WO2002016680A1 - Herstellung von polymerfasern mit nanoskaligen morphologien - Google Patents

Herstellung von polymerfasern mit nanoskaligen morphologien Download PDF

Info

Publication number
WO2002016680A1
WO2002016680A1 PCT/EP2001/009236 EP0109236W WO0216680A1 WO 2002016680 A1 WO2002016680 A1 WO 2002016680A1 EP 0109236 W EP0109236 W EP 0109236W WO 0216680 A1 WO0216680 A1 WO 0216680A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous
porous fibers
fiber
fibers
polymer
Prior art date
Application number
PCT/EP2001/009236
Other languages
English (en)
French (fr)
Inventor
Lothar Heinrich
Joachim H. Wendorff
Martin Steinhart
Johannes Averdung
Original Assignee
Creavis Gesellschaft Für Technologie Und Innovation Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creavis Gesellschaft Für Technologie Und Innovation Mbh filed Critical Creavis Gesellschaft Für Technologie Und Innovation Mbh
Priority to EP01974154A priority Critical patent/EP1311715A1/de
Priority to US10/344,419 priority patent/US6790528B2/en
Priority to AU2001293750A priority patent/AU2001293750A1/en
Publication of WO2002016680A1 publication Critical patent/WO2002016680A1/de

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2935Discontinuous or tubular or cellular core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2975Tubular or cellular

Definitions

  • the invention relates to a method for producing nanoscale polymeric fibers with morphologies and textures, in particular with open porous structures, and to their modification and use.
  • nanoscale materials Due to the high surface volume / volume ratio and the deviations from typical order structures in macroscopic systems, nanoscale materials have special physical and chemical properties, as described, for example, in Gleitner, H .; "Nanostructured Materials", in Encyclopedia of Physical Science and Technology, Nol. 10, p. 561 ff. These include short-range magnetic properties of metallic or oxidic materials, slight field-induced tunneling of electrons from filament tips or particularly advantageous biocompatibility properties caused by nanoscale microdomains.
  • these property profiles which have changed compared to maloscopic materials, new technological developments in microelectronics, display technology, surface technology, in the production of catalysts and in medical technology, in particular as carrier materials for cell and tissue cultures, have now been achieved.
  • fiber materials with filament diameters that are smaller than 300 nm and can reach dimensions of a few 10 nm are suitable as field electron emission electrodes according to WO 98/1588.
  • semiconductor systems too, described in US Pat. No. 5,627,140, they offer technological advantages, likewise as catalyst systems with improved activity profiles, as set out in WO 98/26871.
  • Such fibers can be chemically modified and provided with chemical functions, for example by chemical etching or by plasma treatment, processed into fabrics or compressed into felt-like materials.
  • Fibers with diameters smaller than 3000 nm can be produced according to WO 00/22207 with the help of relaxing pressure gases from special nozzles.
  • State of the art are also electrostatic spinning processes, described in DE 100 23 456.9.
  • GB 2 142 870 describes such a method which is used for the production of woven vascular implants.
  • Nanofibers can be used as templates for coatings that are applied to the fibers from solutions or by vapor deposition, for example.
  • polymeric, ceramic, oxidic, glass-like or even metallic materials can be deposited on the fibers as closed layers.
  • tubes of various materials can be obtained in this way, whose inner diameters can be adjusted from 10 nm to a few ⁇ m depending on the filament diameter, and their wall thicknesses in nm or depending on the coating conditions ⁇ m range.
  • the production of such nano or mesotubes is described in DE 10 23 456.9.
  • fibers can be provided with a porous coating. After a subsequent pyrolysis treatment, fibers with high porosity are available, which are advantageous, for example, for catalytic uses.
  • porous fiber materials offer additional technical advantages over closed, solid fibers because they have a significantly higher surface area.
  • nanotubes have a very large surface area, they are quite complex to manufacture due to the pyrolysis step.
  • EP 0 047 795 describes polymeric fibers which have a solid core and a porous, foam-like sheathing of the core.
  • the fiber core is said to have a high mechanical
  • the porous shell has a high surface.
  • very surface-active applications such as B. Filtration, the porous structure produced according to EP 0 047 795 is not sufficient in many cases.
  • the invention was therefore based on the object of making nano- and mesoscale polymer fibers with a very large surface area accessible by a simple process.
  • the present invention therefore relates to porous fibers made of polymeric materials, the fibers having a diameter of 20 to 4000 nm and pores in the form of channels extending at least to the fiber core and / or through the fiber.
  • Another object of the invention is a process for the production of porous fibers from polymeric materials, wherein a 3 to 20 wt .-% solution of a polymer in an easily evaporable organic solvent or solvent mixture by means of electrospinning at an electric field above 10 5 V / m is spun, the resulting fiber having a diameter of 20 to 4000 nm and pores in the form of channels extending at least to the fiber core and / or through the fiber.
  • Electrospinning processes are e.g. B. in Fong, H .; Reneker, D.H .; J. Polym. Sci., Part B, 37 (1999), 3488 and in DE 100 23 456.9.
  • Porous fiber structures according to the invention contain polymer blends or copolymers, preferably polymers such as polyethylene, polypropylene, polystyrene, polysulfone, polylactide, polycarbonate, polyvinyl carbazole, polyurethanes, polymethacrylates, PVC, polyamides, polyacrylates, polyvinyl pyrrolidone, polyethylene oxide, polypropylene oxide, polysaccharide and / or soluble polysaccharides and / or soluble polymers as the polymeric material , such as B. Cellulose Acetate.
  • polymers such as polyethylene, polypropylene, polystyrene, polysulfone, polylactide, polycarbonate, polyvinyl carbazole, polyurethanes, polymethacrylates, PVC, polyamides, polyacrylates, polyvinyl pyrrolidone, polyethylene oxide, polypropylene oxide, polysaccharide and / or soluble polysaccharides and
  • polymers can be used individually or in the form of their blends.
  • at least one water-soluble and at least one water-insoluble polymer is used.
  • the mass ratio can in each case be between 1: 5 and 5: 1, preferably 1: 1.
  • 3-20% by weight, preferably 3-10% by weight, particularly preferably 3-6% by weight, of at least one polymer are dissolved in an organic solvent and spun into a porous fiber by means of electrospinning.
  • the fibers according to the invention have diameters of 20 to 1500 nm, preferably 20 to 1000, particularly preferably 20 to 500, very particularly preferably 20 to 100 nm.
  • Dimethyl ether, dichloromethane, chloroform, ethylene glycol dimethyl ether, ethyl glycol isopropyl ether, ethyl acetate, acetone or mixtures thereof, optionally supplemented with further solvents, can be used as the easily evaporable organic solvent.
  • the evaporation step can be carried out at normal pressure or in a vacuum. If necessary, the pressure must be adjusted to the boiling points of the solvents.
  • solvents or solvent mixtures in the process which represent a theta solvent for the polymer / polymer blend in question.
  • the theta state of the polymer solutions can also be run through during the electrospinning process. This is e.g. B. during the evaporation step of the solvent.
  • a feature of the high surface area of the porous fibers according to the invention is the surface area, which is over 100 m 2 / g, preferably over 300 m 2 / g, in particular over 600 m 2 / g, very particularly preferably over 700 m 2 / g.
  • These surfaces can be calculated on the basis of the dimensions resulting from the scanning electron microscope images or measured by nitrogen adsorption using the BET method.
  • porous fibers produced by the process according to the invention can be processed into woven fabrics, knitted fabrics and shaped and structured pressed material, modified wet-chemically and plasma-chemically, or loaded with materials of different objectives, for example pharmaceutical active ingredients or catalytic precursors, by impregnation and subsequent drying.
  • porous fibers according to the invention can be used as an adsorbent or absorbent, in the biological field (biomaterial) and as a template for producing highly porous solids (e.g. ceramics by molding and burning out the polymeric templates).
  • porous fibers according to the invention by means of a surface modification by means of a low-temperature plasma or chemical reagents, such as, for example, aqueous sodium hydroxide solution, inorganic acids, acid anhydrides or halides or, depending on the surface functionality, with silanes, isocyanates, organic acid halides or anhydrides , Alcohols, aldehydes or alkylation chemicals including the corresponding catalysts.
  • a surface modification enables the porous fibers to have a more hydrophilic or hydrophobic surface, which is advantageous when used in the biological or biomedical field.
  • Porous fibers according to the invention can be used as reinforcing composite components in polymeric materials, as filter materials, as supports for catalysts, for. B.
  • porous fibers according to the invention which can be recognized by optical birefringence. They are therefore particularly suitable as a reinforcing component in fiber composite materials, the large inner surface, in particular after suitable surface modification, ensuring effective binding and strength of the polymer matrix.
  • ternary mixtures of two polymers and an easily evaporable solvent or solvent mixture are spun, one of the polymer components being water-soluble, for example polyvinylpyrrolidone, polyethylene oxide, polypropylene oxide, polysaccharides or methyl cellulose.
  • These ternary solutions were spun electrostatically in the same way as the binary mixtures set out above. This resulted in nano and meso fibers, which, however, showed no porous morphology.
  • a non-porous structure of the fiber is obtained using conventional electrospinning processes. It is expedient to work with polymer solutions that are far from the theta state and do not pass through it during the spinning process.
  • This fiber material can also be woven, knitted and shaped as well as structured Compacts processed, superficially modified and functionalized and the uses listed above.
  • PLLA Semi-crystalline poly-L-lactide
  • FLUKA dichloromethane
  • the dosage rate of the solution to the outlet cannula which had an inner diameter of 0.5 mm, was varied between 0.3 and 2 cm 3 / s.
  • the temperature of the solution was set at 25 ° C.
  • the distances between the cannula tip and counter electrodes were between 10 and 20 cm, the working voltage was set to 35 kV.
  • the spinning process produced porous fibers with diameters from 100 nm to 4 ⁇ m.
  • the scanning electron microscopic images show uniformly shaped fibers, as shown in FIG. 1, which show the continuous, open porous structure at higher SEM resolution (FIG. 2).
  • SEM scanning electron microscopic images
  • FIG. 1 show the continuous, open porous structure at higher SEM resolution (FIG. 2).
  • FIG. 2 shows the continuous, open porous structure at higher SEM resolution
  • the BET surface areas of these porous fibers were between 200 and 800 m 2 / g, one Calculation of the surface from the SEM images even resulted in surfaces up to 1,500 m 2 / g.
  • the SEM image in FIG. 3 shows a porous PLLA fiber which was produced with a metering rate of the solution of 0.8 cm 3 / s.
  • the BET surface area of this fiber was measured at 650 m 2 / g, the value calculated from the SEM absorption was 1,200 m 2 / g.
  • Example 2 6% by weight of an aromatic polyurethane (Tecoflex TM, manufacturer: Thermetics, USA) with the average molecular weight of 180,000 g / mol was dissolved in acetone (FLUKA, Germany; pure chromatography). The temperature of the solution was set at 23 ° C.
  • Tecoflex TM aromatic polyurethane
  • Example 2 The conditions of the electrostatic spinning corresponded to those of Example 1. Anisotropic, porous threads with diameters from 120 nm to 4 ⁇ m were also obtained, the BET surface area of which was between 150 and 600 m 2 / g.
  • the SEM image in FIG. 4 shows such polyurethane threads which were obtained at a dosage of 1.2 cm 3 / s (BET: 490 m 2 / g).
  • a 13% by weight solution of polycarbonate with an average molecular weight of 230,000 g / mol in dichloromethane according to Example 1 was spun electrostatically at an inlet temperature of 20 ° C. at a metering rate of 1.5 cm 3 / s.
  • the electric field strength was 30 kV / m.
  • the following example describes the production of ultra-thin porous fibers from blends of water-insoluble and water-soluble polymers.
  • Example 4 Atactic, amorphous poly-D, L-lactide (PDLLA) with an average molecular weight of 54,000 g / mol and a glass transition temperature of 52 ° C (manufacturer: Bschreibinger Ingelheim, Germany) and polyvinylpyrroUdon with an average molecular weight of 360,000 g / mol (type K90; FLUKA, Germany) were dissolved in dichloromethane in the mass ratios 5: 1, 1: 1 and 1: 5. The concentrations of the polymer mixtures in dichloromethane were between 2 and 5% by weight.
  • PLLA amorphous poly-D, L-lactide
  • a working voltage of 40 kV was set at an electrode spacing of 23 cm.
  • the metering rates were 0.5 to 2 cm 3 / s.
  • Threads with diameters of 80 nm to 4 ⁇ m were obtained which showed no porosity in the SEM.
  • the water-soluble polyvinylpyrroUdon (PVP) can be completely removed by treating the fibers produced in this way or the nonwovens made therefrom with water at room temperature. After 15 minutes of ultrasound, the removal of PVP was complete.
  • PVP-PDLLA ratios 1: 1 and 1: 5 decreasing porosities were obtained with BET surface areas of 210 m 2 / g and 170 m 2 / g.
  • porous threads produced according to the invention can be deposited randomly in the form of balls.
  • flat or ribbon-like arrangements of the staple fibers can also be produced.
  • Porous, spinal fibers arranged in the form of a lumen according to Example 1 were poured into a cylindrical aluminum mold with a diameter of 20 mm, edge height also 20 mm, and pressed together by hand, so that a layer height of 5 mm was obtained. Subsequently, the porous fibers introduced were compressed at 50 ° C. over a period of 15 minutes with a compressive force of 30 kp using a fit-for-purpose aluminum piston.
  • the porous fiber described in Example 1 produced at a metering rate of 0.8 cm 3 / s, was pressed in several stages in the manner described above and in the last phase with a contact pressure of 60 kp over a period of 60 minutes at 50 ° C compressed. The result was a compact of 1.2 mm thickness with a BET surface area of 380 m 2 / g.
  • the wettability of the compacts with water was average, the contact angles were between 45 and 58 degrees.
  • the plate produced in this way was used as an adsorbent and absorbent in a laboratory suction filter with a tight seal between the filling cylinder and the glass frit underneath.
  • the amount of 100 ml of a 0.1% sugar solution was converted into a sugar single pass-through completely retained by the sorption layer produced from the porous fibers according to the invention.
  • Application example 2 The spherical, porous fibers produced according to example 2 were activated in a microwave plasma and under the action of an argon / oxygen mixture.
  • Hexagon was obtained from Technics Plasma, Germany.
  • the microwave power was set to 300 W, the system pressure was 0.02 bar and the two gases were metered in continuously via a defined leak at 4 • 10 "3 normal liters / min.
  • the activated porous threads were stirred into an aqueous solution of 5% by weight hydroxyethyl methacrylate (manufacturer: Röhm, Germany) and filtered after an exposure time of 15 minutes and dried under water jet vacuum at 50 ° C. for 24 hours.
  • hydroxyethyl methacrylate manufactured by Röhm, Germany
  • the fibers treated in the manner set out above were then treated with UV rays with repeated turning.
  • An arrangement of 4 Ultra-Vitalux lamps (manufacturer: Osram, Germany) served as the UV source.
  • the duration of the radiation exposure was 30 minutes, the mean distance to the source was 20 cm.
  • the compacts produced therefrom according to Application Example 1 had a BET surface area of 680 m / g and were characterized by very good wettability with water.
  • the compacts obtained from application examples 1 and 2 were examined for their behavior towards living cells.
  • the samples were inoculated with human umbilical cord endothelial cells (HUVEC) and then their growth behavior was examined.
  • HUVEC human umbilical cord endothelial cells
  • Application Example 3 Fiber materials according to Examples 2 and 3 were twisted and compacted into threads similar to the Idassian spinning process, for which the fibers were slightly moistened. Thread material similar to wool fiber was obtained, with a thread thickness of 0.3 to 0.4 mm. After drying, the threads widened to 0.6 to 1 mm thread thickness.
  • This thread material from the porous primary fibers according to the invention can be wound up and processed into simple fabrics in the laboratory.
  • the use of adhesives, binders and strength-promoting crosslinking agents for surface-activated fibers improve both the processability of the fiber materials obtained from the primary fiber according to the invention and their tear strength.
  • the tissues produced in this way are particularly suitable for the production of highly porous catalyst supports, heat insulation materials, absorbers and filters, as scaffolding material in tissue engineering and for blood vessel and bone implantology.
  • the high porosities promote vascularization, support both the cell supply with nutrients and the disposal of metabolic products and offer advantages for cell differentiation as well as osseofication and tissue integration.
  • Fibers according to Examples 1 and 3 were in a plasma system (manufacturer: Eltro, Baesweiler, Germany), in a rotating glass drum according to Application Example 2, at a pressure of 15 Pa, a microwave power of 2 kW and 2.45 GHz, a pulse duration of 500 ⁇ s and period of 2 s exposed to an argon atmosphere exposed to nickel carbonyl (FLUKA).
  • FLUKA nickel carbonyl
  • argon flowed at 5 l / h over a nickel tetracarbonyl heated to 40 ° C.
  • the supply lines to the plasma chamber were thermostatted at 100 ° C to exclude deposition of Ni (CO) 4 .
  • porous threads treated in this way were pressed into sheets of 1 mm thickness in accordance with Application Example 1 and cut into square parts of 5 mm edge length. They were then further reduced with hydrogen in a thermostated glass tube at 50 ° C. for 3 hours. The flow rate of the hydrogen was 101 / h.
  • Ethylene was then mixed in at a constant temperature at a flow rate of 1 l / h. There was complete hydrogenation of the ethylene to ethane.

Abstract

Die Erfindung betrifft poröse Fasern aus polymeren Materialien, wobei die Fasern einen Durchmesser von 20 bis 4000 nm und Poren in Form von mindestens bis zum Faserkern reichenden und/oder durch die Faser reichenden Kanälen aufweisen. Das Verfahren zur Herstellung der porösen Fasern ist dadurch gekennzeichnet, dass eine 5 bis 20 Gew.-%-Lösung mindestens eines Polymeren in einem organischen Lösungsmittel mittels Elektrospinning bei einem elektrischen Feld über 105V/m versponnen wird, wobei die resultierende Faser einen Durchmesser von 20 bis 4000 nm und Poren in Form von mindestens bis zum Faserkern reichenden und/oder durch die Faser reichenden Kanälen aufweist. Die porösen Fasern können als Träger für Katalysatoren, als Ad- oder Absorptionsmittel oder Biomaterial verwendet sowie chemisch modifiziert oder funktionalisiert oder als Template zur Herstellung von hochporösen Festkörpern eingesetzt werden.

Description

Herstellung von Polymerfasern mit nanoskaligen Morphologien
Die Erfindung betrifft ein Verfahren zur Herstellung von nanoskaligen polymeren Fasern mit Morphologien und Texturen, insbesondere mit offenen porösen Strukturen, sowie deren Modi- fizierung und Verwendung.
Aufgrund des hohen Oberflächen-Nolumen-Nerhältnisses und der Abweichungen von typischen Ordungsstrukturen in makroskopischen Systemen weisen nanoskalige Materialien besondere physikalische und chemische Eigenschaften auf, so beispielsweise beschrieben in Gleitner, H.; „Nanostructured Materials", in Encyclopedia ofPhysical Science and Technology, Nol. 10, p. 561 ff . Hierzu gehören kurzreichenden magnetische Eigenschaften metallischer oder oxidischer Materialien, leichtes feldinduziertes Tunneln von Elektronen aus Filamentspitzen oder durch nanoskalige Mikrodomänen hervorgerufene, besonderes vorteilhafte Bio- kompatibiltätseigenschaften. Aufgrund dieser gegenüber malσoskopischen Materialien veränderten Eigenschaftsprofile konnten inzwischen technologische Neuentwicklungen in der Mikroelektronik, Display-Technologie, Oberflächentechnik, bei Herstellung von Katalysatoren und in der Medizintechnik, insbesondere als Trägermaterialien für Zeil- und Gewebekulturen, erzielt werden.
Fasermaterialien mit Filamentdurchmessern, die kleiner sind 300 nm und durchaus Abmessungen von einigen 10 nm erreichen, eignen sich im Falle elektrischer Leitfähigkeit als Feldelekronenemissionselektroden gemäß WO 98/1588. Auch in Halbleitersystemen, beschrieben in US 5 627 140, bieten sie technologische Vorteile, ebenso als Katalysatorsysteme mit verbesserten Aktivitätsprofilen, dargelegt in WO 98/26871. Derartige Fasern lassen sich chemisch modifizieren und mit chemischen Funktionen versehen, beispielsweise durch chemisches Ätzen oder durch Plasmabehandlung, zu Geweben verarbeiten oder zu filzähnlichen Materialien verdichten. Sie können sowohl in ungeordneter Form als auch gerichtet oder geordnet als Gewebe, Gestricke, Gewirke oder in anderer verdichteter Anordnung in makroskopische Werkstoffsysteme eingearbeitet werden, um die mechanischen oder andere physikalische Eigenschaften der Werkstoffe zu verbessern. Fasern mit Durchmessern kleiner als 3000 nm lassen sich gemäß WO 00/22207 mit Hilfe von sich entspannenden Druckgasen aus speziellen Düsen herstellen. Stand der Technik sind auch elektrostatische Spinnverfahren, beschrieben in DE 100 23 456.9. In GB 2 142 870 wird beispielsweise ein solches Verfahren beschrieben, das zur Herstellung von gewebten Gefäßimplanten dient.
Nanofasern lassen sich als Template für Coatings verwenden, die beispielsweise aus Lösungen oder durch Aufdampfen auf die Fasern aufgebracht werden. Auf diese Weise lassen sich sowohl polymere, keramische, oxidische, glasartige oder auch metallische Materialien als geschlossene Schichten auf den Fasern abscheiden. Durch Herauslösen, Verdampfen, Schmelzen oder Pyrolyse der inneren, polymeren Templatfaser sind auf diese Weise Röhrchen unterschiedlichster Werkstoffe erhältlich, deren innere Durchmesser von 10 nm bis zu einigen μm je nach Filamentdurchmesser einstellbar sind, und deren Wandstärken je nach Coating-Bedingungen im nm- oder μm-Bereich liegen. Die Herstellung derartiger Nano- oder Mesoröhrchen ist beschrieben in DE 10 23 456.9.
Für bestimmte Anwendungen von nanoskaligen Fasern erscheint es zweckmäßig, eine große Oberfläche durch poröse Materialien zu erzeugen. So lassen sich gemäß WO 97/43473 Fasern mit einem porösen Coating versehen. Nach einer anschließenden Pyrolysebehandlung stehen Fasern mit hoher Porosität zur Verfügung, die beispielsweise für katalytische Verwendungen vorteilhaft sind.
Die oben beschriebenen Verfahren zur Herstellung von porösen nano- und mesoskaligen Fasern erfordern mehrere Prozeßschritte und sind zeit- und kostenaufwendig. Weiterhin bieten poröse Fasermaterialien gegenüber geschlossenen, massiven Fasern zusätzliche technische Vorteile, da sie eine deutlich höhere Oberfläche aufweisen. Nanoröhren besitzen zwar eine sehr große Oberfläche, sind aber aufgrund des Pyrolyseschrittes in der Herstellung recht aufwendig.
EP 0 047 795 beschreibt polymere Fasern, die einen massiven Kern und eine poröse, schaumartige Ummantelung des Kerns aufweisen. Der Faserkern soll eine hohe mechanische
Stabilität besitzen, wobei der poröse Mantel eine hohe Oberfläche aufweist. Bei sehr oberflächenaktiven Anwendungen wie z. B. Filtrationen reicht die nach EP 0 047 795 erzeugte poröse Struktur in vielen Fällen nicht aus.
Daher lag der Erfindung die Aufgabe zugrunde, nano- und mesoskalige polymere Fasern mit einer sehr großen Oberfläche durch ein einfaches Verfahren zugänglich zu machen.
Gegenstand der vorliegenden Erfindung sind daher poröse Fasern aus polymeren Materialien, wobei die Fasern einen Durchmesser von 20 bis 4000 nm und Poren in Form von mindestens bis zum Faserkern reichenden und/oder durch die Faser reichenden Kanälen aufweisen.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von porösen Fasern aus polymeren Materialien, wobei eine 3 bis 20 Gew.-%-Lösung eines Polymeren in einem leicht verdampfbaren organischen Lösemittel oder Lösemittelgemisch mittels Elektrospinning bei einem elektrischen Feld über 105V/m versponnen wird, wobei die resultierende Faser einen Durchmesser von 20 bis 4000 nm und Poren in Form von mindestens bis zum Faserkern reichenden und/oder durch die Faser reichenden Kanälen aufweist.
Elektrospinnverfahren sind z. B. bei Fong, H.; Reneker, D.H.; J. Polym. Sei., Part B, 37 (1999), 3488 und in DE 100 23 456.9 beschrieben.
Es haben sich Feldstärken von 20 bis 50 kV, bevorzugt 30 bis 50 kV, sowie lineare Spinngeschwindigkeiten (Austrittsgeschwindigkeit an der Düse) von 5 bis 20 m/s, bevorzugt 0,8 bis 15 m/s bewährt.
Erfindungsgemäße poröse Faserstrukturen enthalten als polymeres Material Polymerblends oder Copolymere, bevorzugt Polymere wie Polyethylen, Polypropylen, Polystryrol, Polysulfon, Polylactide, Polycarbonat, Polyvinylcarbazol, Polyurethane, Polymethacrylate, PVC, Polyamide, Polyacrylate, Polyvinylpyrrolidon, Polyethylenoxid, Polypropylenoxid, Polysaccharide und/oder lösliche Cellulosepolymere, wie z. B. Celluloseacetat.
Diese Polymere können einzeln oder in Form ihrer Blends eingesetzt werden. In einer besonderen Ausführungsform der Erfindung wird mindestens ein wasserlösliches und mindestens ein wasserunlösliches Polymer eingesetzt.
Wird ein Blend aus wasserlöslichen und wasserunlöslichen Polymeren eingesetzt, so kann das Massenverhältnis jeweils zwischen 1 : 5 bis 5 : 1, bevorzugt 1 : 1 betragen.
In Verfahren nach der Erfindung werden 3-20 Gew.-%, bevorzugt 3-10 Gew.-%, besonders bevorzugt 3-6 Gew.-% mindestens eines Polymeren in einem organischen Lösungsmittel gelöst und mittels Elektrospinning zu einer porösen Faser versponnen. Die erfindungsgemäßen Fasern weisen Durchmesser von 20 bis 1500 nm, bevorzugt 20 bis 1000, besonders bevorzugt 20 bis 500, ganz besonders bevorzugt 20 bis 100 nm auf.
Als leicht verdampfbares organisches Lösemittel können Dimethylether, Dichlormethan, Chloroform, Ethylenglykoldimethylether, Ethylglykolisopropylether, Ethylacetat, Aceton eingesetzt werden oder Gemische derselben, gegebenenfalls ergänzt um weitere Lösemittel. Der Verdampfungsschritt kann bei Normaldruck oder auch im Vakuum erfolgen. Gegebenenfalls ist der Druck den Siedepunkten der Lösemittel anzupassen.
Es ist zweckmässig, Lösungsmittel bzw. Lösungsmittelgemische im Verfahren einzusetzen, die für das betreffende Polymer/Polymer-Blend ein Theta-Löungsmittel darstellt. Der Thetazustand der Polymerlösungen kann auch während des Elektrospinning-Prozeß durchlaufen werden. Dies ist z. B. während des Verdampfungsschritts des Lösungsmittels der Fall.
Zu Polymerlösungen im Theta-Zustand sei verwiesen auf Elias, H. G, in Polymer Handbook, HI. Ed., John Wiley & Sons, 1989; Abschnitt VII.
Diese Lösungen werden mittels Elektrospinning versponnen. Typischerweise wird eine Polymerlösung kontinuierlich mit einer Pumpe in Spinndüsen oder labormäßig in eine Spritzenkanüle gefördert, deren Durchmesser bei der zur Verfügung stehenden Apparatur maximal 0,5 mm beträgt. Die Feldstärken zwischen Kanüle und Gegenelektrode betragen z. B. 2 x 10 V/m, der Abstand kann 200 mm erreichen. Es entstanden gleichförmige Fasern mit Durchmessern von 20 bis 4000 nm, wie sie in Fig. 1 als rasterelektronenrnikroskpische Aufnahme erkennbar sind. Instabilitäten können auch zu unregelmäßigen Verdickungen bei den Spinnfäden führen. Die überraschenderweise regelmäßige Morphologie, die durch offene Poren gekennzeichnet ist, wird durch die Vergrößerungen gemäß Fig. 2 bis 5 deutlich. Die Herstellung der porösen, polymeren Nano- und Mesofäden wird anhand der Beispiele verdeutlicht.
Ein Merkmal für die hohe Oberfläche der erfindungsgemäßen porösen Fasern ist die Oberfläche, die über 100 m2/g, bevorzugt über 300 m2/g, insbesondere über 600 m2/g, ganz besonders bevorzugt über 700 m2/g beträgt. Diese Oberflächen lassen sich anhand der Abmessungen, wie sie sich aus den rasterelektronenmikroskopischen Aufnahmen ergeben, berechnen oder durch Stickstoffadsorption nach dem BET- Verfahren messen.
Die nach dem erfindungsgemäßen Verfahren hergestellten porösen Fasern lassen sich zu Geweben, Gestricken und geformtem sowie strukturiertem Preßgut verarbeiten, naßchemisch und plasmachemisch modifizieren oder durch Tränken und anschließendes Trocknen mit Materialien unterschiedlicher Zielsetzungen, beispielsweise pharmazeutische Wirkstoffe oder katalytische Precurser, beladen.
Weiterhin können die erfindungsgemäßen porösen Fasern als Ad- oder Absorptionsmittel, im biologischen Bereich (Biomaterial) sowie als Template zur Herstellung von hochporösen Festkörpern (z. B. Keramiken durch Abformen und Herausbrennen der polymeren Templates) verwendet werden.
Es ist weiterhin möglich, die porösen Fasern gemäß der Erfindung einer Oberflächenmodifizierung durch ein Niedertemperaturplasma oder chemische Reagenzien, wie zum Beispiel wäßriger Natronlauge, anorganischen Säuren, Säureanhydriden oder -halogeniden oder auch je nach Oberflächenfunktionalität mit Silanen, Isocyanaten, organischen Säurehalo- geniden oder -anhydriden, Alkoholen, Aldehyden oder auch Alkylierungschemikalien einschließlich der entsprechenden Katalysatoren, zu unterziehen. Durch die Oberflächen- modifizierung können die porösen Fasern eine hydrophilere oder hydrophobere Oberfläche erhalten, was bei der Verwendung im biologischen oder biomedizinischen Bereich vorteilhaft ist. Erfindungsgemäße poröse Fasern können als verstärkende Composite-Komponenten in polymeren Werkstoffen, als Filtermaterialien, als Träger für Katalysatoren z. B. nach Belegung der Poren mit Nickel als Hydrierkatalysator oder pharmazeutisch wirksame Agenzien, als Gerüstmaterial für Zeil- und Gewebekulturen und für die verschiedensten Arten von Implantaten, bei denen beispielsweise die Osseointegration oder die Vaskularisierung strukturell verwendet werden. So lassen sich Epithelzellen ohne weiteres auf porösem Polystyrolfasern kultivieren. Ebenso gelingt es, Oesteoblasten auf poröse Polylactid-Trägern aufzubringen und ein Zellgewebe unter Differenzierung zu züchten.
Ein weiterer überraschender Effekt ist die durch optische Doppelbrechung erkennbare Anisotropie dieser erfindungsgemäßen porösen Fasern. Sie sind daher im besonderen Maße als Verstärkungskomponente in Faserverbundwerkstoffen geeignet, wobei die große innere Oberfläche insbesondere nach geeigneter Oberflächenmodifizierung für eine wirksame Bindung und Festigkeit der Polymermatrix sorgt.
In einer anderen Ausführungsform der Erfindung werden ternäre Gemische aus zwei Polymeren und einem leicht verdampfbaren Lösemittel oder Lösemittelgemisch versponnen, wobei eine der Polymerkomponenten wasserlöslich ist, beispielsweise Polyvinylpyrrolidon, Polyethylenoxid, Polypropylenoxid, Polysaccharide oder Methylcellulose. Diese ternären Lösungen wurden in der gleichen Weise elektrostatisch versponnen wie die oben ausgeführten binären Gemische. Hierbei entstanden Nano- und Mesofasern, die jedoch keine poröse Morphologie zeigten. Eine nicht poröse Struktur der Faser wird mit üblichen Elektrospinning- Verfahren erhalten. Zweckmässig wird dabei mit Polymer-Lösungen gearbeitet, die weitab vom Theta-Zustand liegen und diesen auch nicht während des Spinning-Prozeß durchlaufen.
Erst nach einer Wasserbehandlung bei erhöhten Temperaturen, die zum Herauslösen der wasserlöslichen Polymerkomponente führte, zeigten die Fasermaterialien eine poröse Morphologie, mit mindestens bis zum Faserkern reichenden und/oder durch die Faser reichenden Poren in Form von Kanälen, siehe rasterelektronische Untersuchungen in (Fig. 6).
Auch dieses Fasermaterial kann zu Geweben, Gestricken und geformten sowie strukturierten Preßkörpern verarbeitet, oberflächlich modifiziert sowie funktionalisiert und den oben aufgeführten Verwendungen zugeführt werden.
Anhand der nachfolgenden Beispiele wird die erfindungsgemäße Herstellung von ultradünnen, zylindrischen, porösen Fasern näher beschrieben.
Beispiel 1:
Teilkristallines Poly-L-lactid (PLLA) mit einer Glastemperatur von 63 °C, einer Schmelztemperatur von 181 °C und einem mittleren Molekulargewicht von 148.000 g/mol (Hersteller: Böhringer Ingelheim, Germany) wurde in Dichlormethan (FLUKA, Germany; chromatogrphierein) gelöst. Die Konzentration des Polymers in der Lösung betrug 4,4 Gew.-%.
Die Dosierungsgeschwindigkeit der Lösung zur Austrittskanüle, die einen inneren Durchmesser von 0,5 mm besaß, wurde variiert zwischen 0,3 und 2 cm3/s. Die Temperatur der Lösung war auf 25 °C eingestellt.
Die Abstände zwischen Kanülenspitze und Gegenelektroden lagen zwischen 10 und 20 cm, die Arbeitsspannung war auf 35 kV eingestellt.
Bei dem Spinnprozeß entstanden je nach Dosiergeschwindigkeit poröse Fasern mit Durchmessern von 100 nm bis 4 μm. Die rasterelektronenmikroskpischen Aufnahmen (REM; Gerät : CamScan 4) zeigen einheitlich geformte Fasern, wie sie in Fig. 1 dargestellt sind, die bei höherer REM- Auflösung die durchgängige, offene poröse Struktur erkennen lassen (Fig. 2). Sowohl die in Spinnrichtung orientierten ellipsoiden Porenöffnungen, mit Porenweiten von 100 bis 400 nm in Richtung der Faserachsen und 20 bis 200 nm quer zur Faserrichtung, als auch polaristionsmikroskopische Untersuchungen (Mikroskop Zeiss MBO 50 einschließlich drehbarem Polarisator) an den Fasern weisen auf eine erhebliche Anisotropie der auf diese Weise hergestellten porösen Fasermaterialien hin.
Die BET-Oberflächen dieser porösen Fasern lagen zwischen 200 und 800 m2/g, eine Berechnung der Oberfläche aus den REM-Aufhahmen ergab sogar Oberflächen bis zu 1.500 m2/g.
Die REM-Aufhahme Fig. 3 zeigt eine poröse PLLA-Faser, die mit einer Dosiergeschwindigkeit der Lösung von 0,8 cm3/s hergestellt wurde. Die BET-Oberfläche dieser Faser wurde mit 650 m2/g gemessen, der aus der REM-Aufhahme errechnete Wert lag bei 1.200 m2/g.
Beispiel 2: Ein aromatisches Polyurethan (Tecoflex™, Hersteller: Thermetics, USA) mit der mittleren Molmasse von 180.000 g/mol wurde zu 6 Gew-% in Aceton (FLUKA, Germany; gromatographierein) gelöst. Die Temperatur der Lösung war auf 23 °C eingestellt.
Die Bedingungen der elektrostatische Verspinnung entsprachen denen des Beispiels 1. Es wurden ebenfalls anisotrope, poröse Fäden mit Durchmessern von 120 nm bis 4 μm erhalten, deren BET-Oberfläche zwischen 150 und 600 m2/g lagen.
Die REM-Aufhahme Fig. 4 zeigt solchen Polyurethan-Fäden, die bei einer Dosierung von 1,2 cm3/s erhalten wurden (BET : 490 m2/g).
Beispiel 3:
Eine 13 Gew-%ige Lösung von Polycarbonat mit einem mittleren Molekulargewicht von 230.000 g/mol in Dichlormethan gemäß Beispiel 1 wurde bei einer Zulauftemperatur von 20 °C mit einer Dosiergeschwindigkeit von 1,5 cm3/s elektrostatisch versponnen. Die elektrische Feldstärke betrug 30 kV/m.
Fig. 5 zeigt eine auf diese Weise hergestellte Faser, deren Poren durch deutlich kleinere Durchmesser gekennzeichnet sind. Die Porosität der Fasern betrug 250 m2/g. Anhand von Berechnungen, die mit den Poren- und Fadenabmessungen gemäß der REM-Aufnahme durchgeführt wurden, muß von mindestens bis in den Fadenkern reichenden Poren ausgegangen werden. Nach dem gleichen erfindungsgemäßen Verfahren und unter denselben Bedingungen wurde eine Lösung von 7,5 Gew-% Polyvinylcabazol in Dichlormethan zu Fäden verarbeitet. Die Ergebnisse entsprachen denen der Polycarbonat- Verspinnung.
Das nachfolgende Beispiel beschreibt exemplarisch die Herstellung von ultradünnen porösen Fasern aus Blends von wasserunlöslichen und wasserlöslichen Polymeren.
Beispiel 4: Ataktisches, amorphes Poly-D,L-lactid (PDLLA) mit einem mittleren Molekulargewicht von 54.000 g/mol und einer Glastemperatur von 52 °C (Hersteller : Böhringer Ingelheim, Germany) und PolyvinylpyrroUdon mit einem mittleren Molekulargewicht von 360,000 g/mol (Typ K90; FLUKA, Germany) wurden in den Massenverhältnissen 5:1, 1:1 und 1:5 in Dichlormethan gelöst. Die Konzentrationen der Polymermischungen in Dichlormethan lagen zwischen 2 und 5 Gew-%.
Bei einem Elektrodenabstand von 23 cm wurde eine Arbeitsspannung von 40 kV eingestellt. Die Dosierungsgeschwindigkeiten betrugen 0,5 bis 2 cm3/s.
Es wurden Fäden mit Durchmessern von 80 nm bis 4 μm erhalten, die im REM keinerlei Porosität erkennen ließen.
Durch Behandlung der auf diese Weise hergestellten Fasern oder der daraus gefertigten Vliese mit Wasser unter Zimmertemperatur läßt sich das wasserlösliche PolyvinylpyrroUdon (PVP) vollständig herauslösen. Bereits nach 15 Minuten Einwirkung von Ultraschall war die Entfernung von PVP vollständig.
Die Abbildung Fig. 6 zeigt beispielhaft die REM-Aufnahme einer auf diese Weise hergestellten, porösen Faser aus einem Gemisch von PVP:PDLLA = 5:1, dessen BET-Oberfläche mit 315 m2/g gemessen wurde. In der Reihenfolge der PVP-PDLLA- Verhältnisse 1:1 und 1:5 wurden abnehmende Porositäten erhalten mit BET-Oberflächen von 210 m2/g und 170 m2/g.
Die erfindungsgemäß hergestellten porösen Fäden lassen sich regellos knäulförmig abscheiden. Bei geeigneter Geometrie der Gegenelektrode sind auch flächige oder bandförmige Anordnungen der Spinnfasern herstellbar.
Anwendungsbeispiel 1;
Poröse, l iäulförmig angeordnete Spinnfasern gemäß Beispiel 1 wurden in eine zylindrische Aluminiumform mit einem Durchmesser von 20 mm, Randhöhe ebenfalls 20 mm, flächendeckend eingefüllt und von Hand zusammengepreßt, so daß eine Schichthöhe von 5 mm entstand. Anschließend wurden mit einem paßgerechten Aluminiumkolben die eingetragenen porösen Fasern bei 50 °C über einen Zeitraum von 15 Minuten mit einer Druckkraft von 30 kp verdichtet.
Hierdurch entstanden flache, runde Preßkörper mit Schichtdicken von 200 bis 600 μm, deren BET-Oberflächen um nicht mehr als 15 % unter den BET-Oberflächen der eingesetzten Fasern lagen.
Die im Beispiel 1 beschriebene, mit einer Dosiergeschwindigkeit von 0,8 cm3/s hergestellte, poröse Faser wurde auf die oben beschriebene Weise in mehreren Stufen verpreßt und in der letzten Phase mit einer Anpreßkraft von 60 kp über einen Zeitraum von 60 Minuten bei 50 °C verdichtet. Es entstand ein Preßkörper von 1,2 mm Dicke mit einer BET-Oberfläche von 380 m2/g.
Die Benetzbarkeit der Preßkörper mit Wasser war durchschnittlich, die Kontaktwinkel lagen zwischen 45 und 58 Grad.
Die auf diese Weise hergestellte Platte wurde als Ad- und Absorptionsmittel in einer Labornutsche mit dichten Verschluß zwischen FüUzylinder und der darunter liegenden Glasfritte verwendet. Aus einer Menge von 100 ml einer 0,1 % Zuckerlösung wurde der Zucker in einem einmaligen Durchlaug vollständig von der aus den erfindungsgemäßen porösen Fasern hergestellten Sorptionsschicht zurückgehalten.
Anwendungsbeispiel 2: Die gemäß Beispiel 2 hergestellten knäulförmig vorliegenden, porösen Fasern wurden in einem Mikrowellenplasma und Einwirkung von eines Argon/S auerstoffgemischs aktiviert.
Das verwendete Gerät, Hexagon, wurde von der Firma Technics Plasma, Germany, bezogen. Die Mikrowellenleistung war auf 300 W eingestellt, der Systemdruck betrug 0,02 bar und die beiden Gasen wurden über ein definiertes Leck zu je 4 • 10"3 Normalliter/min kontinuierlich zudosiert. Die porösen Fäden waren in der Plasmaanlage in einer waagerecht angeordneten, aus Glas gefertigten, zylindrischen und einseitig offenen Drehtrommel (n=20 Umdrehungen/Minute) eingebracht.
Nach der Plasmabehandlung wurden die aktivierten porösen Fäden in eine wäßrige Lösung von 5 Gew-% Hydroxyethyl-methacrylat (Hersteller : Röhm, Germany) eingerührt und nach einer Einwirkungsdauer von 15 Minuten abfiltiriert und unter Wasserstrahlvakuum bei 50 °C über 24 Stunden getrocknet.
Anschließend wurden die auf die oben dargelegte Weise behandelten Fasern unter mehrfachem Wenden mit UV-Strahlen behandelt. Als UV-Quelle diente eine Anordnung aus 4 Ultra- Vitalux- Strahler (Hersteller: Osram, Germany). Die Dauer der Strahlenexposition betrug 30 Minuten, der mittlere Abstand zur Quelle 20 cm.
Da sich nach anschließendem Wässern der Fasern im Filtrat kein freies Hydroxyethyl- methacrylat nachweisen ließ (Erfassungsgrenze : 200 ppm im Wasser), konnte von einer nahezu vollständigen chemischen Bindung des Hydroxyethylmethacrylats auf der Oberfläche der porösen Fasern ausgegangen werden.
Die daraus hergestellten Preßkörper gemäß Anwendungsbeispiel 1 hatten eine BET-Oberfläche von 680 m /g und waren durch eine sehr gute Benetzbarkeit mit Wasser gekennzeichnet. In Zusammenarbeit mit der Universität Münster, Institut für Physiologische Chemie, Germany, wurden die aus Anwendungsbeispiel 1 und 2 erhaltenen Preßkörper auf ihr Verhalten gegenüber lebenden Zellen untersucht. Hierzu wurden die Proben mit humanen Nabelschnur- Endothelzellen (HUVEC) geimpft und anschließend ihr Wachstumsverhalten untersucht.
Während die Proben, appliziert in 24well Mikrotiterplatten (Nunc, Dänemark), gemäß Anwendungsbeispiel 1 nach 5 Tagen (37 °C, 37 Vol-% CO2 in der sterilen Raumluft) eine HUVEC-Zellzahl von 22.000 bis 30.000 pro Kavität zeigten, wurden unter gleichen Bedingungen mit Proben der Preßlinge gemäß Anwendungsbeispiel 2 Endothelzellen-Zahlen von 45.000 bis 60.000 pro Kavität erreicht.
Es erwies sich weiterhin, daß bei Proben des Anwendungsbeispiels 2 weder eine DNA- Akivierung, noch die m-RNA- Synthese oder die Exprimierung von zelltypischen Proteinen verringert, verändert oder degeneriert werden. Durch das in Anwendungsbeispiel 2 beschriebene Verfahren, lassen sich aus den erfindungsgemäß hergestellten porösen Fasern zell- und gewebevertägliche Biomaterialien herstellen.
Anwendungsbeispiel 3: Fasermaterialien gemäß Beispiel 2 und 3 wurden zu Fäden ähnlich dem Idassischen Spinnprozeß gedreht und verdichtet, wofür die Fasern leicht angefeuchtet wurden. Es wurde wollfaserähnliches Fadenmaterial erhalten, mit einer Fadenstärke von 0,3 bis 0,4 mm. Nach dem Trocknen weiteten sich die Fäden auf 0,6 bis 1 mm Fadenstärke auf.
Dieses Fadenmaterial aus den erfindungsgemäßen porösen Primärfasern lassen sich aufspulen und konnten labormäßig zu einfachen Geweben verarbeitet werden.
Die Verwendung von Klebern, Bindern und Festigkeit unterstützenden Vernetzern für oberflächenaktivierte Fasern (Anwendungsbeispiel 2) verbessern sowohl die Verarbeitbarkeit der Fasernmaterialien, gewonnen aus den erfindungsgemäßen Primärfaser, und ihre Reißfestigkeit. Die auf diese Weise hergestellten Gewebe eignen sich insbesondere zur Herstellung von hochporösen Katalysatorträgern, Wärmeisolationsmaterialien, Absorbern und Filter, als Gerüstmaterial im Tissue Engineering und für die Blutgefäß- sowie Knochenimplantologie. Die hohen Porositäten fördern die Vaskularisierung, unterstützen sowohl die Zellversorgung mit Nährstoffen als auch die Entsorgung von Stoffwechselprodukten und bieten Vorteile für die Zelldifferenzierung sowie Osseofikation und Gewebeintergration.
Anwendungsbeispiel 4; Fasern gemäß der Beispiele 1 und 3 wurden in einer Plasmaanlage (Hersteller : Eltro, Baesweiler, Germany), in einer rotierenden Glastrommel gemäß Anwendungsbeispiel 2, bei einem Druck von 15 Pa, einer Mikrowellenleistung von 2 kW und 2,45 GHz, einer Pulsdauer von 500 μs und Periodendauer von 2 s einer mit Nickelcarbonyl (FLUKA) beaufschlagten Argonatmosphäre ausgesetzt. Hierzu strömte Argon mit 5 1/h über ein auf 40 °C erwärmtes Nickeltetracarbonyl. Die Zuführungsleitungen zur Plasmakammer waren auf 100 °C thermostatisiert, um Abscheidungen von Ni(CO)4 auszuschließen.
Nach einer Behandlungsdauer von bereits 10 Minuten waren die Fäden durch Abscheidung von feinstem metallischen Nickel vollständig geschwärzt.
Die auf diese Weise behandelten porösen Faden wurden gemäß Anwendungsbeispiel 1 zu Platten von 1 mm Dicke verpreßt und in quadratische Teile von 5 mm Kantenlänge zerschnitten. Anschließend wurden sie über 3 Stunden bei 50 °C in einem thermostatisierten Glasrohr mit Wasserstoff nachreduziert. Die Ströungsgeschwindigkeit des Wasserstoffs betrug 101/h.
Anschließend wurde bei gleichbleibender Temperatur Ethylen mit einer Strömungsgeschwindigkeit von 1 1/h zugemischt. Es fand eine vollständige Hydrierung des Ethylens zu Ethan statt.

Claims

Patentansprüche;
1. Poröse Fasern aus polymeren Materialien, dadurch gekennzeichnet, dass die Fasern einen Durchmesser von 20 bis 4000 nm und Poren in Form von mindestens bis zum Faserkern reichenden und/oder durch die Faser reichenden Kanälen aufweisen.
2. Poröse Fasern nach Anspruch 1, dadurch gekennzeichnet, dass die Fasern eine Oberfläche von über 100 m2/g aufweisen.
3. Poröse Fasern nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass als polymeres Material ein Homopolymer, Copolymer oder Polymerblend eingesetzt wird.
4. Poröse Fasern nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als polymeres Material Polyethylen, Polypropylen, Polystyrol, Polysulfon, Polylactide, Polycarbonat, Polyvinylcarbazol, Polyurethane, Polymethacrylate, PVC, Polyamide,
Polyacrylate, PolyvinylpyrroUdone, Polyethylenoxid, Polypropylenoxid, Polysaccharide und/oder lösliche Cellulosepolymere eingesetzt werden.
5. Poröse Fasern nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als polymeres Material mindestens ein wasserlösliches und mindestens ein wasserunlösliches Polymer eingesetzt wird.
6. Poröse Fasern nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass poröse Fasern einer Oberflächenmodifizierung durch ein Niedertemperaturplasma oder chemische Reagenzien unterzogen werden.
7. Verfahren zur Herstellung von porösen Fasern aus polymeren Materialien, dadurch gekennzeichnet, dass eine 5 bis 20 Gew.-%-Lösung mindestens eines Polymeren in einem leicht verdampfbaren organischen Lösemittel oder Lösemittelgemisch mittels Elektrospinning bei einem elektrischen Feld über 105V/m versponnen wird, wobei die resultierende Faser einen Durchmesser von 20 bis 4000 nm und Poren in Form von mindestens bis zum Faserkern reichenden und/oder durch die Faser reichenden Kanälen aufweist.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass ein oder mehrere wasserlösliche und ein oder mehrere wasserunlösliche Polymere eingesetzt werden.
9. Verfahren nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass das organische Lösungsmittel oder Lösungsmittelgemisch ein Theta-Lösungsmittel für das polymere Material ist.
10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Lösung des mindestens einen Polymeren im Theta-Zustand ist oder diesen während des Elektrospinning durchläuft.
11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die porösen Fasern einer Oberflächenmodifizierung durch ein Niedertemperaturplasma oder chemische Reagenzien unterzogen werden.
12. Verwendung der porösen Fasern nach einem der Ansprüche 1 bis 6 als Träger für pharmazeutisch wirksame Agenzien.
13. Verwendung der porösen Fasern nach einem der Ansprüche 1 bis 6 als Träger für Katalysatoren.
14. Verwendung der porösen Fasern nach einem der Ansprüche 1 bis 6 als verstärkende Composit-Komponente in polymeren Werkstoffen.
15. Verwendung der porösen Fasern nach einem der Ansprüche 1 bis 6 als Ad- und Absorptionsmittel .
16. Verwendung der porösen Fasern nach einem der Ansprüche 1 bis 6 als Gerüstmaterial für Zeil- und Gewebekulturen.
PCT/EP2001/009236 2000-08-18 2001-08-10 Herstellung von polymerfasern mit nanoskaligen morphologien WO2002016680A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01974154A EP1311715A1 (de) 2000-08-18 2001-08-10 Herstellung von polymerfasern mit nanoskaligen morphologien
US10/344,419 US6790528B2 (en) 2000-08-18 2001-08-10 Production of polymer fibres having nanoscale morphologies
AU2001293750A AU2001293750A1 (en) 2000-08-18 2001-08-10 Production of polymer fibres having nanoscale morphologies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10040897.4 2000-08-18
DE10040897A DE10040897B4 (de) 2000-08-18 2000-08-18 Nanoskalige poröse Fasern aus polymeren Materialien

Publications (1)

Publication Number Publication Date
WO2002016680A1 true WO2002016680A1 (de) 2002-02-28

Family

ID=7653201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/009236 WO2002016680A1 (de) 2000-08-18 2001-08-10 Herstellung von polymerfasern mit nanoskaligen morphologien

Country Status (5)

Country Link
US (1) US6790528B2 (de)
EP (1) EP1311715A1 (de)
AU (1) AU2001293750A1 (de)
DE (1) DE10040897B4 (de)
WO (1) WO2002016680A1 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044281A2 (en) * 2002-11-12 2004-05-27 The Regents Of The University Of California Nano-porous fibers and protein membranes
WO2004072336A1 (ja) * 2003-02-13 2004-08-26 Teijin Limited 多孔質繊維、多孔質繊維構造体およびその製造方法
WO2005049707A1 (en) * 2003-11-18 2005-06-02 Teknillinen Korkeakoulu A method for manufacturing a fibrous structure, a method for manufacturing a fiber, and a fibrous structure
WO2005115143A1 (de) * 2004-05-28 2005-12-08 Philipps-Universität Marburg Verwendung und vorrichtung zur ausbringung von nanoskaligen polymerfasern als träger für landwirtschaftliche wirkstoffe
EP1629890A1 (de) * 2003-04-11 2006-03-01 Teijin Limited Katalysatortragende faserstruktur und herstellungsverfahren dafür
US7134857B2 (en) 2004-04-08 2006-11-14 Research Triangle Institute Electrospinning of fibers using a rotatable spray head
US7297305B2 (en) 2004-04-08 2007-11-20 Research Triangle Institute Electrospinning in a controlled gaseous environment
CN100393927C (zh) * 2003-02-13 2008-06-11 帝人株式会社 多孔纤维、多孔纤维结构体及其制备方法
US7592277B2 (en) 2005-05-17 2009-09-22 Research Triangle Institute Nanofiber mats and production methods thereof
US7762801B2 (en) 2004-04-08 2010-07-27 Research Triangle Institute Electrospray/electrospinning apparatus and method
KR101051262B1 (ko) * 2008-10-28 2011-07-21 현대제철 주식회사 제강 슬래그를 이용한 폐수처리용 반응촉매 및 이를 이용한폐수처리방법
WO2012057442A2 (en) * 2010-10-29 2012-05-03 Lg Chem, Ltd. Porous electrospun fiber and preparation method thereof
WO2016058111A1 (zh) * 2014-10-13 2016-04-21 太仓苏纶纺织化纤有限公司 一种多孔纳米纤维的制备方法

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635331B2 (en) * 1998-03-23 2003-10-21 Ronald N. Kessler Universal mat with removable strips
US7713297B2 (en) * 1998-04-11 2010-05-11 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US20050048274A1 (en) * 2003-08-26 2005-03-03 Rabolt John F. Production of nanowebs by an electrostatic spinning apparatus and method
EP1725703B1 (de) * 2004-03-16 2009-06-10 University Of Delaware Aktive und adaptive photochrome fasern, textilien und membranen
WO2005123995A1 (en) * 2004-06-17 2005-12-29 Korea Research Institute Of Chemical Technology Filament bundle type nano fiber and manufacturing method thereof
US7229944B2 (en) * 2004-07-23 2007-06-12 Massachusetts Institute Of Technology Fiber structures including catalysts and methods associated with the same
WO2006022430A1 (ja) * 2004-08-26 2006-03-02 Teijin Limited リン脂質を含有する繊維構造体
DE102004053373A1 (de) * 2004-11-02 2006-05-04 Justus-Liebig-Universität Giessen Erfindung betreffend anisometrische Partikel in Form von Nano-/Meso-Fasern -Röhren, -Kabeln -Bändern und deren gekrümmte oder verzweigte Abwandlungen
US20060127443A1 (en) * 2004-12-09 2006-06-15 Helmus Michael N Medical devices having vapor deposited nanoporous coatings for controlled therapeutic agent delivery
US20070043428A1 (en) * 2005-03-09 2007-02-22 The University Of Tennessee Research Foundation Barrier stent and use thereof
US8415325B2 (en) * 2005-03-31 2013-04-09 University Of Delaware Cell-mediated delivery and targeted erosion of noncovalently crosslinked hydrogels
US7737131B2 (en) * 2005-03-31 2010-06-15 University Of Delaware Multifunctional and biologically active matrices from multicomponent polymeric solutions
US7732427B2 (en) * 2005-03-31 2010-06-08 University Of Delaware Multifunctional and biologically active matrices from multicomponent polymeric solutions
US8367639B2 (en) 2005-03-31 2013-02-05 University Of Delaware Hydrogels with covalent and noncovalent crosslinks
WO2006106514A2 (en) * 2005-04-06 2006-10-12 Nicast Ltd. Electrospun dosage form and method of producing the same
DE102005021881A1 (de) * 2005-05-04 2006-11-09 Aesculap Ag & Co. Kg Harninkontinenzband
DE102005021893A1 (de) * 2005-05-04 2006-11-09 Aesculap Ag & Co. Kg Vorrichtung zur Vermeidung der Harninkontinenz beim Menschen
DE102005022176B4 (de) 2005-05-09 2009-06-25 Martin-Luther-Universität Halle-Wittenberg Verfahren zur Herstellung von bioresorbierbaren Verbundmaterialien und seine Verwendung als Implantatmaterial sowie bioresorbiebaren Verbundmaterialien
US8048446B2 (en) * 2005-05-10 2011-11-01 Drexel University Electrospun blends of natural and synthetic polymer fibers as tissue engineering scaffolds
US20070038176A1 (en) * 2005-07-05 2007-02-15 Jan Weber Medical devices with machined layers for controlled communications with underlying regions
US20090107495A1 (en) * 2005-07-21 2009-04-30 National Institute For Materials Science Device for inhalation of medicine
WO2007013858A1 (en) * 2005-07-25 2007-02-01 National University Of Singapore Method & apparatus for producing fiber yarn
US8313723B2 (en) * 2005-08-25 2012-11-20 Nanocarbons Llc Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
KR20080063408A (ko) * 2005-10-18 2008-07-03 신벤션 아게 열경화성 수지 입자 및 이의 제조 방법
US8083983B2 (en) * 2005-11-28 2011-12-27 Rabolt John F Method of solution preparation of polyolefin class polymers for electrospinning processing included
US8455088B2 (en) 2005-12-23 2013-06-04 Boston Scientific Scimed, Inc. Spun nanofiber, medical devices, and methods
US7649198B2 (en) * 2005-12-28 2010-01-19 Industrial Technology Research Institute Nano-array and fabrication method thereof
WO2007084742A2 (en) * 2006-01-20 2007-07-26 University Of Akron Method of making coiled and buckled electrospun fiber structures
US20070178310A1 (en) * 2006-01-31 2007-08-02 Rudyard Istvan Non-woven fibrous materials and electrodes therefrom
JP2009526743A (ja) * 2006-02-15 2009-07-23 ラドヤード, ライル イストバン, メソ多孔質活性炭素
WO2007106256A2 (en) * 2006-03-01 2007-09-20 Poly-Med, Inc. Antimicrobial, radiopaque, microfiber-reinforced, polymeric methacrylate bone cement
US20070224235A1 (en) * 2006-03-24 2007-09-27 Barron Tenney Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8187620B2 (en) * 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
US20100136865A1 (en) * 2006-04-06 2010-06-03 Bletsos Ioannis V Nonwoven web of polymer-coated nanofibers
WO2008020326A2 (en) 2006-04-07 2008-02-21 Victor Barinov Controlled electrospinning of fibers
US7689291B2 (en) * 2006-05-01 2010-03-30 Cardiac Pacemakers, Inc. Lead with fibrous matrix coating and methods related thereto
US20070264303A1 (en) * 2006-05-12 2007-11-15 Liliana Atanasoska Coating for medical devices comprising an inorganic or ceramic oxide and a therapeutic agent
EP1873205A1 (de) * 2006-06-12 2008-01-02 Corning Incorporated Wärmeempfindliche Mischungen und ihre Anwendungen
US20080153077A1 (en) * 2006-06-12 2008-06-26 David Henry Substrates for immobilizing cells and tissues and methods of use thereof
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
CA2655793A1 (en) * 2006-06-29 2008-01-03 Boston Scientific Limited Medical devices with selective coating
US20080014440A1 (en) * 2006-07-13 2008-01-17 Kiu-Seung Lee Polyoxadiazole composite fibers
WO2008030457A2 (en) * 2006-09-06 2008-03-13 Corning Incorporated Nanofibers, nanofilms and methods of making/using thereof
JP2010503469A (ja) 2006-09-14 2010-02-04 ボストン サイエンティフィック リミテッド 薬物溶出性皮膜を有する医療デバイス
WO2008036051A1 (en) * 2006-09-18 2008-03-27 National University Of Singapore Fiber structures and process for their preparation
WO2008045184A1 (en) * 2006-10-05 2008-04-17 Boston Scientific Limited Polymer-free coatings for medical devices formed by plasma electrolytic deposition
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
DE102006062113A1 (de) * 2006-12-23 2008-06-26 Philipps-Universität Marburg Partikelmodifizierte Nano- und Mesofasern
KR20100110719A (ko) 2007-02-14 2010-10-13 유니버시티 오브 켄터키 리서치 파운데이션 활성 탄소 형성 방법
JP2010518273A (ja) * 2007-02-14 2010-05-27 ダウ グローバル テクノロジーズ インコーポレイティド 無溶剤静電紡糸によるポリマーまたはオリゴマー繊維
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US7976915B2 (en) * 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
WO2008157594A2 (en) 2007-06-18 2008-12-24 New Jersey Institute Of Technology Electrospun ceramic-polymer composite as a scaffold for tissue repair
KR101226851B1 (ko) 2007-06-20 2013-01-25 (주)엘지하우시스 이중노즐을 이용한 나노섬유의 제조방법
US7942926B2 (en) * 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8002823B2 (en) * 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
WO2009012353A2 (en) 2007-07-19 2009-01-22 Boston Scientific Limited Endoprosthesis having a non-fouling surface
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US8815273B2 (en) * 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
WO2009018340A2 (en) * 2007-07-31 2009-02-05 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
JP2010535541A (ja) * 2007-08-03 2010-11-25 ボストン サイエンティフィック リミテッド 広い表面積を有する医療器具用のコーティング
WO2009051945A1 (en) * 2007-10-15 2009-04-23 Cardiac Pacemakers, Inc. Conductive composite electrode material
EP2205312B1 (de) * 2007-10-19 2015-12-02 Cardiac Pacemakers, Inc. Faserelektrodenmaterial
US20090118818A1 (en) * 2007-11-02 2009-05-07 Boston Scientific Scimed, Inc. Endoprosthesis with coating
US8029554B2 (en) * 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US20090118809A1 (en) * 2007-11-02 2009-05-07 Torsten Scheuermann Endoprosthesis with porous reservoir and non-polymer diffusion layer
US20090118812A1 (en) * 2007-11-02 2009-05-07 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7938855B2 (en) * 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
DE202007015659U1 (de) 2007-11-08 2009-03-19 Mann+Hummel Gmbh Mehrlagiges, insbesondere zweistufiges Filterelement zur Reinigung eines mit Partikeln behafteten Mediums
US20090146112A1 (en) * 2007-12-06 2009-06-11 Fujitsu Limited Composite material and method of producing the same
US20090325296A1 (en) * 2008-03-25 2009-12-31 New Jersey Institute Of Technology Electrospun electroactive polymers for regenerative medicine applications
EP2271380B1 (de) 2008-04-22 2013-03-20 Boston Scientific Scimed, Inc. Medizinprodukte mit einer beschichtung aus anorganischem material
WO2009132176A2 (en) 2008-04-24 2009-10-29 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
EP2303350A2 (de) 2008-06-18 2011-04-06 Boston Scientific Scimed, Inc. Endoprothesen-beschichtung
US20100028674A1 (en) * 2008-07-31 2010-02-04 Fredrick O Ochanda Nanofibers And Methods For Making The Same
EP2962704A1 (de) * 2008-10-07 2016-01-06 Nanonerve, Inc. Mehrlagige faserpolymergerüste, verfahren zur herstellung und verfahren zur verwendung
US8231980B2 (en) * 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
US20100159778A1 (en) * 2008-12-24 2010-06-24 Hughes Janis W Conformable attachment structure for forming a seal with the skin
US8071156B2 (en) * 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US9771557B2 (en) 2009-03-12 2017-09-26 New Jersey Institute Of Technology Piezoelectric scaffold for nerve growth and repair
US9476026B2 (en) 2009-03-12 2016-10-25 New Jersey Institute Of Technology Method of tissue repair using a piezoelectric scaffold
US9192655B2 (en) * 2009-03-12 2015-11-24 New Jersey Institute Of Technology System and method for a hydrogel and hydrogel composite for cartilage repair applications
US9334476B2 (en) * 2009-03-12 2016-05-10 New Jersey Institute Of Technology Method for nerve growth and repair using a piezoelectric scaffold
US8287937B2 (en) * 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US20100274352A1 (en) * 2009-04-24 2010-10-28 Boston Scientific Scrimed, Inc. Endoprosthesis with Selective Drug Coatings
EP2314740A1 (de) 2009-10-21 2011-04-27 Justus-Liebig-Universität Gießen Ausbringung landwirtschaftlicher Wirkstoffe
US9180166B2 (en) 2010-03-12 2015-11-10 New Jersey Institute Of Technology Cartilage repair systems and applications utilizing a glycosaminoglycan mimic
CN101864275A (zh) * 2010-06-01 2010-10-20 青岛科技大学 一种聚苯乙烯超细纤维吸油材料及其制备和应用
CN101942704A (zh) * 2010-07-20 2011-01-12 东华大学 具有可控超高比表面积的有机纳米多孔纤维膜的制备方法
EP2646065A4 (de) 2010-12-05 2016-03-23 Nanonerve Inc Faserpolymergerüste mit diametral gemusterten polymerfasern
US10081794B2 (en) 2011-04-13 2018-09-25 New Jersey Institute Of Technology System and method for electrospun biodegradable scaffold for bone repair
US20130042911A1 (en) * 2011-08-19 2013-02-21 Electronics And Telecommunications Research Institute Solar cell and method of fabricating the same
DE102011053612B3 (de) * 2011-09-14 2012-12-06 Universität Osnabrück Körper aus einem Matrixmaterial sowie Verfahren zur Herstellung und Verwendung eines solchen Körpers
RU2484891C1 (ru) * 2011-10-03 2013-06-20 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Способ изготовления химического адсорбента диоксида углерода
GB201119192D0 (en) 2011-11-07 2011-12-21 Ucl Business Plc Chromatography medium
PL231639B1 (pl) 2012-04-17 2019-03-29 Politechnika Lodzka Materiał medyczny do rekonstrukcji naczyń krwionośnych oraz sposób wytwarzania materiału medycznego
WO2015052460A1 (en) 2013-10-09 2015-04-16 Ucl Business Plc Chromatography medium
WO2016058110A1 (zh) * 2014-10-13 2016-04-21 太仓苏纶纺织化纤有限公司 一种多孔胶原蛋白改性的超细腈纶的制备方法
US10524915B2 (en) * 2014-12-09 2020-01-07 Rutgers, The State University Of New Jersey Three-dimensional pre-vascularized scaffold for bone regeneration
RU2600758C2 (ru) * 2015-01-29 2016-10-27 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Установка для получения адсорбента диоксида углерода
CN107675360B (zh) * 2017-09-05 2019-06-28 恩泰环保科技(常州)有限公司 聚苯乙烯纳米纤维及其制备方法
CN107780048A (zh) * 2017-11-24 2018-03-09 吉林大学 一种结构可控的聚乳酸多孔纳米纤维静电纺丝制备方法
CN112442756B (zh) * 2019-08-27 2023-02-28 中国石油化工股份有限公司 一种用于油水分离的多孔纤维的制备方法及应用
CN110714240B (zh) * 2019-10-11 2022-04-26 常州大学 一种激光辐照制备多孔聚合物纤维的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2032072A1 (de) * 1970-06-29 1972-01-05 Farbenfabriken Bayer Ag, 5090 Leverkusen Filter aus elektrostatisch versponnenen Fasern
DE2534935A1 (de) * 1974-08-05 1976-02-19 Ici Ltd Fasermattenmaterial, insbesondere in form von wundverbaenden oder von auskleidungen oder oberflaechenbeschichtungen von prothetischen vorrichtungen, und verfahren zu seiner herstellung
DE10023456A1 (de) * 1999-07-29 2001-02-01 Creavis Tech & Innovation Gmbh Meso- und Nanoröhren

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE689870C (de) * 1937-08-19 1940-04-08 Anton Formhals Dipl Ing Verfahren zur Herstellung von kuenstlichen Fasern aus faserbildenden Fluessigkeiten,insbesondere Acetylcellulose
DE2550081B1 (de) * 1975-11-07 1977-04-28 Akzo Gmbh Verfahren zur herstellung eines bikomponentenfadens
EP0047795A3 (de) * 1980-09-15 1983-08-17 Firma Carl Freudenberg Elektrostatisch ersponnene Faser aus einem polymeren Werkstoff
US4992332A (en) * 1986-02-04 1991-02-12 Ube Industries, Ltd. Porous hollow fiber
US5344711A (en) * 1988-12-28 1994-09-06 Asahi Kasei Kogyo Kabushiki Kaisha Acrylic synthetic fiber and process for preparation thereof
EP0436966B1 (de) * 1990-01-09 2000-03-22 Dai-Ichi Kogyo Seiyaku Co., Ltd. Verfahren zur Herstellung von porösen Formkörpern aus Kunstharz, von ultrafeinen Fasern und von Vliesstoffen mit ultrafeinen Fasern
US6685956B2 (en) * 2001-05-16 2004-02-03 The Research Foundation At State University Of New York Biodegradable and/or bioabsorbable fibrous articles and methods for using the articles for medical applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2032072A1 (de) * 1970-06-29 1972-01-05 Farbenfabriken Bayer Ag, 5090 Leverkusen Filter aus elektrostatisch versponnenen Fasern
DE2534935A1 (de) * 1974-08-05 1976-02-19 Ici Ltd Fasermattenmaterial, insbesondere in form von wundverbaenden oder von auskleidungen oder oberflaechenbeschichtungen von prothetischen vorrichtungen, und verfahren zu seiner herstellung
DE10023456A1 (de) * 1999-07-29 2001-02-01 Creavis Tech & Innovation Gmbh Meso- und Nanoröhren
WO2001009414A1 (de) * 1999-07-29 2001-02-08 Creavis Gesellschaft Für Technologie Und Innovation Mbh Meso- und nanoröhren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DOSHI J ET AL: "Electrospinning Process and Applications of Electrospun Fibers", JOURNAL OF ELECTROSTATICS, ELSEVIER SCIENCE PUBLISHERS B.V. AMSTERDAM, NL, vol. 35, no. 2, 1 August 1995 (1995-08-01), pages 151 - 160, XP004040895, ISSN: 0304-3886 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044281A2 (en) * 2002-11-12 2004-05-27 The Regents Of The University Of California Nano-porous fibers and protein membranes
WO2004044281A3 (en) * 2002-11-12 2007-04-05 Univ California Nano-porous fibers and protein membranes
CN100393927C (zh) * 2003-02-13 2008-06-11 帝人株式会社 多孔纤维、多孔纤维结构体及其制备方法
WO2004072336A1 (ja) * 2003-02-13 2004-08-26 Teijin Limited 多孔質繊維、多孔質繊維構造体およびその製造方法
KR101056982B1 (ko) 2003-02-13 2011-08-16 데이진 가부시키가이샤 다공질 섬유, 다공질 섬유 구조체 및 그 제조방법
US20060204750A1 (en) * 2003-02-13 2006-09-14 Teijin Limited Porous fiber, porous fiber structure and method for production thereof
EP1629890A1 (de) * 2003-04-11 2006-03-01 Teijin Limited Katalysatortragende faserstruktur und herstellungsverfahren dafür
EP1629890A4 (de) * 2003-04-11 2009-06-17 Teijin Ltd Katalysatortragende faserstruktur und herstellungsverfahren dafür
WO2005049707A1 (en) * 2003-11-18 2005-06-02 Teknillinen Korkeakoulu A method for manufacturing a fibrous structure, a method for manufacturing a fiber, and a fibrous structure
US7762801B2 (en) 2004-04-08 2010-07-27 Research Triangle Institute Electrospray/electrospinning apparatus and method
US7134857B2 (en) 2004-04-08 2006-11-14 Research Triangle Institute Electrospinning of fibers using a rotatable spray head
US7297305B2 (en) 2004-04-08 2007-11-20 Research Triangle Institute Electrospinning in a controlled gaseous environment
US8052407B2 (en) 2004-04-08 2011-11-08 Research Triangle Institute Electrospinning in a controlled gaseous environment
US8088324B2 (en) 2004-04-08 2012-01-03 Research Triangle Institute Electrospray/electrospinning apparatus and method
US8632721B2 (en) 2004-04-08 2014-01-21 Research Triangle Institute Electrospinning in a controlled gaseous environment
US8431064B2 (en) 2004-05-28 2013-04-30 Phillips-Universitat Marburg Method of using nanoscaled polymer fibers as carriers for agricultural substances
WO2005115143A1 (de) * 2004-05-28 2005-12-08 Philipps-Universität Marburg Verwendung und vorrichtung zur ausbringung von nanoskaligen polymerfasern als träger für landwirtschaftliche wirkstoffe
US8017061B2 (en) 2004-05-28 2011-09-13 Philipps-Universitat Marburg Invention concerning agricultural active substances
US7592277B2 (en) 2005-05-17 2009-09-22 Research Triangle Institute Nanofiber mats and production methods thereof
KR101051262B1 (ko) * 2008-10-28 2011-07-21 현대제철 주식회사 제강 슬래그를 이용한 폐수처리용 반응촉매 및 이를 이용한폐수처리방법
WO2012057442A3 (en) * 2010-10-29 2012-06-21 Lg Chem, Ltd. Porous electrospun fiber and preparation method thereof
CN103201417A (zh) * 2010-10-29 2013-07-10 Lg化学株式会社 多孔电纺纤维及其制备方法
WO2012057442A2 (en) * 2010-10-29 2012-05-03 Lg Chem, Ltd. Porous electrospun fiber and preparation method thereof
US9322115B2 (en) 2010-10-29 2016-04-26 Lg Chem, Ltd. Porous electrospun fiber and preparation method thereof
WO2016058111A1 (zh) * 2014-10-13 2016-04-21 太仓苏纶纺织化纤有限公司 一种多孔纳米纤维的制备方法

Also Published As

Publication number Publication date
DE10040897A1 (de) 2002-03-07
AU2001293750A1 (en) 2002-03-04
EP1311715A1 (de) 2003-05-21
DE10040897B4 (de) 2006-04-13
US6790528B2 (en) 2004-09-14
US20040013873A1 (en) 2004-01-22

Similar Documents

Publication Publication Date Title
DE10040897B4 (de) Nanoskalige poröse Fasern aus polymeren Materialien
DE10133393B4 (de) Röhrchen mit Innendurchmessern im Nanometerbereich
Wang et al. Functional polymeric nanofibers from electrospinning
EP1200653B1 (de) Meso- und nanoröhren
DE10053263A1 (de) Orientierte Meso- und Nanoröhrenvliese
KR101802641B1 (ko) 친수성이 향상된 폴리우레탄 나노섬유 및 그의 제조방법
DE10116232A1 (de) Verfahren zur Herstellung von Formkörpern mit innenbeschichteten Hohlräumen
DE112007002725T5 (de) Partikelfiltersystem, das Nanofasern enthält
WO2012013345A1 (de) Poröse hohlfaser
EP2447397A1 (de) Vliesstoffe aus synthetischen Polymeren sowie Rotationsspinnverfahren zur Herstellung derselben
Nasser et al. Hemostatic wound dressings based on drug loaded electrospun PLLA nanofibrous mats
CN113430828B (zh) 纤维制品及其制备方法
KR101033278B1 (ko) 전기방사를 이용한 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법
Sa’adon et al. Fabrication of Dual Layer Polyvinyl Alcohol Transdermal Patch: Effect of Freezing-Thawing Cycles on Morphological and Swelling Ability
CN108707977B (zh) 一种扁平截面的二醋酸纤维素纤维及其制备方法
CN113144268A (zh) 一种负载臭氧油高活性纳米纤维膜及其制备方法与应用
EP2418232B1 (de) Sekundäre wässrige Suspensionen bioabbaubarer Diblockcopolyester, Verfahren zu ihrer Herstellung und ihre Verwendung
Naderizadeh et al. Electrospun nitrocellulose and composite nanofibers
Dzierzkowska et al. Electrospinning for drug delivery systems: potential of the technique
Gharaei et al. An investigation into the nano-/micro-architecture of electrospun poly (ε-caprolactone) and self-assembling peptide fibers
CN114351287B (zh) 基于微流纺复合载药纤维的制备方法
DE202022101351U1 (de) Hochgefüllte prekeramische Fasern als Basismaterial für die Herstellung von Knochenersatzkörpern
Rakhi et al. Multifaceted approach for nanofiber fabrication
Gospodinova et al. Investigation of the Fiber-Forming Properties from Ternary Solutions Containing PVA and Nutraceptics Additives on Electrospinning Process
Teli et al. Development of multifunctional non-woven fabrics by electro spinning for medical protection

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001974154

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001974154

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10344419

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2001974154

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP