connector housing.
  • an illustrative connector includes a plurality of horizontally spaced signal contacts arranged in a row. Each signal contact includes a forwardly extending contact portion configured to engage a corresponding contact in a mating connector, an intermediate portion and a rearwardly extending tail portion.
  • An insulative housing encases the intermediate portions of the signal contacts. The insulative housing includes horizontally spaced, vertically extending slots between the contact intermediate portions.
  • a shield is provided for each signal contact. Each shield has a vertical flange portion for insertion into a slot in the insulative housing and an upper horizontal flange portion extending along and above the intermediate portion of an adjacent signal contact. The vertical and horizontal flange portions form a coaxial shield around each signal contact.
  • the insulative housings with contacts and shields assembled therein form connector modules which are configured for insertion into a connector housing.
  • the connector modules may be pressed into single row insulators with a press-fit connection, with one single row insulator for each connector module.
  • the assembled connector modules may then be stacked to a desired height, and inserted into a housing.
  • the housing captures the assembled connector modules, and provides insulation and shielding around the stacked assembly.
  • Fig. 1 is a perspective view showing a plurality of signal contacts arranged in a horizontal row, each contact having a forwardly extending contact portion configured to engage a conesponding contact in a mating connector, an intermediate portion and a rearwardly extending tail portion;
  • Fig. 2 is a perspective view showing the contact intermediate portions encased in an insulative housing, the insulative housing having horizontally spaced, vertical slots between the contact intermediate portions;
  • Fig. 3 is a perspective view showing two shields - one shield per contact, each shield having a vertical flange portion for insertion into a vertically extending slot in the insulative housing and an upper horizontal portion extending along and above the intermediate portion of the adjacent contact;
  • Fig. 4 is a perspective view showing plastic overmolds formed on the upper horizontal portions of the shields adjacent to the front end;
  • Fig. 5 is a perspective view showing a first set of shields vertically aligned with first and third slots in the insulative housing
  • Fig. 6 is a perspective view showing the first set of shields pressed into the first and third slots in the insulative housing with a press-fit connection
  • Fig. 7 is a perspective view showing a second set of shields pressed into second and fourth slots in the insulative housing with a press-fit connection to form a connector module or wafer;
  • Fig. 8 is a perspective view showing a front cap having horizontally extending slots for receiving the connector modules;
  • Fig. 9 is a perspective view showing a connector module aligned with a horizontally extending slot in a front cap
  • Fig. 10 is a perspective view showing the connector module pressed fully into the front cap with a press-fit connection
  • Fig. 11 is a perspective view showing a fully assembled connector including eight rows of connector modules ananged in vertical column, each row of connector modules having four contacts ananged in a horizontal row;
  • Fig. 12 is a partial sectional view of the Fig. 11 connector showing vertical and horizontal shielding portions of shields fonning a virtual coaxial box around each signal contact.
  • Fig. 1 shows four horizontally spaced, signal contacts 30 ananged in a row.
  • the contacts 30 are ananged in rows instead of columns.
  • the horizontal spacing between the adjacent contacts 30 is 2 millimeters.
  • Each contact 30 includes a forwardly extending contact portion 32 configured to engage a conesponding signal pin of a mating header connector (not shown), an intermediate portion 34 and a rearwardly extending tail portion 36.
  • Each contact portion 32 includes a pair of opposed cantilevered spring arms 38 into which a signal pin of a mating header connector is inserted when a socket connector 20 and a header connector are mated.
  • the tail portions 36 are soldered to cable wires.
  • the contacts 30 are stamped out of a strip of suitable conductive material, and are manufactured reel to reel. The strip can be cut to any length to create variable connector lengths (e.g., eight signal contacts to a row instead of four to a row).
  • an insulative housing 50 encases the contact intermediate portions 34.
  • the insulative housing 50 includes four horizontally spaced, vertically extending slots 52 ananged between the contact intermediate portions 34 for receiving four shields 60 - one shield 60 for each contact 30.
  • the housing 50 (sometimes refened to herein as the "contact overmold") is formed by overmolding a plastic insulator over the contact intermediate portions 34. The overmolding process can be also performed reel to reel as the contacts 30 are fed on a strip.
  • the vertical slots 52 are formed simultaneously between adjacent contacts 20 as the insulative housing 50 is overmolded over the contacts 30.
  • a jog is provided in the tail portion 36 to center the tail portion 26 in the plastic overmold 50 during the overmolding operation.
  • each shield 60 includes a vertical flange portion 62 for insertion into a slot 52 in the insulative housing 50, and an upper horizontal portion 64 extending along and above the intermediate portion 34 of the adjacent contact 30.
  • the vertical flange portion 62 of each shield 60 includes a forwardly extending vertical shield portion 66 configured to be located next to a forwardly extending contact portion 32 of an adjacent contact 30.
  • the forwardly extending vertical shield portion 66 is configured to engage a ground pin of a mating header connector (not shown) to couple the shield 60 to ground.
  • the upper horizontal portion 64 of each shield 60 includes a forwardly extending horizontal shield portion 68 configured to be located above a forwardly extending contact portion 32 of an adjacent contact 30.
  • the vertical flange portion 62 provides shielding between adjacent columns of contacts 30.
  • the upper horizontal portion 64 provides shielding between adjacent rows of contacts 30.
  • the forwardly extending horizontal shield portion 68 of each shield 60 includes an insulative housing 70 sunounding the forwardly extending horizontal shield portion 68.
  • the insulative housing 70 (sometimes refened to herein as the "shield overmold") may be formed by overmolding a plastic insulator over the forwardly extending horizontal shield portion 68 of the upper horizontal portion 64. The ovennolding process can also be performed reel to reel as the shields 60 are fed on a strip.
  • the plastic overmold 70 prevents the vertically compliant spring arms 38 from accidently contacting the forwardly extending horizontal shield portion 68 when a signal pin of the header connector (not shown) is inserted between the vertically compliant spring arms 38 as the socket connector 20 is mated with a header connector (not shown).
  • Fig. 5 shows a first set of shields 60 vertically aligned with first and third slots 52 in the contact overmold 50 having contacts 30 embedded therein.
  • Fig. 6 shows the first set of shields 60 pressed into the first and third slots 52 in the plastic overmold 50 with a press-fit connection.
  • Fig. 7 shows a second set of shields 60 pressed into second and fourth slots 52 in the plastic overmold 50 with a press-fit connection to form a connector module 80 (also refened to as a wafer).
  • the contacts 30 are formed on strips with the horizontal spacing between the successive contacts 30 a first distance (2 millimeters).
  • the shields 60 are formed on strips with the horizontal spacing between the successive shields 60 a second distance (4 millimeters) equal to twice the first distance (2 millimeters) such that a first set of shields 60 may be inserted into every other slot 52 while disposed on a first strip and then a second set of shields 60 may be inserted into the empty slots 52 between the first set of shields 60 while disposed on a second strip.
  • Fig. 8 shows a front cap 90 (also refened to as socket or connector housing) having horizontally extending slots 92 configured for receiving the connector modules 80.
  • Fig. 9 shows a connector module or a wafer 80 aligned with a horizontally extending slot 92 in the front cap 90.
  • FIG. 10 shows the connector module 80 pressed fully into the front cap 90 with a press-fit connection.
  • Fig. 11 shows a fully assembled socket connector 20 including eight rows of connector modules 80 ananged in vertical column, with each row having four contacts 30 arranged in a horizontal row.
  • Fig. 12 is a partial sectional view of the socket connector 20 showing the vertical and horizontal shielding portions 62, 64 of the shields 60 forming a virtual coaxial box around each signal contact 30. Coaxial shielding of each signal contact 30 allows transmission of high frequency signals at the points of connection with minimum interference and cross talk.
  • the 8x4 contacts 30 are aligned with 8x4 pin insertion windows 94 in the front cap 90 when the connector modules 80 are assembled in the front cap 90.
  • the pin insertion windows 94 guide the signal pins of a header connector (not shown) when the socket connector 20 is mated with a header connector. As previously indicated, the signal pins of the header connector are received by the spring arms 38 of the contacts 30 of the socket connector 20.
  • the number of rows and columns in the socket connector 20 can be chosen freely and independently of each other. For example, one may design a socket connector 20 having 16 rows, with 8 contacts per row, instead of 8 rows, with 4 contacts per row.
  • the socket connector 20 of the present invention is particularly suited for high speed cable application.
  • a connector module 80 may be pressed into a single row insulator (not shown) with a press-fit connection (also refened to as a single row concept).
  • the assembled connector modules 80 may then be stacked to a desired height (e.g., 16 rows or 8 rows), and inserted in a perimetral housing (not shown).
  • the housing holds the assembled connector modules 80 in place, and provides insulation and shielding around the stacked connector modules 80.
  • the materials used for the socket connector 20 are as follows: a) signal contacts 30: copper alloy, UNS C70250, 0.2% offset, 95-120 ksi yield, 100-125ksi tensile b) signal contact overmold 50: 30% glass-filled LCP,

Abstract

A connector (20) includes a plurality of horizontally spaced contacts (30) arranged in a row with each contact (30) having a forwardly extending contact portion (32) configured to engage a corresponding contact in a mating connector, an intermediate portion (34) and a rearwardly extending tail portion (36). An insulative housing (50) encases the intermediate portions (34) of the contacts (30). The housing (50) has horizontally spaced, vertical slots (52) between the contact intermediate portions (34). A shield (60) is provided for each contacts (30). Each shield (60) has a vertical flange portion (62) for insertion into a vertical slot (52) and an upper horizontal portion (64) extending along and above the intermediate portion (34) of the adjacent contact (30). The insulative housings (50) with contacts (30) and shields (60) assembled therein are configured to be inserted into horizontally extending slots (92) in a front cap (90).

Description

HIGH SPEED CONNECTOR
BACKGROUND AND SUMMARY OF THE INVENTION
This invention relates to two-part electrical connectors, and particularly to improvements in shielded two-part high-speed electrical connectors.
Conductors carrying high frequency signals and currents are subject to interference and cross talk when placed in close proximity to other conductors carrying high frequency signals and currents. This interference and cross talk can result in signal degradation and errors in signal reception. Coaxial and shielded cables are available to carry signals from a transmission point to a reception point, and reduce the likelihood that the signal carried in one shielded or coaxial cable will interfere with the signal carried by another shielded or coaxial cable in close proximity. However, at points of connection, the shielding is often lost allowing interference and crosstalk between signals. The use of individual shielded wires and cables is not desirable at points of connections due to the need for making a large number of connections in a very small space. In these circumstances, two-part highspeed connectors containing multiple shielded conductive paths are used.
U.S. Patent No. 6,146,202 entitled "High Speed Connector Apparatus" discloses an illustrative shielded two-part high-speed connector comprising a socket connector and a header connector. The illustrative socket connector includes a plurality of connector modules. Each connector module includes an insulative housing encasing a plurality of longitudinally extending, vertically spaced signal contacts arranged in a column. Each insulative housing is formed to include a plurality of laterally extending, vertically spaced openings which are interleaved with the plurality of longitudinally extending, vertically spaced signal contacts. The socket connector further includes a plurality of vertical shields extending along the first sides of the plurality of connector modules, and a plurality of horizontal shields extending through the laterally extending, vertically spaced openings in the plurality of connector modules to form a coaxial shield around each signal contact. According to the present invention, an illustrative connector includes a plurality of connector modules. Each connector module includes an insulative housing encasing a plurality of longitudinally extending, laterally spaced signal contacts arranged in a row. Each insulative housing is formed to include a plurality of vertically extending, laterally spaced openings which are interleaved with the plurality of longitudinally extending, laterally spaced signal contacts. The connector further includes a plurality of shields. Each shield has a vertically extending flange portion for insertion into a vertically extending opening in the insulative housing and a laterally extending flange portion extending along and adjacent to a signal contact in the insulative housing. The vertically and laterally extending flange portions are configured to form a coaxial shield around each signal contact. According to one illustrative embodiment, the laterally extending flange portion extends along and above an adjacent signal contact in the insulative housing. According to still another illustrative embodiment, the insulative housings with contacts and shields assembled therein are configured for insertion into laterally extending, vertically spaced slots in a connector housing.
According to a further illustrative embodiment, an illustrative connector includes a plurality of longitudinally extending, laterally spaced signal contacts ananged in a row. Each signal contact includes a forwardly extending contact portion configured to engage a conesponding contact in a mating connector, an intermediate portion and a rearwardly extending tail portion. An insulative housing encases the intermediate portions of the signal contacts. The insulative housing includes laterally spaced, vertically extending slots between the contact intermediate portions. A shield is provided for each signal contact. Each shield has a vertically extending flange portion for insertion into a slot in the insulative housing and an upper laterally extending flange portion extending along and above the intermediate portion of an adjacent signal contact. The vertically and laterally extending flange portions form a coaxial shield around each signal contact. The insulative housings with contacts and shields assembled therein form connector modules which are configured for insertion into a connector housing.
According to a further illustrative embodiment, an illustrative connector includes a plurality of horizontally spaced signal contacts arranged in a row. Each signal contact includes a forwardly extending contact portion configured to engage a corresponding contact in a mating connector, an intermediate portion and a rearwardly extending tail portion. An insulative housing encases the intermediate portions of the signal contacts. The insulative housing includes horizontally spaced, vertically extending slots between the contact intermediate portions. A shield is provided for each signal contact. Each shield has a vertical flange portion for insertion into a slot in the insulative housing and an upper horizontal flange portion extending along and above the intermediate portion of an adjacent signal contact. The vertical and horizontal flange portions form a coaxial shield around each signal contact. The insulative housings with contacts and shields assembled therein form connector modules which are configured for insertion into a connector housing.
Alternatively, the connector modules may be pressed into single row insulators with a press-fit connection, with one single row insulator for each connector module. The assembled connector modules may then be stacked to a desired height, and inserted into a housing. The housing captures the assembled connector modules, and provides insulation and shielding around the stacked assembly.
Additional features of the present invention will become apparent to those skilled in the art upon a consideration of the following detailed description of the preferred embodiments exemplifying the best mode of carrying out the invention as presently perceived.
BRIEF DESCRIPTION OF THE DRAWINGS The detailed description particularly refers to the accompanying figures in which:
Fig. 1 is a perspective view showing a plurality of signal contacts arranged in a horizontal row, each contact having a forwardly extending contact portion configured to engage a conesponding contact in a mating connector, an intermediate portion and a rearwardly extending tail portion;
Fig. 2 is a perspective view showing the contact intermediate portions encased in an insulative housing, the insulative housing having horizontally spaced, vertical slots between the contact intermediate portions;
Fig. 3 is a perspective view showing two shields - one shield per contact, each shield having a vertical flange portion for insertion into a vertically extending slot in the insulative housing and an upper horizontal portion extending along and above the intermediate portion of the adjacent contact; Fig. 4 is a perspective view showing plastic overmolds formed on the upper horizontal portions of the shields adjacent to the front end;
Fig. 5 is a perspective view showing a first set of shields vertically aligned with first and third slots in the insulative housing; Fig. 6 is a perspective view showing the first set of shields pressed into the first and third slots in the insulative housing with a press-fit connection;
Fig. 7 is a perspective view showing a second set of shields pressed into second and fourth slots in the insulative housing with a press-fit connection to form a connector module or wafer; Fig. 8 is a perspective view showing a front cap having horizontally extending slots for receiving the connector modules;
Fig. 9 is a perspective view showing a connector module aligned with a horizontally extending slot in a front cap;
Fig. 10 is a perspective view showing the connector module pressed fully into the front cap with a press-fit connection;
Fig. 11 is a perspective view showing a fully assembled connector including eight rows of connector modules ananged in vertical column, each row of connector modules having four contacts ananged in a horizontal row; and
Fig. 12 is a partial sectional view of the Fig. 11 connector showing vertical and horizontal shielding portions of shields fonning a virtual coaxial box around each signal contact.
DETAILED DESCRIPTION OF THE DRAWINGS
Fig. 1 shows four horizontally spaced, signal contacts 30 ananged in a row. The contacts 30 are ananged in rows instead of columns. The horizontal spacing between the adjacent contacts 30 is 2 millimeters. Each contact 30 includes a forwardly extending contact portion 32 configured to engage a conesponding signal pin of a mating header connector (not shown), an intermediate portion 34 and a rearwardly extending tail portion 36. Each contact portion 32 includes a pair of opposed cantilevered spring arms 38 into which a signal pin of a mating header connector is inserted when a socket connector 20 and a header connector are mated. The tail portions 36 are soldered to cable wires. Preferably, the contacts 30 are stamped out of a strip of suitable conductive material, and are manufactured reel to reel. The strip can be cut to any length to create variable connector lengths (e.g., eight signal contacts to a row instead of four to a row).
As best shown in Fig. 2, an insulative housing 50 encases the contact intermediate portions 34. The insulative housing 50 includes four horizontally spaced, vertically extending slots 52 ananged between the contact intermediate portions 34 for receiving four shields 60 - one shield 60 for each contact 30. The housing 50 (sometimes refened to herein as the "contact overmold") is formed by overmolding a plastic insulator over the contact intermediate portions 34. The overmolding process can be also performed reel to reel as the contacts 30 are fed on a strip. The vertical slots 52 are formed simultaneously between adjacent contacts 20 as the insulative housing 50 is overmolded over the contacts 30. A jog is provided in the tail portion 36 to center the tail portion 26 in the plastic overmold 50 during the overmolding operation. Fig. 3 shows two horizontally spaced apart shields 60. The horizontal spacing between the adjacent shields 60 is 4 millimeters. Preferably, the shields 60 are stamped out of a strip of suitable conductive material, and are manufactured reel to reel. The 4 millimeter spacing between the shields 60 makes it possible to manufacture the shields 60 reel to reel. Each shield 60 includes a vertical flange portion 62 for insertion into a slot 52 in the insulative housing 50, and an upper horizontal portion 64 extending along and above the intermediate portion 34 of the adjacent contact 30. The vertical flange portion 62 of each shield 60 includes a forwardly extending vertical shield portion 66 configured to be located next to a forwardly extending contact portion 32 of an adjacent contact 30. The forwardly extending vertical shield portion 66 is configured to engage a ground pin of a mating header connector (not shown) to couple the shield 60 to ground. The upper horizontal portion 64 of each shield 60 includes a forwardly extending horizontal shield portion 68 configured to be located above a forwardly extending contact portion 32 of an adjacent contact 30. As shown in Fig. 12, the vertical flange portion 62 provides shielding between adjacent columns of contacts 30. The upper horizontal portion 64 provides shielding between adjacent rows of contacts 30. As shown in Fig. 4, the forwardly extending horizontal shield portion 68 of each shield 60 includes an insulative housing 70 sunounding the forwardly extending horizontal shield portion 68. The insulative housing 70 (sometimes refened to herein as the "shield overmold") may be formed by overmolding a plastic insulator over the forwardly extending horizontal shield portion 68 of the upper horizontal portion 64. The ovennolding process can also be performed reel to reel as the shields 60 are fed on a strip. The plastic overmold 70 prevents the vertically compliant spring arms 38 from accidently contacting the forwardly extending horizontal shield portion 68 when a signal pin of the header connector (not shown) is inserted between the vertically compliant spring arms 38 as the socket connector 20 is mated with a header connector (not shown).
Fig. 5 shows a first set of shields 60 vertically aligned with first and third slots 52 in the contact overmold 50 having contacts 30 embedded therein. Fig. 6 shows the first set of shields 60 pressed into the first and third slots 52 in the plastic overmold 50 with a press-fit connection. Fig. 7 shows a second set of shields 60 pressed into second and fourth slots 52 in the plastic overmold 50 with a press-fit connection to form a connector module 80 (also refened to as a wafer). Thus, the contacts 30 are formed on strips with the horizontal spacing between the successive contacts 30 a first distance (2 millimeters). The shields 60, on the other hand, are formed on strips with the horizontal spacing between the successive shields 60 a second distance (4 millimeters) equal to twice the first distance (2 millimeters) such that a first set of shields 60 may be inserted into every other slot 52 while disposed on a first strip and then a second set of shields 60 may be inserted into the empty slots 52 between the first set of shields 60 while disposed on a second strip. Fig. 8 shows a front cap 90 (also refened to as socket or connector housing) having horizontally extending slots 92 configured for receiving the connector modules 80. Fig. 9 shows a connector module or a wafer 80 aligned with a horizontally extending slot 92 in the front cap 90. Fig. 10 shows the connector module 80 pressed fully into the front cap 90 with a press-fit connection. Fig. 11 shows a fully assembled socket connector 20 including eight rows of connector modules 80 ananged in vertical column, with each row having four contacts 30 arranged in a horizontal row. Fig. 12 is a partial sectional view of the socket connector 20 showing the vertical and horizontal shielding portions 62, 64 of the shields 60 forming a virtual coaxial box around each signal contact 30. Coaxial shielding of each signal contact 30 allows transmission of high frequency signals at the points of connection with minimum interference and cross talk. The 8x4 contacts 30 are aligned with 8x4 pin insertion windows 94 in the front cap 90 when the connector modules 80 are assembled in the front cap 90. The pin insertion windows 94 guide the signal pins of a header connector (not shown) when the socket connector 20 is mated with a header connector. As previously indicated, the signal pins of the header connector are received by the spring arms 38 of the contacts 30 of the socket connector 20. The number of rows and columns in the socket connector 20 can be chosen freely and independently of each other. For example, one may design a socket connector 20 having 16 rows, with 8 contacts per row, instead of 8 rows, with 4 contacts per row. The socket connector 20 of the present invention is particularly suited for high speed cable application. Alternatively, a connector module 80 may be pressed into a single row insulator (not shown) with a press-fit connection (also refened to as a single row concept). The assembled connector modules 80 may then be stacked to a desired height (e.g., 16 rows or 8 rows), and inserted in a perimetral housing (not shown). The housing holds the assembled connector modules 80 in place, and provides insulation and shielding around the stacked connector modules 80.
Illustratively, the materials used for the socket connector 20 are as follows: a) signal contacts 30: copper alloy, UNS C70250, 0.2% offset, 95-120 ksi yield, 100-125ksi tensile b) signal contact overmold 50: 30% glass-filled LCP,
Duρon Zenite 6130L c) shield 60: phosphor bronze, 510 spring temper d) shield overmold 70: 30% glass-filled LCP, Dupont Zenite 6330 e) front cap 90: 30% glass-filled LCP, Dupont Zenite 3226L Although the present invention has been described in detail with reference to certain prefened embodiments, variations and modifications exist within the scope and spirit of the present invention as described above.

Claims

CLALMS
1. A connector comprising a plurality of horizontally spaced contacts arranged in a row with each contact haying a forwardly extending contact portion configured to engage a conesponding contact in a mating connector, an intermediate portion and a rearwardly extending tail portion, an insulative housing over the intermediate portions of the contacts, the housing having horizontally spaced, vertical slots positioned between the contact intermediate portions, each slot extending in the direction of the adjacent contact, and a shield for each contact, each shield having a vertical flange portion for insertion into a vertical slot in the insulative housing and an upper horizontal portion extending along and above the intermediate portion of the adjacent contact.
2. The connector of claim 1 wherein the contacts are formed on strips with the horizontal spacing between successive contacts a first distance, the shields being formed on strips with adjacent shields being spaced apart a second distance equal to twice the first distance such that a first set of shields may be inserted into every other slot while disposed on a first strip and then a second set of shields may be inserted into the empty slots between the first set of shields while disposed on a second strip.
3. The connector of claim 2 in which the housing is formed by overmolding a plastic insulator over the contact intermediate portions while the contacts are on a strip with the slots being formed respectively between adjacent contacts.
4. The connector of claim 1 wherein the forwardly extending contact portion of each contact is configured to engage a conesponding signal pin of a mating connector, wherein the vertical flange portion of each shield includes a forwardly extending vertical shield portion located next to a forwardly extending contact portion of an adjacent contact, and wherein the forwardly extending vertical shield portion is configured to engage a ground pin of a mating connector.
5. The connector of claim 1 wherein the upper horizontal portion of each shield includes a forwardly extending horizontal shield portion located above the forwardly extending contact portion of each contact, and wherein the forwardly extending horizontal shield portion of each shield includes an insulative housing stmounding the forwardly extending horizontal shield portion.
6. The connector of claim 5 wherein the insulative housing sunounding the forwardly extending horizontal shield portion is formed by overmolding a plastic insulator over the forwardly extending horizontal shield portion of the upper horizontal portion while the shields are on a strip.
7. An electrical connector comprising: a connector housing, and a plurality of connector modules configured for insertion into the connector housing, each connector module including: a plurality of horizontally spaced contacts ananged in a row with each contact having a forwardly extending contact portion configured to engage a conesponding contact in a mating header connector, an intermediate portion and a rearwardly extending tail portion, an insulative housing over the intermediate portions of the contacts, the housing having horizontally spaced, vertical slots between the contact intermediate portions, and a shield for each contact, each shield having a vertical flange portion for insertion into a vertical slot in the insulative housing and an upper horizontal portion extending along and above the intermediate portion of the adjacent contact.
8. An electrical connector comprising: a connector housing, and a plurality of connector modules configured for insertion into the connector housing, each connector module including an insulative housing encasing a plurality of horizontally spaced contacts ananged in a row with each contact having a forwardly extending contact portion configured to engage a conesponding contact in a mating header connector, an intermediate portion and a rearwardly extending tail portion, the insulative housing having horizontally spaced, vertical slots between the contact intermediate portions, each connector module including a shield for each contact, each shield having a vertical flange portion for insertion into a vertical slot and an upper horizontal portion extending along and above the intermediate portion of the adjacent contact.
9. A connector comprising an insulative housing encasing a plurality of longitudinally extending, laterally spaced signal contacts arranged in a row, the housing having a plurality of vertically extending, laterally spaced openings which are interleaved with the plurality of longitudinally extending, laterally spaced signal contacts, each opening extending in the direction of an adjacent contact, and a shield for each contact, each shield having a vertically extending flange portion for insertion into a vertically extending opening in the housing and a laterally extending flange portion extending along and adjacent to a signal contact in the housing, the vertically and laterally extending flange portions being configured to form a coaxial shield around each signal contact.
PCT/US2001/019848 2000-06-29 2001-06-22 High speed connector WO2002003502A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2001271371A AU2001271371A1 (en) 2000-06-29 2001-06-22 High speed connector
KR1020027017906A KR100808728B1 (en) 2000-06-29 2001-06-22 High speed connector
AT01950373T ATE293297T1 (en) 2000-06-29 2001-06-22 CONNECTOR FOR HIGH TRANSMISSION SPEED
EP01950373A EP1295363B1 (en) 2000-06-29 2001-06-22 High speed connector
JP2002507476A JP2004503056A (en) 2000-06-29 2001-06-22 High speed connector
DE60110070T DE60110070T2 (en) 2000-06-29 2001-06-22 CONNECTOR FOR HIGH TRANSMISSION SPEED
NO20026046A NO20026046L (en) 2000-06-29 2002-12-16 Höyhastighetskonnektor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21491700P 2000-06-29 2000-06-29
US60/214,917 2000-06-29

Publications (2)

Publication Number Publication Date
WO2002003502A2 true WO2002003502A2 (en) 2002-01-10
WO2002003502A3 WO2002003502A3 (en) 2002-05-10

Family

ID=22800904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/019848 WO2002003502A2 (en) 2000-06-29 2001-06-22 High speed connector

Country Status (10)

Country Link
US (1) US6478624B2 (en)
EP (1) EP1295363B1 (en)
JP (1) JP2004503056A (en)
KR (1) KR100808728B1 (en)
CN (1) CN1206775C (en)
AT (1) ATE293297T1 (en)
AU (1) AU2001271371A1 (en)
DE (1) DE60110070T2 (en)
NO (1) NO20026046L (en)
WO (1) WO2002003502A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2392321A (en) * 2002-06-28 2004-02-25 Japan Aviation Electron Connector for shielded electrical cables
WO2012080841A1 (en) * 2010-12-13 2012-06-21 Fci Shielded connector assembly

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1018175C2 (en) * 2001-05-30 2002-12-03 Fci Mechelen N V Plug block and cable connector.
US6572410B1 (en) * 2002-02-20 2003-06-03 Fci Americas Technology, Inc. Connection header and shield
US6843686B2 (en) * 2002-04-26 2005-01-18 Honda Tsushin Kogyo Co., Ltd. High-frequency electric connector having no ground terminals
US6638079B1 (en) * 2002-05-21 2003-10-28 Hon Hai Precision Ind. Co., Ltd. Customizable electrical connector
US6890221B2 (en) * 2003-01-27 2005-05-10 Fci Americas Technology, Inc. Power connector with male and female contacts
AU2004212942A1 (en) * 2003-02-14 2004-09-02 Depuy Spine, Inc. In-situ formed intervertebral fusion device
JP3841348B2 (en) * 2003-02-25 2006-11-01 日本航空電子工業株式会社 Connector ground structure
JP2004273154A (en) * 2003-03-05 2004-09-30 Yazaki Corp Joint connector and terminal
US6827611B1 (en) * 2003-06-18 2004-12-07 Teradyne, Inc. Electrical connector with multi-beam contact
US6884117B2 (en) * 2003-08-29 2005-04-26 Hon Hai Precision Ind. Co., Ltd. Electrical connector having circuit board modules positioned between metal stiffener and a housing
JP3909769B2 (en) * 2004-01-09 2007-04-25 日本航空電子工業株式会社 connector
US7513797B2 (en) * 2004-02-27 2009-04-07 3M Innovative Properties Company Connector apparatus
DE102004060782B3 (en) * 2004-12-17 2006-03-09 Harting Electronics Gmbh & Co. Kg Screened, high-pole printed circuit board connector for transferring signals from one printed circuit board to another, has metallic housing in which disk-shaped segments are arranged and electrical contacts arranged within segments
US7163421B1 (en) * 2005-06-30 2007-01-16 Amphenol Corporation High speed high density electrical connector
US7410392B2 (en) * 2005-12-15 2008-08-12 Tyco Electronics Corporation Electrical connector assembly having selective arrangement of signal and ground contacts
US7959466B2 (en) * 2007-08-01 2011-06-14 Lotes Co., Ltd. Individually filtered terminals and shielded circuit board through-holes
US7575482B1 (en) * 2008-04-22 2009-08-18 Tyco Electronics Corporation Electrical connector with enhanced back end design
US7621760B1 (en) 2008-07-24 2009-11-24 3M Innovative Properties Company Electrical connector
US8221162B2 (en) * 2008-07-24 2012-07-17 3M Innovative Properties Company Electrical connector
US9004943B2 (en) * 2009-12-30 2015-04-14 Fci Americas Technology Llc Electrical connector having electrically insulative housing and commoned ground contacts
CN102195173B (en) * 2010-02-15 2015-06-10 莫列斯公司 Differentially coupled connector
US7976340B1 (en) * 2010-03-12 2011-07-12 Tyco Electronics Corporation Connector system with electromagnetic interference shielding
CN107069274B (en) 2010-05-07 2020-08-18 安费诺有限公司 High performance cable connector
JP5756608B2 (en) * 2010-07-15 2015-07-29 矢崎総業株式会社 connector
JP5209038B2 (en) * 2010-12-08 2013-06-12 日立オートモティブシステムズ株式会社 Connector and manufacturing method thereof
US9831588B2 (en) 2012-08-22 2017-11-28 Amphenol Corporation High-frequency electrical connector
DE202012008969U1 (en) * 2012-09-18 2012-11-09 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg connector
US9281624B2 (en) * 2013-08-16 2016-03-08 Tyco Electronics Corporation Electrical connector with signal pathways and a system having the same
US9905975B2 (en) 2014-01-22 2018-02-27 Amphenol Corporation Very high speed, high density electrical interconnection system with edge to broadside transition
US9407045B2 (en) * 2014-12-16 2016-08-02 Tyco Electronics Corporation Electrical connector with joined ground shields
CN105990763B (en) * 2015-02-15 2019-10-29 泰科电子(上海)有限公司 Electric connector
US9444189B1 (en) * 2015-05-26 2016-09-13 Tyco Electronics Corporation Pluggable connector configured for crosstalk reduction and resonance control
CN114552261A (en) 2015-07-07 2022-05-27 安费诺富加宜(亚洲)私人有限公司 Electrical connector
TWI747938B (en) 2016-08-23 2021-12-01 美商安芬諾股份有限公司 Connector configurable for high performance
WO2018060922A1 (en) 2016-09-29 2018-04-05 3M Innovative Properties Company Connector assembly for solderless mounting to a circuit board
TWI656700B (en) * 2017-08-23 2019-04-11 格稜股份有限公司 High speed connector in vertical type and conductive module threrof
CN108963667B (en) * 2018-07-09 2020-07-24 肯上科技股份有限公司 Grounding structure of high-frequency connector
CN208862209U (en) 2018-09-26 2019-05-14 安费诺东亚电子科技(深圳)有限公司 A kind of connector and its pcb board of application
CN109326909A (en) * 2018-11-20 2019-02-12 安费诺商用电子产品(成都)有限公司 A kind of high-power card class connection terminal of high density and connector
TW202135385A (en) 2020-01-27 2021-09-16 美商Fci美國有限責任公司 High speed connector
WO2021154718A1 (en) 2020-01-27 2021-08-05 Fci Usa Llc High speed, high density direct mate orthogonal connector
CN215816516U (en) 2020-09-22 2022-02-11 安费诺商用电子产品(成都)有限公司 Electrical connector
CN213636403U (en) 2020-09-25 2021-07-06 安费诺商用电子产品(成都)有限公司 Electrical connector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571014A (en) * 1984-05-02 1986-02-18 At&T Bell Laboratories High frequency modular connector
US4914062A (en) * 1989-02-15 1990-04-03 W. L. Gore & Associates, Inc. Shielded right angled header
US5620340A (en) * 1992-12-31 1997-04-15 Berg Technology, Inc. Connector with improved shielding
US5660551A (en) * 1993-10-20 1997-08-26 Minnesota Mining And Manufacturing Company High speed transmission line connector
WO1999026321A1 (en) * 1997-11-19 1999-05-27 The Whitaker Corporation Shielded electrical connector

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538866A (en) 1983-03-07 1985-09-03 Teradyne, Inc. Backplane connector
US4655518A (en) 1984-08-17 1987-04-07 Teradyne, Inc. Backplane connector
US4869677A (en) 1984-08-17 1989-09-26 Teradyne, Inc. Backplane connector
US4724180A (en) 1985-08-05 1988-02-09 Teradyne, Inc. Electrically shielded connectors
US4659155A (en) 1985-11-19 1987-04-21 Teradyne, Inc. Backplane-daughter board connector
DE3605316A1 (en) 1986-02-19 1987-08-20 Siemens Ag Multipole plug connector
US4836791A (en) 1987-11-16 1989-06-06 Amp Incorporated High density coax connector
US4854899A (en) 1987-11-24 1989-08-08 Elcon Products International Company Terminal bus junction with multiple, displaced contact points
US4871321A (en) 1988-03-22 1989-10-03 Teradyne, Inc. Electrical connector
US4846727A (en) 1988-04-11 1989-07-11 Amp Incorporated Reference conductor for improving signal integrity in electrical connectors
US4867690A (en) 1988-06-17 1989-09-19 Amp Incorporated Electrical connector system
US4909743A (en) 1988-10-14 1990-03-20 Teradyne, Inc. Electrical connector
US4975084A (en) 1988-10-17 1990-12-04 Amp Incorporated Electrical connector system
US4932888A (en) 1989-06-16 1990-06-12 Augat Inc. Multi-row box connector
DE69018000T2 (en) 1989-10-10 1995-09-28 Whitaker Corp Backplane connector with matched impedance.
GB8928777D0 (en) 1989-12-20 1990-02-28 Amp Holland Sheilded backplane connector
AU7736691A (en) 1990-06-08 1991-12-12 E.I. Du Pont De Nemours And Company Connectors with ground structure
US5133679A (en) 1990-06-08 1992-07-28 E. I. Du Pont De Nemours And Company Connectors with ground structure
US5175928A (en) 1990-06-11 1993-01-05 Amp Incorporated Method of manufacturing an electrical connection assembly
US5046960A (en) 1990-12-20 1991-09-10 Amp Incorporated High density connector system
US5141445A (en) 1991-04-30 1992-08-25 Thomas & Betts Corporation Surface mounted electrical connector
US5137475A (en) 1991-05-31 1992-08-11 Tronomed, Inc. Medical electrical connector for flexible electrodes
JPH0521110A (en) 1991-07-10 1993-01-29 Amp Japan Ltd Shielding type electric connector
JP2559833Y2 (en) 1991-10-17 1998-01-19 日本エー・エム・ピー株式会社 Modular electrical connector holder
GB9205087D0 (en) 1992-03-09 1992-04-22 Amp Holland Sheilded back plane connector
GB9205088D0 (en) 1992-03-09 1992-04-22 Amp Holland Shielded back plane connector
US5282752A (en) 1992-08-07 1994-02-01 E. I. Du Pont De Nemours And Company Combination connector tool
AU668962B2 (en) 1992-09-08 1996-05-23 Whitaker Corporation, The Shielded data connector
US5584727A (en) * 1992-09-08 1996-12-17 The Whitaker Corporation Shielded data connector
DE4241486A1 (en) 1992-12-09 1994-06-16 Antelec Eng Gmbh Converter
NL9202301A (en) 1992-12-31 1994-07-18 Du Pont Nederland Connector with improved shielding.
US5376021A (en) * 1993-02-05 1994-12-27 Thomas & Betts Corporation Enhanced performance data connector
US5360349A (en) 1993-03-31 1994-11-01 Teradyne, Inc. Power connector
US5403206A (en) 1993-04-05 1995-04-04 Teradyne, Inc. Shielded electrical connector
DE9311782U1 (en) 1993-08-06 1993-09-23 Siemens Ag Printed circuit board connector with two shielded contact strips arranged at right angles to one another
EP0670615B1 (en) 1994-03-03 1997-02-05 Siemens Aktiengesellschaft Connector for back panel wirings
US5618208A (en) 1994-06-03 1997-04-08 Siemens Medical Systems, Inc. Fully insulated, fully shielded electrical connector arrangement
ATE181463T1 (en) 1994-12-22 1999-07-15 Siemens Ag ELECTRICAL CONNECTOR ARRANGEMENT
DE4446098C2 (en) 1994-12-22 1998-11-26 Siemens Ag Shielded electrical connector
US5788537A (en) 1995-03-27 1998-08-04 The Whiteker Corporation Shield assembly for an electrical connector
US5704793A (en) 1995-04-17 1998-01-06 Teradyne, Inc. High speed high density connector for electronic signals
US5700164A (en) 1995-06-16 1997-12-23 The Whitaker Corporation Electrical connector with shield
US5672064A (en) 1995-12-21 1997-09-30 Teradyne, Inc. Stiffener for electrical connector
US5702258A (en) * 1996-03-28 1997-12-30 Teradyne, Inc. Electrical connector assembled from wafers
US5664968A (en) 1996-03-29 1997-09-09 The Whitaker Corporation Connector assembly with shielded modules
FR2746971B1 (en) 1996-04-01 1998-04-30 Framatome Connectors France MINIATURE SHIELDED CONNECTOR WITH BENDED CONTACT RODS
JP3251849B2 (en) 1996-05-17 2002-01-28 タイコエレクトロニクスアンプ株式会社 Shielded connector
US5738544A (en) 1996-06-27 1998-04-14 The Whitaker Corporation Shielded electrical connector
US5755595A (en) 1996-06-27 1998-05-26 Whitaker Corporation Shielded electrical connector
WO1998000889A1 (en) 1996-07-02 1998-01-08 Siemens Aktiengesellschaft Plug connector with screen
GB9615495D0 (en) 1996-07-24 1996-09-04 Amp Holland Shielded electrical connector assembly
US5788538A (en) 1996-07-31 1998-08-04 Berg Technology, Inc. Shield for modular jack
EP1016170B1 (en) * 1996-08-20 2003-02-05 Fci High speed modular electrical connector
US5797770A (en) 1996-08-21 1998-08-25 The Whitaker Corporation Shielded electrical connector
JP3070003B2 (en) 1996-09-06 2000-07-24 タイコエレクトロニクスアンプ株式会社 Shield type connector and manufacturing method thereof
US5795191A (en) 1996-09-11 1998-08-18 Preputnick; George Connector assembly with shielded modules and method of making same
JPH10134877A (en) 1996-10-25 1998-05-22 Amp Japan Ltd Connector terminal protection cover
US6089882A (en) 1996-11-27 2000-07-18 The Whitaker Corporation Memory card connector with grounding clip
US6183301B1 (en) 1997-01-16 2001-02-06 Berg Technology, Inc. Surface mount connector with integrated PCB assembly
US5993259A (en) 1997-02-07 1999-11-30 Teradyne, Inc. High speed, high density electrical connector
US5980321A (en) 1997-02-07 1999-11-09 Teradyne, Inc. High speed, high density electrical connector
US5820412A (en) 1997-03-18 1998-10-13 The Whitaker Corporation Connector shield with cable crimp support
US5967846A (en) 1997-04-22 1999-10-19 The Whitaker Corporation Shields for electrical connector mated pair
US5863222A (en) 1997-06-03 1999-01-26 The Whitaker Corporation Shielded electrical connector
US6227882B1 (en) 1997-10-01 2001-05-08 Berg Technology, Inc. Connector for electrical isolation in a condensed area
US6293827B1 (en) * 2000-02-03 2001-09-25 Teradyne, Inc. Differential signal electrical connector
US6290515B1 (en) * 2000-09-05 2001-09-18 Hon Hai Precision Ind. Co., Ltd. Electrical connector assembly having grounding buses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571014A (en) * 1984-05-02 1986-02-18 At&T Bell Laboratories High frequency modular connector
US4914062A (en) * 1989-02-15 1990-04-03 W. L. Gore & Associates, Inc. Shielded right angled header
US5620340A (en) * 1992-12-31 1997-04-15 Berg Technology, Inc. Connector with improved shielding
US5660551A (en) * 1993-10-20 1997-08-26 Minnesota Mining And Manufacturing Company High speed transmission line connector
WO1999026321A1 (en) * 1997-11-19 1999-05-27 The Whitaker Corporation Shielded electrical connector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2392321A (en) * 2002-06-28 2004-02-25 Japan Aviation Electron Connector for shielded electrical cables
GB2392321B (en) * 2002-06-28 2004-08-25 Japan Aviation Electron Cable connector
WO2012080841A1 (en) * 2010-12-13 2012-06-21 Fci Shielded connector assembly
US9312640B2 (en) 2010-12-13 2016-04-12 Fci Shielded connector assembly

Also Published As

Publication number Publication date
US20020022401A1 (en) 2002-02-21
AU2001271371A1 (en) 2002-01-14
EP1295363B1 (en) 2005-04-13
NO20026046D0 (en) 2002-12-16
JP2004503056A (en) 2004-01-29
US6478624B2 (en) 2002-11-12
CN1206775C (en) 2005-06-15
WO2002003502A3 (en) 2002-05-10
ATE293297T1 (en) 2005-04-15
NO20026046L (en) 2003-02-11
DE60110070T2 (en) 2006-05-11
EP1295363A2 (en) 2003-03-26
DE60110070D1 (en) 2005-05-19
KR100808728B1 (en) 2008-02-29
KR20030028766A (en) 2003-04-10
CN1439186A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
EP1295363B1 (en) High speed connector
EP0072063B1 (en) Double or triple row coax cable connector
KR102439060B1 (en) Connector assembly
US7147512B2 (en) Connector assembly
EP2789056B1 (en) Cable header connector
US7572148B1 (en) Coupler for interconnecting electrical connectors
US8517765B2 (en) Cable header connector
US6338652B1 (en) Low profile cable connector with grounding means
US7004793B2 (en) Low inductance shielded connector
US7311552B1 (en) Micro coaxial cable connector assembly
US7909668B2 (en) Contact with twist pin interface
WO2014028224A1 (en) Cable header connector
EP2321880B1 (en) Electrical connectors and assemblies having socket members
US11239617B2 (en) Cable receptacle connector
CN113555708A (en) Plug connector
US11888267B2 (en) Electrical connector assembly including matable board connector and cable connector with improved grounding bar
US6544050B1 (en) Electrical cable connector assembly
US10868392B2 (en) Ground commoning conductors for electrical connector assemblies
US20180337483A1 (en) Electrical device having an insulator wafer
KR100803228B1 (en) Connector for Coaxial Cable
EP0951092A2 (en) Electrical connector for coaxial cables
US20230420882A1 (en) Electrical connector assembly and method of making same
TW202401931A (en) Receptacle assembly
TW202406236A (en) Electrical connector assembly and method of making same
CN111755861A (en) Connector with a locking member

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001950373

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018119379

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020027017906

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001950373

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027017906

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001950373

Country of ref document: EP