WO2002039053A1 - Dispositif de detection de deplacement fin a l'aide d'un son ou analogue - Google Patents

Dispositif de detection de deplacement fin a l'aide d'un son ou analogue Download PDF

Info

Publication number
WO2002039053A1
WO2002039053A1 PCT/JP2001/009639 JP0109639W WO0239053A1 WO 2002039053 A1 WO2002039053 A1 WO 2002039053A1 JP 0109639 W JP0109639 W JP 0109639W WO 0239053 A1 WO0239053 A1 WO 0239053A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
diaphragm
receiving element
sound
substrate
Prior art date
Application number
PCT/JP2001/009639
Other languages
English (en)
French (fr)
Inventor
Toru Shinzou
Original Assignee
Kabushiki Kaisha Kenwood
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kenwood filed Critical Kabushiki Kaisha Kenwood
Priority to EP01980971A priority Critical patent/EP1333245A4/en
Priority to DE0001333245T priority patent/DE01980971T1/de
Priority to US10/416,227 priority patent/US7277642B2/en
Publication of WO2002039053A1 publication Critical patent/WO2002039053A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • H04R23/008Transducers other than those covered by groups H04R9/00 - H04R21/00 using optical signals for detecting or generating sound

Definitions

  • the present invention relates to a small displacement detection device using sound or the like that can detect vibration of a diaphragm due to sound or the like as a small displacement and detect it as an electric signal.
  • Conventional technology can detect vibration of a diaphragm due to sound or the like as a small displacement and detect it as an electric signal.
  • an optical microphone device has been known as a small displacement detecting device using an acoustoelectric element.
  • a diaphragm 1 that minutely vibrates due to sound or the like is provided in an opening provided in a part of the detection device housing 7, and light is emitted on a substrate 18 disposed opposite to the diaphragm 1. It has a structure in which the element 13 and the light receiving element 14 are arranged.
  • a light shielding wall 15 is provided between the light emitting element 13 and the light receiving element 14 so that light incident from the light emitting element 13 does not directly enter the light receiving element 14.
  • the incident light from the light emitting element 13 changes the amount of reflected light incident on the light receiving element 14 by vibrating the diaphragm 1 by sound or the like.
  • the device can be operated as an optical microphone device.
  • the light is condensed on the optical path between the light emitting element 13 and the diaphragm 1 and on the optical path between the diaphragm 1 and the light receiving element 14 respectively.
  • a lens 16 and a converging lens 17 are provided.
  • Fig. 9 shows a vertical cavity surface emitting laser element whose emission intensity distribution is almost uniform on a concentric circle, used as the light emitting element 13, which is arranged at the center, and concentric with the light emitting element 13 so as to surround it.
  • a light-emitting and light-receiving element 5 that integrates a light-emitting element with a light-receiving element 14 disposed above and a light-receiving element, the incident light from the light-emitting element 13 is converged and guided to the diaphragm 1, and A condensing element 2 that converges the divergent reflected light and guides it to a light receiving element 14 is provided on an optical path between the light emitting and receiving element 5 and the diaphragm 1.
  • a light emitting and receiving element 5 is formed by arranging a circular surface emitting laser element at the center of the substrate and arranging light receiving elements on concentric circles so as to surround the surface emitting laser element.
  • a surface emitting laser element has a characteristic that the emission intensity distribution is almost uniform on a concentric circle.
  • the radiated light radiated from the light emitting element 13 arranged at the center toward the diaphragm 1 at a predetermined angle is reflected on the concentric circle with the same intensity.
  • the reflection angle changes and reaches the light receiving element 14 concentrically.
  • the vibration displacement of the diaphragm 1 can be detected by detecting a change in the amount of received light of the light receiving elements 14 arranged concentrically.
  • Fig. 10 shows the tunnel diagram of the device shown in Fig. 7.
  • the light emitting element 13 and the light receiving element 14 must be installed at a fixed distance a with respect to the light shielding wall 15 respectively. It is shown that.
  • the light receiving element 14 had to be arranged concentrically so as to surround the surface emitting laser element arranged at the center of the substrate.
  • the present invention has been made in order to solve the above-described problems, and has a configuration of a light receiving element by providing a reflected light beam splitting element that splits a condensed reflected light between a light collecting element and a light emitting and receiving element.
  • the degree of freedom of arrangement is increased, and the manufacturing process of the light-emitting and light-receiving element can be simplified.
  • the condenser element is formed by a microphone aperture lens or a hologram lens manufactured on a flat substrate, and the reflected light beam splitting element is manufactured on a flat substrate. It is an object of the present invention to provide a small displacement detection device which can reduce the number of optical components and reduce the size of the device by achieving the above-described hologram, and can easily perform alignment of each optical component. Means for solving the problem
  • a light emitting element and a light receiving element are arranged on a substrate, light is emitted from the light emitting element to a diaphragm installed at a position facing the substrate, and reflected light from the diaphragm is reflected by the light receiving element.
  • a minute displacement detection device based on sound or the like which detects a minute displacement due to sound or the like of the diaphragm as an electric signal by receiving light from the light emitting element, incident light from the light emitting element is placed on an optical path between the substrate and the diaphragm.
  • a light-collecting element that converges and guides the divergent reflected light from the diaphragm and guides the divergent reflected light from the diaphragm to the light-receiving element; and divides the divergent reflected light converged by the light-collecting element to form the light-receiving element.
  • a reflected light beam splitting element for guiding the light beam.
  • a microphone aperture lens or a hologram lens installed on a flat substrate is used as the light-collecting element.
  • the minute displacement detection device as the reflected light beam splitting element, A hologram manufactured on a flat substrate is used.
  • the light emitting element and the light receiving element are joined and arranged on a same plane substrate.
  • the minute displacement detecting device the light condensing element and the reflected light beam splitting element are combined.
  • the present invention further includes disposing a light emitting element and a light receiving element on a substrate, radiating light from the light emitting element to a diaphragm installed at a position opposed to the substrate, and reflecting light reflected from the diaphragm.
  • a minute displacement detection device that receives light by the light receiving element and detects minute displacement due to sound or the like of the diaphragm as an electric signal, incident light from the light emitting element is converged on an optical path between the substrate and the diaphragm.
  • a first light condensing element for guiding the light to the vibrating plate; and a second light condensing element for converging the divergent reflected light from the vibrating plate and guiding the light to the light receiving element.
  • a hologram manufactured on a flat substrate is used as the first light-collecting element and the second light-collecting element.
  • the light emitting element and the light receiving element are joined and arranged on a same plane substrate.
  • a vertical cavity surface emitting laser element is used as the light emitting element.
  • FIG. 1 is a diagram showing a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a second embodiment of the present invention.
  • FIG. 3 is a diagram showing a third embodiment of the present invention.
  • FIG. 4 is a diagram showing a fourth embodiment of the present invention.
  • FIG. 5 is a diagram showing a fifth embodiment of the present invention.
  • FIG. 6 is a diagram for explaining the operation principle of the present invention.
  • FIG. 7 is a diagram showing an example of a conventional minute displacement detection device.
  • FIG. 8 is a diagram showing an example of another conventional minute displacement detecting device.
  • FIG. 9 is a diagram showing an example of another conventional minute displacement detection device.
  • FIG. 10 is a diagram showing a tunnel diagram of the apparatus of FIG. Embodiment of the Invention.
  • FIGS. 1 to 3 show embodiments of a small displacement detecting apparatus using sound or the like according to the present invention.
  • the embodiment shown in FIGS. 1 to 3 employs a structure in which the light emitting element 13 and the light receiving element 14 are formed on the same substrate.
  • a vertical cavity surface emitting laser element can be used as the light emitting element, and a photodiode can be used as the light receiving element.
  • the light emitting / receiving element 5 configured as described above is installed in the light emitting / receiving unit housing 6. Next, a parallel flat substrate 4 on which the condensing element 2 and the reflected light beam splitting element 3 are formed is set on the opposite sides parallel to each other.
  • One end of the detection device housing 7 is opened, and a diaphragm 1 is provided in this opening to perform minute vibration by external sound.
  • the light emitting element 13, the center of the reflected light beam splitting element 3, the center of the light condensing element 2, and the center of the diaphragm 1 are arranged so as to be on the same line.
  • a microlens or a hologram lens is used as the light collecting element 2.
  • Holograms are a type of diffraction grating in which a number of fine grooves are cut on the surface of glass or the like. By this groove pattern, the traveling direction of the light beam hitting the surface can be refracted (diffracted) at a certain angle or have a lens effect.
  • the microphone aperture lens is a term used to emphasize that it is particularly small in shape compared to a conventional macro lens, and usually refers to a small lens with a diameter of several meters to several mm.
  • Microlenses can be formed on a glass substrate by selective ion exchange or reactive ion etching, and holograms and hologram lenses can also be formed on a glass substrate by etching.
  • the advantage of this method is that a large number of devices can be produced at once, as in the wafer process, and alignment accuracy of 1 um or less can be ensured.
  • Condenser 2 and reflected beam splitting It is preferable that the element 3 is formed on the same glass substrate.
  • the light emitted from the light emitting element 13 in the light emitting and receiving element 5 reaches the hologram forming the reflected light beam splitting element 3 at a predetermined radiation angle, and the zero-order diffracted light enters the light collecting element 2. That is, the splitting element 3 splits the incident light beam into a plurality of light beams (0 order, ⁇ 1 order, ⁇ 2 order, '... In the case of a diffraction grating).
  • the condenser element 2 can use a microlens or a hologram lens. If the condenser element 2 is a microphone aperture lens, the incident light is refracted and converges on the diaphragm 1. When the light condensing element 2 is a holo-Dram lens, the incident light is diffracted and converges on the diaphragm 1 as first-order diffracted light.
  • the divergent reflected light reflected by the diaphragm 1 and diverged by the vibration of the diaphragm 1 is converged again by the light condensing element 2 and enters the reflected light beam splitting element 3.
  • the traveling direction of the divergent reflected light that has entered the reflected light beam splitting element 3 is changed by the hologram as primary diffracted light, and converges on the light receiving element 14 on the light emitting and receiving element 5.
  • the reflection position of the incident light converged by the light condensing element 2 changes, and at the same time, the convergence state of the divergent reflected light converged on the light emitting and receiving element 5 is changed. It appears as a change in the vibration width.
  • the amount of change in the convergence state that is, the change in the amount of incident light of reflected light is detected by the light receiving element 14 as a change in an electric signal, whereby the amount of vibration displacement of the diaphragm 1 due to sound or the like can be detected.
  • a method for detecting the amount of change in the amount of incident light of the reflected light a beam size method, an astigmatism method, a Foucault method, and the like are known.
  • FIG. 2 shows an example in which the light emitting / receiving element 5 is directly joined to the flat substrate 8.
  • the bonding arrangement can be performed by flip chip bonding or the like.
  • FIG. 3 shows a configuration in which, when the condenser element 2 is a microlens in the apparatus shown in FIG. 1, a hologram is formed on the microphone aperture lens to form a reflected light beam splitting element, and the light collecting element and the reflected light beam splitting are formed.
  • the light condensing / dividing element 9 is configured by combining the elements.
  • the condensing element 11 for converging the light emitted from the light emitting element 13 and the converging element for converging the divergent reflected light from the diaphragm 1 are provided separately, and these condensing elements 11 and 12 are provided with hologram lenses. You are using The outgoing light emitted from the light emitting element 13 is changed in traveling direction as primary diffracted light by the light condensing element 11 by the hologram lens and converges on the diaphragm 1.
  • the divergent reflected light reflected from the diaphragm 1 is changed in traveling direction as primary diffracted light by a light condensing element 12 by a hologram lens, and converges on a light receiving element 14.
  • FIG. 5 shows a case where the light receiving and emitting element 5 in FIG. 4 is directly bonded to the flat substrate 10.
  • the lenses 11 and 12 in FIGS. 4 and 5 are preferably made on the same glass substrate.
  • FIG. 6 is a diagram for explaining the operation principle of the present invention, and corresponds to the configuration shown in FIG.
  • S is the diffraction angle of the hologram
  • is the oscillation wavelength of the light emitting element 13
  • is the hologram reference pitch
  • d is the distance between the light emitting element 13 and the light receiving element 14 and is the light emitting and receiving element The distance between 5 and hologram 3 is shown.
  • the convergence position on the light emitting / receiving element 5 can be changed.
  • the present invention is not limited to an optical microphone device, but is applicable to an optical sensor and the like.
  • the invention's effect is not limited to an optical microphone device, but is applicable to an optical sensor and the like.
  • the degree of freedom of the configuration and arrangement of the light receiving element is increased by providing the reflected light beam splitting element that splits the divergent reflected light converged by the light collecting element and guides it to the light receiving element. Therefore, the manufacture of the light emitting and receiving element can be simplified.
  • a small displacement detection device that can reduce the number of optical components and reduce the size of the device and that can easily perform alignment of each optical component is realized.

Description

明 細 書 音響等による微小変位検出装置 発明の属する技術分野
本発明は、 音響等による振動板の振動を微小変位として検出し電気信 号として検出することのできる音響等による微小変位検出装置に関す る。 従来の技術
従来、 音響電気素子を用いた微小変位検出装置として光マイクロホン 装置が知られている。
微小振動検出装置の一例として、 光マイクロホン装置を用いて従来の 装置の概要を説明する。
第 7図に示す装置は、 検出装置筐体 7の一部に設けられた開口部に音 響等によって微小振動する振動板 1を設け、 これに対向して配置された 基板 1 8上に発光素子 1 3と受光素子 1 4とを配置した構造となって いる。
また、 発光素子 1 3と受光素子 1 4との間には遮光壁 1 5を設け、 発 光素子 1 3からの入射光が直接受光素子 1 4に入射しないように構成 されている。 発光素子 1 3からの入射光は、 振動板 1が音響等によって 振動することによりその反射光の受光素子 1 4に対する入射光量が変 化する。 この入射光量の変化を受光素子 1 4により電気信号として検出 することにより光マイクロホン装置として動作させることができる。 第 8図に示す装置では、 この入射光量の変化を大きくするために、 発 光素子 1 3と振動板 1との光路上及び振動板 1 と受光素子 1 4との光 路上に、 それぞれ集光レンズ 1 6と収束レンズ 1 7とを設けたものであ る。
このような集光レンズ 1 6や収束レンズ 1 7を設けることにより、 振 動板 1からの反射光の受光素子 1 4への入射光量の変化を大きくする ことができる。
第 9図は、 発光強度分布が同心円上にほぼ均一な垂直共振器型面発光 レーザ素子を発光素子 1 3として用い、 これを中心部に配置し、 この発 光素子 1 3を取り囲むように同心円上に受光素子 1 4を配置した発光 素子と受光素子とを一体化した発光受光素子 5を用い、 発光素子 1 3か らの入射光を収束して振動板 1に導くとともに、 振動板 1からの発散反 射光を収束させて受光素子 1 4に導く集光素子 2を発光受光素子 5と 振動板 1との間の光路上に設けている。
基板の中央に円形形状の面発光レ一ザ素子を配置し、 この面発光レ一 ザ素子をとりまくように同心円上に受光素子を配置して発光受光素子 5を構成する。 一般に面発光レーザ素子は発光強度分布が同心円上にほ ぼ均一な特性を持っている。
従って中心部に配置された発光素子 1 3から所定の角度で振動板 1 に向かって放射された放射光が同心円上に同一強度を持って反射する。 そして振動板 1が振動することにより反射角度が変化し受光素子 1 4 に同心円上に到達する。
従って同心円上に配列された受光素子 1 4の受光光量の変化を検出 することにより振動板 1の振動変位を検出することができる。
このような構造を採用することにより反射光の入射光量を大幅に増 加することができるだけでなく装置を小型化することができる。 発明が解決しょうとする課題
第 1 0図は第 7図の装置のトンネルダイアグラムを示したもので、 発 光素子 1 3及び受光素子 1 4は遮光壁 1 5を基準にしてそれぞれ一定 の距離 aに設置される必要があることを示している。
また、 第 9図において受光素子 1 4は、 基板の中央に配置された面発光 レーザ素子を取り囲むように同心円状に配置される必要があった。
この様な従来の音響等による微小変位検出装置では、 受光感度を十分に とるために発光素子に対して受光素子の構成、 配置が制限されるため、 発光および受光素子部分の簡素化が困難であり、 製造工程が複雑になる という問題があった。
また、 ホログラム以外の反射光束分割手段を用いた場合に、 光学部品点 数の増加と装置の大型化、 各光学部品のァライメントが複雑になるなど の問題点があった。
本発明は、 上述した課題を解決するためになされたもので、 集光素子と 発光受光素子との間に収束された反射光を分割する反射光束分割素子 を設けることにより、 受光素子の構成、 配置の自由度が増し、 発光受光 素子の製造工程の簡素化を可能にし、 集光素子を平面基板上に作製され たマイク口レンズ、 もしくはホログラムレンズで、 反射光束分割素子を 平面基板上に作製されたホログラムで達成することにより、 光学部品点 数の削減と装置の小型化を可能にし、 各光学部品のァライメントを容易 に行うことができる微小変位検出装置を提供することを目的とする。 課題を解決するための手段
本発明は、 基板上に発光素子と受光素子とを配置し、 前記基板に対向 する位置に設置された振動板に前記発光素子から光を放射し、 前記振動 板からの反射光を前記受光素子で受光して前記振動板の音響等による 微小変位を電気信号として検出する音響等による微小変位検出装置に おいて、 前記基板と前記振動板との光路上に、 前記発光素子からの入射 光を収束して前記振動板に導くとともに前記振動板からの発散反射光 を収束させて前記受光素子に導く集光素子と、 前記集光素子により収束 された前記発散反射光を分割して前記受光素子に導く反射光束分割素 子とを設ける。
また、 前記微小変位検出装置において、 前記集光素子として、 平面基 板上に設置されたマイク口レンズ又はホログラムレンズを用いること を特徴とする。
また、前記微小変位検出装置において、前記反射光束分割素子として、 平面基板上に作製されたホログラムを用いることを特徴とする。
また、 前記微小変位検出装置において、 前記発光素子と前記受光素子 とを同一平面基板上に接合配置することを特徴とする。
さらに、 前記微小変位検出装置において、 前記集光素子と前記反射光 束分割素子とを合体させて構成する。
本発明は、 さらに、 基板上に発光素子と受光素子とを配置し、 前記基 板に対向する位置に設置された振動板に前記発光素子から光を放射し、 前記振動板からの反射光を前記受光素子で受光して前記振動板の音響 等による微小変位を電気信号として検出する微小変位検出装置におい て、 前記基板と前記振動板との光路上に、 前記発光素子からの入射光を 収束して前記振動板に導く第 1集光素子と、 前記振動板からの発散反射 光を収束して前記受光素子に導く第 2集光素子とを設ける。
また、 前記微小変位検出装置において、 前記第 1集光素子と第 2集光 素子として、 平面基板上に作製されたホログラムを用いることを特徴と する。
また、 前記微小変位検出装置において、 前記発光素子と前記受光素子 とを同一平面基板上に接合配置することを特徴とする。
さらに、 前述したいずれかの微小変位検出装置において、 前記発光素 子として、 垂直共振器型面発光レーザ素子を用いることを特徴とする。 図面の簡単な説明
第 1図は、 本発明の第 1の実施の形態を示す図である。
第 2図は、 本発明の第 2の実施の形態を示す図である。
第 3図は、 本発明の第 3の実施の形態を示す図である。
第 4図は、 本発明の第 4の実施の形態を示す図である。
第 5図は、 本発明の第 5の実施の形態を示す図である。
第 6図は、 本発明の動作原理を説明するための図である。
第 7図は、 従来の微小変位検出装置の一例を示す図である。
第 8図は、 従来の他の微小変位検出装置の一例を示す図である。 第 9図は、 従来の更に他の微小変位検出装置の一例を示す図である。 第 1 0図は、 第 7図の装置のトンネルダイヤグラムを示す図である。 発明の実施の形態
第 1図〜第 3図は本発明に係る音響等による微小変位検出装置の実 施の形態をそれぞれ示したものである。 なお第 1図〜第 3図に示す実施 の形態においては発光素子 1 3と受光素子 1 4とを同一基板上に形成 した構造を採用している。
発光素子として垂直共振器型面発光レーザ素子を用い、 受光素子とし てフォトダイォードを用いることができる。
このように構成された発光受光素子 5を受発光部筐体 6に設置する。 次に互いに平行する対向辺に集光素子 2と反射光束分割素子 3とを 作製した平行平面基板 4を設置する。
検出装置筐体 7の一端は開口され、 この開口部には振動板 1が設けら れており外来音響により微小振動を行う。 発光素子 1 3、 反射光束分割 素子 3の中心、 集光素子 2の中心、 及び振動板 1の中心はそれぞれ同一 線上にあるように配置される。
ここで集光素子 2としてはマイクロレンズもしくはホログラムレン ズが用いられる。 ホログラムはガラスなどの表面に細かい溝を多数刻ん だ回折格子の一種である。 この溝のパターンにより、 その表面に当たつ た光ビームの進行方向をある角度で屈折 (回折) させたりレンズ作用を 持たせたりすることができる。 またマイク口レンズは従来のマクロレン ズに比べて特に形が小さいことを強調するために用いられている用語 で、 通常は直径数 m〜数 mm程度の小さなレンズを言う。 マイクロレ ンズはガラス基板上に選択的イオン交換法や、 反応性イオンエッチング 等で作製可能であり、 ホログラム及びホログラムレンズもガラス基板上 にエッチングで作製可能である。 この方法の利点は、 ウェハプロセスと 同様に 1度に多数個の素子を作成することが可能であり、 1 u m以下の ァライメント精度を確保できることである。 集光素子 2と反射光束分割 素子 3とは同一のガラス基板上に作成することが好ましい。
発光受光素子 5内の発光素子 1 3からの出射光は所定の放射角で反 射光束分割素子 3を構成するホログラムに到達し、 0次の回折光が集光 素子 2に入射する。即ち、分割素子 3は、入射する光束を複数の光束(回 折格子の場合は、 0次、 ± 1次、 ± 2次、 ' · ·) に分割する。
ここで集光素子 2はマイクロレンズもしくはホログラムレンズを使 用することができる。 仮に集光素子 2がマイク口レンズであった場合、 入射光は屈折されて振動板 1上に収束する。 また集光素子 2がホロダラ ムレンズであった場合には入射光は回折し、 1次の回折光として振動板 1上に収束する。
振動板 1により反射し振動板 1の振動により発散した発散反射光は 再び集光素子 2により収束されて反射光束分割素子 3に入射する。 反射 光束分割素子 3に入射した発散反射光は、 このホログラムにより一次の 回折光として進行方向が変えられ、 発光受光素子 5上の受光素子 1 4上 に収束する。
ここで音響等により振動板 1が振動すると集光素子 2により収束さ せられている入射光の反射位置が変化し、 同時に発光受光素子 5上に収 束している発散反射光の収束状態が変化し振動幅の変化となって現れ る。
この収束状態の変化量、 即ち、 反射光の入射光量の変化を受光素子 1 4により電気信号の変化として検出することにより振動板 1の音響等 による振動変位量を検出することができる。 この反射光の入射光量の変 化量の検出方法としてはビームサイズ法、 非点収差法、 フーコー法等が 知られている。
なお第 2図は発光受光素子 5を直接、 平面基板 8に接合配置した例を 示したものである。 なお接合配置に当たってはフリップチップボンディ ング等により行うことが可能である。
これにより発光受光素子に対する反射光束分割素子 3の位置精度を 上げることが可能になり、 しかも製造工程を簡単にすることができる。 第 3図は第 1図に示す装置において集光素子 2がマイクロレンズで ある場合に、 このマイク口レンズ上にホログラムを形成して反射光束分 割素子を形成し、 集光素子と反射光束分割素子とを合体させて集光/分 割素子 9を構成したものである。
このようにして形成した集光/分割素子 9を発光受光素子 5が接合 配置された平面基板 1 0に載置することにより装置の構成とァライメ ントとをより簡素化することができる。
第 4図及び第 5図は本発明の他の実施の形態を示す図である。
発光素子 1 3からの出射光を収束する集光素子 1 1 と振動板 1から の発散反射光を収束する収束素子とは別々に設けられこれらの集光素 子 1 1 , 1 2にホログラムレンズを使用している。 発光素子 1 3から放 射された出射光はホログラムレンズによる集光素子 1 1により一次の 回折光として進行方向を変えられ振動板 1上に収束する。
また振動板 1から反射された発散反射光はホログラムレンズによる 集光素子 1 2により一次の回折光として進行方向を変えられて受光素 子 1 4上に収束する。
第 5図は第 4図において受光発光素子 5を直接平面基板 1 0に接合 して構成した場合を示している。
これにより第 4図に示すように発光受光素子 5を受発光部筐体 6に 設置する場合に比べてホログラムレンズ 1 1, 1 2の位置精度を上げる ことが可能となり製造工程をも簡単にすることができる。 第 4図と第 5 図のレンズ 1 1 と 1 2は同一のガラス基板において作成されることが 好ましい。
第 6図は本発明の動作原理を説明するための図で、 第 1図に示す構成 に対応している。
ここで S はホログラムの回折角を、 λ は発光素子 1 3の発振波長を、 Ρはホログラム基準ピッチを、 dは発光素子 1 3と受光素子 1 4との間 の距離を、 は発光受光素子 5とホログラム 3との間の距離をそれぞれ 示す。 ホログラムの回折角は S = s i n—1 ( λ Z P ) で規定され、 発光素子 と受光素子との間の距離は d = z X t & η Θ で規定される。
今、 発光素子の発振波長 λ を 7 8 0 n m、 発光受光素子とホロダラ ム間の距離 zを 0 . 5 mmとした時のホログラム基準ピッチ pに対する 発光素子と受光素子間の距離 dとの関係を表 1に示す。
表 1
Figure imgf000010_0001
従ってホログラムの基準ピッチ Pを変えることにより発光受光素子 5上での収束位置を変えることができる。
なお本発明は光マイクロホン装置に限定されるものではなく光セン サ等についても適応されることは言うまでもない。 発明の効果
以上詳細に説明したように本発明では集光素子により収束された発 散反射光を分割して受光素子に導く反射光束分割素子を設けたことに より受光素子の構成、 配置の自由度が増し、 発光受光素子の製造を簡素 化することができる。
また光学部品点数の削減と装置の小型化を可能にし且つ各光学部品 のァライメントを容易に行うことのできる微小変位検出装置を実現す ることができる

Claims

請求の範囲
1 . 基板上に発光素子と受光素子とを配置し、 前記基板に対向する 位置に設置された振動板に前記発光素子から光を放射し、 前記振動板か らの反射光を前記受光素子で受光して前記振動板の音響等による微小 変位を電気信号として検出する音響等による微小変位検出装置におい て、
前記基板と前記振動板との光路上に、
前記発光素子からの光を収束して前記振動板に導くとともに前記振 動板からの反射光を収束させて前記受光素子に導く集光素子と、 前記集光素子により収束された前記反射光を方向の異なる複数の反 射光の光束に分割して該複数の反射光の光束の少なくとも 1つの光束 を前記受光素子に導く反射光束分割素子と
を設けたことを特徴とする音響等による微小変位検出装置。
2 . 請求項 1に記載の微小変位検出装置において、
前記集光素子として、 平面基板上に設置されたマイクロレンズ又はホ ログラムレンズを用いることを特徴とする音響等による微小変位検出
3 . 請求項 1に記載の微小変位検出装置において、
前記反射光束分割素子として、 平面基板上に作製されたホログラムを 用いることを特徴とする音響等による微小変位検出装置。
4 . 請求項 1に記載の微小変位検出装置において、
前記発光素子と前記受光素子とを同一平面基板上に接合配置するこ とを特徴とする音響等による微小変位検出装置。
5 . 請求項 1に記載の微小変位検出装置において、
前記集光素子と前記反射光束分割素子とを合体させて構成すること を特徴とする音響等による微小変位検出装置。
6 . 基板上に発光素子と受光素子とを配置し、 前記基板に対向する 位置に設置された振動板に前記発光素子から光を放射し、 前記振動板か らの反射光を前記受光素子で受光して前記振動板の音響等による微小 変位を電気信号として検出する微小変位検出装置において、
前記基板と前記振動板との光路上に、
前記発光素子からの光を収束して前記振動板に導く第 1集光素子と、 前記振動板からの反射光を収束して前記受光素子に導く第 2集光素 子と、
を設けたことを特徴とする音響等による微小変位検出装置。
7 . 請求項 6に記載の微小変位検出装置において、
前記第 1集光素子と第 2集光素子として、 同一の平面基板上に作製さ れたホログラムを用いることを特徴とする音響等による微小変位検出
8 . 請求項 6に記載の微小変位検出装置において、
前記発光素子と前記受光素子とを同一平面基板上に接合配置するこ とを特徴とする音響等による微小変位検出装置。
9 . 請求項 1乃至 8のいずれか 1項に記載の微小変位検出装置にお いて、
前記発光素子として、 垂直共振器型面発光レーザ素子を用いることを 特徴とする音響等による微小変位検出装置。
PCT/JP2001/009639 2000-11-10 2001-11-02 Dispositif de detection de deplacement fin a l'aide d'un son ou analogue WO2002039053A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01980971A EP1333245A4 (en) 2000-11-10 2001-11-02 FINE DISPLACEMENT DETECTION DEVICE BY SOUND OR THE SIMILAR
DE0001333245T DE01980971T1 (de) 2000-11-10 2001-11-02 Fein-verschiebungs-detektionseinrichtung durch schall oder dergleichen
US10/416,227 US7277642B2 (en) 2000-11-10 2001-11-02 Fine displacement detection device by sound or the like

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000344107A JP3522212B2 (ja) 2000-11-10 2000-11-10 音響等による微小変位検出装置
JP2000-344107 2000-11-10

Publications (1)

Publication Number Publication Date
WO2002039053A1 true WO2002039053A1 (fr) 2002-05-16

Family

ID=18818360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009639 WO2002039053A1 (fr) 2000-11-10 2001-11-02 Dispositif de detection de deplacement fin a l'aide d'un son ou analogue

Country Status (5)

Country Link
US (1) US7277642B2 (ja)
EP (1) EP1333245A4 (ja)
JP (1) JP3522212B2 (ja)
DE (1) DE01980971T1 (ja)
WO (1) WO2002039053A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7134343B2 (en) 2003-07-25 2006-11-14 Kabushiki Kaisha Toshiba Opto-acoustoelectric device and methods for analyzing mechanical vibration and sound
JP4112505B2 (ja) * 2004-01-14 2008-07-02 株式会社東芝 光マイクロフォン及びその製造方法
JP2006170740A (ja) * 2004-12-15 2006-06-29 Kenwood Corp 変位検出装置、マイクロフォン装置、および、変位検出方法
US7355723B2 (en) * 2006-03-02 2008-04-08 Symphony Acoustics, Inc. Apparatus comprising a high-signal-to-noise displacement sensor and method therefore
US7583390B2 (en) * 2006-03-02 2009-09-01 Symphony Acoustics, Inc. Accelerometer comprising an optically resonant cavity
US7359067B2 (en) * 2006-04-07 2008-04-15 Symphony Acoustics, Inc. Optical displacement sensor comprising a wavelength-tunable optical source
US7551295B2 (en) * 2006-06-01 2009-06-23 Symphony Acoustics, Inc. Displacement sensor
US7894618B2 (en) * 2006-07-28 2011-02-22 Symphony Acoustics, Inc. Apparatus comprising a directionality-enhanced acoustic sensor
US7626707B2 (en) * 2007-10-29 2009-12-01 Symphony Acoustics, Inc. Dual cavity displacement sensor
US8007609B2 (en) * 2007-10-31 2011-08-30 Symphony Acoustics, Inc. Parallel plate arrangement and method of formation
US8345910B2 (en) * 2007-11-18 2013-01-01 Arizona Board Of Regents Microphone devices and methods for tuning microphone devices
CN103154683A (zh) * 2011-03-22 2013-06-12 松下电器产业株式会社 光学麦克风
US20120321322A1 (en) * 2011-06-16 2012-12-20 Honeywell International Inc. Optical microphone
US8594507B2 (en) * 2011-06-16 2013-11-26 Honeywell International Inc. Method and apparatus for measuring gas concentrations
WO2013027373A1 (ja) * 2011-08-25 2013-02-28 パナソニック株式会社 光マイクロホン
CN103900679B (zh) * 2012-12-26 2018-07-20 东莞市晶苑电子有限公司 发声装置声波大小的检测装置
JP2014206437A (ja) * 2013-04-12 2014-10-30 住友重機械工業株式会社 グラビア印刷機用マークセンサ
NO20130884A1 (no) * 2013-06-21 2014-12-22 Sinvent As Sensorelement med optisk forskyvning
CN103925986A (zh) * 2014-04-18 2014-07-16 深圳市蔚科电子科技开发有限公司 一种鼓调音方法及鼓调音器
US20150365770A1 (en) * 2014-06-11 2015-12-17 Knowles Electronics, Llc MEMS Device With Optical Component
US9510110B2 (en) * 2014-07-07 2016-11-29 Apple Inc. Open top back plate optical microphone
US9510074B2 (en) 2014-07-07 2016-11-29 Apple Inc. Grating only optical microphone
JP6432260B2 (ja) * 2014-09-30 2018-12-05 富士通株式会社 振動検出部品、これを用いた音響装置及び情報機器
EP3742757B1 (en) * 2019-05-22 2022-12-28 ams International AG Optical transducer and method for measuring displacement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11296873A (ja) * 1998-04-08 1999-10-29 Victor Co Of Japan Ltd 光ピックアップ装置、エラー検出装置及びその検出方法
JP2000287286A (ja) * 1999-03-31 2000-10-13 Kenwood Corp 光マイクロフォン装置
JP2001119796A (ja) * 1999-10-15 2001-04-27 Kenwood Corp 光マイクロフォン素子および光マイクロフォン装置
JP2001204097A (ja) * 2000-01-17 2001-07-27 Kenwood Corp 音響電気変換装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262884A (en) * 1991-10-09 1993-11-16 Micro-Optics Technologies, Inc. Optical microphone with vibrating optical element
WO1994006052A1 (en) * 1992-09-10 1994-03-17 Fujitsu Limited Optical circuit system and its constituents
JP3029541B2 (ja) * 1994-12-19 2000-04-04 シャープ株式会社 光ピックアップ装置
US5737084A (en) * 1995-09-29 1998-04-07 Takaoka Electric Mtg. Co., Ltd. Three-dimensional shape measuring apparatus
JPH10294527A (ja) 1997-04-18 1998-11-04 Seiko Epson Corp モノリシック受発光素子およびその製造方法およびそれを用いた光ピックアップ
US6301034B1 (en) * 1997-10-22 2001-10-09 John R. Speciale Pulsed laser microphone
DE19839305B4 (de) * 1998-08-28 2009-01-15 Siemens Ag Reflexlichtschranke
US6154551A (en) * 1998-09-25 2000-11-28 Frenkel; Anatoly Microphone having linear optical transducers
EP1022731B1 (en) * 1999-01-22 2002-04-10 Konica Corporation Optical pickup apparatus and information recording/reproducing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11296873A (ja) * 1998-04-08 1999-10-29 Victor Co Of Japan Ltd 光ピックアップ装置、エラー検出装置及びその検出方法
JP2000287286A (ja) * 1999-03-31 2000-10-13 Kenwood Corp 光マイクロフォン装置
JP2001119796A (ja) * 1999-10-15 2001-04-27 Kenwood Corp 光マイクロフォン素子および光マイクロフォン装置
JP2001204097A (ja) * 2000-01-17 2001-07-27 Kenwood Corp 音響電気変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1333245A4 *

Also Published As

Publication number Publication date
US7277642B2 (en) 2007-10-02
EP1333245A4 (en) 2008-10-29
EP1333245A1 (en) 2003-08-06
JP2002148018A (ja) 2002-05-22
JP3522212B2 (ja) 2004-04-26
US20040099799A1 (en) 2004-05-27
DE01980971T1 (de) 2004-04-22

Similar Documents

Publication Publication Date Title
WO2002039053A1 (fr) Dispositif de detection de deplacement fin a l'aide d'un son ou analogue
US5107477A (en) Integrated optical pick-up device
JPWO2002048646A1 (ja) 光学式距離センサ
JP2003202205A5 (ja)
JP4692329B2 (ja) 光無線通信装置
JP3828755B2 (ja) 変位光量変換装置
TW594087B (en) Optical module and method of forming the optical module
JP2000147311A (ja) 光導波路結合装置における位置合わせ方法及びそれを用いて実現される光導波路結合装置
JPH04139628A (ja) 光半導体装置およびその製造方法
KR100481735B1 (ko) 집적 광학 부재 및 광 픽업 장치
JP3939759B2 (ja) 傾斜角度測定用光学センサ
KR101533690B1 (ko) 모듈형 광학 장치
JP3368128B2 (ja) 光軸ずれ補正装置
US5091982A (en) Waveguide type optical detection apparatus
JP4249875B2 (ja) 音響電気変換装置
JPH0619846B2 (ja) 光情報処理装置
JP3481179B2 (ja) 音響電気変換装置
JP2000113489A (ja) 光学部品及び光ピックアップ装置及び光軸傾き調整方法及び光軸傾き調整装置
JPH07169071A (ja) 焦点エラー検出用光ピックアップシステム
JPS6334104Y2 (ja)
JP3222295B2 (ja) 光学式変位センサ
JP5670664B2 (ja) 変位検出装置
JP2002319178A (ja) 光学装置
KR20030015785A (ko) 광픽업 장치
TW482890B (en) Optical distance sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001980971

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10416227

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001980971

Country of ref document: EP