WO2002027778A1 - Method of heat-treating silicon wafer - Google Patents

Method of heat-treating silicon wafer Download PDF

Info

Publication number
WO2002027778A1
WO2002027778A1 PCT/JP2001/008327 JP0108327W WO0227778A1 WO 2002027778 A1 WO2002027778 A1 WO 2002027778A1 JP 0108327 W JP0108327 W JP 0108327W WO 0227778 A1 WO0227778 A1 WO 0227778A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
heat
wafer
silicon wafer
nitrogen
Prior art date
Application number
PCT/JP2001/008327
Other languages
French (fr)
Japanese (ja)
Inventor
Norihiro Kobayashi
Masaro Tamatsuka
Original Assignee
Shin-Etsu Handotai Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co.,Ltd. filed Critical Shin-Etsu Handotai Co.,Ltd.
Publication of WO2002027778A1 publication Critical patent/WO2002027778A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering

Definitions

  • the present invention relates to a method for heat-treating silicon wafers, and more particularly to a method for heat-treating silicon wafers that can suppress slip dislocation even with silicon wafers having a diameter of 300 mm or more.
  • oxygen is mixed into the silicon crystal produced by the CZ method. It is known that this oxygen becomes a precipitate during the crystal production and during the heat treatment in the device production process after cutting and substrate processing. When oxygen precipitates are present in the device active region, they cause a decrease in device yield.On the other hand, when oxygen precipitates are formed inside the substrate, the effect of improving gettering ability against heavy metal contaminants is reduced. Bring. From these viewpoints, it is extremely important to control the amount of oxygen precipitates in the silicon substrate (control of the oxygen precipitation characteristics).
  • the control of the oxygen precipitation characteristic has been performed by controlling the oxygen concentration in the crystal during the production of the silicon crystal or by performing a long-time heat treatment on the substrate.
  • the former control it was necessary to set the crystal production conditions for the required oxygen concentration, and the production work was complicated, and the precision was also inaccurate.
  • the oxygen concentration is the same in the growth direction of the silicon crystal, the oxygen precipitation characteristics in the growth axis direction are not uniform due to the influence of the thermal history during crystal production. Long-term heat treatment was required, and productivity was low. Therefore, the technology described in Japanese Patent Application Laid-Open No. 2000-310150 filed by the present applicant has been developed without controlling the oxygen concentration in the silicon wafer manufactured by the CZ method.
  • This is a heat treatment method in which a heat treatment is performed by using a rapid heating / rapid cooling device (Rapid Thermal Annealer: hereinafter sometimes referred to as an RTA device) to obtain silicon atoms having desired oxygen deposition characteristics.
  • RTA device Rapid Thermal Annealer
  • the oxygen concentration is as low as 14 ppm (standard of the Japan Electronic Industry Development Association (JEI DA)
  • the nuclei that cause oxygen precipitation in the wafer that the oxygen precipitate density of an internal defect is excellent that Shirikonwe one cog is obtained with levels of oxygen precipitation nuclei that may be required as a 3 X 1 0 9 or ZCM 3 or more gettering site
  • the gas used for the heat treatment is 100% nitrogen or 100% oxygen or a mixed atmosphere of oxygen and nitrogen, a nitride film, an oxide film, or the like is formed on the surface of the wafer after the heat treatment. There was a need for a process to remove this.
  • this method slip dislocations generated by using an RTA device were not considered at all, and therefore, this method is particularly applicable to large-diameter wafers having a diameter of 300 mm or more where slip dislocations easily enter. In that case there was a problem.
  • Japanese Patent Application Laid-Open No. H11-135554 filed by the present applicant, also discloses an invention aimed at reducing such slip dislocation in a heat treatment using an RTA apparatus.
  • This technology can reduce slip dislocation and COP (Crystal Originated Particle) simultaneously by using a mixed gas of hydrogen and argon with a hydrogen ratio of 10 to 80% by volume as the atmosphere during heat treatment. It is.
  • the gases used are argon and hydrogen, they are different from the case of the aforementioned Japanese Patent Application Laid-Open No. 2000-310150. Thus, no unnecessary film is formed on the wafer surface after the heat treatment.
  • the present invention has been made in view of such problems, and by performing a heat treatment using an RTA apparatus, slip dislocation is suppressed even in a silicon wafer having a diameter of 300 mm or more.
  • a heat treatment method for silicon wafers that forms oxygen precipitates that will be a sufficient gettering site in the device manufacturing process and that does not require an additional process because unnecessary films are not formed on the surface of the wafer after heat treatment.
  • the purpose is to do.
  • a first aspect of the heat treatment method for silicon wafers according to the present invention is a method for heat treating a silicon wafer produced by the Czochralski method using a rapid heating / rapid cooling apparatus.
  • heat treatment is performed at a temperature of 1150 to 1350 for 1 to 60 seconds.
  • the proportion of nitrogen is 1 to 50% by volume
  • heat treatment atmosphere by including at least 1% by volume of nitrogen in the heat treatment atmosphere, it is possible to form an oxygen precipitate that is a sufficient gettering site in the device manufacturing process, and to reduce the nitrogen to 50% by volume or less.
  • the generation of slip dislocations can be suppressed and the formation of a nitride film on the surface can be prevented.
  • a second aspect of the heat treatment method for silicon wafers according to the present invention is a method for heat treating silicon wafers produced by the Czochralski method using a rapid heating / rapid cooling apparatus, wherein nitrogen is contained at 1% by volume or more. Contains The heat treatment is performed at a temperature of 115 to 135 for 1 to 60 seconds in a mixed gas atmosphere of nitrogen, hydrogen and argon containing 10 to 40% by volume of hydrogen.
  • the atmosphere contains 10% to 40% by volume of hydrogen in addition to 1% by volume or more of nitrogen, sufficient gettering sites can be formed and slip dislocations can be suppressed. Can be removed by migration of silicon atoms, and silicon ⁇ eno with excellent quality can be obtained.
  • the heat treatment time is preferably set to 60 seconds or less in consideration of productivity (throughput). Heat treatment for 1 second or more in the range of 0 ° C is required.
  • the silicon wafer to be subjected to the heat treatment is a CZ silicon wafer having a diameter of 300 mm, 400 mm or more, the effect of suppressing the slip dislocation in the method of the present invention becomes remarkable.
  • the present inventors have developed a large-diameter silicon wafer in recent years, and have been strictly demanding for the quality of the wafer (ge-ring ring capability, defect-free).
  • an RTA device capable of processing each wafer was the most appropriate, and focused on a heat treatment method using this.
  • the large-diameter wafer with a diameter of 300 mm or 400 mm which is expected to become mainstream several years from the mainstream silicon A8 with a diameter of 200 mm, is now heat treated by RTA equipment. In this case, suppression of slip dislocation is a major issue.
  • Japanese Patent Application Laid-Open No. 11-135,5144 filed earlier, as an atmosphere during the heat treatment, hydrogen having a hydrogen content of 10 to 80% by volume, preferably 40% by volume or less is used. With a mixed gas of argon, slip dislocations could be suppressed while maintaining the COP removal effect of hydrogen. Regarding the reason why slip dislocation can be suppressed by reducing the concentration of hydrogen gas, Japanese Patent Application Laid-Open No. H11-135355 discloses that the activity of hydrogen gas is involved in the generation of slip dislocation. I guess.
  • the present inventors have further examined this point. As a result, not only is the activity of hydrogen gas involved, but also by mixing argon gas having a specific heat that is at least one order of magnitude smaller than that of hydrogen gas. However, it was clarified that the specific heat of the entire atmosphere was reduced, the temperature unevenness on the surface of the wafer was reduced, and the in-plane uniformity of thermal expansion of the wafer was improved.
  • FIG. 1 is a graph showing the relationship between the N 2 concentration in the Ar / N 2 mixed gas and the internal defect density in Experimental Example 1.
  • FIG. 2 is a graph showing the relationship between the H 2 concentration in the H 2 ZN 2 ZA 2 mixed gas and the slip length in Experimental Example 2.
  • FIG. 3 is a graph showing the relationship between the H 2 concentration in the H 2 ZN 2 ZA 2 mixed gas and the C ⁇ P number in Experimental Example 2.
  • FIG. 4 is a schematic explanatory view showing an example of a rapid heating / rapid cooling device (RTA device).
  • RTA device rapid heating / rapid cooling device
  • FIG. 4 is a schematic explanatory diagram showing an example of the RTA device.
  • reference numeral 10 denotes a heat treatment apparatus, in other words, an RTA apparatus.
  • the heat treatment apparatus 10 has a chamber 11 made of quartz, and heats the wafer 18 in the chamber 11. Heating is performed by a heating lamp 12 arranged so as to surround the chamber 11 from above, below, left and right.
  • the heating lamps 12 can control the power supplied independently.
  • a gas inlet 19 is provided on the gas introduction side of the champer 11 and an auto shirt 13 is installed on the gas exhaust side to block the outside air.
  • the auto shutter 13 is provided with a wafer insertion port (not shown) that can be opened and closed by a gate valve.
  • a gas exhaust port 20 is provided in the auto-shut 13 so that the atmosphere in the furnace can be adjusted.
  • the wafer 18 is placed on a three-point support 15 formed on the quartz tray 14.
  • a quartz buffer 16 is provided on the gas inlet side of the quartz tray 14 to prevent the gas introduced from the gas inlet 19 from directly hitting the wafer 18. it can.
  • a special window for temperature measurement (not shown) is provided in the chamber 11 and the temperature of the chamber 18 is controlled through the special window by a pyrometer 17 installed outside the chamber 11. Can be measured.
  • the process of rapidly heating and rapidly cooling the wafer 18 by the heat treatment apparatus 10 as described above is performed as follows.
  • the wafer 18 is put into the chamber 11 from the inlet of the wafer (not shown) by a wafer handling apparatus (not shown) arranged adjacent to the heat treatment apparatus 10 and placed on the quartz tray 14. Close the auto shutter. Then, electric power is supplied to the heating lamp 12 to raise the temperature of the wafer 18 to a predetermined temperature of, for example, 115 ° C. to 135 ° C. At this time, the time required to reach the target temperature is, for example, about 20 seconds.
  • the wafer 18 can be subjected to a high-temperature heat treatment by maintaining it at that temperature for a predetermined time.
  • a predetermined time has elapsed and the high-temperature heat treatment has been completed, the output of the heating lamp 12 is lowered, and the temperature of the heater 18 is lowered. This cooling can be performed in about 20 seconds, for example.
  • the heat treatment is completed by removing the wafer with an e-handling device. I do.
  • a silicon wafer with a crystal orientation ⁇ 100>, a diameter of 300 mm, and an interstitial oxygen concentration of 16 ppma (JEI DA) pulled up by the CZ method was fabricated.
  • a TA device heat treatment was performed at 1200 ° C for 30 seconds in a mixed gas atmosphere of argon (Ar) and nitrogen (N 2 ), and the nitrogen gas concentration (volume%) in the atmosphere was measured as shown in Fig. 1. The change was performed as shown on the axis.
  • a high internal defect density can be obtained if nitrogen is present at 1% or more in the atmosphere of the heat treatment using the RTA apparatus. Also, it was confirmed that when the nitrogen gas concentration was 50% or less, almost no nitride film was formed on the surface of the wafer. Slip dislocations hardly occurred regardless of the nitrogen gas concentration.
  • a silicon wafer with the same specifications as in Experimental Example 1 was subjected to heat treatment at 1200 ° C for 30 seconds in a mixed gas atmosphere of argon, nitrogen, and hydrogen (H 2 ) using the same RTA apparatus.
  • the argon gas concentration was fixed at 50% by volume, and the nitrogen gas and hydrogen gas concentrations (% by volume) were varied as shown in FIGS.
  • the slip dislocation is suppressed, and the silicon dislocation is sufficiently sufficient in the device manufacturing process. Oxygen precipitates serving as gettering sites are formed, and an unnecessary film is not formed on the wafer surface after the heat treatment.

Abstract

A method of heat-treating a silicon wafer, which restricts the slip-dislocation of even a silicon wafer at least 300 mm in diameter by heat-treating it using an RTA device, forms oxygen deposits serving as a sufficient gettering site during a device production process, and does not require an additional process due to the absence of an unnecessary film on the wafer surface after heat treating. A method of heat-treating a silicon wafer produced by a Czochralski method by using a quick heating/quick cooling device, wherein a silicon wafer is heat-treated in an atmosphere of a mixed gas of nitrogen and argon containing 1-50 % by volume of nitrogen at 1150-1350°C for 1-60 seconds.

Description

明 細 書 シリコンゥエー八の熱処理方法 技術分野  Description Heat treatment method for silicon A
本発明は、 シリコンゥエーハの熱処理方法に関し、 特に直径が 3 0 0 mm以上のシリコンゥエーハであってもスリップ転位を抑制することの できるシリコンゥエー八の熱処理方法に関する。 背景技術  The present invention relates to a method for heat-treating silicon wafers, and more particularly to a method for heat-treating silicon wafers that can suppress slip dislocation even with silicon wafers having a diameter of 300 mm or more. Background art
C Z法により製造されたシリコン結晶中には、 石英製の坩堝を使用し ていることから酸素が少なからず混入する。 この酸素は結晶製造中及び 切断 ·基板加工された後のデバイス製造工程での熱処理中に析出物とな ることが知られている。 酸素析出物がデバイス活性領域にある場合、 デ バイス歩留まりを低下させる要因となるが、 その一方で基板内部に酸素 析出物が形成された場合は重金属汚染種に対するゲッ夕リング能力の改 善効果をもたらす。 これらの観点から、 シリコン基板中の酸素析出物の 量を制御 (酸素析出特性の制御) することは極めて重要である。  Due to the use of a quartz crucible, oxygen is mixed into the silicon crystal produced by the CZ method. It is known that this oxygen becomes a precipitate during the crystal production and during the heat treatment in the device production process after cutting and substrate processing. When oxygen precipitates are present in the device active region, they cause a decrease in device yield.On the other hand, when oxygen precipitates are formed inside the substrate, the effect of improving gettering ability against heavy metal contaminants is reduced. Bring. From these viewpoints, it is extremely important to control the amount of oxygen precipitates in the silicon substrate (control of the oxygen precipitation characteristics).
従来、 この酸素析出特性の制御は、 シリコン結晶製造時において結晶 中酸素濃度を制御することや、 基板に長時間の熱処理を施すことにより 行われてきた。 しかし、 前者の制御に関しては、 要求される酸素濃度に 対して結晶製造条件を設定する必要があり、 製造作業が繁雑である上に. その精度も不正確であった。 また、 たとえシリコン結晶の成長方向に対 して同一の酸素濃度であっても、 結晶製造時の熱履歴の影響によって成 長軸方向の酸素析出特性は均一ではなく、 これを均一にするには長時間 の熱処理が必要であり、 生産性が低かった。 そこで、 本出願人が先に出願した特開 2 0 0 0— 3 1 1 5 0号公報に 記載された技術は、 C Z法により製造されたシリコンゥェ一ハ中の酸素 濃度を制御することなく、 急速加熱 · 急速冷却装置 (Rapid Thermal Annealer : 以下、 RTA 装置ということがあ ¾) を使用して熱処理を 行い、 所望の酸素析出特性を有するシリコンゥエー八を得る熱処理方法 である。 Conventionally, the control of the oxygen precipitation characteristic has been performed by controlling the oxygen concentration in the crystal during the production of the silicon crystal or by performing a long-time heat treatment on the substrate. However, with regard to the former control, it was necessary to set the crystal production conditions for the required oxygen concentration, and the production work was complicated, and the precision was also inaccurate. Also, even if the oxygen concentration is the same in the growth direction of the silicon crystal, the oxygen precipitation characteristics in the growth axis direction are not uniform due to the influence of the thermal history during crystal production. Long-term heat treatment was required, and productivity was low. Therefore, the technology described in Japanese Patent Application Laid-Open No. 2000-310150 filed by the present applicant has been developed without controlling the oxygen concentration in the silicon wafer manufactured by the CZ method. This is a heat treatment method in which a heat treatment is performed by using a rapid heating / rapid cooling device (Rapid Thermal Annealer: hereinafter sometimes referred to as an RTA device) to obtain silicon atoms having desired oxygen deposition characteristics.
この方法によれば、 酸素濃度が 1 4 p pma (日本電子工業振興協会 ( J E I DA) 規格) 以下の低酸素濃度であるにもかかわらず、 ゥェ一 ハ中に酸素析出の元となる核、 つまり内部欠陥としての酸素析出物密度 が 3 X 1 09個 Zcm3以上とゲッタリングサイ トとして必要と思われる レベルの酸素析出核を持ったシリコンゥェ一ハが得られるという優れた 点がある一方で、 熱処理に用いられるガスが窒素 1 0 0 %または酸素 1 0 0 %あるいは酸素と窒素の混合雰囲気であるため、 熱処理後のゥエー 八表面には窒化膜や酸化膜等が形成されてしまい、 これを除去する工程 が必要とされていた。 According to this method, although the oxygen concentration is as low as 14 ppm (standard of the Japan Electronic Industry Development Association (JEI DA)), the nuclei that cause oxygen precipitation in the wafer , that the oxygen precipitate density of an internal defect is excellent that Shirikonwe one cog is obtained with levels of oxygen precipitation nuclei that may be required as a 3 X 1 0 9 or ZCM 3 or more gettering site On the other hand, since the gas used for the heat treatment is 100% nitrogen or 100% oxygen or a mixed atmosphere of oxygen and nitrogen, a nitride film, an oxide film, or the like is formed on the surface of the wafer after the heat treatment. There was a need for a process to remove this.
また、 この方法においては、 RT A装置を使用することにより発生す るスリツプ転位については全く考慮されていなかったため、 特にスリッ プ転位が入りやすい直径 3 0 0 mm以上の大口径ゥエーハに適用する場 合には問題があった。  Also, in this method, slip dislocations generated by using an RTA device were not considered at all, and therefore, this method is particularly applicable to large-diameter wafers having a diameter of 300 mm or more where slip dislocations easily enter. In that case there was a problem.
一方、 RT A装置を用いた熱処理において、 このようなスリップ転位 の低減を目的とした発明に、 やはり本出願人が先に出願した特開平 1 1 - 1 3 5 5 1 4号公報がある。 この技術は、 熱処理中の雰囲気として、 水素の割合を 1 0〜 8 0容量%とした水素とアルゴンの混合ガスを用い ることにより、 スリツプ転位と C O P (Crystal Originated Particle) とを同時に低減できるものである。 また、 使用するガスがアルゴンおよ び水素であるため、 前述の特開 2 0 0 0— 3 1 1 5 0号公報の場合のよ うに、 熱処理後のゥエーハ表面に不要な膜が形成されることもない。 しかしながら、 このような熱処理雰囲気を用いた場合には、 ゥェ一八 表面の C O Pが低減できるためデバイス特性を向上させるというメリッ トがある反面、 デバイス製造プロセスにおいてゲッタリングサイ トとな る酸素析出物が十分に形成されないというデメリッ トを合せもっていた, 発明の開示 On the other hand, Japanese Patent Application Laid-Open No. H11-135554, filed by the present applicant, also discloses an invention aimed at reducing such slip dislocation in a heat treatment using an RTA apparatus. This technology can reduce slip dislocation and COP (Crystal Originated Particle) simultaneously by using a mixed gas of hydrogen and argon with a hydrogen ratio of 10 to 80% by volume as the atmosphere during heat treatment. It is. In addition, since the gases used are argon and hydrogen, they are different from the case of the aforementioned Japanese Patent Application Laid-Open No. 2000-310150. Thus, no unnecessary film is formed on the wafer surface after the heat treatment. However, when such a heat treatment atmosphere is used, the COP on the surface can be reduced, which has the advantage of improving the device characteristics. On the other hand, oxygen precipitation, which is a gettering site in the device manufacturing process, has the advantage. DISCLOSURE OF THE INVENTION, which had the disadvantage of not being formed sufficiently
本発明は、 このような問題点を考慮してなされたものであり、 R T A 装置を用いた熱処理を行うことにより、 直径が 3 0 0 mm以上のシリコ ンゥエーハであってもスリップ転位を抑制し、 デバイス製造プロセスに おいて十分なゲッタリングサイ トとなる酸素析出物を形成し、 さらに、 熱処理後にゥエー八表面に不要な膜が形成されないため追加工程が不用 であるシリコンゥェ一八の熱処理方法を提供することを目的とする。 上記課題を解決するため、 本発明のシリコンゥエー八の熱処理方法の 第 1の態様は、 急速加熱 ·急速冷却装置を用いてチヨクラルスキー法に より製造されたシリコンゥェ一ハを熱処理する方法において、 窒素の割 合を 1 〜 5 0容量%とした窒素とアルゴンの混合ガス雰囲気下で、 温度 1 1 5 0 〜 1 3 5 0 で 1 〜 6 0秒間熱処理をすることを特徴とする。 このように、 熱処理雰囲気に窒素を少なくとも 1容量%含有すること により、 デバイス製造プロセスにおいて十分なゲッ夕リングサイ トとな る酸素析出物を形成することができ、 窒素を 5 0容量%以下とすれば、 スリップ転位の発生を抑制することができるとともに表面に窒化膜の形 成をも防ぐことができる。  The present invention has been made in view of such problems, and by performing a heat treatment using an RTA apparatus, slip dislocation is suppressed even in a silicon wafer having a diameter of 300 mm or more. Provides a heat treatment method for silicon wafers that forms oxygen precipitates that will be a sufficient gettering site in the device manufacturing process and that does not require an additional process because unnecessary films are not formed on the surface of the wafer after heat treatment. The purpose is to do. In order to solve the above problems, a first aspect of the heat treatment method for silicon wafers according to the present invention is a method for heat treating a silicon wafer produced by the Czochralski method using a rapid heating / rapid cooling apparatus. In a mixed gas atmosphere of nitrogen and argon in which the proportion of nitrogen is 1 to 50% by volume, heat treatment is performed at a temperature of 1150 to 1350 for 1 to 60 seconds. As described above, by including at least 1% by volume of nitrogen in the heat treatment atmosphere, it is possible to form an oxygen precipitate that is a sufficient gettering site in the device manufacturing process, and to reduce the nitrogen to 50% by volume or less. Thus, the generation of slip dislocations can be suppressed and the formation of a nitride film on the surface can be prevented.
また、 本発明のシリコンゥエー八の熱処理方法の第 2の態様は、 急速 加熱 ·急速冷却装置を用いてチヨクラルスキー法により製造されたシリ コンゥエーハを熱処理する方法において、 窒素を 1容量%以上含有し、 かつ、 水素を 1 0〜40容量%含有する窒素、 水素及びアルゴンの混合 ガス雰囲気下で、 温度 1 1 5 0〜 1 3 5 0 で 1〜 6 0秒間熱処理をす ることを特徴とする。 A second aspect of the heat treatment method for silicon wafers according to the present invention is a method for heat treating silicon wafers produced by the Czochralski method using a rapid heating / rapid cooling apparatus, wherein nitrogen is contained at 1% by volume or more. Contains The heat treatment is performed at a temperature of 115 to 135 for 1 to 60 seconds in a mixed gas atmosphere of nitrogen, hydrogen and argon containing 10 to 40% by volume of hydrogen.
このように、 1容量%以上の窒素に加えて、 水素を 1 0〜4 0容量% 含有する雰囲気とすれば、 十分なゲッタリングサイ トの形成とスリップ 転位の抑制に加え、ゥエーハ表面の C O Pをシリコン原子のマイグレー シヨンにより除去することが可能になり、 優れた品質を有するシリコン ゥエーノ\が得られる。  As described above, if the atmosphere contains 10% to 40% by volume of hydrogen in addition to 1% by volume or more of nitrogen, sufficient gettering sites can be formed and slip dislocations can be suppressed. Can be removed by migration of silicon atoms, and silicon ゥ eno with excellent quality can be obtained.
さらに、 熱処理前のゥェ一ハ表面には、 クリーンルームのエア一フィ ルターに起因するボロン汚染が付着している場合があるが、 水素を含有 する雰囲気で熱処理すれば、 このようなボロン汚染が除去される効果も 有しており、 熱処理後のゥェ一八表面近傍の抵抗率の変動を防ぐことが できる。  Furthermore, there is a case where boron contamination due to the air filter of the clean room adheres to the wafer surface before the heat treatment. However, if the heat treatment is performed in an atmosphere containing hydrogen, such boron contamination can be eliminated. It also has the effect of being removed, and can prevent a change in resistivity near the surface of the wafer after heat treatment.
また、 いずれの態様の熱処理方法であっても、 熱処理温度が 1 3 5 0°Cを超えるような高温ではスリップ転位の多発や金属汚染などの問題 が発生する一方、 1 1 5 0 未満ではゲッタリングサイ トの形成や CO Pの除去が不充分になるおそれがある。 また、 枚葉処理であるため、 生 産性 (スループッ ト) を考慮して熱処理時間は 6 0秒以下とすることが 好ましく、 本発明の効果を得るためには 1 1 5 0〜 1 3 5 0 °Cの範囲で 1秒以上の熱処理を要する。  Also, in any of the heat treatment methods, at a heat treatment temperature as high as more than 135 ° C., problems such as frequent occurrence of slip dislocation and metal contamination occur. Ring site formation and COP removal may be insufficient. In addition, since it is a single-wafer treatment, the heat treatment time is preferably set to 60 seconds or less in consideration of productivity (throughput). Heat treatment for 1 second or more in the range of 0 ° C is required.
また、 熱処理するシリコンゥエーハとして直径 3 0 0 mmや 4 0 0 m mあるいはそれ以上の C Zシリコンゥエーハとすれば、 本発明方法にお けるスリップ転位を抑制する効果が絶大なものとなる。  If the silicon wafer to be subjected to the heat treatment is a CZ silicon wafer having a diameter of 300 mm, 400 mm or more, the effect of suppressing the slip dislocation in the method of the present invention becomes remarkable.
以下、 本発明の成り立ちについてさらに詳輒に説明する。  Hereinafter, the formation of the present invention will be described in more detail.
本発明者らは、 昨今のシリコンゥェ一ハの大口径化とゥエーハ品質 (ゲッ夕リング能力、 無欠陥化) への厳しい要求がある中で、 大口径ゥ ェ一ハを熱処理してそのゥエーハ品質を向上させるためには、 毎葉処理 が可能な R T A装置が最適であると考え、 これを用いた熱処理方法に着 目した。 The present inventors have developed a large-diameter silicon wafer in recent years, and have been strictly demanding for the quality of the wafer (ge-ring ring capability, defect-free). In order to improve the wafer quality by heat-treating the wafers, we thought that an RTA device capable of processing each wafer was the most appropriate, and focused on a heat treatment method using this.
現在、 主流となっている直径 2 0 0 mmのシリコンゥエー八から数年 先に主流となることが期待される直径 3 0 0 mmあるいは直径 4 0 0 m mといった大口径ゥエーハを R T A装置により熱処理するに際しては、 スリップ転位の抑制が大きな課題となる。  At present, the large-diameter wafer with a diameter of 300 mm or 400 mm, which is expected to become mainstream several years from the mainstream silicon A8 with a diameter of 200 mm, is now heat treated by RTA equipment. In this case, suppression of slip dislocation is a major issue.
先に出願した特開平 1 1 一 1 3 5 5 1 4号公報では、 熱処理中の雰囲 気として、 水素の割合を 1 0 〜 8 0容量%、 好ましくは 4 0容量%以下 とした水素とアルゴンの混合ガスとすれば、 水素の C O P除去効果を維 持したままスリツプ転位を抑制することができるというものであった。 ここで、 水素ガスの濃度を少なくすることによってスリツプ転位が抑制 できる理由について特開平 1 1— 1 3 5 5 1 4号公報では、 スリップ転 位の発生に水素ガスの活性が関与していることを推測している。  In Japanese Patent Application Laid-Open No. 11-135,514, filed earlier, as an atmosphere during the heat treatment, hydrogen having a hydrogen content of 10 to 80% by volume, preferably 40% by volume or less is used. With a mixed gas of argon, slip dislocations could be suppressed while maintaining the COP removal effect of hydrogen. Regarding the reason why slip dislocation can be suppressed by reducing the concentration of hydrogen gas, Japanese Patent Application Laid-Open No. H11-135355 discloses that the activity of hydrogen gas is involved in the generation of slip dislocation. I guess.
そこで、 この点に関し、 本発明者らがさらに検討を加えたところ、 水 素ガスの活性が関与しているだけでなく、 水素ガスに比べて比熱が 1桁 以上小さいアルゴンガスを混合することにより、 雰囲気全体の比熱が下 がりゥエーハ表面上における温度ムラが小さくなり、 ゥエー八の熱膨張 の面内均一性が改善されたことが大きな要因であることが明らかになつ た。  In this regard, the present inventors have further examined this point. As a result, not only is the activity of hydrogen gas involved, but also by mixing argon gas having a specific heat that is at least one order of magnitude smaller than that of hydrogen gas. However, it was clarified that the specific heat of the entire atmosphere was reduced, the temperature unevenness on the surface of the wafer was reduced, and the in-plane uniformity of thermal expansion of the wafer was improved.
そこで、 アルゴンと同様.に比熱の小さい窒素を水素の代りに用いれば, スリップ転位を抑制できるだけでなく、 窒素雰囲気下での熱処理により 酸素析出も促進されることを発想した。 この場合、 水素を全て窒素に置 き換えると、 水素によるシリコン表面の C O P低減効果が得られにくく なるが、 その場合には元々 C O Pが少ない条件で作製されたシリコン単 結晶から製造されたシリコンゥェ一ハを用いればよい。 また、 水素をあ る程度含有した雰囲気にすれば、 スリップ転位抑制、 酸素析出促進、 C 〇 P低減のそれぞれの効果が同時に達成できることを発想し、 これらの 混合条件を鋭意検討した結果、 本発明を完成させたものである。 図面の簡単な説明 Therefore, it was conceived that if nitrogen having a small specific heat is used in place of hydrogen as in the case of argon, slip dislocations can be suppressed and oxygen precipitation can be promoted by heat treatment in a nitrogen atmosphere. In this case, if all the hydrogen is replaced with nitrogen, it becomes difficult to obtain the effect of reducing the COP on the silicon surface by hydrogen, but in this case, the silicon wafer originally manufactured from the silicon single crystal manufactured under the condition that the COP is small is used. C may be used. Also, add hydrogen It was conceived that the effects of suppressing slip dislocation, accelerating oxygen precipitation, and reducing C〇P could be simultaneously achieved if the atmosphere contained a certain amount of the atmosphere. It is. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実験例 1における A r / N2混合ガス中の N2濃度と内部欠陥 密度との関係を示すグラフである。 FIG. 1 is a graph showing the relationship between the N 2 concentration in the Ar / N 2 mixed gas and the internal defect density in Experimental Example 1.
図 2は、 実験例 2における H2ZN2ZA2混合ガス中の H2濃度とスリ ップ長さとの関係を示すグラフである。 FIG. 2 is a graph showing the relationship between the H 2 concentration in the H 2 ZN 2 ZA 2 mixed gas and the slip length in Experimental Example 2.
図 3は、 実験例 2における H2ZN2ZA2混合ガス中の H2濃度と C〇 P数との関係を示すグラフである。 FIG. 3 is a graph showing the relationship between the H 2 concentration in the H 2 ZN 2 ZA 2 mixed gas and the C〇P number in Experimental Example 2.
図 4は、 急速加熱 ·急速冷却装置 (RTA装置) の一例を示す概略説 明図である。 発明を実施するための最良の形態  FIG. 4 is a schematic explanatory view showing an example of a rapid heating / rapid cooling device (RTA device). BEST MODE FOR CARRYING OUT THE INVENTION
本発明方法において、 シリコンゥエーハを急速加熱 ·急速冷却できる 装置の代表例として、 熱放射によるランプ加熱装置を挙げることができ るが、 本発明で好適に用いられるシリコンゥェ一八の急速加熱 ·急速冷 却装置 (RTA装置) の一例を図 4によって説明する。 図 4は、 RTA 装置の一例を示す概略説明図である。  In the method of the present invention, as a typical example of a device capable of rapidly heating and rapidly cooling a silicon wafer, a lamp heating device using heat radiation can be cited. However, rapid heating and rapid heating of a silicon wafer suitably used in the present invention can be mentioned. An example of a cooling device (RTA device) is described with reference to FIG. FIG. 4 is a schematic explanatory diagram showing an example of the RTA device.
図 4において、 1 0は熱処理装置、 換言すれば、 RTA装置である。 この熱処理装置 1 0は、 石英からなるチャンバ一 1 1を有し、 このチヤ ンバー 1 1内でゥェ一ハ 1 8を熱処理するようになっている。 加熱は、 チャンバ一 1 1を上下左右から囲繞するよう配置された加熱ランプ 1 2 によって行う。 この加熱ランプ 1 2はそれぞれ独立に供給される電力を 制御できるようになつている。 このチャンパ一 1 1のガスの導入側にはガス導入口 1 9が設けられ、 ガスの排気側には、 オートシャツ夕一 1 3が装備され、 外気を封鎖して いる。 オートシャッター 1 3には、 ゲートバルブによって開閉可能に構 成される不図示のゥエーハ挿入口が設けられている。 また、 オートシャ ッ夕ー 1 3にはガス排気口 2 0が設けられており、 炉内雰囲気を調整で きるようになつている。 In FIG. 4, reference numeral 10 denotes a heat treatment apparatus, in other words, an RTA apparatus. The heat treatment apparatus 10 has a chamber 11 made of quartz, and heats the wafer 18 in the chamber 11. Heating is performed by a heating lamp 12 arranged so as to surround the chamber 11 from above, below, left and right. The heating lamps 12 can control the power supplied independently. A gas inlet 19 is provided on the gas introduction side of the champer 11 and an auto shirt 13 is installed on the gas exhaust side to block the outside air. The auto shutter 13 is provided with a wafer insertion port (not shown) that can be opened and closed by a gate valve. In addition, a gas exhaust port 20 is provided in the auto-shut 13 so that the atmosphere in the furnace can be adjusted.
そして、 ゥエーハ 1 8は石英トレイ 1 4に形成された 3点支持部 1 5 の上に配置される。 石英トレィ 1 4のガス導入口側には、 石英製のバッ ファ 1 6が設けられており、 ガス導入口 1 9から導入されたガスがゥェ —ハ 1 8に直接当たるのを防ぐことができる。  Then, the wafer 18 is placed on a three-point support 15 formed on the quartz tray 14. A quartz buffer 16 is provided on the gas inlet side of the quartz tray 14 to prevent the gas introduced from the gas inlet 19 from directly hitting the wafer 18. it can.
また、 チャンバ一 1 1には不図示の温度測定用特殊窓が設けられてお り、 チャンバ一 1 1の外部に設置されたパイロメ一夕 1 7により、 その 特殊窓を通してゥエーハ 1 8の温度を測定することができる。  Also, a special window for temperature measurement (not shown) is provided in the chamber 11 and the temperature of the chamber 18 is controlled through the special window by a pyrometer 17 installed outside the chamber 11. Can be measured.
以上のような熱処理装置 1 0によって、 ゥェ一ハ 1 8を急速加熱 ·急 速冷却する処理は次のように行われる。  The process of rapidly heating and rapidly cooling the wafer 18 by the heat treatment apparatus 10 as described above is performed as follows.
まず、 熱処理装置 1 0に隣接して配置される、 不図示のゥエーハハン ドリング装置によってゥェーハ 1 8を不図示のゥエーハ揷入口からチヤ ンバ一 1 1内に入れ、 石英トレイ 1 4上に配置した後、 ォートシヤッタ 一 1 3を閉める。 そして、 加熱ランプ 1 2に電力を供給し、 ゥエーハ 1 8を、 例えば、 1 1 5 0〜 1 3 5 0 °Cの所定の温度に昇温する。 この際. 目的の温度になるまでに要する時間は例えば 2 0秒程度である。  First, the wafer 18 is put into the chamber 11 from the inlet of the wafer (not shown) by a wafer handling apparatus (not shown) arranged adjacent to the heat treatment apparatus 10 and placed on the quartz tray 14. Close the auto shutter. Then, electric power is supplied to the heating lamp 12 to raise the temperature of the wafer 18 to a predetermined temperature of, for example, 115 ° C. to 135 ° C. At this time, the time required to reach the target temperature is, for example, about 20 seconds.
次に、 その温度において所定時間保持することにより、 ゥエーハ 1 8 に高温熱処理を加えることができる。 所定時間経過し高温熱処理が終了 したなら、 加熱ランプ 1 2の出力を下げゥエー八 1 8の温度を下げる。 この降温も例えば 2 0秒程度で行うことができる。 最後に、 ゥエーハハ ンドリング装置によってゥェ一ハを取り出すことにより、 熱処理を完了 する。 Next, the wafer 18 can be subjected to a high-temperature heat treatment by maintaining it at that temperature for a predetermined time. When a predetermined time has elapsed and the high-temperature heat treatment has been completed, the output of the heating lamp 12 is lowered, and the temperature of the heater 18 is lowered. This cooling can be performed in about 20 seconds, for example. Finally, the heat treatment is completed by removing the wafer with an e-handling device. I do.
実施例 Example
以下、 実験例を挙げて本発明をさらに具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to experimental examples.
(実験例 1 )  (Experimental example 1)
C Z法で引き上げられた結晶方位 < 1 0 0 >、 直径 3 0 0 mm、 格子 間酸素濃度 1 6 p pma (J E I DA) のシリコンゥエーハを作製し、 図 4に示したものと同様の R TA装置を用いアルゴン (A r ) と窒素 (N2) の混合ガス雰囲気で 1 2 0 0 °C, 3 0秒の熱処理を、 雰囲気中 の窒素ガスの濃度 (容量%) を図 1の横軸に示したように変化させて行 つた。 A silicon wafer with a crystal orientation <100>, a diameter of 300 mm, and an interstitial oxygen concentration of 16 ppma (JEI DA) pulled up by the CZ method was fabricated. Using a TA device, heat treatment was performed at 1200 ° C for 30 seconds in a mixed gas atmosphere of argon (Ar) and nitrogen (N 2 ), and the nitrogen gas concentration (volume%) in the atmosphere was measured as shown in Fig. 1. The change was performed as shown on the axis.
RT A装置による熱処理の後、 これらのゥエーハに通常の拡散炉を用 いて 8 0 0 °CZ4時間 + 1 0 0 0 °CZ 1 6時間の熱処理を行い、 ゥェ一 ハ内部の酸素析出物を検出可能なサイズに成長させてから、 O P P ( Optical Precipitate Profiler) 法によりゥェ一八の内部欠陥密度を測 定した。 その結果を図 1に示した。  After heat treatment with RTA equipment, these wafers were subjected to heat treatment at 800 ° CZ for 4 hours + 100 ° C ° CZ for 16 hours using a normal diffusion furnace to remove oxygen precipitates inside the wafer. After growing to a detectable size, the internal defect density was measured by the OPP (Optical Precipitate Profiler) method. The results are shown in FIG.
図 1に示すように、 RT A装置による熱処理の雰囲気に窒素が 1 %以 上存在すれば、 高い内部欠陥密度が得られることがわかる。 また、 窒素 ガス濃度が 5 0 %以下であれば、 ゥエーハ表面に窒化膜がほとんど形成 されないことを確認した。 スリップ転位に関しては、窒素ガスの濃度に 関わらず、 ほとんど発生していなかった。  As shown in Fig. 1, it can be seen that a high internal defect density can be obtained if nitrogen is present at 1% or more in the atmosphere of the heat treatment using the RTA apparatus. Also, it was confirmed that when the nitrogen gas concentration was 50% or less, almost no nitride film was formed on the surface of the wafer. Slip dislocations hardly occurred regardless of the nitrogen gas concentration.
(実験例 2 )  (Experimental example 2)
実験例 1 と同一仕様のシリコンゥエーハに、 同様の RT A装置を用い アルゴンと窒素と水素 (H2) の混合ガス雰囲気で 1 2 0 0 °C、 3 0秒 の熱処理を、 雰囲気中のアルゴンガスの濃度を 5 0容量%に固定し、 窒 素ガスおよび水素ガスの濃度 (容量%) を図 2及び図 3に示したように 変化させて行った。 熱処理後のゥェ一ハを X線トポグラフによりスリップ転位を観察し、 その長さの合計を測定し、 水素ガス濃度が 5 0 % (窒素ガス濃度 0 % ) の時の長さを基準にして規格化し、 図 2に示した。 また、 熱処理前後の C O P数 (ゥエーハ全面) をパーティクルカウンタ一により観察し、 熱 処理後の C O P数を熱処理前の C 0 P数を基準に規格化して図 3に示し た。 A silicon wafer with the same specifications as in Experimental Example 1 was subjected to heat treatment at 1200 ° C for 30 seconds in a mixed gas atmosphere of argon, nitrogen, and hydrogen (H 2 ) using the same RTA apparatus. The argon gas concentration was fixed at 50% by volume, and the nitrogen gas and hydrogen gas concentrations (% by volume) were varied as shown in FIGS. Observe the slip dislocation in the wafer after heat treatment by X-ray topograph, measure the total length, and refer to the length when the hydrogen gas concentration is 50% (nitrogen gas concentration 0%). Normalized and shown in Figure 2. In addition, the number of COPs before and after the heat treatment (the entire surface of the wafer) was observed with a particle counter, and the number of COPs after the heat treatment was normalized based on the number of COP before the heat treatment as shown in Fig. 3.
図 2によれば、 スリップ転位は水素ガス濃度が 4 0 %以下では全く観 察されないことがわかる。 一方、 図 3によれば水素ガス濃度が 1 0 %程 度以上あれば、 C O Pの低減効果が高いことがわかった。  According to FIG. 2, it can be seen that no slip dislocation is observed at a hydrogen gas concentration of 40% or less. On the other hand, according to FIG. 3, it was found that the COP reduction effect was high when the hydrogen gas concentration was about 10% or more.
さらに、 実験例 1と同一の方法によりこれらのゥェ一ハの内部欠陥密 度を測定したところ、 雰囲気中に窒素ガスが 1 %程度以上含有されてい れば内部欠陥密度は高く、 それ以上窒素ガス濃度を高めてもあまり増加 しないことがわかった。 産業上の利用可能性  Furthermore, when the internal defect density of these wafers was measured by the same method as in Experimental Example 1, the internal defect density was high if the atmosphere contained about 1% or more of nitrogen gas. It was found that increasing the gas concentration did not increase much. Industrial applicability
以上述べたごとく、 本発明方法によれば、 R T A装置を用いた熱処理 を行うことにより、 直径が 3 0 0 m m以上のシリコンゥェ一八であって もスリップ転位を抑制し、 デバイス製造プロセスにおいて十分なゲッタ リングサイ トとなる酸素析出物を形成し、 さらに、 熱処理後にゥエーハ 表面に不要な膜が形成されないため追加工程が不用であるという効果が 達成される。  As described above, according to the method of the present invention, by performing the heat treatment using the RTA apparatus, even if the silicon wafer has a diameter of 300 mm or more, the slip dislocation is suppressed, and the silicon dislocation is sufficiently sufficient in the device manufacturing process. Oxygen precipitates serving as gettering sites are formed, and an unnecessary film is not formed on the wafer surface after the heat treatment.

Claims

0 請 求 の 範 囲 0 Scope of request
1 . 急速加熱 ·急速冷却装置を用いてチヨクラルスキー法により製造さ れたシリコンゥエーハを熱処理する方法において、 窒素の割合を 1 〜 5 0容量0 /0とした窒素とアルゴンの混合ガス雰囲気下で、 温度 1 1 5 0 〜1. Rapid thermal apparatus in a method of heat-treating the silicon © er c produced by Chiyokurarusuki method using, ~ 1 the ratio of nitrogen 5 0 volume 0/0 nitrogen and argon mixed gas atmosphere of Below, temperature 1 1 5 0 ~
1 3 5 0 °Cで 1 〜 6 0秒間シリコンゥエーハを熱処理することを特徴と するシリコンゥエーハの熱処理方法。 A heat treatment method for silicon wafers, wherein the silicon wafer is heat-treated at 135 ° C. for 1 to 60 seconds.
2 . 急速加熱 ·急速冷却装置を用いてチヨクラルスキー法により製造さ れたシリコンゥエーハを熱処理する方法において、 窒素を 1容量%以上 含有し、 かつ、 水素を 1 0 〜 4 0容量%含有する窒素、 水素及びアルゴ ンの混合ガス雰囲気下で、 温度 1 1 5 0 〜 1 3 5 0。 で 1 〜 6 0秒間シ リコンゥヱーハを熱処理することを特徴とするシリコンゥエーハの熱処 理方法。  2. Rapid heating · A method for heat-treating silicon wafers manufactured by the Czochralski method using a rapid cooling device, containing 1% by volume or more of nitrogen and 10 to 40% by volume of hydrogen. Temperature of 150 to 135 in a mixed gas atmosphere of nitrogen, hydrogen and argon. A heat treatment of the silicon wafer for 1 to 60 seconds.
3 . 前記シリコンゥエーハの直径が 3 0 0 m m以上であることを特徴と する請求項 1又は 2記載のシリコンゥヱーハの熱処理方法。  3. The silicon wafer heat treatment method according to claim 1, wherein the diameter of the silicon wafer is 300 mm or more.
PCT/JP2001/008327 2000-09-27 2001-09-26 Method of heat-treating silicon wafer WO2002027778A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-294406 2000-09-27
JP2000294406A JP2002110685A (en) 2000-09-27 2000-09-27 Thermal processing method of silicon wafer

Publications (1)

Publication Number Publication Date
WO2002027778A1 true WO2002027778A1 (en) 2002-04-04

Family

ID=18777021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008327 WO2002027778A1 (en) 2000-09-27 2001-09-26 Method of heat-treating silicon wafer

Country Status (3)

Country Link
JP (1) JP2002110685A (en)
TW (1) TW543092B (en)
WO (1) WO2002027778A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560629A (en) * 2012-03-10 2012-07-11 天津市环欧半导体材料技术有限公司 Method for producing low-cost czochralski silicon

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503594B2 (en) * 1997-02-13 2003-01-07 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects and slip
KR100378184B1 (en) * 1999-11-13 2003-03-29 삼성전자주식회사 Silicon wafer having controlled distribution of defects, process for the preparation of the same and czochralski puller for manufacturing monocrystalline silicon ingot
KR20040007025A (en) * 2002-07-16 2004-01-24 주식회사 하이닉스반도체 Method for manufacturing a semiconductor wafer
KR100782662B1 (en) * 2003-02-25 2007-12-07 가부시키가이샤 섬코 Silicon wafer and soi substrate
KR101087905B1 (en) * 2004-07-22 2011-11-30 한양대학교 산학협력단 Method of fabricating nano-SOI wafer having proximity gettering ability and nano-SOI wafer fabricated by the same
JP2008053521A (en) * 2006-08-25 2008-03-06 Sumco Techxiv株式会社 Heat treatment method of silicon wafer
JP6111614B2 (en) * 2012-11-22 2017-04-12 信越半導体株式会社 Heat treatment method for silicon wafer
JP7463911B2 (en) 2020-08-26 2024-04-09 信越半導体株式会社 Method for manufacturing silicon single crystal substrate and method for manufacturing silicon epitaxial wafer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163557A (en) * 1992-11-27 1994-06-10 Toshiba Ceramics Co Ltd Silicon wafer
JP3037794U (en) * 1996-11-15 1997-05-20 株式会社エフティーエル Semiconductor device manufacturing equipment
JPH1167781A (en) * 1997-08-08 1999-03-09 Sumitomo Metal Ind Ltd Heat treatment of silicon semiconductor substrate
EP0915502A2 (en) * 1997-10-30 1999-05-12 Shin-Etsu Handotai Co., Ltd Method for heat treatment of silicon wafer and silicon wafer heat-treated by the method
US5994761A (en) * 1997-02-26 1999-11-30 Memc Electronic Materials Spa Ideal oxygen precipitating silicon wafers and oxygen out-diffusion-less process therefor
EP0964443A2 (en) * 1998-06-09 1999-12-15 Shin-Etsu Handotai Company Limited Method for heat treatment of silicon wafer and silicon wafer
JP2001203210A (en) * 1999-11-13 2001-07-27 Samsung Electronics Co Ltd Silicon wafer having controlled defect distribution, its manufacturing method and czochralski puller for manufacturing single crystal silicon ingot
JP2001308101A (en) * 2000-04-19 2001-11-02 Mitsubishi Materials Silicon Corp Silicon wafer and its heat treatment method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163557A (en) * 1992-11-27 1994-06-10 Toshiba Ceramics Co Ltd Silicon wafer
JP3037794U (en) * 1996-11-15 1997-05-20 株式会社エフティーエル Semiconductor device manufacturing equipment
US5994761A (en) * 1997-02-26 1999-11-30 Memc Electronic Materials Spa Ideal oxygen precipitating silicon wafers and oxygen out-diffusion-less process therefor
JPH1167781A (en) * 1997-08-08 1999-03-09 Sumitomo Metal Ind Ltd Heat treatment of silicon semiconductor substrate
EP0915502A2 (en) * 1997-10-30 1999-05-12 Shin-Etsu Handotai Co., Ltd Method for heat treatment of silicon wafer and silicon wafer heat-treated by the method
EP0964443A2 (en) * 1998-06-09 1999-12-15 Shin-Etsu Handotai Company Limited Method for heat treatment of silicon wafer and silicon wafer
JP2001203210A (en) * 1999-11-13 2001-07-27 Samsung Electronics Co Ltd Silicon wafer having controlled defect distribution, its manufacturing method and czochralski puller for manufacturing single crystal silicon ingot
JP2001308101A (en) * 2000-04-19 2001-11-02 Mitsubishi Materials Silicon Corp Silicon wafer and its heat treatment method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C. MADDALON-VINANTE AND D. BARBIER: "Charged particle activate analysis study of oxygen outdiffusion from Czochralski-grown silicon during classical and rapid thermal annealing in various gas ambient", J. APPL. PHYS., vol. 74, no. 10, 15 November 1993 (1993-11-15), pages 6115 - 6119, XP002907757 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560629A (en) * 2012-03-10 2012-07-11 天津市环欧半导体材料技术有限公司 Method for producing low-cost czochralski silicon

Also Published As

Publication number Publication date
TW543092B (en) 2003-07-21
JP2002110685A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
JP3711199B2 (en) Heat treatment method for silicon substrate
US8476149B2 (en) Method of manufacturing single crystal silicon wafer from ingot grown by Czocharlski process with rapid heating/cooling process
KR101684873B1 (en) Method of manufacturing silicon substrate, and silicon substrate
TW508701B (en) Method for manufacturing single-crystal silicon wafer
KR101822479B1 (en) Method for producing silicon wafer
JPH11186277A (en) Single crystal silicon wafer and heat treatment method thereof
US7875116B2 (en) Silicon single crystal producing method, annealed wafer, and method of producing annealed wafer
KR101703696B1 (en) Method of manufacturing silicon substrate and silicon substrate
WO2002027778A1 (en) Method of heat-treating silicon wafer
JP2004503086A (en) Method and apparatus for manufacturing a silicon wafer having a denuded area
US6339016B1 (en) Method and apparatus for forming an epitaxial silicon wafer with a denuded zone
JP2011222842A (en) Manufacturing method for epitaxial wafer, epitaxial wafer, and manufacturing method for imaging device
US7229501B2 (en) Silicon epitaxial wafer and process for manufacturing the same
JPH05308076A (en) Oxygen deposition method of silicon wafer
JP2004193354A (en) Silicon wafer, method for heat treatment thereof and epitaxial wafer
KR20170026386A (en) Heat treatment method for silicon single crystal wafer
JP4035886B2 (en) Silicon epitaxial wafer and manufacturing method thereof
EP0867928A2 (en) Heat treatment method for a silicon wafer and a silicon wafer heat-treated by the method
JP3578396B2 (en) Semiconductor disk having crystal lattice defects and method of manufacturing the same
US7199057B2 (en) Method of eliminating boron contamination in annealed wafer
WO2005053010A1 (en) Annealed wafer and annealed wafer manufacturing method
JP2013175742A (en) Epitaxial wafer manufacturing method, epitaxial wafer and imaging device manufacturing method
JP2000269221A (en) Thermal treatment method of silicon substrate, thermally treated substrate, and epitaxial wafer formed by use thereof
JP7384264B1 (en) Silicon wafers and epitaxial wafers for epitaxial growth
US20230243069A1 (en) Method for producing semiconductor wafers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase