WO2002028520A1 - Vorrichtung zum vormischen und einspeisen von additiven in einem polymerschmelzestrom - Google Patents

Vorrichtung zum vormischen und einspeisen von additiven in einem polymerschmelzestrom Download PDF

Info

Publication number
WO2002028520A1
WO2002028520A1 PCT/EP2001/011367 EP0111367W WO0228520A1 WO 2002028520 A1 WO2002028520 A1 WO 2002028520A1 EP 0111367 W EP0111367 W EP 0111367W WO 0228520 A1 WO0228520 A1 WO 0228520A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer melt
channel
channels
feed
gear pump
Prior art date
Application number
PCT/EP2001/011367
Other languages
English (en)
French (fr)
Inventor
Horst Finder
Bernd Helmstorff
Original Assignee
Zimmer Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zimmer Ag filed Critical Zimmer Ag
Priority to KR1020037004737A priority Critical patent/KR100758258B1/ko
Priority to DE50104780T priority patent/DE50104780D1/de
Priority to AU2002212302A priority patent/AU2002212302A1/en
Priority to EP01980467A priority patent/EP1322410B1/de
Priority to AT01980467T priority patent/ATE284265T1/de
Publication of WO2002028520A1 publication Critical patent/WO2002028520A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/60Pump mixers, i.e. mixing within a pump
    • B01F25/62Pump mixers, i.e. mixing within a pump of the gear type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/32Injector mixers wherein the additional components are added in a by-pass of the main flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/287Raw material pre-treatment while feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/362Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using static mixing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/365Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pumps, e.g. piston pumps
    • B29C48/37Gear pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/919Direction of flow or arrangement of feed and discharge openings characterised by the disposition of the feed and discharge openings
    • B01F2025/9191Direction of flow or arrangement of feed and discharge openings characterised by the disposition of the feed and discharge openings characterised by the arrangement of the feed openings for one or more flows, e.g. for the mainflow and the flow of an additional component
    • B01F2025/91911Direction of flow or arrangement of feed and discharge openings characterised by the disposition of the feed and discharge openings characterised by the arrangement of the feed openings for one or more flows, e.g. for the mainflow and the flow of an additional component with feed openings in the center of the main flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/2805Mixing plastics, polymer material ingredients, monomers or oligomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary

Definitions

  • the present invention relates to a device for premixing and feeding additives into a polymer melt stream.
  • DE 40 39 857 AI discloses a device for the direct, continuous modification of polymer melts, in which a partial melt flow is again taken from a main melt flow and passed into an extruder.
  • the additives to be fed are fed into the extruder via a feed pump, and then the partial melt stream modified in this way is fed back into the main melt stream.
  • the invention is therefore based on the object of creating a device for premixing and feeding an additive into a polymer melt stream, which allows short residence times of the polymer and is associated with a low outlay on equipment.
  • the device according to the invention for premixing and feeding additives into a polymer melt stream has a line element with a first channel and a second channel opening laterally into the first channel.
  • the line element is inserted into a line in which the polymer melt flow is guided so that the polymer melt flows through the second and first channels.
  • An additive feed channel is to be understood as a channel through which an additive is introduced into the planetary gear pump by a corresponding device can be reached, while the polymer melt inlet channels extend with one mouth to the polymer melt flow and with the other mouth into the planetary gear pump.
  • a feed element is also provided, which is connected to the outlet channels in a flowing manner and extends into the first channel to form an annular channel.
  • the orifices of the polymer melt feed channels facing away from the planetary gear pump are arranged around the feed element.
  • the feed element can be a tubular end piece, such as a nozzle.
  • the ring channel is then the space surrounding the feed element between the outer wall of the feed element and the wall of the first channel. This need not necessarily 'be RMIG nikringfb.
  • part of the polymer melt is drawn out of the polymer melt flow through the openings of the polymer melt inlet channels in the direction of the planetary gear pump. Since the mouths of the polymer melt inlet channels are distributed around the feed element, the polymer melt is drawn evenly out of the ring channel.
  • This positive control enables there to be no areas in which the polymer melt stays longer due to slower speed or even deposits.
  • the outlay on equipment of the device according to the invention is less, since the removal of a part of the polymer melt and the return of the polymer melt enriched with the additive at the same point, i. H. in the same pipe socket. In the main line for the polymer melt flow, only the line element of the device according to the invention is therefore necessary, and the two connecting pieces required for removal or return, which are required in the known devices, can be omitted.
  • the mouths of the polymer melt feed channels are preferably arranged symmetrically around the feed element, so that the polymer melt can be drawn evenly out of the polymer melt stream.
  • a symmetrical arrangement can be based on a point symmetry as well based on axis symmetry.
  • the orifices can be arranged in a circular or oval manner around the feed element.
  • an opening of a polymer melt inlet is arranged in this area.
  • the feed element is conical in a region facing away from the outlet channels. In this way, a largely uniform flow of the polymer melt flow in the ring channel is achieved.
  • the second channel is preferably arranged at a right angle to the first channel.
  • At least one static mixer is arranged between the drain channels and the feed element in order to ensure greater mixing of the polymer melt loaded with additive with the pure polymer melt. Even if all drain lines already contain an additive-polymer melt mixture, the static mixer contributes to better mixing.
  • two static mixers arranged one behind the other in the flow direction are provided.
  • the drain channels which carry an additive polymer melt mixture, extend into the first static mixer in the flow direction, whereas the drain channels, which carry pure polymer melt, extend into the second static mixer in the flow direction.
  • the planetary gear pump, the inlet channels, the outlet channels and the feed element are advantageously rigidly connected to one another and fastened to the line element via a common fastening means.
  • static mixers are provided, they are preferably also rigidly connected to the above-mentioned elements. The rigidly connected elements can be easily and quickly separated together from the line element in which the polymer melt stream flows.
  • the fastening means preferably has a flange which can be flanged to the line element.
  • Fig. 1 is a perspective, partially sectioned illustration of the device according to the invention in a first embodiment
  • Fig. 2 is a perspective, partially sectioned further illustration of the
  • FIG. 6 to 7 perspective representations of the second intermediate element of
  • Fig. 8 is a side view of the pump assembly of Fig. 1 or 2 in a sectional view
  • Fig. 9 is a plan view of the section line AA of Fig. 7.
  • Fig. 1 shows the device according to the invention in a first embodiment.
  • the device has a line element 2, a first and a second intermediate element 4a, 4b and a pump assembly 6, which are arranged one above the other in the aforementioned order.
  • the line element 2 comprises a first channel 8, which extends axially through the entire line element 2, and a second channel 10.
  • the second channel 10 extends from the outside of the line element 2 into the first channel 8, the first and second channels 8 , 10 are perpendicular to each other.
  • the first intermediate element 4a is essentially in the form of a circular disk and can be flanged to the line element 2 in such a way that the first channel 8 is closed at one end.
  • the first intermediate element 4a has an essentially tubular feed element 12 which, after the first intermediate element 4a is flanged onto the line element 2, extends into the first channel 8.
  • Five mouths 14 are also provided on the downward-facing side of the first intermediate element 4a.
  • the mouths 14 belong to inlet channels 20 (FIG. 2).
  • the orifices 14 are circular, preferably symmetrical, around the feed element 12.
  • Fig. 2 shows a perspective, partially sectioned further representation of the device of Fig. 1.
  • the polymer melt flow flows during operation of the device first through the second channel 10 and then through the first channel 8, the direction of flow through the arrows a is indicated.
  • the feed element 12 has a first section 12 ', which is essentially cylindrical, and a second section 12''facing away from the first intermediate element 4a, which tapers conically in the direction of flow.
  • the first channel has a first cylindrical section 8' and a conical second section 8 ".
  • annular channel 16 is formed, which has a substantially constant flow cross-section over the entire length.
  • the second section 8 ′′ of the first channel 8 is followed by a third section 8 ′ ′′ in the flow direction, the flow cross section of which in turn corresponds to the flow cross section of the second channel 10.
  • a first feed channel 18a extends in the axial direction to the side of the first intermediate element 4a on which the second intermediate element 4b is attached, a first static mixer 19a being arranged in the region of the first feed channel 18a facing the second intermediate element 4b is.
  • a second feed channel 18b extends in the axial direction in the second intermediate element 4b and is arranged in alignment with the first feed channel 18a.
  • a further static mixer 19b is arranged within the second feed channel 18b.
  • the static mixers 19a, 19b are only indicated schematically and can, for example, consist of several staggered guide elements.
  • FIG. 3 to 5 or 6 and 7 show the second intermediate element of FIG. 1 in a partially cut or not cut perspective view.
  • five polymer melt feed channels 20 extend through the second intermediate element 4b.
  • These polymer melt inlet channels 20 also extend through the first intermediate element 4a, the openings 14 of which can be seen in FIGS. 1 and 2.
  • an additive feed channel 22 is provided, which extends outwards to one side of the second intermediate element 4b (FIG. 7), on which the additive can be supplied via a line 24 or the like.
  • the additive feed channel 22 is arranged within the second intermediate element 4b in order to avoid long conduction paths, the additive addition being indicated by the arrow b (FIG. 7).
  • Fig. 8 shows a side view of the pump assembly 6 in a sectional view.
  • the pump assembly 6 has a planet gear pump with a lower plate 30, a middle plate 32 and an upper plate 34, six planet gears 36 (only one being shown) and a spur gear 38 being arranged within recesses in the middle plate 32.
  • the planet gears 36 are each arranged on a rotatable shaft 40 and the spur gear 38 on a drive shaft 41.
  • the drive shaft 41 extends through the upper plate 34 and an adjoining mounting plate 44. Die Fastening plate 44 serves to fasten a drive unit (not shown) for driving the drive shaft 41.
  • Fig. 8 shows a plan view of the section line AA of Fig. 8, it can be seen that the polymer melt feed channels 20 and the additive feed channel 22 through the lower plate 30 of the planetary gear pump vertically extend up to the area of the planet gears 36 and end there.
  • the flow from an inlet channel 20 or 22 is divided into two equal parts in the tooth gaps of the sun and planetary gears. Accordingly, the two halves of two adjacent feed streams from the feed channels are assigned to one drain channel.
  • the inlet mouth of a drain channel 42 is arranged in the immediate vicinity of each planet gear 36.
  • the drain channels 42 extend through the lower plate 30 of the planetary gear pump. Those drain channels 42 that u.
  • a. contain the additive, run obliquely inwards so that they end in a common area 44.
  • Those drain channels 42 which only carry polymer melt run vertically through the lower plate 30.
  • the operation of the device in the first embodiment will now be described.
  • the polymer melt flow flows in the direction of arrows a (FIG. 2) through the second and first channels 10, 8.
  • the drive unit (not shown) operates the planetary gear pump (FIG. 8) via the drive shaft 41, as a result of which part of the polymer melt flow is drawn through the orifices 14 (FIG. 1) into the polymer melt inlet channels 20 (FIG. 2).
  • an additive is pressed from line 24 into additive feed channel 22.
  • the polymer melt or the additive reaches the planetary gear pump via the inlet channels 20, 22 (FIGS. 7 and 8).
  • Within the planetary gear pump there is a combination of additive and polymer melt in the gear wheels that convey the additive.
  • an additive polymer melt flows through the two discharge channels 42 immediately adjacent to the additive feed channel 22. Mixture, whereas pure polymer melt flows back through the other outlet channels 42 (FIG. 8). Via the outlet channels 42, which carry the additive-polymer melt mixture, the additive-polymer melt mixture reaches the second static mixer 19b within the second feed channel 18b (FIG. 2) in order to be mixed there intensively. Subsequently, the resulting mixture emerges from the second feed channel 18b and passes into the first feed channel 18a, where it is mixed with the polymer melt from the other drain channels 42 (FIG. 5).
  • one or more polymer melt feed channels 20 can also be used to feed additive into the planetary gear pump.
  • the feed channels in the second intermediate element 4b are guided together via an annular channel and an additive is applied via a common feed hole.

Abstract

Die Erfindung betrifft eine Vorrichtung zum Vormischen und Einspeisen von Additiven in einen Polymerschmelzestrom. Die Vorrichtung weist ein Leitungselement (2), ein erstes und zweites Zwischenelement (4a, 4b) und eine Pumpenbaugruppe (6) auf, wobei der Polymerschmelzestrom in Kanälen (8, 10) des Leitungselementes geführt ist. Das erste Zwischenelement (4a) weist ein Einspeiselement (12) auf, das sich unter Ausbildung eines Ringkanales in den ersten Kanal (8) erstreckt. Das Einspeiselement (12) ist von Mündungen (14) umgeben, durch die ein Teil der Polymerschmelze abgesogen wird, um innerhalb der Pumpenbaugruppe (6) mit einem Additiv vermischt zu werden. Dieses Gemisch wird dann über das Einspeiselement (12) in den Polymerschmelzestrom zurückgeführt. Die erfindungsgemäße Vorrichtung ermöglicht geringe Verweilzeiten des Polymers und ist mit einem geringen apparativen Aufwand verbunden.

Description

Vorrichtung zum Normischen und Einspeisen von Additiven in einem Polyraerschraelzestrom
Die vorhegende Erfindung betrifft eine Vorrichtung zum Vormischen und Einspeisen von Additiven in einen Polymerschmelzestrom.
Die Einspeisung von Additiven in einen Polymerschmelzestrom ist bekannt. In Chemiefasern/Textilindustrie, 36J88. Jahrgang, Januar 1986, Seiten 24 bis 29 wird ein Verfahren zur Einspeisung von Additiven in einen Polymerschmelzestrom beschrieben, bei dem einem aus einem Endreaktor oder Extruder austretenden umnodifizierten Hauptschmelzestrom ein Teilstrom entnommen und über einen mit speziellen Knetelementen ausgerüsteten Zweiwellenextruder geleitet wird. Mit einem kontinuierlichen Dosiersystem werden die Additive dem Zweiwellenextruder zugeführt und in die Polymerschmelze eingearbeitet. Im Anschluß daran wird der mit Additiven beladene Teilstrom wieder mit dem Hauptschmelzestrom vermischt, wobei eine gleichmäßige Vermischung durch statische Mischelemente erreicht wird.
Die DE 40 39 857 AI offenbart eine Vorrichtung zur direkten, kontinuierlichen Modifizierung von Polymerschmelzen, bei der wieder einem Hauptschmelzestrom ein Teilschmelzestrom entnommen und in einen Extruder geleitet wird. Die zuzuführenden Additive gelangen über eine Förderpumpe in den Extruder, und im Anschluß daran wird der derart modifizierte Teilschmelzestrom wieder dem Hauptschmelzestrom zugeführt.
Aus der DE 198 41 376 AI ist ein Verfahren zur Einspeisimg von Additiven in einen Polymerschmelzestrom bekannt, bei dem ein Teilstrom von dem Polymerschmelzestrom abgezweigt und in weitere Teilströme aufgegliedert wird. Die letztgenannten Teilströme werden in eine Planetenradpumpe geleitet, der mindestens ein Additiv zugeführt wird. Im Anschluß daran werden die Teilströme wieder zusammengeführt und durch einen statischen Mischer geleitet. Danach wird der Teilstrom wieder dem Hauptschmelzestrom zugeführt. Bei den bekannten Vorrichtungen und Verfahren besteht der Nachteil, daß an den Stellen des Hauptschmelzestroms, an denen ein Teil der Polymerschmelze entnommen bzw. die mit Additiven angereicherte Polymerschmelze wieder in den Hauptschmelzestrom zurückgeführt wird, Bereiche entstehen, in denen es zu teils unerwünscht hohen Verweilzeiten oder sogar zu Ablagerungen der Polymerschmelze kommt. Darüber hinaus sind die Vorrichtungen mit einem großen apparativen Aufwand verbunden.
Der Erfindung liegt somit die Aufgabe zugrunde, eine Vorrichtung zum Vormischen und Einspeisen eines Additivs in einen Polymerschmelzestrom zu schaffen, die geringe Verweilzeiten des Polymers erlaubt und mit einem geringen apparativen Aufwand verbunden ist.
Die Lösung dieser Aufgabe erfolgt mit den im Patentanspruch 1 angegebenen Merkmalen. Vorteilhafte Ausführungsformen der Erfindung sind Gegenstand der Unteransprüche.
Die erfindungsgemäße Vorrichtung zum Vormischen und Einspeisen von Additiven in einen Polymerschmelzestrom weist ein Leitungselement mit einem ersten Kanal und einem seitlich in den ersten Kanal mündenden zweiten Kanal auf. Das Leitungselement wird in eine Leitung eingesetzt, in der der Polymerschmelzestrom geführt ist, so daß die Polymerschmelze durch den zweiten und ersten Kanal fließt.
Darüber hinaus ist eine Planetenradpumpe mit mindestens n=3 Planetenrädern vorgesehen, zu der Zulauf- und Ablaufkanäle führen, wobei jedem Planetenrad der Planetenradpumpe ein Zulauf- und ein Ablaufkanal zugeordnet ist. Mindestens ein und maximal n-1 Zulaufkanäle sind als Additiv-Zulaufkanäle und die
verbleibenden Zulaufkanäle sind als Polymerschmelze-Zulaufkanäle ausgebildet. Unter einem Additiv-Zulaufkanal ist ein Kanal zu verstehen, über den von einer entsprechenden Einrichtung ein Additiv in die Planetenradpumpe eingebracht werden kann, während die Polymerschmelze-Zulaufkanäle mit einer Mündung an den Polymerschmelzestrom und mit der anderen Mündung in die Planetenradpumpe reichen.
Erfindungsgemäß ist ferner ein Einspeiselement vorgesehen, das strömend mit den Ablaufkanälen in Verbindung steht und sich unter Ausbildung eines Ringkanales in den ersten Kanal erstreckt. Die der Planetenradpumpe abgewandten Mündungen der Polymerschmelze-Zulaufkanäle sind um das Einspeiselement angeordnet. Das Einspeiselement kann ein rohrartiges Endstück sein, wie beispielsweise eine Düse. Der Ringkanal ist dann der das Einspeiselelement umgebende Raum zwischen der Außenwand des Einspeiselementes und der Wandung des ersten Kanals. Dieser muß nicht notwendigerweise kreisringfb'rmig sein.
Im Betrieb wird ein Teil der Polymerschmelze durch die Mündungen der Polymerschmelze-Zulaufkanäle in Richtung der Planetenradpumpe aus dem Polymerschmelzestrom gesogen. Da die Mündungen der Polymerschmelze- Zulaufkanäle um das Einspeiselement verteilt sind, wird die Polymerschmelze gleichmäßig aus dem Ringkanal gesogen. Diese Zwangsführung ermöglicht, das keinerlei Bereiche vorhanden sind, in denen die Polymerschmelze aufgrund geringerer Geschwindigkeit länger verweilt oder sich sogar ablagert. Des weiteren ist der apparative Aufwand der erfindungsgemäßen Vorrichtung geringer, da die Entnahme eines Teiles der Polymerschmelze und die Rückführung der mit dem Additiv angereicherten Polymerschmelze an der gleichen Stelle, d. h. im gleichen Rohrstutzen, erfolgt. In der Hauptleitung für den Polymerschmelzestrom ist somit lediglich das Leitungselement der erfindungsgemäßen Vorrichtung notwendig und auf die zwei in den bekannten Vorrichtungen benötigten Anschlußstutzen zur Entnahme bzw. Rückführung kann verzichtet werden.
Die Mündungen der Polymerschmelze-Zulaufkanäle sind vorzugsweise symmetrisch um das Einspeiselement angeordnet, so daß die Polymerschmelze gleichmäßig aus dem Polymerschmelzestrom gesogen werden kann. Eine symmetrische Anordnung kann sowohl auf einer Punktsymmetrie als auch auf einer Achsensymmetrie beruhen. So können die Mündungen beispielsweise kreisförmig oder oval um das Einspeiselement angeordnet sein.
Da der Polymerschmelzestrom zuerst durch den zweiten Kanal und dann durch den ersten Kanal fließt, besteht in dem dem zweiten Kanal abgewandten Bereich des Ringkanales die größte Gefahr, daß sich das Polymer ablagert. Daher ist in einer bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung in diesem Bereich eine Mündung eines Polymerschmelze-Zulauf anales angeordnet.
In einer vorteilhaften Ausfllhrungsform der erfindungsgemäßen Vorrichtung ist das Einspeiselement in einem den Ablaufkanälen abgewandten Bereich konisch ausgebildet. Auf diese Weise wird ein weitgehend gleichmäßiger Fluß des Polymerschmelzestroms im Ringkanal erzielt.
Vorzugsweise ist der zweite Kanal in einer weiteren Ausführungsform der erfindungsgemäßen Vorrichtung in einem rechten Winkel zu dem ersten Kanal angeordnet.
Da bei relativ niedriger Anzahl an Additiv-Zulaufkanälen einige Ablaufkanäle lediglich die reine Polymerschmelze führen, ist zwischen den Ablaufkanälen und dem Einspeiselement mindestens ein statischer Mischer angeordnet, um eine stärkere Vermischung der mit Additiv beladenen Polymerschmelze mit der reinen Polymerschmelze zu gewährleisten. Selbst wenn alle Ablaufleitungen bereits ein Additiv-Polymerschmelze-Gemisch führen, trägt der statische Mischer zu einer besseren Vermischung bei.
In einer weiteren vorteilhaften Ausführungsform des erfindungsgemäßen Vorrichtung sind zwei in Strömungsrichtung hintereinander angeordnete statische Mischer vorgesehen. Die Ablaufkanäle, die ein Additiv-Polymerschmelze- Gemisch führen, erstrecken sich in den in Strömungsrichtung ersten statischen Mischer, wohingegen sich die Ablaufkanäle, die reine Polymerschmelze führen, in den in Strömungsrichtung zweiten statischen Mischer erstrecken. Eine derartige Anordnung führt zu besonders intensiver Vermischung von Additiv und Polymerschmelze.
Um eine einfachere Wartung, Reparatur und Handhabung zu gewährleisten, sind die Planetenradpumpe, die Zulaufkanäle, die Ablaufkanäle und das Einspeiselement vorteilhafterweise starr miteinander verbunden und über ein gemeinsames Befestigungsmittel an dem Leitungselement befestigt. Sollten statische Mischer vorgesehen sein, so sind diese vorzugsweise ebenfalls mit den obengenannten Elementen starr verbunden. Die starr verbundenen Elemente können einfach und schnell gemeinsam von dem Leitungselement, in dem der Polymerschmelzestrom fließt, getrennt werden.
Das Befestigungsmittel weist vorzugsweise einen Flansch auf, der an dem Leitungselement angeflanscht werden kann.
Im folgenden wird die vorliegende Erfindung an Hand von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren näher erläutert.
Es zeigen:
Fig. 1 eine perspektivische, teilweise geschnittene Darstellung der erfindungsgemäßen Vorrichtung in einer ersten Ausführungsform, Fig. 2 eine perspektivische, teilweise geschnittene weitere Darstellung der
Vorrichtung von Fig. 1, Fig. 3 bis 5 perspektivische Darstellungen des zweiten Zwischenelementes von
Fig. 1 bzw. 2 in teilweise geschnittener Darstellung, Fig. 6 bis 7 perspektivische Darstellungen des zweiten Zwischenelementes von
Fig. 3 bzw. 4. Fig. 8 eine Seitenansicht der Pumpenbaugruppe von Fig. 1 bzw. 2 in geschnittener Darstellung, Fig. 9 eine Draufsicht auf die Schnittlinie A-A von Fig. 7. Fig. 1 zeigt die erfindungsgemäße Vorrichtung in einer ersten Ausführungsform. Die Vorrichtung weist ein Leitungselement 2, ein erstes und ein zweites Zwischenelement 4a,4b und eine Pumpenbaugruppe 6 auf, die in der vorgenannten Reihenfolge übereinander angeordnet sind. Das Leitungselement 2 umfaßt einen ersten Kanal 8, der sich axial durch das gesamte Leitungselement 2 erstreckt, und eine zweiten Kanal 10. Der zweite Kanal 10 erstreckt sich von der Außenseite des Leitungselementes 2 bis in den ersten Kanal 8, wobei erster und zweiter Kanal 8,10 rechtwinklig zueinander verlaufen. Das erste Zwischenelement 4a ist im wesentlichen kreisscheibenförmig ausgebildet und kann derart an das Leitungselement 2 angeflanscht werden, daß der erste Kanal 8 an einem Ende verschlossen ist. Das erste Zwischenelement 4a weist ein im wesentlichen rohrförmiges Einspeiselement 12 auf, das sich nach dem Anflanschen des ersten Zwischenelementes 4a an das Leitungselement 2 in den ersten Kanal 8 erstreckt. An der nach unten weisenden Seite des ersten Zwischenelementes 4a sind außerdem fünf Mündungen 14 vorgesehen. Die Mündungen 14 gehören zu Zulaufkanälen 20 (Fig. 2). Die Mündungen 14 sind kreisförmig, vorzugsweise symmetrisch, um das Einspeiselement 12 angeordnet.
Fig. 2 zeigt eine perspektivische, teilweise geschnittene weitere Darstellung der Vorrichtung von Fig. 1. Der nicht dargestellte Polymerschmelzestrom fließt bei Betrieb der Vorrichtung zuerst durch den zweiten Kanal 10 und im Anschluß daran durch den ersten Kanal 8, wobei die Strömungsrichtung durch die Pfeile a angedeutet ist. Das Einspeiselement 12 weist einen ersten Abschnitt 12', der im wesentlichen zylindrisch ausgebildet ist, und einen dem ersten Zwischenelement 4a abgewandten zweiten Abschnitt 12" auf, der in Strömungsrichtung konisch zusammenläuft. In Analogie dazu weist der erste Kanal einen ersten zylindrischen Abschnitt 8' und einen konischen zweiten Abschnitt 8" auf. Zwischen der Wandung des ersten Kanales 8 und der Außenwand des Einspeiselementes 12 ist ein Ringkanal 16 ausgebildet, der über die gesamte Länge einen im wesentlichen gleichbleibenden Strömungsquerschnitt hat. An den zweiten Abschnitt 8" des ersten Kanals 8 schließt sich in Strömungsrichtung ein dritter Abschnitt 8'" an, dessen Strömungsquerschnitt wiederum dem Strömungsquerschnitt des zweiten Kanals 10 entspricht. • Innerhalb des Einspeiselementes 12 erstreckt sich in axialer Richtung ein erster Einspeisekanal 18a bis zu der Seite des ersten Zwischenelementes 4a, an der das zweite Zwischenelement 4b angebracht ist, wobei in dem dem zweiten Zwischenelement 4b zugewandten Bereich des ersten Einspeisekanales 18a ein erster statischer Mischer 19a angeordnet ist. In axialer Richtung erstreckt sich in dem zweiten Zwischenelement 4b ein zweiter Einspeisekanal 18b, der mit dem ersten Einspeisekanal 18a fluchtend angeordnet ist. Innerhalb des zweiten Einspeisekanales 18b ist ein weiterer statischer Mischer 19b angeordnet. Die statischen Mischer 19a, 19b sind lediglich schematisch angedeutet und können beispielsweise aus mehreren versetzt angeordneten Leitelementen bestehen.
Die Fig. 3 bis 5 bzw. 6 und 7 zeigen das zweite Zwischenelement von Fig. 1 in einer teilweise geschnittenen bzw. nicht geschnittenen perspektivischen Darstellung. Parallel zu dem zweiten Einspeisekanal 18b erstrecken sich fünf Polymerschmelze-Zulaufkanäle 20 durch das zweite Zwischenelement 4b. Diese Polymerschmelze-Zulaufkanäle 20 erstrecken sich außerdem durch das erste Zwischenelement 4a, wobei deren Mündungen 14 in Fig. 1 bzw. 2 zu sehen sind. Ferner ist ein Additiv-Zulaufkanal 22 vorgesehen, der sich nach außen bis zu einer Seite des zweiten Zwischenelementes 4b erstreckt (Fig. 7), an der das Additiv über eine Leitung 24 o. ä. zugeführt werden kann. Der Additiv-Zulaufkanal 22 ist innerhalb des zweiten Zwischenelementes 4b angeordnet, um lange Leitungswege zu vermeiden, wobei die Additivzugabe durch den Pfeil b gekennzeichnet ist (Fig. 7).
Fig. 8 zeigt eine Seitenansicht der Pumpenbaugruppe 6 in geschnittener Darstellung. Die Pumpenbaugruppe 6 weist eine Planetenradpumpe mit einer unteren Platte 30, einer mittleren Platte 32 und einer oberen Platte 34 auf, wobei innerhalb von Aussparungen in der mittleren Platte 32 sechs Planetenräder 36 (nur eines ist dargestellt) und ein Stirnzahnrad 38 angeordnet sind. Die Planetenräder 36 sind jeweils auf einer drehbaren Welle 40 und das Stirnzahnrad 38 auf einer Antriebswelle 41 angeordnet. Die Antriebswelle 41 erstreckt sich durch die obere Platte 34 und eine daran angrenzende Befestigungsplatte 44. Die Befestigungsplatte 44 dient der Befestigung einer nicht dargestellten Antriebseinheit zum Antreiben der Antriebswelle 41.
Aus Fig. 8 wie auch aus Fig. 9, die eine Draufsicht auf die Schnittlinie A-A von Fig. 8 zeigt, ist ersichtlich, daß sich die Polymerschmelze-Zulaufkanäle 20 bzw. der Additiv-Zulaufkanal 22 durch die untere Platte 30 der Planetenradpumpe vertikal nach oben bis in den Bereich der Planetenräder 36 erstrecken und dort enden. Gemäß dem Prinzip einer Planetenradpumpe wird der Strom von einem Zulaufkanal 20 bzw. 22 in zwei gleiche Teile in die Zahnlücken von Sonnen- und Planetenrad aufgeteilt. Dementsprechend sind einem Ablaufkanal die beiden Hälften von zwei benachbarten Zulaufströmen aus den Zulaufkanälen zugeordnet. In unmittelbarer Nähe eines jeden Planetenrades 36 ist jeweils die Eintrittsmündung eines Ablaufkanales 42 angeordnet. Die Ablaufkanäle 42 erstrecken sich durch die untere Platte 30 der Planetenradpumpe. Diejenigen Ablaufkanäle 42, die u. a. das Additiv beinhalten, verlaufen dabei schräg nach innen, so daß diese in einem gemeinsamen Bereich 44 enden. Diejenigen Ablaufkanäle 42, die lediglich Polymerschmelze führen, verlaufen senkrecht durch die untere Platte 30. Bei zusammengesetzter Vorrichtung liegen der Bereich 44 und das nach oben weisende Ende des zweiten Einspeisekanales 18b deckungsgleich übereinander.
Im folgenden wird die Funktionsweise der Vorrichtung in der ersten Ausführungsform beschrieben. Der Polymerschmelzestrom fließt in Richtung der Pfeile a (Fig. 2) durch den zweiten und den ersten Kanal 10,8. Die Antriebseinheit (nicht dargestellt) betreibt die Planetenradpumpe (Fig. 8) über die Antriebswelle 41, wodurch ein Teil des Polymerschmelzestroms durch die Mündungen 14 (Fig. 1) in die Polymerschmelze-Zulaufkanäle 20 (Fig. 2) gesogen wird. Parallel hierzu wird ein Additiv aus der Leitung 24 in den Additiv-Zulaufkanal 22 gedrückt. Über die Zulaufkanäle 20,22 gelangt die Polymerschmelze bzw. das Additiv in die Planetenradpumpe (Fig. 7 und 8). Innerhalb der Planetenradpumpe kommt es bei den das Additiv fördernden Zahnrädern zur Kombination von Additiv und Polymerschmelze. Danach fließt durch die beiden dem Additiv-Zulaufkanal 22 unmittelbar benachbarten Ablaufkanäle 42 ein Additiv-Polymerschmelze- Gemisch, wohingegen durch die anderen Ablaufkanäle 42 reine Polymerschmelze zurückfließt (Fig. 8). Über die Ablaufkanäle 42, die das Additiv- Polymerschmelze-Gemisch führen, gelangt das Additiv-Polymerschmelze- Gemisch in den zweiten statischen Mischer 19b innerhalb des zweiten Einspeisekanals 18b (Fig. 2), um dort intensiv vermischt zu werden. Im Anschluß daran tritt das so entstandene Gemisch aus dem zweiten Einspeisekanal 18b aus und gelangt in den ersten Einspeisekanal 18 a, wo es mit der Polymerschmelze aus den anderen Ablauf kanälen 42 (Fig.5) vermengt wird.
Anstatt lediglich einen Additiv-Zulaufkanal 22 vorzusehen, können auch ein oder mehrere Polymerschmelze-Zulaufkanäle 20 zur Zuführung von Additiv in die Planetenradpumpe genutzt werden. Hiebei werden die Zulaufkanäle im zweiten Zwischenelement 4b über einen Ringkanal zusaimnengeführt und über eine gemeinsame Zulaufbohrung mit Additiv beaufschlagt.

Claims

Patentansprüche
1. Vorrichtung zum Vormischen und Einspeisen von Additiven in einen Polymerschmelzestrom aufweisend
ein Leitungselement (2), in dem der Polymerschmelzestrom geführt ist,
eine Planetenradpumpe mit mindestens n=3 Planetenrädern (36),
jeweils einen Zulaufkanal (20,22) und einen Ablaufkanal (42) pro Planetenrad (36), wobei mindestens ein und maximal n-1 Zulaufkanäle als Additiv- Zulaufkanäle (22) und die verbleibenden Zulaufkanäle als Polymerschmelze- Zulaufkanäle (20) ausgebildet sind, und
ein Einspeiselement (12), das mit den Ablaufkanälen (42) strömend verbunden ist,
dadurch gekennzeichnet, daß das Leitungselement einen ersten Kanal (8) und einen seitlich in den ersten Kanal (8) mündenden zweiten Kanal (10) aufweist, wobei sich das Einspeiselement (12) unter Ausbildung eines Ringkanales (16) in den ersten Kanal (8) erstreckt und die der Planetenradpumpe abgewandten Mündungen (14) der Polymerschmelze-Zulaufkanäle (20) um das Einspeiselement (12) angeordnet sind.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die der Planetenradpumpe abgewandten Mündungen (14) der Polymerschmelze- Zulaufkanäle (20) symmetrisch um das Einspeiselement (12) angeordnet sind.
3. Vorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß eine der Planetenradpumpe abgewandte Mündung (14) eines Polymerschmelze-Zulaufkanales (20) in einem dem zweiten Kanal (10) abgewandten Bereich des Einspeiselementes (12) angeordnet ist.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Einspeiselement (12) in einem den Auslaufkanälen (42) abgewandten Bereich konisch ausgebildet ist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der zweite Kanal (10) in einem rechten Winkel zu dem ersten Kanal (8) angeordnet ist.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen den Ablaufkanälen (42) und dem Einspeiselement (12) mindestens ein statischer Mischer (19a,19b) angeordnet ist.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß zwei in Strömungsrichtung hintereinander angeordnete statische Mischer (19a, 19b) vorgesehen sind, wobei sich die Ablaufkanäle (42), die ein Additiv- Polymerschmelze-Gemisch führen, in den in Strömungsrichtung ersten statischen Mischer (19b) und sich die Ablaufkanäle (42), die die Polymerschmelze führen, in den in Strömungsrichtung zweiten statischen Mischer (19a) erstrecken.
8. Vorrichtung nach einem einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Planetenradpumpe, die Zulaufkanäle (20,22), die Ablaufkanäle (42) und das Einspeiselement (12) starr miteinander verbunden und über ein gemeinsames Befestigungsmittel an dem Leitungselement befestigt sind.
9. Vorrichtung nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, daß die Planetenradpumpe, die Zulaufkanäle (20,22), die Ablaufkanäle (42), das Einspeiselement (12) und die statischen Mischer (19,42) starr miteinander verbunden und über ein gemeinsames Befestigungsmittel an dem Leitungselement befestigt sind.
0. Vorrichtung nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, daß das Befestigungsmittel einen Flansch aufweist.
PCT/EP2001/011367 2000-10-05 2001-10-02 Vorrichtung zum vormischen und einspeisen von additiven in einem polymerschmelzestrom WO2002028520A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020037004737A KR100758258B1 (ko) 2000-10-05 2001-10-02 첨가제를 혼합하여 용융 중합체 흐름에 주입하기 위한 장치
DE50104780T DE50104780D1 (de) 2000-10-05 2001-10-02 Vorrichtung zum vormischen und einspeisen von additiven in einem polymerschmelzestrom
AU2002212302A AU2002212302A1 (en) 2000-10-05 2001-10-02 Device for mixing additives and introducing the same into a polymer melt stream
EP01980467A EP1322410B1 (de) 2000-10-05 2001-10-02 Vorrichtung zum vormischen und einspeisen von additiven in einem polymerschmelzestrom
AT01980467T ATE284265T1 (de) 2000-10-05 2001-10-02 Vorrichtung zum vormischen und einspeisen von additiven in einem polymerschmelzestrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10049617.2 2000-10-05
DE10049617A DE10049617B4 (de) 2000-10-05 2000-10-05 Vorrichtung zum Vormischen und Einspeisen von Additiven in einen Polymerstrom

Publications (1)

Publication Number Publication Date
WO2002028520A1 true WO2002028520A1 (de) 2002-04-11

Family

ID=7658938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/011367 WO2002028520A1 (de) 2000-10-05 2001-10-02 Vorrichtung zum vormischen und einspeisen von additiven in einem polymerschmelzestrom

Country Status (13)

Country Link
US (1) US6601987B2 (de)
EP (1) EP1322410B1 (de)
KR (1) KR100758258B1 (de)
CN (1) CN1230243C (de)
AR (1) AR030851A1 (de)
AT (1) ATE284265T1 (de)
AU (1) AU2002212302A1 (de)
DE (2) DE10049617B4 (de)
ES (1) ES2237605T3 (de)
PT (1) PT1322410E (de)
TW (1) TW592923B (de)
WO (1) WO2002028520A1 (de)
ZA (1) ZA200302650B (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10246153B3 (de) * 2002-10-01 2004-02-12 Zimmer Ag Vorrichtung zum Einspeisen von Additiven in einen Polymerschmelzestrom
US7358322B2 (en) * 2004-03-09 2008-04-15 Eastman Chemical Company High IV melt phase polyester polymer catalyzed with antimony containing compounds
US20060047102A1 (en) 2004-09-02 2006-03-02 Stephen Weinhold Spheroidal polyester polymer particles
US20060268658A1 (en) * 2005-05-27 2006-11-30 Strasser Wayne S Computational flow dynamics investigation of mixing within an industrial-scale gear pump
US8557950B2 (en) 2005-06-16 2013-10-15 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates
US20060287471A1 (en) * 2005-06-16 2006-12-21 Schreiber Benjamin R Accelerated acetaldehyde testing of polymers
US8431202B2 (en) 2005-09-16 2013-04-30 Grupo Petrotemex, S.A. De C.V. Aluminum/alkaline or alkali/titanium containing polyesters having improved reheat, color and clarity
US7838596B2 (en) 2005-09-16 2010-11-23 Eastman Chemical Company Late addition to effect compositional modifications in condensation polymers
US7655746B2 (en) 2005-09-16 2010-02-02 Eastman Chemical Company Phosphorus containing compounds for reducing acetaldehyde in polyesters polymers
US7932345B2 (en) 2005-09-16 2011-04-26 Grupo Petrotemex, S.A. De C.V. Aluminum containing polyester polymers having low acetaldehyde generation rates
US9267007B2 (en) * 2005-09-16 2016-02-23 Grupo Petrotemex, S.A. De C.V. Method for addition of additives into a polymer melt
MX2008013490A (es) * 2006-04-21 2009-03-25 Southwire Co Metodo y aparato de extrusion de multiples corrientes medidas.
US7709593B2 (en) 2006-07-28 2010-05-04 Eastman Chemical Company Multiple feeds of catalyst metals to a polyester production process
US7709595B2 (en) 2006-07-28 2010-05-04 Eastman Chemical Company Non-precipitating alkali/alkaline earth metal and aluminum solutions made with polyhydroxyl ether solvents
US7745368B2 (en) 2006-07-28 2010-06-29 Eastman Chemical Company Non-precipitating alkali/alkaline earth metal and aluminum compositions made with organic hydroxyacids
US8563677B2 (en) 2006-12-08 2013-10-22 Grupo Petrotemex, S.A. De C.V. Non-precipitating alkali/alkaline earth metal and aluminum solutions made with diols having at least two primary hydroxyl groups
US8901272B2 (en) 2007-02-02 2014-12-02 Grupo Petrotemex, S.A. De C.V. Polyester polymers with low acetaldehyde generation rates and high vinyl ends concentration
EP2565504A1 (de) 2011-09-02 2013-03-06 Aurotec GmbH Verbindungsstück einer Transportleitung
KR101260692B1 (ko) * 2012-10-05 2013-05-10 충남대학교산학협력단 고분자수지 연속압출장치
EP3505231A1 (de) 2017-12-29 2019-07-03 Sulzer Mixpac AG Mischer, mehrkomponentenausgabegerät und verfahren zur ausgabe von mehrkomponentenmaterial aus einem mehrkomponentenausgabegerät

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430077A (en) * 1991-10-21 1995-07-04 Gezolan Ag Method for continuously preparing thermo-crosslinkable and/or thermoplastic elastomer blends
EP0913188A2 (de) * 1997-10-28 1999-05-06 FEMUK Betriebsberatung GmbH Doppelkessel mit Flügelrad zur Erzeugung eines Gasgemischs

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1460875A (en) * 1921-09-27 1923-07-03 Baxter D Whitney & Son Inc Rotary gear pump
US3152792A (en) * 1961-07-03 1964-10-13 Monsanto Co Fluid mixing apparatus
US3142476A (en) * 1962-02-02 1964-07-28 Monsanto Co Fluid mixing apparatus
US3179382A (en) * 1963-03-01 1965-04-20 Norton Knedlik Blending pump
US3179383A (en) * 1963-03-01 1965-04-20 Norton Knedlik Method for metering and blending together a plurality of fluids
US3266430A (en) * 1964-03-30 1966-08-16 Monsanto Co Pump mixer
US3362793A (en) * 1964-06-17 1968-01-09 Michelin & Cie Back flow-preventing reactor for continuous polymerization
NL126771C (de) * 1965-02-01
US3559956A (en) * 1968-05-27 1971-02-02 Du Pont Planetary gear mixer
US3870437A (en) * 1972-06-29 1975-03-11 John T Gondek Planetary gear pump
US4184808A (en) * 1977-11-09 1980-01-22 Caterpillar Tractor Co. Fluid driven pump
US5005982A (en) * 1989-06-21 1991-04-09 Kistner Kenneth J Material processor
DE4039857A1 (de) * 1990-10-19 1992-04-23 Inventa Ag Verfahren und vorrichtung zur direkten, kontinuierlichen modifizierung von polymerschmelzen
US5715381A (en) * 1994-08-08 1998-02-03 Xerox Corporation Method of creating and managing packages, including multiple documents, in a printing system
NL9402088A (nl) * 1994-12-09 1996-07-01 Oce Nederland Bv Afdruk-inrichting voor het uitvoeren van afdruk-opdrachten.
JP3058248B2 (ja) * 1995-11-08 2000-07-04 キヤノン株式会社 画像処理制御装置及び画像処理制御方法
US5842848A (en) * 1997-01-03 1998-12-01 Knowles; Frederick W. Compact high-volume gear pump
DE19841376A1 (de) * 1998-09-10 2000-03-16 Lurgi Zimmer Ag Verfahren zur Einspeisung von Additiven in einen Polymerschmelzestrom

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430077A (en) * 1991-10-21 1995-07-04 Gezolan Ag Method for continuously preparing thermo-crosslinkable and/or thermoplastic elastomer blends
EP0913188A2 (de) * 1997-10-28 1999-05-06 FEMUK Betriebsberatung GmbH Doppelkessel mit Flügelrad zur Erzeugung eines Gasgemischs

Also Published As

Publication number Publication date
KR100758258B1 (ko) 2007-09-13
DE50104780D1 (de) 2005-01-13
DE10049617B4 (de) 2005-03-10
AU2002212302A1 (en) 2002-04-15
US20020075756A1 (en) 2002-06-20
ATE284265T1 (de) 2004-12-15
DE10049617A1 (de) 2002-04-18
AR030851A1 (es) 2003-09-03
CN1468143A (zh) 2004-01-14
PT1322410E (pt) 2005-02-28
EP1322410B1 (de) 2004-12-08
CN1230243C (zh) 2005-12-07
ZA200302650B (en) 2004-03-10
EP1322410A1 (de) 2003-07-02
TW592923B (en) 2004-06-21
US6601987B2 (en) 2003-08-05
KR20030081311A (ko) 2003-10-17
ES2237605T3 (es) 2005-08-01

Similar Documents

Publication Publication Date Title
EP1322410B1 (de) Vorrichtung zum vormischen und einspeisen von additiven in einem polymerschmelzestrom
EP0988955B1 (de) Verfahren zur Einspeisung von Additiven in einen Polymerschmelzstrom
DE19754863C2 (de) Verfahren zur Herstellung unterschiedlich farbiger Pellets und Vorrichtung zur Durchführung des Verfahrens
DE2052664A1 (de) Vorrichtung zum Mischen, Homogemsieren oder Teilen viskoser Flüssigkeiten
EP0838259A1 (de) Einrichtung zum Zuführen von Additiven in einen Strom einer hochviskosen Flüssigkeit
DD147624A5 (de) Verfahren und vorrichtung zum innigen vermischen zweier fluessigkomponenten
EP1344477A2 (de) Vorrichtung zur Erzeugung von Milchschaum für Cappucino
DE1792660B2 (de) Verfahren und vorrichtung zum mischen und umsetzen eines amins mit phosgen zu einem isocyanat
DE10010176B4 (de) Verfahren und Vorrichtung zur Herstellung eines mit Additiv behandelten Filterkabels
EP0090257B1 (de) Mischvorrichtung für die Herstellung eines chemisch reaktionsfähigen Gemisches aus mindestens zwei flüssigen Kunststoffkomponenten
EP0636190B1 (de) Spinnanlage für thermoplastische fäden
DE1435576C2 (de) Mischfadenspinnvornchtung
DE2355230A1 (de) Verfahren und vorrichtung zum einfuehren von zusaetzen in fluessigkeitsstroeme
DE2844753A1 (de) Verfahren und vorrichtung zum strangpressen
EP0837161A2 (de) Verfahren und Vorrichtung zum Spinnen von thermoplastischen Fäden
DE202006008820U1 (de) Homogenisator-Vorrichtung mit horizotal gelagerten Zahnkränzen
EP0158358A2 (de) Vorrichtung zum Dispergieren bzw. Emulgieren einer aus wenigstens zwei Produkten bestehenden Menge
DE102006011452A1 (de) Zentrifuge mit einem Einlaufrohr
DE3212643C2 (de) Verfahren und Vorrichtung zur Herstellung von Gummilösungen
DE4206715C2 (de) Verfahren und Vorrichtung zum Einbringen eines Gases in eine Flüssigkeit
DE3233744A1 (de) Verfahren zum mischen von trockengemisch und wasser beim trockenspritzen und mischrohr fuer das trockenspritzverfahren
DE10246153B3 (de) Vorrichtung zum Einspeisen von Additiven in einen Polymerschmelzestrom
DE2148873C3 (de) Mischvorrichtung zum Gießen, Schäumen, Tropfen oder Spritzen von flüssigen, miteinander reagierenden Kunststoffen
DE2129839A1 (de) Schneckenpresse mit Entgasungsvorrichtung
DD146024A5 (de) Extruder zur bearbeitung thermoplastischer materialien

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001980467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020037004737

Country of ref document: KR

Ref document number: 466/CHENP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2003/02650

Country of ref document: ZA

Ref document number: 018168825

Country of ref document: CN

Ref document number: 200302650

Country of ref document: ZA

WWP Wipo information: published in national office

Ref document number: 2001980467

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037004737

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001980467

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP