WO2002049925A1 - Apparatus for manufacturing dlc-film-coated plastic container, method of manufacturing the same, and method for cleaning inner electrode - Google Patents

Apparatus for manufacturing dlc-film-coated plastic container, method of manufacturing the same, and method for cleaning inner electrode Download PDF

Info

Publication number
WO2002049925A1
WO2002049925A1 PCT/JP2000/009100 JP0009100W WO0249925A1 WO 2002049925 A1 WO2002049925 A1 WO 2002049925A1 JP 0009100 W JP0009100 W JP 0009100W WO 0249925 A1 WO0249925 A1 WO 0249925A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
internal electrode
plastic container
cleaning
electrode
Prior art date
Application number
PCT/JP2000/009100
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Hama
Tsuyoshi Kage
Takumi Kobayashi
Tomoyuki Araki
Original Assignee
Mitsubishi Shoji Plastics Corporation
Youtec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shoji Plastics Corporation, Youtec Co., Ltd. filed Critical Mitsubishi Shoji Plastics Corporation
Priority to PCT/JP2000/009100 priority Critical patent/WO2002049925A1/en
Priority to AU2001222223A priority patent/AU2001222223A1/en
Publication of WO2002049925A1 publication Critical patent/WO2002049925A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5093Coaxial electrodes

Definitions

  • DLC film-coated plastic container manufacturing device its manufacturing method, and internal electrode cleaning method
  • the present invention relates to an apparatus for manufacturing a DLC film coating plastic container provided with a mechanism for removing foreign substances adhering to the surface of an internal electrode at the time of forming a DLC film, a method for manufacturing the same, and a method for cleaning an internal electrode.
  • CVD Chemical Vapor Deposition
  • DLC diamond-like force
  • Japanese Patent Application Laid-Open No. 8-53117 discloses an evaporation apparatus using a plasma CVD method, particularly a plasma CVD method.
  • Japanese Patent Application Laid-Open No. 10-258885 discloses a manufacturing apparatus and a manufacturing method for mass-producing a DLC film-coated plastic container.
  • Japanese Patent Application Laid-Open No. 10-228684 describes a manufacturing apparatus and a manufacturing method capable of coating a DLC film on a container having a protruding object protruding outward from an outer surface. Is disclosed.
  • the DLC film is a film called an i-carbon film or a hydrogenated amorphous carbon film (a-C: H), and includes a hard carbon film.
  • the DLC film is an amorphous carbon film, and has SP 3 bonds and SP 2 bonds.
  • the apparatus for manufacturing a DLC film-coated plastic container disclosed in Japanese Patent Application Laid-Open No. 8-5311 / 17 has a vacuum chamber, and this vacuum chamber has an external electrode. A space is formed inside this external electrode This space is for storing plastic bottles (PET bottles), which are plastic containers to be coated.
  • the external electrodes are connected to a matching box (impedance matching device), and the matching box is connected to a high-frequency power supply (RF power supply) via a coaxial cable.
  • An internal electrode is inserted into the space inside the external electrode, and the tip of the internal electrode is a space inside the external electrode and is arranged inside a socket accommodated in the external electrode.
  • the internal electrode has a hollow tubular shape.
  • a gas outlet is provided at the tip of the internal electrode.
  • the base end of the internal electrode is connected to gas introduction means.
  • the internal electrode is grounded.
  • the space inside the external electrode is open to the atmosphere via a vacuum valve.
  • the space inside the external electrode is connected to a vacuum pump.
  • a pet bottle is stored in a chamber that is open to the atmosphere. Then, by closing the air release vacuum valve and operating the vacuum pump, the inside of the vacuum chamber including the inside of the pet bottle is evacuated, and the space in the external electrode is evacuated.
  • the hydrocarbon gas whose flow rate is controlled by using the gas introducing means is blown out from the gas blow-out port through the internal electrode at the ground potential.
  • hydrocarbon gas is introduced into the pet bottle.
  • the inside of the vacuum chamber and the inside of the head are kept at a pressure suitable for DLC film formation by controlling the gas flow rate and the balance of the exhaust capacity.
  • the RF output is supplied to the external electrodes from the high frequency power supply via the matching box.
  • plasma is generated between the external electrode and the internal electrode.
  • the matching box is matched to the impedance of the external electrode and the internal electrode by the inductance L and the capacitance C.
  • hydrocarbon-based Plasma is generated, and a DLC film is formed inside the bottle.
  • the output from the high-frequency power supply is stopped, and the supply of the source gas is stopped.
  • the hydrocarbon gas in the vacuum chamber and the pet bottle is exhausted by a vacuum pump.
  • the vacuum chamber is opened to the atmosphere to open the inside of the vacuum chamber to the atmosphere, and the above-described film forming method is repeated to form a DLC film in a plurality of pet bottles. Disclosure of the invention
  • the outer surface and inner surface of the internal electrode are also film-like foreign substances containing carbon as a main component (hereinafter, referred to as a foreign material). , "Foreign matter adhering to the internal electrode.” For this reason, as the deposition of the DLC film in a plurality of PET bottles is repeated, the thickness of the foreign matter attached to the internal electrode gradually increases. If the film thickness becomes a certain thickness, for example, about 5 m, it will peel off from the internal electrodes.
  • the peeled foreign matter falls into the pet bottle, and as a result, the foreign matter that has fallen in the pet pot forms a portion in the pet pot where a film is not formed, thereby deteriorating the gas barrier property and resulting in a defective product. .
  • the following methods can be considered to prevent the foreign substances adhering to the internal electrodes from falling into the PET bottle.
  • the manufacturing apparatus of the DLC film-coated plastic container is disassembled and disassembled.
  • the electrode is removed, and the outer surface and inner surface of the internal electrode to which foreign matter is attached are cleaned by a file using an operator.
  • the internal electrode adheres to the inside of the PET bottle. It is possible to prevent the foreign matter from peeling off. However, this leads to a decrease in the operating rate of the DLC film deposition system in the plastic container.
  • An object of the present invention is to prevent the thin film adhered to the internal electrode from peeling into the container and to remove foreign substances adhered to the internal electrode without disassembling and cleaning the apparatus, thereby reducing the operation rate.
  • Low DLC film coating plastic container manufacturing device especially DLC film coating plastic container manufacturing device with cleaning mechanism for removing foreign substances adhering to internal electrodes by plasma discharge, and method of manufacturing the same
  • Another object of the present invention is to provide a method for cleaning an internal electrode.
  • an object of the present invention is to obtain a sufficient cleaning effect by a cleaning gas by applying a self-bias voltage to the internal electrodes in removing foreign substances attached to the internal electrodes by plasma discharge.
  • an object of the present invention is to provide a device in which a plurality of combinations of external electrodes and internal electrodes are installed in parallel, and in the case where a plurality of cleanings are performed simultaneously, high-frequency output is concentrated in one or two chambers and discharge is performed only in those chambers.
  • the problem is that a sufficient cleaning effect by the cleaning gas can be obtained in all the champers without causing a phenomenon that the discharge occurs and the other chambers do not discharge.
  • By evenly cleaning multiple cleanings are performed simultaneously, and it is not necessary to clean one internal electrode at a time, and the purpose is to save cleaning time.
  • the container according to the present invention includes a container used with a lid, a stopper, or a seal, or a container used in an open state without using them.
  • the size of the opening is determined according to the contents.
  • Plastic container include a plastic container having an appropriate rigidity and a predetermined thickness, and a plastic container formed of a non-rigid sheet material. Also includes a container lid.
  • a manufacturing apparatus for a DLC film-coated plastic container according to the present invention is an apparatus for forming a DLC film inside a plastic container
  • External electrodes arranged so as to surround the vicinity of the outside of the plastic container;
  • Source gas introduction means for introducing a source gas into the plastic container
  • Cleaning gas introducing means for introducing a cleaning gas into the inside of the external electrode for introducing a cleaning gas for removing foreign matter attached to the internal electrode;
  • the connection between the internal electrode and the ground and the connection between the external electrode and a matching box for impedance matching of the high-frequency load are performed.
  • the internal electrode is cleaned, the internal electrode is connected to the ground.
  • An output switching mechanism that can be switched mutually so as to be able to connect to the matching box and to connect the external electrode to the ground; and • a high-frequency power supply connected to the matching pox;
  • the output switching mechanism of the present invention is capable of simultaneously switching the plurality of connections at the time of switching between DLC film formation and internal electrode cleaning.
  • the DLC film-coated plastic container according to the present invention is manufactured.
  • the manufacturing method is as follows: an internal electrode connected to the ground is arranged inside a plastic container; an external electrode is arranged so as to surround the vicinity of the outside of the plastic container; a raw material gas is supplied into the plastic container; A DLC film forming step of forming a DLC film on the inner surface of the plastic container by generating a plasma of the raw material gas between the internal electrode and the external electrode by supplying a high frequency output to the internal electrode and the external electrode. Multiple times,
  • the internal electrode is connected to the ground and the external electrode is connected to a matching box for impedance matching of a high-frequency load.
  • a cleaning gas is supplied to the inside of the external electrode from which the plastic container has been removed, a high-frequency output is supplied to the internal electrode, and a plasma is generated between the internal electrode and the external electrode by the assing to generate a plasma by the cleaning gas.
  • a cleaning step for removing foreign matter attached to the internal electrode is performed.
  • a grounding is connected to an external electrode which can be arranged so as to surround the vicinity of the outside of the plastic container, and a cleaning gas is provided inside the external electrode with the plastic container removed. And supplying a high-frequency output to an internal electrode disposed inside the external electrode, and attaching to the surface of the internal electrode by asking to generate a plasma by the cleaning gas between the internal electrode and the external electrode.
  • the method is characterized in that foreign matter that has been removed is removed.
  • the present invention since a method of supplying a high-frequency output to the internal electrode instead of the external electrode is employed, stable plasma can be maintained. Also, when multiple chambers are arranged and discharged simultaneously, it is possible to easily supply power to each chamber evenly by installing and adjusting a variable capacitor in each chamber. As a result, power was concentrated in some chambers and only one or two chambers were needed. It does not mean that it does not discharge. Also, in the discharged chamber, the phenomenon that the internal electrodes glow red due to the concentration of power does not occur. The reason that the plasma is stable and that the power supply to the chamber can be equalized is that high-frequency output is supplied to the internal electrode and the external electrode is set to the ground potential.
  • the area of the inner surface of the external electrode is much larger than the outer surface of the internal electrode.
  • the area of the electrode on the high-frequency supply side (usually called the force electrode) is opposite to the area of the electrode (usually called the anode electrode) that is dropped to ground potential.
  • the self-bias voltage generated at the cathode is greatly affected by the size. That is, a negative self-bias voltage is generated at the electrode having a relatively smaller area. Therefore, in the apparatus of the present invention, the anode electrode (external electrode) is larger than the cathode electrode (internal electrode) and a negative self-bias is applied, so that a stable plasma can be generated. It has become. In addition, this enables stable discharge in all chambers even when cleaning a plurality of chambers at the same time.
  • the DLC film of the present invention when the DLC film of the present invention was formed, a stable discharge was obtained despite the fact that the internal electrode was grounded and a high-frequency output was supplied to the external electrode.
  • the PET bottle which is the object of film formation, covers the entire surface of the cathode electrode (the inner surface of the external electrode), and thus it is considered that stable plasma is generated by DC insulation.
  • the cleaning gas is oxygen gas, fluorine-based gas, a mixed gas of oxygen gas and rare gas, oxygen gas. It is preferably one gas selected from the group consisting of a mixed gas of fluorine gas and fluorine gas, a mixed gas of fluorine gas and rare gas, and a mixed gas of oxygen gas, fluorine gas and rare gas.
  • the nitrogen-based gas include CH 2 F 2 , CF 4 , and SiF 6
  • rare gases include argon, helium, krypton, and xenon.
  • hydrocarbon gas and Si-containing hydrocarbon gas are preferable. Particularly, acetylene, propylene, and ethylene are preferred.
  • a plurality of combinations of external electrodes and internal electrodes may be installed in parallel, and a DLC film may be formed inside a plurality of plastic containers at once.
  • a high-frequency output is supplied to the upper electrode and the outer electrode is grounded, a self-bias is applied to the inner electrode, and a sufficient cleaning effect by the cleaning gas is obtained. That is, since the area of the internal electrode was smaller than the area of the external electrode, the self-bias voltage of the internal electrode became negative, and efficient cleaning was performed.
  • the distribution of the high-frequency output is equal among the electrodes, and the power is concentrated in one or two chambers. There was no phenomenon that discharge occurred only in that chamber and no discharge occurred in other chambers. There was no chamber where the power to be distributed to each electrode was concentrated and discharged, and there was no heating of the internal electrodes and glowing. Therefore, it is easy to perform multiple cleanings at the same time, and there is no need to clean one internal electrode at a time, saving cleaning time.
  • the foreign matter adhered to the internal electrode can be effectively cleaned, so that the foreign matter was prevented from peeling off into the container, and a decrease in the operation rate of the apparatus could be suppressed.
  • cleaning gases such as oxygen gas, fluorine gas, mixed gas of oxygen gas and rare gas, mixed gas of oxygen gas and fluorine gas, mixed gas of fluorine gas and rare gas, and mixed gas of oxygen gas and fluorine gas More effective cleaning was possible by using a mixed gas of a rare gas.
  • FIG. 1 is a configuration diagram schematically showing a DLC film forming apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration of the output switching mechanism 30 during film formation.
  • FIG. 3 is a diagram showing the configuration of the output switching mechanism 30 during internal electrode cleaning.
  • FIGS. 1 to 6 The meanings of the symbols shown in FIGS. 1 to 6 are as follows. 1 Lower external electrode, 2 Upper external electrode, 3 External electrode, 4 Insulating material, 5 Lid, 6 Vacuum chamber, 7 Pet bottle, 8 Ring, 9 Internal electrode, 9a Gas outlet, 10, 11, 12,13,23 piping, 14 matching box, 15 high frequency power supply, 16,17,18,24 vacuum valve, 19,25 muff outlet controller, 20 source gas source, 21 vacuum pump, 26 cleaning gas supply source, 27 Leak gas (air) supply source, 28 Vacuum gauge, 29 Exhaust duct, 30 Output switching mechanism, 31 Wiring to external electrode, 32 Wiring to internal electrode, 33 Wiring to matching box, 34 Wiring to ground, 37 relay, 41 source gas introduction means, 42 cleaning gas introduction means, 100 DLC membrane coating plastic container manufacturing equipment. BEST MODE FOR CARRYING OUT THE INVENTION
  • An apparatus for manufacturing a DLC film-coated plastic container according to an embodiment of the present invention is an apparatus for forming a DLC film or a Si-containing DLC film inside a container or the like by using a plasma CVD method.
  • the present invention is not limited to the embodiments described below, and can be appropriately modified within the range in which the effects of the present invention are exhibited.
  • FIG. 1 is a configuration diagram schematically showing an apparatus 100 for manufacturing a DLC film-coated plastic container according to an embodiment of the present invention.
  • the apparatus 100 for manufacturing a DLC film-coated plastic container according to the present invention includes an external electrode 3, an internal electrode 9, a source gas introducing means 41, A matching box 14, a high-frequency power supply 15, a cleaning gas introducing means 42 for introducing a cleaning gas for removing foreign substances attached to the internal electrode 9 into the inside of the external electrode 3, and an internal electrode for forming a DLC film.
  • An output switching mechanism 30 is provided which can switch between connection to the ground and connection between the external electrode and the matching box to connection between the internal electrode and the matching box and connection between the external electrode and the ground during internal electrode cleaning. .
  • the external electrode 3 forms a vacuum chamber 6 together with the conductive lid 5 and the insulating member 4.
  • An insulating member 4 is disposed below the lid 5, and an external electrode portion 3 is disposed below the insulating member 4.
  • the external electrode 3 is composed of an upper external electrode 2 and a lower external electrode 1, and is configured such that the upper part of the lower external electrode 1 is detachably attached to the lower part of the upper external electrode 2 via an O-ring 8. .
  • the external electrode 3 is insulated from the lid 5 by the insulating member 4.
  • the external electrode 3 is divided into a lower external electrode 1 and an upper external electrode 2, but in order to make the thickness of the DLC film uniform, the external electrode is, for example, a bottom electrode. , Divided into three or more, such as a torso electrode and a shoulder electrode, and each electrode is electrically insulated with a Teflon sheet or polyimide film while ensuring sealing properties with a ring, etc. You may.
  • a space is formed inside the external electrode 3 for accommodating a plastic container to be coated, for example, a PET bottle 7 molded of polyethylene terephthalate resin. It is.
  • the space inside the external electrode 3 is formed to be slightly larger than the outer shape of the socket 7 accommodated therein.
  • the insulating member 4 and the lid 5 are provided with openings that connect to the space inside the external electrode 3. Further, a space is provided inside the lid portion 5, and this space is connected to the space inside the external electrode 3 via the opening.
  • the space inside the external electrode 3 is the upper external electrode 2 It is hermetically sealed from the outside by a ring 8 arranged between the lower electrode 1 and the lower electrode.
  • the lower outer electrode 1 of the outer electrode 3 is grounded via an output switching mechanism 30 or connected to a matching box 14, and the matching box 14 is connected to a high frequency power supply 15 via a coaxial cable. Have been.
  • the internal electrode 9 is arranged inside the external electrode section 3 and inside the pet bottle 7. That is, the internal electrode 9 is inserted into the space inside the external electrode 3 from the upper part of the lid 5 through the space in the lid 5 and the opening of the lid 5 and the insulating member 4. That is, the base end of the internal electrode 9 is arranged above the lid 5, and the tip 9 a of the internal electrode 9 is arranged in the space inside the external electrode 3 and inside the PET bottle 7 housed inside the external electrode 3. Is placed.
  • the internal electrode 9 has a hollow tubular shape. At the tip of the internal electrode 9, a gas outlet 9a is provided.
  • the source gas introducing means 41 introduces the source gas supplied from the source gas source 20 into the PET bottle 7. That is, one end of the pipe 10 is connected to the base end of the internal electrode 9, the other side of the pipe 10 is connected to one side of the pipe 11, and the other side of the pipe 11 is connected via the vacuum valve 16. It is connected to one side of the masochist controller 19. The other side of the mass flow controller 19 is connected to a source gas generation source 20.
  • the source gas generating source 20 generates a hydrocarbon gas such as acetylene.
  • the cleaning gas introducing means 42 supplies the cleaning gas supplied from the cleaning gas supply source 26 to the inside of the external electrode 3. That is, one side of the pipe 23 is connected to the pipe 10, and the other side of the pipe 23 is connected to one side of the mass flow controller 25 via the vacuum valve 24. The other side of the mass flow controller 25 is connected to a cleaning gas supply source 26 such as an oxygen cylinder. Have been.
  • the cleaning gas supply source 26, the mass flow controller 125, the vacuum valve 24 and the like function as a cleaning mechanism.
  • the internal electrode 9 is grounded via an output switching mechanism 30, or is connected to a matching box 14, and the matching box 14 is connected to a high frequency power supply 15 via a coaxial cable.
  • FIG. 2 shows the configuration of the output switching mechanism 30 during film formation
  • FIG. 3 shows the configuration of the output switching mechanism 30 during internal electrode cleaning. That is, the connection combinations of the wiring 32 to the internal electrode 9, the wiring 31 to the external electrode 3, the wiring 33 to the matching box 14, and the wiring 34 to the ground can be switched by the relay 37. I have.
  • the wiring 32 to the internal electrode is connected to the wiring 34 to the ground via the relay 37
  • the wiring 31 to the external electrode 3 is connected to the wiring 33 to the matching box 14 (FIG. 2).
  • the wiring 32 to the internal electrode 9 via the relay 37 is connected to the wiring 33 to the matching box 14, and the wiring 31 to the external electrode 3 is connected to the wiring 34 to the ground (Fig. 3).
  • the space inside the lid is connected to one side of a pipe 12, and the other side of the pipe 12 is opened to the atmosphere via a vacuum valve 17.
  • the space in the lid is connected to one side of a pipe 13, and the other side of the pipe 13 is connected to a vacuum pump 21 via a vacuum valve 18.
  • This vacuum pump 21 is connected to an exhaust duct 29.
  • a vacuum gauge 28 is installed in the pipe 13.
  • the vacuum valve 17 is opened to open the inside of the vacuum chamber 16 to the atmosphere. As a result, air passes through the pipe 12 and the space inside the lid 5 and the external electrodes 3 Then, the inside of the vacuum chamber is brought to atmospheric pressure. Next, the lower external electrode 1 is detached from the upper external electrode 2, and a pet bottle 7 is inserted into the space inside the upper external electrode 2 and installed. At this time, the internal electrode 9 is in a state of being inserted into the pet bottle 7. Next, the lower external electrode 1 is attached to the lower part of the upper external electrode 2, and the external electrode 3 is sealed by the ring 8.
  • the vacuum valve 18 is opened and the vacuum pump 21 is operated.
  • the inside of the vacuum chamber (the space in the external electrode 3 and the lid, the space in 5) including the inside of the PET bottle 7 is exhausted through the pipe 13, and the inside of the external electrode 3 is evacuated.
  • the pressure in the vacuum chamber 16 is a pressure sufficiently lower than that at the time of film formation, for example, 5.0 ⁇ 10 ′′ 3 to 1.0xlO — 1 Torr.
  • the vacuum valve 16 is opened, acetylene gas is generated in the source gas source 20, and the flow rate of the acetylene gas is controlled by the mass flow port controller 19, and the pipe 10 and the output switching mechanism are controlled via the pipe 11.
  • the gas is blown out from the gas blowout port 9a through the internal electrode 9 which is set to the ground potential by 30.
  • acetylene gas is introduced into the pet bottle 7.
  • the pressure inside the vacuum chamber 16 and the inside of the pet bottle 7 are kept at a pressure suitable for DLC film formation, for example, about 0.05 to 0.50 Torr, by the balance between the controlled gas flow rate and the exhaust capacity.
  • an RF output (for example, 13.56 MHz) is supplied from the high-frequency power supply 15 via the matching box 14 connected to the external electrode 3 by the output switching mechanism 30.
  • the high frequency output can be, for example, 300-3000W.
  • the matching box 14 matches the impedance of the external electrode and the internal electrode with the inductance L and the capacitance C.
  • acetylene-based plasma is generated in the PET bottle 7, and a DLC film is formed inside the PET bottle 7. Filmed.
  • the film formation time at this time is as short as about several seconds.
  • the HF output from the RF power supply 15 is stopped, the vacuum pulp 16 is closed, and the supply of the source gas is stopped.
  • the vacuum valve 18 is opened, and the acetylene gas in the vacuum chamber 1 and the PET bottle ⁇ is exhausted by the vacuum pump 21.
  • the vacuum valve 18 is closed. Degree of vacuum in the vacuum chamber within a time this is, for example, 5 X 10- 3 ⁇ 5 X 10- 2 Torr.
  • the vacuum valve 17 is opened to open the inside of the vacuum chamber 16 to the atmosphere, and the above-described film forming method is repeated, whereby a DLC film is formed in a plurality of sockets.
  • the lower external electrode 1 is attached to the upper external electrode 2 in a state where the pet bottle is not stored, and the inside of the external electrode 3 is hermetically sealed by the 0 ring 8. As a result, the space in the external electrode 3 is in a state where nothing is inserted.
  • the inside of the vacuum chamber 6 (the space in the external electrode and the space in the lid) is evacuated, and the inside of the vacuum chamber 6 is evacuated.
  • the vacuum valve 24 is opened, and the flow rate of the cleaning gas, for example, oxygen gas supplied from the cleaning gas supply source 26 is controlled by the mass flow controller 25.
  • the oxygen gas whose flow rate is controlled is blown out from the gas blowout port 9a through the internal electrodes 9 connected to the matching box 14 by the pipes 23, 10 and the output switching mechanism 30.
  • oxygen gas is introduced into the vacuum chamber.
  • the inside of the vacuum chamber 6 is maintained at a pressure suitable for assuring, for example, 0.1 to 10 O Torr by a balance between the controlled oxygen gas flow rate and the exhaust capacity.
  • High frequency output is, for example, 100 to 3000 W.
  • an RF output is supplied from an RF power supply 15 via a matching box 14 connected to the internal electrode 9 by an output switching mechanism 30.
  • plasma is generated between the external electrode 3 and the internal electrode 9 grounded by the output switching mechanism 30, and oxygen gas plasma is generated.
  • the foreign matter adhering to the internal electrode is a film composed of carbon, hydrogen, and the like, and is decomposed and removed from the internal electrode surface by an oxidation reaction using oxygen plasma. If the hydrocarbon film is represented by C nH m in the chemical formula, the oxidation reaction proceeds according to formula 1.
  • the RF output from the RF power supply 15 is stopped, and the supply of the cleaning gas is stopped by closing the vacuum valve 24.
  • the vacuum valve 18 is opened, and O 2 , CO 2 , and H 2 O in the vacuum chamber 16 are evacuated by the vacuum pump 21.
  • the distribution of high-frequency output is equal between the electrodes, and power is concentrated in one or two chambers. There was no phenomenon that discharge occurred only in the chamber and no discharge occurred in the other chambers. Since there was no chamber that discharged the power to be distributed to each electrode in a concentrated manner, the internal electrodes did not heat up and glowed red. This makes it easy to perform multiple cleanings at the same time, eliminating the need to clean one internal electrode at a time and saving cleaning time.
  • the DLC film-coated plastic container Oxygen gas cleaning is performed after a DLC film is formed a predetermined number of times by disposing a cleaning mechanism in the container manufacturing equipment to prevent foreign substances from adhering to the internal electrodes and coming off in the bottle. be able to. Therefore, unlike the conventional DLC film-coated plastic container manufacturing apparatus, the DLC film that has fallen into the bottle does not cause the bottle to become defective.
  • an oxygen gas cleaning mechanism is installed in the DLC film-coated plastic container manufacturing equipment, it adhered to the internal electrodes without disassembling the equipment as in the conventional DLC film-coated plastic container manufacturing equipment.
  • the DLC film can be removed by assing. Therefore, in the conventional DLC film-coated plastic container manufacturing equipment, it took one day to clean the internal electrodes, but the time required for the cleaning can be greatly reduced.
  • foreign substances adhering to the surface of the internal electrode could be peeled off cleanly by performing oxygen gas cleaning for the same time as DLC film formation after performing DLC film formation 10 times.
  • oxygen is used as the cleaning gas, but the cleaning gas is not limited to oxygen gas, and any other gas having a cleaning action may be used.
  • fluorine-based gas include, for example, CH 2 F 2 , CF 4 , and SiF 6
  • examples of the rare gas include argon, helium, krypton, and xenon.
  • the present invention is not limited to the above-described embodiment, and may be implemented with various modifications.
  • the source gas source is not limited to a hydrocarbon gas source, and various sources can be used.
  • a Si-containing hydrocarbon gas or the like can be used.
  • a pet bottle for beverage is used as a container for forming a thin film inside, but a container used for other purposes may be used.
  • a DLC film or a Si-containing DLC film is described as a thin film to be formed.
  • the DLC film coating plastic according to the present invention is used. It is also possible to use container manufacturing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

An apparatus for manufacturing a DLC-film-coated plastic container in which foreign matters adhering to an inner electrode can be removed by cleaning without decomposing the apparatus, a method of manufacturing the same, and a method for cleaning the inner electrode are disclosed. The apparatus (100) is characterized by having an output change-over mechanism (30) capable of connecting an inner electrode (9) to the earth and connecting an outer electrode (3) to a matching box (14) during the formation of a DLC film, and connecting the inner electrode (9) the matching box (14) and connecting the outer electrode (3) to the earth during the cleaning of the inner electrode.

Description

明 細 書  Specification
DLC 膜コーティ ングプラスチック容器の製造装置、 その製造方法 及び内部電極クリーニング方法 技術分野 DLC film-coated plastic container manufacturing device, its manufacturing method, and internal electrode cleaning method
本発明は、 DLC 膜成膜時に内部電極表面に付着した異物をアツ シングにより除去する機構を備えた DLC 膜コ一ティ ングプラスチ ック容器の製造装置、 その製造方法及び内部電極クリーニング方法 に関する。 背景技術  The present invention relates to an apparatus for manufacturing a DLC film coating plastic container provided with a mechanism for removing foreign substances adhering to the surface of an internal electrode at the time of forming a DLC film, a method for manufacturing the same, and a method for cleaning an internal electrode. Background art
炭酸飲料や高果汁飲料容器等の容器としてガスバリア性等の向上 の目的でプラスチック容器の内面に DLC (ダイヤモンドライク力 —ボン) 膜を蒸着するために、 CVD(Chemical Vapor Deposition 化 学気相成長)法、 特にプラズマ CVD法を用いた蒸着装置が、 特開平 8 - 5 3 1 1 7号公報に開示されている。 また、 特開平 1 0 - 2 5 8 8 2 5号公報には、 DLC 膜コーティ ングプラスチック容器の量 産用製造装置及びその製造方法が開示されている。 さらに、 特開平 1 0 - 2 2 6 8 8 4号公報には、 外面から外方に突出する突出物を 有する容器に、 まだらなく DLC 膜をコーティ ングすることができ る製造装置及びその製造方法が開示されている。  As a container for carbonated drinks and high juice drinks, etc., CVD (Chemical Vapor Deposition) is used to deposit a DLC (diamond-like force) film on the inner surface of plastic containers for the purpose of improving gas barrier properties, etc. Japanese Patent Application Laid-Open No. 8-53117 discloses an evaporation apparatus using a plasma CVD method, particularly a plasma CVD method. Also, Japanese Patent Application Laid-Open No. 10-258885 discloses a manufacturing apparatus and a manufacturing method for mass-producing a DLC film-coated plastic container. Furthermore, Japanese Patent Application Laid-Open No. 10-228684 describes a manufacturing apparatus and a manufacturing method capable of coating a DLC film on a container having a protruding object protruding outward from an outer surface. Is disclosed.
DLC膜とは、 i 力一ボン膜又は水素化アモルファスカーボン膜(a - C : H ) と呼ばれる膜のことであり、 硬質炭素膜も含まれる。 ま た D L C膜は、 アモルファス状の炭素膜であり、 S P 3結合及び S P 2結合も有する。 The DLC film is a film called an i-carbon film or a hydrogenated amorphous carbon film (a-C: H), and includes a hard carbon film. The DLC film is an amorphous carbon film, and has SP 3 bonds and SP 2 bonds.
特開平 8 — 5 3 1 1 7号公報の DLC 膜コーティ ングプラスチッ ク容器の製造装置は真空チヤンバーを備え、 この真空チャンバ一は 外部電極を有している。 この外部電極の内部には空間が形成されて おり、 この空間はコ一ティ ング対象のプラスチック容器であるぺッ トボトル (PETボトル) を収容するためのものである。 外部電極は マッチングボックス(インピーダンス整合器)に接続されており、 マ ツチングボックスは同軸ケーブルを介して高周波電源(RF 電源)に 接続されている。 The apparatus for manufacturing a DLC film-coated plastic container disclosed in Japanese Patent Application Laid-Open No. 8-5311 / 17 has a vacuum chamber, and this vacuum chamber has an external electrode. A space is formed inside this external electrode This space is for storing plastic bottles (PET bottles), which are plastic containers to be coated. The external electrodes are connected to a matching box (impedance matching device), and the matching box is connected to a high-frequency power supply (RF power supply) via a coaxial cable.
外部電極内の空間には内部電極が差し込まれており、 内部電極の 先端は外部電極内の空間であって外部電極内に収容されたぺッ トポ トルの内部に配置される。 内部電極は、 その内部が中空からなる管 形状を有している。 内部電極の先端にはガス吹き出し口が設けられ ている。 内部電極の基端はガス導入手段に接続されている。  An internal electrode is inserted into the space inside the external electrode, and the tip of the internal electrode is a space inside the external electrode and is arranged inside a socket accommodated in the external electrode. The internal electrode has a hollow tubular shape. A gas outlet is provided at the tip of the internal electrode. The base end of the internal electrode is connected to gas introduction means.
内部電極は接地されている。 外部電極内の空間は真空バルブを介 して大気開放状態とされている。 また、 外部電極内の空間は真空ポ ンプに接続されている。  The internal electrode is grounded. The space inside the external electrode is open to the atmosphere via a vacuum valve. The space inside the external electrode is connected to a vacuum pump.
次に、 上記 CVD 成膜装置を用いて容器の内部に DLC 膜を成膜 する方法について説明する。  Next, a method for forming a DLC film inside a container using the above-described CVD film forming apparatus will be described.
まず、 大気開放されたチャンバ内にペッ トボトルを収納する。 そ の後、 大気開放用真空バルブを閉じて真空ポンプを作動させること により、 ペッ トボトル内を含む真空チャンバ一内が排気され、 外部 電極内の空間が真空となる。  First, a pet bottle is stored in a chamber that is open to the atmosphere. Then, by closing the air release vacuum valve and operating the vacuum pump, the inside of the vacuum chamber including the inside of the pet bottle is evacuated, and the space in the external electrode is evacuated.
次に、 ガス導入手段を用いて流量制御された炭化水素ガスをァ一 ス電位の内部電極を通してガス吹き出し口から吹き出す。 これによ り、 炭化水素ガスがペッ トボトル内に導入される。 そして、 真空チ ヤンバー内とぺッ トポトル内は、 制御されたガス流量と排気能力の ノ ランスによって、 DLC成膜に適した圧力に保たれる。  Next, the hydrocarbon gas whose flow rate is controlled by using the gas introducing means is blown out from the gas blow-out port through the internal electrode at the ground potential. As a result, hydrocarbon gas is introduced into the pet bottle. Then, the inside of the vacuum chamber and the inside of the head are kept at a pressure suitable for DLC film formation by controlling the gas flow rate and the balance of the exhaust capacity.
この後、 外部電極にマッチングボックスを介して高周波電源から RF 出力を供給する。 これにより、 外部電極と内部電極間にプラズ マが発生する。 このときマッチングボックスは、 外部電極と内部電 極のインピ一ダンスに、 インダクタンス L、 キャパシタンス C に よって合わせている。 これによつて、 ペッ トボトル内に炭化水素系 プラズマが発生し、 DLC膜がぺッ 卜ボトルの内側に成膜される。 次に、 高周波電源からの 出力を停止し、 原料ガスの供給を停 止する。 この後、 真空チャンバ一内及びペッ トボトル内の炭化水素 ガスを真空ポンプによって排気する。 この後、 大気開放用真空バル ブを開いて真空チャンバ一内を大気開放し、 前述した成膜方法を繰 り返すことにより、 複数のペッ トボトル内に DLC膜が成膜される。 発明の開示 After that, the RF output is supplied to the external electrodes from the high frequency power supply via the matching box. As a result, plasma is generated between the external electrode and the internal electrode. At this time, the matching box is matched to the impedance of the external electrode and the internal electrode by the inductance L and the capacitance C. As a result, hydrocarbon-based Plasma is generated, and a DLC film is formed inside the bottle. Next, the output from the high-frequency power supply is stopped, and the supply of the source gas is stopped. Thereafter, the hydrocarbon gas in the vacuum chamber and the pet bottle is exhausted by a vacuum pump. After that, the vacuum chamber is opened to the atmosphere to open the inside of the vacuum chamber to the atmosphere, and the above-described film forming method is repeated to form a DLC film in a plurality of pet bottles. Disclosure of the invention
ところで、 上記従来の DLC 膜コーティ ングプラスチック容器の 製造装置において、 ペッ トボトルの内面に DLC 膜を成膜すると、 内部電極の外表面及び内表面にも炭素を主成分とする膜状の異物 (以下、 「内部電極に付着した異物」 という。) が付着してしまう。 このため、 複数のペッ トボトル内への DLC 膜の成膜を繰り返して いく と、 内部電極に付着した異物の膜厚が徐々に厚くなる。 その膜 厚がある厚さ、 例えば 5 m程度の厚さになると内部電極から剥が れ落ちてしまう。 この剥がれ落ちた異物はペッ トボトル内に落ち、 その結果、 ぺッ トポトル内に落ちた異物によってそのぺッ トポトル の中に成膜されない部分が生じ、 ガスパリア性を低下させ、 不良品 となってしまう。  By the way, in the above-mentioned conventional apparatus for manufacturing a DLC film-coated plastic container, when a DLC film is formed on the inner surface of a PET bottle, the outer surface and inner surface of the internal electrode are also film-like foreign substances containing carbon as a main component (hereinafter, referred to as a foreign material). , "Foreign matter adhering to the internal electrode." For this reason, as the deposition of the DLC film in a plurality of PET bottles is repeated, the thickness of the foreign matter attached to the internal electrode gradually increases. If the film thickness becomes a certain thickness, for example, about 5 m, it will peel off from the internal electrodes. The peeled foreign matter falls into the pet bottle, and as a result, the foreign matter that has fallen in the pet pot forms a portion in the pet pot where a film is not formed, thereby deteriorating the gas barrier property and resulting in a defective product. .
一方、 内部電極に付着した異物がペッ トボトル内に剥がれ落ちる ことを防止するには次の方法が考えられる。 つまり、 内部電極に付 着した異物が剥がれ落ちる前であって、 ある程度の本数のぺッ トポ トル内に DLC 膜を成膜した後に、 DLC 膜コーティ ングプラスチッ ク容器の製造装置を分解して内部電極を取り外し、 異物が付着して いる内部電極の外表面及び内表面を作業者がヤスリで削る等して掃 除する方法である。 このように内部電極の外表面及び内表面を掃除 すれば、 ペッ トボトル内に異物が剥がれ落ちることを防止すること ができるはずである。  On the other hand, the following methods can be considered to prevent the foreign substances adhering to the internal electrodes from falling into the PET bottle. In other words, before the foreign substances attached to the internal electrodes are peeled off, and after the DLC film has been formed in a certain number of the petroleum, the manufacturing apparatus of the DLC film-coated plastic container is disassembled and disassembled. In this method, the electrode is removed, and the outer surface and inner surface of the internal electrode to which foreign matter is attached are cleaned by a file using an operator. By cleaning the outer and inner surfaces of the internal electrode in this way, it should be possible to prevent foreign substances from falling into the PET bottle.
このような方法を用いれば、 ペッ トボトル内に内部電極に付着し た異物が剥がれ落ちることは防止できる。 しかし、 プラスチック容 器内への D L C膜成膜装置の稼働率低下を招いてしまう。 Using such a method, the internal electrode adheres to the inside of the PET bottle. It is possible to prevent the foreign matter from peeling off. However, this leads to a decrease in the operating rate of the DLC film deposition system in the plastic container.
本発明の目的は、 内部電極に付着した薄膜が容器内に剥がれ落ち るのを防止し、 且つ、 装置を分解清掃せずに内部電極に付着した異 物をクリーニングすることにより、 稼働率低下の少ない DLC 膜コ —ティ ングプラスチック容器の製造装置、 特に内部電極に付着した 異物をプラズマ放電によ り除去するク リーニング機構を備えた DLC 膜コ一ティ ングプラスチック容器の製造装置、 及びその製造 方法並びに内部電極のクリーニング方法を提供することである。  An object of the present invention is to prevent the thin film adhered to the internal electrode from peeling into the container and to remove foreign substances adhered to the internal electrode without disassembling and cleaning the apparatus, thereby reducing the operation rate. Low DLC film coating plastic container manufacturing device, especially DLC film coating plastic container manufacturing device with cleaning mechanism for removing foreign substances adhering to internal electrodes by plasma discharge, and method of manufacturing the same Another object of the present invention is to provide a method for cleaning an internal electrode.
さらに本発明の目的は、 内部電極に付着した異物をプラズマ放電 により除去するにあたり、 内部電極に自己バイァス電圧をかけるこ とでクリーニングガスによる十分なクリーニング効果を得ることで める。  Further, an object of the present invention is to obtain a sufficient cleaning effect by a cleaning gas by applying a self-bias voltage to the internal electrodes in removing foreign substances attached to the internal electrodes by plasma discharge.
また本発明の目的は、 外部電極と内部電極の組合せを複数並列に 設置する装置であって複数同時にクリーニングを行う場合において も、 高周波出力が 1 〜 2つのチャンバに集中してそのチャンバのみ で放電が生じ、 それ以外のチャンバは放電しないというような現象 を生じさせることなく、 全てのチャンパにおいてクリーニングガス による十分なクリーニング効果を得ることである。 均一にク リ一二 ングさせることによって、 複数同時にクリーニングを行い、 内部電 極 1 本ずつクリーニングする必要もなく、 クリーニング時間の節 約を行うことも目的とする。 これらのクリーニングを効果的に行う ことで、 内部電極に付着した薄膜が容器内に剥がれ落ちるのを防止 し、 且つ、 装置を分解清掃せずに内部電極に付着した異物をクリー ニングして、 結果として稼働率低下の少ない装置を提供するという 目的が達せられる。  Further, an object of the present invention is to provide a device in which a plurality of combinations of external electrodes and internal electrodes are installed in parallel, and in the case where a plurality of cleanings are performed simultaneously, high-frequency output is concentrated in one or two chambers and discharge is performed only in those chambers. The problem is that a sufficient cleaning effect by the cleaning gas can be obtained in all the champers without causing a phenomenon that the discharge occurs and the other chambers do not discharge. By evenly cleaning, multiple cleanings are performed simultaneously, and it is not necessary to clean one internal electrode at a time, and the purpose is to save cleaning time. By effectively performing these cleanings, it is possible to prevent the thin film adhering to the internal electrodes from peeling into the container and to clean foreign substances adhering to the internal electrodes without disassembling and cleaning the device. As a result, the objective of providing a device with less decrease in the operating rate can be achieved.
なお、 本発明に係る容器とは、 蓋若しくは栓若しくはシールして 使用する容器、 またはそれらを使用せず開口状態で使用する容器を 含む。 開口部の大きさは内容物に応じて決める。 プラスチック容器 は、 剛性を適度に有する所定の肉厚を有するプラスチック容器と剛 性を有さないシート材により形成されたプラスチック容器を含む。 さらに容器の蓋も含む。 The container according to the present invention includes a container used with a lid, a stopper, or a seal, or a container used in an open state without using them. The size of the opening is determined according to the contents. Plastic container Include a plastic container having an appropriate rigidity and a predetermined thickness, and a plastic container formed of a non-rigid sheet material. Also includes a container lid.
本発明に係るプラスチック容器の充填物は、 炭酸飲料若しくは果 汁飲料若しくは清涼飲料等の飲料、 並びに医薬品、 農薬品、 又は吸 湿を嫌う乾燥食品等を挙げることができる。 上記課題を解決するため、 本発明に係る DLC 膜コーティ ングプ ラスチック容器の製造装置は、 プラスチック容器の内側に D L C膜 を成膜する装置において、  Examples of the filling of the plastic container according to the present invention include beverages such as carbonated beverages, fruit beverages, and soft drinks, as well as pharmaceuticals, agricultural chemicals, and dry foods that dislike moisture absorption. In order to solve the above-mentioned problems, a manufacturing apparatus for a DLC film-coated plastic container according to the present invention is an apparatus for forming a DLC film inside a plastic container,
該プラスチック容器の外側近傍を囲むように配置された外部電極 と、  External electrodes arranged so as to surround the vicinity of the outside of the plastic container;
該プラスチック容器の内部に配置される内部電極と、  An internal electrode arranged inside the plastic container,
該プラスチック容器の内部に原料ガスを導入する原料ガス導入手 段と、  Source gas introduction means for introducing a source gas into the plastic container;
該内部電極に付着した異物をアツシング除去するためのク リ一二 ングガスを該外部電極の内部に導入するクリ一ニングガス導入手段 と、  Cleaning gas introducing means for introducing a cleaning gas into the inside of the external electrode for introducing a cleaning gas for removing foreign matter attached to the internal electrode;
DLC 膜成膜時においては該内部電極とアースとの接続及び該外 部電極と高周波負荷のインピーダンス整合を行なうマッチングポッ クスとの接続を行ない、 該内部電極のクリーニング時においては該 内部電極と該マッチングボックスとの接続及び該外部電極とアース との接続を行ない得るよう相互に切替え可能な出力切替え機構と、 • 該マッチングポックスに接続された高周波電源と、  When forming the DLC film, the connection between the internal electrode and the ground and the connection between the external electrode and a matching box for impedance matching of the high-frequency load are performed.When the internal electrode is cleaned, the internal electrode is connected to the ground. An output switching mechanism that can be switched mutually so as to be able to connect to the matching box and to connect the external electrode to the ground; and • a high-frequency power supply connected to the matching pox;
を具備することを特徴とする。 It is characterized by having.
本発明における出力切替え機構は、 DLC 成膜時と内部電極ク リ 一二ング時との切替え時において、 上記複数の接続の切替えを同時 に行う ことができるものが好ましい。  It is preferable that the output switching mechanism of the present invention is capable of simultaneously switching the plurality of connections at the time of switching between DLC film formation and internal electrode cleaning.
また、 本発明に係る DLC 膜コーティ ングプラスチック容器の製 造方法は、 アースに接続した内部電極をプラスチック容器の内部に 配置し、 該プラスチック容器の外側近傍を囲むように外部電極を配 置し、 該プラスチック容器内に原料ガスを供給し、 該外部電極に高 周波出力を供給し、 該内部電極と該外部電極との間に該原料ガスに よるプラズマを発生させて該プラスチック容器の内面に D L C膜を 成膜する DLC膜成膜工程を一回又は複数回行ない、 Further, the DLC film-coated plastic container according to the present invention is manufactured. The manufacturing method is as follows: an internal electrode connected to the ground is arranged inside a plastic container; an external electrode is arranged so as to surround the vicinity of the outside of the plastic container; a raw material gas is supplied into the plastic container; A DLC film forming step of forming a DLC film on the inner surface of the plastic container by generating a plasma of the raw material gas between the internal electrode and the external electrode by supplying a high frequency output to the internal electrode and the external electrode. Multiple times,
前記 DLC 膜成膜工程において該内部電極とアースとが接続して おり、 かつ該外部電極と高周波負荷のインピーダンス整合を行なう マッチングボックスとが接続している状態から、 該内部電極と該マ ツチングボックスとを接続し、 かつ該外部電極とアースとを接続す る出力切替え工程を行なった後、  In the DLC film forming step, the internal electrode is connected to the ground and the external electrode is connected to a matching box for impedance matching of a high-frequency load. After performing an output switching step of connecting the box and the external electrode and the ground,
前記プラスチック容器を取り除いた該外部電極の内部にクリーニン グガスを供給し、 前記内部電極に高周波出力を供給し、 該内部電極 と該外部電極との間に該クリーニングガスによるプラズマを発生さ せるアツシングにより該内部電極に付着した異物を除去するクリ一 ニング工程を行なうことを特徴とする。 A cleaning gas is supplied to the inside of the external electrode from which the plastic container has been removed, a high-frequency output is supplied to the internal electrode, and a plasma is generated between the internal electrode and the external electrode by the assing to generate a plasma by the cleaning gas. A cleaning step for removing foreign matter attached to the internal electrode is performed.
さらに本発明における内部電極クリーニング方法は、 プラスチッ ク容器の外側近傍を囲むように配置可能な形状の外部電極にアース を接続し、 該プラスチック容器を取り外した状態で該外部電極の内 部にクリーニングガスを供給し、 該外部電極の内部に配置される内 部電極に高周波出力を供給し、 該内部電極と該外部電極との間に該 クリーニングガスによるプラズマを発生させるアツシングにより該 内部電極表面に付着した異物を除去することを特徴とする。  Further, in the internal electrode cleaning method according to the present invention, a grounding is connected to an external electrode which can be arranged so as to surround the vicinity of the outside of the plastic container, and a cleaning gas is provided inside the external electrode with the plastic container removed. And supplying a high-frequency output to an internal electrode disposed inside the external electrode, and attaching to the surface of the internal electrode by asking to generate a plasma by the cleaning gas between the internal electrode and the external electrode. The method is characterized in that foreign matter that has been removed is removed.
本発明では、 外部電極ではなく内部電極に高周波出力を供給する 方式を採用したため、 安定したプラズマを維持することが可能であ る。 またチャンバを複数並べて同時に放電した場合において各チヤ ンバへ電力を均等に供給することは、 それぞれのチヤンバに可変コ ンデンサーを設置して調整してすれば容易に可能となる。 したがつ て一部のチャンバに電力が集中してしまい 1 〜 2本のチャンバでし か放電しないという こともない。 また放電したチャンバにおいては 電力の集中によって内部電極が赤熱してしまう現象も生じることが ない。 このようにプラズマが安定であること、 そしてチャンバへの 電力供給が均等になるように実現できる理由は、 内部電極に高周波 出力を供給し、 外部電極をアース電位としたからである。 本発明の 装置では、 内部電極外面に対して外部電極内面の面積が非常に大き い。 一般に容量結合型の高周波放電においては、 高周波供給側の電 極 (通常力ソード電極と呼ばれる) の面積とそれに対向してアース 電位に落とされている電極 (通常アノード電極と呼ばれる) の面積 の相対的な大小によって陰極に生じる自己バイアス電圧が大きな影 響を受ける。 すなわち相対的に面積の小さい方の電極に負の自己バ ィァス電圧が生じる。 したがって本発明の装置においては、 カソー ド電極 (内部電極) に比較してアノード電極 (外部電極) が大きく、 負の自己バイアスがかかるようになつており、 安定したプラズマを 生成させることが出来るようになつている。 またこれにより複数を 同時にクリーニングする際も全てのチヤンバで安定放電が可能にな る。 In the present invention, since a method of supplying a high-frequency output to the internal electrode instead of the external electrode is employed, stable plasma can be maintained. Also, when multiple chambers are arranged and discharged simultaneously, it is possible to easily supply power to each chamber evenly by installing and adjusting a variable capacitor in each chamber. As a result, power was concentrated in some chambers and only one or two chambers were needed. It does not mean that it does not discharge. Also, in the discharged chamber, the phenomenon that the internal electrodes glow red due to the concentration of power does not occur. The reason that the plasma is stable and that the power supply to the chamber can be equalized is that high-frequency output is supplied to the internal electrode and the external electrode is set to the ground potential. In the device of the present invention, the area of the inner surface of the external electrode is much larger than the outer surface of the internal electrode. In general, in a capacitively coupled high-frequency discharge, the area of the electrode on the high-frequency supply side (usually called the force electrode) is opposite to the area of the electrode (usually called the anode electrode) that is dropped to ground potential. The self-bias voltage generated at the cathode is greatly affected by the size. That is, a negative self-bias voltage is generated at the electrode having a relatively smaller area. Therefore, in the apparatus of the present invention, the anode electrode (external electrode) is larger than the cathode electrode (internal electrode) and a negative self-bias is applied, so that a stable plasma can be generated. It has become. In addition, this enables stable discharge in all chambers even when cleaning a plurality of chambers at the same time.
一方本発明の DLC 膜成膜時において、 内部電極を接地し、 外部 電極に高周波出力を供給したにもかかわらず、 安定した放電が得ら れ、 また複数同時成膜においても安定した放電が得られるのは、 成 膜対象である P E Tボトルがカソ一ド電極表面全体 (外部電極の内 表面) を覆うため、 直流的に絶縁されていることにより安定したプ ラズマが生成すると考えられる。  On the other hand, when the DLC film of the present invention was formed, a stable discharge was obtained despite the fact that the internal electrode was grounded and a high-frequency output was supplied to the external electrode. The reason is that the PET bottle, which is the object of film formation, covers the entire surface of the cathode electrode (the inner surface of the external electrode), and thus it is considered that stable plasma is generated by DC insulation.
なお、 本発明に係る DLC 膜コーティ ングプラスチック容器の製 造装置、 その製造方法及び内部電極クリーニング方法において、 ク リーニングガスは、 酸素ガス、 フッ素系ガス、 酸素ガスと希ガスの 混合ガス、 酸素ガスとフッ素系ガスの混合ガス、 フッ素系ガスと希 ガスの混合ガス、 酸素ガスとフッ素系ガスと希ガスの混合ガスから なる群より選ばれた一つのガスであることが好ましい。 ここで、 フ ッ素系ガスとは、 例えば CH2F2、 C F4、 SiF6等を例示でき、 希ガ スとは、 アルゴン、 ヘリウム、 クリプトン、 キセノン等である。 In the apparatus for manufacturing a DLC film-coated plastic container according to the present invention, the manufacturing method thereof, and the internal electrode cleaning method, the cleaning gas is oxygen gas, fluorine-based gas, a mixed gas of oxygen gas and rare gas, oxygen gas. It is preferably one gas selected from the group consisting of a mixed gas of fluorine gas and fluorine gas, a mixed gas of fluorine gas and rare gas, and a mixed gas of oxygen gas, fluorine gas and rare gas. Where Examples of the nitrogen-based gas include CH 2 F 2 , CF 4 , and SiF 6 , and rare gases include argon, helium, krypton, and xenon.
また原料ガスは、 炭化水素ガスや Si 含有炭化水素系ガスが好ま しい。 特にアセチレン、 プロピレン、 エチレンが好ましい。  As the raw material gas, hydrocarbon gas and Si-containing hydrocarbon gas are preferable. Particularly, acetylene, propylene, and ethylene are preferred.
また、 外部電極と内部電極の組合せを複数並列に設置し、 一度に 複数のプラスチック容器内部に DLC 膜を成膜する場合であっても 良い。 本発明によれば、 內部電極に高周波出力を供給し、 外部電極をァ ースしたため、 内部電極に自己バイアスがかかり、 ク リーニングガ スによる十分なクリーニング効果が得られた。 すなわち外部電極の 面積に対する内部電極の面積が小さいため内部電極の自己バイアス 電圧がマイナスになり効率的なクリーニングが行われた。  Alternatively, a plurality of combinations of external electrodes and internal electrodes may be installed in parallel, and a DLC film may be formed inside a plurality of plastic containers at once. According to the present invention, since a high-frequency output is supplied to the upper electrode and the outer electrode is grounded, a self-bias is applied to the inner electrode, and a sufficient cleaning effect by the cleaning gas is obtained. That is, since the area of the internal electrode was smaller than the area of the external electrode, the self-bias voltage of the internal electrode became negative, and efficient cleaning was performed.
また、 外部電極と内部電極の組合せを複数並列に設置する装置に より複数同時にクリーニングを行った場合でも、 高周波出力の配分 が各電極間で等しくなり、 1 〜 2つのチャンバに電力が集中し、 そ のチャンバのみで放電が生じ、 それ以外のチャンバは放電しないと いうような現象は生じなかった。 各電極へ分配されるべき電力が集 中して放電したチャンバが無かったために内部電極が加熱して赤熱 化するようなことも無かった。 したがって複数同時にクリーニング を行う ことも容易となり、 内部電極 1 本ずつクリーニングする必 要もなく、 クリーニング時間の節約となった。  In addition, even when a plurality of combinations of external electrodes and internal electrodes are cleaned at the same time by using a device in which a plurality of combinations of the external electrodes and the internal electrodes are installed in parallel, the distribution of the high-frequency output is equal among the electrodes, and the power is concentrated in one or two chambers. There was no phenomenon that discharge occurred only in that chamber and no discharge occurred in other chambers. There was no chamber where the power to be distributed to each electrode was concentrated and discharged, and there was no heating of the internal electrodes and glowing. Therefore, it is easy to perform multiple cleanings at the same time, and there is no need to clean one internal electrode at a time, saving cleaning time.
したがって内部電極に付着した異物を効果的にクリーニングでき るので、 異物が容器内に剥がれ落ちるのを防止し、 且つ装置の稼働 率の低下を抑制できた。  Therefore, the foreign matter adhered to the internal electrode can be effectively cleaned, so that the foreign matter was prevented from peeling off into the container, and a decrease in the operation rate of the apparatus could be suppressed.
また、 クリーニングガスとして酸素ガス、 フッ素系ガス、 酸素ガ スと希ガスの混合ガス、 酸素ガスとフッ素系ガスの混合ガス、 フッ 素系ガスと希ガスの混合ガス、 酸素ガスとフッ素系ガスと希ガスの 混合ガスを用いることでより効果的なクリーニング可能であった。 図面の簡単な説明 In addition, cleaning gases such as oxygen gas, fluorine gas, mixed gas of oxygen gas and rare gas, mixed gas of oxygen gas and fluorine gas, mixed gas of fluorine gas and rare gas, and mixed gas of oxygen gas and fluorine gas More effective cleaning was possible by using a mixed gas of a rare gas. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の実施の形態による DLC 膜成膜装置を模式的に示 す構成図である。  FIG. 1 is a configuration diagram schematically showing a DLC film forming apparatus according to an embodiment of the present invention.
図 2は成膜時における出力切替え機構 30の構成を示す図である。 図 3 は内部電極クリーニング時における出力切替え機構 30 の構 成を示す図である。  FIG. 2 is a diagram showing the configuration of the output switching mechanism 30 during film formation. FIG. 3 is a diagram showing the configuration of the output switching mechanism 30 during internal electrode cleaning.
図 1〜6 に示された符号の意味は下記の通りである。 1 下部外部 電極、 2上部外部電極、 3外部電極、 4絶縁部材、 5蓋部、 6真空チ ヤンバー、 7 ペッ トボトル、 8〇リ ング、 9 内部電極、 9a ガス吹き 出し口、 10,11,12,13,23 配管、 14 マッチングボックス、 15 高周波 電源、 16, 17, 18,24真空バルブ、 19,25マスフ口一コン トローラー、 20原料ガス発生源、 21真空ポンプ、 26クリーニングガス供給源、 27 リークガス (空気) 供給源、 28 真空計、 29 排気ダク ト、 30 出 力切替え機構、 31 外部電極への配線、 32 内部電極への配線、 33 マッチングボックスへの配線、 34 アースへの配線、 37 リレー、 41 原料ガス導入手段、 42 クリーニングガス導入手段、 100 DLC 膜コ 一ティ ングプラスチック容器の製造装置、 である。 発明を実施するための最良の形態  The meanings of the symbols shown in FIGS. 1 to 6 are as follows. 1 Lower external electrode, 2 Upper external electrode, 3 External electrode, 4 Insulating material, 5 Lid, 6 Vacuum chamber, 7 Pet bottle, 8 Ring, 9 Internal electrode, 9a Gas outlet, 10, 11, 12,13,23 piping, 14 matching box, 15 high frequency power supply, 16,17,18,24 vacuum valve, 19,25 muff outlet controller, 20 source gas source, 21 vacuum pump, 26 cleaning gas supply source, 27 Leak gas (air) supply source, 28 Vacuum gauge, 29 Exhaust duct, 30 Output switching mechanism, 31 Wiring to external electrode, 32 Wiring to internal electrode, 33 Wiring to matching box, 34 Wiring to ground, 37 relay, 41 source gas introduction means, 42 cleaning gas introduction means, 100 DLC membrane coating plastic container manufacturing equipment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図 1を参照して本発明の一実施の形態について説明する。 本発明の実施の形態による DLC 膜コーティ ングプラスチック容器 の製造装置は、 プラズマ CVD 法を用いて容器等の内側に DLC 膜 又は Si 含有 DLC 膜等を成膜する装置である。 本発明は下記に示 す実施の形態に制限されず、 本発明の効果を奏する範囲内において 適宜変更することができる。  Hereinafter, an embodiment of the present invention will be described with reference to FIG. An apparatus for manufacturing a DLC film-coated plastic container according to an embodiment of the present invention is an apparatus for forming a DLC film or a Si-containing DLC film inside a container or the like by using a plasma CVD method. The present invention is not limited to the embodiments described below, and can be appropriately modified within the range in which the effects of the present invention are exhibited.
図 1 は、 本発明の実施の形態による DLC 膜コーティ ングプラス チック容器の製造装置 100を模式的に示す構成図である。  FIG. 1 is a configuration diagram schematically showing an apparatus 100 for manufacturing a DLC film-coated plastic container according to an embodiment of the present invention.
本発明に係る DLC 膜コーティ ングプラスチック容器の製造装置 100 は、 外部電極 3 と、 内部電極 9 と、 原料ガス導入手段 41 と、 マッチングボックス 14 と、 高周波電源 15 と、 内部電極 9 に付着 した異物を除去するためのクリーニングガスを外部電極 3 の内部 に導入するクリーニングガス導入手段 42 と、 DLC膜成膜時におけ る内部電極とアースとの接続及び外部電極とマッチングボックスと の接続を内部電極クリーニング時における内部電極とマッチングポ ックスとの接続及び外部電極とアースとの接続に相互に切替え可能 な出力切替え機構 30とを具備する。 The apparatus 100 for manufacturing a DLC film-coated plastic container according to the present invention includes an external electrode 3, an internal electrode 9, a source gas introducing means 41, A matching box 14, a high-frequency power supply 15, a cleaning gas introducing means 42 for introducing a cleaning gas for removing foreign substances attached to the internal electrode 9 into the inside of the external electrode 3, and an internal electrode for forming a DLC film. An output switching mechanism 30 is provided which can switch between connection to the ground and connection between the external electrode and the matching box to connection between the internal electrode and the matching box and connection between the external electrode and the ground during internal electrode cleaning. .
外部電極 3は、 導電性の蓋部 5及び絶縁部材 4とともに真空チヤ ンバ一 6を構成する。蓋部 5の下には絶縁部材 4が配置されており、 この絶縁部材 4の下には外部電極部 3が配置されている。 この外部 電極 3は、 上部外部電極 2 と下部外部電極 1からなり、 上部外部電 極 2の下部に下部外部電極 1の上部が Oリ ング 8 を介して着脱自在 に取り付けられるよう構成されている。 また、 外部電極 3は絶縁部 材 4によって蓋部 5 と絶縁されている。  The external electrode 3 forms a vacuum chamber 6 together with the conductive lid 5 and the insulating member 4. An insulating member 4 is disposed below the lid 5, and an external electrode portion 3 is disposed below the insulating member 4. The external electrode 3 is composed of an upper external electrode 2 and a lower external electrode 1, and is configured such that the upper part of the lower external electrode 1 is detachably attached to the lower part of the upper external electrode 2 via an O-ring 8. . The external electrode 3 is insulated from the lid 5 by the insulating member 4.
なお、 本実施形態では外部電極 3 を下部外部電極 1 と上部外部電 極 2 の 2つに分割しているが、 DLC 膜の膜厚等の均一化を図るた め、 外部電極を例えば底部電極、 胴部電極及び肩部電極のように 3 つ、 あるいはそれ以上に分割し、 各電極は例えば〇リ ング等を挟ん でシール性を確保しつつ、 テフロンシートやポリイミ ドフィルムで 電気的に絶縁しても良い。  In this embodiment, the external electrode 3 is divided into a lower external electrode 1 and an upper external electrode 2, but in order to make the thickness of the DLC film uniform, the external electrode is, for example, a bottom electrode. , Divided into three or more, such as a torso electrode and a shoulder electrode, and each electrode is electrically insulated with a Teflon sheet or polyimide film while ensuring sealing properties with a ring, etc. You may.
外部電極 3 の内部には空間が形成されており、 この空間はコー ティ ング対象のプラスチック容器である、 例えばポリエチレンテレ フタレート樹脂で成形されたペッ トボトル ( P E Tボトル) 7 を収 容するためのものである。 外部電極 3 内の空間は、 そこに収容さ れるぺッ トポトル 7 の外形より も僅かに大きくなるように形成さ れている。 絶縁部材 4 及び蓋部 5 には、 外部電極 3 内の空間につ ながる開口部が設けられている。 また、 蓋部 5 の内部には空間が 設けられており、 この空間は上記開口部を介して外部電極 3 内の 空間につながつている。 外部電極 3 内の空間は、 上部外部電極 2 と下部外部電極 1 の間に配置された〇リ ング 8 によって外部から 密閉されている。 A space is formed inside the external electrode 3 for accommodating a plastic container to be coated, for example, a PET bottle 7 molded of polyethylene terephthalate resin. It is. The space inside the external electrode 3 is formed to be slightly larger than the outer shape of the socket 7 accommodated therein. The insulating member 4 and the lid 5 are provided with openings that connect to the space inside the external electrode 3. Further, a space is provided inside the lid portion 5, and this space is connected to the space inside the external electrode 3 via the opening. The space inside the external electrode 3 is the upper external electrode 2 It is hermetically sealed from the outside by a ring 8 arranged between the lower electrode 1 and the lower electrode.
外部電極 3 の下部外部電極 1は、 出力切替え機構 30 を介して接 地されるか、 或いはマッチングボックス 14 に接続されており、 マ ツチングボックス 14 は同軸ケーブルを介して高周波電源 15 に接 続されている。  The lower outer electrode 1 of the outer electrode 3 is grounded via an output switching mechanism 30 or connected to a matching box 14, and the matching box 14 is connected to a high frequency power supply 15 via a coaxial cable. Have been.
内部電極 9は、 外部電極部 3内に配置され、 かつペッ トボトル 7 の内部に配置される。 すなわち、 蓋部 5 の上部から蓋部 5 内の空 間、 蓋部 5 と絶縁部材 4 の開口部を通して、 外部電極 3 内の空間 に内部電極 9 が差し込まれている。 即ち、 内部電極 9 の基端は蓋 部 5の上部に配置され、 内部電極 9の先端 9aは外部電極 3内の空 間であって外部電極 3 内に収容されたペッ トボトル 7 の内部に配 置される。 内部電極 9 は、 その内部が中空からなる管形状を有し ている。 内部電極 9 の先端にはガス吹き出し口 9aが設けられてい る。  The internal electrode 9 is arranged inside the external electrode section 3 and inside the pet bottle 7. That is, the internal electrode 9 is inserted into the space inside the external electrode 3 from the upper part of the lid 5 through the space in the lid 5 and the opening of the lid 5 and the insulating member 4. That is, the base end of the internal electrode 9 is arranged above the lid 5, and the tip 9 a of the internal electrode 9 is arranged in the space inside the external electrode 3 and inside the PET bottle 7 housed inside the external electrode 3. Is placed. The internal electrode 9 has a hollow tubular shape. At the tip of the internal electrode 9, a gas outlet 9a is provided.
原料ガス導入手段 41 は、 ペッ トボトル 7の内部に原料ガス発生 源 20 から供給される原料ガスを導入する。 すなわち、 内部電極 9 の基端には配管 10 の一方側が接続されており、 この配管 10 の他 方側は配管 11 の一方向側に接続され、 配管 11 の他方向側は真空 バルブ 16 を介してマスフ口一コントローラー 19 の一方側に接続 されている。 マスフローコントローラ一 19 の他方側は原料ガス発 生源 20 に接続されている。 この原料ガス発生源 20 はアセチレン 等の炭化水素ガスなどを発生させるものである。  The source gas introducing means 41 introduces the source gas supplied from the source gas source 20 into the PET bottle 7. That is, one end of the pipe 10 is connected to the base end of the internal electrode 9, the other side of the pipe 10 is connected to one side of the pipe 11, and the other side of the pipe 11 is connected via the vacuum valve 16. It is connected to one side of the masochist controller 19. The other side of the mass flow controller 19 is connected to a source gas generation source 20. The source gas generating source 20 generates a hydrocarbon gas such as acetylene.
クリーニングガス導入手段 42 は、 外部電極 3 の内部にクリ一二 ングガス供給源 26 から供給されるクリーニングガスを供給する。 すなわち、 配管 23 の一方側は、 配管 10 に接続されており、 この 配管 23 の他方側は、 真空バルブ 24 を介してマスフローコント口 一ラー 25 の一方側に接続されている。 マスフローコントローラー 25の他方側は酸素ボンべ等のクリ一二ングガス供給源 26に接続さ れている。 ク リーニングガス供給源 26、 マスフローコントローラ 一 25及び真空バルブ 24等はクリーニング機構として作用する。 内部電極 9 は出力切替え機構 30 を介して接地されるか、 或いは マッチングボックス 14に接続されており、 マッチングボックス 14 は同軸ケーブルを介して高周波電源 15に接続されている。 The cleaning gas introducing means 42 supplies the cleaning gas supplied from the cleaning gas supply source 26 to the inside of the external electrode 3. That is, one side of the pipe 23 is connected to the pipe 10, and the other side of the pipe 23 is connected to one side of the mass flow controller 25 via the vacuum valve 24. The other side of the mass flow controller 25 is connected to a cleaning gas supply source 26 such as an oxygen cylinder. Have been. The cleaning gas supply source 26, the mass flow controller 125, the vacuum valve 24 and the like function as a cleaning mechanism. The internal electrode 9 is grounded via an output switching mechanism 30, or is connected to a matching box 14, and the matching box 14 is connected to a high frequency power supply 15 via a coaxial cable.
出力切替え機構 30については、 図 2及び図 3をもとに説明する。 図 2は、 成膜時における出力切替え機構 30の構成を示し、 図 3は、 内部電極クリーニング時における出力切替え機構 30 の構成を示し ている。 すなわち、 内部電極 9 への配線 32、 外部電極 3 への配線 31、 マッチングボックス 14 への配線 33、 及びアースへの配線 34 についてのそれぞれの接続組合せはリ レー 37 で切替え可能な構成 となっている。 成膜時はリ レー 37 を介して内部電極への配線 32 はアースへの配線 34 に、 外部電極 3 への配線 31 はマッチングポ ックス 14への配線 33 に接続される (図 2 )。 内部電極クリーニン グ時はリ レー 37 を介して内部電極 9 への配線 32 はマッチングポ ックス 14への配線 33 に、 外部電極 3への配線 31 はアースへの配 線 34に接続される (図 3 )。  The output switching mechanism 30 will be described with reference to FIGS. FIG. 2 shows the configuration of the output switching mechanism 30 during film formation, and FIG. 3 shows the configuration of the output switching mechanism 30 during internal electrode cleaning. That is, the connection combinations of the wiring 32 to the internal electrode 9, the wiring 31 to the external electrode 3, the wiring 33 to the matching box 14, and the wiring 34 to the ground can be switched by the relay 37. I have. During film formation, the wiring 32 to the internal electrode is connected to the wiring 34 to the ground via the relay 37, and the wiring 31 to the external electrode 3 is connected to the wiring 33 to the matching box 14 (FIG. 2). When cleaning the internal electrode, the wiring 32 to the internal electrode 9 via the relay 37 is connected to the wiring 33 to the matching box 14, and the wiring 31 to the external electrode 3 is connected to the wiring 34 to the ground (Fig. 3).
蓋部内の空間は配管 12 の一方側に接続されており、 配管 12 の 他方側は真空バルブ 17 を介して大気開放状態とされている。 また、 蓋部内の空間は配管 13 の一方側に接続されており、 配管 13 の他 方側は真空バルブ 18 を介して真空ポンプ 21 に接続されている。 この真空ポンプ 21 は排気ダク ト 29 に接続されている。 なお、 配 管 13には真空計 28が設置されている。 次に、 図 1 に示す DLC 膜コーティ ングプラスチック容器の製造 装置 100 を用いて容器の内部に DLC膜を成膜する方法について説 明する。  The space inside the lid is connected to one side of a pipe 12, and the other side of the pipe 12 is opened to the atmosphere via a vacuum valve 17. The space in the lid is connected to one side of a pipe 13, and the other side of the pipe 13 is connected to a vacuum pump 21 via a vacuum valve 18. This vacuum pump 21 is connected to an exhaust duct 29. A vacuum gauge 28 is installed in the pipe 13. Next, a method for forming a DLC film inside a container using the DLC film-coated plastic container manufacturing apparatus 100 shown in FIG. 1 will be described.
まず真空バルブ 17を開いて真空チャンバ一 6内を大気開放する。 これにより、 配管 12 を通して空気が蓋部 5 内の空間、 外部電極 3 内の空間に入り、 真空チャンバ一 6 内が大気圧にされる。 次に、 下部外部電極 1 を上部外部電極 2 から取り外し、 上部外部電極 2 内の空間にペッ トボトル 7 を差し込み、 設置する。 この際、 内部 電極 9 はペッ トボトル 7 内に挿入された状態になる。 次に、 下部 外部電極 1 を上部外部電極 2 の下部に装着し、 外部電極 3 は〇リ ング 8 によって密閉される。 First, the vacuum valve 17 is opened to open the inside of the vacuum chamber 16 to the atmosphere. As a result, air passes through the pipe 12 and the space inside the lid 5 and the external electrodes 3 Then, the inside of the vacuum chamber is brought to atmospheric pressure. Next, the lower external electrode 1 is detached from the upper external electrode 2, and a pet bottle 7 is inserted into the space inside the upper external electrode 2 and installed. At this time, the internal electrode 9 is in a state of being inserted into the pet bottle 7. Next, the lower external electrode 1 is attached to the lower part of the upper external electrode 2, and the external electrode 3 is sealed by the ring 8.
この後、 真空バルブ 17 を閉じた後、 真空バルブ 18 を開き、 真 空ポンプ 21 を作動させる。 これにより、 ペッ トボトル 7 内を含む 真空チャンバ一内(外部電極 3 内の空間及び蓋部, 5 内の空間)が配管 13 を通して排気され、 外部電極 3 内が真空となる。 このときの真 空チャンバ一 6内の圧力は、成膜時に比べ充分低い圧力、例えば 5.0 X 10" 3~ 1.0xlO_ 1Torrである。 Then, after closing the vacuum valve 17, the vacuum valve 18 is opened and the vacuum pump 21 is operated. As a result, the inside of the vacuum chamber (the space in the external electrode 3 and the lid, the space in 5) including the inside of the PET bottle 7 is exhausted through the pipe 13, and the inside of the external electrode 3 is evacuated. At this time, the pressure in the vacuum chamber 16 is a pressure sufficiently lower than that at the time of film formation, for example, 5.0 × 10 ″ 3 to 1.0xlO — 1 Torr.
次に真空バルブ 16 を開き、 原料ガス発生源 20 においてァセチ レンガスを発生させ、 このアセチレンガスをマスフ口一コン トロ一 ラ一 19 によって流量制御して配管 11 を介して、 配管 10及び出力 切替え機構 30 によりアース電位とした内部電極 9 を通してガス吹 き出し口 9a から吹き出す。 これにより、 アセチレンガスがペッ ト ボトル 7 内に導入される。 そして、 真空チャンバ一 6 内とペッ ト ボトル 7 内は、 制御されたガス流量と排気能力のバランスによつ て、 DLC膜成膜に適した圧力、 例えば 0.05〜0.50 Torr程度に保た れる。  Next, the vacuum valve 16 is opened, acetylene gas is generated in the source gas source 20, and the flow rate of the acetylene gas is controlled by the mass flow port controller 19, and the pipe 10 and the output switching mechanism are controlled via the pipe 11. The gas is blown out from the gas blowout port 9a through the internal electrode 9 which is set to the ground potential by 30. As a result, acetylene gas is introduced into the pet bottle 7. Then, the pressure inside the vacuum chamber 16 and the inside of the pet bottle 7 are kept at a pressure suitable for DLC film formation, for example, about 0.05 to 0.50 Torr, by the balance between the controlled gas flow rate and the exhaust capacity.
この後、 出力切替え機構 30 により外部電極 3 に接続されたマツ チングボックス 14 を介して高周波電源 15 から RF 出力(例えば 13.56MHz)を供給する。 高周波出力は、 例えば 300〜 3000Wとす ることができる。 これにより、 外部電極 3 と内部電極 9 間にブラ ズマが発生する。 このときマッチングボックス 14 は、 外部電極と 内部電極のインピーダンスに、 インダクタンス L、 キャパシタンス Cによって合わせている。 これによつて、 ペッ トボトル 7内にァセ チレン系プラズマが発生し、 DLC 膜がペッ トボトル 7 の内側に成 膜される。 このときの成膜時間は数秒程度と短いものとなる。 Thereafter, an RF output (for example, 13.56 MHz) is supplied from the high-frequency power supply 15 via the matching box 14 connected to the external electrode 3 by the output switching mechanism 30. The high frequency output can be, for example, 300-3000W. As a result, plasma occurs between the external electrode 3 and the internal electrode 9. At this time, the matching box 14 matches the impedance of the external electrode and the internal electrode with the inductance L and the capacitance C. As a result, acetylene-based plasma is generated in the PET bottle 7, and a DLC film is formed inside the PET bottle 7. Filmed. The film formation time at this time is as short as about several seconds.
次に、 RF電源 15からの HF出力を停止し、 真空パルプ 16 を閉 じて原料ガスの供給を停止する。 この後真空バルブ 18 を開き、 真 空チャンバ一 6 内及びペッ トボトル Ί 内のアセチレンガスを真空 ポンプ 21 によって排気する。 その後真空バルブ 18 を閉じる。 こ のときの真空チャンバ一内の真空度は、 例えば 5 X 10— 3〜 5 X 10— 2Torr である。 この後、 真空バルブ 17 を開いて真空チャンバ一 6 内を大気開放し、 前述した成膜方法を繰り返すことにより、 複数の ぺッ トポトル内に DLC膜が成膜される。 Next, the HF output from the RF power supply 15 is stopped, the vacuum pulp 16 is closed, and the supply of the source gas is stopped. Thereafter, the vacuum valve 18 is opened, and the acetylene gas in the vacuum chamber 1 and the PET bottle Ί is exhausted by the vacuum pump 21. Then, the vacuum valve 18 is closed. Degree of vacuum in the vacuum chamber within a time this is, for example, 5 X 10- 3 ~ 5 X 10- 2 Torr. Thereafter, the vacuum valve 17 is opened to open the inside of the vacuum chamber 16 to the atmosphere, and the above-described film forming method is repeated, whereby a DLC film is formed in a plurality of sockets.
上述したような方法で所定回数の成膜工程を経た後(例えば 10 回)、 クリーニング機構を用いて内部電極 9 の表面に付着した異物 をアツシングにより除去する。 この後、 前述した方法でペッ トポ ト ル内に D L C膜を成膜する工程を再開する。  After a predetermined number of film-forming steps (for example, 10 times) by the method described above, foreign substances adhering to the surface of the internal electrode 9 are removed by asking using a cleaning mechanism. Thereafter, the process of forming the DLC film in the pet bottle by the method described above is restarted.
次に、 上記アツシングの具体的方法について説明する。 真空チヤ ンバ一 6 からペッ トボトル 7 を取り外した後、 ペッ トボトルを収 納しない状態で下部外部電極 1 を上部外部電極 2 に装着し、 外部 電極 3内を 0リ ング 8によって密閉する。 これにより、 外部電極 3 内の空間は何も入れられていない状態になる。  Next, a specific method of the above-described asshing will be described. After removing the pet bottle 7 from the vacuum chamber 6, the lower external electrode 1 is attached to the upper external electrode 2 in a state where the pet bottle is not stored, and the inside of the external electrode 3 is hermetically sealed by the 0 ring 8. As a result, the space in the external electrode 3 is in a state where nothing is inserted.
次に、 真空ポンプ 21 を作動させることにより、 真空チャンパ一 6 内(外部電極内の空間及び蓋部内の空間)が排気され、 真空チャン バ一 6 内を真空とする。 次に真空バルブ 24 を開き、 クリーニング ガス供給源 26 から供給されたクリ一ニングガス、 例えば酸素ガス をマスフローコント口一ラー 25 によって流量制御する。 そして流 量制御された酸素ガスを、 配管 23, 10及び出力切替え機構 30によ りマッチングボックス 14 に接続された内部電極 9 を通してガス吹 き出し口 9a から吹き出す。 これにより酸素ガスが真空チャンバ一 内に導入される。 そして真空チャンバ一 6 内は、 制御された酸素 ガス流量と排気能力のバランスによって、アツシングに適した圧力、 例えば、 0. 1〜 l O OTorrに保たれる。高周波出力は、例えば 100〜 3000 Wとすることができる。 Next, by operating the vacuum pump 21, the inside of the vacuum chamber 6 (the space in the external electrode and the space in the lid) is evacuated, and the inside of the vacuum chamber 6 is evacuated. Next, the vacuum valve 24 is opened, and the flow rate of the cleaning gas, for example, oxygen gas supplied from the cleaning gas supply source 26 is controlled by the mass flow controller 25. Then, the oxygen gas whose flow rate is controlled is blown out from the gas blowout port 9a through the internal electrodes 9 connected to the matching box 14 by the pipes 23, 10 and the output switching mechanism 30. As a result, oxygen gas is introduced into the vacuum chamber. The inside of the vacuum chamber 6 is maintained at a pressure suitable for assuring, for example, 0.1 to 10 O Torr by a balance between the controlled oxygen gas flow rate and the exhaust capacity. High frequency output is, for example, 100 to 3000 W.
この後、 出力切替え機構 30 により内部電極 9 に接続されたマツ チングボックス 14を介して RF電源 15から RF出力を供給する。 これにより、 出力切替え機構 30 によりアースされた外部電極 3 と 内部電極 9 間にプラズマが発生し、 酸素ガスプラズマを発生させ る。 この際、 内部電極に付着した異物は、 力一ボンと水素等からな る膜であるため、 酸素プラズマによる酸化反応によって分解され内 部電極表面から除去される。 炭化水素膜を化学式にて C nH m とす ると、 式 1 に従って酸化反応が進む。  Thereafter, an RF output is supplied from an RF power supply 15 via a matching box 14 connected to the internal electrode 9 by an output switching mechanism 30. As a result, plasma is generated between the external electrode 3 and the internal electrode 9 grounded by the output switching mechanism 30, and oxygen gas plasma is generated. At this time, the foreign matter adhering to the internal electrode is a film composed of carbon, hydrogen, and the like, and is decomposed and removed from the internal electrode surface by an oxidation reaction using oxygen plasma. If the hydrocarbon film is represented by C nH m in the chemical formula, the oxidation reaction proceeds according to formula 1.
C nH m + (n + m/4) 0 2→n C O 2 + (m/2)H 20 (式 1 ) C nH m + (n + m / 4) 0 2 → n CO 2 + (m / 2) H 20 (Equation 1)
次に、 RF電源 15 からの RF 出力を停止し、 真空バルブ 24 を閉 じてクリーニングガスの供給を停止する。 次に、 真空バルブ 18 を 開き、 真空チャンバ一 6内の O2、 C02、 H2O を真空ポンプ 21 によ つて排気する。 Next, the RF output from the RF power supply 15 is stopped, and the supply of the cleaning gas is stopped by closing the vacuum valve 24. Next, the vacuum valve 18 is opened, and O 2 , CO 2 , and H 2 O in the vacuum chamber 16 are evacuated by the vacuum pump 21.
本発明では、 内部電極 9 に高周波出力を供給し、 外部電極 3 を アースしたため、 内部電極に自己バイアスがかかり、 酸素プラズマ による十分なクリーニング効果が得られた。 すなわち外部電極の面 積に対する内部電極の面積が小さいため内部電極の自己バイアス電 圧がマイナスになり効率的な酸素クリーニングが行われる。  In the present invention, since a high-frequency output was supplied to the internal electrode 9 and the external electrode 3 was grounded, a self-bias was applied to the internal electrode, and a sufficient cleaning effect by oxygen plasma was obtained. That is, since the area of the internal electrode is small with respect to the area of the external electrode, the self-bias voltage of the internal electrode becomes negative, and efficient oxygen cleaning is performed.
また、 外部電極と内部電極の組合せを複数並列に設置する装置で 複数同時にクリーニングを行った場合でも、 高周波出力の配分が各 電極間で等しくなり、 1 〜 2つのチャンバに電力が集中し、 そのチ ャンバのみで放電が生じ、 それ以外のチヤンバは放電しないという ような現象は生じなかった。 各電極へ分配されるべき電力が集中し て放電したチヤンバが無かつたために内部電極が加熱して赤熱化す るようなことも無かった。 したがって複数同時にクリーニングを行 う ことも容易となり、 内部電極 1 本ずつク リーニングする必要も なく、 クリーニング時間の節約となった。  In addition, even when cleaning is performed simultaneously on a plurality of combinations of external electrodes and internal electrodes, the distribution of high-frequency output is equal between the electrodes, and power is concentrated in one or two chambers. There was no phenomenon that discharge occurred only in the chamber and no discharge occurred in the other chambers. Since there was no chamber that discharged the power to be distributed to each electrode in a concentrated manner, the internal electrodes did not heat up and glowed red. This makes it easy to perform multiple cleanings at the same time, eliminating the need to clean one internal electrode at a time and saving cleaning time.
上記実施の形態によれば、 DLC 膜コーティ ングプラスチック容 器の製造装置にクリーニング機構を配置し、 所定回数の DLC 成膜 を実施した後に、 酸素ガスク リーニングを行う ことにより、 内部電 極に付着し異物が剥がれてぺッ トボトル内に落ちることを防止する ことができる。 従って、 従来の DLC 膜コーティ ングプラスチック 容器製造装置のようにぺッ トポトル内に落ちた DLC 膜によってそ のぺッ トポトルが不良品となることがない。 According to the above embodiment, the DLC film-coated plastic container Oxygen gas cleaning is performed after a DLC film is formed a predetermined number of times by disposing a cleaning mechanism in the container manufacturing equipment to prevent foreign substances from adhering to the internal electrodes and coming off in the bottle. be able to. Therefore, unlike the conventional DLC film-coated plastic container manufacturing apparatus, the DLC film that has fallen into the bottle does not cause the bottle to become defective.
また、 DLC 膜コーティ ングプラスチック容器の製造装置に酸素 ガスクリーニング機構を配置しているため、 従来の DLC 膜コーテ イ ングプラスチック容器製造装置のように装置を分解しなくても内 部電極に付着した DLC 膜をアツシングで除去することができる。 従って、 従来の DLC 膜コーティ ングプラスチック容器製造装置で は内部電極のクリーニングに 1 日必要であつたが、 そのクリーニン グに必要な時間を大幅に低減することができる。 具体的に実験した ところ、 10 回の DLC成膜を実施した後に、 DLC成膜と同じ時間 で酸素ガスクリーニングを行う ことにより、 内部電極の表面に付着 した異物をきれいに剥離することができた。  In addition, since an oxygen gas cleaning mechanism is installed in the DLC film-coated plastic container manufacturing equipment, it adhered to the internal electrodes without disassembling the equipment as in the conventional DLC film-coated plastic container manufacturing equipment. The DLC film can be removed by assing. Therefore, in the conventional DLC film-coated plastic container manufacturing equipment, it took one day to clean the internal electrodes, but the time required for the cleaning can be greatly reduced. As a result of a specific experiment, foreign substances adhering to the surface of the internal electrode could be peeled off cleanly by performing oxygen gas cleaning for the same time as DLC film formation after performing DLC film formation 10 times.
尚、 上記実施の形態では、 クリーニング用のガスとして酸素を用 いているが、クリーニング用のガスとしては酸素ガスに限定されず、 クリ一二ング作用を有するものであれば他のガスを用いることも可 能であり、 例えば、 フッ素系ガス、 酸素ガスと希ガスの混合ガス、 酸素ガスとフッ素系ガスの混合ガス、 フッ素系ガスと希ガスの混合 ガス、酸素ガスとフッ素系ガスと希ガスの混合ガス等が挙げられる。 ここで、 フッ素系ガスとは、 例えば CH2F2、 C F4、 SiF6等を例示 でき、 希ガスとは、 アルゴン、 ヘリウム、 クリプトン、 キセノン等 である。 In the above embodiment, oxygen is used as the cleaning gas, but the cleaning gas is not limited to oxygen gas, and any other gas having a cleaning action may be used. For example, fluorine gas, mixed gas of oxygen gas and rare gas, mixed gas of oxygen gas and fluorine gas, mixed gas of fluorine gas and rare gas, oxygen gas, fluorine gas and rare gas And the like. Here, examples of the fluorine-based gas include, for example, CH 2 F 2 , CF 4 , and SiF 6, and examples of the rare gas include argon, helium, krypton, and xenon.
すなわち、 上記に例示したクリーニングガスを用いることにより 内部電極に付着した異物を効果的にアツシングすることが可能であ る。  That is, by using the cleaning gas exemplified above, it is possible to effectively ashes foreign substances attached to the internal electrodes.
また、 本発明は上記実施の形態に限定されず、 種々変更して実施 することが可能である。 例えば、 原料ガス発生源としては、 炭化水 素ガスの発生源に限られず、 種々の発生源を用いることも可能であ り、 例えば Si含有炭化水素系ガスなどを用いることも可能である。 また、 本実施の形態では、 内部に薄膜を成膜する容器として飲料 用のペッ トボトルを用いているが、 他の用途に使用される容器を用 いることも可能である。 In addition, the present invention is not limited to the above-described embodiment, and may be implemented with various modifications. It is possible to For example, the source gas source is not limited to a hydrocarbon gas source, and various sources can be used. For example, a Si-containing hydrocarbon gas or the like can be used. Further, in the present embodiment, a pet bottle for beverage is used as a container for forming a thin film inside, but a container used for other purposes may be used.
また、 本実施の形態では、 成膜する薄膜として DLC 膜又は Si 含有 DLC 膜を挙げているが、 容器内に他の薄膜を成膜する際に上 記本発明による DLC 膜コ一ティ ングプラスチック容器製造を用い ることも可能である。  In this embodiment, a DLC film or a Si-containing DLC film is described as a thin film to be formed. However, when forming another thin film in a container, the DLC film coating plastic according to the present invention is used. It is also possible to use container manufacturing.

Claims

請 求 の 範 囲The scope of the claims
.プラスチック容器の内側に D L C (ダイヤモンドライク力一ポ ン) 膜を成膜する装置において、 In an apparatus that forms a DLC (diamond-like force) film inside a plastic container,
該プラスチック容器の外側近傍を囲むように配置された外部電極 と、 External electrodes arranged so as to surround the vicinity of the outside of the plastic container;
該プラスチック容器の内部に配置される内部電極と、 An internal electrode arranged inside the plastic container,
該プラスチック容器の内部に原料ガスを導入する原料ガス導入手 段と、 Source gas introduction means for introducing a source gas into the plastic container;
該内部電極に付着した異物をアツシング除去するためのク リ一二 ングガスを該外部電極の内部に導入するクリーニングガス導入手 段と、 A cleaning gas introducing means for introducing a cleaning gas into the inside of the external electrode for removing a foreign substance attached to the internal electrode by asking;
DLC 膜成膜時においては該内部電極とアースとの接続及び該外 部電極と高周波負荷のインピーダンス整合を行なうマッチングポ ックスとの接続を行ない、 該内部電極のクリーニング時において は該内部電極と該マッチングボックスとの接続及び該外部電極と アースとの接続を行ない得るよう相互に切替え可能な出力切替え 機構と、  When forming the DLC film, the connection between the internal electrode and the ground and the connection between the external electrode and a matching box for impedance matching of the high-frequency load are performed.When the internal electrode is cleaned, the internal electrode is connected to the ground. An output switching mechanism that is mutually switchable so that connection with the matching box and connection between the external electrode and the ground can be performed;
該マッチングボックスに接続された高周波電源と、 A high-frequency power supply connected to the matching box;
を具備することを特徴とする DLC 膜コーティ ングプラスチック 容器の製造装置。An apparatus for producing a DLC film-coated plastic container, comprising:
. 前記クリーニングガスは、 酸素ガス、 フッ素系ガス、 酸素ガス と希ガスの混合ガス、 酸素ガスとフッ素系ガスの混合ガス、 フッ 素系ガスと希ガスの混合ガス、 酸素ガスとフッ素系ガスと希ガス の混合ガスからなる群より選ばれた一つのガスであることを特徴 とする請求項 1記載の DLC 膜コーティ ングプラスチック容器の 製造装置。The cleaning gas includes oxygen gas, fluorine gas, mixed gas of oxygen gas and rare gas, mixed gas of oxygen gas and fluorine gas, mixed gas of fluorine gas and rare gas, and mixed gas of oxygen gas and fluorine gas. 2. The apparatus for producing a DLC film-coated plastic container according to claim 1, wherein the gas is one gas selected from the group consisting of a mixed gas of a rare gas.
.アースに接続した内部電極をプラスチック容器の内部に配置し、 該プラスチック容器の外側近傍を囲むように外部電極を配置し、 該プラスチック容器内に原料ガスを供給し、 該外部電極に高周波 出力を供給し、 該内部電極と該外部電極との間に該原料ガスによ るプラズマを発生させて該プラスチック容器の内面に D L C膜を 成膜する DLC膜成膜工程を一回又は複数回行ない、 An internal electrode connected to the ground is arranged inside the plastic container, an external electrode is arranged so as to surround the outside of the plastic container, a raw material gas is supplied into the plastic container, and a high frequency is applied to the external electrode. Supplying a power, and generating plasma by the raw material gas between the internal electrode and the external electrode to form a DLC film on the inner surface of the plastic container once or more than once in a DLC film forming process Do,
前記 DLC 膜成膜工程において該内部電極とアースとが接続して おり、 かつ該外部電極と高周波負荷のインピーダンス整合を行な うマッチングボックスとが接続している状態から、 該内部電極と 該マッチングボックスとを接続し、 かつ該外部電極とアースとを 接続する出力切替え工程を行なった後、  In the DLC film forming step, the internal electrode is connected to the ground, and the external electrode is connected to a matching box for impedance matching of a high-frequency load. After performing an output switching process of connecting the box and the external electrode and the ground,
前記プラスチック容器を取り除いた該外部電極の内部にクリ一二 ングガスを供給し、 前記内部電極に高周波出力を供給し、 該内部 電極と該外部電極との間に該クリーニングガスによるプラズマを 発生させるアツシングにより該内部電極に付着した異物を除去す るクリーニング工程を行なう ことを特徴とする DLC 膜コーティ ングプラスチック容器の製造方法。  A cleaning gas is supplied to the inside of the external electrode from which the plastic container is removed, a high-frequency output is supplied to the internal electrode, and an ashes for generating a plasma by the cleaning gas between the internal electrode and the external electrode. A method for producing a DLC film-coated plastic container, comprising: performing a cleaning step of removing foreign substances adhered to the internal electrode by the method.
4 .前記ク リーニングガスは、 酸素ガス、 フッ素系ガス、 酸素ガス と希ガスの混合ガス、 酸素ガスとフッ素系ガスの混合ガス、 フッ 素系ガスと希ガスの混合ガス、 酸素ガスとフッ素系ガスと希ガス の混合ガスからなる群より選ばれた一つのガスであることを特徴 とする請求項 3 記載の DLC 膜コ一ティ ングプラスチック容器の 製造方法。 4. The cleaning gas is oxygen gas, fluorine gas, mixed gas of oxygen gas and rare gas, mixed gas of oxygen gas and fluorine gas, mixed gas of fluorine gas and rare gas, oxygen gas and fluorine gas. 4. The method for producing a DLC film-coated plastic container according to claim 3, wherein the gas is one gas selected from the group consisting of a mixed gas of a gas and a rare gas.
5 .プラスチック容器の外側近傍を囲むように配置可能な形状の外 部電極にアースを接続し、 該プラスチック容器を取り外した状態 で該外部電極の内部にクリ一ニングガスを供給し、 該外部電極の 内部に配置される内部電極に高周波出ガを供給し、 該内部電極と 該外部電極との間に該クリーニングガスによるプラズマを発生さ せるアツシングにより該内部電極表面に付着した異物を除去する ことを特徴とする内部電極クリーニング方法。  5. Grounding is connected to an external electrode that can be arranged so as to surround the vicinity of the outside of the plastic container, and a cleaning gas is supplied to the inside of the external electrode with the plastic container removed. A high-frequency output gas is supplied to an internal electrode disposed inside, and foreign matter adhered to the surface of the internal electrode is removed by asking for generating a plasma by the cleaning gas between the internal electrode and the external electrode. Characteristic internal electrode cleaning method.
6 .前記ク リーニングガスは、 酸素ガス、 フッ素系ガス、 酸素ガス と希ガスの混合ガス、 酸素ガスとフッ素系ガスの混合ガス、 フッ 素系ガスと希ガスの混合ガス、 酸素ガスとフッ素系ガスと希ガス の混合ガスからなる群より選ばれた一つのガスであることを特徴 とする請求項 5記載の内部電極ク リーニング方法。 6. The cleaning gas includes oxygen gas, fluorine gas, mixed gas of oxygen gas and rare gas, mixed gas of oxygen gas and fluorine gas, and fluorine gas. 6. The internal electrode cleaning method according to claim 5, wherein the gas is one selected from the group consisting of a mixed gas of an elemental gas and a rare gas, and a mixed gas of an oxygen gas, a fluorine-based gas, and a rare gas.
PCT/JP2000/009100 2000-12-21 2000-12-21 Apparatus for manufacturing dlc-film-coated plastic container, method of manufacturing the same, and method for cleaning inner electrode WO2002049925A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2000/009100 WO2002049925A1 (en) 2000-12-21 2000-12-21 Apparatus for manufacturing dlc-film-coated plastic container, method of manufacturing the same, and method for cleaning inner electrode
AU2001222223A AU2001222223A1 (en) 2000-12-21 2000-12-21 Apparatus for manufacturing dlc-film-coated plastic container, method of manufacturing the same, and method for cleaning inner electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/009100 WO2002049925A1 (en) 2000-12-21 2000-12-21 Apparatus for manufacturing dlc-film-coated plastic container, method of manufacturing the same, and method for cleaning inner electrode

Publications (1)

Publication Number Publication Date
WO2002049925A1 true WO2002049925A1 (en) 2002-06-27

Family

ID=11736823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/009100 WO2002049925A1 (en) 2000-12-21 2000-12-21 Apparatus for manufacturing dlc-film-coated plastic container, method of manufacturing the same, and method for cleaning inner electrode

Country Status (2)

Country Link
AU (1) AU2001222223A1 (en)
WO (1) WO2002049925A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251452A3 (en) * 2009-05-13 2010-12-15 CV Holdings, LLC. Vessel processing
US7985188B2 (en) 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US9545360B2 (en) 2009-05-13 2017-01-17 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
US9554968B2 (en) 2013-03-11 2017-01-31 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US10201660B2 (en) 2012-11-30 2019-02-12 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
WO2019201684A1 (en) * 2018-04-18 2019-10-24 Khs Corpoplast Gmbh Device for coating hollow articles, having at least one coating station, and method for cleaning a gas lance
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125541A (en) * 1991-11-08 1993-05-21 Kobe Steel Ltd Plasma treating device
WO1996005112A1 (en) * 1994-08-11 1996-02-22 Kirin Beer Kabushiki Kaisha Carbon film-coated plastic container manufacturing apparatus and method
JPH09272979A (en) * 1996-04-09 1997-10-21 Citizen Watch Co Ltd Plasma film formation device and cleaning method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125541A (en) * 1991-11-08 1993-05-21 Kobe Steel Ltd Plasma treating device
WO1996005112A1 (en) * 1994-08-11 1996-02-22 Kirin Beer Kabushiki Kaisha Carbon film-coated plastic container manufacturing apparatus and method
JPH09272979A (en) * 1996-04-09 1997-10-21 Citizen Watch Co Ltd Plasma film formation device and cleaning method therefor

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985188B2 (en) 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
US8512796B2 (en) 2009-05-13 2013-08-20 Si02 Medical Products, Inc. Vessel inspection apparatus and methods
US8834954B2 (en) 2009-05-13 2014-09-16 Sio2 Medical Products, Inc. Vessel inspection apparatus and methods
US10390744B2 (en) 2009-05-13 2019-08-27 Sio2 Medical Products, Inc. Syringe with PECVD lubricity layer, apparatus and method for transporting a vessel to and from a PECVD processing station, and double wall plastic vessel
US9545360B2 (en) 2009-05-13 2017-01-17 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
EP2251452A3 (en) * 2009-05-13 2010-12-15 CV Holdings, LLC. Vessel processing
US9572526B2 (en) 2009-05-13 2017-02-21 Sio2 Medical Products, Inc. Apparatus and method for transporting a vessel to and from a PECVD processing station
US10537273B2 (en) 2009-05-13 2020-01-21 Sio2 Medical Products, Inc. Syringe with PECVD lubricity layer
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US11123491B2 (en) 2010-11-12 2021-09-21 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US11724860B2 (en) 2011-11-11 2023-08-15 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11148856B2 (en) 2011-11-11 2021-10-19 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11884446B2 (en) 2011-11-11 2024-01-30 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US10577154B2 (en) 2011-11-11 2020-03-03 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US10201660B2 (en) 2012-11-30 2019-02-12 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US10363370B2 (en) 2012-11-30 2019-07-30 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US11406765B2 (en) 2012-11-30 2022-08-09 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US10537494B2 (en) 2013-03-11 2020-01-21 Sio2 Medical Products, Inc. Trilayer coated blood collection tube with low oxygen transmission rate
US10912714B2 (en) 2013-03-11 2021-02-09 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US9554968B2 (en) 2013-03-11 2017-01-31 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US10016338B2 (en) 2013-03-11 2018-07-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
US11684546B2 (en) 2013-03-11 2023-06-27 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US11298293B2 (en) 2013-03-11 2022-04-12 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US11344473B2 (en) 2013-03-11 2022-05-31 SiO2Medical Products, Inc. Coated packaging
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate
WO2019201684A1 (en) * 2018-04-18 2019-10-24 Khs Corpoplast Gmbh Device for coating hollow articles, having at least one coating station, and method for cleaning a gas lance

Also Published As

Publication number Publication date
AU2001222223A1 (en) 2002-07-01

Similar Documents

Publication Publication Date Title
WO2002049925A1 (en) Apparatus for manufacturing dlc-film-coated plastic container, method of manufacturing the same, and method for cleaning inner electrode
US8418650B2 (en) Inner electrode for barrier film formation and apparatus for film formation
JP2007050898A (en) Method and apparatus for manufacturing film deposition container
JP4385657B2 (en) Film forming apparatus and film forming method
JPH11256331A (en) Forming method of diamondlike carbon film and device for producing it
WO2004001095A1 (en) Rotary type mass-producing cvd film forming device and metod of forming cvd film on surface in plastic conteiner
JP4850385B2 (en) DLC film-coated plastic container manufacturing apparatus and manufacturing method thereof
JPWO2003085165A1 (en) Plasma CVD film forming apparatus and CVD film coated plastic container manufacturing method
JP2002121667A (en) Method and apparatus for continuously forming dlc film in plastic container
JP4132982B2 (en) DLC film coated plastic container manufacturing equipment
JP2001335945A (en) System and method for cvd film deposition
JP2001335946A (en) System and method for cvd film deposition
JPWO2003000559A1 (en) DLC film-coated plastic container manufacturing apparatus, DLC film-coated plastic container and method for manufacturing the same
JP4664658B2 (en) Plasma CVD film forming apparatus and method for manufacturing plastic container having gas barrier property
WO2005035825A1 (en) Cvd film-forming device and method of manufacturing cvd film coating plastic container
JP3679067B2 (en) Rotary type CVD film forming apparatus for mass production and CVD film forming method on inner surface of plastic container
JP3868403B2 (en) Apparatus for forming barrier film on inner surface of plastic container and manufacturing method of inner surface barrier film-coated plastic container
WO2005035826A1 (en) Plasma cvd film-forming apparatus
JPWO2003000558A1 (en) Moisture / gas barrier plastic container with partition plate, device for manufacturing the same, and method for manufacturing the same
JP2004002905A6 (en) Rotary type CVD film forming apparatus for mass production and CVD film forming method on inner surface of plastic container
JP4279127B2 (en) Gas barrier thin film coated plastic container manufacturing apparatus and manufacturing method thereof
JP3746725B2 (en) Manufacturing method of coated container
JP2004189322A (en) Apparatus for forming barrier layer on inner surface of plastic container and manufacturing method for plastic container having inner surface coated with barrier layer
JP2011042872A (en) Apparatus for producing dlc-coated container, dlc-coated container, and method for producing dlc-coated container
WO2003086878A1 (en) System and method for forming dlc film on inner surface of plastic container

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase