WO2002057545A1 - Bonded fibrous sheet material - Google Patents

Bonded fibrous sheet material Download PDF

Info

Publication number
WO2002057545A1
WO2002057545A1 PCT/GB2002/000165 GB0200165W WO02057545A1 WO 2002057545 A1 WO2002057545 A1 WO 2002057545A1 GB 0200165 W GB0200165 W GB 0200165W WO 02057545 A1 WO02057545 A1 WO 02057545A1
Authority
WO
WIPO (PCT)
Prior art keywords
gum
paper
substrate
weight
porous
Prior art date
Application number
PCT/GB2002/000165
Other languages
French (fr)
Inventor
John Edward Rose
Glynn Arthur Wardle
Original Assignee
J R Crompton Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J R Crompton Limited filed Critical J R Crompton Limited
Priority to US10/451,808 priority Critical patent/US7282232B2/en
Priority to EP02716133A priority patent/EP1368536A1/en
Publication of WO2002057545A1 publication Critical patent/WO2002057545A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • D21H21/20Wet strength agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/31Gums
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/55Polyamides; Polyaminoamides; Polyester-amides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/04Physical treatment, e.g. heating, irradiating
    • D21H25/06Physical treatment, e.g. heating, irradiating of impregnated or coated paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1372Randomly noninterengaged or randomly contacting fibers, filaments, particles, or flakes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1376Foam or porous material containing

Definitions

  • the present invention relates to a bonded fibrous sheet material which is useful, for example, in the manufacture of casings (e.g. skins) for food products.
  • step (a) forming a bonded. fibrous web by treatment of the paper with a dilute viscous solution (to apply approximately 1-3% of viscose based on the weight of the paper), drying the web, regenerating cellulose by acid treatment, washing and further drying.
  • the product of this step is a porous, bonded fibrous web having sufficient caustic resistance to withstand the highly alkaline conditions of step (b).
  • step (a) has been carried out by the manufacturer of the paper: and
  • step (b) treating the bonded web obtained from step (a) with a highly caustic viscose solution (to apply 300%-400% of viscose by weight of the paper), followed by regeneration of cellulose and washing and drying steps to produce the food casing material.
  • a highly caustic viscose solution to apply 300%-400% of viscose by weight of the paper
  • step (a) has properties rendering it highly desirable for use as a food casing. More particularly, the casings are:
  • step (1) does have processing disadvantages in that it is a multi-stage process involving dope addition, acidification, neutralisation and washing stages.
  • the multistage process associated with step (3) is an accepted process requirement in the industry and is not seen as a particular disadvantage.
  • U.S. Patent No. 3,484,256 Cho et al suggests cationic thermosetting resin and polyacrylamide as a replacement for the dilute viscose bonding treatment.
  • U.S. Patent Nos. 3,640,734-5 Conway
  • 3,679,437 Oppenheimer et al teach the use of soluble poly (vinyl alcohol) as a wet strengthening agent.
  • the aforementioned binder materials whether used alone or in combination frequently provide some but not all of the desired characteristics of the casing.
  • poly (vinyl alcohol) having a degree of hydrolysis of about 85% will provide low to moderate dry tensile strengths but poor wet tensile, caustic strength and absorption characteristics.
  • fibrous film forming materials such as hydroxyethyl cellulose in conjunction with appropriate cross linking agent such as dialdehyde cross linkers will have the opposite effect from that achieved by the poly(vinyl alcohol). They exhibit good wet tensile strengths and absorbency characteristics but poor caustic tensile strength. Unfortunately, mixtures of these materials also fail to provide all the desired characteristics.
  • JP-A-6294094 discloses manufacture of a paper which is stated to have good wet strength and good alkali resistance and which is suitable for use as a casing for a meat product (e.g. ham or sausage) or in the manufacture of tea bags.
  • the paper is produced by adding guar gum and a polyamide epichlorohydrin resin (a wet strength agent) to the wet end of the paper making process.
  • a polyamide epichlorohydrin resin a wet strength agent
  • WO-A-9510190 J. R. Crompton Limited discloses a bonding fibrous sheet material suitable for conversion, by viscose treatment, into a food casing material.
  • the bonded fibrous sheet material is produced by treatment of a porous fibrous substrate (particularly a paper) with a coating composition which under the conditions of the treatment does not form a film and which is an admixture of a polymer latex and a wet strength resin, and effecting cross-linking of the polymer and resin to , produce the porous bonded fibrous sheet material.
  • the coating composition may include a fibre consolidation aid, e.g. in an amount of less than 3% by weight of the coating composition.
  • the preferred fibre consolidation aid is carboxymethyl cellulose and other examples given include galactomannan, e.g. guar gum and locust bean gum. We have however found that this binder system can still cause fracture lines and poor body penetration if the latex component is over or under cured.
  • preferred impregnants in accordance with WO-A-9510190 include a surfactant (in addition to the latex and wet-strength resin) and if the surfactant level is not correctly controlled in the impregnant then there is an adverse impact on fracture fine propagation. It. is therefore an object of the present invention to obviate or mitigate the above mentioned disadvantages and provide a method of producing a bonded web having characteristics associated with dilute viscose bonded materials.
  • a method of producing a porous bonded fibrous sheet material comprising
  • a porous bonded fibrous sheet material produced by the method of. the first aspect of the invention.
  • the porous fibrous substrate will generally be a wet-laid material, particularly a paper.
  • the paper (or other porous fibrous substrate) to be treated has a moisture content of less than 10% by weight, more preferably less than 5%, e.g. 3-5%, and as such is generally referred to in the industry as being "bone-dry” (although it does contain the indicated amount of moisture).
  • a gum and a wet strength resin to treat the "dry” (i.e.
  • porous fibrous substrate provides a bonded material having significantly improved wet tensile strength and caustic tensile strength as compared to a material produced by a wet- laying process involving addition of a gum and a wet strength resin only at the wet end of the process (i.e. as disclosed in JP-A-6294094).
  • a wet- laying process involving addition of a gum and a wet strength resin only at the wet end of the process (i.e. as disclosed in JP-A-6294094).
  • wet-strength resin, the gum and the cellulose are cross-linked together and it is this cross-linking which provides the improved properties for the bonded material.
  • the properties of the material are improved compared to those obtained with the procedure of WO- A-9510190, even though a much simplified binding system is used (i.e. without latex).
  • materials produced in accordance with the invention typically have in total dry tensile, total wet tensile and total caustic tensile of 29%, 23% and 33% respectively. Materials in accordance with the invention also have much improved absorbency.
  • Bonded fibrous sheet materials in accordance with the second aspect of the invention are eminently suitable for conversion into a food casing material by a viscose treatment (i.e. step (b) above) as employed in the prior art conversions of viscose pre-treated paper or any other suitable material.
  • a food casing material which comprises the bonded fibrous sheet material in accordance with the second aspect of the invention treated with viscose.
  • the food casing material will comprise 300%-400% of viscose by weight of the base porous substrate.
  • Food casing materials produced in accordance with the third aspect of the invention meet requirements (l)-(3) above. Furthermore the bonding which is achieved between the viscose and the cross-linked coating composition results in lower levels of stress line fracture normally associated with resin bonded casing substrates. Additionally the food casing materials have improved stretch characteristics and casing clarity when compared to other resin bonded systems, with the resultant clarity being comparable to that of materials obtained using viscose pre-treated substrates.
  • a food product e.g. a meat product such as a sausage or salami
  • a food casing material in accordance with the third aspect of the invention.
  • the bonded web material of the invention may be used in the production of beverage filtration products, e.g. tea bags, coffee bags etc.
  • beverage filtration products e.g. tea bags, coffee bags etc.
  • the material is also useful in the production of sachets for washing powders and double-sided adhesive tapes.
  • the porous fibrous substrate will preferably be treated with an aqueous solution which contains both the gum and the cross-linkable wet strength resin dissolved in water.
  • an aqueous solution which contains both the gum and the cross-linkable wet strength resin dissolved in water.
  • the solution(s) applied to the fibrous substrate is/are non-film forming (under the conditions of treatment) to ensure that the bonded material ultimately obtained is porous.
  • the total amount of the gum and wet strength resin applied to the porous fibrous substrate is less than 10% (e.g. 1 to 10%) by weight of the untreated substrate.
  • the amount of the wet strength resin applied to the substrate will be less than 5%, usually 0.05-2%), by weight of the untreated substrate.
  • the amount of gum applied to the substrate will be 0.05%-3% on the same weight basis.
  • the gum is non-ionic.
  • the gum is a galactomannan gum and is most preferably unsubstituted.
  • the gum will generally be a vegetable gum. Examples of gums that may be used in the present invention include guar gum and locust bean gum which are widely used as formation aids in paper making processes by addition to the wet end of the process.
  • wet strength resins may be used. If however it is intended that the final precursor material be subsequently treated with viscose to produce the finished food casing then the final wet strength system should be alkali resistant.
  • Suitable " wet strength resins are wat r soluble cationic epichlorohydrin polyamide products, e.g. Kymene 709 as available from Hercules Ltd. which becomes alkali resistant in combination with the gum (Kymene is a Registered Trade Mark).
  • the porous substrate is a wet laid fibrous substrate, most preferably a paper.
  • the paper is of a high and uniform permeability (preferably 100- 200 m 3 min *1 m "2 ) and of low basis weight (typically 10-30 gsm).
  • the paper has a tensile ratio (i.e. ratio of machine directionxross direction strength) of 0.5- 2.0 more preferably in the range 1.0-1.5.
  • the paper is ideally prepared from "long" fibres (e.g. 5mm) of high aspect ratio (e.g. 300-3000).
  • the web's constituent fibres should also exhibit uniform formation and absorbency characteristics.
  • Particularly suitable papers are composed entirely of natural cellulosic fibres typically of the Musa Textilis species (e.g. Abaca). It is also possible to use papers comprised partially of synthetic fibres.
  • Preferred papers for use (as the porous fibrous substrate) to be treated in accordance with the first aspect of the invention are manufactured with the addition of a gum and a wet strength resin to the wet end of the paper making process (in addition to the gum and wet strength resin applied to the "dry" paper).
  • the amount of gum included in the as-manufactured paper i.e. prior to treatment in accordance with the first aspect of the invention is preferably 0.5% to 2.5% by weight and the amount of wet strength resin in the "as-manufactured" paper is preferably 0.3% to 1.5%.
  • the porous fibrous substrate to be treated in accordance with the first aspect of the invention is a paper
  • such treatment may be effected after drying of the paper web (formed on the paper making fabric or wire) to a moisture content of less than 10% (typically 3-5%) as conventionally happens in paper manufacture.
  • the treatment is conveniently effected by apphcation of a solution comprising the gum and the wet strength resin by means of a size press although other methods of impregnating the substrate may be used, e.g. spraying or immersion.
  • the amount of the solution applied to the web will be controlled so that, after drying, the required amount of gum and wet strength resin remain on the paper.
  • Drying of the paper that has been treated with the solution may be effected using a drying cylinder, through air/float air dryer or the like.
  • Cross-linking of the wet-strength resin may be effected by heating, typically to a temperature above 100°C, usually 200-300°C and typically 220-250°C.
  • An Abaca paper was produced on a pilot papermaking machine.
  • the paper had an Abaca paper having a basis weight of about 23.5 gsm (average fibre length ca 5mm, aspect ratio 300-3000), a moisture content of about 4% by weight and contained 0.5% by weight Kymene and 2% by weight guar gum (ex Rhodia) incorporated during wet-laying.
  • the paper was then size pressed with an aqueous solution comprising
  • the paper was dried to a moisture content of about 4% using a combination of drying cylinder and through air drying methods on the pilot papermaking machine and was then heated to a temperature of 150°c by an air flotation curing oven to cure the binder system.
  • the physical properties of the web thus obtained are listed in Table 1.
  • Example 1 was repeated save that the paper was size pressed with the following solution:
  • the sample was then laid flat on a glass plate and using a circa 2mm coating bar a concentrated viscose solution was laid evenly across the sample.
  • the sample was carefully transferred to a bath containing the coagulant chemicals (typically sulphuric acid, sodium sulphate and ammonium sulphite) at a strength to achieve ca 60% regeneration and left for 30 seconds to start initial coagulation.
  • the sample was then carefully folded along the COAG mark so as to place the viscose coated faces together. The fold was then reinforced by running a standard ink spreading roller up and down the fold three times.
  • the sample was then laid flat again in the COAG bath for a further 2.5 minutes to finish coagulation.
  • the sample was then carefully transferred to the regeneration chemical bath (sulphuric acid) at a strength sufficient to achieve 99% regeneration and left for 30 seconds.
  • the above folding and pressing action was carried out on the REGEN marked fine and the sample left for 2.5 minutes to finish regenerating.
  • the sample was rinsed under running water for 20 minutes to neutralise the chemicals, placed in a 10% gylcerol solution bath for 10 minutes and finally stretched between two standard embroidery hoops.
  • the stretched samples were then dried in a standard laboratory oven until dry at 105°c.
  • the samples were reverse mounted (viscose on back of sheet) to exemplify any stress fracture lines caused and/or body penetration issues.
  • test was conducted using a Paprical Bristow dynamic sorption unit supplied by Optest Equipment Inc. of Canada.
  • the test equipment utilises the Lucas Washburn theory of the rate of sorption of water into a porous structure of paper, which should be proportional to the square- root of the time available for sorption.
  • each paper was determined by using the above equipment to evaluate the samples penetration by a viscose solution of a particular viscosity (3850 cp) over a range of application speeds measured in milliseconds.
  • the results are shown in Fig. 4 in the form of an absorbency and contact time graph which can be. used to determine absorbency differences between different materials. If conversion parameters such as production speed and viscose viscosity are known then the unit's viscose contactant can be adjusted to predict the conversion potential of the base material in the casing conversion environment.

Abstract

The present invention refers to a method of producing a porous bonded fibrous sheet material comprising: (i) treating a porous fibrous substrate which is comprised of cellulosic fibres and which has a moisture content of less than 10 % by weight with a gum and a cross-linkable wet strength resin both dissolved in water; (ii) removing excess water; and (iii) effecting cross-linking of the resin.

Description

BONDED FIBROUS SHEET MATERIAL
The present invention relates to a bonded fibrous sheet material which is useful, for example, in the manufacture of casings (e.g. skins) for food products.
It is well known that a number of food products (particularly certain meat products) are, during their process of manufacture, enclosed within a skin which retains the form or shape of the product. Examples of such food products are sausages, salami etc.
One method which has been used extensively for producing such casings involves viscose treatment of a porous paper web,' as described more fully in U.S. Patent No. 3 135 613. Briefly this process involves the steps of
(a) forming a bonded. fibrous web by treatment of the paper with a dilute viscous solution (to apply approximately 1-3% of viscose based on the weight of the paper), drying the web, regenerating cellulose by acid treatment, washing and further drying. The product of this step is a porous, bonded fibrous web having sufficient caustic resistance to withstand the highly alkaline conditions of step (b). Conventionally step (a) has been carried out by the manufacturer of the paper: and
(b) treating the bonded web obtained from step (a) with a highly caustic viscose solution (to apply 300%-400% of viscose by weight of the paper), followed by regeneration of cellulose and washing and drying steps to produce the food casing material.
The product of step (a) has properties rendering it highly desirable for use as a food casing. More particularly, the casings are:
1. porous and permeable to moisture vapor and smoke thus allowing food products enclosed therein to be processed; 2. dimensionally stable to allow food products which may for example be salami of substantial lengths and relatively heavy to be hung without losing their shape; and
3. clear to the extent that the fibrous base cannot be seen.
Such casings are perfectly satisfactory and have been used for many years. However step (1) does have processing disadvantages in that it is a multi-stage process involving dope addition, acidification, neutralisation and washing stages. The multistage process associated with step (3) is an accepted process requirement in the industry and is not seen as a particular disadvantage.
Various patents have discussed the use of alternative materials for bonding paper webs to provide an appropriate substrate for casing fomiing operations where treatment with concentrated viscose solution under highly alkaline conditions is carried out. After undergoing bonding the substrate must • retain its porous, absorbent characteristics in order to permit adequate impregnation and encasement by the converted viscose. The bonding agent should also be one that will not cause the substrate to become discoloured during exposure to the conditions of the casing forming process.
U.S. Patent No. 3,484,256 (Chiu et al) suggests cationic thermosetting resin and polyacrylamide as a replacement for the dilute viscose bonding treatment. U.S. Patent Nos. 3,640,734-5 (Conway), and 3,679,437 (Oppenheimer et al) teach the use of soluble poly (vinyl alcohol) as a wet strengthening agent.
The aforementioned binder materials, whether used alone or in combination frequently provide some but not all of the desired characteristics of the casing. For example the use of poly (vinyl alcohol) having a degree of hydrolysis of about 85% will provide low to moderate dry tensile strengths but poor wet tensile, caustic strength and absorption characteristics. Conversely, the use of fibrous film forming materials such as hydroxyethyl cellulose in conjunction with appropriate cross linking agent such as dialdehyde cross linkers will have the opposite effect from that achieved by the poly(vinyl alcohol). They exhibit good wet tensile strengths and absorbency characteristics but poor caustic tensile strength. Unfortunately, mixtures of these materials also fail to provide all the desired characteristics.
JP-A-6294094 (Oji Paper Co) discloses manufacture of a paper which is stated to have good wet strength and good alkali resistance and which is suitable for use as a casing for a meat product (e.g. ham or sausage) or in the manufacture of tea bags. The paper is produced by adding guar gum and a polyamide epichlorohydrin resin (a wet strength agent) to the wet end of the paper making process. We have however found that papers using this' technique do not actually have sufficient wet tensile strength and caustic tensile strength for consistent conversion to food casing material in step (b) outlined above.
WO-A-9510190 (J. R. Crompton Limited) discloses a bonding fibrous sheet material suitable for conversion, by viscose treatment, into a food casing material. The bonded fibrous sheet material is produced by treatment of a porous fibrous substrate (particularly a paper) with a coating composition which under the conditions of the treatment does not form a film and which is an admixture of a polymer latex and a wet strength resin, and effecting cross-linking of the polymer and resin to , produce the porous bonded fibrous sheet material. It is contemplated in WO-A- 9510190 that the coating composition may include a fibre consolidation aid, e.g. in an amount of less than 3% by weight of the coating composition. The preferred fibre consolidation aid is carboxymethyl cellulose and other examples given include galactomannan, e.g. guar gum and locust bean gum. We have however found that this binder system can still cause fracture lines and poor body penetration if the latex component is over or under cured. Furthermore, preferred impregnants in accordance with WO-A-9510190 include a surfactant (in addition to the latex and wet-strength resin) and if the surfactant level is not correctly controlled in the impregnant then there is an adverse impact on fracture fine propagation. It. is therefore an object of the present invention to obviate or mitigate the above mentioned disadvantages and provide a method of producing a bonded web having characteristics associated with dilute viscose bonded materials.
According to a first aspect of the present invention there is provided a method of producing a porous bonded fibrous sheet material comprising
(i) treating a porous fibrous substrate which is comprised of cellulosic fibres and which has a moisture content of less than 10% by weight with a gum and a cross- linkable wet strength resin both dissolved in water, said treatment being effected otherwise than with a latex;
(ii) removing excess water; and
(iii) effecting cross-linking of the resin.
According to a second aspect of the present invention there is provided a porous bonded fibrous sheet material produced by the method of. the first aspect of the invention.
The porous fibrous substrate will generally be a wet-laid material, particularly a paper. The paper (or other porous fibrous substrate) to be treated has a moisture content of less than 10% by weight, more preferably less than 5%, e.g. 3-5%, and as such is generally referred to in the industry as being "bone-dry" (although it does contain the indicated amount of moisture). We have found that use of a gum and a wet strength resin to treat the "dry" (i.e. less than 10% moisture) porous fibrous substrate provides a bonded material having significantly improved wet tensile strength and caustic tensile strength as compared to a material produced by a wet- laying process involving addition of a gum and a wet strength resin only at the wet end of the process (i.e. as disclosed in JP-A-6294094). Whilst we do not wish to be bound by theory we believe that during cross-linking of the wet strength resin both the gum and the cellulose (of the fibres) are also involved in cross-linking. As a result, the wet-strength resin, the gum and the cellulose are cross-linked together and it is this cross-linking which provides the improved properties for the bonded material. Surprisingly also the properties of the material (in accordance with the second aspect of the invention) are improved compared to those obtained with the procedure of WO- A-9510190, even though a much simplified binding system is used (i.e. without latex). Compared to the preferred materials of WO-A-9510190, materials produced in accordance with the invention typically have in total dry tensile, total wet tensile and total caustic tensile of 29%, 23% and 33% respectively. Materials in accordance with the invention also have much improved absorbency.
Bonded fibrous sheet materials in accordance with the second aspect of the invention are eminently suitable for conversion into a food casing material by a viscose treatment (i.e. step (b) above) as employed in the prior art conversions of viscose pre-treated paper or any other suitable material.
Therefore according to a third aspect of the present invention there is provided a food casing material which comprises the bonded fibrous sheet material in accordance with the second aspect of the invention treated with viscose.
Typically the food casing material will comprise 300%-400% of viscose by weight of the base porous substrate.
Food casing materials produced in accordance with the third aspect of the invention meet requirements (l)-(3) above. Furthermore the bonding which is achieved between the viscose and the cross-linked coating composition results in lower levels of stress line fracture normally associated with resin bonded casing substrates. Additionally the food casing materials have improved stretch characteristics and casing clarity when compared to other resin bonded systems, with the resultant clarity being comparable to that of materials obtained using viscose pre-treated substrates.
According to a fourth aspect of the present invention there is provided a food product (e.g. a meat product such as a sausage or salami) enclosed wthin a food casing material in accordance with the third aspect of the invention. In addition to its use in the manufacture of food casing materials, the bonded web material of the invention may be used in the production of beverage filtration products, e.g. tea bags, coffee bags etc. The material is also useful in the production of sachets for washing powders and double-sided adhesive tapes.
In practising the method of the first aspect of the invention, the porous fibrous substrate will preferably be treated with an aqueous solution which contains both the gum and the cross-linkable wet strength resin dissolved in water. We do not however preclude the possibility of treating the substrate with separate solutions of the gum and the resin. The solution(s) applied to the fibrous substrate is/are non-film forming (under the conditions of treatment) to ensure that the bonded material ultimately obtained is porous.
Preferably the total amount of the gum and wet strength resin applied to the porous fibrous substrate is less than 10% (e.g. 1 to 10%) by weight of the untreated substrate. Typically the amount of the wet strength resin applied to the substrate will be less than 5%, usually 0.05-2%), by weight of the untreated substrate. Typically also the amount of gum applied to the substrate will be 0.05%-3% on the same weight basis.
Preferably the gum is non-ionic. Preferably the gum is a galactomannan gum and is most preferably unsubstituted. The gum will generally be a vegetable gum. Examples of gums that may be used in the present invention include guar gum and locust bean gum which are widely used as formation aids in paper making processes by addition to the wet end of the process.
A range of wet strength resins may be used. If however it is intended that the final precursor material be subsequently treated with viscose to produce the finished food casing then the final wet strength system should be alkali resistant. Suitable " wet strength resins are wat r soluble cationic epichlorohydrin polyamide products, e.g. Kymene 709 as available from Hercules Ltd. which becomes alkali resistant in combination with the gum (Kymene is a Registered Trade Mark).
Preferably the porous substrate is a wet laid fibrous substrate, most preferably a paper. Most preferably the paper is of a high and uniform permeability (preferably 100- 200 m3 min*1 m"2) and of low basis weight (typically 10-30 gsm). Preferably also the paper has a tensile ratio (i.e. ratio of machine directionxross direction strength) of 0.5- 2.0 more preferably in the range 1.0-1.5. The paper is ideally prepared from "long" fibres (e.g. 5mm) of high aspect ratio (e.g. 300-3000). The web's constituent fibres should also exhibit uniform formation and absorbency characteristics. Particularly suitable papers are composed entirely of natural cellulosic fibres typically of the Musa Textilis species (e.g. Abaca). It is also possible to use papers comprised partially of synthetic fibres.
Preferred papers for use (as the porous fibrous substrate) to be treated in accordance with the first aspect of the invention are manufactured with the addition of a gum and a wet strength resin to the wet end of the paper making process (in addition to the gum and wet strength resin applied to the "dry" paper). The amount of gum included in the as-manufactured paper (i.e. prior to treatment in accordance with the first aspect of the invention) is preferably 0.5% to 2.5% by weight and the amount of wet strength resin in the "as-manufactured" paper is preferably 0.3% to 1.5%.
In the case where the porous fibrous substrate to be treated in accordance with the first aspect of the invention is a paper then such treatment may be effected after drying of the paper web (formed on the paper making fabric or wire) to a moisture content of less than 10% (typically 3-5%) as conventionally happens in paper manufacture. The treatment is conveniently effected by apphcation of a solution comprising the gum and the wet strength resin by means of a size press although other methods of impregnating the substrate may be used, e.g. spraying or immersion. In any such treatment, the amount of the solution applied to the web will be controlled so that, after drying, the required amount of gum and wet strength resin remain on the paper.
Drying of the paper that has been treated with the solution (containing the gum and wet strength resin) may be effected using a drying cylinder, through air/float air dryer or the like.
Cross-linking of the wet-strength resin may be effected by heating, typically to a temperature above 100°C, usually 200-300°C and typically 220-250°C.
The invention will be illustrated with reference to the following non-limiting Examples and Figs. 1-5 of the accompanying drawings which illustrate the results of Examples 3 and 4.
Example 1
An Abaca paper was produced on a pilot papermaking machine. The paper had an Abaca paper having a basis weight of about 23.5 gsm (average fibre length ca 5mm, aspect ratio 300-3000), a moisture content of about 4% by weight and contained 0.5% by weight Kymene and 2% by weight guar gum (ex Rhodia) incorporated during wet-laying.
The paper was then size pressed with an aqueous solution comprising
'Guar Gum (ex Rhodia) 0.25% by weight
Kymene 709 (ex Hercules) 0.5% by weight
Water Balance
( eypro Guar CSA 200/50). The size press was adjusted so that the paper was impregnated with its own weight of the coating composition (solids content 0.75%).
The paper was dried to a moisture content of about 4% using a combination of drying cylinder and through air drying methods on the pilot papermaking machine and was then heated to a temperature of 150°c by an air flotation curing oven to cure the binder system. The physical properties of the web thus obtained are listed in Table 1.
Table 1
Figure imgf000010_0001
2MD:CD = ca l.5
The value for wet tensile strength and caustic tensile strength compare with values of 198-432 g/15mm and 61-120 g/15mm respectively as obtained in Examples 1-3 of JP-A-6294094 (Oji Paper Co.) where Guar Gum and polyamide epichlorohydrin are only added to the wet end of the paper making process.
Example 2
Example 1 was repeated save that the paper was size pressed with the following solution:
Guar Gum (ex Rhodia) 0.5% by weight
Kymene 709 (ex Hercules) 0.9% by weight
Water Balance
The properties of the material obtained are shown in Table 2. Table 2
Figure imgf000011_0001
2MD:CD = ca l.5
Example 3
Viscose Draw Down (Penetration) Analysis:
This test was carried out on the following paper samples:
(i) the paper of Example 2;
(ii) an Abaca paper having a viscose binder;
(iii) an Abaca paper having a poly(vinyl alcohol).
An A4 sample of the paper was taken and a base line drawn 2" from the bottom of the sample in portrait orientation. On this line roughly 4 inches to the left of centre of the sheet a small vertical line was made and marked as COAG. The same mark was made to the right of the centre and marked as REGEN.
The sample was then laid flat on a glass plate and using a circa 2mm coating bar a concentrated viscose solution was laid evenly across the sample.
The sample was carefully transferred to a bath containing the coagulant chemicals (typically sulphuric acid, sodium sulphate and ammonium sulphite) at a strength to achieve ca 60% regeneration and left for 30 seconds to start initial coagulation. The sample was then carefully folded along the COAG mark so as to place the viscose coated faces together. The fold was then reinforced by running a standard ink spreading roller up and down the fold three times. The sample was then laid flat again in the COAG bath for a further 2.5 minutes to finish coagulation. The sample was then carefully transferred to the regeneration chemical bath (sulphuric acid) at a strength sufficient to achieve 99% regeneration and left for 30 seconds. The above folding and pressing action was carried out on the REGEN marked fine and the sample left for 2.5 minutes to finish regenerating.
The sample was rinsed under running water for 20 minutes to neutralise the chemicals, placed in a 10% gylcerol solution bath for 10 minutes and finally stretched between two standard embroidery hoops.
The stretched samples were then dried in a standard laboratory oven until dry at 105°c.
The samples were reverse mounted (viscose on back of sheet) to exemplify any stress fracture lines caused and/or body penetration issues.
The results of the tests are shown in Figs. 1-3 of the accompanying drawings which relate respectively to paper samples (i)-(iϋ) identified above.
It will be seen that no fracture lines developed in paper (i) (i.e. a paper in accordance with the invention) which emulated .a paper (ii), i.e. one with typical viscose binder system. In contrast, paper (iii) (which utilised a non-viscose binder, i.e. poly(vinyl alcohol)) gave f acture lines.
Example 4
Paprical Bristow Viscose Penetration Analysis
The test was conducted using a Paprical Bristow dynamic sorption unit supplied by Optest Equipment Inc. of Canada. The test equipment utilises the Lucas Washburn theory of the rate of sorption of water into a porous structure of paper, which should be proportional to the square- root of the time available for sorption.
This test was carried out on the following samples of paper:
(iv) a dialdehyde bonded paper;
(v) a first poly(vinyl alcohol) bonded paper;.
(vi) a second poly (vinyl alcohol) bonded paper;
(vii) the paper of Example 2;
(viii) a viscose bonded paper.
The absorbency of each paper was determined by using the above equipment to evaluate the samples penetration by a viscose solution of a particular viscosity (3850 cp) over a range of application speeds measured in milliseconds. The results are shown in Fig. 4 in the form of an absorbency and contact time graph which can be. used to determine absorbency differences between different materials. If conversion parameters such as production speed and viscose viscosity are known then the unit's viscose contactant can be adjusted to predict the conversion potential of the base material in the casing conversion environment.
Furthermore, the test was carried out on paper (vii) (i.e. the paper in accordance with the invention) for a range of viscose solutions of different viscosity each at a range of application speeds. The results are shown in Fig. 5.

Claims

1. A method of producing a porous bonded fibrous sheet material comprising
(i) treating a porous fibrous substrate which is comprised of cellulosic fibres and which has a moisture content of less than 10% by weight with a gum and a cross- linkable wet strength resin both dissolved in water, said treatment being effected otherwise than with a latex;
(ii) removing excess water; and
(iii) effecting cross-linking of the resin.
2. A method as claimed in claim 1 wherein the porous fibrous substrate has a moisture content of less than 5% by weight.
3. A method as claimed in claim 2 wherein the porous fibrous substrate has a moisture content of 3-5% by weight.
4. A method as claimed in any one of claims 1 to 3 wherein the total amount of the gum and wet strength resin applied to the porous substrate is 1 to 10% by weight of the untreated substrate.
5. A method as claimed in any one of claims 1 to 4 wherein the amount of the wet strength resin applied to the substrate is 0.05 to 2% by weight of the untreated substrate.
6. A method as claimed in any one of claims 1 to 5 wherein the amount of gum applied to the substrate is 0.05% to 3% by weight of the untreated substrate.
7. A method as claimed in any one of claims 1 to 6 wherein the gum is non-ionic.
8. A method as claimed in any one of claims 1 to 7 wherein the gum is a galactomannan gum.
9. A method as claimed in claim 8 wherein the galactomannan gum is unsubstituted.
10. A method as claimed in any one of claims 1 to 9 wherein the gum is a vegetable gum.
11. A method as claimed in claim 10 wherein the gum is guar gum.
12. A method as claimed in claim 10 wherein the gum is locust bean gum.
13. A method as claimed in any one of claims 1 to 12 wherein the wet strength resin is a water soluble cationic epichlorohydrin-polyamide resin.
14. A method as claimed in any one of claims 1 to 13 wherein cross-linking of the wet strength resin is effected by heating..
15. A method as claimed in claim 14 wherein cross-linking is effected by heating to a temperature above 100°C.
16. A method as claimed in any one of claims 1 to 15 wherein the porous fibrous substrate is treated with an aqueous solution which contains both the gum and the cross-linkable wet strength resin dissolved in water.
17. A method as claimed in any one of claims 1 to 15 wherein the porous fibrous substrate is a wet-laid material.
18. A method as claimed in claim 17 wherein the wet-laid substrate is a paper.
19. A method as claimed in claim 18 wherein the paper has a permeability of 100 to 200 m3 min"1 m"2.
20. A method as claimed in claim 18 or 19 wherein the paper has a basis weight of 10.to 30 gsm.
21. A method as claimed in any one of claims 18 to 20 wherein the paper has a tensile ratio of 0.5 to 2.0.
22. A method as claimed in any one of claims 18 to 21 wherein the paper is prepared from "long" fibres having an aspect ratio of 300-3000.
23. A method as claimed in any one of claims 17 to 22 wherein the paper is comprised of cellulosic fibres of the Musa Textilis species.
24. A method as claimed in claim 23 wherein the cellulosic fibres are Abaca.
25. A method as claimed in any one of claims 17 to 24 wherein the paper is comprised wholly of cellulosic fibres.
26. A method as claimed in any one of claims 18 to 25 wherein the paper is treated with an aqueous solution which contains both the gum and the cross-linkable wet strength resin dissolved in water and said solution is applied to the paper by means of a size press.
27. A porous bonded fibrous sheet material produced by the method of any one of claims 1 to 26.
28. A food casing material which comprises the bonded fibrous sheet material in accordance with claim 27 treated with viscose.
29. A food casing material as claimed in claim 28 which comprises 200-400%) by weight of viscose.
30. A food product comprising a food enclosed within a skin of a food casing material in accordance with claim 28 or 29.
31. A food product as claimed in claim 30 wherein the food is a sausage or salami.
PCT/GB2002/000165 2001-01-19 2002-01-17 Bonded fibrous sheet material WO2002057545A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/451,808 US7282232B2 (en) 2001-01-19 2002-01-17 Bonded fibrous sheet material
EP02716133A EP1368536A1 (en) 2001-01-19 2002-01-17 Bonded fibrous sheet material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0101395.2 2001-01-19
GBGB0101395.2A GB0101395D0 (en) 2001-01-19 2001-01-19 Bonded fibrous sheet material

Publications (1)

Publication Number Publication Date
WO2002057545A1 true WO2002057545A1 (en) 2002-07-25

Family

ID=9907113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2002/000165 WO2002057545A1 (en) 2001-01-19 2002-01-17 Bonded fibrous sheet material

Country Status (4)

Country Link
US (1) US7282232B2 (en)
EP (1) EP1368536A1 (en)
GB (1) GB0101395D0 (en)
WO (1) WO2002057545A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004051298A1 (en) * 2004-10-20 2006-04-27 Kalle Gmbh Nonwoven fabric with improved wet and alkaline strength and cellulose hemp-based food casing produced therefrom
CN113832770B (en) * 2021-10-29 2023-06-23 杭州绿邦科技有限公司 Preparation method of efficient wet strength agent for paper

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4362781A (en) * 1981-09-21 1982-12-07 Scott Paper Company Flushable premoistened wiper
EP0548960A1 (en) * 1991-12-23 1993-06-30 Hercules Incorporated Enhancement of paper dry strength by anionic and cationic guar combination
JPH06294094A (en) * 1993-04-05 1994-10-21 New Oji Paper Co Ltd Production of paper
WO1995010190A1 (en) * 1993-10-08 1995-04-20 J.R. Crompton Limited Bonded fibrous sheet material
US5760212A (en) * 1996-03-28 1998-06-02 Smith; David Jay Temporary wet strength additives
WO1999034058A1 (en) * 1997-12-31 1999-07-08 Hercules Incorporated Oxidized galactose type of alcohol configuration containing polymer in combination with cationic polymers for paper strength applications

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH632546A5 (en) * 1977-08-26 1982-10-15 Ciba Geigy Ag METHOD FOR PRODUCING SIZED PAPER OR CARDBOARD USING POLYELECTROLYTE AND SALTS OF EPOXYD-AMINE-POLYAMINOAMIDE IMPLEMENTATION PRODUCTS.
US4207353A (en) * 1977-11-03 1980-06-10 Union Carbide Corporation Food casing and method of preparing same
US5912306A (en) * 1992-12-30 1999-06-15 Hercules Incorporated Cationic compounds useful as drainage aids and stabilizers for rosin-based sizing agents
DE4436058A1 (en) * 1994-10-10 1996-04-11 Bayer Ag Process for the manufacture of cellulose-containing sheet materials equipped with dry and / or wet strength
US5690790A (en) * 1996-03-28 1997-11-25 The Procter & Gamble Company Temporary wet strength paper
DE69713876T2 (en) * 1996-03-28 2003-02-13 Procter & Gamble WATERPROOF PAPER PRODUCTS MADE OF ALDEHYDE-FUNCTIONALIZED CELLULOSE FIBERS AND POLYMERS
US6582559B2 (en) * 2000-05-04 2003-06-24 Sca Hygiene Products Zeist B.V. Aldehyde-containing polymers as wet strength additives

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4362781A (en) * 1981-09-21 1982-12-07 Scott Paper Company Flushable premoistened wiper
EP0548960A1 (en) * 1991-12-23 1993-06-30 Hercules Incorporated Enhancement of paper dry strength by anionic and cationic guar combination
JPH06294094A (en) * 1993-04-05 1994-10-21 New Oji Paper Co Ltd Production of paper
WO1995010190A1 (en) * 1993-10-08 1995-04-20 J.R. Crompton Limited Bonded fibrous sheet material
US5760212A (en) * 1996-03-28 1998-06-02 Smith; David Jay Temporary wet strength additives
WO1999034058A1 (en) * 1997-12-31 1999-07-08 Hercules Incorporated Oxidized galactose type of alcohol configuration containing polymer in combination with cationic polymers for paper strength applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 01 28 February 1995 (1995-02-28) *

Also Published As

Publication number Publication date
US20040096554A1 (en) 2004-05-20
EP1368536A1 (en) 2003-12-10
US7282232B2 (en) 2007-10-16
GB0101395D0 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
EP0531097B1 (en) Bonded fibrous casing substrates and method of making same
FI64413B (en) PAPPER MED GOD UPPSUGNINGSFOERMAOGA OCH ALKALIBESTAENDIGHET
US3135613A (en) Impregnated paper web and method of making sausage casings therefrom
CA1139164A (en) Dimensionally stable backing materials for surface coverings and methods of making the same
DE3139481A1 (en) SMOKED SLEEVES SUITABLE FOR SMOKING FOODS, ESPECIALLY FOR SMOKED SAUSAGE PRODUCTS, PROCESS FOR THEIR PRODUCTION AND THEIR USE
US3484256A (en) Fibrous food casings and method of producing same
US3433663A (en) Impregnated porous paper webs and method of obtaining same
EP0185927B1 (en) Non-edible, reinforced amylose and amylose starch food casings
US5063104A (en) Fibrous base web bonding system and method
US5143584A (en) Paper and fiber-reinforced packaging film and sausage products produced therefrom, process for producing same
EP0459040B1 (en) Fibrous substrates for sausage casing and method of producing same
US6048917A (en) Cellulose bonded nonwoven fiber fabric and method for the production thereof
FI66938B (en) FOERFARANDE FOER FRAMSTAELLNING AV EN LAMINERAD SKIVPRODUKT
US7282232B2 (en) Bonded fibrous sheet material
US20080187735A1 (en) Non-Woven Fabric and Food Casing Which is Produced Therefrom and Which is Based on Cellulose Hydrate
WO1995010190A1 (en) Bonded fibrous sheet material
JP2817003B2 (en) Bonded porous fibrous substrate, its manufacturing process and fiber reinforced casing material
JP2962092B2 (en) Paper manufacturing method
FI66946B (en) FRAMSTAELLNING AV EN PROFILERAD ARTIKEL SAERSKILT PAPPER AV AMNOFORMALDEHYDHARTSFIBRER
US5108546A (en) Bonded fibrous sheet material
FI110471B (en) Fibrous substrates for sausage etc. casings - having high burst strength due to cellulose carbamate and alkaline curing resin bonding agents
JPH07189180A (en) Production of base paper for fibrous casing
JPH0956326A (en) Raw paper for casing

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002716133

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10451808

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2002716133

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP