WO2002006822A1 - Method for detection of helicobacter pylori and apparatus therefor - Google Patents

Method for detection of helicobacter pylori and apparatus therefor Download PDF

Info

Publication number
WO2002006822A1
WO2002006822A1 PCT/GB2001/003163 GB0103163W WO0206822A1 WO 2002006822 A1 WO2002006822 A1 WO 2002006822A1 GB 0103163 W GB0103163 W GB 0103163W WO 0206822 A1 WO0206822 A1 WO 0206822A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
ammonia
chamber
sensor
subject
Prior art date
Application number
PCT/GB2001/003163
Other languages
French (fr)
Inventor
Norman M. Ratcliffe
Clive Teare
Christopher Dunn
David C. Cowell
Caroline Penault
Paul Chambers
Murdo M. Black
Original Assignee
Hypoguard Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hypoguard Limited filed Critical Hypoguard Limited
Priority to AU2001270817A priority Critical patent/AU2001270817A1/en
Publication of WO2002006822A1 publication Critical patent/WO2002006822A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4216Diagnosing or evaluating gastrointestinal ulcers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/097Devices for facilitating collection of breath or for directing breath into or through measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/083Measuring rate of metabolism by using breath test, e.g. measuring rate of oxygen consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • G01N2033/4975Physical analysis of biological material of gaseous biological material, e.g. breath other than oxygen, carbon dioxide or alcohol, e.g. organic vapours
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0054Specially adapted to detect a particular component for ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endocrinology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Pulmonology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A method for detecting Helicobacter pylori in a subject's gastroenteral tract involves measuring a change in resistance of an electronic or electrochemical sensor, notably a polypyrrole film, on exposure to gas from the subject's lungs and/or stomach. Depending on the magnitude of the change (if any) a positive or negative result is indicated visually by electronics means. Two sensors (16) are used, one of which receives a sample of gas (24) which has passed through an ammonia-absorbing means (30) to provide a corrected baseline value for the ammonia. The invention also provides apparatus suitable for carrying out the method.

Description

METHOD FOR DETECTION OF HELICOBACTER PYLORI AND APPARATUS THEREFOR
Field of the Invention
The present invention relates to a device and method for detecting Helicobacter Pylori in human subjects.
Background of the Invention
It has been known for some time that infection by
Helicobacter pylori (H pylori) may increase the risk of a subject suffering from illnesses such as gastritis and, duodenitis, and from peptic and duodenal ulcers. Detection of H pylori is therefore desirable to determine whether patients have, or have increased risk of having, such illnesses, and to enable appropriate treatment to be given.
H pylori produces ammonia and carbon dioxide by the action of a urease on urea in bodily fluids, and various tests have been proposed to detect H pylori by detecting the products of this reaction.
A test which is currently in use involves administering 13c-labelled urea to the subject and subsequently testing carbon dioxide in the subject's breath for the presence of 13C. However, testing for 13C requires a sample to be sent away for laboratory testing, which is slow and relatively expensiv ,
Various methods are known for diagnosing the presence of H pylori in human subjects, in US 4,947,861 it was proposed to detect the presence of ammonia in a subject's breath following oral administration of urea. The method comprises collecting a sample of alveolar air at least ten minutes after administration of the urea, passing the air over an alkaline hygroscopic material to remove water vapour, and passing the dried alveolar air to a sensor which indicates the presence of ammonia. The sehsor described is a glass tube filled with a granular material that changes colour as ammonia is passed through it. DE 299 02 593 Ul describes the use of an electronic " ose' for detecting infection by H pylori, and other conditions such as lactose intolerance, enzyme shortages, bacterial or viral infections. The electronic nose produces a fingerprint which is compared with a stored databank to produce a diagnosis. VS 5,719,052 describes a method and apparatus for collecting gas from a subject's stomach by stimulating the subject's vomiting reflex.
International Patent Application WO 97/3035 describes various chemical indicators which change colour in the presence of ammonia to provide a visible indicator of ammonia in a subject's breath.
It is desirable to have a detection device and method for detecting H pylori which is non-invasive, speedy, and which can be used by a patient or other person without medical supervision.
Summary of the Invention
According to a first aspect of the present invention there is provided a method for detecting the presence of Helicobacter pylori in the gastroenteral tract of a subject, the method comprising the steps of; a) obtaining a volume of gas from the lungs and/or stomach of the subject; b) dividing the said volume of gas into first and second substantially equal portions; c) causing or permitting the first said portion of gas to come into intimate contact with a first electronic or electrochemical ammonia sensor connected to me s for measuring the electrical resistance of the said irst sensor; d) causing or permitting the second said portion of gas to come into intimate contact with ammonia absorbing means and then into intimate contact with a second electronic or electrochemical ammonia sensor connected to means for measuring the electrical resistance of the said second senso ; e) measuring the resistance of the first and second sensors when in contact with the said portions of gas; ) comparing the said resistances of the sensors to produce a compared value; and g) producing a visible output signal to indicate a positive or negative diagnosis of Helicobacter pylori infection according to whether or not the compared value exceeds a predetermined threshold value.
The method is non-invasive, and it can be speedy and easy for a patient or other subject to self-adminster. It is not necessary to administer urea to the subject prior to carrying out the method.
An antacid (for example magnesium hydroxide) may be administered orally prior to testing. This will promote conversion of ammonium ions in the stomach to gaseous ammonia. If the antacid is a carbonate or bicarbonate (for example sodium bicarbonate) , it will also produce carbon dioxide to facilitate eructation.
A pair of similar sensors are provided, each in its own chamber. The gas is distributed substantially equally between the two chambers, but one chamber has an ammonia- absorbing barrier through which gas passes before co ing into contact with the sensor. Electronics means compare the difference between or ratio of resistances of the two sensors and express the result as a visible output. The output could be numeric, but is preferably in the form of a signal corresponding to either a positive or a negative diagnosis. For example, a green light or a red light could be illuminated.
To further increase the sensitivity of the device, the gas could be passed through an alkaline desiccant (for example solid sodium hydroxide) in known manner, to remove water vapou (and some carbon dioxide) before the g s enters the chambers .
A preferred sensor comprises a film of polypyrrole, which is connected by electrodes to a suitable meter. Methods of making polypyrrole films suitable for use in the invention are described in GB 2 234 515 and EP o 206 133. The ilm preferably has a thickness in the range 50 to 250 μm.
According to another aspect of the present invention there is provided a detection device for measuring ammonia content in gas from a subject's lungs and/or stomach, the device comprising; a) a first chamber and a second chamber, each of which has an entrance opening for receiving the said gas, and each of which houses an electronic or electrochemical ammonia sensor connected to means for measuring the electrical resistance of the sensor; b) the entrance openings of the chambers being connected to an inlet, the arrangement being such that incoming gas from the inlet will be divided into two substantially equal portions, each of which will pass through a corresponding entrance opening,- c) means for comparing the resistance of both sensors to produce a compared value; d) means for producing a visible output signal according to whether the compared value exceeds a predetermined threshold value; and e) wherein the second chamber is provided with means for absorbing ammonia, located between the entrance opening thereto and the sensor therein whereby at least some gas which enters the second chamber through the entrance opening will pass through the ammonia-absorbing means*
Although the term "ammonia-absorbing means" is used herein for convenience, it will be understood that this term includes any means which remove ammonia from the gas. Thus, the term includes ammonia adsorbents and materials which chemically combine with ammonia,
A preferred ammonia sensor comprises a film of polypyrrole, connected by electrodes to a suitable meter.
In a preferred embodiment, each chamber is provided with an exit vent to facilitate the passage of gas therethrough.
To reduce the volume of "dead space" in the chambers, they may optionally be constructed to be expandable, for example by having elastic walls, by being of telescopic construction, or by having a movable plunger, like a syringe. By reducing dead space, and therefore dilution of the gas portions, the sensitivity of the method can be increased.
Brief Description of the Drawings
The invention will now be further described, by way of example, with reference to the following drawings in which:
Figure l is a schematic representation of one chamber of an ammonia detection device in accordance with an aspect of the present invention;
Figure 2 is a graph showing change in resistance of the device of Figure 1, for different subjects;
Figure 3 is a graph of response against time for the device of Figure 1;
Figure 4 is a schematic representation of an ammonia detection device in accordance with the present invention; and
Figure 5 shows changes in electrical resistance measurement results for subjects under a defined test protocol♦
Detailed Description
The experimental device for detecting gaseous ammonia shown in Figure 1 comprises a chamber 2 in which is housed an ammonia sensor 4. The sensor 4 comprises a polypyrrole film 16, about 50 μ thick, which changes its electrical resistance in the presence of ammonia. The film 16 is carried on a peb-type conductive board, for example Veroboard™, which has been etched to remove conductive material completely across the middle of the sensor 4, so that the two ends IS of the board are not in electrical contact ith each other. An insulating film of PEEK is disposed between the film 16 and the conductive board. The film 16 is in electrical contact at opposed edges with each conductive end portion IS. The end portions IS are each connected by wires 14 to a meter 6 which measures electrical resistance across the film 16. In practice, a corresponding chamber will be provided, illustrated in Figure 4, which is of similar construction but which includes an ammonia-absorbing material. This provides a corrected baseline value.
The inside of the chamber 2 is maintained at ioo% humidity and sealed by clingfilm, in this example Nescofil ™. When the device is used in the method of the invention, a sample of gas 24 from a subject's lungs and/or stomach is collected in a syringe S and introduced into the chamber 2 via a needle 10* The meter 6 records the electrical resistance of the polypyrrole film 16 before the gas 24 is introduced into the chamber 2, and again after the gas has been introduced. The meter 6 then compares the resistances to produce a compared value and lights up an LED 20 or 22 according to whether the compared value is above or below a predetermined threshold. The meter 6 may measure the difference in resistance, or a ratio of resistances. The threshold value is calibrated to be just below the value produced by samples from test subjects known to be infected with H pylori. If the LED 22 lights up, showing a value which corresponds to infection, the subject knows to seek appropriate treatment or confirmatory alternative testing.
Figure 2 shows test results for two groups of control subjects, one group known to be H pylori negative and the other H pylori positive. In each case, a 10 ml sample of gas 24 was collected and introduced into a chamber of about 10 to 15 ml volume. The film 16 was ID mm square. The two sets of tesults on the left are for a breath test only, and the two sets of results on the right (the 'belch test') are for gas collected from subjects' stomachs, following ingestion of sodium bicarbonate in water. In each case, there is a clear threshold between the measured resistance for the negative and positive groups.
The same test conditions were used to check the response of sensors over time, but using a known concentration (100 ppm)of ammonia in air. The sensors were maintained at 100% humidity. The results are shown in Figure 3, with percentage change in resistance being plotted against the time (days) in which the sensor 4 was maintained in the chamber 2 prior to the measurement being taken. For all times up to 60 days, the percentage change was at least 15%.
The device shown in Figure 4 comprises a first chamber 2a housing a first sensor 16a, and a second chamber 2b housing a second sensor 16b. The chambers 2a and 2b are formed from an inner tubular member 34 and an outer tubular member 36 with a gas-tight seal 38 therebetween. Because the tubular members 34, 36 are telesσopically nested together, the chambers 2 can expand as gas is introduced into them, thereby reducing dead space. The chambers 2 and sensors 16 are of identical shape and construction. The first chamber has an entrance opening which is substantially occupied by a first porous frit 28, and the second chamber has an entrance opening which is substantially occupied by a second porous frit 30. The frits 28, 30 are arranged and composed such that each provides substantially the same resistance to the passage of gas 24 which is provided through a common entrance opening 32, or example by a subject breathing through that entrance. Each chamber may optionally be provided with a vent opening (40) to facilitate the flow of gas through the chambers. The second frit 30 is provided with means for absorbing ammonia, for example sodium dihydrogen phosphate or copper sulphate crystals, so that at least some of the ammonia (and preferably substantially all of the ammonia) which may be present in gas 24 blown into the second chamber 2b is absorbed in the second frit 30 and does not reach the second sensor 16b. The first frit 28 does not significantly absorb ammonia, so that ammonia which is present in gas 24 blown into the irst chamber 2a reaches the first sensor 2a.
Both sensors 16 are connected by wires (not shown) to an integral meter 6. The meter 6 is optionally provided with means (not shown) for detecting gas flow in the chambers . A irst LED 26 on the meter 6 lights up when it detects the passage of gas 24. The meter 6 measures the resistance of both sensors and produces a compared value which is the ratio of the resistances. The meter 6 displays a visible output accordingly, by illuminating (green) LED 20 corresponding to a negative test for H pylori, or (red) LED 22 corresponding to a positive test.
Based on data from in vitro studies, five healthy H. pylori-negative volunteers (determined by the 13C breath test) were studied. In this work, . the polypyrrole film was fabricated by dip coating a colloidal suspension of pol (pyrrole) , a ter chemical oxidation of the pyrrole monomer, on an acrylic sheet using known methods (Ratcliffe NR. Poly(pyrrole) -based sensor for hydrazine and ammonia. Analytica Chimica Acta 1990; 239: 257-262; Ratcliffe R. The simple preparation of a conducting and transparent pol (pyrrole) film. Synthetic Metals 1990; 38: 87-92) .
The resultant film, approximately 50nm thick, has a surface topography (revealed by transmission electron and atomic force microscopy) composed of spheres in intimate contact with each other. The volunteers were studied twice - lo ¬
in random order on two separate days a er an overnight fast; once after ingestion of an empty gelatin capsule and once after ingestion of a capsule containing 10 mg of NH4C1. Three additional volunteers were studied only after ingestion of NH4CI. Ten minutes after the capsule (a time suf icient for capsule degradation according to pharmacopoeia standards and our own in vitro observations) , each- subject swallowed a mixture of 15 al of Milk of Magnesia® (BCM Ltd, Nottingham: containing 415 mg of Mg(OH)2 per 5 ml) and 50 ml of water and, a further ten minutes later, drank 100 ml of sparkling water to 'drive off' any NH3. Mouth air samples (10 ml) were collected into a syringe at baseline (before the capsule) ; immediately prior to the Milk of Mag es a®/water mixture; and, finally, ten minutes after the 100 ml of sparkling water. These samples were individually expelled into a vial containing the NH3 sensor linked to a multimeter (measuring resistance) as described above. Pilot studies suggested, in contrast to in vitro data, that cold (4βC) sparkling water was superior to still water, so the former was used in all in vivo studies.
Five patients (three males and two females) who tested positive for H. pylori with at least one clinically- validated test (e.g., l3c breath test, serology) underwent the same procedure but without taking NH4CI.
In vivo studies: H. pylori-negative subjects
Figure 5 summarises the changes in sensor chemoresistivity of mouth air in . pylori-negative subjects who had ingested 10 mg NH4CI or an empty gelatin capsule. Figure 5 shows changes in electrical resistance for subjects exposed to mouth air from H pylori-negative subjects ("negative" controls) , H pylori-negative subjects after ingestion of ιo mg ammonia chloride (''positive controls"') and H pylori-positive patients, on average, WH3 levels detected in mouth air after ingestion of the NE^Cl- containing capsule, but prior to administration of the Milk of Magnes a/water mixture, were almost twice those seen after ingestion of the placebo. Furthermore, these data were obtained without the subjects necessarily belching.
In vivo studies: , pylori-positive patients Five H. pylori-positive patients underwent the test protocol without taking the NB^Cl-containing capsule. The results are also shown in Figure 5. Pre-protocol NH3 levels in the patients' mouths were higher than the baseline levels measured in the H. pylori-negative subjects who ingested NH4CI ("positive controls") .
Furthermore, even higher levels were recorded in the four patients in whom the test protocol produced a belch-.
None of the healthy volunteers or the IT* pylori-positive patients experienced any adverse effects from the study.
The device and method of the present invention can detect sub-ppm concentrations of NH3 in 'endogenous' mouth air, and can provide a point-of-care diagnostic test for Helicobacter pylori without the need for patients to ingest urea, and with the results being immediately available to the attending physician. Furthermore, the conditions necessary for the bacteria-associated NH+ to be converted to NH3 and liberated through the oral cavity can be achieved through the use of an established antacid and cold, sparkling water with no adverse reactions amongst the small number of healthy subjects and H. pyl ori-positive patients so far tested.
Studies in the healthy volunteers clearly showed that NH3 levels in mouth air after ingestion of 10 mg NHC1 were generally higher than in the same subjects tested without ingestion of NH4CI (Figure 5). This difference was evident irrespective of whether or not the subjects belched. Removing the requirement to belch is seen as a significant advantage for a diagnostic test as, in a study with a larger number of normal subjects, only a proportion were induced to belch reliably under our current protocol.
Given the small number of subjects tested, there is so e overlap in the data between those who ingested NH4CI and those given the placebo. However, the data in Figure 5 show markedly higher levels of mouth NH3 in the overnight . fasted H. pylori-positive patients than in either group of controls. Thus, the patients had higher baseline (without the need to belch) NH3 levels than the healthy subjects even after the latter had ingested 10 mg NH4CI* Furthermore, four of the five patients did belch and, in each case, this was associated with even higher mouth NH3 levels. All these in vivo data were acquired without any subject or patient being required to ingest urea. The data also suggest that intra-gastrio levels of NH3 in patients with H. pylori infection are considerably higher than those attained by the ingestion of 10 mg of NH4CI.
The invention provides a rapid/ point-of-care diagnostic test for Jϊ. pylori based on the che iresistive detection of WH3 in mouth air. The proposed test does not require patients to ingest urea, and appears to be possible on 'endogenous' mouth air without the need for the patient to belch or even to ingest the antacid/water mixture. Additionally, the test method uses neither stable nor radioactive isotopes thus obviating the need to send samples to a central laboratory for analysis, and overcoming difficulties associated with radioisotopes.

Claims

claims
1, A method for detecting the presence of Helicobacter pylori in the gastroenteral tract of a subject, the method 5 comprising the steps of: a) obtaining a volume of gas from the lungs and/or stomach of the subject; b) dividing the said volume of gas into first and second substantially equal portions; 0 c) causing or permitting the first said portion of gas to come into intimate contact with a first electronic or electrochemical ammonia sensor connected to means or measuring the electrical resistance of the said first sensor; 5 d) causing or permitting the second said portion of gas to come into intimate contact with ammonia absorbing means and then into intimate contact with a second electronic or electrochemical ammonia sensor connected to means for measuring the electrical resistance of the said second o sensor; e) measuring the resistance of the first and second sensors when in contact with the said portions of gas,- ) comparing the said resistances of the sensors to produce a compared value; and 5 g) producing a visible output signal to indicate a positive or negative diagnosis of Helicobacter pylori infection according to whether or not the compared value exceeds a predetermined threshold value.
0 2. A method as claimed in claim 1, wherein substantially all of the said second portion of gas passes through the said ammonia absorbing means before coming into contact with the said second ammonia sensor so that substantially all of the ammonia which may be present in the said second 5 portion of gas is absorbed by the ammonia absorbing m ans -
3. A method as claimed in claim 1 or claim 2, wherein each of the said ammonia sensors is housed in a chamber and entrance of a portion of gas into the said chamber causes the chamber to expand.
4. A method as claimed in any one of the preceding claims, wherein an antacid is administered orally to the subject prior to obtaining the gas from the subject's lungs and/or stomach.
5. A method as claimed in any one of the preceding claims, wherein sparkling water is administered orally to the subject prior to obtaining the gas from the subject's lungs and/or stomach.
6. A detection device for measuring ammonia content in gas from a subject's lungs and/or stomach, the device comprising: a) a first chamber and a second chamber, each of which has an entrance opening for receiving the said gas, and each of which houses an electronic or electrochemical ammonia sensor connected to means for measuring the electrical resistance of the sensor; b) the entrance openings of the chambers being connected to an inlet, the arrangement being such that incoming gas from the inlet will be divided into two substantially equal portions, each of which will pass through a corresponding entrance opening; c) means for comparing the resistance of both sensors to produce a compared value; d) means for producing a visible output signal according to whether the compared value exceeds a predetermined threshold value; and e) wherein the second chamber is provided with means or absorbing ammonia, located between the entrance opening thereto and the sensor therein whereby at least some gas which enters the second chamber through the entrance opening will pass through the ammonia-absorbing means.
7. A device as claimed in claim 6, wherein each chamber is provided with a frit or baffle, each of which provides a substantially equal resistance to the passage of gas.
8. A device as claimed in claim 7, wherein the said ammonia-absorbing means is provided on the frit or baffle associated with the second chamber.
9. A device as claimed in any one of claims $ to a , wherein each chamber is provided with an exit vent to facilitate the passage of gas therethrough.
10. A device as claimed in any one of claims 6 to 9, wherein the ammonia-absorbing means comprises sodium dihydrogen phosphate or copper sulphate.
11. A device as claimed in any one of claims 6 to 10, further including detection means for detecting the passage of breath one or both chambers, and display . means responsive to said detection means.
12. A device as claimed in any one of claims 6 to n, which is arranged and constructed so that substantially all of the gas which comes into contact with the second sensor via the entrance opening of the second chamber will pass through the ammonia-absorbing means.
13. A device as claimed in any one of claims 6 to 12, wherein each chamber is expandable.
PCT/GB2001/003163 2000-07-14 2001-07-13 Method for detection of helicobacter pylori and apparatus therefor WO2002006822A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001270817A AU2001270817A1 (en) 2000-07-14 2001-07-13 Method for detection of helicobacter pylori and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0017239.5 2000-07-14
GB0017239A GB2364778A (en) 2000-07-14 2000-07-14 Detection of Helicobacter pylori and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2002006822A1 true WO2002006822A1 (en) 2002-01-24

Family

ID=9895614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2001/003163 WO2002006822A1 (en) 2000-07-14 2001-07-13 Method for detection of helicobacter pylori and apparatus therefor

Country Status (3)

Country Link
AU (1) AU2001270817A1 (en)
GB (1) GB2364778A (en)
WO (1) WO2002006822A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6978669B2 (en) 2003-12-22 2005-12-27 The Goodyear Tire & Rubber Company Method and assembly of sensor ready tires
GB2416589A (en) * 2004-07-27 2006-02-01 Sensam Ltd Gas sampling device
EP2203563A1 (en) * 2007-09-17 2010-07-07 The Research Foundation of the State University of New York Detection of h. pylori utilizing unlabeled urea
US9410915B2 (en) 2004-06-18 2016-08-09 Roche Operations Ltd. System and method for quality assurance of a biosensor test strip
US9678058B2 (en) 2010-09-03 2017-06-13 Anastasia Rigas Diagnostic method and breath testing device
US10401318B2 (en) 2011-03-14 2019-09-03 Anastasia Rigas Breath analyzer and breath test methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2519937B (en) * 2013-09-05 2016-07-27 Kanichi Res Services Ltd Electrochemical sensor
DE102014005825A1 (en) * 2013-10-08 2015-04-09 Extox Gasmess-Systeme Gmbh Measuring system with ammonia sensor for use in animal houses

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057436A (en) * 1989-10-02 1991-10-15 Agmaster, Inc. Method and apparatus for detecting toxic gases

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852036A (en) * 1971-12-28 1974-12-03 Borg Warner Breath testing system
SE446776B (en) * 1983-08-17 1986-10-06 Claes Nylander PROCEDURE FOR QUANTITATIVE SEATING OF NH? 713 IN A SAMPLE AND DEVICE FOR CARRYING OUT THE PROCEDURE
US4947861A (en) * 1989-05-01 1990-08-14 Hamilton Lyle H Noninvasive diagnosis of gastritis and duodenitis
JPH07289289A (en) * 1994-04-27 1995-11-07 Gastec:Kk Method for simply performing test for helicobacter pylori and instrument for performing test
DE29902593U1 (en) * 1999-02-13 1999-07-15 Genzyme Virotech Gmbh Gas analyzer for medical diagnostics

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057436A (en) * 1989-10-02 1991-10-15 Agmaster, Inc. Method and apparatus for detecting toxic gases

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6978669B2 (en) 2003-12-22 2005-12-27 The Goodyear Tire & Rubber Company Method and assembly of sensor ready tires
US9410915B2 (en) 2004-06-18 2016-08-09 Roche Operations Ltd. System and method for quality assurance of a biosensor test strip
GB2416589A (en) * 2004-07-27 2006-02-01 Sensam Ltd Gas sampling device
EP2203563A1 (en) * 2007-09-17 2010-07-07 The Research Foundation of the State University of New York Detection of h. pylori utilizing unlabeled urea
EP2203563A4 (en) * 2007-09-17 2013-07-24 Univ New York State Res Found Detection of h. pylori utilizing unlabeled urea
US9678058B2 (en) 2010-09-03 2017-06-13 Anastasia Rigas Diagnostic method and breath testing device
US10401318B2 (en) 2011-03-14 2019-09-03 Anastasia Rigas Breath analyzer and breath test methods

Also Published As

Publication number Publication date
GB2364778A (en) 2002-02-06
GB0017239D0 (en) 2000-08-30
AU2001270817A1 (en) 2002-01-30

Similar Documents

Publication Publication Date Title
US6509169B2 (en) Detection of Helicobacter pylori
Corbett et al. Electrochemical detector for breath hydrogen determination: measurement of small bowel transit time in normal subjects and patients with the irritable bowel syndrome.
Kearney et al. Breath ammonia measurement in Helicobacter pylori infection
US4947861A (en) Noninvasive diagnosis of gastritis and duodenitis
US5375592A (en) Carbon dioxide detector and shield
US5197464A (en) Carbon dioxide detection
US5848975A (en) Breath test for helicobacter pylori
US7014612B2 (en) Method for diagnosis of helicobacter pylori infection
US6461870B2 (en) 13C glucose breath test for the diagnosis of diabetic indications and monitoring glycemic control
US20050147560A1 (en) 13C glucose breath test for the diagnosis of diabetic indications and monitoring glycemic control
EP3893736B1 (en) Breath analyzer devices and breath test methods
JPS63246673A (en) Method of detecting ketone and aldehydes and instrument thereof
WO2002006822A1 (en) Method for detection of helicobacter pylori and apparatus therefor
Saweirs et al. The double sugar test of intestinal permeability in the elderly
US5552324A (en) Method and apparatus for determining the concentration of readily oxidizable organic vapors in gas samples
JP4988857B2 (en) Breath test method for detecting pathogenic microorganisms
US6183416B1 (en) Diagnostic method for inflammatory conditions in the intestines
US20160143561A1 (en) Self-contained, portable h2/co2 (air) ratio apparatus
CN108267480A (en) One kind exhales hydrogen functions of intestines and stomach and disease detecting system and detection method
US4548805A (en) Non-invasive test for gastric acid
CN110780063A (en) Expiratory ammonia detection method and device
JP3065498B2 (en) Breath collection device
CN211478332U (en) Expiration ammonia detection device
JPH08145991A (en) Method for determining infection of microbe with urease activity
Van Amsterdam et al. The balloon technique: a convenient method to measure exhaled NO in epidemiological studies

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

ENP Entry into the national phase

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP