WO2002005021A1 - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
WO2002005021A1
WO2002005021A1 PCT/JP2001/006041 JP0106041W WO0205021A1 WO 2002005021 A1 WO2002005021 A1 WO 2002005021A1 JP 0106041 W JP0106041 W JP 0106041W WO 0205021 A1 WO0205021 A1 WO 0205021A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
liquid crystal
crystal display
display device
light
Prior art date
Application number
PCT/JP2001/006041
Other languages
French (fr)
Japanese (ja)
Inventor
Ken Sumiyoshi
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Publication of WO2002005021A1 publication Critical patent/WO2002005021A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133543Cholesteric polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133545Dielectric stack polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates

Definitions

  • the present invention relates to a liquid crystal display device.
  • LCDs liquid crystal displays
  • LCDs for monitors are steadily increasing in screen size.
  • many publications have alleviated the viewing angle dependency, which is an issue for large-screen LCDs.
  • image quality performance improvement such as wide viewing angle and moving image display is widely demanded.
  • FIG. 1 shows the structure disclosed in Japanese Patent Publication No. 9-51 1588.
  • a fluorescent layer 63 is provided on a twisted nematic (TN) liquid crystal panel 62 having two polarizing plates 60 and 61. Irradiate ultraviolet light, blue light or near-ultraviolet light from the back of the liquid crystal panel 62. This incident light is modulated by the TN liquid crystal panel 62. The light emitted from the TN liquid crystal panel 62 modulated as described above hits the fluorescent layer 63 and emits fluorescence. Since the fluorescent light is generated almost isotropically, a display that can be viewed from any direction can be obtained.
  • a fluorescent layer 63 and a polarizing plate 60 are formed in glass substrates 65 and 66 as shown in FIG.
  • the configuration shown in FIG. 3 has been proposed which can be easily formed in glass substrates 65 and 66.
  • FIG. 3 The configuration of FIG. 3 will be described.
  • the blue light emitted from the blue light source 67 only the left circularly polarized light passes through the right-handed cholesteric liquid crystal layer 68.
  • This left circularly polarized light becomes linearly polarized light by the ⁇ 4 plate 69 and enters the STN liquid crystal layer 70.
  • the STN liquid crystal layer 70 emits light with linear polarization, the light is converted into right-handed circularly polarized light by the subsequent / 4 plate 71.
  • the right-handed cholesteric liquid crystal layer 72 is disposed, the light is reflected and does not reach the fluorescent layer 63, and does not contribute to display.
  • the STN liquid crystal layer 70 converts linearly polarized light into elliptically polarized light, it can partially pass through the ⁇ / 4 plate 71 and the right-handed cholesteric liquid crystal layer 72. Accordingly, the blue light reaches the fluorescent layer 63, and fluorescence different from the blue light is generated, which contributes to display. 2 and 3 as described above, since the fluorescent layer 63 is formed inside the liquid crystal panel, the correspondence relationship between the fluorescent layer pixels of the liquid crystal panel element described above does not shift.
  • a polarizing plate is produced by dyeing a dichroic dye in a uniaxially stretched polymer. For this reason, the upper limit of heat resistance is about 100 ° C.
  • the formation of each layer, electrode layer and alignment film of the above-mentioned TFT requires a high temperature of 200 ° C or more, and it is almost impossible to make them.
  • the quarter-wave plates 69 and 71 and the cholesteric liquid crystal layers 68 and 72 must be formed inside the liquid crystal panel instead of the polarizing plate. Both layers may have higher heat resistance than the above-mentioned polarizing layers. However, it is practically difficult to create TFT layers, electrode layers, and alignment films that require even higher temperatures.
  • an object of the present invention is to provide a liquid crystal display device capable of obtaining a display screen with a wide viewing angle, high-speed response, and high brightness. Disclosure of the invention
  • a liquid crystal display device comprising a liquid crystal layer, a polarization selection layer, and a fluorescent layer in this order in a path of excitation light.
  • the polarization selection layer may include a cholesteric liquid crystal layer.
  • the polarization selection layer may have an alternating multilayer structure including at least one layer having anisotropy.
  • a liquid crystal panel having the polarization selection layer and the fluorescent layer formed therein may be provided.
  • the liquid crystal panel may include an active element array and a counter substrate facing the active element array via the liquid crystal layer, and the counter substrate may include the polarization selection layer and the fluorescent layer.
  • the opposing substrate may include a flattening layer between the fluorescent layer and the polarization selection layer.
  • the counter substrate may include an alignment layer between the fluorescent layer and the polarization selection layer.
  • the counter substrate may have a wavelength selection layer between the fluorescent layer and the polarization selection layer.
  • the counter substrate may have a lens array.
  • the opposing substrate may have a waveguide array.
  • a light-reducing layer may be provided on the downstream side of the fluorescent layer.
  • the light-reducing layer may include a counter substrate having the polarization selection layer and the fluorescent layer, and the light-reducing layer may be disposed on a surface of the counter substrate.
  • FIG. 1 is a cross-sectional view of an example of a conventional liquid crystal display device.
  • FIG. 2 is a cross-sectional view of another example of the conventional liquid crystal display device.
  • FIG. 3 is a cross-sectional view of still another example of the conventional liquid crystal display device.
  • FIG. 4 is a sectional view of the liquid crystal display device according to the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining the operation of the liquid crystal display device of FIG.
  • FIG. 6 is a diagram for explaining an example of a deflection selection layer included in the liquid crystal display device of FIG.
  • FIG. 7 is a diagram for explaining a modification of the deflection selection layer included in the liquid crystal display device of FIG.
  • FIG. 8 is a diagram for explaining a modification of the liquid crystal display device of FIG.
  • FIG. 9 is a diagram for explaining another operation of the liquid crystal display device of FIG.
  • FIG. 10 is a diagram for explaining another modification of the liquid crystal display device of FIG.
  • FIG. 11 is a sectional view of a liquid crystal display device according to a second embodiment of the present invention.
  • FIG. 12 is a diagram for explaining a method of manufacturing the liquid crystal display device of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the liquid crystal display device shown in FIG. 4 includes a liquid crystal panel 10 having an array plate 13 and a facing plate 5 facing each other via a known liquid crystal layer 14.
  • the array plate 13 includes a rectangular glass plate 17, a plurality of active elements 18 mounted on one surface of the glass plate 17, that is, an upper surface, and an alignment film covering the glass plate 17 together with the active elements 18. 19 and has.
  • Each active element 18 is, for example, an amorphous silicon thin film transistor, and can be formed on the glass plate 17 by repeatedly performing a film forming step and a photolithography step.
  • the alignment film 19 is subjected to a well-known rubbing treatment.
  • the opposing substrate 15 includes a rectangular glass plate 21, a plurality of fluorescent layers 22 formed on one surface, that is, a lower surface of the glass plate 21, and an organic layer whose lower surface is planarized by covering the fluorescent layer 22.
  • an alignment film 26 covering the lower surface of the deflection selection layer 24.
  • the phosphor layer 22 is formed by printing a resin containing a phosphor on the glass plate 21. At this time, if the printing is performed three times while changing the kind of the phosphor, the phosphor layer 22 can be made to correspond to the R (red), G (green), and B (blue) color pixels. Since the fluorescent layer 3 experiences a relatively high temperature, it is desirable that the fluorescent layer 3 be made of an inorganic material having excellent heat resistance. Phosphors composed of inorganic substances are usually particles of a few micron squares.
  • the phosphor layer 22 thus produced is excellent in heat resistance, but is often in a rough surface state. Therefore, the unevenness on the surface of the fluorescent layer 22 is filled by providing the flattening layer 24. Rubbing treatment is performed on the surface of the planarization layer 24.
  • the deflection selection layer 24 can be made as follows. On the surface of the flattening layer 24, a solution of a UV-curable cholesteric liquid crystal is applied. The pitch of the cholesteric liquid crystal is adjusted to be about twice the wavelength of the excitation light. Thereafter, the cholesteric liquid crystal is cured by irradiating ultraviolet rays so that a stable structure is obtained. Thus, the polarization selection layer 24 can be obtained.
  • the light-shielding layer 25 can be formed by one photolithography process.
  • the light shielding layer 25 is for preventing fluorescence from the fluorescent layer 22 from being incident on the active element 18. Further, the orientation film 26 is subjected to a rubbing treatment.
  • the above-described array plate 13 and opposing plate 15 are attached to each other so that the rubbing directions are antiparallel. Thereafter, a nematic liquid crystal (homogeneous liquid crystal layer) is injected in a vacuum to seal the liquid crystal, thereby forming a liquid crystal layer 14. At this time, the product of the distance between the array plate 13 and the opposing plate 15 and the refractive index anisotropy of the liquid crystal is set so that switching can be performed in the wavelength range of the excitation light. Thereafter, the polarizing plate 27 is attached to the lower surface of the array plate 13. Further, a light-attenuating film is stuck on the back surface of the counter substrate 15 to form a light-attenuating layer 28.
  • This liquid crystal panel 10 is arranged on a planar excitation light source 33 composed of a light source 31 and a light guide plate 32. Note that a black light is used as the light source 31.
  • the excitation light from the planar excitation light source 33 passes through at least the liquid crystal layer 14, the polarization selection layer 24, and the fluorescent layer 22.
  • the polarization selection layer 24 has a function of reflecting light of a certain polarization state (a) having a certain wavelength and transmitting light of the same wavelength and another polarization state (b).
  • the excitation light 34 in a certain polarization state (c) enters the liquid crystal layer 14 and is converted into a polarization state (a). At this time, since the polarization selection layer 24 reflects this light, it does not reach the fluorescent layer 22 and does not contribute to display.
  • a voltage is applied to the liquid crystal layer 14, its birefringence changes.
  • the liquid crystal display device can perform a display operation with a simple configuration in terms of production.
  • a cholesteric liquid crystal layer 36 having a helical structure as shown in FIG. 6 can be used as an example of the polarization selection layer 24.
  • the cholesteric liquid crystal layer 36 is twisted to the right, it reflects right circularly polarized light 37 and transmits left circularly polarized light 38.
  • the wavelength at this time is determined by the helical pitch of the cholesteric liquid crystal.
  • the azimuthal axis of the cholesteric liquid crystal layer 36 is set by forming an alignment layer immediately before forming the polarization selection layer 24 and performing a subsequent alignment process.
  • a liquid crystal layer 39 having an alternating multilayer structure including at least one layer having anisotropy as shown in FIG. 7 may be used.
  • the liquid crystal layer 39 has two types (x, y) of alternately laminated structures.
  • the refractive indices of the X layer 41 and the y layer 42 differ between the p-polarization direction 43 and the s-polarization direction 44. If the refractive index of the X layer 41 and the refractive index of the y layer 42 are the same in the p-polarization direction 43, the p-polarized light can be transmitted.
  • the refractive index of the X layer 41 and the refractive index of the y layer 42 are different in the s-polarized direction 44, the s-polarized light of a certain wavelength is reflected. This wavelength is determined by the cycle of the alternate lamination.
  • the above-described agreement or mismatch of the refractive indices in the polarization direction can be realized when at least one of the X layer 41 and the y layer 42 is anisotropic.
  • linearly polarized light p-polarized light or s-polarized light
  • the azimuth axis of the liquid crystal layer 39 having the alternating multilayer structure is set by forming an alignment layer immediately before forming the polarization selection layer 24 and performing alignment processing thereafter.
  • a wavelength selection layer 46 between the fluorescent layer 22 and the polarization selection layer 24 on the counter substrate 15.
  • the wavelength selection layer 46 can be formed by using a high refractive index layer and a low refractive index layer and controlling the thickness of each layer. If the wavelength selection layer 16 is designed using this design method, it is possible to transmit the excitation light wavelength and reflect the fluorescence having a longer wavelength than the excitation light wavelength. For this reason, the fluorescent light 5a returning to the polarization selection layer 24 can be reflected by the wavelength selection layer 46 and contribute to display. Therefore, the display can be made brighter.
  • a display device is used under room lighting.
  • the indoor light 47 affects the user's eyes. More specifically, since the surface of the fluorescent layer 22 has an uneven structure, when the room light 47 enters the fluorescent layer 22, it is scattered and becomes scattered light. The user also sees the scattered light at the same time. It is also assumed that the room light 47 becomes excitation light and enters the fluorescent layer 22 to generate new fluorescence. Due to the influence of the room light 47, the user perceives a certain amount of light even if there is no display fluorescence, so that the contrast ratio of the displayed image is reduced.
  • the room light 47 passes through the dimming layer 28 and is incident on the fluorescent layer 22, and the scattered light therefrom passes through the dimming layer 28 again. That is, in order for the room hole 47 to enter the user's eyes, it has to pass through the dimming layer 28 twice.
  • the display fluorescence passes through the dimming layer 28 once and reaches the user's eyes. As a result, the display fluorescence is slightly darkened, but the contrast of the room light 47 is dramatically improved because the light-attenuating layer 28 operates twice.
  • the fluorescent light 35 from the fluorescent layer 22 is generated almost isotropically. Of these, only fluorescent light that can exit the glass plate 21 can be display light. Of the light incident on the interface between the glass plate 21 and the air, only light within a predetermined angle can be emitted into the air. The predetermined angle is determined by the refractive index of the glass plate 21.
  • a lens 48 is formed on the glass plate 21 for each pixel unit, and the optical path is bent by the lens 48 to emit the fluorescent light 35 into the air.
  • FIG. 11 a liquid crystal display device according to a second embodiment of the present invention will be described with reference to FIG. 11 and FIG.
  • the same parts as those in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted.
  • the array plate 13 can be prepared by the method described above.
  • the fabrication of the opposing plate 15 will be described with reference to FIGS.
  • a high refractive index layer 49 is formed on a glass plate 21 (a).
  • a photoresist layer 50 is formed thereon, and is exposed using a mask 51 (b).
  • the obtained photoresist pattern is subjected to an appropriate heat treatment, and is transformed into a lens shape by closing the riff. (C :).
  • the high refractive index layer 49 is formed (d). This is obtained by etching.
  • the shape of the photo resist pattern 52 can be dug into the high refractive index layer 49 as it is.
  • the remaining portion of the refractive index layer 49 is indicated by reference numeral 49 '(e).
  • a UV-curable low refractive index layer 53 is applied, and a focal length adjusting substrate 54 is bonded to form a lens array (f).
  • the thickness of the focal length adjusting substrate 54 is kept at the focal length of the lens array. Thereby, the fluorescence from the fluorescent layer 22 can be more efficiently collected.
  • the fluorescent layer 22 is printed and applied three times for R, G, and B. Further, a flattening film 23 is applied to flatten the surface of the fluorescent layer 22. Thereafter, a wavelength selection layer 55 is formed by a vacuum evaporation method. For example, a desired wavelength selection layer 55 can be formed by laminating a large number of silicon oxide films and titanium oxide films. An alignment film 56 is applied to this surface, and rubbing is performed.
  • a cholesteric liquid crystal polymer is applied on the alignment film 56 while heating.
  • the pitch of the cholesteric liquid crystal polymer is adjusted to be twice the excitation light wavelength. Thereafter, when the temperature is rapidly returned to room temperature, the cholesteric liquid crystal polymer freezes and becomes stable at room temperature, forming the deflection selection layer 24.
  • a light shielding film 25 is formed and molded.
  • the light shielding film 25 serves to prevent light from entering the active element 18 such as a thin film transistor.
  • An orientation film 26 is further formed on the light-shielding film 25, and rubbing is performed. As described above, the manufacture of the facing plate 15 is completed.
  • the obtained array plate 13 and opposing plate 15 are stuck so that the rubbing directions are antiparallel.
  • a display operation based on the pi-type liquid crystal can be performed.
  • a quarter-wave plate 57 and a polarizing plate 27 are attached to the lower surface of the array plate 13. Also, a dimming layer 28 is stuck on the upper surface of the facing 15. Then, a backlight light source composed of the light source 31 and the light guide plate 32 is arranged to complete the operation. Note that a ferroelectric liquid crystal or an antiferroelectric liquid crystal is used as the liquid crystal layer 14, and a blue light source is used as the light source 31.
  • the liquid crystal display device of the present invention is suitable for a display device such as a computer and a mobile phone.

Abstract

A liquid crystal layer (14), a polarization selecting layer (24), and a fluorescence layer (22) are formed in this order in a path of pumping light. The polarization selecting layer (24) may be a cholesteric liquid crystal layer or an alternate multilayer structure including a layer having at least one anisotropy. A liquid crystal panel in which a polarization selecting layer and a fluorescence layer are formed may be used.

Description

明 細 書  Specification
技術分野 Technical field
本発明は、 液晶表示装置に関するものである。 背景技術  The present invention relates to a liquid crystal display device. Background art
近年、液晶ディスプレイ (LCD)の発展には目覚しいものがある。特に、 モニ ター用途の LCDでは、着実に画面サイズが大きくなりつつある。 これに伴って、 大画面 LCDでの課題である視野角依存性を緩和したものが多く発表されている。 また、 L C Dの表示動作が遅いという課題を解決しょうとした発表も行われている。 以上のように、今後の LC D開発では広視野角、動画表示といった画質性能向上が 広く求められている。  In recent years, the development of liquid crystal displays (LCDs) has been remarkable. In particular, LCDs for monitors are steadily increasing in screen size. Along with this, many publications have alleviated the viewing angle dependency, which is an issue for large-screen LCDs. Also, there are announcements that attempt to solve the problem of slow LCD display operation. As mentioned above, in the future LCD development, image quality performance improvement such as wide viewing angle and moving image display is widely demanded.
新たに蛍光層を用いた広視野角 LCDが提案されている。この例を特表平 9— 5 1 1588号ゃ特開平 1 1—237632号に見る事ができる。特表平 9— 51 1 588号に開示されている構造を図 1に示す。 この構造では、 2枚の偏光板 60、 61を有するねじれネマチック(TN)液晶パネル 62の上部に蛍光層 63を設け るものである。液晶パネル 62背面よリ紫外光あるいは青色あるいは近紫外光を入 射させる。 この入^ f光を TN液晶パネル 62で変調する。以上のように変調された TN液晶パネル 62からの出射光が、蛍光層 63に当たり蛍光を発する。蛍光はほ ぼ等方的に発生するため、 どの方位から見ても視認可能な表示が得られる。  A wide viewing angle LCD using a fluorescent layer has been proposed. An example of this can be seen in Japanese Patent Application Laid-Open No. 9-5111588 / Japanese Patent Application Laid-Open No. Hei 11-237632. Fig. 1 shows the structure disclosed in Japanese Patent Publication No. 9-51 1588. In this structure, a fluorescent layer 63 is provided on a twisted nematic (TN) liquid crystal panel 62 having two polarizing plates 60 and 61. Irradiate ultraviolet light, blue light or near-ultraviolet light from the back of the liquid crystal panel 62. This incident light is modulated by the TN liquid crystal panel 62. The light emitted from the TN liquid crystal panel 62 modulated as described above hits the fluorescent layer 63 and emits fluorescence. Since the fluorescent light is generated almost isotropically, a display that can be viewed from any direction can be obtained.
しかし、図 1の構成では、上部ガラス基板 64が厚いために蛍光層 63に励起光 が届くまでに、横方向に拡散してしまう。 このため、ある液晶パネル画素から出射 する励起光が隣接する蛍光層 63に届いてしまい、表示浚みが発生するという問題 があった。 また、斜めから見込んだ場合にも同様の現象が生じるため、液晶パネル 画素と蛍光層画素の 1対 1対応がずれてしまう.。  However, in the configuration of FIG. 1, since the upper glass substrate 64 is thick, the excitation light diffuses in the horizontal direction before reaching the fluorescent layer 63. For this reason, there is a problem in that the excitation light emitted from a certain liquid crystal panel pixel reaches the adjacent fluorescent layer 63, and a display droop occurs. In addition, the same phenomenon occurs when viewed from an oblique direction, so that the one-to-one correspondence between the liquid crystal panel pixels and the fluorescent layer pixels is shifted.
以上のような課題を解決する方式として、特開平 1 1一 237632号にあるよ うにガラス基板 65、 66内に蛍光層 63と偏光板 60を作りこむ図 2の搆成や、 よリガラス基板 65、 66内に作りこみやすい図 3の構成が提案されている。 As a method for solving the above problems, as shown in JP-A-11-237632, a fluorescent layer 63 and a polarizing plate 60 are formed in glass substrates 65 and 66 as shown in FIG. The configuration shown in FIG. 3 has been proposed which can be easily formed in glass substrates 65 and 66.
図 3の構成を説明する。青色光源 67を出射した青色光の内、左円偏光のみが右 卷きコレステリック液晶層 68を透過する。この左円偏光は ΛΖ4板 69によって 直線偏光となり、 STN液晶層 70へ入射する。 STN液晶層 70が直線偏光のま ま光を出射すれば、その先の; /4板 71によって右円偏光に変換される。 さらに 右卷きコレステリック液晶層 72を配置すれば、反射されるため蛍光層 63に達せ ず、表示に寄与しない。一方、 STN液晶層 70が直線偏光を楕円偏光に変換すれ ば、その先の Λ/4板 71および右卷きコレステリック液晶層 72を一部通過する ことができる。従って、蛍光層 63に青色光が達し、青色光と異なる蛍光が発生し 表示に寄与する。以上のような図 2および図 3の構成は、液晶パネル内部に蛍光層 63が作りこまれているため、前述した液晶パネル函素の蛍光層画素の対応関係が ずれることがない。  The configuration of FIG. 3 will be described. Of the blue light emitted from the blue light source 67, only the left circularly polarized light passes through the right-handed cholesteric liquid crystal layer 68. This left circularly polarized light becomes linearly polarized light by the ΛΖ4 plate 69 and enters the STN liquid crystal layer 70. If the STN liquid crystal layer 70 emits light with linear polarization, the light is converted into right-handed circularly polarized light by the subsequent / 4 plate 71. Further, if the right-handed cholesteric liquid crystal layer 72 is disposed, the light is reflected and does not reach the fluorescent layer 63, and does not contribute to display. On the other hand, when the STN liquid crystal layer 70 converts linearly polarized light into elliptically polarized light, it can partially pass through the の / 4 plate 71 and the right-handed cholesteric liquid crystal layer 72. Accordingly, the blue light reaches the fluorescent layer 63, and fluorescence different from the blue light is generated, which contributes to display. 2 and 3 as described above, since the fluorescent layer 63 is formed inside the liquid crystal panel, the correspondence relationship between the fluorescent layer pixels of the liquid crystal panel element described above does not shift.
しかし、図 2および図 3の構成を液晶パネル内部に作リ込むことは実際上困難で ある。例えば、図 2の構成では、偏光板を液晶パネル内部に作ることが必要である。 この偏光板層を作成した後に、図 2に示すように電極層や配向膜を形成する必要が ある。特開平 1 1—237632号公報に記載されたものでは STN液晶を主に想 定して書かれている。 ところが、薄膜トランジスタ (TFT)駆動の LCDでは、 前述の電極層や配向膜以外にさらに T FTの各層を作ることが求められる。  However, it is practically difficult to build the configurations shown in FIGS. 2 and 3 inside a liquid crystal panel. For example, in the configuration of FIG. 2, it is necessary to form a polarizing plate inside a liquid crystal panel. After forming this polarizing plate layer, it is necessary to form an electrode layer and an alignment film as shown in FIG. Japanese Patent Application Laid-Open No. 11-237632 describes an STN liquid crystal mainly. However, in a thin-film transistor (TFT) -driven LCD, in addition to the above-mentioned electrode layer and alignment film, it is necessary to further form each TFT layer.
一般に偏光板は一軸延紳した高分子中に二色性染料を染色することにより行わ れる。 このため、耐熱性の上限が 100°C程度である。 ところが、上記の TFTの 各層や電極層や配向膜の形成には 200°C以上の高温が必要であリ、これらを作リ こむことはほとんど不可能である。 また、 図 3の構成では、 偏光板に替わり Λ/4 板 69、 71とコレステリック液晶層 68、 72を液晶パネル内部に作りこまなけ れぱならない。上述の偏光層と比較して、両層は耐熱性を高くできる可能性がある。 しかし、形成にさらなる高温を要する TFTの各層、電極層、配向膜を作り込むこ とは事実上困難である。  Generally, a polarizing plate is produced by dyeing a dichroic dye in a uniaxially stretched polymer. For this reason, the upper limit of heat resistance is about 100 ° C. However, the formation of each layer, electrode layer and alignment film of the above-mentioned TFT requires a high temperature of 200 ° C or more, and it is almost impossible to make them. Further, in the configuration of FIG. 3, the quarter-wave plates 69 and 71 and the cholesteric liquid crystal layers 68 and 72 must be formed inside the liquid crystal panel instead of the polarizing plate. Both layers may have higher heat resistance than the above-mentioned polarizing layers. However, it is practically difficult to create TFT layers, electrode layers, and alignment films that require even higher temperatures.
それ故に、本発明の目的は、広視野角、高速応答、高輝度な表示画面を得ること ができる液晶表示装置を提供することにある。 発明の開示 Therefore, an object of the present invention is to provide a liquid crystal display device capable of obtaining a display screen with a wide viewing angle, high-speed response, and high brightness. Disclosure of the invention
本発明によれば、励起光の通路に、液晶層、偏光選択層、 および蛍光層をこの順 に備えたことを特徴とする液晶表示装置が得られる。  According to the present invention, there is provided a liquid crystal display device comprising a liquid crystal layer, a polarization selection layer, and a fluorescent layer in this order in a path of excitation light.
前記偏光選択層は、 コレステリック液晶層からなってもよい。  The polarization selection layer may include a cholesteric liquid crystal layer.
前記偏光選択層は、少なくとも 1種類の異方性を有する層を含む交代多層構造か らなってもよい。  The polarization selection layer may have an alternating multilayer structure including at least one layer having anisotropy.
前記偏光選択層および前記蛍光層を内部に作リ込んだ液晶パネルを有してもよ い。  A liquid crystal panel having the polarization selection layer and the fluorescent layer formed therein may be provided.
前記液晶パネルは、能動素子ァレィと前記能動素子ァレィに前記液晶層を介して 対向した対向基板とを有し、前記対向基板は、前記偏光選択層および前記蛍光層を 有してもよい。  The liquid crystal panel may include an active element array and a counter substrate facing the active element array via the liquid crystal layer, and the counter substrate may include the polarization selection layer and the fluorescent layer.
前記対向基板は、前記蛍光層と前記偏光選択層との間に平坦化層を有してもよい。 前記対向基板は、前記蛍光層と前記偏光選択層との間に配向層を有してもよい。 前記対向基板は、前記蛍光層と前記偏光選択層との間に波長選択層を有してもよ い。  The opposing substrate may include a flattening layer between the fluorescent layer and the polarization selection layer. The counter substrate may include an alignment layer between the fluorescent layer and the polarization selection layer. The counter substrate may have a wavelength selection layer between the fluorescent layer and the polarization selection layer.
前記対向基板はレンズアレイを有してもよい。  The counter substrate may have a lens array.
前記対向基板は導波路ァレイを有してもよい。  The opposing substrate may have a waveguide array.
前記蛍光層の下流側に配された減光層を有してもよい。  A light-reducing layer may be provided on the downstream side of the fluorescent layer.
前記偏光選択層および前記蛍光層を有する対向基板を含み、前記減光層は前記対 向基板の表面に配置されていてもよい。 図面の簡単な説明  The light-reducing layer may include a counter substrate having the polarization selection layer and the fluorescent layer, and the light-reducing layer may be disposed on a surface of the counter substrate. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 従来の液晶表示装置の一例の断面図である。  FIG. 1 is a cross-sectional view of an example of a conventional liquid crystal display device.
図 2は、 従来の液晶表示装置の他例の断面図である。  FIG. 2 is a cross-sectional view of another example of the conventional liquid crystal display device.
図 3は、 従来の液晶表示装置のさらに他例の断面図である。  FIG. 3 is a cross-sectional view of still another example of the conventional liquid crystal display device.
図 4は、 本発明の第 1の実施例に係る液晶表示装置の断面図である。  FIG. 4 is a sectional view of the liquid crystal display device according to the first embodiment of the present invention.
図 5は、 図 4の液晶表示装置の作用を説明するための図である。  FIG. 5 is a diagram for explaining the operation of the liquid crystal display device of FIG.
図 6は、図 4の液晶表示装置に含まれた偏向選択層の一例を説明するための図で ある。 図 7は、図 4の液晶表示装置に含まれた偏向選択層の変形例を説明するための図 である。 FIG. 6 is a diagram for explaining an example of a deflection selection layer included in the liquid crystal display device of FIG. FIG. 7 is a diagram for explaining a modification of the deflection selection layer included in the liquid crystal display device of FIG.
図 8は、 図 4の液晶表示装置の変形例を説明するための図である。  FIG. 8 is a diagram for explaining a modification of the liquid crystal display device of FIG.
図 9は、 図 4の液晶表示装置の他の作用を説明するための図である。  FIG. 9 is a diagram for explaining another operation of the liquid crystal display device of FIG.
図 1 0は、 図 4の液晶表示装置の他の変形例を説明するための図である。  FIG. 10 is a diagram for explaining another modification of the liquid crystal display device of FIG.
図 1 1は、 本発明の第 2の実施例に係る液晶表示装置の断面図である。  FIG. 11 is a sectional view of a liquid crystal display device according to a second embodiment of the present invention.
図 1 2は、 図 1 1の液晶表示装置の製造方法を説明するための図である。 発明を実施するための最良の形態  FIG. 12 is a diagram for explaining a method of manufacturing the liquid crystal display device of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
図 4を参照して、本発明の第 1の実施例に係る液晶表示装置について説明する。 図 4の液晶表示装置は、公知の液晶層 1 4を介して互いに対向したアレイ板 1 3 および対向板〗 5を有する液晶パネル 1 0を含んでいる。  With reference to FIG. 4, a liquid crystal display device according to a first embodiment of the present invention will be described. The liquid crystal display device shown in FIG. 4 includes a liquid crystal panel 10 having an array plate 13 and a facing plate 5 facing each other via a known liquid crystal layer 14.
アレイ板 1 3は、長方形状のガラス板 1 7と、ガラス板 1 7の一面即ち上面に搭 載された複数の能動素子 1 8と、能動素子 1 8と共にガラス板 1 7を覆った配向膜 1 9とを有している。各能動素子 1 8は例えばアモルファスシリコン薄膜トランジ スタであり、ガラス板 1 7に膜形成工程とフォ卜リソグラフィ一工程とを繰り返し 実施することにより形成され得る。なお、配向膜 1 9には周知のラビング処理を施 す。  The array plate 13 includes a rectangular glass plate 17, a plurality of active elements 18 mounted on one surface of the glass plate 17, that is, an upper surface, and an alignment film covering the glass plate 17 together with the active elements 18. 19 and has. Each active element 18 is, for example, an amorphous silicon thin film transistor, and can be formed on the glass plate 17 by repeatedly performing a film forming step and a photolithography step. The alignment film 19 is subjected to a well-known rubbing treatment.
対向基板 1 5は、長方形状のガラス板 2 1と、ガラス板 2 1の一面即ち下面に形 成された複数の蛍光層 2 2と、蛍光層 2 2を覆つて下面を平坦化された有機樹脂か らなる平坦化層 2 3と、平坦化層 2 3の下面を覆った偏向選択層 2 4と、偏向選択 層 24の下面に形成された複数の遮光層 2 5と、遮光層 2 5と共に偏向選択層 24 の下面を覆つた配向膜 2 6とを有している。  The opposing substrate 15 includes a rectangular glass plate 21, a plurality of fluorescent layers 22 formed on one surface, that is, a lower surface of the glass plate 21, and an organic layer whose lower surface is planarized by covering the fluorescent layer 22. A planarization layer 23 made of resin, a deflection selection layer 24 covering the lower surface of the planarization layer 23, a plurality of light shielding layers 25 formed on the lower surface of the deflection selection layer 24, and a light shielding layer 25 And an alignment film 26 covering the lower surface of the deflection selection layer 24.
蛍光層 2 2は、蛍光体を含有する樹脂をガラス板 2 1に印刷することで形成され る。 その際、 蛍光体の種類を替えて 3回印刷を行えば、 蛍光層 2 2を R (赤)、 G (緑)、 B (青) のカラー画素に対応させることができる。 蛍光層 3は比較的高い 温度を経験するので、耐熱性に優れた無機物質からなることが望ましい。無機物質 からなる蛍光体は通常は数ミク口ン程度の粒子である。  The phosphor layer 22 is formed by printing a resin containing a phosphor on the glass plate 21. At this time, if the printing is performed three times while changing the kind of the phosphor, the phosphor layer 22 can be made to correspond to the R (red), G (green), and B (blue) color pixels. Since the fluorescent layer 3 experiences a relatively high temperature, it is desirable that the fluorescent layer 3 be made of an inorganic material having excellent heat resistance. Phosphors composed of inorganic substances are usually particles of a few micron squares.
こうして作られた蛍光層 2 2は、耐熱性に優れるが粗面状態であることが多い。 そこで、平坦化層 2 4を設けて蛍光層 2 2の表面の凹凸を埋める。平坦化層 2 4の 表面にはラビング処理を施す。 The phosphor layer 22 thus produced is excellent in heat resistance, but is often in a rough surface state. Therefore, the unevenness on the surface of the fluorescent layer 22 is filled by providing the flattening layer 24. Rubbing treatment is performed on the surface of the planarization layer 24.
偏向選択層 2 4は次のように作られ得る。平坦化層 24の表面に、紫外線硬化性 のコレステリック液晶の溶液を塗布する。 このコレステリック液晶のピッチは、励 起光の波長の 2倍程度になるように調整する。 この後、紫外線を照射し、 コレステ リック液晶を硬化させて、安定な構造を取らせるようにする。 こうして、偏光選択 層 2 4を得ることができる。  The deflection selection layer 24 can be made as follows. On the surface of the flattening layer 24, a solution of a UV-curable cholesteric liquid crystal is applied. The pitch of the cholesteric liquid crystal is adjusted to be about twice the wavelength of the excitation light. Thereafter, the cholesteric liquid crystal is cured by irradiating ultraviolet rays so that a stable structure is obtained. Thus, the polarization selection layer 24 can be obtained.
遮光層 2 5はフォトリソグラフィ一工程で形成され得る。遮光層 2 5は、蛍光層 2 2からの蛍光が能動素子 1 8に入射するのを防ぐためのものである。 さらに、配 向膜 2 6にはラビング処理を施す。  The light-shielding layer 25 can be formed by one photolithography process. The light shielding layer 25 is for preventing fluorescence from the fluorescent layer 22 from being incident on the active element 18. Further, the orientation film 26 is subjected to a rubbing treatment.
液晶パネル 1 0の組立に際し、上述したアレイ板 1 3と対向板 1 5とをラビング 方向が反平行になるように互いに張り合わせる。 この後、真空中でネマチック液晶 (ホモジニァス液晶層) を注入して封孔し、液晶層 1 4を形成する。 この際に、 ァ レイ板 1 3と対向板 1 5との間隔と液晶の屈折率異方性との積を、励起光の波長域 でスィツチングできるように設定する。 この後、偏光板 2 7をアレイ板 1 3の下面 に貼る。また、減光フイルムを対向基板 1 5の裏面に貼って減光層 2 8を形成する。 この液晶パネル 1 0を光源 3 1 と導光板 3 2とからなる面状励起光源 3 3上に 配置する。 なお光源 3 1としてはブラックライトが使用される。  When assembling the liquid crystal panel 10, the above-described array plate 13 and opposing plate 15 are attached to each other so that the rubbing directions are antiparallel. Thereafter, a nematic liquid crystal (homogeneous liquid crystal layer) is injected in a vacuum to seal the liquid crystal, thereby forming a liquid crystal layer 14. At this time, the product of the distance between the array plate 13 and the opposing plate 15 and the refractive index anisotropy of the liquid crystal is set so that switching can be performed in the wavelength range of the excitation light. Thereafter, the polarizing plate 27 is attached to the lower surface of the array plate 13. Further, a light-attenuating film is stuck on the back surface of the counter substrate 15 to form a light-attenuating layer 28. This liquid crystal panel 10 is arranged on a planar excitation light source 33 composed of a light source 31 and a light guide plate 32. Note that a black light is used as the light source 31.
図 5をも参照して、 図 4の液晶表示装置の作用について説明する。  The operation of the liquid crystal display device of FIG. 4 will be described with reference to FIG.
面状励起光源 3 3からの励起光は、少なくとも液晶層 1 4、偏光選択層 2 4、お よび蛍光層 2 2を通過する。偏光選択層 2 4はある波長のある偏光状態(a )の光 を反射し、 同一波長の他偏光状態(b )の光を透過させる機能を有する。一定の偏 光状態(c )の励起光 3 4が液晶層 1 4に入射して、偏光状態 ( a ) に変換される。 このとき、偏光選択層 2 4はこの光を反射するので、蛍光層 2 2に達せず表示に寄 与しない。 液晶層 1 4に電圧を印加するとその複屈折性が変化する。 このとき、一 定の偏光状態(c )の励起光 3 4が液晶層 1 4に入射して偏光状態(b )に変換さ れると、偏光選択層 2 4を透過するので、蛍光層 2 2から蛍光 3 5が発生する。 し たがって、この液晶表示装置は作成上簡易な構成で表示動作を行わせることができ る。 偏光選択層 24の一例として、図 6に示すような螺旋構造を有するコレステリッ ク液晶層 3 6が使用され得る。 コレステリック液晶層 3 6が右捩れのとき、右円偏 光 37を反射し、左円偏光 38を透過する。 このときの波長はコレステリック液晶 の螺旋ピッチで決定される。なお、コレステリック液晶層 3 6の方位軸の設定は、 偏光選択層 2 4を形成する直前に配向層を形成して、その後の配向処理によって行 ラ。 The excitation light from the planar excitation light source 33 passes through at least the liquid crystal layer 14, the polarization selection layer 24, and the fluorescent layer 22. The polarization selection layer 24 has a function of reflecting light of a certain polarization state (a) having a certain wavelength and transmitting light of the same wavelength and another polarization state (b). The excitation light 34 in a certain polarization state (c) enters the liquid crystal layer 14 and is converted into a polarization state (a). At this time, since the polarization selection layer 24 reflects this light, it does not reach the fluorescent layer 22 and does not contribute to display. When a voltage is applied to the liquid crystal layer 14, its birefringence changes. At this time, when the excitation light 34 in a certain polarization state (c) enters the liquid crystal layer 14 and is converted into the polarization state (b), the excitation light 34 passes through the polarization selection layer 24. Fluorescence is generated from 35. Therefore, the liquid crystal display device can perform a display operation with a simple configuration in terms of production. As an example of the polarization selection layer 24, a cholesteric liquid crystal layer 36 having a helical structure as shown in FIG. 6 can be used. When the cholesteric liquid crystal layer 36 is twisted to the right, it reflects right circularly polarized light 37 and transmits left circularly polarized light 38. The wavelength at this time is determined by the helical pitch of the cholesteric liquid crystal. The azimuthal axis of the cholesteric liquid crystal layer 36 is set by forming an alignment layer immediately before forming the polarization selection layer 24 and performing a subsequent alignment process.
偏向選択層 24の変形例として、図 7に示すような、少なくとも 1種類の異方性 を有する層を含む交代多層構造の液晶層 3 9が使用されても良い。 この場合、液晶 層 3 9は、 2種類(x、 y )の交代積層構造を有している。 X層 4 1と y層 4 2の 屈折率は、 p偏光方向 4 3と s偏光方向 44とで異なる。 もし、 p偏光方向 4 3で X層 4 1 と y層 4 2の屈折率が同一の場合には、 p偏光は透過することができる。 —方、 s偏光方向 4 4で X層 4 1 と y層 4 2の屈折率が異なる場合には、ある波長 の s偏光は反射する。 この波長は交代積層の周期で決まる。以上のような偏光方向 での屈折率の一致'不一致は、少なくとも X層 4 1あるいは y層 4 2のどちらかが 異方的な場合に実現できる。以上のように、直線偏光(p偏光あるいは s偏光)を 入射させると、特定の波長の特定の直線偏光のみを反射させることが可能である。 なお、交代多層構造の液晶層 3 9の方位軸の設定は、偏光選択層 2 4を形成する直 前に配向層を形成して、 その後の配向処理によって行う。  As a modification of the deflection selection layer 24, a liquid crystal layer 39 having an alternating multilayer structure including at least one layer having anisotropy as shown in FIG. 7 may be used. In this case, the liquid crystal layer 39 has two types (x, y) of alternately laminated structures. The refractive indices of the X layer 41 and the y layer 42 differ between the p-polarization direction 43 and the s-polarization direction 44. If the refractive index of the X layer 41 and the refractive index of the y layer 42 are the same in the p-polarization direction 43, the p-polarized light can be transmitted. On the other hand, when the refractive index of the X layer 41 and the refractive index of the y layer 42 are different in the s-polarized direction 44, the s-polarized light of a certain wavelength is reflected. This wavelength is determined by the cycle of the alternate lamination. The above-described agreement or mismatch of the refractive indices in the polarization direction can be realized when at least one of the X layer 41 and the y layer 42 is anisotropic. As described above, when linearly polarized light (p-polarized light or s-polarized light) is incident, it is possible to reflect only specific linearly polarized light of a specific wavelength. The azimuth axis of the liquid crystal layer 39 having the alternating multilayer structure is set by forming an alignment layer immediately before forming the polarization selection layer 24 and performing alignment processing thereafter.
図 8を参照して、 図 4の液晶表示装置の変形例について説明する。  A modified example of the liquid crystal display device of FIG. 4 will be described with reference to FIG.
図 8に示すように、対向基板 1 5上の蛍光層 2 2と偏光選択層 24との間に波長 選択層 4 6を介在させることは好ましい。波長選択層 46は、高屈折率層と低屈折 率層を用いて、夫々の層厚さを制御して作成することができる。 この設計手法を用 いて波長選択層 1 6を設計すれば、励起光波長を透過するように、また励起光波長 よリ長波長の蛍光を反射するようにできる。 このため、偏光選択層 24へ戻ろうと する蛍光 5 aは、波長選択層 4 6によって反射され表示に寄与することができる。 したがって、 表示をより明るくすることができる。  As shown in FIG. 8, it is preferable to interpose a wavelength selection layer 46 between the fluorescent layer 22 and the polarization selection layer 24 on the counter substrate 15. The wavelength selection layer 46 can be formed by using a high refractive index layer and a low refractive index layer and controlling the thickness of each layer. If the wavelength selection layer 16 is designed using this design method, it is possible to transmit the excitation light wavelength and reflect the fluorescence having a longer wavelength than the excitation light wavelength. For this reason, the fluorescent light 5a returning to the polarization selection layer 24 can be reflected by the wavelength selection layer 46 and contribute to display. Therefore, the display can be made brighter.
一般に表示装置は室内照明下で使用される。このために、使用者の目には表示蛍 光以外に、室内光 47も影響する。 より具体的には、蛍光層 2 2の表面は凹凸構造 を有しているため、室内光 47が蛍光層 2 2に入射した際に散乱されて散乱光とな リ、使用者はこの散乱光も同時に見ることとなる。 また、室内光 47が励起光とな つて、蛍光層 2 2に入射して新たに蛍光を発生させることも想定される。 これらの ような室内光 47の影響のため、たとえ表示蛍光が存在しなくても使用者はある程 度の光を認知するので、 表示画像のコントラスト比が低下する。 Generally, a display device is used under room lighting. For this reason, in addition to the display fluorescent light, the indoor light 47 affects the user's eyes. More specifically, since the surface of the fluorescent layer 22 has an uneven structure, when the room light 47 enters the fluorescent layer 22, it is scattered and becomes scattered light. The user also sees the scattered light at the same time. It is also assumed that the room light 47 becomes excitation light and enters the fluorescent layer 22 to generate new fluorescence. Due to the influence of the room light 47, the user perceives a certain amount of light even if there is no display fluorescence, so that the contrast ratio of the displayed image is reduced.
この問題は、図 4および図 9に示すように滅光層 28を蛍光層 2 2と使用者との 間に配置することにより次に説明するように解決される。室内光 47は減光層 2 8 を通過して蛍光層 2 2に入射し、そこからの散乱光は再び減光層 2 8を通過する。 すなわち、室内孔 47が使用者の目に入るためには、減光層 28を二度通過しなけ れぱならない。一方、表示蛍光は減光層 2 8を一度通過して使用者の目に達する。 このため、表示蛍光が多少暗くなるが、室内光 47に関しては減光層 2 8が 2度作 用するため、 コントラストが劇的に向上する。  This problem is solved as described below by disposing the light-extinguishing layer 28 between the fluorescent layer 22 and the user as shown in FIGS. The room light 47 passes through the dimming layer 28 and is incident on the fluorescent layer 22, and the scattered light therefrom passes through the dimming layer 28 again. That is, in order for the room hole 47 to enter the user's eyes, it has to pass through the dimming layer 28 twice. On the other hand, the display fluorescence passes through the dimming layer 28 once and reaches the user's eyes. As a result, the display fluorescence is slightly darkened, but the contrast of the room light 47 is dramatically improved because the light-attenuating layer 28 operates twice.
図 1 0を参照して、 図 4の液晶表示装置の変形例について説明する。  A modification of the liquid crystal display device of FIG. 4 will be described with reference to FIG.
蛍光層 2 2からの蛍光 3 5はほぼ等方的に発生する。 この内、表示光となりうる のはガラス板 2 1を出^ fできる蛍光のみである。 し力、し、ガラス板 2 1と空気との 界面に入射する光の内、所定角度以内の光しか空気中へ出射することができない。 この所定角度はガラス板 2 1の屈折率によって決まる。  The fluorescent light 35 from the fluorescent layer 22 is generated almost isotropically. Of these, only fluorescent light that can exit the glass plate 21 can be display light. Of the light incident on the interface between the glass plate 21 and the air, only light within a predetermined angle can be emitted into the air. The predetermined angle is determined by the refractive index of the glass plate 21.
そこで、図 1 0のようにガラス板 2 1に画素単位毎にレンズ 4 8を作り、このレ ンズ 4 8で光路を曲げて空気中に蛍光 3 5を出射させる。 これにより、表示画面の 輝度を向上させることが可能である。ガラス板 2 1にレンズ 4 8を作ったレンズァ レイを用いる代わりに、ガラス板 2 1に導波路を作る導波路アレイを用いても同様 の効果を生じる。要するに、対向板 1 5にレンズアレイあるいは導波路アレイを設 けるとよい。  Therefore, as shown in FIG. 10, a lens 48 is formed on the glass plate 21 for each pixel unit, and the optical path is bent by the lens 48 to emit the fluorescent light 35 into the air. This makes it possible to improve the brightness of the display screen. Similar effects can be obtained by using a waveguide array in which a waveguide is formed in the glass plate 21 instead of using the lens array in which the lens 48 is formed in the glass plate 21. In short, it is preferable to provide a lens array or a waveguide array on the opposing plate 15.
次に、図 1 1および図 1 2を参照して、本発明の第 2の実施例に係る液晶表示装 置について説明する。 図 4と同様な部分には同じ符号を付して説明を省略する。 アレイ板 1 3は、すでに述べた方法で作成することができる。 ここでは、図 1 2 を用いて、 対向板 1 5の作製について説明する。  Next, a liquid crystal display device according to a second embodiment of the present invention will be described with reference to FIG. 11 and FIG. The same parts as those in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted. The array plate 13 can be prepared by the method described above. Here, the fabrication of the opposing plate 15 will be described with reference to FIGS.
ガラス板 2 1上に高屈折率層 4 9を形成する (a )。 この上にフォトレジスト層 5 0を形成し、 マスク 5 1を用いて露光する (b )。 得られたフォトレジス卜バタ ーンは適当な加熱処理を施し、 リフ口一させることにより、 レンズ形状に変形させ ることができる (c:)。 この変形したフォトレジストパターン 5 2をマスクにして、 高屈折率層 4 9を成形加工する (d )。 これはエッチング加工することによって得 られる。この際にフォトレジス卜パターン 5 2と高屈折率層 4 9が同じエッチング レイ 卜になるようにできれば、フォ卜レジス卜パターン 5 2の形状をそのまま高屈 折率層 4 9に掘り込むことができる。 髙屈折率層 4 9の残存部分を符号 4 9 'で示 した (e )。 この後、 紫外線硬化性の低屈折率層 5 3を塗布し、 さらに焦点距離調 整基板 54を張り合わせ、 レンズアレイを作成する (f )。 焦点距離調整基板 5 4 の厚さをレンズアレイの焦点距離に保つ。 これにより、蛍光層 2 2からの蛍光をよ リ効率的に集光することができる。 A high refractive index layer 49 is formed on a glass plate 21 (a). A photoresist layer 50 is formed thereon, and is exposed using a mask 51 (b). The obtained photoresist pattern is subjected to an appropriate heat treatment, and is transformed into a lens shape by closing the riff. (C :). Using the deformed photoresist pattern 52 as a mask, the high refractive index layer 49 is formed (d). This is obtained by etching. At this time, if the photoresist pattern 52 and the high refractive index layer 49 can be made to have the same etching rate, the shape of the photo resist pattern 52 can be dug into the high refractive index layer 49 as it is. it can.残存 The remaining portion of the refractive index layer 49 is indicated by reference numeral 49 '(e). Thereafter, a UV-curable low refractive index layer 53 is applied, and a focal length adjusting substrate 54 is bonded to form a lens array (f). The thickness of the focal length adjusting substrate 54 is kept at the focal length of the lens array. Thereby, the fluorescence from the fluorescent layer 22 can be more efficiently collected.
この後、図 1 1に示すように蛍光層 2 2を R用、 G用、 B用と 3回印刷塗布する。 さらに、平坦化膜 2 3を塗布し、蛍光層 2 2の表面を平坦にする。 この後に波長選 択層 5 5を真空蒸着法により作成する。例えば、酸化シリコン膜と酸化チタン膜を 多数積層することにより、望む波長選択層 5 5を作成することができる。この表面 に配向膜 5 6を塗布し、 ラビング処理を行う。  Thereafter, as shown in FIG. 11, the fluorescent layer 22 is printed and applied three times for R, G, and B. Further, a flattening film 23 is applied to flatten the surface of the fluorescent layer 22. Thereafter, a wavelength selection layer 55 is formed by a vacuum evaporation method. For example, a desired wavelength selection layer 55 can be formed by laminating a large number of silicon oxide films and titanium oxide films. An alignment film 56 is applied to this surface, and rubbing is performed.
さらに、加熱しながら、配向膜 5 6の上にコレステリック液晶ポリマーを塗布す る。 コレステリック液晶ポリマーのピッチは、励起光波長の 2倍になるように調整 する。 この後、急速に室温に戻すと、 コレステリック液晶ポリマーは凍結し室温で 安定な状態となり、 偏向選択層 24を形成する。  Further, a cholesteric liquid crystal polymer is applied on the alignment film 56 while heating. The pitch of the cholesteric liquid crystal polymer is adjusted to be twice the excitation light wavelength. Thereafter, when the temperature is rapidly returned to room temperature, the cholesteric liquid crystal polymer freezes and becomes stable at room temperature, forming the deflection selection layer 24.
さらに、遮光膜 2 5を成膜、成型する。 この遮光膜 2 5は、薄膜トランジスタ等 の能動素子 1 8に光が入射するのを防ぐ役目を果たす。遮光膜 2 5の上にさらに配 向膜 2 6を形成し、ラビング処理を施す。以上のようにして対向板 1 5の製造が完 了する。  Further, a light shielding film 25 is formed and molded. The light shielding film 25 serves to prevent light from entering the active element 18 such as a thin film transistor. An orientation film 26 is further formed on the light-shielding film 25, and rubbing is performed. As described above, the manufacture of the facing plate 15 is completed.
得られたアレイ板 1 3と対向板 1 5とをラビング方向が反平行になるように張 リ合わせる。アレイ板 1 3と対向板 1 5との間隙にネマチック液晶を注入すること によって、 パイ型液晶を元にした表示動作が可能になる。  The obtained array plate 13 and opposing plate 15 are stuck so that the rubbing directions are antiparallel. By injecting a nematic liquid crystal into the gap between the array plate 13 and the opposing plate 15, a display operation based on the pi-type liquid crystal can be performed.
さらにアレイ板 1 3の下面に四分の一波長板 5 7と偏光板 2 7を貼る。また対向 1 5の上面に減光層 2 8を貼る。そして、光源 3 1 と導光板 3 2からなるバックラ ィ ト光源を配置すれば完成する。なお、液晶層 1 4として強誘電性液晶や反強誘電 性液晶を用い、 光源 3 1 としては青色光源を用いる。 産業上の利用可能性 Further, a quarter-wave plate 57 and a polarizing plate 27 are attached to the lower surface of the array plate 13. Also, a dimming layer 28 is stuck on the upper surface of the facing 15. Then, a backlight light source composed of the light source 31 and the light guide plate 32 is arranged to complete the operation. Note that a ferroelectric liquid crystal or an antiferroelectric liquid crystal is used as the liquid crystal layer 14, and a blue light source is used as the light source 31. Industrial applicability
本発明の液晶表示装置は、コンピュータゃ携帯電話機などの表示装置として好適 である。  The liquid crystal display device of the present invention is suitable for a display device such as a computer and a mobile phone.

Claims

請 求 の 範 囲 The scope of the claims
1 . 励起光の通路に、液晶層、偏光選択層、 および蛍光層をこの順に備えたこと を特徴とする液晶表示装置。 1. A liquid crystal display device comprising a liquid crystal layer, a polarization selection layer, and a fluorescent layer in this order in a path of excitation light.
2. 前記偏光選択層は、コレステリック液晶層からなる請求の範囲第 1項に記載 の液晶表示装置。  2. The liquid crystal display device according to claim 1, wherein the polarization selection layer comprises a cholesteric liquid crystal layer.
3.前記偏光選択層は、少なくとも 1種類の異方性を有する層を含む交代多層構 造からなる請求の範囲第 1項に記載の液晶表示装置。  3. The liquid crystal display device according to claim 1, wherein the polarization selection layer has an alternating multilayer structure including at least one layer having anisotropy.
4.前記偏光選択層および前記蛍光層を内部に作リ込んだ液晶ノ ネルを有する請 求の範囲第 1項に記載の液晶表示装置。  4. The liquid crystal display device according to claim 1, comprising a liquid crystal panel in which the polarization selection layer and the fluorescent layer are formed.
5.前記液晶/ \°ネルは、能動素子ァレィと前記能動素子ァレィに前記液晶層を介 して対向した対向基板とを有し、前記対向基板は、前記偏光選択層および前記蛍光 層を有する請求の範囲第 4項に記載の液晶表示装置。  5. The liquid crystal panel includes an active device array and a counter substrate facing the active device array via the liquid crystal layer, and the counter substrate includes the polarization selection layer and the fluorescent layer. The liquid crystal display device according to claim 4.
6.前記対向基板は、前記蛍光層と前記偏光選択層との間に平坦化層を有する請 求の範囲第 5項に記載の液晶表示装置。  6. The liquid crystal display device according to claim 5, wherein the counter substrate has a flattening layer between the fluorescent layer and the polarization selection layer.
7. 前記対向基板は、前記蛍光層と前記偏光選択層との間に配向層を有する請求 の範囲第 5項に記載の液晶表示装置。  7. The liquid crystal display device according to claim 5, wherein the counter substrate has an alignment layer between the fluorescent layer and the polarization selection layer.
8.前記対向基板は、前記蛍光層と前記偏光選択層との間に波長選択層を有する 請求の範囲第 5項に記載の液晶表示装置。  8. The liquid crystal display device according to claim 5, wherein the counter substrate has a wavelength selection layer between the fluorescent layer and the polarization selection layer.
9.前記対向基板はレンズアレイを有する請求の範囲第 5項に記載の液晶表示装 置。  9. The liquid crystal display device according to claim 5, wherein the counter substrate has a lens array.
1 0.前記対向基板は導波路アレイを有する請求の範囲第 5項に記載の液晶表示 匱。  10. The liquid crystal display panel according to claim 5, wherein the counter substrate has a waveguide array.
1 1 .前記蛍光層の下流側に配された減光層を有する請求の範囲第 1項に記載の  11.The method according to claim 1, further comprising a light-attenuating layer disposed downstream of the fluorescent layer.
1 2.前記偏光選択層および前記蛍光層を有する対向基板を含み、前記減光層は 前記対向基板の表面に配置されている請求の範囲第 1 1項に記載の液晶表示装置。 12. The liquid crystal display device according to claim 11, further comprising a counter substrate having the polarization selection layer and the fluorescent layer, wherein the dimming layer is disposed on a surface of the counter substrate.
PCT/JP2001/006041 2000-07-12 2001-07-12 Liquid crystal display WO2002005021A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000211753A JP2002023145A (en) 2000-07-12 2000-07-12 Liquid crystal display device
JP2000-211753 2000-07-12

Publications (1)

Publication Number Publication Date
WO2002005021A1 true WO2002005021A1 (en) 2002-01-17

Family

ID=18707805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006041 WO2002005021A1 (en) 2000-07-12 2001-07-12 Liquid crystal display

Country Status (2)

Country Link
JP (1) JP2002023145A (en)
WO (1) WO2002005021A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998734A (en) * 2012-11-19 2013-03-27 京东方科技集团股份有限公司 Imaging delayer, production method thereof and display device
CN103017027A (en) * 2012-12-04 2013-04-03 京东方科技集团股份有限公司 Surface light source device and liquid crystal display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2478287A (en) * 2010-03-01 2011-09-07 Merck Patent Gmbh Electro-optical switching element and electro-optical display
WO2012043172A1 (en) * 2010-10-01 2012-04-05 シャープ株式会社 Phosphor substrate, and display device and lighting device each equipped with same
JP2014132515A (en) * 2011-04-19 2014-07-17 Sharp Corp Phosphor substrate and display device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822144A (en) * 1986-12-24 1989-04-18 U.S. Philips Corporation Electro-optic color display including luminescent layer and interference filter
WO1995017691A1 (en) * 1993-12-21 1995-06-29 Minnesota Mining And Manufacturing Company Optical polarizer
WO1995027920A1 (en) * 1994-04-06 1995-10-19 Screen Technology Limited Display screen
JPH0862602A (en) * 1994-07-26 1996-03-08 Samsung Electron Devices Co Ltd Display device
JPH1152371A (en) * 1997-07-31 1999-02-26 Nec Corp Liquid crystal display element
JPH11109341A (en) * 1997-09-29 1999-04-23 Toshiba Electronic Engineering Corp Liquid crystal display device
JPH11237632A (en) * 1998-02-24 1999-08-31 Sharp Corp Fluorescence type liquid crystal display device
JP2000019504A (en) * 1998-06-26 2000-01-21 Idemitsu Kosan Co Ltd Liquid crystal optical element
JP2000047184A (en) * 1998-07-27 2000-02-18 Sharp Corp Liquid crystal display device
JP2000081847A (en) * 1999-09-27 2000-03-21 Toshiba Corp Picture display device and light emitting device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822144A (en) * 1986-12-24 1989-04-18 U.S. Philips Corporation Electro-optic color display including luminescent layer and interference filter
WO1995017691A1 (en) * 1993-12-21 1995-06-29 Minnesota Mining And Manufacturing Company Optical polarizer
WO1995027920A1 (en) * 1994-04-06 1995-10-19 Screen Technology Limited Display screen
JPH0862602A (en) * 1994-07-26 1996-03-08 Samsung Electron Devices Co Ltd Display device
JPH1152371A (en) * 1997-07-31 1999-02-26 Nec Corp Liquid crystal display element
JPH11109341A (en) * 1997-09-29 1999-04-23 Toshiba Electronic Engineering Corp Liquid crystal display device
JPH11237632A (en) * 1998-02-24 1999-08-31 Sharp Corp Fluorescence type liquid crystal display device
JP2000019504A (en) * 1998-06-26 2000-01-21 Idemitsu Kosan Co Ltd Liquid crystal optical element
JP2000047184A (en) * 1998-07-27 2000-02-18 Sharp Corp Liquid crystal display device
JP2000081847A (en) * 1999-09-27 2000-03-21 Toshiba Corp Picture display device and light emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998734A (en) * 2012-11-19 2013-03-27 京东方科技集团股份有限公司 Imaging delayer, production method thereof and display device
CN103017027A (en) * 2012-12-04 2013-04-03 京东方科技集团股份有限公司 Surface light source device and liquid crystal display device

Also Published As

Publication number Publication date
JP2002023145A (en) 2002-01-23

Similar Documents

Publication Publication Date Title
JP3549176B2 (en) Liquid crystal display device and method for manufacturing color filter substrate
TWI323363B (en)
KR101418728B1 (en) Display device
JP4451485B2 (en) LCD with backlight and reflective polarizer on front panel
JP4415334B2 (en) Non-absorbing polarization color filter and liquid crystal display device incorporating the same
JP5106754B2 (en) Transflective display device and method for forming the same.
WO2004036287A1 (en) Parallax barrier element, method of producing the same, and display device
TW574521B (en) Liquid crystal display and its producing method
JP2008102416A (en) Wire grid polarizer and liquid crystal display using the same
JPH09166780A (en) Reflection type liquid crystal display device
JPH10227998A (en) Optical element, polarizing element, and their manufacture, and video display device
WO2006058267A2 (en) Color display device and method
JP3538149B2 (en) Reflection type liquid crystal display device and manufacturing method thereof
WO2009090778A1 (en) Liquid crystal display
JP3816467B2 (en) Liquid crystal display
JP2007163722A (en) Liquid crystal device, its manufacturing method, optical retardation plate and electronic device
JP2010079024A (en) Liquid crystal display device
JP3310569B2 (en) Reflective liquid crystal display
TW507094B (en) Liquid crystal display device
KR20130078727A (en) Coatable phase retardation film and electroluminescence display device having thereof
WO2008041268A1 (en) Liquid crystal display element, process for producing the same and electronic paper having the element
JP2005141110A (en) Liquid crystal display
WO2002005021A1 (en) Liquid crystal display
JP4687870B2 (en) Liquid crystal display device and manufacturing method thereof
WO2013010491A1 (en) Semi-transmissive and semi-reflective liquid crystal display and manufacturing method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase