WO2002045628A1 - Posterior expandable fusion cage - Google Patents

Posterior expandable fusion cage Download PDF

Info

Publication number
WO2002045628A1
WO2002045628A1 PCT/US2001/041801 US0141801W WO0245628A1 WO 2002045628 A1 WO2002045628 A1 WO 2002045628A1 US 0141801 W US0141801 W US 0141801W WO 0245628 A1 WO0245628 A1 WO 0245628A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion
expansion member
anterior
cage
lower walls
Prior art date
Application number
PCT/US2001/041801
Other languages
French (fr)
Inventor
Roger P. Jackson
Original Assignee
Jackson Roger P
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jackson Roger P filed Critical Jackson Roger P
Priority to AU2001285456A priority Critical patent/AU2001285456A1/en
Publication of WO2002045628A1 publication Critical patent/WO2002045628A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/447Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages substantially parallelepipedal, e.g. having a rectangular or trapezoidal cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2/30744End caps, e.g. for closing an endoprosthetic cavity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30143Convex polygonal shapes hexagonal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30507Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a threaded locking member, e.g. a locking screw or a set screw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30537Special structural features of bone or joint prostheses not otherwise provided for adjustable
    • A61F2002/30538Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting angular orientation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30537Special structural features of bone or joint prostheses not otherwise provided for adjustable
    • A61F2002/30556Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30593Special structural features of bone or joint prostheses not otherwise provided for hollow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • A61F2002/30616Sets comprising a plurality of prosthetic parts of different sizes or orientations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30774Apertures or holes, e.g. of circular cross section internally-threaded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30777Oblong apertures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • A61F2002/30785Plurality of holes parallel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • A61F2002/30789Plurality of holes perpendicular with respect to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30904Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves serrated profile, i.e. saw-toothed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2002/448Joints for the spine, e.g. vertebrae, spinal discs comprising multiple adjacent spinal implants within the same intervertebral space or within the same vertebra, e.g. comprising two adjacent spinal implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0004Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
    • A61F2250/0006Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable for adjusting angular orientation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0004Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
    • A61F2250/0009Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable for adjusting thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00017Iron- or Fe-based alloys, e.g. stainless steel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys

Definitions

  • the present application is directed to an expandable interbody device which is inserted from a posterior approach between adjacent vertebrae in the spine of a patient and which is also selectively anteriorly expandable.
  • Fusion cages as well as other related interbody devices, are frequently utilized in spinal surgery between vertebrae of a patient.
  • one or a pair of interbody devices are placed between the vertebrae to provide support and promote fusion between vertebrae where such is necessary due to disease, injury, general deterioration or a congenital problem.
  • the anterior sides or fronts of the vertebrae also require additional spacing in comparison to posterior sides to correct curvature of the spine .
  • Interbody devices which provide for anterior greater expansion are generally referred to as interbody expansion devices or expansion fusion cages. They are specifically expandable on the anterior end thereof such that the fronts of the adjacent vertebrae are more greatly spaced than the rears . It is noted that interbody devices, such as fusion cages, may be inserted into the intervertebral space anteriorly or posteriorly. That is, in some instances the surgery is performed from the front and sometimes from the rear of the patient.
  • the present application is directed to types of devices that are inserted posteriorly or from the rear of the patient and are generally referred to as posterior interbody devices or posterior fusion cages.
  • Interbody devices typically must be very strong along the entire length of the top and bottom walls of the device that engage the vertebrae. In particular, in the turning and twisting of everyday life, substantial forces can be exerted against the interbody devices and, in particular, against the anterior end thereof. This is even more so when the devices are subjected to unusual forces during an accident or the like.
  • Some types of interbody devices in the prior art have provided for anterior expansion, but have not well supported the anterior end of the upper and lower walls .
  • Such prior art devices have provided some kind of a wedge or rod that is urged rearward along a ramp of the device in such a way as to expand the anterior portion subsequent to it being placed between the vertebrae. Because the wedge moves rearwardly or posteriorly toward the back wall of the device in order to spread the walls, a lever arm of unsupported wall is formed between the front edge of each wall and the position where the wedge engages the walls. Substantial forces can act on this lever arm.
  • the interbody devices poorly supported along the unsupported wall can fail due to forces exerted along the lever arm in the region.
  • it is desirable for the interbody devices to not expand sideways, while the devices are expanding vertically. This need arises because it is often necessary to put interbody devices in close proximity to one another in side by side relationship.
  • Interbody devices such as fusion cages
  • Interbody devices are quite expensive to produce in general . This is because the body of the devices must be made to very high tolerances in order to provide reproducible results and to provide the strength necessary to support the spine of the person. Because the surgeon is not always certain exactly which expansion size interbody device will be required until the surgery site is opened, it has been necessary for the surgeon to have on hand many different sizes of fusion cages and, in some cases, different types of fusion cages, such as expandable and non-expandable, so as to insure that the necessary item will be present when the surgery is performed.
  • an interbody device that is modular in nature and easily adjusted to many degrees of expansion and that it may be used as efficiently with no expansion as with expansion, so that the same body can be used with different degrees of expansion.
  • Many of the expandable types of prior art fusion cages cannot be used as non- expandable type cages.
  • a posterior interbody device or fusion cage for use between a pair of adjacent vertebrae in order to provide support and/or promote growth between the vertebrae that have been destabilized due to injury, illness or the like.
  • the interbody device includes a body which may be rectangular in shape in which case the device is slid or driven between the vertebrae or generally cylindrical in shape and often threaded, in which case the device is screwed between the vertebrae.
  • the body has an upper wall and a lower wall that are connected by a rear or posterior wall in a somewhat U-shaped configuration.
  • the body is hinged about the rear wall by utilization of a material of construction that is flexible, such as stainless steel or titanium, so that the rear wall functions like a spring in conjunction with the upper and lower walls, so that the upper and lower walls are able to pivot relative to each other at the rear, when a spreading force is applied to the walls, which causes the anterior ends of the upper and lower walls rotate from an initial non-expanded configuration anteriorly to an expanded configuration anteriorly.
  • the upper and lower walls are initially in a non-expanded state wherein the upper and lower walls are generally parallel and subsequently may be expanded by a plurality of expansion members to various expanded states wherein the upper and lower walls are at angles relative to each other which angles increase with expansion.
  • the upper and lower walls also have legs on either side of the anterior end thereof that face toward similarly positioned legs on the other wall and which abut against each other when the device is in the non- expanded configuration thereof, so the cage can be utilized operably in a non-expanded configuration.
  • An aperture is formed between the legs and preferably extends through the body in such a manner as to form an interior chamber suitable for receiving bone chips or other growth promoting media.
  • the body also preferably has upper and lower windows which communicate with the chamber and open onto the surface of the vertebrae, when in use, so as to promote growth of bone through the interbody device.
  • the rear wall of the body includes a threaded bore .
  • An expansion member preferably having a shape similar to a large headed bolt, is utilized to apply spreading force to the upper and lower walls so as to expand the body anterior end.
  • the expansion member includes an elongate shaft having a rear portion threaded so as to be operably and threadably received in the rear wall bore and has a head at an opposite end.
  • the shank includes a stop, preferably adjacent the threaded rear portion abutting the rear wall and being of enlarged diameter compared to and adjacent to the threaded rear portion, which insures that the expansion member is properly positioned during use.
  • the expansion member head varies in diameter depending on the expansion desired.
  • the expansion head is sized, and shaped in position so as to engage a wedge mating or ramp surface located anteriorly on facing surfaces of each of the lower and upper walls.
  • the expansion head first engages the mating surfaces on the walls near the posterior end of the ramp surface and then the mating surface slides along the ramp surface as the expansion member is screwed into the rear wall bore.
  • t e ramp may be associated with the wall and the expansion member then has an edge or surface that mates with and slides along such a ramp in the wall . In this manner the anterior end of the body is forced to spread or space vertically until a forward or anterior end of the ramp surface is reached.
  • each interbody device is normally provided with a set or kit of expansion members wherein each member of the set provides a different degree of spacing of the anterior end of the interbody device, for example, with one half or one millimeter differences in spacing between each size.
  • a surgeon can utilize the interbody device without an expansion member or can alternatively select from a number of expansion members with different sized heads to provide appropriate expansion of the anterior end of the interbody device. Normally, the surgeon would start with no or minimal expansion and then increase incrementally toward greater expansions until the surgeon is satisfied with the expansion provided.
  • the objects of the present invention are: to provide a posterior interbody device or fusion cage for use between a pair of vertebrae that is expandable; to provide such an interbody device that has a body and at least one expansion member wherein the expansion member includes a head that engages an anterior portion of upper and lower walls of the body so as to spread the body from the anterior end thereof; to provide such a device wherein a single body may be utilized either without an expansion member or in conjunction with any of an alternative group of modular expansion members, each producing a different degree of expansion and contained in a kit of expansion members; to provide such a device wherein an expansion member that produces one degree of expansion can be screwed into the body such that the body expands and thereafter the expansion member can be removed and another expansion member producing a greater degree of expansion can be subsequently inserted; to provide such a device wherein the expansion members include an anterior or frontward head that rests on opposed anterior surfaces of the upper and lower body walls subsequent to full insertion of the expansion member; to provide such a device wherein the device expands vertically
  • Figure 1 is a perspective and exploded view of an expandable, posteriorly inserted interbody fusion device, illustrating a body of the device in a non-expanded configuration and a plurality of alternative expansion members.
  • Figure 2 is a top plan view of the body in the non- expanded configuration.
  • Figure 3 is a cross-sectional view of the body, taken along line 3-3 of Fig. 2.
  • Figure 4 is a cross-sectional view of the body, taken along line 4-4 of Fig. 2, and a non expanding member.
  • Figure 5 is a cross-sectional view of the body, similar to the view taken along line 4-4 of Fig. 2, with the non-expansion member inserted therein and located between two vertebrae.
  • Figure 6 is a cross-sectional view of the body, similar to the view taken along line 4-4 of Fig. 2, with a first expansion member partially inserted therein prior to expansion and located between the vertebrae.
  • Figure 7 is a cross-sectional view of the body, similar to the view taken along line 4-4 of Fig. 2, with the first expansion member fully inserted so that the body is expanded and located between the vertebrae.
  • Figure 8 is a front elevational view of the body with the first expansion member fully inserted therein.
  • Figure 9 is a cross-sectional view of the body similar to the view taken along line 4-4 of Fig. 2, with a second expansion member partially inserted therein prior to expansion and located between the vertebrae.
  • Figure 10 is a cross-sectional view of the body similar to the view taken along line 4-4 of Fig. 2, with the second member fully inserted therein and located between the vertebrae.
  • Figure 11 is a cross-sectional view of the body similar to the view taken along line 4-4 of Fig. 2, with a third expansion member partially inserted therein prior to expansion and located between the vertebrae.
  • Figure 12 is a cross-sectional view of the body similar to the view taken along line 4-4 of Fig. 2, with the third expansion member partially inserted therein with partial expansion of the body and located between the vertebrae.
  • Figure 13 is a cross-sectional view of the body similar to the view taken along line 4-4 of Fig. 2, with the third expansion member fully inserted such that the body is anteriorly expanded and located between the vertebrae .
  • Figure 14 is a perspective view of a pair of the fusion devices located between the vertebrae and being anteriorly expanded.
  • the reference numeral 1 generally designates an interbody device or fusion cage in accordance with the present invention having a body 5.
  • the device 1 also includes a non-expansion member 6 and a set of expansion members, including expansion members 7, 8 and 9.
  • the non-expansion member 6 and the expansion members 7, 8 and 9 are used individually and interchangeably or modularly in the body 5, but only one at a time.
  • the expansion member 9 is the largest of the set and is seen in Figs. 1 through 5 as well in Figs. 8 and 8a.
  • the expansion member 7 is the smallest of the group and is seen in Figs. 6 and 6a.
  • the expansion members could each differ by one half, one, or two millimeters in diameter or by other dimensions as desired with additional larger sizes also as desired.
  • the kit may include only two expansion members.
  • the body 5 includes a top or upper wall 15, a bottom or lower wall 16 and a posterior or rear wall 17.
  • the upper wall 15 and lower wall 16 are joined near the posterior ends thereof to the rear wall 17.
  • posterior and anterior pertain to configurations in the human body and posterior would be to the left in Fig. 2, while anterior would be to the right in Fig. 2.
  • the upper wall 15 and lower wall 16 are initially in substantially parallel relationship to one another and are urged to retain that position or configuration by the springy or resilient nature of materials of construction thereof which maintain the non-expanded shape thereof unless force is applied to change that shape through expansion members 7, 8 or 9.
  • the body 5 is constructed of a bio- compatible metal, such as stainless steel or titanium or other material, and the rear wall acts as a spring to try to maintain the upper wall and lower wall 15 and 16 in parallel relationship while also functioning as a hinge, when the upper and lower walls 15 and 16 are anteriorly forced apart by application of spreading force to the walls 15 and 16.
  • the upper and lower walls 15 and 16 have bone engaging outer surfaces 20 and 21 respectively which are serrated in such a manner as to bite into the bone of vertebrae 24 and 25 respectively, after being placed therebetween.
  • the upper and lower walls 15 and 16 also have fenestrations or windows 28 and 29 respectively. Although the present embodiment is shown with a pair of each of the windows 28 and 29, it is foreseen in some circumstances that no windows would be provided and in other circumstances different members of windows may be provided in the walls 15 and 16.
  • Near anterior ends 30 and 31 of each of the walls 15 and 16 are legs 32 and 33 respectively.
  • each of the walls 15 and 16 extend toward one another and abut or almost abut when the body 5 is in a non-expanded configuration thereof, such as is shown in Fig. 1, so as to maintain the non-expanded configuration of the walls 15 and 16 when a load is applied thereto. In this manner the front or anterior ends 30 and 31 of the walls 15 and 16 are supported by the legs 32 and 33 in the non-expanded configuration.
  • Each ramp 38 and 39 has a semicircular cross-section (see fig. 3) and slopes from the facing sides of walls 15 and 16 to facing support surfaces 41 and 42 on the facing sides of the legs 32 and 33.
  • the support surfaces 41 and 42 shown in the illustrated embodiment are generally flat, but it is foreseen that the support surfaces could have a central depression or the like to help guide and stabilize the expansion member 7, 8 and 9.
  • Located along and between the walls 15 and 16 are a pair of side windows 45 and 46.
  • the rear wall 17 includes a centrally located threaded bore 50.
  • a bone chip receiving cavity 51 is located between the walls 15, 16 and 17.
  • the non-expansion member 6 has a plug body 53 with a threaded outer surface 54 sized and shaped to be received in the threaded bore 50.
  • the plug body 53 also has a rear flange that is larger in diameter than the surface 54 and operably functions as a stop limiting penetration of the plug body relative to the threaded bore 50.
  • each of the expansion members 7, 8 and 9 include an elongate shank 60 having a threaded posterior portion 61 that is sized and shaped to be received in the rear wall threaded bore 50 and that is similar in size and shape to the plug body 53.
  • the posterior portion 61 has a larger diameter than the remainder of the shank 60 which reduces the space occupied by the remainder of the shank 60, but both can be the same size in certain embodiments.
  • each shank 60 also has a stop 64 that is effectively a region of increased diameter located at the posterior end of the threaded posterior portion 61 thereof.
  • the stops 64 insure that the expansion members 7, 8 and 9 will be properly positioned when fully installed.
  • Each of the expansion members 7, 8 and 9 also include a head 66, 67 and 68 respectively.
  • the heads 66, 67, and 68 each include an outer cylindrical shaped surface 69, 70 and 71 respectively coaxially attached to the shank 60 thereof.
  • one of the cylindrical shaped surfaces 69, 70 or 71 as the case may be first engages the ramps 38 and 39 on the anterior ends of the walls 15 and 16. While the present embodiment surfaces 69, 70 and 71 have a forward edge, it is foreseen that an angled conical shaped surface could function for this purpose also in which case the ramps 38 and 39 could be more edge like in nature.
  • the cylindrical surfaces 69, 70 or 71 ultimately engage and rest on the support surfaces 41 and 42. As seen in Fig. 1, the heads 66, 67 and 68 of each of the expansion members 7, 8 and 9 increase progressively in diameter.
  • the expansion members 7, 8 and 9 provide increasing expansion of the anterior ends 30 and 31 of the body 5, as is seen in Figs. 7, 10 and 13 respectively, when fully inserted into the body 5.
  • a hexagonal bore 73, 74 or 75 is provided in the rear of each of the members 7, 8 and 9 and is sized and shaped to mate with an Allen wrench driver for rotating and torquing the members 7, 8 and 9.
  • the pad or disc located between a pair of vertebrae 24 and 25 is removed or partially removed and a pair of the bodies 5 are inserted by a posterior approach between the vertebrae 24 and 25. Once the bodies 5 have been positioned between the vertebrae 24 and 25 the surgeon checks to determine whether additional anterior expansion is desirable.
  • expansion member 7 is inserted in each of the bodies 5 and screwed into place. As the members 7 are screwed inwardly, the heads 69 thereof engage the ramp surfaces 38 and 39 of the upper and lower walls 15 and 16 and space the anterior ends 30 and 31 of the upper and lower walls 15 and 16 respectively. The surgeon then determines whether or not additional anterior expansion is required. If further expansion is needed, the first expansion member 7 is removed from each of the bodies 5 and the second expansion member 8 of somewhat larger diameter is installed. This process is continued until the surgeon is satisfied that the proper expansion has been achieved. If no expansion is initially needed the non-expansion member 6 is installed in the bore 50. It is to be understood that while certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.

Abstract

An interbody device (1) for use between a pair of adjacent vertebrae (24, 25) includes a body (5) and at least one expansion member (7, 8, 9). The body has upper (15) and lower (16) walls that are joined by a rear wall (17) that functions as a spring hinge. The walls have anterior or distal ends (30, 31) that are supported in a non-expanded configuration by spaced feet that project out from the walls (15, 16). The expansion member (7, 8, 9) is elongate and has a threaded portion (61) that is threadably received in the rear wall (17). Each expansion member also includes a head (66, 67, 68) having an anterior wedge portion that engages the anterior ends of the walls and forces the walls (15, 16) apart as the expansion member (7, 8, 9) is screwed into the body (5). A surface (69, 70, 71) engages the expansion member (7, 8, 9) after expansion and supports the walls (15, 16) during usage. Preferably, the expansion member (7, 8, 9) is only one of a plurality of expansion members found in a kit which vary with respect to the diameter of the head thereof.

Description

POSTERIOR EXPANDABLE FUSION CAGE
Background of the Invention
The present application is directed to an expandable interbody device which is inserted from a posterior approach between adjacent vertebrae in the spine of a patient and which is also selectively anteriorly expandable. Fusion cages, as well as other related interbody devices, are frequently utilized in spinal surgery between vertebrae of a patient. In particular, one or a pair of interbody devices are placed between the vertebrae to provide support and promote fusion between vertebrae where such is necessary due to disease, injury, general deterioration or a congenital problem. Frequently, the anterior sides or fronts of the vertebrae also require additional spacing in comparison to posterior sides to correct curvature of the spine . Therefore, it is often desirable to use an anteriorly expandable interbody device so that the vertebrae are spread or spaced more on the anterior sides thereof than on the posterior sides thereof. It is seldom if ever desirable to space the posterior sides of the vertebrae more than the anterior sides thereof. Interbody devices which provide for anterior greater expansion are generally referred to as interbody expansion devices or expansion fusion cages. They are specifically expandable on the anterior end thereof such that the fronts of the adjacent vertebrae are more greatly spaced than the rears . It is noted that interbody devices, such as fusion cages, may be inserted into the intervertebral space anteriorly or posteriorly. That is, in some instances the surgery is performed from the front and sometimes from the rear of the patient. The present application is directed to types of devices that are inserted posteriorly or from the rear of the patient and are generally referred to as posterior interbody devices or posterior fusion cages. Interbody devices typically must be very strong along the entire length of the top and bottom walls of the device that engage the vertebrae. In particular, in the turning and twisting of everyday life, substantial forces can be exerted against the interbody devices and, in particular, against the anterior end thereof. This is even more so when the devices are subjected to unusual forces during an accident or the like. Some types of interbody devices in the prior art have provided for anterior expansion, but have not well supported the anterior end of the upper and lower walls . Such prior art devices have provided some kind of a wedge or rod that is urged rearward along a ramp of the device in such a way as to expand the anterior portion subsequent to it being placed between the vertebrae. Because the wedge moves rearwardly or posteriorly toward the back wall of the device in order to spread the walls, a lever arm of unsupported wall is formed between the front edge of each wall and the position where the wedge engages the walls. Substantial forces can act on this lever arm. The interbody devices poorly supported along the unsupported wall can fail due to forces exerted along the lever arm in the region. Secondly, it is desirable for the interbody devices to not expand sideways, while the devices are expanding vertically. This need arises because it is often necessary to put interbody devices in close proximity to one another in side by side relationship. Sideways expansion may prevent desirable positioning of the interbody devices and may also interfere with positioning of bone chips for grafting between the interbody devices. Some prior art devices expand radially which expands the devices vertically, but also sideways. When installing interbody devices, such as fusion cages, a surgeon may also find that it is necessary to have more anterior expansion than was initially anticipated in order to correct spinal curvature. Consequently, it is often desirable to be able to increase the expansion in increments that allow the surgeon to determine whether expansion is sufficient after each incremental advance in expansion and then further increase the expansion, if necessary. Therefore, it is desirable to have a kit that provides for alternative expansion devices, especially where such modular expansion devices can each be screwed into and secured in place in the cage so as to resist inadvertent removal during use . Interbody devices, such as fusion cages, are quite expensive to produce in general . This is because the body of the devices must be made to very high tolerances in order to provide reproducible results and to provide the strength necessary to support the spine of the person. Because the surgeon is not always certain exactly which expansion size interbody device will be required until the surgery site is opened, it has been necessary for the surgeon to have on hand many different sizes of fusion cages and, in some cases, different types of fusion cages, such as expandable and non-expandable, so as to insure that the necessary item will be present when the surgery is performed. Consequently, it is also desirable to be able to provide an interbody device that is modular in nature and easily adjusted to many degrees of expansion and that it may be used as efficiently with no expansion as with expansion, so that the same body can be used with different degrees of expansion. Many of the expandable types of prior art fusion cages cannot be used as non- expandable type cages. Further, it is desirable for a single fusion cage body to be utilized for virtually any degree of expansion desired or foreseeable by simply providing a set of comparatively much less expensive expansion members in a kit, any of which expansion members may be used in conjunction with the body to provide for various and different degrees of expansion and each of which may be removed after insertion into a fusion cage body and replaced with a different expansion member without removing the cage body from between vertebrae.
Summary of the Invention
A posterior interbody device or fusion cage for use between a pair of adjacent vertebrae in order to provide support and/or promote growth between the vertebrae that have been destabilized due to injury, illness or the like. The interbody device includes a body which may be rectangular in shape in which case the device is slid or driven between the vertebrae or generally cylindrical in shape and often threaded, in which case the device is screwed between the vertebrae. The body has an upper wall and a lower wall that are connected by a rear or posterior wall in a somewhat U-shaped configuration. The body is hinged about the rear wall by utilization of a material of construction that is flexible, such as stainless steel or titanium, so that the rear wall functions like a spring in conjunction with the upper and lower walls, so that the upper and lower walls are able to pivot relative to each other at the rear, when a spreading force is applied to the walls, which causes the anterior ends of the upper and lower walls rotate from an initial non-expanded configuration anteriorly to an expanded configuration anteriorly. In particular, the upper and lower walls are initially in a non-expanded state wherein the upper and lower walls are generally parallel and subsequently may be expanded by a plurality of expansion members to various expanded states wherein the upper and lower walls are at angles relative to each other which angles increase with expansion. The upper and lower walls also have legs on either side of the anterior end thereof that face toward similarly positioned legs on the other wall and which abut against each other when the device is in the non- expanded configuration thereof, so the cage can be utilized operably in a non-expanded configuration. An aperture is formed between the legs and preferably extends through the body in such a manner as to form an interior chamber suitable for receiving bone chips or other growth promoting media. The body also preferably has upper and lower windows which communicate with the chamber and open onto the surface of the vertebrae, when in use, so as to promote growth of bone through the interbody device. The rear wall of the body includes a threaded bore . An expansion member, preferably having a shape similar to a large headed bolt, is utilized to apply spreading force to the upper and lower walls so as to expand the body anterior end. The expansion member includes an elongate shaft having a rear portion threaded so as to be operably and threadably received in the rear wall bore and has a head at an opposite end. The shank includes a stop, preferably adjacent the threaded rear portion abutting the rear wall and being of enlarged diameter compared to and adjacent to the threaded rear portion, which insures that the expansion member is properly positioned during use. The expansion member head varies in diameter depending on the expansion desired. The expansion head is sized, and shaped in position so as to engage a wedge mating or ramp surface located anteriorly on facing surfaces of each of the lower and upper walls. In particular, the expansion head first engages the mating surfaces on the walls near the posterior end of the ramp surface and then the mating surface slides along the ramp surface as the expansion member is screwed into the rear wall bore. Alternatively, t e ramp may be associated with the wall and the expansion member then has an edge or surface that mates with and slides along such a ramp in the wall . In this manner the anterior end of the body is forced to spread or space vertically until a forward or anterior end of the ramp surface is reached. The ramp surface is adjacent to a support surface that is generally parallel to an axis of rotation of the expansion member and transfers the support of the upper and lower walls to the support surface as the expansion member is further rotated clockwise and advanced into the rear wall bore. Continued advancement of the expansion member to the stop causes the head to pass between the anterior ends of the upper and lower walls and to be fully supported by opposed surfaces to thereafter provide support to the upper and lower walls at the anterior ends ' thereof and keep the upper and lower walls in a preselected spaced relationship relative to each other. Finally, in use each interbody device is normally provided with a set or kit of expansion members wherein each member of the set provides a different degree of spacing of the anterior end of the interbody device, for example, with one half or one millimeter differences in spacing between each size. In this manner, a surgeon can utilize the interbody device without an expansion member or can alternatively select from a number of expansion members with different sized heads to provide appropriate expansion of the anterior end of the interbody device. Normally, the surgeon would start with no or minimal expansion and then increase incrementally toward greater expansions until the surgeon is satisfied with the expansion provided.
Objects and Advantages of the Invention
Therefore, the objects of the present invention are: to provide a posterior interbody device or fusion cage for use between a pair of vertebrae that is expandable; to provide such an interbody device that has a body and at least one expansion member wherein the expansion member includes a head that engages an anterior portion of upper and lower walls of the body so as to spread the body from the anterior end thereof; to provide such a device wherein a single body may be utilized either without an expansion member or in conjunction with any of an alternative group of modular expansion members, each producing a different degree of expansion and contained in a kit of expansion members; to provide such a device wherein an expansion member that produces one degree of expansion can be screwed into the body such that the body expands and thereafter the expansion member can be removed and another expansion member producing a greater degree of expansion can be subsequently inserted; to provide such a device wherein the expansion members include an anterior or frontward head that rests on opposed anterior surfaces of the upper and lower body walls subsequent to full insertion of the expansion member; to provide such a device wherein the device expands vertically and not horizontally or side to side; to provide such a device including a central cavity and windows to allow for packing with bone chips or other growth media so as to promote fusion between adjacent vertebrae exposed to the windows; to provide such a device wherein a single body may be alternatively utilized with a number of different expansion members, such that multiple different sized bodies are not required to be maintained in stock during a surgical operation; to provide such a device that does not cantilever the walls over a wedge that is medially located with respect to the body, but rather positions the expansion head, ramp surfaces and the support surfaces at or near the anterior end of the body at all times during expansion, so as to continuously provide support to anterior ends of the walls; and to provide such a device which is relatively inexpensive to produce, extremely easy to use and especially well adapted for the intended usage thereof. Other objects and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention. The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof .
Brief Description of the Drawings
Figure 1 is a perspective and exploded view of an expandable, posteriorly inserted interbody fusion device, illustrating a body of the device in a non-expanded configuration and a plurality of alternative expansion members. Figure 2 is a top plan view of the body in the non- expanded configuration. Figure 3 is a cross-sectional view of the body, taken along line 3-3 of Fig. 2. Figure 4 is a cross-sectional view of the body, taken along line 4-4 of Fig. 2, and a non expanding member. Figure 5 is a cross-sectional view of the body, similar to the view taken along line 4-4 of Fig. 2, with the non-expansion member inserted therein and located between two vertebrae. Figure 6 is a cross-sectional view of the body, similar to the view taken along line 4-4 of Fig. 2, with a first expansion member partially inserted therein prior to expansion and located between the vertebrae. Figure 7 is a cross-sectional view of the body, similar to the view taken along line 4-4 of Fig. 2, with the first expansion member fully inserted so that the body is expanded and located between the vertebrae. Figure 8 is a front elevational view of the body with the first expansion member fully inserted therein. Figure 9 is a cross-sectional view of the body similar to the view taken along line 4-4 of Fig. 2, with a second expansion member partially inserted therein prior to expansion and located between the vertebrae. Figure 10 is a cross-sectional view of the body similar to the view taken along line 4-4 of Fig. 2, with the second member fully inserted therein and located between the vertebrae. Figure 11 is a cross-sectional view of the body similar to the view taken along line 4-4 of Fig. 2, with a third expansion member partially inserted therein prior to expansion and located between the vertebrae. Figure 12 is a cross-sectional view of the body similar to the view taken along line 4-4 of Fig. 2, with the third expansion member partially inserted therein with partial expansion of the body and located between the vertebrae. Figure 13 is a cross-sectional view of the body similar to the view taken along line 4-4 of Fig. 2, with the third expansion member fully inserted such that the body is anteriorly expanded and located between the vertebrae . Figure 14 is a perspective view of a pair of the fusion devices located between the vertebrae and being anteriorly expanded.
Detailed Description of the Invention
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure. The reference numeral 1 generally designates an interbody device or fusion cage in accordance with the present invention having a body 5. The device 1 also includes a non-expansion member 6 and a set of expansion members, including expansion members 7, 8 and 9. The non-expansion member 6 and the expansion members 7, 8 and 9 are used individually and interchangeably or modularly in the body 5, but only one at a time. The expansion member 9 is the largest of the set and is seen in Figs. 1 through 5 as well in Figs. 8 and 8a. The expansion member 7 is the smallest of the group and is seen in Figs. 6 and 6a. Although only three expansion members are shown in the present embodiment and together with the body 5 and non-expansion member 6 form a kit for use in spinal surgery, it is foreseen that a much larger group of expansion members, each having a different head diameter, could be included in the kit with smaller size increments between the size thereof. For example, the expansion members could each differ by one half, one, or two millimeters in diameter or by other dimensions as desired with additional larger sizes also as desired. Or in some situations the kit may include only two expansion members. The body 5 includes a top or upper wall 15, a bottom or lower wall 16 and a posterior or rear wall 17. The upper wall 15 and lower wall 16 are joined near the posterior ends thereof to the rear wall 17. As used herein posterior and anterior pertain to configurations in the human body and posterior would be to the left in Fig. 2, while anterior would be to the right in Fig. 2. The upper wall 15 and lower wall 16 are initially in substantially parallel relationship to one another and are urged to retain that position or configuration by the springy or resilient nature of materials of construction thereof which maintain the non-expanded shape thereof unless force is applied to change that shape through expansion members 7, 8 or 9. Preferably the body 5 is constructed of a bio- compatible metal, such as stainless steel or titanium or other material, and the rear wall acts as a spring to try to maintain the upper wall and lower wall 15 and 16 in parallel relationship while also functioning as a hinge, when the upper and lower walls 15 and 16 are anteriorly forced apart by application of spreading force to the walls 15 and 16. The upper and lower walls 15 and 16 have bone engaging outer surfaces 20 and 21 respectively which are serrated in such a manner as to bite into the bone of vertebrae 24 and 25 respectively, after being placed therebetween. The upper and lower walls 15 and 16 also have fenestrations or windows 28 and 29 respectively. Although the present embodiment is shown with a pair of each of the windows 28 and 29, it is foreseen in some circumstances that no windows would be provided and in other circumstances different members of windows may be provided in the walls 15 and 16. Near anterior ends 30 and 31 of each of the walls 15 and 16 are legs 32 and 33 respectively. The legs 32 and 33 of each of the walls 15 and 16 extend toward one another and abut or almost abut when the body 5 is in a non-expanded configuration thereof, such as is shown in Fig. 1, so as to maintain the non-expanded configuration of the walls 15 and 16 when a load is applied thereto. In this manner the front or anterior ends 30 and 31 of the walls 15 and 16 are supported by the legs 32 and 33 in the non-expanded configuration. Located on each wall 15 and 16 and located behind each leg 32 and 33 is a ramp 38 and 39 respectively. Each ramp 38 and 39 has a semicircular cross-section (see fig. 3) and slopes from the facing sides of walls 15 and 16 to facing support surfaces 41 and 42 on the facing sides of the legs 32 and 33. The support surfaces 41 and 42 shown in the illustrated embodiment are generally flat, but it is foreseen that the support surfaces could have a central depression or the like to help guide and stabilize the expansion member 7, 8 and 9. Immediately located along and between the walls 15 and 16 are a pair of side windows 45 and 46. The rear wall 17 includes a centrally located threaded bore 50. A bone chip receiving cavity 51 is located between the walls 15, 16 and 17. The non-expansion member 6 has a plug body 53 with a threaded outer surface 54 sized and shaped to be received in the threaded bore 50. The plug body 53 also has a rear flange that is larger in diameter than the surface 54 and operably functions as a stop limiting penetration of the plug body relative to the threaded bore 50. Extending into the rear of the plug body 53 is a hexagonal shaped bore 56 sized and shaped to receive an Allen wrench tool or the like (not shown) for operably rotating and driving the non-expansion member 6 into the threaded bore 50. Each of the expansion members 7, 8 and 9 include an elongate shank 60 having a threaded posterior portion 61 that is sized and shaped to be received in the rear wall threaded bore 50 and that is similar in size and shape to the plug body 53. In the illustrated embodiment the posterior portion 61 has a larger diameter than the remainder of the shank 60 which reduces the space occupied by the remainder of the shank 60, but both can be the same size in certain embodiments. Also the posterior portion 61 may have an axial extending opening to allow for inserting bone fragments into the body 5 through the posterior portion 61. Each shank 60 also has a stop 64 that is effectively a region of increased diameter located at the posterior end of the threaded posterior portion 61 thereof. The stops 64 insure that the expansion members 7, 8 and 9 will be properly positioned when fully installed. Each of the expansion members 7, 8 and 9 also include a head 66, 67 and 68 respectively. The heads 66, 67, and 68 each include an outer cylindrical shaped surface 69, 70 and 71 respectively coaxially attached to the shank 60 thereof. During installation of the expansion members 7, 8 or 9 into the body 5, one of the cylindrical shaped surfaces 69, 70 or 71 as the case may be first engages the ramps 38 and 39 on the anterior ends of the walls 15 and 16. While the present embodiment surfaces 69, 70 and 71 have a forward edge, it is foreseen that an angled conical shaped surface could function for this purpose also in which case the ramps 38 and 39 could be more edge like in nature. The cylindrical surfaces 69, 70 or 71 ultimately engage and rest on the support surfaces 41 and 42. As seen in Fig. 1, the heads 66, 67 and 68 of each of the expansion members 7, 8 and 9 increase progressively in diameter. In this manner the expansion members 7, 8 and 9 provide increasing expansion of the anterior ends 30 and 31 of the body 5, as is seen in Figs. 7, 10 and 13 respectively, when fully inserted into the body 5. A hexagonal bore 73, 74 or 75 is provided in the rear of each of the members 7, 8 and 9 and is sized and shaped to mate with an Allen wrench driver for rotating and torquing the members 7, 8 and 9. In use the pad or disc located between a pair of vertebrae 24 and 25 is removed or partially removed and a pair of the bodies 5 are inserted by a posterior approach between the vertebrae 24 and 25. Once the bodies 5 have been positioned between the vertebrae 24 and 25 the surgeon checks to determine whether additional anterior expansion is desirable. If additional expansion is desired, normally the expansion member having the smallest expansion head diameter, in this case expansion member 7, is inserted in each of the bodies 5 and screwed into place. As the members 7 are screwed inwardly, the heads 69 thereof engage the ramp surfaces 38 and 39 of the upper and lower walls 15 and 16 and space the anterior ends 30 and 31 of the upper and lower walls 15 and 16 respectively. The surgeon then determines whether or not additional anterior expansion is required. If further expansion is needed, the first expansion member 7 is removed from each of the bodies 5 and the second expansion member 8 of somewhat larger diameter is installed. This process is continued until the surgeon is satisfied that the proper expansion has been achieved. If no expansion is initially needed the non-expansion member 6 is installed in the bore 50. It is to be understood that while certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.

Claims

C L A I M SWhat is claimed and desired to be secured by Letters Patent is as follows:
1. A posterior interbody device that is anteriorly variably expandable; said device comprising: a) a U-shaped body having an upper wall and a bottom wall hingeably joined by rear wall; said rear wall having a threaded bore, said upper and lower walls having a non- expanded configuration; b) said upper and lower walls each having an anterior mating region that face each other; c) an elongate expansion member; said expansion member being threaded and being operably threadedly received in said rear wall bore; d) said expansion member having a wedge that is sized, shaped and positioned to engage said upper and lower anterior mating regions as said expansion member is threadedly advanced into said bore such that anterior ends of upper and lower walls are urged into an expanded configuration wherein said upper and lower walls become spaced greater than said non- expanded configuration.
2. The device according to Claim 1 wherein: a) said expansion member has an axis of rotation; and b) said wedge is cylindrical shaped and is coaxial with said axis of rotation.
3. The device according to Claim 1 wherein: a) said expansion member includes a support surface adjacent and anterior of said mating region.
4. The device according to Claim 3 wherein: a) said expansion member is a first expansion member; and including in a set a second expansion member such that said first and second expansion members have cylindrical surfaces of different diameters so that said first and second expansion members can be selectively individually used with said body to produce different degrees of expansion of the anterior end of said body.
The device according to Claim 1 wherein: a) said expansion member has an axis of rotation; b) said expansion member has a threaded region near a posterior end thereof that is screwable into a thread in said rear wall bore; c) said expansion member has a head near an anterior end thereof; said head including said wedge in the shape of a cylinder; said body including a supporting surface anterior of said mating region that is sized, shaped and positioned to engage and support said upper and lower walls when said expansion member is fully inserted into said body; so that as said expansion member is threadedly advanced into said body, said wedge engages said upper and lower wall wedge mating regions and vertically spreads the anterior ends of said upper and lower walls while said walls hinge at a posterior end thereof and, thereafter said support surface engages and supports anterior ends of said upper and lower walls in a preselected anterior spaced configuration.
6. The device according to Claim 5 wherein: a) said expansion member includes a stop located to limit advancement of said expansion member into said body and to position said expansion member in said body.
7. The device according to Claim 6 wherein: a) said stop is adjacent and posterior to said threaded region of said expansion member and has a greater diameter than said threaded region.
8. The device according to Claim 1 wherein: a) said body is generally rectangular in cross-section.
9. The device according to Claim 1 wherein: a) said upper and lower walls each include a window positioned to allow growth of bone therethrough during usage .
10. The device according to Claim 1 wherein: a) said upper and lower walls have anterior surfaces that engage when in a non- expanded configuration such that said device is adapted to be utilized alternatively as an expanded or non- expanded fusion cage .
11. The device according to Claim 1 wherein: a) said upper and lower walls each include an anterior pair of spaced feet that respectively engage and rest against feet of the opposite wall when in the non- expanded configuration.
12. The device according to Claim 1 wherein: a) when fully inverted, said expansion member extends longitudinally through said body from a posterior end thereof in said threaded bore to near an anterior end thereof.
13. In an expandable posterior interbody fusion cage; the improvement comprising: a) said cage having a U-shaped body having upper and lower walls each with anterior mating regions near an anterior end thereof ; and b) an elongate expansion member that is threadedly received in said body; said expansion member having a head with an anterior wedge for operably engaging said body mating regions and expanding an anterior end of said cage as said expansion member advances into said body.
14. In a posterior expandable fusion cage; the improvement comprising: a) an expansion kit including at least a pair of interchangeable expansion members; each of said expansion members being cooperatively mateable with said cage to provide a different degree of anterior expansion of said cage.
15. The cage according to Claim 14 wherein: a) said kit includes a non-expansion plug.
6. The cage according to Claim 15 wherein: a) at least one of said non-expansion plug and expansion members includes a threaded region for being threaded into a bore in a rear wall of said cage and said threaded region includes a passageway therethrough to allow insertion of matrix material into said cage after installation of said one of said non-expansion plug and expansion members .
PCT/US2001/041801 2000-12-04 2001-08-20 Posterior expandable fusion cage WO2002045628A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001285456A AU2001285456A1 (en) 2000-12-04 2001-08-20 Posterior expandable fusion cage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/729,398 US6443989B1 (en) 2000-12-04 2000-12-04 Posterior expandable fusion cage
US09/729,398 2000-12-04

Publications (1)

Publication Number Publication Date
WO2002045628A1 true WO2002045628A1 (en) 2002-06-13

Family

ID=24930850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/041801 WO2002045628A1 (en) 2000-12-04 2001-08-20 Posterior expandable fusion cage

Country Status (3)

Country Link
US (1) US6443989B1 (en)
AU (1) AU2001285456A1 (en)
WO (1) WO2002045628A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103908329A (en) * 2014-03-13 2014-07-09 山东冠龙医疗用品有限公司 Threaded fusion cage
CN103948424A (en) * 2014-03-13 2014-07-30 山东冠龙医疗用品有限公司 Dilated threaded fusion cage

Families Citing this family (328)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6206922B1 (en) * 1995-03-27 2001-03-27 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
DE19835096A1 (en) * 1998-07-25 2000-01-27 Helke Lob Fixing element for repairing bone fractures comprises widening element and longitudinal fixing member located in bores in bone fragments
FR2782632B1 (en) * 1998-08-28 2000-12-29 Materiel Orthopedique En Abreg EXPANSIBLE INTERSOMATIC FUSION CAGE
US6709458B2 (en) 2000-02-04 2004-03-23 Gary Karlin Michelson Expandable push-in arcuate interbody spinal fusion implant with tapered configuration during insertion
JP2004516040A (en) 2000-06-30 2004-06-03 リトラン、スティーブン Multi-shaft coupling device and method
US7166073B2 (en) 2000-09-29 2007-01-23 Stephen Ritland Method and device for microsurgical intermuscular spinal surgery
ATE384500T1 (en) * 2001-02-04 2008-02-15 Warsaw Orthopedic Inc INSTRUMENTS FOR INSERTING AND POSITIONING AN EXPANDABLE INTERVERBEL FUSION IMPLANT
US7128760B2 (en) 2001-03-27 2006-10-31 Warsaw Orthopedic, Inc. Radially expanding interbody spinal fusion implants, instrumentation, and methods of insertion
US7207992B2 (en) 2001-09-28 2007-04-24 Stephen Ritland Connection rod for screw or hook polyaxial system and method of use
CA2475200C (en) 2002-02-20 2011-02-15 Stephen Ritland Pedicle screw connector apparatus and method
US6893464B2 (en) * 2002-03-05 2005-05-17 The Regents Of The University Of California Method and apparatus for providing an expandable spinal fusion cage
KR20030072968A (en) * 2002-03-07 2003-09-19 주식회사 경원메디칼 Interfusion cage with bone chip leaking preventive device
FR2837094B1 (en) * 2002-03-15 2004-11-26 Fixano INTERVERTEBRAL IMPLANT
US20040010315A1 (en) * 2002-03-29 2004-01-15 Song John K. Self-expanding intervertebral device
US6966910B2 (en) 2002-04-05 2005-11-22 Stephen Ritland Dynamic fixation device and method of use
EP1585427B1 (en) 2002-05-08 2012-04-11 Stephen Ritland Dynamic fixation device
US6793678B2 (en) 2002-06-27 2004-09-21 Depuy Acromed, Inc. Prosthetic intervertebral motion disc having dampening
DE10248170A1 (en) * 2002-10-16 2004-04-29 Advanced Medical Technologies Ag Implant for insertion between vertebras of a spinal column comprises two sides whose outer surfaces at the start of a vertebra spreading process converge towards the free ends of the sides
US6685742B1 (en) * 2002-11-12 2004-02-03 Roger P. Jackson Articulated anterior expandable spinal fusion cage system
CN1713863A (en) * 2002-11-21 2005-12-28 Sdgi控股股份有限公司 Systems and techniques for interbody spinal stabilization with expandable devices
WO2004047689A1 (en) * 2002-11-21 2004-06-10 Sdgi Holdings, Inc. Systems and techniques for intravertebral spinal stablization with expandable devices
FR2848414B1 (en) * 2002-12-17 2005-02-25 Vitatech INTERSOMATIC IMPLANT FOR VERTEBRATES
US7828849B2 (en) 2003-02-03 2010-11-09 Warsaw Orthopedic, Inc. Expanding interbody implant and articulating inserter and method
US7094257B2 (en) * 2003-02-14 2006-08-22 Zimmer Spine, Inc. Expandable intervertebral implant cage
AU2004212942A1 (en) 2003-02-14 2004-09-02 Depuy Spine, Inc. In-situ formed intervertebral fusion device
JP4598760B2 (en) 2003-02-25 2010-12-15 リットランド、ステファン ADJUSTING ROD AND CONNECTOR DEVICE, AND ITS USING METHOD
US8012212B2 (en) * 2003-04-07 2011-09-06 Nuvasive, Inc. Cervical intervertebral disk prosthesis
US7509183B2 (en) * 2003-04-23 2009-03-24 The Regents Of The University Of Michigan Integrated global layout and local microstructure topology optimization approach for spinal cage design and fabrication
ATE311836T1 (en) 2003-05-14 2005-12-15 Kilian Kraus HEIGHT-ADJUSTABLE IMPLANT FOR INSERTION BETWEEN VERTEBRATE BODY AND HANDLING TOOL
WO2004110247A2 (en) 2003-05-22 2004-12-23 Stephen Ritland Intermuscular guide for retractor insertion and method of use
US20040267367A1 (en) 2003-06-30 2004-12-30 Depuy Acromed, Inc Intervertebral implant with conformable endplate
US7837732B2 (en) 2003-11-20 2010-11-23 Warsaw Orthopedic, Inc. Intervertebral body fusion cage with keels and implantation methods
US6955691B2 (en) * 2003-11-21 2005-10-18 Kyungwon Medical Co., Ltd. Expandable interfusion cage
DE20320974U1 (en) * 2003-12-11 2005-08-25 Deltacor Gmbh Surgical backbone implant is positioned between adjacent vertebrae and consists of two concentric cylinders with interlocking fingers in cruciform array, where the cylinder inner faces bear a thread
CN100349558C (en) * 2004-01-05 2007-11-21 贾连顺 Cap type cervical vertebra pyramid fusion apparatus
US7550010B2 (en) 2004-01-09 2009-06-23 Warsaw Orthopedic, Inc. Spinal arthroplasty device and method
US7771479B2 (en) 2004-01-09 2010-08-10 Warsaw Orthopedic, Inc. Dual articulating spinal device and method
US8273129B2 (en) * 2004-02-10 2012-09-25 Atlas Spine, Inc. PLIF opposing wedge ramp
US7850733B2 (en) * 2004-02-10 2010-12-14 Atlas Spine, Inc. PLIF opposing wedge ramp
FR2866228B1 (en) * 2004-02-17 2006-09-29 Kiscomedica CERVICAL CAGE ADJUSTABLE BY ANTERIOR
US8636802B2 (en) 2004-03-06 2014-01-28 DePuy Synthes Products, LLC Dynamized interspinal implant
US7297162B2 (en) * 2004-06-09 2007-11-20 Zimmer Spine, Inc. Expandable helical cage
CN2707201Y (en) * 2004-06-21 2005-07-06 李孔嘉 Vertebra reconstructing and resetting device
US7678148B2 (en) * 2004-07-23 2010-03-16 Warsaw Orthopedic, Inc. Expandable spinal implant having interlocking geometry for structural support
US7799081B2 (en) 2004-09-14 2010-09-21 Aeolin, Llc System and method for spinal fusion
WO2006034436A2 (en) 2004-09-21 2006-03-30 Stout Medical Group, L.P. Expandable support device and method of use
US8597360B2 (en) 2004-11-03 2013-12-03 Neuropro Technologies, Inc. Bone fusion device
US20060122701A1 (en) * 2004-11-23 2006-06-08 Kiester P D Posterior lumbar interbody fusion expandable cage with lordosis and method of deploying the same
EP1814474B1 (en) 2004-11-24 2011-09-14 Samy Abdou Devices for inter-vertebral orthopedic device placement
US7655046B2 (en) * 2005-01-20 2010-02-02 Warsaw Orthopedic, Inc. Expandable spinal fusion cage and associated instrumentation
US7942903B2 (en) 2005-04-12 2011-05-17 Moskowitz Ahmnon D Bi-directional fixating transvertebral body screws and posterior cervical and lumbar interarticulating joint calibrated stapling devices for spinal fusion
US11903849B2 (en) 2005-04-12 2024-02-20 Moskowitz Family Llc Intervertebral implant and tool assembly
US9848993B2 (en) 2005-04-12 2017-12-26 Nathan C. Moskowitz Zero-profile expandable intervertebral spacer devices for distraction and spinal fusion and a universal tool for their placement and expansion
US7674296B2 (en) 2005-04-21 2010-03-09 Globus Medical, Inc. Expandable vertebral prosthesis
JP5081822B2 (en) 2005-07-14 2012-11-28 スタウト メディカル グループ,エル.ピー. Expandable support device and system
US8623088B1 (en) 2005-07-15 2014-01-07 Nuvasive, Inc. Spinal fusion implant and related methods
CA2615497C (en) 2005-07-19 2014-03-25 Stephen Ritland Rod extension for extending fusion construct
US20080184618A1 (en) * 2005-08-03 2008-08-07 Amcol International Virus-Interacting Layered Phyllosilicates and Methods of Use
US20100272769A1 (en) * 2005-08-03 2010-10-28 Amcol International Virus-, Bacteria-, and Fungi-Interacting Layered Phyllosilicates and Methods of Use
US20070031512A1 (en) * 2005-08-03 2007-02-08 Amcol International Corporation Virus-interacting layered phyllosilicates and methods of inactivating viruses
US7879098B1 (en) * 2005-10-19 2011-02-01 Simmons Jr James W Expandable lordosis stabilizing cage
US7811326B2 (en) 2006-01-30 2010-10-12 Warsaw Orthopedic Inc. Posterior joint replacement device
US7635389B2 (en) * 2006-01-30 2009-12-22 Warsaw Orthopedic, Inc. Posterior joint replacement device
US20070185490A1 (en) * 2006-01-31 2007-08-09 Dante Implicito Percutaneous interspinous distraction device and method
US20070270954A1 (en) * 2006-04-05 2007-11-22 Shing-Sheng Wu Human bone substitutional implant
WO2007131002A2 (en) 2006-05-01 2007-11-15 Stout Medical Group, L.P. Expandable support device and method of use
US20070260314A1 (en) * 2006-05-02 2007-11-08 Ashok Biyani Transforaminal lumbar interbody fusion cage
TWM303719U (en) * 2006-05-30 2007-01-01 Kung-Chia Li Spine repositioning device capable of being placed medicament therein
US7959564B2 (en) 2006-07-08 2011-06-14 Stephen Ritland Pedicle seeker and retractor, and methods of use
USD741488S1 (en) 2006-07-17 2015-10-20 Nuvasive, Inc. Spinal fusion implant
US20080154314A1 (en) * 2006-08-16 2008-06-26 Mcdevitt Dennis M Composite interference screw for attaching a graft ligament to a bone, and other apparatus for making attachments to bone
US8894661B2 (en) 2007-08-16 2014-11-25 Smith & Nephew, Inc. Helicoil interference fixation system for attaching a graft ligament to a bone
US9526525B2 (en) 2006-08-22 2016-12-27 Neuropro Technologies, Inc. Percutaneous system for dynamic spinal stabilization
WO2008033489A2 (en) * 2006-09-14 2008-03-20 Life Spine, Inc. Cervical and lumbar spinal interbody devices
US7896884B2 (en) * 2006-12-01 2011-03-01 Aesculap, Inc. Interbody distractor
US11395626B2 (en) 2006-12-07 2022-07-26 DePuy Synthes Products, Inc. Sensor for intervertebral fusion indicia
US8105382B2 (en) 2006-12-07 2012-01-31 Interventional Spine, Inc. Intervertebral implant
US7972382B2 (en) * 2006-12-26 2011-07-05 Warsaw Orthopedic, Inc. Minimally invasive spinal distraction devices and methods
US8197520B2 (en) * 2007-01-11 2012-06-12 Salemi Anthony A Bone loss plate
ATE530178T1 (en) 2007-05-23 2011-11-15 Amcol International Corp PHYLLOSSILICATES INTERACTING WITH CHOLESTEROL AND METHOD FOR REDUCING HYPERCHOLESTEROLEMIA IN A MAMMAL
KR100872529B1 (en) * 2007-05-31 2008-12-08 주식회사 지에스메디칼 A pedicle screw module
US8864832B2 (en) * 2007-06-20 2014-10-21 Hh Spinal Llc Posterior total joint replacement
US10821003B2 (en) 2007-06-20 2020-11-03 3Spline Sezc Spinal osteotomy
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
WO2009042978A1 (en) * 2007-09-27 2009-04-02 Life Spine, Inc. Spinal interbody distractor
US7799056B2 (en) * 2007-12-31 2010-09-21 Warsaw Orthopedic, Inc. Bone fusion device and methods
US7985231B2 (en) 2007-12-31 2011-07-26 Kyphon Sarl Bone fusion device and methods
EP2237748B1 (en) 2008-01-17 2012-09-05 Synthes GmbH An expandable intervertebral implant
US8267939B2 (en) 2008-02-28 2012-09-18 Stryker Spine Tool for implanting expandable intervertebral implant
US8795365B2 (en) * 2008-03-24 2014-08-05 Warsaw Orthopedic, Inc Expandable devices for emplacement in body parts and methods associated therewith
CA2720580A1 (en) 2008-04-05 2009-10-08 Synthes Usa, Llc Expandable intervertebral implant
ES2361099B1 (en) * 2008-05-26 2012-05-08 Rudolf Morgenstern Lopez "INTERVERTEBRAL PROSTHESIS"
US8110004B2 (en) * 2008-08-21 2012-02-07 The Trustees Of The Stevens Institute Of Technology Expandable interbody fusion cage with rotational insert
US20100211176A1 (en) 2008-11-12 2010-08-19 Stout Medical Group, L.P. Fixation device and method
WO2010056895A1 (en) 2008-11-12 2010-05-20 Stout Medical Group, L.P. Fixation device and method
US8721723B2 (en) 2009-01-12 2014-05-13 Globus Medical, Inc. Expandable vertebral prosthesis
DE102009011563A1 (en) * 2009-03-06 2010-09-09 Heinrich Dr. Böhm Implant for the thoracic and lumbar spine
US9522068B2 (en) 2009-03-13 2016-12-20 The University Of Toledo Minimally invasive collapsible cage
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
WO2010129697A1 (en) 2009-05-06 2010-11-11 Thibodeau Lee L Expandable spinal implant apparatus and method of use
US20100286777A1 (en) * 2009-05-08 2010-11-11 Stryker Spine Stand alone anterior cage
JP5907458B2 (en) * 2009-07-06 2016-04-26 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング Expandable fixation assembly
US10245159B1 (en) 2009-09-18 2019-04-02 Spinal Surgical Strategies, Llc Bone graft delivery system and method for using same
US10973656B2 (en) 2009-09-18 2021-04-13 Spinal Surgical Strategies, Inc. Bone graft delivery system and method for using same
US8906028B2 (en) 2009-09-18 2014-12-09 Spinal Surgical Strategies, Llc Bone graft delivery device and method of using the same
USD731063S1 (en) 2009-10-13 2015-06-02 Nuvasive, Inc. Spinal fusion implant
US10098758B2 (en) 2009-10-15 2018-10-16 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11103366B2 (en) 2009-10-15 2021-08-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9155628B2 (en) * 2009-10-15 2015-10-13 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8556979B2 (en) 2009-10-15 2013-10-15 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8709086B2 (en) 2009-10-15 2014-04-29 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8062375B2 (en) 2009-10-15 2011-11-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11564807B2 (en) * 2009-10-15 2023-01-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8685098B2 (en) 2010-06-25 2014-04-01 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11344430B2 (en) 2009-10-15 2022-05-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10806596B2 (en) 2009-10-15 2020-10-20 Globus Medical, Inc. Expandable fusion device and method installation thereof
US9216095B2 (en) 2009-10-15 2015-12-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10327917B2 (en) 2009-10-15 2019-06-25 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US9168138B2 (en) 2009-12-09 2015-10-27 DePuy Synthes Products, Inc. Aspirating implants and method of bony regeneration
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
JP5899124B2 (en) 2010-03-10 2016-04-06 スミス アンド ネフュー インコーポレーテッド Compound tightening screw and device
US9579188B2 (en) 2010-03-10 2017-02-28 Smith & Nephew, Inc. Anchor having a controlled driver orientation
US9308080B2 (en) 2010-03-10 2016-04-12 Smith & Nephew Inc. Composite interference screws and drivers
US9775702B2 (en) 2010-03-10 2017-10-03 Smith & Nephew, Inc. Composite interference screws and drivers
CN102892387B (en) 2010-03-16 2016-03-16 品尼高脊柱集团有限责任公司 Intervertebral implant and graft induction system and method
US9301850B2 (en) 2010-04-12 2016-04-05 Globus Medical, Inc. Expandable vertebral implant
US8282683B2 (en) 2010-04-12 2012-10-09 Globus Medical, Inc. Expandable vertebral implant
US8591585B2 (en) 2010-04-12 2013-11-26 Globus Medical, Inc. Expandable vertebral implant
US8870880B2 (en) 2010-04-12 2014-10-28 Globus Medical, Inc. Angling inserter tool for expandable vertebral implant
US8535380B2 (en) 2010-05-13 2013-09-17 Stout Medical Group, L.P. Fixation device and method
US9907560B2 (en) 2010-06-24 2018-03-06 DePuy Synthes Products, Inc. Flexible vertebral body shavers
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
US9597200B2 (en) 2010-06-25 2017-03-21 Globus Medical, Inc Expandable fusion device and method of installation thereof
AU2011271465B2 (en) 2010-06-29 2015-03-19 Synthes Gmbh Distractible intervertebral implant
US8986388B2 (en) 2010-07-15 2015-03-24 N.L.T. Spine Ltd. Surgical systems and methods for implanting deflectable implants
US8641769B2 (en) 2010-07-15 2014-02-04 Spine Wave, Inc. Plastically deformable inter-osseous device
EP2608747A4 (en) 2010-08-24 2015-02-11 Flexmedex Llc Support device and method for use
US10709573B2 (en) 2010-09-03 2020-07-14 Globus Medical Inc. Expandable fusion device and method of installation thereof
US9474625B2 (en) 2010-09-03 2016-10-25 Globus Medical, Inc Expandable fusion device and method of installation thereof
US8435298B2 (en) 2010-09-03 2013-05-07 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10945858B2 (en) 2010-09-03 2021-03-16 Globus Medical, Inc. Expandable interspinous process fixation device
US10779957B2 (en) 2010-09-03 2020-09-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9351848B2 (en) 2010-09-03 2016-05-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10085849B2 (en) 2010-09-03 2018-10-02 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10512550B2 (en) 2010-09-03 2019-12-24 Globus Medical, Inc. Expandable interspinous process fixation device
US10758367B2 (en) 2010-09-03 2020-09-01 Globus Medical Inc. Expandable fusion device and method of installation thereof
US8632595B2 (en) 2010-09-03 2014-01-21 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11793654B2 (en) 2010-09-03 2023-10-24 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9855151B2 (en) 2010-09-03 2018-01-02 Globus Medical, Inc Expandable fusion device and method of installation thereof
US10869768B2 (en) 2010-09-03 2020-12-22 Globus Medical Inc. Expandable fusion device and method of installation thereof
US10835387B2 (en) 2010-09-03 2020-11-17 Globus Medical Inc. Expandable fusion device and method of installation thereof
US9566168B2 (en) 2010-09-03 2017-02-14 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8845732B2 (en) 2010-09-03 2014-09-30 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8491659B2 (en) 2010-09-03 2013-07-23 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10842644B2 (en) 2010-09-03 2020-11-24 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9907673B2 (en) 2010-09-03 2018-03-06 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11446162B2 (en) 2010-09-03 2022-09-20 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US20120078372A1 (en) 2010-09-23 2012-03-29 Thomas Gamache Novel implant inserter having a laterally-extending dovetail engagement feature
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US9149286B1 (en) 2010-11-12 2015-10-06 Flexmedex, LLC Guidance tool and method for use
MX344606B (en) 2011-03-11 2016-12-20 Smith & Nephew Inc Trephine.
US9265620B2 (en) 2011-03-18 2016-02-23 Raed M. Ali, M.D., Inc. Devices and methods for transpedicular stabilization of the spine
WO2012129119A2 (en) 2011-03-18 2012-09-27 Raed M. Ali, M.D., Inc. Transpedicular access to intervertebral spaces and related spinal fusion systems and methods
MX2013014423A (en) 2011-06-07 2014-05-28 Smith & Nephew Inc Surgical anchor delivery system.
US9358123B2 (en) 2011-08-09 2016-06-07 Neuropro Spinal Jaxx, Inc. Bone fusion device, apparatus and method
WO2013023096A1 (en) 2011-08-09 2013-02-14 Neuropro Technologies, Inc. Bone fusion device, system and method
US10420654B2 (en) 2011-08-09 2019-09-24 Neuropro Technologies, Inc. Bone fusion device, system and method
JP6047571B2 (en) 2011-08-16 2016-12-21 ストライカー・スピン Expandable graft
WO2013028808A1 (en) 2011-08-23 2013-02-28 Flexmedex, LLC Tissue removal device and method
US9248028B2 (en) 2011-09-16 2016-02-02 DePuy Synthes Products, Inc. Removable, bone-securing cover plate for intervertebral fusion cage
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US8864833B2 (en) 2011-09-30 2014-10-21 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9380932B1 (en) 2011-11-02 2016-07-05 Pinnacle Spine Group, Llc Retractor devices for minimally invasive access to the spine
US8628578B2 (en) 2011-12-19 2014-01-14 Warsaw Orthopedic, Inc. Expandable interbody implant and methods of use
US9445919B2 (en) 2011-12-19 2016-09-20 Warsaw Orthopedic, Inc. Expandable interbody implant and methods of use
CN103239305A (en) * 2012-02-10 2013-08-14 北京爱康宜诚医疗器材股份有限公司 Self-stabilization artificial vertebral body
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
CN103356310A (en) * 2012-03-28 2013-10-23 北京爱康宜诚医疗器材股份有限公司 Adjustable interbody fusion cage
US9532883B2 (en) 2012-04-13 2017-01-03 Neuropro Technologies, Inc. Bone fusion device
US10159583B2 (en) 2012-04-13 2018-12-25 Neuropro Technologies, Inc. Bone fusion device
US9622876B1 (en) 2012-04-25 2017-04-18 Theken Spine, Llc Expandable support device and method of use
CN104582639A (en) 2012-05-29 2015-04-29 Nlt-脊椎有限公司 Laterally deflectable implant
US9044342B2 (en) 2012-05-30 2015-06-02 Globus Medical, Inc. Expandable interbody spacer
US9278008B2 (en) 2012-05-30 2016-03-08 Globus Medical, Inc. Expandable interbody spacer
US8940052B2 (en) 2012-07-26 2015-01-27 DePuy Synthes Products, LLC Expandable implant
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US20140067069A1 (en) 2012-08-30 2014-03-06 Interventional Spine, Inc. Artificial disc
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
WO2014078737A1 (en) * 2012-11-16 2014-05-22 Lanx, Inc. Oblique expanding fusion cage device and method
US9237956B1 (en) * 2012-12-06 2016-01-19 Wade K. Jensen Spinal insert and method of spinal adjustment
EP2928417A2 (en) 2012-12-06 2015-10-14 Bal, Kamil Intervertebral expandable cage system and its instrument
US10299934B2 (en) 2012-12-11 2019-05-28 Globus Medical, Inc Expandable vertebral implant
US10350081B2 (en) 2012-12-11 2019-07-16 Globus Medical, Inc. Expandable vertebral implant
US8663332B1 (en) 2012-12-13 2014-03-04 Ouroboros Medical, Inc. Bone graft distribution system
US9011493B2 (en) 2012-12-31 2015-04-21 Globus Medical, Inc. Spinous process fixation system and methods thereof
US9782265B2 (en) * 2013-02-15 2017-10-10 Globus Medical, Inc Articulating and expandable vertebral implant
US10117754B2 (en) 2013-02-25 2018-11-06 Globus Medical, Inc. Expandable intervertebral implant
US9717601B2 (en) 2013-02-28 2017-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US9204972B2 (en) 2013-03-01 2015-12-08 Globus Medical, Inc. Articulating expandable intervertebral implant
US9198772B2 (en) 2013-03-01 2015-12-01 Globus Medical, Inc. Articulating expandable intervertebral implant
US10004607B2 (en) 2013-03-01 2018-06-26 Globus Medical, Inc. Articulating expandable intervertebral implant
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US10342675B2 (en) 2013-03-11 2019-07-09 Stryker European Holdings I, Llc Expandable implant
US10687962B2 (en) 2013-03-14 2020-06-23 Raed M. Ali, M.D., Inc. Interbody fusion devices, systems and methods
US10070970B2 (en) 2013-03-14 2018-09-11 Pinnacle Spine Group, Llc Interbody implants and graft delivery systems
JP6836899B2 (en) * 2013-03-14 2021-03-03 ラエド エム.アリ,エム.ディー.,インク. Lateral interbody fusion devices, systems, and methods
US9572677B2 (en) 2013-03-15 2017-02-21 Globus Medical, Inc. Expandable intervertebral implant
AU2014236698B2 (en) 2013-03-15 2018-09-13 Neuropro Technologies, Inc. Bodiless bone fusion device, apparatus and method
US9186258B2 (en) 2013-03-15 2015-11-17 Globus Medical, Inc. Expandable intervertebral implant
US9700430B2 (en) 2013-03-15 2017-07-11 Pioneer Surgical Technology, Inc. Systems and methods for inserting an expandable intervertebral device
US9233009B2 (en) 2013-03-15 2016-01-12 Globus Medical, Inc. Expandable intervertebral implant
US11311312B2 (en) 2013-03-15 2022-04-26 Medtronic, Inc. Subcutaneous delivery tool
US9149367B2 (en) 2013-03-15 2015-10-06 Globus Medical Inc Expandable intervertebral implant
US9155531B2 (en) 2013-03-15 2015-10-13 Smith & Nephew, Inc. Miniaturized dual drive open architecture suture anchor
EP3711715A1 (en) 2013-03-15 2020-09-23 In Queue Innovations, LLC Expandable fusion cage system
US9456906B2 (en) 2013-03-15 2016-10-04 Globus Medical, Inc. Expandable intervertebral implant
US9034045B2 (en) 2013-03-15 2015-05-19 Globus Medical, Inc Expandable intervertebral implant
US20140296984A1 (en) * 2013-04-01 2014-10-02 Mohammad Etminan Cage system
AU2014251015B2 (en) 2013-04-09 2019-01-17 Smith & Nephew, Inc. Open-architecture interference screw
AU2014268740B2 (en) 2013-05-20 2018-04-26 K2M, Inc. Adjustable implant and insertion tool
US9788971B1 (en) 2013-05-22 2017-10-17 Nuvasive, Inc. Expandable fusion implant and related methods
US10149770B2 (en) 2013-07-09 2018-12-11 Seaspine, Inc. Orthopedic implant with adjustable angle between tissue contact surfaces
US9801734B1 (en) 2013-08-09 2017-10-31 Nuvasive, Inc. Lordotic expandable interbody implant
US20180092752A1 (en) * 2013-08-09 2018-04-05 Rory Schermerhorn Spinal Fusion Implant with Reducible Graft Aperture
US9566163B2 (en) 2013-08-21 2017-02-14 K2M, Inc. Expandable spinal implant
US9186259B2 (en) 2013-09-09 2015-11-17 Ouroboros Medical, Inc. Expandable trials
WO2015063721A1 (en) 2013-10-31 2015-05-07 Nlt Spine Ltd. Adjustable implant
US9198774B2 (en) * 2013-11-21 2015-12-01 Perumala Corporation Intervertebral disk cage and stabilizer
WO2015087285A1 (en) 2013-12-11 2015-06-18 Nlt Spine Ltd. Worm-gear actuated orthopedic implants & methods
US9839528B2 (en) 2014-02-07 2017-12-12 Globus Medical, Inc. Variable lordosis spacer and related methods of use
WO2015162514A1 (en) * 2014-04-25 2015-10-29 Neo Medical Sa Spine cage
WO2015184012A2 (en) * 2014-05-27 2015-12-03 Providence Medical Technology, Inc. Lateral mass fixation implant
WO2015198335A1 (en) 2014-06-25 2015-12-30 Nlt Spine Ltd. Expanding implant with hinged arms
US10034769B2 (en) 2014-08-26 2018-07-31 Atlas Spine, Inc. Spinal implant device
US9585762B2 (en) 2014-10-09 2017-03-07 K2M, Inc. Expandable spinal interbody spacer and method of use
WO2016077610A1 (en) * 2014-11-12 2016-05-19 Grotz Robert Thomas Universally expanding cage
US10363142B2 (en) 2014-12-11 2019-07-30 K2M, Inc. Expandable spinal implants
US9060876B1 (en) 2015-01-20 2015-06-23 Ouroboros Medical, Inc. Stabilized intervertebral scaffolding systems
US9907670B2 (en) 2015-01-21 2018-03-06 Warsaw Orthopedic, Inc. Unitarily formed expandable spinal implant and method of manufacturing and implanting same
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US9474624B1 (en) * 2015-04-28 2016-10-25 Aegis Spine, Inc. Intervertebral fusion cage
WO2016179555A1 (en) * 2015-05-07 2016-11-10 Meditech Spine, Llc Inter-vertebral implant for spinal fusion
US10631997B2 (en) 2015-05-21 2020-04-28 Globus Medical, Inc. Device and method for deployment of an anchoring device for intervertebral spinal fusion
US10765532B2 (en) 2015-05-21 2020-09-08 Globus Medical, Inc. Device and method for deployment of an anchoring device for intervertebral spinal fusion
US10433975B2 (en) 2015-05-21 2019-10-08 Globus Medical, Inc. Device and method for deployment of an anchoring device for intervertebral spinal fusion
US9913727B2 (en) 2015-07-02 2018-03-13 Medos International Sarl Expandable implant
US10016282B2 (en) 2015-07-17 2018-07-10 Globus Medical, Inc. Intervertebral spacer and plate
US10034768B2 (en) 2015-09-02 2018-07-31 Globus Medical, Inc. Implantable systems, devices and related methods
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10219914B2 (en) 2015-11-10 2019-03-05 Globus Medical, Inc. Stabilized expandable intervertebral spacer
US10369004B2 (en) 2015-12-16 2019-08-06 Globus Medical, Inc. Expandable intervertebralspacer
JP6180565B1 (en) * 2016-02-23 2017-08-16 合碩生技股▲分▼有限公司 Skeletal fixation device
US10004608B2 (en) 2016-02-26 2018-06-26 K2M, Inc. Insertion instrument for expandable spinal implants
US11253369B2 (en) * 2016-03-14 2022-02-22 Wiltrom Co., Ltd. Spinal implant structure and kit thereof
TWI589266B (en) * 2016-03-14 2017-07-01 曾昌和 Spinal implant structure and kit thereof
US10463501B2 (en) 2016-04-25 2019-11-05 Degen Medical, Inc. Expandable spinal cages
EP3474783B1 (en) 2016-06-28 2023-05-03 Eit Emerging Implant Technologies GmbH Expandable, angularly adjustable intervertebral cages
US11596523B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable articulating intervertebral cages
US9974662B2 (en) 2016-06-29 2018-05-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10052215B2 (en) 2016-06-29 2018-08-21 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10786367B2 (en) * 2016-07-21 2020-09-29 Seaspine, Inc. Expandable implant
US9883953B1 (en) 2016-09-21 2018-02-06 Integrity Implants Inc. Stabilized laterovertically-expanding fusion cage systems with tensioner
US10925747B2 (en) * 2016-10-19 2021-02-23 Imds Llc Intervertebral cage
US10744000B1 (en) * 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10537436B2 (en) 2016-11-01 2020-01-21 DePuy Synthes Products, Inc. Curved expandable cage
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
JP7085554B2 (en) 2017-01-10 2022-06-16 インテグリティ インプランツ インコーポレイテッド Deployable intervertebral fusion device
US10213321B2 (en) 2017-01-18 2019-02-26 Neuropro Technologies, Inc. Bone fusion system, device and method including delivery apparatus
US10111760B2 (en) 2017-01-18 2018-10-30 Neuropro Technologies, Inc. Bone fusion system, device and method including a measuring mechanism
US10973657B2 (en) 2017-01-18 2021-04-13 Neuropro Technologies, Inc. Bone fusion surgical system and method
US10729560B2 (en) 2017-01-18 2020-08-04 Neuropro Technologies, Inc. Bone fusion system, device and method including an insertion instrument
US10111755B2 (en) 2017-02-24 2018-10-30 Warsaw, Orthopedic, Inc. Expanding interbody implant and articulating inserter and methods of use
US10470894B2 (en) 2017-04-06 2019-11-12 Warsaw Orthopedic, Inc. Expanding interbody implant and articulating inserter and methods of use
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10888430B2 (en) * 2017-06-21 2021-01-12 NVision Biomedical Technologies, LLC Expandable/variable lordotic angle vertebral implant and reading system therefor
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US11896494B2 (en) 2017-07-10 2024-02-13 Life Spine, Inc. Expandable implant assembly
US10441430B2 (en) 2017-07-24 2019-10-15 K2M, Inc. Expandable spinal implants
WO2019023251A1 (en) 2017-07-24 2019-01-31 Integrity Implants, Inc. Surgical implant and related methods
US10709578B2 (en) 2017-08-25 2020-07-14 Integrity Implants Inc. Surgical biologics delivery system and related methods
US11801144B2 (en) 2017-09-14 2023-10-31 Degen Medical, Inc. Methods of making medical devices
US11278423B2 (en) 2017-09-29 2022-03-22 Mirus Llc Expandable interbody devices
US11806250B2 (en) 2018-02-22 2023-11-07 Warsaw Orthopedic, Inc. Expandable spinal implant system and method of using same
EP3755272A4 (en) 2018-02-22 2021-11-17 Warsaw Orthopedic, Inc. Expandable spinal implant system and method of using same
AU2019226102A1 (en) 2018-02-22 2020-08-13 Warsaw Orthopedic, Inc. Expandable spinal implant system and method of using same
US11285018B2 (en) 2018-03-01 2022-03-29 Integrity Implants Inc. Expandable fusion device with independent expansion systems
CN108635085B (en) * 2018-05-04 2019-04-16 珠海康弘医疗科技有限公司 A kind of adjustable inflatable inter vertebral fusing device of implant angle
US11116644B2 (en) 2018-05-25 2021-09-14 Mirus Llc Multiple expansion stage interbody devices
KR102124697B1 (en) * 2018-08-02 2020-06-18 (주)누리 Support for furniture legs
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11123198B2 (en) 2018-11-13 2021-09-21 Degen Medical, Inc. Expandable spacers
USD929593S1 (en) 2019-01-15 2021-08-31 Neo Medical S.A. Spine cage
USD883484S1 (en) 2019-01-16 2020-05-05 Neo Medical S.A. Spine cage
US11234829B2 (en) 2019-01-21 2022-02-01 Degen Medical, Inc. Expandable intervertebral spacers
USD948048S1 (en) 2019-04-26 2022-04-05 Warsaw Orthopedic, Inc. Surgical implant
USD955579S1 (en) 2019-04-26 2022-06-21 Warsaw Orthopedic, Inc. Surgical implant
JP2022551800A (en) 2019-08-21 2022-12-14 フロスパイン リミテッド ライアビリティ カンパニー Interspinous-interlaminar stabilization system and method
US11259933B2 (en) 2019-09-06 2022-03-01 Globus Medical Inc. Expandable motion preservation spacer
US11547575B2 (en) 2019-09-27 2023-01-10 Degen Medical, Inc. Expandable intervertebral spacers
US11191650B2 (en) * 2020-02-03 2021-12-07 Globus Medical Inc. Expandable fusions devices, instruments, and methods thereof
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11857432B2 (en) 2020-04-13 2024-01-02 Life Spine, Inc. Expandable implant assembly
US11602439B2 (en) 2020-04-16 2023-03-14 Life Spine, Inc. Expandable implant assembly
US11298240B2 (en) 2020-06-16 2022-04-12 Globus Medical, Inc. Expanding intervertebral implants
US11602440B2 (en) 2020-06-25 2023-03-14 Life Spine, Inc. Expandable implant assembly
US11357640B2 (en) 2020-07-08 2022-06-14 Globus Medical Inc. Expandable interbody fusions devices
US11491020B2 (en) 2020-07-09 2022-11-08 Globus Medical, Inc. Articulating and expandable interbody fusions devices
US11554020B2 (en) 2020-09-08 2023-01-17 Life Spine, Inc. Expandable implant with pivoting control assembly
US11285014B1 (en) 2020-11-05 2022-03-29 Warsaw Orthopedic, Inc. Expandable inter-body device, system, and method
US11517443B2 (en) 2020-11-05 2022-12-06 Warsaw Orthopedic, Inc. Dual wedge expandable implant, system and method of use
US11291554B1 (en) 2021-05-03 2022-04-05 Medtronic, Inc. Unibody dual expanding interbody implant
US11638653B2 (en) 2020-11-05 2023-05-02 Warsaw Orthopedic, Inc. Surgery instruments with a movable handle
US11376134B1 (en) 2020-11-05 2022-07-05 Warsaw Orthopedic, Inc. Dual expanding spinal implant, system, and method of use
US11617658B2 (en) 2020-11-05 2023-04-04 Warsaw Orthopedic, Inc. Expandable inter-body device, system and method
US11833059B2 (en) 2020-11-05 2023-12-05 Warsaw Orthopedic, Inc. Expandable inter-body device, expandable plate system, and associated methods
US11395743B1 (en) 2021-05-04 2022-07-26 Warsaw Orthopedic, Inc. Externally driven expandable interbody and related methods
EP4262635A1 (en) * 2020-12-18 2023-10-25 Spine Wave, Inc. Expandable tlif device and related insertion and grafting instrumentation
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage
US11612499B2 (en) 2021-06-24 2023-03-28 Warsaw Orthopedic, Inc. Expandable interbody implant
US11730608B2 (en) 2021-07-13 2023-08-22 Warsaw Orthopedic, Inc. Monoblock expandable interbody implant
US11712346B2 (en) 2021-12-02 2023-08-01 Globus Medical, Inc. Expandable fusion device with integrated deployable retention spikes
US11850163B2 (en) 2022-02-01 2023-12-26 Warsaw Orthopedic, Inc. Interbody implant with adjusting shims
US11883080B1 (en) 2022-07-13 2024-01-30 Globus Medical, Inc Reverse dynamization implants

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013071A (en) * 1974-11-11 1977-03-22 Lior Rosenberg Fasteners particularly useful as orthopedic screws
US6129763A (en) * 1996-09-13 2000-10-10 Chauvin; Jean-Luc Expandable osteosynthesis cage
US6165219A (en) * 1997-03-06 2000-12-26 Sulzer Spine-Tech Inc. Lordotic spinal implant

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8620937D0 (en) 1986-08-29 1986-10-08 Shepperd J A N Spinal implant
FR2715293B1 (en) 1994-01-26 1996-03-22 Biomat Vertebral interbody fusion cage.
TW316844B (en) 1994-12-09 1997-10-01 Sofamor Danek Group Inc
EP0797418B1 (en) 1994-12-09 2005-03-02 SDGI Holdings, Inc. Adjustable vertebral body replacement
US5665122A (en) 1995-01-31 1997-09-09 Kambin; Parviz Expandable intervertebral cage and surgical method
US5653763A (en) 1996-03-29 1997-08-05 Fastenetix, L.L.C. Intervertebral space shape conforming cage device
US6117174A (en) 1998-09-16 2000-09-12 Nolan; Wesley A. Spinal implant device
US6102950A (en) 1999-01-19 2000-08-15 Vaccaro; Alex Intervertebral body fusion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013071A (en) * 1974-11-11 1977-03-22 Lior Rosenberg Fasteners particularly useful as orthopedic screws
US6129763A (en) * 1996-09-13 2000-10-10 Chauvin; Jean-Luc Expandable osteosynthesis cage
US6165219A (en) * 1997-03-06 2000-12-26 Sulzer Spine-Tech Inc. Lordotic spinal implant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103908329A (en) * 2014-03-13 2014-07-09 山东冠龙医疗用品有限公司 Threaded fusion cage
CN103948424A (en) * 2014-03-13 2014-07-30 山东冠龙医疗用品有限公司 Dilated threaded fusion cage
WO2015135374A1 (en) * 2014-03-13 2015-09-17 山东冠龙医疗用品有限公司 Dilated interbody fusion cage
CN103908329B (en) * 2014-03-13 2015-12-02 山东冠龙医疗用品有限公司 A kind of threaded fusion cage
JP2017508580A (en) * 2014-03-13 2017-03-30 山東冠龍医療用品有限公司 Expandable interbody fusion device

Also Published As

Publication number Publication date
US20020068976A1 (en) 2002-06-06
AU2001285456A1 (en) 2002-06-18
US6443989B1 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
US6443989B1 (en) Posterior expandable fusion cage
US6773460B2 (en) Anterior variable expandable fusion cage
AU2005200257B9 (en) Orthopedic implant assembly
US7887547B2 (en) Bone screw retaining system
JP4204200B2 (en) Expandable interbody fusion cage
EP2819597B1 (en) Expandable fastener
US8690877B2 (en) Femoral ring loader
US6214050B1 (en) Expandable implant for inter-bone stabilization and adapted to extrude osteogenic material, and a method of stabilizing bones while extruding osteogenic material
JP4154238B2 (en) Radially expanding body spinal fusion implant
US6602255B1 (en) Bone screw retaining system
US20110066191A1 (en) Threadform for medical implant closure
US20020103487A1 (en) Porous interbody fusion device having integrated polyaxial locking interference screws
WO2003057055A1 (en) Orthopedic/neurosurgical system and method for securing vertebral bone facets
JPH1156870A (en) Backbone fixing plate
JP2008519649A (en) Polyaxial bone screw with a helically wound capture joint
GB2381197A (en) A surgical implant
GB2452990A (en) A retaining device and apparatus for an implant or prosthetic device
JP2007532283A (en) Bone fixation plate
KR20010032576A (en) Surgical implant and surgical fixing screw
JP2000500990A (en) Ligament fixture

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP