WO2002048233A1 - Gelhaltige kautschukmischungen mit multifunktionellen isocyanaten und polyolen - Google Patents

Gelhaltige kautschukmischungen mit multifunktionellen isocyanaten und polyolen Download PDF

Info

Publication number
WO2002048233A1
WO2002048233A1 PCT/EP2001/014047 EP0114047W WO0248233A1 WO 2002048233 A1 WO2002048233 A1 WO 2002048233A1 EP 0114047 W EP0114047 W EP 0114047W WO 0248233 A1 WO0248233 A1 WO 0248233A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
weight
parts
polyols
crosslinked
Prior art date
Application number
PCT/EP2001/014047
Other languages
English (en)
French (fr)
Inventor
Werner Obrecht
Ludger Heiliger
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to JP2002549759A priority Critical patent/JP4142435B2/ja
Priority to CA002431249A priority patent/CA2431249A1/en
Priority to EP01270568A priority patent/EP1345976B1/de
Priority to DE50113902T priority patent/DE50113902D1/de
Priority to AU2002220745A priority patent/AU2002220745A1/en
Publication of WO2002048233A1 publication Critical patent/WO2002048233A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3215Polyhydroxy compounds containing aromatic groups or benzoquinone groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/6576Compounds of group C08G18/69
    • C08G18/6582Compounds of group C08G18/69 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6588Compounds of group C08G18/69 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • the present invention relates to rubber compounds based on uncrosslinked
  • Rubbers and of cross-linked rubber particles as well as multifunctional isocyanates and polyols.
  • the rubber mixtures according to the invention are suitable for producing rubber vulcanizates which have both an advantageous combination of mechanical properties, such as tension values at 100% and at 300% elongation and elongation at break, and a high difference in elasticities at 70 ° C. and 23 ° C. exhibit.
  • the nulcanisates produced from the rubber mixtures according to the invention have a low density, which has an advantageous effect on the weight of the rubber molded articles produced from the nulcanisates, in particular tires or tire parts.
  • fillers customary in rubber mixtures such as carbon black or silica
  • rubber gels Due to the low density of the rubber gels, the corresponding vulcanizates have a lower weight.
  • Rubber gels based on polybutadiene have high rebound elasticities both at room temperature and at 70 ° C.
  • Such vulcanizates can be used for the production of low-damping rubber articles, in particular low-damping tire components.
  • the corresponding nulcanizates contain low rebound elasticities at room temperature and high rebound elasticities at 70 ° C.
  • Corresponding vulcanizates are suitable, for example, for tire treads with an advantageous rassschlehrehieiIRoll resistance ratio.
  • the strengthening effect is not sufficient for the technical use of the rubber gels in vulcanizates.
  • the strengthening effect is understood to mean the product S 3 oo x D, ie the product of the stress value at 300% elongation (S 300 ) and elongation at break (D).
  • suitable additives such.
  • the present invention therefore relates to rubber mixtures consisting of non-crosslinked rubbers (A), crosslinked rubber particles (B), multi- Functional isocyanates (C) and polyols (D), the proportion of component (B) in the mixture, based on 100 parts by weight (phr) of the rubber component (A), preferably 1 to 150 parts by weight, preferably 5 to 100 parts by weight, the proportion of multifunctional isocyanates (C) 1 to 100, preferably 3 to 50 parts by weight and the proportion of polyols (D) 1 to 50, preferably 1 to 30 parts by weight.
  • Non-crosslinked rubbers are rubbers which are referred to as R rubbers in accordance with DIN / ISO 1629. These rubbers have a double bond in the main chain. These include, for example:
  • SBR styrene / butadiene rubber
  • NBR nitrile rubber
  • HNBR Hydrogenated or partially hydrogenated nitrile rubber
  • SNBR styrene / butadiene / acrylonitrile rubber
  • SIBR styrene / butadiene / isoprene rubber
  • ENR epoxidized natural rubber or mixtures thereof
  • X-NBR carboxylated nitrile rubbers
  • X-SBR carboxylated styrene-butadiene copolymers.
  • M 1629 are referred to as M, O, Q and U and rubbers
  • M 1629 are referred to as M, O, Q and U and rubbers
  • EAM ethylene / acrylate copolymers
  • CO and ECO epichlorohydrin rubbers
  • Q silicone rubbers
  • the rubbers of the abovementioned type to be used in the rubber mixtures according to the invention can of course be modified by functional groups which are able to react with the functional isocyanates to be used and which are able to improve the coupling of the crosslinked rubber particles to the surrounding rubber matrix in the vulcanized state.
  • non-crosslinked rubbers which are functionalized by hydroxyl, carboxyl, amino and / or amide groups are particularly preferred.
  • Functional groups can be introduced directly during the polymerization by copolymerization with suitable comonomers or after the polymerization by polymer modification.
  • the amount of functional groups in the rubbers is usually 0.05 to 25% by weight, preferably 0.1 to 10% by weight.
  • Crosslinked rubber particles (B) so-called rubber gels, gels or microgels, are used in the mixtures according to the invention in particular those which have been obtained by appropriate crosslinking of the following rubbers:
  • BR polybutadiene
  • ABR butadiene / acrylic acid-Cl-4 alkyl ester copolymers
  • IR polyisoprene
  • SBR styrene-butadiene copolymers with styrene contents of 1-60, preferably 5-50 percent by weight
  • X-SBR carboxylated styrene-butadiene copolymers
  • FKM fluororubber
  • ACM acrylate rubber
  • NBR polybutadiene-acrylonitrile copolymers with acrylonitrile contents
  • X-NBR carboxylated nitrile rubbers
  • IIR Isobutylene / isoprene copolymers with isoprene contents of 0.5-10
  • HNBR partially and fully hydrogenated nitrile rubbers
  • EPDM ethylene-propylene-diene copolymers
  • the rubber particles to be used according to the invention usually have particle diameters of 5 to 1000 nm, preferably 10 to 600 nm (diameter specifications according to DIN 53 206). Because of their crosslinking, they are insoluble and swellable in suitable solvents, for example toluene.
  • the swelling indices of the rubber particles (QI) in toluene are approximately 1 to 15, preferably 1 to 10.
  • the gel content of the rubber particles according to the invention is usually 80 to 100% by weight, preferably 90 to 100% by weight.
  • crosslinked rubber particles like the previously mentioned non-crosslinked rubbers, can also be modified by suitable functional groups which, as mentioned above, are able to react with the multifunctional isocyanates to be used and / or improve the coupling of the rubber particles to the surrounding rubber matrix in the vulcanized state cause.
  • the preferred functional groups are again the hydroxyl, carboxyl, amino and / or amide groups.
  • the quantitative proportion of these functional groups corresponds to the proportion of these groups for the previously mentioned and non-crosslinked rubbers.
  • Modified, crosslinked rubber particles are preferably used in the rubber mixtures according to the invention, which on the surface by -OH; -COOH; -NH 2 ; -CONH 2 ; -CONHR groups are modified and are in the aforementioned range.
  • Suitable multifunctional isocyanates (component C) for the rubber mixtures according to the invention are isocyanates with two or more, preferably 2 to 10, isocyanate groups in the molecule.
  • the known aliphatic, cycloaliphatic, aromatic, oligomeric and polymeric multifunctional isocyanates are suitable for this.
  • a representative of the aliphatic multifunctional isocyanates is e.g. Hexamethylene diisocyanate (HDI);
  • a representative of the cycloaliphatic multifunctional isocyanates is e.g. l-Isocyanato-3- (isocyanatomethyl) -3,5,5-trimethylcyclohexane (isophorone diisocyanate / IPDI).
  • aromatic multifunctional isocyanates include: 2,4- and 2,6-diisocyanatotoluene and the corresponding technical isomer mixture (TDI); Diphenylmethane diisocyanates, such as diphenylmethane-4,4'-diisocyanate, diphenylmethane-2,4'-diisocyanate, diphenylmethane-2,2'-diisocyanate and the corresponding technical isomer mixtures (MDI). Also to be mentioned are naphthalene-1,5-diisocyanate (NDI) and 4,4 ', 4 "- triisocyanatotriphenylmethane.
  • the multifunctional isocyanates To lower the vapor pressure of the multifunctional isocyanates, it may be necessary to use the multifunctional isocyanates in a higher molecular weight form.
  • the most important methods for the production of higher molecular weight products are dimerization, such as in the case of dimerized 2,4-diisocyanato toluene, which is commercially available as Desmodur TT, practices trimerization and polymerization.
  • Suitable polyols (component D) of the rubber mixtures according to the invention are, in particular, polyester polyols, polyether polyols, polycarbonate polyols or mixtures thereof.
  • Suitable polyetherols can be prepared by reacting one or more alkylene oxides having 2 to 4 carbon atoms in the alkylene radical with a starter molecule which contains two active hydrogen atoms bonded.
  • alkylene oxides e.g. called: ethylene oxide, 1,2-propylene oxide, epichlorohydrin and 1,2- and 2,3-butylene oxide.
  • Ethylene oxide, propylene oxide and mixtures of 1,2-propylene oxide and ethylene oxide are preferably used.
  • Alkylene oxides can be used individually, alternately in succession or as mixtures.
  • suitable starter molecules are: water, amino alcohols, such as N-alkyl-diethanolamines, for example N-methyl-diethanolamine and diols, such as ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,6-hexanediol, bisphenol A, resorcinol, pyrocatechol, trimethylolpropane, glycerol,
  • amino alcohols such as N-alkyl-diethanolamines, for example N-methyl-diethanolamine and diols, such as ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,6-hexanediol, bisphenol A, resorcinol, pyrocatechol, trimethylolpropane
  • Pentaerythritol, sorbitol, glucose, degraded starch, ethylenediamine and diaminotoluene Pentaerythritol, sorbitol, glucose, degraded starch, ethylenediamine and diaminotoluene.
  • Suitable polyetherols are also the hydroxyl-containing polymerization products of tetrahydrofuran.
  • Trifactional polyethers can also be used in proportions of 0 to 30% by weight, based on the biftional polyethers.
  • the essentially linear polyetherols have molecular weights of 62 to 10,000, preferably 100 to 5000. They can be used both individually and in the form of
  • Suitable polyesterols can be prepared, for example, from dicarboxylic acids having 2 to 12 carbon atoms, preferably 4 to 6 carbon atoms, and polyhydric alcohols. Examples of suitable dicarboxylic acids are
  • dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid and sebacic acid
  • aromatic dicarboxylic acids such as phthalic acid, isophthalic acid and terephthalic acid.
  • the dicarboxylic acids can be used individually or as mixtures, e.g. in the form of a mixture of succinic, glutaric and adipic acids.
  • polyesterols For the preparation of the polyesterols it may be advantageous to use the corresponding dicarboxylic acid derivatives, such as carboxylic acid diesters having 1 to 4 carbon atoms in the alcohol radical, carboxylic acid anhydrides or carboxylic acid chlorides, instead of the dicarboxylic acids.
  • dicarboxylic acid derivatives such as carboxylic acid diesters having 1 to 4 carbon atoms in the alcohol radical, carboxylic acid anhydrides or carboxylic acid chlorides, instead of the dicarboxylic acids.
  • polyhydric alcohols are glycols having 2 to 10, preferably 2 to 6, carbon atoms, such as ethylene glycol, diethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol,
  • Decanediol-1,10, 2,2-dimethylpropanediol-1,3, propanediol-1,3 and dipropylene glycol can be used alone or, if appropriate, as a mixture with one another.
  • esters of carbonic acid with the diols mentioned in particular those with 4 to 6 carbon atoms, such as 1,4-butanediol and / or 1,6-hexanediol, condensation products of ⁇ -hydroxycarboxylic acids, for example ⁇ -hydroxycaproic acid, and preferably polymerization products of lactones, for example optionally substituted ⁇ -caprolactones.
  • Preferred polyesterols used are ethanediol polyadipates, 1,4-butanediol polyadipates, ethanediol-1,4-butanediol polyadipates, 1,6-hexanediol-neopentylglycol polyadipates, 1,6-hexanediol-1,4-butanediol polyadipates and polycaprolactones.
  • the polyesterols have molecular weights of 180 to 10,000, preferably 200 to 5000.
  • the polycarbonate polyols to be used can be prepared in a known manner, for example by transesterification processes of the above-mentioned diols with a
  • Carbonic acid diesters e.g. Diphenyl carbonate.
  • the molecular weights are about 180 to 10,000, preferably 200 to 5000.
  • 420 g / mol are e.g. available as polyethylene glycol 300 and polyethylene glycol 400 from Merck, Darmstadt.
  • the rubber mixtures according to the invention can contain further known rubber auxiliaries and fillers.
  • Particularly suitable fillers for the production of the rubber mixtures according to the invention include:
  • the carbon blacks to be used here are produced using the flame black, furnace or gas black process and have BET surface areas of 20-200 m 2 / g, such as: SAF, ISAF, IISAF, HAF, FEF or GPF carbon blacks ,
  • highly disperse silicic acid produced, for example, by precipitation of solutions of silicates or flame hydrolysis of silicon halides with specific surfaces of 5-1000, preferably 20-400 m 2 / g (BET surface) and primary particle sizes of 5-400 nm. also as mixed oxides with others
  • Metal oxides such as Al, Mg, Ca, Ba, Zn and Ti oxides are present.
  • Synthetic silicates such as aluminum silicate, alkaline earth metal silicate, such as magnesium silicate or calcium silicate with BET surface areas of 20-400 m 2 / g and primary particle diameters of 5-400 nm.
  • Metal oxides such as zinc oxide, calcium oxide, magnesium oxide, aluminum oxide.
  • Metal carbonates such as calcium carbonate, magnesium carbonate, zinc carbonate.
  • Metal sulfates such as calcium sulfate, barium sulfate.
  • Metal hydroxides such as aluminum hydroxide and magnesium hydroxide.
  • Thermoplastic fibers (polyamide, polyester, aramid).
  • the fillers can be used in amounts of 0.1 to 100 parts by weight, based on 100
  • the fillers mentioned can be used alone or in a mixture with one another.
  • Rubber mixtures are particularly preferred which, in addition to the amounts of components A), B) and C) mentioned, contain 10 to 100 parts by weight of crosslinked rubber particles (component B) and 0.1 to 100 parts by weight of carbon black and / or 0, 1 to 100 parts by weight of so-called light fillers of the type mentioned above, based in each case on 100 parts by weight of rubber component A.
  • the amount of fillers when using a mixture of rubber gel, carbon black and light fillers is a maximum of about 150 parts by weight.
  • the rubber mixtures according to the invention can contain further rubber auxiliaries, such as crosslinking agents, vulcanization accelerators, anti-aging agents, heat stabilizers, light stabilizers, anti-ozone agents, processing aids, plasticizers, tackifiers, blowing agents, dyes, pigments, wax, extenders, organic acids, retarders, metal oxides, and filler activators, such as bis (triethoxysilylpropyl) tetrasulfide.
  • the rubber auxiliaries are described, for example, in J. van Alphen, WJ.K. Schönbau, M. van Tempel Rubber chemicals, Principle Union GmbH Stuttgart 1956 and in a manual for the rubber industry, Bayer AG, 2nd edition, 1991.
  • the rubber auxiliaries are used in conventional amounts, which include according to the intended use. Usual amounts are, for example, 0.1 to 50
  • the rubber mixtures according to the invention can also use conventional crosslinking agents such as sulfur, sulfur donors, peroxides or other crosslinking agents, such as diisopropenylbenzene, divinylbenzene, divinyl ether, divinylsulfone, diallylphthalate, triallylcyanurate, triallyl isocyanurate, 1,2-polybutadiene, phenylene, N, N'-N'-N'-N'-N'-N'-N'-N'-N'-N'-N'-N'-N'-N'-N'-N'-N'-N'-N'-N'-N -N -N -N -N -N -N -N -N -N -N -N -N -N -N -N -N -N -N -N -N -N -N -N -N -N -N -N -N -
  • polyhydric preferably 2 to 4-valent C2 to C 10 alcohols
  • ethylene glycol propanediol-1, 2-butanediol, hexanediol
  • polyethylene glycol with 2 to 20, preferably 2 to 8, oxyethylene units neopentyl glycol
  • bisphenol-A glycerol
  • Preferred crosslinkers are sulfur and sulfur donors in the known ones
  • Amounts for example in amounts of 0.1 to 15, preferably 0.5 to 7, based on 100 parts by weight of rubber component (A) are used.
  • the rubber mixtures according to the invention can also contain vulcanization accelerators of the known type, such as mercaptobenzothiazoles,
  • the vulcanization accelerators are used in amounts of approximately 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of rubber component (A).
  • the rubber mixtures according to the invention can be produced in a known manner, for example by mixing the solid individual components in the units suitable for this, such as rollers, internal mixers or mixing extruders. The individual components are usually mixed together at mixing temperatures of 20 to 100 ° C.
  • the rubber mixtures according to the invention can also be produced by mixing the two rubber components (A) and (B) together in their latex form and then mixing in the other components to this latex mixture and then the latex mixture by conventional means
  • the main aim in the production of the rubber mixture according to the invention is that the mixture components are intimately mixed with one another and a good one
  • the rubber mixtures according to the invention are suitable for the production of rubber vulcanizates by appropriate crosslinking reactions with the known crosslinking agents and are used for the production of moldings of all kinds, in particular for the production of cable sheaths, hoses, drive belts, conveyor belts, roller fittings, tires and tire components, shoe soles, sealing rings, damping elements and membranes, preferably of tires or tire components.
  • Gel (1) is an SBR gel. It is in the rubber mixture according to the invention in the rubber mixture according to the invention in the rubber mixture according to the invention in
  • Gel (1) is post-crosslinked with an SBR latex with a styrene content of 23% by weight (Baystal BL 1357® from Bayer France, Port Jerome) with 1.5 phr
  • Gel (2) is a hydroxyl modified SBR gel. Starting from Baystal BL 1357, which was crosslinked with 1.5 phr dicumyl peroxide, it is surface-modified by grafting with hydroxyethyl methacrylate (HEMA). The surface modification with HEMA and the coagulation of the SBR gel modified with HEMA are described below.
  • HEMA hydroxyethyl methacrylate
  • the SBR latex post-crosslinked with 1.5 phr of dicumyl peroxide was placed in a polymerization reactor and the latex was diluted with water so that the solids content was 20% by weight.
  • the reaction mixture was heated to 70 ° C. with stirring and the mixture was stirred for 1 hour at this temperature. Then 0.05% by weight, based on the latex solids content, of an aqueous 0.5% by weight solution of the
  • the precipitating agents introduced were heated to 60 ° C. and the pH was adjusted to 4 using 10% strength by weight sulfuric acid.
  • the modified latex was added to the precipitation agent while maintaining this pH.
  • the mixture was heated to 60 ° C. and then the mixture was cooled to about 30 ° C. by adding cold water.
  • the resulting rubber gel was washed several times and, after filtration at 70 ° C. under vacuum, dried to constant weight (approx. 60 hours).
  • the gel (2) obtained had a gel content of 97% by weight, the swelling index of the gelled portion being 5.9.
  • the OH number of the gel (A) obtained was
  • the vulcanization behavior of the mixtures is examined in the rheometer at 160 ° C according to DIN 53 529 with the help of the Monsantorheometer MDR 2000E. To this Manner there were characteristic data such as F a, F m a ⁇ , F max. F-a., T 10, t 80 and t o 9 determined.
  • F ma - F a difference of the vulkameter displays between maximum and minimum t 10 : time at which 10% of the turnover is reached t 80 : time at which 80% of the turnover is reached t 90 : time at 90% of the turnover are reached
  • the mixtures are vulcanized in the press at 160 ° C, the following vulcanization times being chosen:
  • Mixture series A shows that the vulcanizate properties (S 3 o 0 x D) of a rubber compound that contains a hydroxyl-modified SBR gel are improved by the addition of a trimerized hexamethylene diisocyanate (Desmodur® N 3300) and the elasticity difference (E 70 - E 23 ) deteriorates.
  • a trimerized hexamethylene diisocyanate Desmodur® N 3300
  • E 70 - E 23 elasticity difference
  • TSR 5 TSR 5
  • Defo 700 Mix of paraffins and micro waxes (Antilux® 654 from Rheinchemie
  • the mixtures are vulcanized in the press at 160 ° C, the following vulcanization times being chosen:
  • Mixture series B shows that both the vulcanizate properties (S O Q x D) and the elasticity differences (E 0 -E 23 ) of rubber compounds, the unmodified SBR gels and multifunctional isocyanates (in this case: raw MDI) included, can be improved by adding 3 phr of crosslinking agent 30/10, or 5 phr of polyethylene glycol with a molecular weight of 300 g / mol or 5 phr of polyethylene glycol with a molecular weight of 400 g / mol.
  • the mixtures are vulcanized in the press at 160 ° C, the following vulcanization times being chosen:
  • Mixture series C) shows that the vulcanizate properties (S 3 oo x D) of a rubber compound that contains an unmodified SBR gel and a trimerized isophorone diisocyanate (Desmodur® Z 4300) can be achieved by adding different amounts of 1,4-bis ( ß-hydroxyethoxy) benzene (crosslinker 30/10) can be improved without loss of elasticity difference (E 7 or 23 ).

Abstract

Die erfindungsgemäßen Kautschukmischungen auf Basis von unvernetzten Kautschuken, vernetzten Kautschukpartikeln sowie multifunktionellen Isocyanaten und Polyolen können zur Herstellung von Kautschukvulkanisaten bzw. Kautschukformkörpern aller Art verwendet werden, wobei die Vulkanisate gute mechanische Eigenschaften aufweisen, gekoppelt mit einer hohen Differenz der Rückprallelastizitäten bei 70 °C und 23 °C.

Description

Gelhaltige Kautschukmischungen mit multifunktionellen Isocvanaten und Polyolen
Die vorliegende Erfindung betrifft Kautschukmischungen auf Basis von unvemetzten
Kautschuken und von vernetzten Kautschukpartikeln (sogenannten Kautschukgelen oder Mikrogelen) sowie multifunktionellen Isocyanaten und Polyolen. Die erfin- dungsgemäßen Kautschukmischungen eignen sich zur Herstellung von Kautschuk- vulkanisaten, die sowohl eine vorteilhafte Kombination mechanischer Eigenschaften, wie Spannungswerte bei 100 % und bei 300 % Dehnung und Bruchdehnung, als auch eine hohe Differenz der Elastizitäten bei 70°C und 23°C aufweisen. Darüber hinaus besitzen die aus den erfindungsgemäßen Kautschukmischungen hergestellten Nulka- nisate eine niedrige Dichte, was sich vorteilhaft auf das Gewicht der aus den Nul- kanisaten hergestellten Kautschukformkörpern, insbesondere Reifen bzw. Reifen- teile, auswirkt.
Es ist bekannt, dass in Kautschukmischungen übliche Füllstoffe, wie Ruß oder Kieselsäure, quantitativ oder partiell durch Kautschukgele ersetzt werden können. Aufgrund der niedrigen Dichte der Kautschukgele weisen die entsprechenden Nulkanisate ein niedrigeres Gewicht auf. Zusätzlich findet man bei Verwendung von
Kautschukgelen auf Basis von Polybutadien (BR-Gele) hohe Rückprallelastizitäten sowohl bei Raumtemperatur als auch bei 70°C. Derartige Nulkanisate können für die Herstellung niedrigdämpfender Gummiartikel insbesondere niedrigdämpfender Reifenbauteile eingesetzt werden. Bei Verwendung von Kautschukgelen auf SBR- Basis findet man in den entsprechenden Nulkanisaten niedrige Rückprallelastizitäten bei Raumtemperatur und hohe Rückprallelastizitäten bei 70°C. Entsprechende Nulkanisate sind z.B. für Reifenlaufflächen mit vorteilhafter Νassrutschverhal- teiJRollwiderstands-Relation geeignet. Verwiesen wird in diesem Zusammenhang beispielsweise auf US-A 5 124 408, US-A 5 395 891, DE-A 197 01 488.7, DE-A 197 01 487.9, DE-A 19929 347.3, DE-A 199 39 865.8, DE-A 199 42 620.1.
Für den technischen Einsatz der Kautschukgele in Vulkanisaten ist ihre Ver- stärkungswirkung nicht ausreichend, wobei unter Verstärkungswirkung das Produkt S3oo x D, d. h. das Produkt aus Spannungswert bei 300 % Dehnung (S300) und Bruchdehnung (D), verstanden wird. Durch Zusätze geeigneter Additive wie z. B. von schwefelhaltigen Organosiliciumverbindungen (DE-A 19 929 347), von ver- kappten Bismerkaptanen (DE-A 19 942 620) oder von multifunktionellen Iso- cyanaten (DE-A 19 962 862) wird die Verstärkungswirkung der Kautschukgele verbessert. Der Nachteil bei Verwendung dieser Additive, insbesondere bei Verwendung multifunktioneller Isocyanate ist, dass die Verbesserung des Verstärkungseffekts S30o x D mit einer Verschlechterung der Differenz der Rückprallelastizitäten bei 70°C und 23°C (E70-E23) verknüpft ist.
Für viele Einsatzgebiete von vulkanisierten Gummiartikeln wird sowohl ein hohes Niveau mechanischer Eigenschaften insbesondere für das Produkt S300 x D als auch eine hohe Elastizitätsdifferenz (E70-E23) gefordert.
Es bestand daher die technische Notwendigkeit, Maßnahmen zu finden, die bei gel- gefüllten Kautschukvulkanisaten sowohl die Einstellung eines hohen mechanischen Werteniveaus S 00 x D als auch hoher Differenzen der Rückprallelastizitäten bei 70°C und 23°C (E70-E23) ermöglichen.
Es wurde gefunden, dass dieses Ziel bei Kautschukmischungen, die Kautschukgele und Zusätze multifunktioneller Isocyanate enthalten, dadurch erreicht wird, dass Polyole zugesetzt werden.
Gegenstand der vorliegenden Erfindung sind daher Kautschukmischungen bestehend aus nicht vernetzten Kautschuken (A), vernetzten Kautschukpartikeln (B), multi- fiinktionellen Isocyanaten (C) sowie Polyolen (D), wobei in der Mischung, jeweils bezogen auf 100 Gew. -Teile (phr) der Kautschukkomponente (A), der Anteil an Komponente (B) 1 bis 150 Gew. -Teile, bevorzugt 5 bis 100 Gew.-Teile, der Anteil an multifunktionellen Isocyanaten (C) 1 bis 100, bevorzugt 3 bis 50 Gew.-Teile sowie der Anteil an Polyolen (D) 1 bis 50, bevorzugt 1 bis 30 Gew.-Teilen, beträgt.
Unter nicht vernetzten Kautschuken (A) versteht man solche Kautschuke, die nach DIN/ISO 1629 als R-Kautschuke bezeichnet werden. Diese Kautschuke haben in der Hauptkette eine Doppelbindung. Hierzu gehören beispielsweise:
NR: Naturkautschuk
IR: Polyisopren
IS: Isopren/Styrol-Copolymerisate
SBR: Styrol/Butadienkautschuk
BR: Polybutadienkautschuk
NBR: Nitrilkautschuk
IIR: Butylkautschuk
BIIR: bromierte Isobutylen/lsopren-Copolymerisate mit Bromgehalten von
0,1-10 Gewichtsprozent
CHR.: chlorierte Isobutylen/Isopren-Copolymerisate mit Bromgehalten von
0,1-10 Gewichtsprozent
HNBR: Hydrierter bzw. teilhydrierter Nitrilkautschuk
SNBR: Styrol/Butadien/Acrylnitril-Kautschuk
SIBR: Styrol/Butadien/Isopren-Kautschuk
CR: Polychloropren
ENR: Epoxydierter Naturkautschuk oder Mischungen davon
X-NBR: carboxylierte Nitrilkautschuke
X-SBR: carboxylierte Styrol-Butadien-Copolymerisate.
Weiterhin können aber auch solche Kautschuke eingesetzt werden, die nach DIN/ISO
1629 als M, O, Q und U und -Kautschuke bezeichnet werden Hierzu gehören z.B.: EAM: Ethylen/Acrylatcopolymere,
EVM: Ethylen/Vinylacetatcopolymere
CO und ECO: Epichlorhydrinkautschuke, Q: Silikonkautschuke,
AU: Polyesterurethanpolymerisate,
EU: Polyetherurethanpolymerisate.
Die in den erfindungsgemäßen Kautschukmischungen einzusetzenden Kautschuke der oben genannten Art können selbstverständlich durch solche funktionelle Gruppen modifiziert sein, die mit den einzusetzenden fiinktionellen Isocyanaten zu reagieren vermögen und eine Ankopplung der vernetzten Kautschukpartikel an die umgebende Kautschukmatrix im vulkanisierten Zustand zu verbessern vermögen.
Besonders bevorzugt sind insbesondere solche nicht vernetzten Kautschuke, die durch Hydroxyl-, Carboxyl-, Amino- und/oder Amidgruppen funktionalisiert sind. Die Einführung funktioneller Gruppen kann direkt bei der Polymerisation durch Co- polymerisation mit geeigneten Comonomeren oder nach der Polymerisation durch Polymermodifikation erfolgen.
Die Menge an fiinktionellen Gruppen in den Kautschuken beträgt üblicherweise 0,05 bis 25 Gew.-%, bevorzugt 0,1 bis 10 Gew.-%.
Als vernetzte Kautschukpartikel (B), sogenannte Kautschukgele, Gele oder Mikro- gele, werden in die erfindungsgemäßen Gemische insbesondere solche eingesetzt, die durch entsprechende Vernetzung folgender Kautschuke erhalten wurden:
NR: Naturkautschuk
BR: Polybutadien, ABR: Butadien/Acrylsäure-Cl-4Alkylestercopolymere,
IR: Polyisopren, SBR: Styrol-Butadien-Copolymerisate mit Styrolgehalten von 1-60, vorzugsweise 5-50 Gewichtsprozent,
SNBR: StyroVAcrylnilril/Butadien-Polymerisate
X-SBR: carboxlylierte Styrol-Butadien-Copolymerisate
FKM: Fluorkautschuk,
ACM: Acrylatkautschuk,
NBR: Polybutadien-Acrylnitril-Copolymerisate mit Acrylnitrilgehalten von
5-60, vorzugsweise 10-50 Gewichtsprozent,
X-NBR: carboxlierte Nitrilkautschuke
CR: Polychloropren
IIR: Isobutylen/Isopren-Copolymerisate mit Isoprengehalten von 0,5-10
Gewichtsprozent,
BIIR: bromierte Isobutylen/Isopren-Copolymerisate mit Bromgehalten von
0,1-10 Gewichtsprozent,
CIIR: chlorierte Isobutylen/Isopren-Copolymerisate mit Bromgehalten von
0,1-10 Gewichtsprozent,
HNBR: teil- und vollhydrierte Nitrilkautschuke
EPDM: Ethylen-Propylen-Dien-Copolymerisate,
EAM: Ethylen/Acrylatcopolymere,
EVM: Ethylen/Vinylacetatcopolymere
CO und ECO: Epichlorhydrinkautschuke,
Q: Silikonkautschuke,
AU: Polyesterurethanpolymerisate,
EU: Polyetherurethanpolymerisate.
Die erfindungsgemäß einzusetzenden Kautschukpartikel besitzen üblicherweise Teilchendurchmesser von 5 bis 1000 nm, bevorzugt 10 bis 600 nm (Durchmesserangaben nach DIN 53 206). Aufgrund ihrer Vernetzung sind sie unlöslich und in geeigneten Lösungsmitteln, z.B. Toluol, quellbar. Die Quellungsindizes der Kautschukpartikel (QI) in Toluol betragen ca. 1 bis 15, vorzugsweise 1 bis 10. Der Quellungsindex wird aus dem Gewicht des lösungsmittelhaltigen Gels (nach Zentrifugation mit 20 000 Upm) und dem Gewicht des trockenen Gels berechnet, wobei QI = Nassgewicht des Gels/Trockengewicht des Gels bedeutet. Der Gelgehalt der erfindungsgemäßen Kautschukpartikel beträgt üblicherweise 80 bis 100 Gew.-%, bevorzugt 90 bis 100 Gew.-%.
Die Herstellung der einzusetzenden vernetzten Kautschukpartikel aus den zugrundeliegenden Kautschuken der zuvor genannten Art ist prinzipiell bekannt und beispielsweise beschrieben in US-A 5 395 891 und EP-A 981 00049.0.
Außerdem ist es möglich, die Teilchengrößen der Kautschukpartikel durch Agglomeration zu vergrößern. Auch die Herstellung von Kieselsäure/Kautschuk-Hybridgelen durch Coagglomeration ist beispielsweise beschrieben in der deutschen Patentanmeldung Nr. 199 39 865.8. Auch solche Kautschukpartikel können in die erfindungsgemäßen Mischungen eingesetzt werden.
Selbstverständlich können die vernetzten Kautschukpartikel wie die zuvor erwähnten nicht vernetzten Kautschuke ebenfalls durch geeignete fiinktionelle Gruppen modifiziert sein, die - wie zuvor erwähnt - mit den einzusetzenden multifunktionellen Isocyanaten zu reagieren vermögen und/oder eine Verbesserung der Ankopplung der Kautschukpartikel an die umgebende Kautschukmatrix im vulkanisierten Zustand bewirken.
Als bevorzugte funktionelle Gruppen sind wiederum zu nennen die Hydroxyl-, Carboxyl-, Amino- und/oder Amidgruppen. Der mengenmäßige Anteil dieser funk- tionellen Gruppen entspricht dem Anteil dieser Gruppen bei den zuvor genannten und nicht vernetzten Kautschuken.
Die Modifizierung der vernetzten Kautschukpartikeln (Kautschukgelen) und die Einführung der zuvor genannten funktionellen Gruppen ist dem Fachmann ebenfalls bekannt und beispielsweise beschrieben in den deutschen Patentanmeldungen Nr.
199 19 459.9, 199 29 347.3, 198 34 804.5. Zu erwähnen sei an dieser Stelle nur die Modifizierung der entsprechenden Kautschuke in wässriger Dispersion mit entsprechenden polaren Monomeren, die eine Hydroxyl-, Amino-, Amid- und/oder eine Carboxylgruppe in die Kautschuke einzu- führen vermögen.
Bevorzugt werden in die erfindungsgemäßen Kautschukmischungen modifizierte, vernetzte Kautschukpartikel eingesetzt, die an der Oberfläche durch -OH; -COOH; -NH2; -CONH2; -CONHR-Gruppen modifiziert sind und in dem zuvor erwähnten Mengenbereich liegen.
Als multifunktionelle Isocyanate (Komponente C) eignen sich für die erfindungsgemäßen Kautschukmischungen Isocyanate mit zwei oder mehr, bevorzugt 2 bis 10, Isocyanatgruppen im Molekül. Hierfür kommen die bekannten aliphatischen, cyclo- aliphatischen, aromatischen, oligomeren und polymeren multifunktionellen Isocyanate in Betracht. Ein Vertreter der aliphatischen multifiinktionellen Isocyanate ist z.B. Hexamethylendiisocyanat (HDI); ein Vertreter der cycloaliphatischen multifunktionellen Isocyanate ist z.B. l-Isocyanato-3-(isocyanatomethyl)-3,5,5-trimethyl- cyclohexan (Isophorondiisocyanat/IPDI). Als Vertreter der aromatischen multifunk- tionellen Isocyanate seien genannt: 2,4- und 2,6-Diisocyanatotoluol sowie das entsprechende technische Isomerengemisch (TDI); Diphenylmethandiisocyanate, wie Diphenylmethan-4,4'-diisocyanat, Diphenylmethan-2,4'-diisocyanat, Diphenyl- methan-2,2'-diisocyanat sowie die entsprechenden technischen Isomerengemische (MDI). Außerdem sind zu nennen Naphthalin- 1,5-diisocyanat (NDI) sowie 4,4',4"- Triisocyanatotriphenylmethan.
Zur Erniedrigung des Dampfdrucks der multifunktionellen Isocyanate kann es notwendig sein, die multifunktionellen Isocyanate in höhermolekularer Form einzusetzen. Die wichtigsten Methoden zur Herstellung höhermolekularer Produkte sind die Dimerisierung, wie beispielsweise beim dimerisierten 2,4-Diisocyanato- toluol praktiziert, welches als Desmodur TT im Handel befindlich ist, die Trimeri- sierung sowie die Polymerisation.
Zur Vermeidung des Riskos einer vorzeitigen Vernetzungsreaktion, z. B. bei der Mischungsherstellung (Reduktion der Scorchanfälligkeit der Mischungen) ist es zweckmäßig die Isocyanatfttnktionen reversibel zu blockieren. Insbesondere die temperaturreversible Blockierung (Verkappung) der Isocyanatgruppen mit speziellen Alkoholen, Phenolen, Caprolactamen, Oximen oder ß-Dicarbonylverbindungen der bekannten Art ist von besonderem Interesse.
Als Polyole (Komponente D) der erfindungsgemäßen Kautschukmischungen kommen insbesondere Polyesterpolyole, Polyetherpolyole, Polycarbonatpolyole oder deren Gemische in Frage.
Geeignete Polyehterole können dadurch hergestellt werden, dass man ein oder mehrere Alkylenoxide mit 2 bis 4 Kohlenstoffatomen im Alkylenrest mit einem Startermolekül, das zwei aktive Wasserstoffatome gebunden enthält, umsetzt. Als Alkylenoxide seien z.B. genannt: Ethylenoxid, 1,2-Propylenoxid, Epichlorhydrin und 1,2- und 2,3-Butylenoxid. Vorzugsweise Anwendung finden Ethylenoxid, Propylenoxid und Mischungen aus 1,2-Propylenoxid und Ethylenoxid. Die
Alkylenoxide können einzeln, alternierend nacheinander oder als Mischungen verwendet werden. Als Startermoleküle kommen beispielsweise in Betracht: Wasser, Aminoalkohole, wie N-Alkyl-diethanolamine, beispielsweise N-Methyl-diethanol- amin und Diole, wie Ethylenglykol, 1,3-Propandiol, 1,2-Propandiol, 1,4-Butandiol, 1,6-Hexandiol, Bisphenol A, Resorcin, Brenzkatechin, Trimethylolpropan, Glycerin,
Pentaerythrit, Sorbit, Glukose, abgebaute Stärke, Ethylendiamin und Diaminotoluol.
Gegebenenfalls können auch Mischungen von Startermolekülen eingesetzt werden. Geeignete Polyetherole sind ferner die hydroxylgruppenhaltigen Polymerisations- produkte des Tetrahydrofurans. Es können auch triftmktionelle Polyether in Anteilen von 0 bis 30 Gew.-%, bezogen auf die bift-nktionellen Polyether eingesetzt werden.
Die im wesentlichen linearen Polyetherole besitzen Molekulargewichte von 62 bis 10.000, bevorzugt 100 bis 5000. Sie können sowohl einzeln als auch in Form von
Mischungen untereinander zur Anwendung kommen.
Geeignete Polyesterole können beispielsweise aus Dicarbonsäuren mit 2 bis 12 Kohlenstoffatomen, vorzugsweise 4 bis 6 Kohlenstoffatomen, und mehrwertigen Alkoholen hergestellt werden. Als Dicarbonsäuren kommen beispielsweise in
Betracht: aliphatische Dicarbonsäuren, wie Bernsteinsäure, Glutarsäure, Adipinsäure, Korksäure, Azelainsäure und Sebacinsäure, und aromatische Dicarbonsäuren, wie Phthalsäure, Isophthalsäure und Terephthalsäure. Die Dicarbonsäuren können einzeln oder als Gemische, z.B. in Form einer Bernstein-, Glutar- und Adipinsäuremischung verwendet werden. Zur Herstellung der Polyesterole kann es gegebenenfalls vorteilhaft sein, anstelle der Dicarbonsäuren die entsprechenden Dicarbonsäurederivate, wie Carbonsäurediester mit 1 bis 4 Kohlenstoffatomen im Alkoholrest, Carbonsäureanhydride oder Carbonsäurechloride zu verwenden. Beispiele für mehrwertige Alkohole sind Glykole mit 2 bis 10, vorzugsweise 2 bis 6 Kohlenstoffatomen, wie Ethylenglykol, Diethylenglykol, Butandiol-1,4, Pentandiol-1,5, Hexandiol-1,6,
Decandiol-1,10, 2,2-Dimethylpropandiol-l,3, Propandiol-1,3 und Dipropylenglykol. Je nach den gewünschten Eigenschaften können die mehrwertigen Alkohole allein oder gegebenenfalls in Mischung untereinander verwendet werden.
Geeignet sind ferner Ester der Kohlensäure mit den genannten Diolen, insbesondere solchen mit 4 bis 6 Kohlenstoffatomen, wie Butandiol-1,4 und/oder Hexandiol-1,6, Kondensationsprodukte von ω-Hydroxycarbonsäuren, beispielsweise ω-Hydroxy- capronsäure, und vorzugsweise Polymerisationsprodukte von Lactonen, beispielsweise gegebenenfalls substituierten ω-Caprolactonen. Als Polyesterole vorzugsweise verwendet werden Ethandiol-polyadipate, 1,4- Butandiol-polyadipate, Ethandiol-1 ,4-butandiol-polyadipate, 1 ,6-Hexandiol-neo- pentylglykol-polyadipate, l,6-Hexandiol-l,4-butandiol-polyadipate und Polycapro- lactone.
Die Polyesterole besitzen Molekulargewichte von 180 bis 10.000, bevorzugt 200 bis 5000.
Die einzusetzenden Polycarbonatpolyole können in bekannter Weise beispielsweise hergestellt werden durch Umesterungsverfahren der oben genannten Diole mit einem
Kohlensäurediester, z.B. Diphenylcarbonat. Die Molekulargewichte liegen bei etwa 180 bis 10.000, bevorzugt 200 bis 5000.
Bevorzugt sind folgende Polyole zu nennen:
Figure imgf000011_0001
mit
y = 1 bis 20,
(Ein entsprechendes Produkt mit y = 1 wird als Vernetzer 30/10 von der Fa. Rheinchemie vertrieben.)
und:
-O-CH— CH-r -OH mit
z = 1 bis 20,
Entsprechende Produkte mit Molmassen von 285 bis 315 g/Mol und 380 bis
420 g/Mol sind z.B. als Polyethylenglykol 300 und Polyethylenglykol 400 bei der Firma Merck, Darmstadt, erhältlich.
Die erfindungsgemäßen Kautschukmischungen können weitere bekannte Kautschuk- hilfsmittel und Füllstoffe enthalten. Besonders geeignete Füllstoffe zur Herstellung der erfindungsgemäßen Kautschukmischungen sind z.B.:
- Ruße. Die hierbei zu verwendenden Ruße sind nach dem Flammruß-, Furnace- oder Gasrußverfahren hergestellt und besitzen BET-Oberflächen von 20-200 m2/g wie z.B: SAF-, ISAF-, IISAF-, HAF-, FEF- oder GPF-Ruße.
- hochdisperse Kieselsäure, hergestellt z.B. durch Fällungen von Lösungen von Silikaten oder Flammhydrolyse von Siliciumhalogeniden mit spezifischen Oberflächen von 5-1000, vorzugsweise 20-400 m2/g (BET-Oberfläche) und Primärteilchengrößen von 5-400 nm. Die Kieselsäuren können ggf. auch als Mischoxide mit anderen
Metalloxiden, wie AI-, Mg-, Ca-, Ba, Zn- und Ti Oxiden vorliegen.
- synthetische Silikate, wie Aluminiumsilikat, Erdalkalisilikat, wie Magnesiumsilikat oder Calciumsilikat mit BET-Oberflächen von 20-400 m2/g und Primärteilchen- durchmessern von 5-400 nm.
- natürliche Silikate, wie Kaolin und andere natürlich vorkommende Kieselsäuren.
- Metalloxide, wie Zinkoxid, Calciumoxid, Magnesiumoxid, Aluminiumoxid.
- Metallcarbonate, wie Calciumcarbonat, Magnesiumcarbonat, Zinkcarbonat. - Metallsulfate, wie Calciumsulfat, Bariumsulfat.
- Metallhydroxide, wie Aluminiumhydroxid und Magnesiumhydroxid.
- Glasfasern und Glasfaserprodukte (Latten, Stränge oder Mikroglaskugeln).
- Thermoplastfasern (Polyamid, Polyester, Aramid).
Die Füllstoffe können in Mengen von 0,1 bis 100 Gew. -Teilen, bezogen auf 100
Gew.-Teile der Kautschukkomponente A eingesetzt werden.
Die genannten Füllstoffe können allein oder im Gemisch untereinander eingesetzt werden.
Besonders bevorzugt sind Kautschukmischungen, die neben den erwähnten Mengen an Komponenten A), B) und C) 10 bis 100 Gew.-Teile an vernetzten Kautschukpartikeln (Komponente B) und 0,1 bis 100 Gew.-Teile Ruß und/oder 0,1 bis 100 Gew.-Teilen an sogenannten hellen Füllstoffen der oben genannten Art, jeweils bezogen auf 100 Gew.-Teile der Kautschukkomponente A, enthalten. Dabei beträgt die Menge an Füllstoffen bei Einsatz eines Gemisches aus Kautschukgel, Ruß und hellen Füllstoffen maximal ca. 150 Gew.-Teile.
Die erfindungsgemäßen Kautschukmischungen können - wie erwähnt - weitere Kautschukhilfsmittel enthalten, wie Vernetzer, Vulkanisationsbeschleuniger, Alterungsschutzmittel, Wärmestabilisatoren, Lichtschutzmittel, Ozonschutzmittel, Verar- beitungshilfsmittel, Weichmacher, Tackifier, Treibmittel, Farbstoffe, Pigmente, Wachs, Streckmittel, organische Säuren, Verzögerer, Metalloxide, sowie Füllstoffaktivatoren, wie Bis-(triethoxysilylpropyl)-tetrasulfid. Die Kautschukhilfsmittel sind beispielsweise beschrieben in J. van Alphen, WJ.K. Schönbau, M. van Tempel Gummichemikalien, Berliner Union GmbH Stuttgart 1956 sowie in Handbuch für die Gummiindustrie, Bayer AG, 2. Auflage, 1991.
Die Kautschukhilfsmittel werden in üblichen Mengen, die sich u.a. nach dem Ver- wendungszweck richten, eingesetzt. Übliche Mengen sind beispielsweise 0,1 bis 50
Gew.-Teile, bezogen auf 100 Gew.-Teile Kautschuk (A).
Darüber hinaus können die erfindungsgemäßen Kautschukmischungen noch übliche Vernetzer wie Schwefel, Schwefelspender, Peroxide oder andere Vemetzungsmittel, wie Düsopropenylbenzol, Divinylbenzol, Divinylether, Divinylsulfon, Diallylphtha- lat, Triallylcyanurat, Triallylisocyanurat, 1,2-Polybutadien, N,N'-m-Phenylenma- leinimid und oder Triallyltrimellitat enthalten. Außerdem kommen noch in Betracht die Acrylate und Methacrylate von mehrwertigen, vorzugsweise 2 bis 4- wertigen C2- bis C 10- Alkoholen, wie Ethylenglykol, Propandiol-l,2-butandiol, Hexandiol, Poly- ethylenglykol mit 2 bis 20, vorzugsweise 2 bis 8, Oxyethyleneinheiten, Neopentyl- glykol, Bisphenol- A, Glycerin, Trimethylolpropan, Pentaerythrit, Sorbit mit ungesättigten Polyestern aus aliphatischen Di- und Polyolen sowie Maleinsäure, Fumarsäure und/oder Itaconsäure.
Bevorzugt werden als Vernetzer Schwefel und Schwefelspender in den bekannten
Mengen, beispielsweise in Mengen von 0,1 bis 15, bevorzugt 0,5 bis 7, bezogen auf 100 Gew.-Teile an Kautschukkomponente (A) eingesetzt.
Die erfindungsgemäßen Kautschukmischungen können darüber hinaus noch Vulkani- sationsbeschleuniger der bekannten Art enthalten, wie Mercaptobenzothiazole,
Sulfenamide, Guanidine, Thiurame, Dithiocarbamate, Thioharnstoffe, Thiocarbonate und/oder Dithiophosphate. Die Vulkanisationsbeschleuniger werden ebenso wie die Vernetzer in Mengen von ca. 0,1 bis 10 Gew.-Teilen, bevorzugt 0,5 bis 5 Gew.- Teilen, bezogen auf 100 Gew.-Teile an Kautschukkomponente (A) eingesetzt. Die erfindungsgemäßen Kautschukmischungen können in bekannter Weise hergestellt werden, beispielsweise durch Vermischen der festen Einzelkomponenten in den dafür geeigneten Aggregaten, wie Walzen, Innenmischern oder Mischextrudern. Die Abmischung der einzelnen Komponenten miteinander erfolgt üblicherweise bei Mischtemperaturen von 20 bis 100°C.
Die erfindungsgemäßen Kautschukmischungen können auch hergestellt werden, indem man die beiden Kautschukkomponenten (A) und (B) in ihrer Latexform miteinander vermischt und anschließend zu dieser Latexmischung die anderen Komponenten einmischt und anschließend die Latexmischung durch übliche
Operationen, wie Eindampfen, Ausfällen oder Gefiier-Koagulation aufarbeitet zu den entsprechenden Kautschukmischungen.
Ziel bei der Herstellung der erfindungsgemäßen Kautschukmischung ist vor allem, dass die Mischungskomponenten innig miteinander vermischt werden und eine gute
Dispersion der eingesetzten Füllstoffe in der Kautschukmatrix erreicht wird.
Die erfindungsgemäßen Kautschukmischungen eignen sich zur Herstellung von Kautschukvulkanisaten durch entsprechende Vernetzungsreaktionen mit den be- kannten Vernetzungsagenzien und dienen zur Herstellung von Formkörpern aller Art, insbesondere zur Herstellung von Kabelmänteln, Schläuchen, Treibriemen, Förderbändern, Walzenbeschlägen, Reifen und Reifenbauteilen, Schuhsohlen, Dichtungsringen, Dämpfungselementen sowie Membranen, bevorzugt von Reifen bzw. Reifenbauteilen.
Beispiele
Gel (1):
Gel (1) ist ein SBR-Gel. Es wird in der erfindungsgemäßen Kautschukmischung in
Form eines Masterbatches mit einem Anteil von 50 Gew.-% NR-Kautschuk eingesetzt.
Gel (1) wird durch Nachvernetzung eines SBR-Latex mit einem Styrolanteil von 23 Gew.-% (Baystal BL 1357® der Firma Bayer France, Port Jeröme) mit 1,5 phr
Dicumylperoxid hergestellt. Die Vemetzungsreaktion und die Aufarbeitung erfolgten gemäß dem Beispiel 1 von EP-A 0 854 170. Charakteristische Daten zu Gel (1) sind in nachfolgender Tabelle zusammengefasst.
Gel (2):
Gel (2) ist ein hydroxylmodifiziertes SBR-Gel. Es wird ausgehend von Baystal BL 1357, der mit 1,5 phr Dicumylperoxid vernetzt wurde, durch Pfropfung mit Hydroxyethylmethacrylat (HEMA) oberflächenmodifiziert. Die Oberflächenmodi- fikation mit HEMA und die Koagulation des mit HEMA modifizierten SBR-Gels werden nachfolgend beschrieben.
Für die Modifikation mit Hydroxyethylmethacrylat legte man den mit 1,5 phr Dicumylperoxid nachvernetzten SBR-Latex in einem Polymerisationsreaktor vor und verdünnte den Latex mit Wasser, so dass der Feststoffgehalt 20 Gew.-% betrug. Nach dem Zusatz von 3 phr 97 %igem Hydroxymethylmethacrylat, bezogen auf den Latexfeststoffgehalt, und der Zugabe von 0,12 phr 50 %igem p-Methanhydroperoxid erhitzte man unter Rühren die Reaktionsmischung auf 70°C und rührte 1 Stunde bei dieser Temperatur nach. Man gab dann innerhalb von 1 Stunde 0,05 Gew.-%, be- zogen auf den Latexfeststoffgehalt, einer wässrigen 0,5 gew.-%igen Lösung des
Natriumsalzes von 1-Hydroxymethansulfinsäure-dihydrat (Rongalit®der Fa. BASF) zu. Während der gesamten Reaktion hielt man den pH- Wert durch Zugabe von 1 N Natronlauge konstant, und zwar auf pH 9. Nach einer Reaktionszeit von 1 Stunde bei 70°C hatte der Latex einen Polymerisationsumsatz von 90 %. Die Dichte der Latexteilchen betrug 0,987 g/cm3. Die Teilchendurchmesser betrugen: d10 = 50 nm; ^50 = 5 nm; d80 = 61 nm;
Vor der Fällung des hydroxylmodifizierten SBR-Mikrogels rührte man in den Latex zusätzlich die nachfolgend aufgeführte Alterungsschutzmittel jeweils in den angegebenen Mengen, bezogen auf 100 Gew.-Teile Feststoff, ein:
0,05 phr 2,2-Methylen-bis-(4-Methyl-6-cyclohexylphenol)
(Vulkanox® ZKF der Firma Bayer AG) 0,22 phr Di-t-Butyl-p-Kresol (Vulkanox® KB der Firma Bayer AG)
0,38 phr Di-Laurylthiodipropionat (PS 800 der Firma Ciba Geigy AG).
Zur Fällung von 5,035 kg eines 19,86 %igen mit Hydroxylgruppen modifizierten SBR-Gel-Latex legte man 6000 g Wasser, 795,6 g Kochsalz und 425 g Fällungsmittel (Superfloc® C567 (1 %ig) der Firma American Cyanamide Corporation) vor.
Man erhitzte die vorgelegten Fällungsmittel auf 60°C und stellte mit 10 gew.-%iger Schwefelsäure einen pH- Wert von 4 ein. Unter Einhaltung dieses pH- Wertes gab man den modifizierten Latex in das Fällungsagens. Man erhitzte nach Latexzugabe die Mischung auf 60°C und kühlte danach die Mischung durch Zugabe von kaltem Wasser auf ca. 30°C ab. Das dabei ausfallende Kautschukgel wurde mehrmals gewaschen und nach Filtration bei 70°C unter Vakuum bis zur Gewichtskonstanz getrocknet (ca. 60 Stunden).
Das erhaltene Gel (2) besaß einen Gelgehalt von 97 Gew.-%, wobei der Quellungs- index des vergelten Anteils 5,9 betrug. Die OH-Zahl des erhaltenen Gels (A) betrug
9 mg KOH pro Gramm Kautschukgel und die Glastemperatur Tg betrug -19°C.
Figure imgf000018_0001
Herstellung der Kautschukmischungen, deren Vulkanisation sowie die gemessenen physikalischen Werte der Nulkanisate
Zur Demonstration der erfindungsgemäßen Effekte wurden folgende Compound- variationen durchgeführt:
Figure imgf000018_0002
Mischungsserie A)
Auf einer Laborwalze wurden die in der nachfolgenden Tabelle aufgeführten Mischungsbestandteile (Mengenangabe in phr) in üblicher Weise gemischt.
Figure imgf000019_0001
TSR 5, Defo 700
2) Mischung von Paraffinen und Mikrowachsen (Antilux® 654 der Rheinchemie Rheinau GmbH)
3) N-Isopropyl-N'-phenyl-p-phenylendiamin (Vulkanox® 4010 NA der Bayer AG)
4) 2,2,4-Trimethyl-l,2-dihydrochinolin (polym.) (Vulkanox® HS der Bayer AG)
5) Enerthene® 1849-1 der Firma BP Oil GmbH
6) Vernetzer 3010® der Fa. Rheinchemie
7) N-tert.Butyl-2-benzthiazylsulfenamid (Vulkacit NZ® der Bayer AG)
8) Desmodur® N 3300 der Bayer AG
Das Vulkanisationsverhalten der Mischungen wird im Rheometer bei 160°C nach DIN 53 529 mit Hilfe des Monsantorheometers MDR 2000E untersucht. Auf diese Weise wurden charakteristische Daten wie Fa, Fmaχ, Fmax.-Fa., t10, t80 und t9o bestimmt.
Figure imgf000020_0001
Nach DIN 53 529, Teil 3 bedeuten:
Fa: Vulkameteranzeige im Minimum der Vernetzungsisotherme
F ax: Maximum der Vulkameteranzeige
Fma - Fa: Differenz der Vulkameteranzeigen zwischen Maximum und Minimum t10: Zeit, bei der 10 % des Umsatzes erreicht sind t80: Zeit, bei der 80 % des Umsatzes erreicht sind t90: Zeit, bei der 90 % des Umsatzes erreicht sind
Die Mischungen werden in der Presse bei 160°C vulkanisiert, wobei die nachfolgenden Vulkanisationszeiten gewählt wurden:
Figure imgf000020_0002
An den Vulkanisaten wurden folgende Eigenschaften bestimmt:
Figure imgf000021_0001
Ergebnis:
In der Mischungsserie A) wird gezeigt, dass die Vulkanisateigenschaften (S3o0 x D) eines Kautschukcompounds, der ein hydroxylmodifiziertes SBR-Gel enthält, durch den Zusatz eines trimerisierten Hexamethylendiisocyanats (Desmodur® N 3300) verbessert und die Elastizitätsdifferenz (E70-E23) verschlechtert wird. Durch Zusatz von l,4-Bis(ß-hydroxyethoxy)benzol (Vernetzer 30/10) zum isocyanathaltigen Compound werden sowohl das Produkt S300 x D als auch die Elastitzitätsdifferenz (E70-E23) verbessert. Mischungserie B)
Figure imgf000022_0001
1) TSR 5, Defo 700 2) Mischung von Paraffinen und Mikrowachsen (Antilux® 654 der Rheinchemie
Rheinau GmbH)
N-Isopropyl-N'-phenyl-p-phenylendiamin (Vulkanox® 4010 NA der Bayer AG)
2,2,4-Trimethyl-l,2-dihydrochinolin (polym.) (Vulkanox® HS der Bayer AG)
Enerthene® 1849-1 der Firma BP Oil GmbH
N-tert.Butyl-2-benzthiazylsulfenamid (Vulkacit NZ® der Bayer AG)
Desmodur® 44 V 20 LF der Bayer AG
Vernetzer 30/10® der Fa. Rheinchemie
Polyethylenglykol mit einem mittleren Molekulargewicht von 285 bis 315 g/mol (Fa. Merck) 10) Polyethylenglykol mit einem mittleren Molekulargewicht von 380 bis 420 g/mol (Fa. Merck) Das Vulkanisationsverhalten der Mischungen wurde im Rheometer bei 160°C nach DIN 53 529 mit Hilfe des Monsantorheometers MDR 2000E untersucht. Auf diese Weise wurden charakteristische Daten wie Fa, Fmax, Fmax.-Fa., t10, t80 und t90 bestimmt.
Figure imgf000023_0001
Nach DIN 53 529, Teil 3 bedeuten: a. Vulkameteranzeige im Minimum der Vernetzungsisotherme max Maximum der Vulkameteranzeige
-Tmax " f Differenz der Vulkameteranzeigen zwischen Maximum und Minimum tio: Zeit, bei der 10 % des Umsatzes erreicht sind δo: Zeit, bei der 80 % des Umsatzes erreicht sind t90: Zeit, bei der 90 % des Umsatzes erreicht sind
Die Mischungen werden in der Presse bei 160°C vulkanisiert, wobei die nachfolgenden Vulkanisationszeiten gewählt wurden:
Figure imgf000023_0002
An den Vulkanisaten wurden folgende Eigenschaften bestimmt:
Figure imgf000024_0001
Ergebnis:
In der Mischungsserie B) wird gezeigt, dass sowohl die Vulkanisateigenschaften (S OQ x D) als auch die Elastizitätsdifferenzen (E 0-E23) von Kautschukcompounds, die unmodifizierte SBR-Gele sowie multifünktionelle Isocyanate (in diesem Fall: Roh-MDI) enthalten, durch Zusätze von 3 phr Vernetzer 30/10, bzw. 5 phr Polyethylenglycol mit einem Molgewicht von 300 g/mol bzw. 5 phr Polyethylenglykol mit einem Molgewicht von 400 g/mol verbessert werden.
Mischungserie C)
Figure imgf000025_0001
1) TSR 5, Defo 700
2) Mischung von Paraffinen und Mikrowachsen (Antilux® 654 der Rheinchemie Rheinau GmbH)
3) N-Isopropyl-N" -phenyl-p-phenylendiamin (Vulkanox® 4010 NA der B ayer AG) ) 2,2,4-Trimethyl-l ,2-dihydrochinolin (polym.) (Vulkanox® HS der Bayer AG)
5) Enerthene® 1849-1 der Firma BP Oil GmbH
6) N-tert.Butyl-2-beιιzthiazylsulfenamid (Vulkacit NZ® der Bayer AG)
7) Desmodur® Z 4300 der Bayer AG
) Vernetzer 30/10® der Fa. Rheinchemie
Das Vulkanisationsverhalten der Mischungen wird im Rheometer bei 160°C nach DIN 53 529 mit Hilfe des Monsantorheometers MDR 2000E untersucht. Auf diese Weise wurden charakteristische Daten wie Fa, Fmax, Fmax.-Fa., tio, t80 und t90 bestimmt.
Figure imgf000026_0001
Nach DIN 53 529, Teil 3 bedeuten:
Fa: Vulkameteranzeige im Minimum der Vernetzungsisotherme
Fmax" Maximum der Vulkameteranzeige Fmax " Fa' Differenz der Vulkameteranzeigen zwischen Maximum und Minimum tio- Zeit, bei der 10 % des Umsatzes erreicht sind t80 Zeit, bei der 80 % des Umsatzes erreicht sind t90 Zeit, bei der 90 % des Umsatzes erreicht sind
Die Mischungen werden in der Presse bei 160°C vulkanisiert, wobei die nachfolgenden Vulkanisationszeiten gewählt wurden:
Figure imgf000026_0002
An den Vulkanisaten wurden folgende Eigenschaften bestimmt:
Figure imgf000027_0001
Ergebnis:
In der Mischungsserie C) wird gezeigt, dass die Vulkanisateigenschaften (S3oo x D) eines Kautschukcompounds, der ein unmodifiziertes SBR-Gel und ein trimerisiertes Isophorondiisocyanat (Desmodur® Z 4300) enthält, durch Zusätze unterschiedlicher Mengen an l,4-Bis(ß-hydroxyethoxy)benzol (Vernetzer 30/10) ohne Einbußen in der Elastizitätsdifferenz (E7o-E23) verbessert werden.

Claims

Patentansprüche
1. Kautschukmischungen bestehend aus nicht vernetzten Kautschuken (A), vernetzten Kautschukpartikeln (B), multiftinktionellen Isocyanaten (C) sowie Polyolen (D), wobei, jeweils bezogen auf 100 Gew.-Teile (phr) der Kautschukkomponente (A), der Anteil in der Mischung an Komponente (B) 1 bis 150 Gew.-Teile, der Anteil an multifiinktionellen Isocyanaten (Komponente C) 1 bis 100 Gew.-Teile und der Anteil an Komponente (D) 1 bis 50 Gew.-Teile beträgt.
2. Kautschukmischungen nach Anspruch 1, dadurch gekennzeichnet, dass jeweils bezogen auf 100 Gew.-Teile der Kautschukkomponente (A) 5 bis 100 Gew.-Teile an vernetzten Kautschukpartikeln (B), 3 bis 50 Gew.-Teile an multifunktionellen Isocyanaten (C) und 1 bis 30 Gew. -Teilen an Polyolen (D) in der Kautschukmischung vorhanden sind.
3. Kautschukmischungen nach Anspruch 1, dadurch gekennzeichnet, dass die vernetzten Kautschukpartikel (B) Teilchendurchmesser von 5 bis 1 000 nm und Quellungsindizes in Toluol von 1 bis 15 aufweisen.
4. Kautschukmischungen nach Anspruch 1, dadurch gekennzeichnet, dass als Polyolkomponente (D) Polyester-, Polyether-, Polycarbonatpolyole oder deren Mischungen eingesetzt werden, die ein mittleres Molekulargewicht von 62 bis 10.000 g/Mol besitzen.
5. Verwendung der Kautschukmischungen nach Anspruch 1 zur Herstellung von Kautschukvulkanisaten.
6. Verwendung der Kautschukmischungen nach Anspruch 1 zur Herstellung von Kautschukformkörpern aller Art, insbesondere zur Herstellung von Kabelmänteln, Schläuchen, Treibriemen, Förderbändern, Walzenbeschlägen, Reifen und Reifenbauteilen, Schuhsohlen, Dichtungsringen, Dämpfungselementen sowie Membranen.
PCT/EP2001/014047 2000-12-11 2001-11-28 Gelhaltige kautschukmischungen mit multifunktionellen isocyanaten und polyolen WO2002048233A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002549759A JP4142435B2 (ja) 2000-12-11 2001-11-28 多官能性イソシアネートおよびポリオールを含むゲル含有ゴム混合物
CA002431249A CA2431249A1 (en) 2000-12-11 2001-11-28 Rubber compounds containing gels in addition to multifunctional isocyanates and polyols
EP01270568A EP1345976B1 (de) 2000-12-11 2001-11-28 Gelhaltige kautschukmischungen mit multifunktionellen isocyanaten und polyolen
DE50113902T DE50113902D1 (de) 2000-12-11 2001-11-28 Gelhaltige kautschukmischungen mit multifunktionellen isocyanaten und polyolen
AU2002220745A AU2002220745A1 (en) 2000-12-11 2001-11-28 Rubber compounds containing gels in addition to multifunctional isocyanates and polyols

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10061543.0 2000-12-11
DE10061543A DE10061543A1 (de) 2000-12-11 2000-12-11 Gelhaltige Kautschukmischungen mit multifunktionellen Isocyanaten und Polyolen

Publications (1)

Publication Number Publication Date
WO2002048233A1 true WO2002048233A1 (de) 2002-06-20

Family

ID=7666607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/014047 WO2002048233A1 (de) 2000-12-11 2001-11-28 Gelhaltige kautschukmischungen mit multifunktionellen isocyanaten und polyolen

Country Status (7)

Country Link
US (1) US6908965B2 (de)
EP (1) EP1345976B1 (de)
JP (1) JP4142435B2 (de)
AU (1) AU2002220745A1 (de)
CA (1) CA2431249A1 (de)
DE (2) DE10061543A1 (de)
WO (1) WO2002048233A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506832A (ja) * 2003-09-27 2007-03-22 ライン ヘミー ライナウ ゲゼルシャフト ミット ベシュレンクテル ハフツング 架橋性有機媒体中のミクロゲル
EP2028020A1 (de) * 2007-08-02 2009-02-25 Continental Aktiengesellschaft Mit Silika gefüllte und silanhaltige Kautschukmischung mit reduzierter Ethanolemission
US10570274B2 (en) 2014-05-22 2020-02-25 The Yokohama Rubber Co., Ltd. Rubber composition for tire and studless tire

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19962862A1 (de) * 1999-12-24 2001-06-28 Bayer Ag Kautschukmischungen auf Basis von unvernetzten Kautschuken und vernetzten Kautschukpartikeln sowie multifunktionellen Isocyanaten
CA2437406A1 (en) * 2003-08-14 2005-02-14 Bayer Inc. Butyl compositions comprising nitrile polymers
DE102005014271A1 (de) * 2005-03-24 2006-09-28 Rhein Chemie Rheinau Gmbh Mikrogele in Kombination mit funktionalen Additiven
DE102005023213A1 (de) * 2005-05-16 2006-11-23 Rhein Chemie Rheinau Gmbh Mikrogel-enthaltende vulkanisierbare Zusammensetzung
US7947782B2 (en) * 2005-05-16 2011-05-24 Rhein Chemie Rheinau Gmbh Microgel-containing vulcanisable composition
US9493637B2 (en) 2011-04-22 2016-11-15 The Yokohama Rubber Co., Ltd. Tire rubber composition and studless tire
JP6036079B2 (ja) * 2012-09-20 2016-11-30 横浜ゴム株式会社 スタッドレスタイヤ用ゴム組成物およびスタッドレスタイヤ
CN104788747A (zh) * 2015-04-17 2015-07-22 柳州市乾阳机电设备有限公司 耐磨橡胶减震垫的制备方法
CN104788745A (zh) * 2015-04-17 2015-07-22 柳州市乾阳机电设备有限公司 耐磨橡胶减震垫
EP3354703A1 (de) * 2017-01-26 2018-08-01 ARLANXEO Deutschland GmbH Verzögerte dichtungsmassen für selbstdichtende fahrzeugreifen
EP3354702A1 (de) * 2017-01-26 2018-08-01 ARLANXEO Deutschland GmbH Dichtungsmassen
EP3645310B1 (de) * 2017-06-29 2021-05-12 Compagnie Générale des Etablissements Michelin Luftreifen mit einem externen flansch mit einer zusammensetzung mit einem polyethylenoxid
TW202116900A (zh) * 2019-09-10 2021-05-01 日商Jsr股份有限公司 聚合物組成物、交聯聚合物及輪胎
DE102020113510A1 (de) 2020-05-19 2021-11-25 Tmd Friction Services Gmbh Dämpfungsmaterial für eine Dämpfungs- oder Zwischenschicht für Bremsbeläge und ein Verfahren zur Herstellung des Dämpfungsmaterials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993003914A1 (en) * 1991-08-19 1993-03-04 Ashland Oil, Inc. Adhesive for bonding epdm rubber roofing membrane
EP1048692A2 (de) * 1999-04-29 2000-11-02 Rhein Chemie Rheinau GmbH Polyurethan-Kautschukmischungen enthaltend modifizierte Kautschukgele

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6606553A (de) * 1965-06-18 1967-11-13
DE2838756A1 (de) * 1978-09-06 1980-03-27 Bayer Ag Verfahren zur herstellung von vulkanisierten, urethangruppen aufweisenden elastomeren
DE3920745A1 (de) 1989-06-24 1991-01-03 Bayer Ag Kautschukmischungen enthaltend schwefel-modifizierte polychloroprengel
DE4220563A1 (de) 1992-06-24 1994-01-13 Bayer Ag Kautschukmischungen enthaltend Polybutadien-Gel
DE19701488A1 (de) 1997-01-17 1998-07-23 Bayer Ag SBR-Kautschukgele enthaltende Kautschukmischungen
DE19701487A1 (de) 1997-01-17 1998-07-23 Bayer Ag NBR-Kautschuke enthaltende Kautschukmischungen
DE19834804A1 (de) 1998-08-01 2000-02-03 Continental Ag Kautschukmischung
DE19939865A1 (de) 1999-08-23 2001-03-01 Bayer Ag Agglomerierte Kautschukgele enthaltende Kautschukmischungen und Vulkanisate
DE19942620A1 (de) 1999-09-07 2001-03-08 Bayer Ag Mikrogelhaltige Kautschukmischungen mit verkappten bifunktionellen Mercaptanen und hieraus hergestellte Vulkanisate
DE19962862A1 (de) 1999-12-24 2001-06-28 Bayer Ag Kautschukmischungen auf Basis von unvernetzten Kautschuken und vernetzten Kautschukpartikeln sowie multifunktionellen Isocyanaten
DE10039749A1 (de) * 2000-08-16 2002-02-28 Bayer Ag Kautschukmischungen auf Basis von unvernetzten Kautschuken und vernetzten Kautschukpartikeln sowie multifunktionellen Isocyanaten auf Polyuretbasis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993003914A1 (en) * 1991-08-19 1993-03-04 Ashland Oil, Inc. Adhesive for bonding epdm rubber roofing membrane
EP1048692A2 (de) * 1999-04-29 2000-11-02 Rhein Chemie Rheinau GmbH Polyurethan-Kautschukmischungen enthaltend modifizierte Kautschukgele

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506832A (ja) * 2003-09-27 2007-03-22 ライン ヘミー ライナウ ゲゼルシャフト ミット ベシュレンクテル ハフツング 架橋性有機媒体中のミクロゲル
JP2013136764A (ja) * 2003-09-27 2013-07-11 Lanxess Deutschland Gmbh 架橋性有機媒体中のミクロゲル
EP2028020A1 (de) * 2007-08-02 2009-02-25 Continental Aktiengesellschaft Mit Silika gefüllte und silanhaltige Kautschukmischung mit reduzierter Ethanolemission
US10570274B2 (en) 2014-05-22 2020-02-25 The Yokohama Rubber Co., Ltd. Rubber composition for tire and studless tire

Also Published As

Publication number Publication date
EP1345976A1 (de) 2003-09-24
CA2431249A1 (en) 2002-06-20
JP4142435B2 (ja) 2008-09-03
EP1345976B1 (de) 2008-04-23
JP2004515620A (ja) 2004-05-27
US6908965B2 (en) 2005-06-21
DE10061543A1 (de) 2002-06-13
US20020177661A1 (en) 2002-11-28
DE50113902D1 (de) 2008-06-05
AU2002220745A1 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
EP1110986B1 (de) Kautschukmischungen auf Basis von unvernetzten Kautschuken und vernetzten Kautschukpartikeln sowie multifunktionellen Isocyanaten
EP1311606B1 (de) Kautschukmischungen auf basis von unvernetzten kautschuken und vernetzten kautschukpartikeln sowie multifunktionellen isocyanaten auf polyuretbasis
EP1345976B1 (de) Gelhaltige kautschukmischungen mit multifunktionellen isocyanaten und polyolen
EP0854171B1 (de) Modifizierte Kautschukgele enthaltende Kautschukmischungen
EP1078953B1 (de) Agglomerierte Kautschukgele enthaltende Kautschukmischungen und Vulkanisate
WO2002012389A2 (de) Isocyanatosilan- und mikrogelhaltige kautschukmischungen
EP1339784B1 (de) Gelhaltige kautschukmischungen mit anorganischen peroxiden
EP1063259A1 (de) Mikrogelhaltige Kautschukcompounds mit schwefelhaltigen Organosiliciumverbindungen
EP1149868A2 (de) Gelhaltige Kautschukmischungen für dynamisch belastete Reifenbauteile
DE10052287A1 (de) Kautschukgele und Phenolharzedukte enthaltende Kautschukmischungen
EP1083200A2 (de) Mikrogelhaltige Kautschukmischungen mit verkappten bifunktionellen Mercaptanen und hieraus hergestellte Vulkanisate
EP1203786B1 (de) Mikrogelhaltige Kautschukmischungen mit Phosphorylpolysulfiden und hieraus hergestellte Vulkanisate bzw. Formkörper
EP1048692B1 (de) Polyurethan-Kautschukmischungen enthaltend modifizierte Kautschukgele
DE19701487A1 (de) NBR-Kautschuke enthaltende Kautschukmischungen
DE10307139A1 (de) Vernetzte- und Amino(meth)acrylatgruppen modifizierte Kautschukpartikel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001270568

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2431249

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002549759

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001270568

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001270568

Country of ref document: EP