WO2002006776A2 - Method and sensor for measuring the level of a liquid in a receptacle - Google Patents

Method and sensor for measuring the level of a liquid in a receptacle Download PDF

Info

Publication number
WO2002006776A2
WO2002006776A2 PCT/DE2001/002609 DE0102609W WO0206776A2 WO 2002006776 A2 WO2002006776 A2 WO 2002006776A2 DE 0102609 W DE0102609 W DE 0102609W WO 0206776 A2 WO0206776 A2 WO 0206776A2
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
liquid
signal
waveguide
level
Prior art date
Application number
PCT/DE2001/002609
Other languages
German (de)
French (fr)
Other versions
WO2002006776A3 (en
Inventor
Walter Bauer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2002006776A2 publication Critical patent/WO2002006776A2/en
Publication of WO2002006776A3 publication Critical patent/WO2002006776A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/268Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors mounting arrangements of probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/266Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor

Abstract

The invention relates to a method for measuring the level of a liquid in a receptacle, whereby at least one sensor (3) is arranged inside the receptacle (1). The sensor (3) is provided in the form of an optical waveguide with an air cell (22) located between both electrodes (21, 24) in which a certain quantity of the liquid (2) flows according to the level of liquid. The volumetric quantity or the level in the receptacle (1) can be determined by determining the capacitance or the change thereof as a function of the immersed sensor (3). As an evaluation method, either a change in capacity is measured or the sensor (3) is subjected to the action of a high-frequency signal and wave properties are used for determining the fluid. For example, the resonance frequency, the standing wave ratio, the frequency of a standing wave, which is generated in a defined manner, between the liquid and the feeding point, the impedance or another electrical property can all be utilized for measuring. According to the shape of the tank, a number of sensors (3) can also be arranged inside the receptacle (1) and they can be evaluated individually or by connecting them in parallel.

Description

Verfahren und Sensor zur Füllstandsmessung einer Flüssigkeit in einem BehälterMethod and sensor for level measurement of a liquid in a container
Stand der TechnikState of the art
Die Erfindung geht aus von einem Verfahren bzw. einem Sensor sowie einer Vorrichtung mit wenigstens zwei Sensoren zur Füllstandsmessung einer Flüssigkeit in einem Behälter, nach der Gattung der nebengeordneten Ansprüche. Füllstandsmesser für verschiedenste Flüssigkeiten sind bereits bekannt und werden in zahlreichen Technologien gefertigt. Die bekannten Füllstandsmesser arbeiten beispielsweise nach mechanischen, elektrischen, thermischen, kapazitiven, induktiven oder frequenzmodellierten Verfahren. Beispielsweise werden zur Kraftstoffmessung in einem Fahrzeugtank Widerstandssensoren verwendet, wobei mittels eines Schwimmers dasThe invention is based on a method or a sensor and a device with at least two sensors for measuring the level of a liquid in a container, according to the type of the independent claims. Level meters for various liquids are already known and are manufactured in numerous technologies. The known level meters work, for example, according to mechanical, electrical, thermal, capacitive, inductive or frequency-modeled methods. For example, resistance sensors are used for fuel measurement in a vehicle tank, with the aid of a float
Widerstandsverhältnis eines Teilers in Abhängigkeit vom Pegelstand im Flüssigkeitsbehälter geändert wird. Dieses Widerstandsverhältnis dient zur Auswertung für den Pegelstand oder die Flüssigkeitsmenge. Mechanische Sensoren haben jedoch den Nachteil, dass ihre Mechanik relativ empfindlich ist insbesondere im rauhen Alltagsbetrieb eines Kraftfahrzeugs. Andererseits schwankt das Gebersignal durch die Erschütterungen während der Fahrt sehr stark, so dass weitere Maßnahmen ergriffen werden müssen, um die sich ständig ändernden Meßwerte auszugleichen. Rein elektrisch messende Sensoren haben dagegen den Nachteil, dass sie aufwendig gebaut sind. Insbesondere bei Behältern mit unregelmäßiger Geometrie ist das Meßergebnis nicht ohne weiteres linearisierbar, so dass die Skala für eine Füllstandsanzeige schwieriger herstellbar ist.Resistance ratio of a divider is changed depending on the level in the liquid container. This resistance ratio is used to evaluate the level or the amount of liquid. However, mechanical sensors have the disadvantage that their mechanics are relatively sensitive, especially in the rough everyday operation of a motor vehicle. On the other hand, the encoder signal fluctuates very strongly due to the vibrations during the journey, so that further measures must be taken to compensate for the constantly changing measured values. Purely electric Measuring sensors, on the other hand, have the disadvantage that they are complex. In the case of containers with an irregular geometry in particular, the measurement result cannot readily be linearized, so that the scale for a level indicator is more difficult to produce.
Vorteile der ErfindungAdvantages of the invention
Das erfindungsgemäße Verfahren bzw. der Sensor sowie die erfindungsgemäße Vorrichtung mit wenigstens zwei Sensoren mit den kennzeichnenden Merkmalen der nebengeordneten Ansprüche hat demgegenüber den Vorteil, dass der Pegelstand der Flüssigkeit mit Hilfe der Änderung einer elektrischen Größe erfaßt wird. Dieses erfolgt nach einer rein elektrischen Meßmethode, so daß mechanisch bewegliche Teile nicht erforderlich sind.The method according to the invention or the sensor as well as the device according to the invention with at least two sensors with the characterizing features of the independent claims has the advantage that the level of the liquid is detected with the aid of a change in an electrical variable. This is done according to a purely electrical measuring method, so that mechanically moving parts are not required.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Verfahrens möglich. Besonders vorteilhaft ist, dass der Sensor ein analoges, Frequenz- oder Zeit-Signal für den Pegelstand liefert, wobei das Signal auf Grund des mechanischen Aufbaus des Sensors im wesentlichen unabhängig ist von starken Erschütterungen und Wellenbewegungen im Flüssigkeitsbehälter.The measures listed in the dependent claims allow advantageous developments and improvements of the method specified in the main claim. It is particularly advantageous that the sensor supplies an analog, frequency or time signal for the level, the signal being essentially independent of strong vibrations and wave movements in the liquid container due to the mechanical structure of the sensor.
Vorteilhaft ist weiter, dass der Sensor in Form eines koaxialen Kondensators oder Wellenleiters aufgebaut ist, wobei zwischen zwei Elektroden einen Luftzelle vorgesehen ist, in die entsprechend des Pegelstandes die Flüssigkeit eindringen kann. Aufgrund der relativ engen Luftzelle werden dabei starke Pegelschwankungen vorteilhaft weitgehend unterdrückt . Insbesondere durch Ausbildung des Wellenleiters in Form eines handelsüblichen Luftzellenkabels wird vorteilhaft erreicht, dass dieser Sensor an nahezu jede Behälterform so angepaßt werden kann, dass beispielsweise eine einfache lineare oder logarithmische Skalierung auf einemIt is also advantageous that the sensor is constructed in the form of a coaxial capacitor or waveguide, an air cell being provided between two electrodes, into which the liquid can penetrate according to the level. Due to the relatively narrow air cell, strong level fluctuations are advantageously largely suppressed. In particular, by designing the waveguide in the form of a commercially available air cell cable, it is advantageously achieved that this sensor can be adapted to almost any container shape in such a way that, for example, simple linear or logarithmic scaling on one
Anzeigegerät möglich ist. So kann bei Ausbildung des Sensors als Wellenleiter auch mittels eines Hochfrequenzsignals oder mittels eines kurzen elektrischen Impulses die Position des Impedanzsprungs am Übergang zwischen Luft und dem Flüssigkeitsmedium oder die Änderung desDisplay device is possible. When the sensor is designed as a waveguide, the position of the impedance jump at the transition between air and the liquid medium or the change in the
Stehwellenverhältnisses am Wellenleiter bzw. die Signallaufzeit vorteilhaft als Maß für den Pegelstand bestimmt werden.Standing wave ratio on the waveguide or the signal transit time can advantageously be determined as a measure of the level.
Zur Kalibrierung des Meßwertes ist auch ein Differenzsensor verwendbar, der beispielsweise voll mit der Flüssigkeit umgeben ist und somit ein entsprechendes Referenzsignal liefert. Dieser Sensor kann beispielsweise auch im Tankrohr oder einem Ablaufrohr angeordnet sein, um beispielsweise einen gewünschten Flüssigkeitsablauf lückenlos zu überwachen.A difference sensor can also be used to calibrate the measured value, which, for example, is completely surrounded by the liquid and thus supplies a corresponding reference signal. This sensor can, for example, also be arranged in the tank pipe or a drain pipe in order, for example, to continuously monitor a desired liquid drain.
Da die Flüssigkeit zwischen den beiden Elektroden des Sensors als Dielektrikum wirkt, kann aufgrund der spezifischen Eigenschaft der Flüssigkeit festgestellt werden, ob unerwünschte Beimischungen einer weiteren, anderen Flüssigkeit vorhanden sind. Beispielsweise kann auf diese Weise festgestellt werden, ob sich Wasser im Kraftstoff befindet und gegebenenfalls wie hoch der Anteil ist.Since the liquid between the two electrodes of the sensor acts as a dielectric, it can be determined on the basis of the specific property of the liquid whether undesirable admixtures of another, different liquid are present. For example, it can be used in this way to determine whether there is water in the fuel and, if appropriate, how high the proportion is.
In einer besonders vorteilhaften Ausgestaltung der Erfindung hat der Meßwertaufnehmer die Form eines Verzögerungs- Wellenleiters. Dadurch kann die Laufzeit der elektrischen Signale erhöht werden, wodurch bei der Auswertung der Pulsechos oder sonstiger, insbesonders hochfrequenter elektrischer Eigenschaften einfachere, langsamere und damit kostengünstigere Elektronikbausteine in einer Auswerteschaltung eingesetzt werden können.In a particularly advantageous embodiment of the invention, the sensor has the form of a delay waveguide. As a result, the transit time of the electrical signals can be increased, which in the evaluation of the Pulse echoes or other, in particular high-frequency electrical properties, simpler, slower and therefore more cost-effective electronic components can be used in an evaluation circuit.
Zeichnungdrawing
Ausführungsbeispiel der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert.Embodiments of the invention are shown in the drawing and explained in more detail in the following description.
Figur 1 zeigt einen Behälter mit mehreren Sensoren und Figur 2 zeigt den Aufbau eines Sensors in räumlicher Darstellung und in den Figuren 3 und 4 sind Ausführungsformen eines Sensors bzw. der zugehörigen Wellenleiter dargestellt. In Figur 5 ist eine Auswerteschaltung für einen Füllstandssensor dargestellt, die mittels elektrischem Puls-Echo-Verfahren arbeitet.Figure 1 shows a container with several sensors and Figure 2 shows the structure of a sensor in a spatial representation and in Figures 3 and 4 embodiments of a sensor or the associated waveguide are shown. FIG. 5 shows an evaluation circuit for a fill level sensor that works by means of an electrical pulse-echo method.
Beschreibung der AusführungsbeispieleDescription of the embodiments
Gemäß Figur 1 sind innerhalb oder außerhalb von einem beliebig geformten Behälter 1, beispielsweise einem Kraftstofftank eines Kraftfahrzeugs wenigstens ein Sensor 3 angebracht, die den gesamten Behälter oder unterschiedliche Bereiche des Behälters 1 überwachen können. Eingezeichnet sind Sensoren 3a, 3b, es können aber auch noch mehr, beispielsweise 4 Sensoren 3 vorhanden sein, die unterschiedliche Tankbereiche überwachen. Der Behälter 1 ist z.B. teilweise mit einer Flüssigkeit 2 gefüllt, die auch bis zum etwa gleichen Pegelstand innerhalb der Sensoren 3 aufsteigt. Am Boden des Behälters 1 ist ein Referenzsensor 4 angeordnet, der vollständig von der Flüssigkeit 2 durchströmt wird. In alternativer Ausgestaltung ist ein weiterer Sensor 5 vorgesehen, der beispielsweise in einem Auslaufrohr 11 des Behälters 1 angeordnet ist. Eine Pumpe 6, die vor dem Auslaufrohr 11 angeordnet ist, ist im Fall eines Kraftstofftanks für die Kraftstofförderung vorsehbar. Desgleichen hat der Behälter 1 einen Tankverschluß 13, der zum Befüllen des Behälters 1 verwendet wird. WeitereAccording to FIG. 1, at least one sensor 3 is attached inside or outside of an arbitrarily shaped container 1, for example a fuel tank of a motor vehicle, which can monitor the entire container or different areas of the container 1. Sensors 3a, 3b are shown, but there may also be more, for example 4 sensors 3, which monitor different tank areas. The container 1 is, for example, partially filled with a liquid 2, which also rises to approximately the same level within the sensors 3. At the bottom of the container 1, a reference sensor 4 is arranged, through which the liquid 2 flows completely. In an alternative embodiment, a further sensor 5 is provided, for example in a Outlet pipe 11 of the container 1 is arranged. A pump 6, which is arranged in front of the outlet pipe 11, can be provided in the case of a fuel tank for the fuel delivery. Likewise, the container 1 has a tank cap 13, which is used to fill the container 1. Further
Durchführungen 12 sind insbesondere für den Ein- und Ausbau der Sensoren 3 und zur Kabeldurchführung für die elektrischen Leitungen 9a, 9b vorgesehen.Feedthroughs 12 are provided in particular for the installation and removal of the sensors 3 and for the cable feedthrough for the electrical lines 9a, 9b.
Die elektrischen Leitungen 9 sind mit einerThe electrical lines 9 are with a
Auswertevorrichtung 7 verbunden, die im wesentlichen eine Meßvorrichtung aufweist, die z. B. die Kapazität der wenigstens teilweise eingetauchten Sensoren 3 mit Hilfe bekannter Meßverfahren mißt und daraus ein entsprechendes Anzeigesignal über eine Leitung 10 an eine Anzeige 8 liefert. Alternative mögliche Meßgrößen sind beispielsweise die Welleneigenschaften des koaxial aufgebauten Wellenleiters .Evaluation device 7 connected, which essentially has a measuring device, the z. B. measures the capacity of the at least partially immersed sensors 3 with the aid of known measuring methods and delivers a corresponding display signal via a line 10 to a display 8. Alternative possible measured variables are, for example, the wave properties of the coaxial waveguide.
Figur 2 zeigt eine Teilansicht eines Sensors 3, der im wesentlichen als koaxial aufgebauter Kondensator bzw. Wellenleiter aufgebaut ist. Derartige Wellenleiter sind beispielsweise als koaxiale Luftzellenkabel handelsüblich und werden für die Übertragung hochfrequenter elektrischer Signale verwendet. Der Wellenleiter weist eine ersteFIG. 2 shows a partial view of a sensor 3, which is essentially constructed as a coaxial capacitor or waveguide. Such waveguides are commercially available, for example, as coaxial air cell cables and are used for the transmission of high-frequency electrical signals. The waveguide has a first
Elektrode 21 auf, die als Mittelleiter ausgebildet ist. Um die erste Elektrode 21 ist eine zweite Elektrode 24 angeordnet, die durch ein Stützskelett 23 koaxial zur ersten Elektrode 21 gehalten wird. Das Stützskelett 23 weist eine oder mehrere Luftzellen 22 auf, so dass beim Eintauchen des Wellenleiters in die Flüssigkeit diese zwischen die beiden Elektroden 21, 24 strömen kann, da das Ende des Wellenleiters nicht verschlossen ist. Zum Schutz gegen elektrische Kurzschlüsse ist vorzugsweise um die zweite Elektrode 24 eine Isolierung 25 aufgebracht. Die in die Flüssigkeit eingetauchten Enden werden ebenfalls isoliert. Der Aufbau und die Struktur des Wellenleiters ist so ausgebildet, dass dieser halb steif ist und somit auch in Winkel-, Bogen- oder in Schleifenform innerhalb des Behälters 1 oder beispielsweise auch im Auslaufrohr 11, entlang der Aussenwand oder auch abseits von dieser verlegt werden kann. Auf diese Weise gelingt es, den Meßwert so umzuformen, dass je nach Wunsch eine lineare, logarithmische oder sonst geeignete Skalierung auf der Anzeige 8 möglich ist. Zur Bestimmung des Pegelstandes im Behälter 1 werden bekannte Meßverfahren verwendet, wobei im einfachsten Fall die Kapazität zwischen den Elektroden gemessen wird. Dabei kann die Sensorkapazität auch zur Erzeugung einer abhängigen Frequenz- oder Impulsdauer in einer entsprechenden Schaltung (Oszillator, RC- oder LC-Zeitglied) verwendet werden. Eine alternative Auswerteschaltung kann durch Einspeisung einer hochfrequenten Spannung die Welleneigenschaften wie das Stehwellenverhältnis, die Frequenz einer definiert ausgebildeten Stehwelle zwischen der Flüssigkeit und dem Einspeisepunkt, die Impedanz oder sonstige elektrischeElectrode 21, which is designed as a central conductor. A second electrode 24 is arranged around the first electrode 21 and is held coaxially to the first electrode 21 by a supporting skeleton 23. The support skeleton 23 has one or more air cells 22, so that when the waveguide is immersed in the liquid, it can flow between the two electrodes 21, 24, since the end of the waveguide is not closed. To protect against electrical short circuits, an insulation 25 is preferably applied around the second electrode 24. The in the Liquid-immersed ends are also isolated. The structure and structure of the waveguide is designed such that it is semi-rigid and can therefore also be laid in an angular, curved or loop shape inside the container 1 or, for example, also in the outlet pipe 11, along the outer wall or also away from it , In this way it is possible to transform the measured value in such a way that a linear, logarithmic or other suitable scaling on the display 8 is possible as desired. Known measuring methods are used to determine the level in the container 1, the capacitance between the electrodes being measured in the simplest case. The sensor capacitance can also be used to generate a dependent frequency or pulse duration in a corresponding circuit (oscillator, RC or LC timing element). An alternative evaluation circuit can, by feeding in a high-frequency voltage, the wave properties such as the standing wave ratio, the frequency of a defined standing wave between the liquid and the feed point, the impedance or other electrical
Eigenschaften messen, die sich ändern, wenn die Luftzellen 22 mit der Flüssigkeit 2 gefüllt werden. Des weiteren ist der Wellenleiter so ausgebildet, dass er bei seiner Verformung in die gewünschten Richtungen seine elektrischen Eigenschaften nicht nennenswert ändert. Durch die Verformung des Wellenleiters kann somit auch eine Anpassung an komplizierte Behälterformen erreicht werden. Dadurch gelingt es, das Volumen bzw. die Massebestimmung linear zur Füllänge des Sensors 3 zu bestimmen.Measure properties that change when the air cells 22 are filled with the liquid 2. Furthermore, the waveguide is designed in such a way that it does not significantly change its electrical properties when it is deformed in the desired directions. Due to the deformation of the waveguide, an adaptation to complicated container shapes can also be achieved. This makes it possible to determine the volume or the mass determination linearly with the filling length of the sensor 3.
In weiterer Ausgestaltung der Erfindung ist auch vorgesehen, bei der Messung der Kapazität mehrere Sensoren 3 parallel zu schalten und an mehreren Stellen des Behälters 1 anzuordnen, um beispielsweise auch Neigungs- und Beschleunigungsabhängigkeiten des Meßsignals bei ortsveränderlichen Behältern 1 zu kompensieren. Des weiteren ist vorgesehen, zur Kompensation der Stoffabhängigkeiten gegebenenfalls einen Referenzsensor 4 zu installieren der vorzugsweise gleichartig ausgebildet ist und eine bekannte Länge aufweist. Dieser Referenzsensor 4 wird so angeordnet, dass er möglichst vollständig in der Flüssigkeit 2 eingetaucht ist. Dies kann beispielsweise dadurch realisiert werden, dass der Referenzsensor 4 als Stück der Ansaug-, Vorlauf- oder Rücklaufleitung ausgebildet ist oder an der tiefsten Stelle des Behälters 1 angeordnet ist, vorzugsweise im Bereich eines Ansaugpunktes für die Pumpe 6. Auch ist vorgesehen, dass der Absolutwert des Referenzsensors 4 zur Kompensation einer Mengenverfälschung durch unerwünschte Beimischungen, beispielsweise Wasser im Kraftstoff verwendet wird. Dabei kann auch der Anteil der beigemischten Menge (Wasser) bestimmt werden, wie noch nachfolgend näher erläutert wird. Ebenso ist es möglich, auch einen Bodensatz zu erkennen, wenn ein zusätzlicher Sensor entsprechend angeordnet wurde. Befindet sich am Boden des Behälters 1 eine Wasserschicht, kann zur Verhinderung einer Fehlmessung der Sensor in zeitlichen Abständen mit dem Kraftstoff durchspült und somit vom Wasser befreit werden.In a further embodiment of the invention, it is also provided that, when measuring the capacitance, a plurality of sensors 3 are connected in parallel and arranged at a plurality of points in the container 1, in order, for example, to also dependence on the inclination and acceleration of the measurement signal portable containers 1 to compensate. Furthermore, to compensate for the substance dependencies, provision is optionally made to install a reference sensor 4, which is preferably of identical design and has a known length. This reference sensor 4 is arranged such that it is immersed as completely as possible in the liquid 2. This can be achieved, for example, by designing the reference sensor 4 as a piece of the suction, flow or return line or at the deepest point of the container 1, preferably in the area of a suction point for the pump 6. It is also provided that the Absolute value of the reference sensor 4 is used to compensate for a quantity falsification by undesired admixtures, for example water in the fuel. The proportion of the amount added (water) can also be determined, as will be explained in more detail below. It is also possible to recognize a sediment if an additional sensor has been arranged accordingly. If there is a water layer on the bottom of the container 1, the sensor can be flushed with the fuel at intervals to prevent incorrect measurement and thus freed from the water.
Nachfolgend wird die Funktionsweise des Sensors 3 unter Anwendung unterschiedlicher Auswerteverfahren näher erläutert.The mode of operation of sensor 3 is explained in more detail below using different evaluation methods.
Nach einem ersten Auswerteverfahren wird die Kapazität C des Sensors 3 gemessen. Sie setzt sich zusammen aus einer konstanten Grundkapazität CQ des mit Luft gefüllten Sensors 3 und einem linear mit der Füllmenge (Masse bzw. Volumen bei konstanter Temperatur) ansteigenden, durch die Dielektrizitätskonstante der Flüssigkeit 2 und durch den geometrischen Aufbau des Sensors bestimmte Zusatzkapazität dC. dC C - CAfter a first evaluation method, the capacitance C of the sensor 3 is measured. It is composed of a constant basic capacitance C Q of the sensor 3 filled with air and an additional capacitance dC which increases linearly with the filling quantity (mass or volume at constant temperature) and is determined by the dielectric constant of the liquid 2 and by the geometric structure of the sensor. dC C - C
Bei mehreren parallel geschalteten Sensoren 3 sind die Kapazitätswerte der einzelnen Sensoren zu addieren. Die Füllmenge V ergibt sich somitIf there are several sensors 3 connected in parallel, the capacitance values of the individual sensors must be added. The filling quantity V thus results
V = Ks(s) * dC/KM,V = Ks (s) * dC / KM,
wobei für die Änderung des Volumens dV in Abhängigkeit von der Eintauchlänge ds der Umrechnungsfaktor Ks(s) nach der Formelwhere for the change in volume dV depending on the immersion length ds the conversion factor Ks (s) according to the formula
Ks(s) = dV(s) /dsKs (s) = dV (s) / ds
bestimmt wird. Ks(s) kann durch die Formgebung kontinuierlich über die gesamte Länge durch die Schräglage beeinflußt werden. Für eine Linearisierung des Signals ist Ks (s) durch Einstellung der Schräglage über die gesamte Füllhöhe vorzugsweise konstant zu halten. Der Faktor KM ist ein Proportionalitätsfaktor, der die Abhängigkeit deris determined. The shape can continuously influence Ks (s) over the entire length due to the inclined position. For linearization of the signal, Ks (s) should preferably be kept constant by adjusting the inclined position over the entire fill level. The factor KM is a proportionality factor that determines the dependency of the
Kapazitätsänderung dCx von der Füllängenänderung auf Grund des Mediums, der Geometrie und des Materials des Sensors 3 berücksichtigt. KM wird nach der Formel berechnet:Changes in capacitance dCx from the change in fill length due to the medium, the geometry and the material of the sensor 3 are taken into account. KM is calculated using the formula:
KM = dCx/dlKM = dCx / dl
Somit sind alle Parameter zur Bestimmung des Volumens V für die Flüssigkeit 2 im Behälter 1 bekannt.Thus, all parameters for determining the volume V for the liquid 2 in the container 1 are known.
Ein zweites alternatives Auswerteverfahren für dieA second alternative evaluation method for the
Bestimmung der Flüssigkeitsmenge bzw. dem Pegelstand im Behälter 1 nutzt die Reflexion von Hochfrequenzwellen an Impedanzsprüngen im Wellenleiter aus. Dabei ändert der in der Flüssigkeit 2 eingetauchte Teil des Sensors 3 seine längenspezifische Kapazität Cx und somit seine Impedanz Z sprunghaft zwischen dem eingetauchten und nicht eingetauchten Teil des Sensors. Die Impedanz Z berechnet sich für den Wellenleiter nach der FormelDetermination of the amount of liquid or the level in the container 1 uses the reflection of high-frequency waves on impedance jumps in the waveguide. The part of the sensor 3 immersed in the liquid 2 changes its length-specific capacitance Cx and thus its impedance Z abruptly between the immersed and non-immersed part of the sensor. The impedance Z is calculated for the waveguide using the formula
Z = (Lx/Cx)0'5 Z = (Lx / Cx) 0 ' 5
wobei Lx die längenspezifische Induktivität und Cx die längenspezifische Kapazität des Wellenleiters sind. Das Meßprinzip besteht darin, dass am nicht eingetauchten Ende des Sensors 3 ein Hochfrequenzsignal eingespeist wird, das teilweise am Impedanzsprung, also an der Oberfläche der Flüssigkeit des teilweise eingetauchten Sensors 3, reflektiert wird, so daß eine teilweise stehende Welle entsteht. Um eine störende Reflexion am Ende des Sensors 3 zu vermeiden, muß dieser mit einem entsprechendenwhere Lx is the length-specific inductance and Cx is the length-specific capacitance of the waveguide. The measuring principle consists in that a high-frequency signal is fed in at the non-immersed end of the sensor 3, which is partially reflected by the jump in impedance, that is to say on the surface of the liquid of the partially immersed sensor 3, so that a partially standing wave is produced. In order to avoid a disturbing reflection at the end of the sensor 3, it must be equipped with an appropriate one
Abschlußwiderstand versehen werden. Durch Vermessung oder durch Variation der Speisefrequenz und Fixierung der Knoten und Bäuche dieser stehenden Welle kann auf die Entfernung des Pegelstandes im Bezug auf den Vermessungspunkt (Einspeisepunkt) geschlossen werden. Aus dem Verhältnis des maximalen und minimalen Stromes entlang des Wellenleiters (Stehwellenverhältnis) kann ebenfalls auf die veränderte längenspezifische Kapazität Cx und somit auf die Dielektrizitätskonstante der Flüssigkeit 2 geschlossen werden. Natürlich werden die gewählten Strom- undTerminating resistor. By measuring or by varying the feed frequency and fixing the nodes and bellies of this standing wave, the distance of the water level in relation to the measurement point (feed point) can be deduced. The ratio of the maximum and minimum current along the waveguide (standing wave ratio) can also be used to draw conclusions about the changed length-specific capacitance Cx and thus the dielectric constant of the liquid 2. Of course, the chosen electricity and
Spannungswerte so gewählt, dass keine Gefährdung entstehen kann.Voltage values selected so that no hazard can arise.
Eine dritte alternative Meßmethode für den Füllstand der Flüssigkeit 2 in dem Behälter 1 besteht darin, dass derA third alternative measuring method for the level of the liquid 2 in the container 1 is that the
Korrekturfaktor KM mit Hilfe des Referenzsensors 4 bestimmt wird. Dabei wird der Korrekturfaktor KM in Abhängigkeit vom aktuellen Füllmedium nach folgender Formel bestimmt:Correction factor KM is determined using the reference sensor 4. The correction factor KM is determined depending on the current filling medium using the following formula:
KM = dCref/lref bestimmt, wobei die Werte dCref und lref die Referenzwerte für die Kapazität und Länge des Referenzelementes 4 sind. Wird dieser Korrekturfaktor KM in die Formel für das erste Auswerteverfahren eingesetzt, dann ergibt sich für das VolumenKM = dCref / lref determined, the values dCref and lref being the reference values for the capacitance and length of the reference element 4. If this correction factor KM is used in the formula for the first evaluation method, the result is for the volume
V = Ks * lref * dC/dCref.V = Ks * lref * dC / dCref.
Die Bestimmung des Behälterinhalts wird hierdurch - wie auch beim zweiten alternativevn Auswerteverfahren - zur reinen Volumenbestimmung abhängig vom Füllmedium und der Temperaturausdehnung des Behälterinhalts. Hingegen ist das erste Auswerteverfahren eher eine Massenbestimmung und damit temperaturunabhängig.As a result, as in the second alternative evaluation method, the determination of the container content becomes purely volume-dependent depending on the filling medium and the temperature expansion of the container contents. On the other hand, the first evaluation method is more a mass determination and therefore independent of temperature.
Schließlich ist noch ein viertes Auswerteverfahren für die Volumenbestimmung vorsehbar. Für zwei verschiedene Füllmedien bzw. beliebige Mischungsverhältnisse von diesen beiden werden die spezifischen Konstanten KM als bekannt vorausgesetzt. Der Referenzsensor 4 ermittelt den aktuellen Wert von KM. Hierdurch kann das Mischungsverhältnis der zwei Komponenten, z. B. durch Interpolation ermittelt werden. Das Verfahren bietet somit auch die Möglichkeit, beispielsweise den Wasseranteil im Kraftstoff eines Fahrzeugtanks zu bestimmen oder eventuell falsche oder verschiedene Kraftstoffsorten zu identifizieren.Finally, a fourth evaluation method for volume determination can be provided. The specific constants KM are assumed to be known for two different filling media or any mixing ratios of these two. The reference sensor 4 determines the current value of KM. This allows the mixing ratio of the two components, e.g. B. can be determined by interpolation. The method thus also offers the possibility, for example, of determining the water content in the fuel of a vehicle tank or possibly identifying incorrect or different types of fuel.
In einer weiteren Ausgestaltung hat der Messwertaufnehmer die Form eines Verzögerungs-Wellenleiters. Die Laufzeit T für elektrische Signale in einem Leiter errechnet sich aus der längenspezifischen Induktivität LΛ und der längenspezifischen Kapazität CΛ nach der FormelIn a further embodiment, the sensor has the form of a delay waveguide. The transit time T for electrical signals in a conductor is calculated from the length-specific inductance L Λ and the length-specific capacitance C Λ according to the formula
Figure imgf000012_0001
Die Impedanz Z des Leiters ist nach der Formel
Figure imgf000012_0001
The impedance Z of the conductor is according to the formula
Z= V /CZ = V / C
bestimmt. In einem Verzögerungswellenleiter kann die Laufzeit elektrischer Signale also vorzugsweise erhöht werden indem LΛ oder CΛ erhöht wird. Zusätzlich kann bei Verwendung eines Verzögerungswellenleiters eine Anpassung der Skala (z.B. Linearisierung oder Logarithmierung eines unregelmäßig geformten Behälters) auch durch die Variation von LΛ und C über die Sensorlänge erreicht werden. Sinnvollerweise wird dabei durch geeignete Maßnahmen das Verhältnis von L und CΛ über die Sensorlänge konstantgehalten, um bei der Auswertung der Hochfrequenz (HF)- oder Pulssignale keine zusätzlichen, ggf. störenden Reflektionen des Signals zu erhalten.certainly. In a delay waveguide, the transit time of electrical signals can therefore preferably be increased by increasing L Λ or C Λ . In addition, when using a delay waveguide, the scale can be adjusted (eg linearization or logarithmization of an irregularly shaped container) by varying L Λ and C over the sensor length. Appropriately, the ratio of L and C Λ is kept constant over the sensor length by means of suitable measures, so that no additional, possibly disturbing reflections of the signal are obtained when evaluating the radio frequency (HF) or pulse signals.
Vorzugsweise kann der Verzögerungswellenleiter in den inPreferably, the delay waveguide in the in
Figur 1 skizzierten folgenden Bauformen eingesetzt werden, mit geeigneten Anpassungen, die in den folgenden Ausführungsbeispielen näher beschrieben werden.Figure 1 outlined following designs are used, with suitable adaptations, which are described in more detail in the following embodiments.
Im Ausführungsbeispiel nach Figur 3 ist der Innenleiter des Wellenleiters eine lange 1-lagige Spule 31 auf einem isolierenden Stabkern 32. Durch den Aufbau des Innenleiters des koaxialen Wellenleiters als Spule wird die längenspezifische Induktivität Lλ deutlich erhöht. Im Raum zwischen der Oberfläche der Spule und dem Mantelrohr befindet sich das Füllmedium 33 welches durch kleine Löcher 34 entlang und/oder unten und oben des Mantelrohres 35 ins Innere eindringen kann. Mehrere Löcher entlang des Mantelrohres, zumindest im unteren Bereich, sind notwendig, wenn ein Bodensatz eines unerwünschten Mediums (z.B. Wasser) die Messung nicht durch einen überhöhten Stand innerhalb des Sensors verfälschen soll, und starke Schwappbewegungen des Mediums bei ortsveränderlichen Behältern nicht stören sollen.In the exemplary embodiment according to FIG. 3, the inner conductor of the waveguide is a long 1-layer coil 31 on an insulating rod core 32. The length-specific inductance L λ is significantly increased by the construction of the inner conductor of the coaxial waveguide as a coil. In the space between the surface of the coil and the jacket tube is the filling medium 33 which can penetrate into the interior through small holes 34 along and / or below and above the jacket tube 35. Several holes along the casing tube, at least in the lower area, are necessary if a sediment of an undesired medium (e.g. water) the measurement should not be falsified by an excessive level within the sensor, and strong sloshing movements of the medium should not interfere with portable containers.
Die Oberfläche der Spule und die Innenfläche des Mantelrohres bilden die Kapazität des Wellenleiters. Zur Anpassung der Skala kann die längenspezifische Induktivität LΛ durch die Wicklungsdichte der Spule variiert werden. Die ggf- erwünschte proportionale Änderung der längenspezivischen Kapazität CΛ wird bei einer Ausdünnung 36 der Spulenwicklung bereits durch die kleinwerdende Oberfläche des Spulenleiters hervorgerufen und kann noch durch Änderung des Spulen- oder des Mantelrohrdurchmessers 37 vervollständigt werden.The surface of the coil and the inner surface of the jacket tube form the capacitance of the waveguide. For adaptation of the scale length-specific inductance L Λ can be varied by the winding density of the coil. The possibly desired proportional change in the length-specific capacitance C Λ is already caused by the thinning surface of the coil conductor when the coil winding is thinned 36 and can be completed by changing the coil or jacket tube diameter 37.
Im Ausführungsbeispiel nach Figur 4 ist der Innenleiter des Wellenleiters eine lange 1-lagige Spule 41 mit hohlem Kern. Je ein innerhalb 42 und je ein außerhalb 43 der Spule 41 angeordneter leitender Zylinder bilden zusammen denIn the exemplary embodiment according to FIG. 4, the inner conductor of the waveguide is a long 1-layer coil 41 with a hollow core. One inside 42 and one outside 43 of the coil 41 arranged conducting cylinder together form the
Mantelleiter. Im Gegensatz zur Bauform nach Figur 3 sind die kleinen Bohrungen 44 im Mantel oder im Innenleiter des Sensors bei ortsveränderlichen Behältern zur Dämpfung notwendig, um eine extreme Schwappbewegung innerhalb des Sensors zu verhindern. Extreme Schräglage desExternal conductor. In contrast to the design according to FIG. 3, the small bores 44 in the jacket or in the inner conductor of the sensor are required for damping containers which can be moved to prevent an extreme sloshing movement within the sensor. Extreme slant of the
Flüssigkeitsspiegels innerhalb des Sensors würde sonst zur Undetektierbarkeit des Impulsechos führen.Liquid levels inside the sensor would otherwise make the pulse echo undetectable.
Zur Verhinderung von Wirbelströmen können die Mantelleiter in Längsrichtung aufgeschlitzt und, falls Notwendig durch eine Isolierung 45 (bzw. 45a, 45b) abgedichtet werden, oder komplett aus mehreren Längssegmenten bestehen. Es kann auch wie beim Ausführungsbeispiel nach Figur 2 nur der Außenmantel 43, aus mehreren Längssegmenten aufgebaut werden. Der größere Durchmesser dieses Aufbaus führt gegenüber der ersten Bauform zu erheblich längeren Verzögerungszeiten und somit zu einfacheren Auswerteschaltungen .To prevent eddy currents, the sheathed conductors can be slit open in the longitudinal direction and, if necessary, sealed by insulation 45 (or 45a, 45b), or can consist entirely of several longitudinal segments. As in the exemplary embodiment according to FIG. 2, only the outer jacket 43 can be constructed from a plurality of longitudinal segments. The larger diameter of this structure leads Compared to the first design, the delay times are considerably longer and the evaluation circuits are simpler.
In einer vorteilhaften Ausgestaltung können in den Füllraum 46 (bzw. 46a, 46b) Stützstäbe 47 als Spulenträger eingebaut werden. Diese können gleichzeitig als Trennwände 48 für sektorförmig angeordnete Füllräume benutzt werden. Zur weiteren Erhöhung der längenspezifischen Induktivität können diese Stütz- und Trennwände oder auch Trennstäbe aus einem hochfrequenztauglichen ferromagnetischen Material hergestellt sein. Es kann auch an anderer geeigneter Stelle, z.B. als Beschichtung der Mantelleiter, ein solches hochfrequenztaugliches ferromagnetisches Material eingebaut sein. Für die Anpassung der Skala gilt dasselbe wie für die Bauform eins nach Figur 3.In an advantageous embodiment, support rods 47 can be installed in the filling space 46 (or 46a, 46b) as coil supports. These can simultaneously be used as partitions 48 for filling rooms arranged in a sector. To further increase the length-specific inductance, these supporting and dividing walls or dividing bars can be produced from a ferromagnetic material suitable for high frequencies. It can also be in another suitable location, e.g. such a high-frequency ferromagnetic material can be installed as a coating on the sheathed conductor. The same applies to the adjustment of the scale as for the design one according to FIG. 3.
Als Auswertevorrichtung eignet sich vorzugsweise eine Auswerteschaltung für ein Puls-Echo-Verfahren. Eine solche Auswerteschaltung ist in Figur 5 dargestellt. Beim Puls- Echo-Verfahren wird in einer Impulsformerstufe 51, die mit dem Messtaktoszillator 51a in Verbindung steht, ein kurzer elektrischer Impuls II erzeugt. Der elektrische Impuls II bzw. aufeinanderfolgende Impulse wird bzw. werden dem Sensor über eine Impedanzanpassung 52 zugeführt. Jeweils amAn evaluation circuit for a pulse-echo method is preferably suitable as the evaluation device. Such an evaluation circuit is shown in FIG. 5. In the pulse-echo method, a short electrical pulse II is generated in a pulse shaper stage 51, which is connected to the measuring clock oscillator 51a. The electrical pulse II or successive pulses is or are fed to the sensor via an impedance matching 52. Each on
Impedanzsprung SP1 und SP2 an den Übergängen der Füllmedien 53, 54 und am beispielsweise kurzgeschlossenen Ende SP3 des Sensors erfolgt eine Reflektion. Nach der doppelten Laufzeit 2T wird am Eingang des Sensors ein Signal als Echo registriert, das messbar ist. Dieses Signal ist in Block 55 dargestellt. Dabei ist erkennbar, dass nach dem Impuls II zunächst das am Impedanzsprung SPl reflektierte Signal SPla auftritt, danach das am anderen Impedanzsprung reflektierte Signal SP2a und schließlich das am Ende des Sensors reflektierte Signal SP3a. Die reflektierten Signale SPla, SP2a, SP3a werden in einem Spannungsfolger 56 aufbereitet und in Komparatoren 57, 58, 59 mit Schwellwerten Sl, S2 bzw. S3 verglichen. Über Flipflops 60, 61 bzw. 62 sowie eine sich anschließende Torlogik 63, 64 bzw. 65, mit der die von den Reflexionen verursachten Signalbestandteile voneinander getrennt werden können und eine Pulslängenmessung 66, 61 bzw. 68 kann die Laufzeit 2T für jedes Medium gesondert in eine logische Pulslänge umgewandelt werden. Die sich einstellenden Signalverläufe sind jeweils über den einzelnen Komponenten 57 bis 68 angegeben. Die Zählimpulse werden von einem Zeittaktoszillator 69 bereitgestellt, der über einen Frequenzteiler auch mit den Zählern 70, 71 bzw. 72 in Verbindung steht Die Pulslänge kann also durch eine einfache Torschaltung für einen Zeittaktoszillator 69 in eine Impulsanzahl umgewandelt werden.Impedance jump SP1 and SP2 at the transitions of the filling media 53, 54 and at the short-circuited end SP3 of the sensor, for example, a reflection takes place. After the double running time 2T, a signal is registered as an echo at the input of the sensor, which is measurable. This signal is shown in block 55. It can be seen that after pulse II the signal SPla reflected at the jump in impedance SP1 occurs first, then the signal SP2a reflected at the other jump in impedance and finally the signal SP3a reflected at the end of the sensor. The reflected signals SPla, SP2a, SP3a are processed in a voltage follower 56 and compared in comparators 57, 58, 59 with threshold values S1, S2 and S3. Using flip-flops 60, 61 or 62 and a subsequent gate logic 63, 64 or 65, with which the signal components caused by the reflections can be separated from one another and a pulse length measurement 66, 61 or 68, the transit time 2T can be separated for each medium in a logical pulse length can be converted. The signal curves that occur are indicated above the individual components 57 to 68. The counting pulses are provided by a timing clock oscillator 69, which is also connected to the counters 70, 71 and 72 via a frequency divider. The pulse length can therefore be converted into a number of pulses by a simple gate circuit for a timing clock oscillator 69.
In einem weiteren Auswerteverfahren kann die Sensorspannung bzw. das am Eingang des Sensors meßbare Echosignal direkt digitalisiert oder da es sich bei schnell aufeinander abgegebenen Impulsen II auch bei dem reflektierten Signal SPla, SP2a, SP3a um ein mit hoher Frequenz wiederholbares Signal handelt, auch durch ein Dehnungs- bzw. Samplingverfahren zeitlich gedehnt und digitalisiert werden. Zur zeitlichen Dehnung eignet sich auch ein beispielsweise in der DE-P 198 24 047 bekanntes Abtastverfahren. Das digitalisierte Echosignal ist charakteristisch für die Laufzeit des Impuls-Echos, bzw. die Füllhöhe im Sensor. Das Erkennen der Echos und das Umrechnen in Füllhöhe und/oder Wassergehalt kann dann in einem Prozessrechner erfolgen. Bei einem Füllstandssensor für ein KFZ kann der Prozessrechner Bestandteil der Motorsteuergerätes sein.In a further evaluation method, the sensor voltage or the echo signal that can be measured at the input of the sensor can be directly digitized or, since pulses II that are emitted quickly on one another, the reflected signal SPla, SP2a, SP3a is also a signal that can be repeated at high frequency, also by means of a Stretching or sampling processes are temporally stretched and digitized. A scanning method known for example in DE-P 198 24 047 is also suitable for the temporal expansion. The digitized echo signal is characteristic of the duration of the pulse echo or the level in the sensor. The detection of the echoes and the conversion into fill level and / or water content can then be carried out in a process computer. In the case of a fill level sensor for a motor vehicle, the process computer can be part of the engine control unit.
Zur genauen Bestimmung der Signallaufzeit bzw. der Füllhöhe können auch andere Parameter wie Auswertung der Flankensteilheit oder der Impulshöhe verwendet werden oder zumindest bei der Bildung von Korrektursignalen berücksichtigt werden. Weiterhin läßt sich ein direkter Formvergleich des Meßsignales oder von Teilen des Meßsignales oder von aus dem Meßsignal gewonnenen Parametern mit aus Eichmessungen erhaltenen Meßsignalen oder Teilen hiervon oder Parametern hiervon durchführen. Dabei kann noch zwischen den zwei am nächsten liegenden Meßsignalen oder von Meßsignalen oder Parametern interpoliert werden. Die zur Durchführung benötigten Mittel sind beispielsweise im Prozessor bzw. einem zugehörigen Steuergerät enthalten.Other parameters such as evaluating the slope or the pulse height can also be used to determine the signal propagation time or the fill level at least be taken into account when generating correction signals. Furthermore, a direct form comparison of the measurement signal or of parts of the measurement signal or of parameters obtained from the measurement signal with measurement signals or parts thereof or parameters thereof obtained from calibration measurements can be carried out. It is also possible to interpolate between the two closest measurement signals or from measurement signals or parameters. The means required for implementation are contained, for example, in the processor or an associated control unit.
Eine Kombination der vorstehend beschriebenen Signalauswertung mit dem Einsatz eines Sensors mit Verzögerungswellenleiter ist ebenfalls möglich A combination of the signal evaluation described above with the use of a sensor with delay waveguide is also possible

Claims

AnsprücheExpectations
1. Verfahren zur Füllstandsmessung einer Flüssigkeit (2) in einem Behälter (1) , wobei wenigstens ein Sensor (3) innerhalb oder als kommunizierendes Rohr außerhalb des Behälters (1) so angeordnet ist, dass er wenigstens teilweise in die Flüssigkeit eintaucht, wobei der Sensor (3) über eine Leitung (9) ein von der Eintauchtiefe in die Flüssigkeit (2) bzw. deren Füllhöhe abhängiges elektrisches Signal an eine Auswerte orrichtung (7) liefert, dadurch gekennzeichnet, dass der Sensor (3) einen in seiner1. A method for level measurement of a liquid (2) in a container (1), wherein at least one sensor (3) is arranged inside or as a communicating tube outside the container (1) so that it is at least partially immersed in the liquid, the Sensor (3) via a line (9) delivers an electrical signal dependent on the immersion depth in the liquid (2) or its fill level to an evaluation device (7), characterized in that the sensor (3) has one in its
Kapazität veränderlichen Kondensator oder Wellenwiderstand aufweist, wobei die Kapazität, der Wellenwiderstand oder deren Änderungen durch die Einbautiefe in der Flüssigkeit (2) bestimmt wird, und wobei die Auswertevorrichtung (7) aus den empfangenen elektrischen Signalen ein Anzeigesignal für die Flüssigkeitsmenge oder den Flüssigkeitspegelstand bildet.Capacitance variable capacitor or characteristic impedance, the capacitance, the characteristic impedance or its changes being determined by the installation depth in the liquid (2), and the evaluation device (7) forms an indication signal for the quantity of liquid or the liquid level from the received electrical signals.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, ein im Bereich des Flüssigkeitspegels entstehender Impedanzsprung im Wellenleiter zu Reflektionen mit stehenden Wellen führt, die ausgewertet werden.2. The method according to claim 1, characterized in that an impedance jump occurring in the region of the liquid level in the waveguide leads to reflections with standing waves which are evaluated.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Position des Flüssigkeitspegels im Wellenleiter durch Variation des eingespeisten Hochfrequenzsignals bestimmt wird, wobei zwischen dem Flüssigkeitspegel und einem bekannten Meßpunkt die Spannungs- oder Stromknoten bzw. -bauche unter Berücksichtigung der Frequenz und der Ausbreitungsgeschwindigkeit gezählt bzw. eingestellt werden.3. The method according to claim 1 or 2, characterized in that the position of the liquid level in the waveguide is determined by varying the high-frequency signal fed in, the voltage or current nodes or bellies being counted or set between the liquid level and a known measuring point, taking into account the frequency and the speed of propagation.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass auf den Wellenleiter (3) für einen bekannten Meßpunkt wenigstens ein kurzer elektrischer Impuls gegeben wird und dass die Laufzeit des Echosignales bis zum reflektierten Flüssigkeitsspegel gemessen und ausgewertet wird.4. The method according to any one of claims 1 to 3, characterized in that at least a short electrical pulse is given to the waveguide (3) for a known measuring point and that the transit time of the echo signal up to the reflected liquid level is measured and evaluated.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Laufzeit des eingespeisten Signales mit seinem Echo am offenen und kurzgeschlossenen Ende des Wellenleiters gemessen wird.5. The method according to claim 4, characterized in that the transit time of the fed-in signal is measured with its echo at the open and short-circuited end of the waveguide.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Anpassung des Meßwertes an eine Skala die Länge und/oder Lage des Sensors (3) im Behälter (1) verwendbar ist.6. The method according to any one of the preceding claims, characterized in that the length and / or position of the sensor (3) in the container (1) can be used to adapt the measured value to a scale.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Kalibrierung ein7. The method according to any one of the preceding claims, characterized in that for calibration
Referenzsensor (4) mit definierten Abmessungen verwendbar ist, der von der Flüssigkeit (2) vollständig durchströmt wird.Reference sensor (4) with defined dimensions can be used, which is completely flowed through by the liquid (2).
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Sensorsignal zur Erkennung von Beimischungen in der Flüssigkeit (2) verwendbar ist.8. The method according to claim 7, characterized in that the sensor signal for detecting admixtures in the liquid (2) can be used.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass aus dem Ausgangssignal des Referenzsensors (4) einen Korrekturfaktor (KM) bestimmt wird, der unabhängig vom aktuellen Füllmedium ist.9. The method according to claim 7 or 8, characterized in that from the output signal of the reference sensor (4) Correction factor (KM) is determined, which is independent of the current filling medium.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass bei zwei unterschiedlichen Flüssigkeiten (2) deren spezifische Korrekturfaktoren (KM) bekannt sind, das Mischungsverhältnis vorzugsweise von Wasser und Kraftstoff bestimmt wird.10. The method according to claim 9, characterized in that in the case of two different liquids (2) whose specific correction factors (KM) are known, the mixing ratio is preferably determined by water and fuel.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es zur Bestimmung des Füllstandes eines Tanks eines Kraftfahrzeugs, der mit Kraftstoff füllbar ist, eingesetzt wird.11. The method according to any one of the preceding claims, characterized in that it is used to determine the fill level of a tank of a motor vehicle which can be filled with fuel.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass aus den Meßwerten der einzelnen Sensoren (3) die Beschleunigung und/oder die Schräglage des Behälters (1) bestimmt wird.12. The method according to any one of the preceding claims, characterized in that the acceleration and / or the inclined position of the container (1) is determined from the measured values of the individual sensors (3).
17. Sensor, insbesondere zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Sensor (3) ein koaxial aufgebauter Wellenleiter ist, dass der Wellenleiter eine zentrale erste Elektrode (21) aufweist, um die mittels eines Stützskeletts (23) eine zweite Elektrode (24) koaxial angeordnet ist, und dass zwischen den beiden Elektroden (21, 24) wenigstens eine Luftzelle (22) ausgebildet ist, in die entsprechend dem Füllstand im Behälter (1) die Flüssigkeit (2) eindringen kann.17. Sensor, in particular for carrying out the method according to one of the preceding claims, characterized in that the sensor (3) is a coaxially constructed waveguide, that the waveguide has a central first electrode (21) around which by means of a support skeleton (23) a second electrode (24) is arranged coaxially, and that between the two electrodes (21, 24) at least one air cell (22) is formed, into which the liquid (2) can penetrate according to the fill level in the container (1).
18. Sensor nach Anspruch 17, dadurch gekennzeichnet, dass der Sensor (3) ein analoges Signal für den Pegelstand liefert. 18. Sensor according to claim 17, characterized in that the sensor (3) provides an analog signal for the level.
19. Sensor nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass der Sensor (3) in Form eines koaxialen Kondensators oder eines Wellenleiters aufgebaut ist, wobei ein Leitungsdraht eine erste Elektrode (21) und eine metallische Ummantellung eine zweite Elektrode (24) bilden, zwischen die sich im wesentlichen die zu messende Flüssigkeit (2) befindet.19. Sensor according to claim 17 or 18, characterized in that the sensor (3) is constructed in the form of a coaxial capacitor or a waveguide, a lead wire forming a first electrode (21) and a metallic sheathing forming a second electrode (24), between which there is essentially the liquid to be measured (2).
20. Sensor nach Anspruch 17, 18 oder 19, dadurch gekennzeichnet, dass der Wellenleiter einen Luftzellenkabel ist, wobei zwischen der ersten Elektrode (21) und der zweiten Elektrode (24) wenigstens eine Luftzelle (22) ausgebildet ist.20. Sensor according to claim 17, 18 or 19, characterized in that the waveguide is an air cell cable, at least one air cell (22) being formed between the first electrode (21) and the second electrode (24).
21. Sensor nach einem der Ansprüche 17 bis 20, dadurch gekennzeichnet, dass der Sensor (3) als Wellenleiter für ein Hochfrequenzsignal beteibbar ist und dass die Änderung der Impedanz (Z) ein Maß für das Flüssigkeitsvolumen ist.21. Sensor according to one of claims 17 to 20, characterized in that the sensor (3) can be operated as a waveguide for a high-frequency signal and that the change in impedance (Z) is a measure of the liquid volume.
22. Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wellenleiter in Form eines Verzögerungswellenleiters aufgebaut ist, über den die Laufzeit elektrischer Signale verlängert werden kann.22. Sensor according to one of the preceding claims, characterized in that the waveguide is constructed in the form of a delay waveguide, via which the transit time of electrical signals can be extended.
23. Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die längenspezifische Induktivität und die längenspezifische Kapazität des23. Sensor according to one of the preceding claims, characterized in that the length-specific inductance and the length-specific capacitance of the
Verzögerungswellenleiters durch konstruktive Maßnahmen in der gewünschten Weise festgelegt werden.Delay waveguide can be determined by design measures in the desired manner.
24. Sensor nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet, dass der Innenleiter des Verzögerungswellenleiters als einlagige Spule auf einem isolierenden Stabkern aufgebaut ist. 24. Sensor according to one of the preceding claims, characterized in that the inner conductor of the delay waveguide is constructed as a single-layer coil on an insulating rod core.
25. Sensor nach Anspruch 24, dadurch gekennzeichnet, dass ein Mantelrohr mit kleinen Löchern vorhanden ist, das die Oberfläche der einlagigen Spule umgibt wodurch die Oberfläche der Spule und die Innenfläche des Mantelrohrs die längenspezifische Kapazität des Wellenleiters bilden.25. Sensor according to claim 24, characterized in that a jacket tube with small holes is present, which surrounds the surface of the single-layer coil, whereby the surface of the coil and the inner surface of the jacket tube form the length-specific capacitance of the waveguide.
26. Sensor nach Anspruch 24, dadurch gekennzeichnet, dass die Leiter des Mantelrohres in Längsrichtung geschlitzt sind und durch eine Isolierung abgedichtet sind oder aus mehreren Längssegmenten aufgebaut sind.26. Sensor according to claim 24, characterized in that the conductors of the tubular casing are slotted in the longitudinal direction and are sealed by insulation or are constructed from a plurality of longitudinal segments.
27. Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass vorgebbare Bestandteile des Mantelrohres oder zusätzlicher Stützstäbe oder zusätzliche Trennwände aus hochfrequenztauglichem ferromagnetischem Meterial sind.27. Sensor according to one of the preceding claims, characterized in that predeterminable components of the casing tube or additional support rods or additional partitions are made of high-frequency ferromagnetic material.
28. Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Auswerteschaltung vorhanden ist, die Mittel zur Durchführung eines ein Puls-Echo-Verfahren umfaßt, mit wenigstens drei Komparatoren (57, 58, 59), die das die reflektierten Signalanteile umfassende Sensorsignal mit vorgebbaren Schwellen (Sl, S2, S3) vergleichen und mit nachgeschalteten Flipflops (60-65) , die eine Torlogik zur Signaltrennung bilden und Mitteln zur Pulslängenmessung (66- 72) zur Bestimmung der Laufzeit der reflektierten Signale.28. Sensor according to one of the preceding claims, characterized in that an evaluation circuit is provided which comprises means for carrying out a pulse-echo method, with at least three comparators (57, 58, 59) which the sensor signal comprising the reflected signal components compare with predefinable thresholds (S1, S2, S3) and with downstream flip-flops (60-65), which form a gate logic for signal separation and means for pulse length measurement (66-72) for determining the transit time of the reflected signals.
29. Sensor nach Anspruch 28, dadurch gekennzeichnet, dass die Mittel zur Pulslängenmessung wenigstens drei logische Elemente (66, 67, 68) umfaßt, denen die von den Reflexionen verursachten Signalbestandteile zuführbar sind und nachgeschaltete Zähler (70, 71, 72) , wobei die drei logischen Elemente (66, 67, 68) und die Zähler (70, 71, 72) mit einem Zeittaktoszillator (69) in Verbindung stehen. 29. Sensor according to claim 28, characterized in that the means for measuring the pulse length comprises at least three logic elements (66, 67, 68) to which the signal components caused by the reflections can be fed and downstream counters (70, 71, 72), the three logic elements (66, 67, 68) and the counters (70, 71, 72) are connected to a clock oscillator (69).
30. Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Auswertemittel vorhanden sind, die wenigstens einen Prozessor umfassen und Mittel zur Digitalisierung der Sensorspannung und weitere Mittel zur zeitlich gedehnten Signalabtastung.30. Sensor according to any one of the preceding claims, characterized in that evaluation means are present which comprise at least one processor and means for digitizing the sensor voltage and further means for temporally stretched signal sampling.
31. Sensor nach Anspruch 30, dadurch gekennzeichnet, dass die Mittel zur Digitalisierung der Sensorspannung und zur zeitlich gedehnten Signalabtastung eine Abtast- Steuereinrichtung umfassen.31. Sensor according to claim 30, characterized in that the means for digitizing the sensor voltage and for temporally stretched signal sampling comprise a scanning control device.
32. Sensor nach Anspruch 31, dadurch gekennzeichnet, dass zusätzlich Mittel zum Formvergleich des Meßsignales oder aus dem Meßsignal abgeleiteter Größen mit entsprechend gebildeten Eichsignalen vorhanden sind und die Vergleichsergebnisse bei der Signalauswertung mitberücksichtigt werden.32. Sensor according to claim 31, characterized in that additional means for comparing the shape of the measurement signal or quantities derived from the measurement signal with correspondingly formed calibration signals are provided and the comparison results are also taken into account in the signal evaluation.
33. Vorrichtung zur Füllstandsmessung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass unregelmäßig geformte und ortsveränderliche Behälter (1) mit mehreren Sensoren (3) für verschieden Teilvolumen ausgestattet werden, die seriell oder paralell so geschaltet werden, dass Messfehler durch Bewegung oder Schräglage des Behälters (1) näherungsweise korrigiert werden. 33. Device for level measurement according to one of the preceding claims, characterized in that irregularly shaped and portable containers (1) are equipped with several sensors (3) for different partial volumes, which are connected in series or in parallel so that measurement errors due to movement or inclined position of the Container (1) are corrected approximately.
PCT/DE2001/002609 2000-07-14 2001-07-12 Method and sensor for measuring the level of a liquid in a receptacle WO2002006776A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10034414.3 2000-07-14
DE10034414 2000-07-14

Publications (2)

Publication Number Publication Date
WO2002006776A2 true WO2002006776A2 (en) 2002-01-24
WO2002006776A3 WO2002006776A3 (en) 2002-05-16

Family

ID=7649013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002609 WO2002006776A2 (en) 2000-07-14 2001-07-12 Method and sensor for measuring the level of a liquid in a receptacle

Country Status (2)

Country Link
DE (1) DE10133692A1 (en)
WO (1) WO2002006776A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004003178A1 (en) * 2004-01-22 2005-08-18 Adam Opel Ag Determination of degree of filling of vehicle fuel tanks comprises measuring angle of inclination of vehicle and level of fuel at specific point and calculating degree of filling from these two parameters
DE102006032346A1 (en) * 2006-07-12 2008-01-17 Siemens Ag Device for measuring levels in fuel tank, has signal source for generating radar signal, and wave guide is bent in areas of two ends such that area of wave guide, which is not bent, extends over entire filling height of fuel tank

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007061543A1 (en) * 2007-12-20 2009-06-25 Volkswagen Ag Brake monitoring system for hydraulic brake system of motor vehicle e.g. car, has evaluation device for determining moisture content in brake fluid or quality characteristics of brake fluid based on impedance characteristics of cable
DE102013112025A1 (en) * 2013-10-31 2015-04-30 Endress + Hauser Gmbh + Co. Kg Device for determining or monitoring the level of a medium in a container
DE102018203551A1 (en) * 2018-03-08 2019-09-12 Te Connectivity Germany Gmbh Sensor for measuring a height of a liquid
JP2020008343A (en) * 2018-07-04 2020-01-16 信越ポリマー株式会社 Liquid level sensor
GB201903101D0 (en) 2019-03-07 2019-04-24 Johnson Matthey Plc Apparatus for measuring levels of materials
DE102020207556B3 (en) 2020-06-18 2021-10-14 Volkswagen Aktiengesellschaft Battery module housing
CN114923541A (en) * 2022-05-17 2022-08-19 吉林大学 Water level alarm based on light response intelligent metal-air battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485673A (en) * 1981-05-13 1984-12-04 Drexelbrook Engineering Company Two-wire level measuring instrument
US5651286A (en) * 1996-07-23 1997-07-29 Teleflex Incorporated Microprocessor based apparatus and method for sensing fluid level
US5656774A (en) * 1996-06-04 1997-08-12 Teleflex Incorporated Apparatus and method for sensing fluid level
US5898308A (en) * 1997-09-26 1999-04-27 Teleflex Incorporated Time-based method and device for determining the dielectric constant of a fluid
US5910188A (en) * 1996-04-30 1999-06-08 Triumph Controls, Inc. Flexible probe with separation adjustment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485673A (en) * 1981-05-13 1984-12-04 Drexelbrook Engineering Company Two-wire level measuring instrument
US5910188A (en) * 1996-04-30 1999-06-08 Triumph Controls, Inc. Flexible probe with separation adjustment
US5656774A (en) * 1996-06-04 1997-08-12 Teleflex Incorporated Apparatus and method for sensing fluid level
US5651286A (en) * 1996-07-23 1997-07-29 Teleflex Incorporated Microprocessor based apparatus and method for sensing fluid level
US5898308A (en) * 1997-09-26 1999-04-27 Teleflex Incorporated Time-based method and device for determining the dielectric constant of a fluid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004003178A1 (en) * 2004-01-22 2005-08-18 Adam Opel Ag Determination of degree of filling of vehicle fuel tanks comprises measuring angle of inclination of vehicle and level of fuel at specific point and calculating degree of filling from these two parameters
DE102006032346A1 (en) * 2006-07-12 2008-01-17 Siemens Ag Device for measuring levels in fuel tank, has signal source for generating radar signal, and wave guide is bent in areas of two ends such that area of wave guide, which is not bent, extends over entire filling height of fuel tank

Also Published As

Publication number Publication date
WO2002006776A3 (en) 2002-05-16
DE10133692A1 (en) 2002-02-21

Similar Documents

Publication Publication Date Title
EP2652462B1 (en) Measuring device, control device and measuring instrument for level measurement
DE102007060579A1 (en) Method for determining and / or assessing the filling state of a container filled with at least one medium
DE102009060742A1 (en) Device for detecting a water level
DE102011003158A1 (en) Device and method for capacitive level measurement
EP3008430A1 (en) Fill level gauge for moisture determination
EP2759813A1 (en) Method and sensor for measuring the fill level of layered media
EP2365302A1 (en) Measurement of the distance to at least one initial boundary area
DE10207424A1 (en) Method and measuring device for locating enclosed objects
EP3073229A1 (en) Radar fill level measuring device with integrated limit level sensor
WO2002006776A2 (en) Method and sensor for measuring the level of a liquid in a receptacle
EP1478949B1 (en) Method and measuring device for locating enclosed objects
EP2652465A1 (en) Determination of media characteristics during filling level measurement
EP1478948B1 (en) Method and measuring device for locating enclosed objects
EP2884245A1 (en) Weight apparatus for a waveguide, probe and method for producing a weight apparatus
DE102011018226A1 (en) Method for detecting quality of ammonia containing liquid or solid used in selective catalytic reduction system of diesel vehicle, involves determining reflection factor of electromagnetic waves in different frequency ranges
DE102018101206A1 (en) probe unit
EP0621466A1 (en) System for capacitive level measurement and its use
DE102020121154A1 (en) Dielectric value meter
EP0927877B1 (en) A measuring device for a fuel gauge
DE102017115516A1 (en) Capacitive level gauge
EP1255969B1 (en) Device for determining the level of a medium in a container
DE10136754A1 (en) Density measurement for medium in container, comprises feeding questioning signal into probe and then detecting response signal
DE202008007989U1 (en) Spacer element for centering an inner conductor
WO2017220293A1 (en) Capacitive limit level switch
DE102016210982B4 (en) Capacitive limit switch

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP