WO2002009203A3 - Microelectronic piezoelectric structure - Google Patents

Microelectronic piezoelectric structure Download PDF

Info

Publication number
WO2002009203A3
WO2002009203A3 PCT/US2001/022676 US0122676W WO0209203A3 WO 2002009203 A3 WO2002009203 A3 WO 2002009203A3 US 0122676 W US0122676 W US 0122676W WO 0209203 A3 WO0209203 A3 WO 0209203A3
Authority
WO
WIPO (PCT)
Prior art keywords
layer
monocrystalline
microelectronic
strontium titanate
piezoelectric structure
Prior art date
Application number
PCT/US2001/022676
Other languages
French (fr)
Other versions
WO2002009203A2 (en
Inventor
Ramamoorthy Ramesh
Yu Wang
Jeffrey M Finder
Kurt Eisenbeiser
Zhiyi Yu
Ravindranath Droopad
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Priority to KR1020037001102A priority Critical patent/KR100827216B1/en
Priority to EP01954763A priority patent/EP1307930A2/en
Priority to AU2001276987A priority patent/AU2001276987A1/en
Priority to JP2002514808A priority patent/JP2004517462A/en
Publication of WO2002009203A2 publication Critical patent/WO2002009203A2/en
Publication of WO2002009203A3 publication Critical patent/WO2002009203A3/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/079Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/1051Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/10513Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/10516Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead based oxides
    • H10N30/8554Lead zirconium titanate based

Abstract

A high quality epitaxial layer (110) of monocrystalline Pb(Zr, Ti)O3 can be grown overlying large silicon wafers by first growing a barium strontium titanate layer (104) on a silicon wafer. The barium strontium titanate layer (104) is a monocrystalline layer spaced apart from the silicon wafer by an amorphous interface layer (116) of silicon oxide. Monocrystalline conductive layers (106, 108) of La, Sr) Co03 are formed adjacent the Pb(Zr, Tr)03 layer.
PCT/US2001/022676 2000-07-24 2001-07-19 Microelectronic piezoelectric structure WO2002009203A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020037001102A KR100827216B1 (en) 2000-07-24 2001-07-19 Microelectronic piezoelectric structure
EP01954763A EP1307930A2 (en) 2000-07-24 2001-07-19 Microelectronic piezoelectric structure
AU2001276987A AU2001276987A1 (en) 2000-07-24 2001-07-19 Microelectronic piezoelectric structure
JP2002514808A JP2004517462A (en) 2000-07-24 2001-07-19 Microelectronic piezoelectric structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/624,527 2000-07-24
US09/624,527 US6432546B1 (en) 2000-07-24 2000-07-24 Microelectronic piezoelectric structure and method of forming the same

Publications (2)

Publication Number Publication Date
WO2002009203A2 WO2002009203A2 (en) 2002-01-31
WO2002009203A3 true WO2002009203A3 (en) 2002-05-23

Family

ID=24502333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/022676 WO2002009203A2 (en) 2000-07-24 2001-07-19 Microelectronic piezoelectric structure

Country Status (8)

Country Link
US (2) US6432546B1 (en)
EP (1) EP1307930A2 (en)
JP (1) JP2004517462A (en)
KR (1) KR100827216B1 (en)
CN (1) CN1511350A (en)
AU (1) AU2001276987A1 (en)
TW (1) TW508849B (en)
WO (1) WO2002009203A2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693033B2 (en) * 2000-02-10 2004-02-17 Motorola, Inc. Method of removing an amorphous oxide from a monocrystalline surface
US6482538B2 (en) * 2000-07-24 2002-11-19 Motorola, Inc. Microelectronic piezoelectric structure and method of forming the same
US6638838B1 (en) 2000-10-02 2003-10-28 Motorola, Inc. Semiconductor structure including a partially annealed layer and method of forming the same
US6673646B2 (en) 2001-02-28 2004-01-06 Motorola, Inc. Growth of compound semiconductor structures on patterned oxide films and process for fabricating same
US6709989B2 (en) 2001-06-21 2004-03-23 Motorola, Inc. Method for fabricating a semiconductor structure including a metal oxide interface with silicon
US6646293B2 (en) 2001-07-18 2003-11-11 Motorola, Inc. Structure for fabricating high electron mobility transistors utilizing the formation of complaint substrates
US6693298B2 (en) 2001-07-20 2004-02-17 Motorola, Inc. Structure and method for fabricating epitaxial semiconductor on insulator (SOI) structures and devices utilizing the formation of a compliant substrate for materials used to form same
US6667196B2 (en) 2001-07-25 2003-12-23 Motorola, Inc. Method for real-time monitoring and controlling perovskite oxide film growth and semiconductor structure formed using the method
US6589856B2 (en) 2001-08-06 2003-07-08 Motorola, Inc. Method and apparatus for controlling anti-phase domains in semiconductor structures and devices
US6639249B2 (en) 2001-08-06 2003-10-28 Motorola, Inc. Structure and method for fabrication for a solid-state lighting device
US6673667B2 (en) 2001-08-15 2004-01-06 Motorola, Inc. Method for manufacturing a substantially integral monolithic apparatus including a plurality of semiconductor materials
US6916717B2 (en) * 2002-05-03 2005-07-12 Motorola, Inc. Method for growing a monocrystalline oxide layer and for fabricating a semiconductor device on a monocrystalline substrate
JP4120589B2 (en) * 2004-01-13 2008-07-16 セイコーエプソン株式会社 Magnetoresistive element and magnetic memory device
US20060288928A1 (en) * 2005-06-10 2006-12-28 Chang-Beom Eom Perovskite-based thin film structures on miscut semiconductor substrates
US7364989B2 (en) * 2005-07-01 2008-04-29 Sharp Laboratories Of America, Inc. Strain control of epitaxial oxide films using virtual substrates
US7696549B2 (en) * 2005-08-04 2010-04-13 University Of Maryland Bismuth ferrite films and devices grown on silicon
US20070029592A1 (en) * 2005-08-04 2007-02-08 Ramamoorthy Ramesh Oriented bismuth ferrite films grown on silicon and devices formed thereby
US7541105B2 (en) 2006-09-25 2009-06-02 Seagate Technology Llc Epitaxial ferroelectric and magnetic recording structures including graded lattice matching layers
US20090015142A1 (en) * 2007-07-13 2009-01-15 3M Innovative Properties Company Light extraction film for organic light emitting diode display devices
US8179034B2 (en) * 2007-07-13 2012-05-15 3M Innovative Properties Company Light extraction film for organic light emitting diode display and lighting devices
US20100110551A1 (en) * 2008-10-31 2010-05-06 3M Innovative Properties Company Light extraction film with high index backfill layer and passivation layer
US7957621B2 (en) * 2008-12-17 2011-06-07 3M Innovative Properties Company Light extraction film with nanoparticle coatings

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248564A (en) * 1992-12-09 1993-09-28 Bell Communications Research, Inc. C-axis perovskite thin films grown on silicon dioxide

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450575A (en) * 1987-08-21 1989-02-27 Nec Corp Substrate for electronic device
JPH0695554B2 (en) 1987-10-12 1994-11-24 工業技術院長 Method for forming single crystal magnesia spinel film
US4999842A (en) 1989-03-01 1991-03-12 At&T Bell Laboratories Quantum well vertical cavity laser
US5310707A (en) 1990-03-28 1994-05-10 Superconductivity Research Laboratory International Substrate material for the preparation of oxide superconductors
US5155658A (en) 1992-03-05 1992-10-13 Bell Communications Research, Inc. Crystallographically aligned ferroelectric films usable in memories and method of crystallographically aligning perovskite films
US5270298A (en) 1992-03-05 1993-12-14 Bell Communications Research, Inc. Cubic metal oxide thin film epitaxially grown on silicon
US5326721A (en) 1992-05-01 1994-07-05 Texas Instruments Incorporated Method of fabricating high-dielectric constant oxides on semiconductors using a GE buffer layer
JPH06151872A (en) 1992-11-09 1994-05-31 Mitsubishi Kasei Corp Fet device
DE69331538T2 (en) 1992-12-01 2002-08-29 Matsushita Electric Ind Co Ltd Process for producing an electrical thin film
US5828080A (en) 1994-08-17 1998-10-27 Tdk Corporation Oxide thin film, electronic device substrate and electronic device
US5635741A (en) 1994-09-30 1997-06-03 Texas Instruments Incorporated Barium strontium titanate (BST) thin films by erbium donor doping
US5635453A (en) * 1994-12-23 1997-06-03 Neocera, Inc. Superconducting thin film system using a garnet substrate
WO1997001854A1 (en) * 1995-06-28 1997-01-16 Bell Communication Research, Inc. Barrier layer for ferroelectric capacitor integrated on silicon
US5753934A (en) 1995-08-04 1998-05-19 Tok Corporation Multilayer thin film, substrate for electronic device, electronic device, and preparation of multilayer oxide thin film
FR2744578B1 (en) 1996-02-06 1998-04-30 Motorola Semiconducteurs HIGH FREQUENCY AMPLIFIER
US6002375A (en) 1997-09-02 1999-12-14 Motorola, Inc. Multi-substrate radio-frequency circuit
US6055179A (en) 1998-05-19 2000-04-25 Canon Kk Memory device utilizing giant magnetoresistance effect

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248564A (en) * 1992-12-09 1993-09-28 Bell Communications Research, Inc. C-axis perovskite thin films grown on silicon dioxide

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEUNG J T ET AL: "Epitaxial La0.5Sr0.5CoO3 electrode films for ferroelectric device applications", INTEGRATED FERROELECTRICS, vol. 3, no. 2, 1993, NEW YORK, NY, US, pages 147 - 157, XP000972787, ISSN: 1058-4587 *
GHONGE S G ET AL: "Microstructure of epitaxial oxide thin film heterostructures on silicon by pulsed laser deposition", APPLIED PHYSICS LETTERS, vol. 64, no. 25, 20 June 1994 (1994-06-20), pages 3407 - 3409, XP002190658, ISSN: 0003-6951 *
WANG Y ET AL: "Epitaxial ferroelectric Pb(Zr,Ti)O3 thin films on Si using SrTiO3 template layers", APPLIED PHYSICS LETTERS, vol. 80, no. 1, 7 January 2002 (2002-01-07), pages 97 - 99, XP002190660, ISSN: 0003-6951 *
WU W ET AL: "Low-temperature growth and characterization of epitaxial La0.5Sr0.5CoO3/Pb(Zr0.52Ti0.48)O3/La0.5Sr0.5CoO3 capacitors on SrTiO3/TiN buffered Si(001) substrates", JOURNAL OF PHYSICS D (APPLIED PHYSICS), vol. 34, no. 11, June 2001 (2001-06-01), IOP PUBLISHING, UK, pages 1587 - 1591, XP002190659, ISSN: 0022-3727 *

Also Published As

Publication number Publication date
TW508849B (en) 2002-11-01
JP2004517462A (en) 2004-06-10
US6432546B1 (en) 2002-08-13
KR20030029114A (en) 2003-04-11
WO2002009203A2 (en) 2002-01-31
CN1511350A (en) 2004-07-07
KR100827216B1 (en) 2008-05-07
US6750067B2 (en) 2004-06-15
US20020164827A1 (en) 2002-11-07
EP1307930A2 (en) 2003-05-07
AU2001276987A1 (en) 2002-02-05

Similar Documents

Publication Publication Date Title
WO2002009203A3 (en) Microelectronic piezoelectric structure
US4948456A (en) Confined lateral selective epitaxial growth
US7285433B2 (en) Integrated devices with optical and electrical isolation and method for making
WO2001059814A3 (en) Semiconductor structure
KR940006213A (en) High dielectric constant oxide structure containing Pb / Bi using perovskite containing no Pb / Bi as a buffer layer and a method of manufacturing the same
EP1148557B1 (en) Stacked capacitor and method of fabricating the stacked capacitor
US6429466B2 (en) Integrated circuit substrate that accommodates lattice mismatch stress
WO2003012841A3 (en) Semiconductor structures and devices not lattice matched to the substrate
WO2002009160A3 (en) Piezoelectric structures for acoustic wave devices and manufacturing processes
KR940006212A (en) High dielectric constant oxide on semiconductor using germanium buffer layer and method for manufacturing same
TW201937535A (en) Power and RF devices implemented using an engineered substrate structure
US20030003695A1 (en) Semiconductor substrate, SOI substrate and manufacturing method therefor
WO2002047127A3 (en) Pyroelectric device on a monocrystalline semiconductor substrate
US7071530B1 (en) Multiple layer structure for substrate noise isolation
US4891092A (en) Method for making a silicon-on-insulator substrate
US4704186A (en) Recessed oxide method for making a silicon-on-insulator substrate
WO2003010834A3 (en) Microelectronic piezoelectric structure
EP1600530A4 (en) (001)-orientated perovskite film formation method and device having perovskite film
CN100379030C (en) Monolithic integrated SOI circuit with capacitor
WO2003009357A3 (en) Epitaxial semiconductor on insulator (soi) structures and devices
WO2002009131A3 (en) Semiconductor element comprising a sequence of layers for converting acoustic or thermal signals and electrical voltage changes into each other and method for producing the same
JPH02191320A (en) Crystal product and its manufacture
WO2003014812A3 (en) Semiconductor structures and polarization modulator devices
WO2002013251A1 (en) Vapor phase deposition method for metal oxide dielectric film
WO2002045140A3 (en) Semiconductor structures having a compliant substrate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 1020037001102

Country of ref document: KR

Ref document number: 018132804

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001954763

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037001102

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001954763

Country of ref document: EP