WO2002058579A1 - Capacitive reusable electrosurgical return electrode - Google Patents

Capacitive reusable electrosurgical return electrode Download PDF

Info

Publication number
WO2002058579A1
WO2002058579A1 PCT/US2001/017435 US0117435W WO02058579A1 WO 2002058579 A1 WO2002058579 A1 WO 2002058579A1 US 0117435 W US0117435 W US 0117435W WO 02058579 A1 WO02058579 A1 WO 02058579A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
return electrode
electrosurgical return
patient
electrosurgical
Prior art date
Application number
PCT/US2001/017435
Other languages
French (fr)
Inventor
Richard P. Fleenor
David B. Kieda
James D. Isaacson
Paul R. Borgmeier
Original Assignee
Megadyne Medical Products, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Megadyne Medical Products, Inc. filed Critical Megadyne Medical Products, Inc.
Publication of WO2002058579A1 publication Critical patent/WO2002058579A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/16Indifferent or passive electrodes for grounding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0813Accessories designed for easy sterilising, i.e. re-usable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/908Patient protection from electric shock

Definitions

  • the Field of the Invention relates to electrosurgery and, more particularly, to return electrodes adapted for providing effective and safe electrosurgical energy return without conducting or dielectric gels or polymers, which may be reusable and/or disposable.
  • the active electrode at the point of contact with the patient must be small in size to produce a high current density in order to produce a surgical effect of cutting or coagulating tissue.
  • the return electrode which carries the same current as the active electrode, must be large enough in effective surface area at the point of communication with the patient such that a low density current flows from the patient to the return electrode. If a relatively high current density is produced at the return electrode, the temperature of the patient's skin and tissue will rise in this area and can result in an undesirable patient burn.
  • AAMI Advanced Medical Instrumentation
  • an Electrode Contact Quality Monitoring System that would monitor the contact area of the electrode that is in contact with the patient and turn off the electrosurgical generator whenever there was insufficient contact area.
  • Such circuits are shown, for example, in United States patent 4,231,372, issued to Newton, and entitled “Safety Monitoring Circuit for Electrosurgical Unit,” the disclosure of which is incorporated by this reference.
  • This system has resulted in an additional reduction in patient return electrode burns, but requires a special disposable electrode and an added circuit in the generator that drives the cost per procedure even higher. Fifteen years after this system was first introduced, fewer than 40 percent of all the surgical operations performed in the United States use this system because of its high costs.
  • the present invention overcomes the problems of the prior art by providing a return electrode that eliminates patient burns without the need for expensive disposable electrodes and monitoring circuits in specialized RF generators.
  • the improved return electrode according to the preferred embodiment of the invention hereof includes an effective surface area that is larger than other return electrodes that have been disclosed or used in surgery previously. It is so large and so adapted for positioning relative to the body of a patient that it eliminates the need for conductive or dielectric gels. Moreover, the exposed surface is of a material that is readily washable and/or sterilizable so as to facilitate easy and rapid conditioning for repeated reuse. It employs geometries and materials whose impedance characteristics, at typically used electrosurgical frequencies, are such that it self-limits the current densities (and corresponding temperature rises) to safe thresholds, should the effective area of the working surface of the electrode be reduced below otherwise desirable levels. Accordingly, the need for the foregoing expensive monitoring circuits in specialized RF generators is eliminated.
  • Figure 2 A is a top view of a wide-area distributed electrosurgical return electrode illustrating the principles of the invention.
  • Figure 2B is an enlargement of a segment of the electrosurgical return electrode of Figure 2 A;
  • Figure 2C is a cross section taken along the section lines 2C-2C of Figure 2B and illustrating the effective circuit impedance represented by the segment of 2B;
  • Figure 3 is a chart illustrating in graphical form the relationships between effective surface area of the return electrode and the effective radio frequency current density developed at the electrode;
  • Figure 4 is a perspective view showing an operating table with the electrosurgical return electrode according to the invention disposed on the upper surface thereof;
  • Figure 5 is a front view illustrating a surgical chair with an electrosurgical return electrode according to the invention disposed on the surface of the seat thereof;
  • Figure 6 is a top view of an electrosurgical return electrode according to the invention.
  • Figure 7 is a section taken along the lines 7-7 of Figure 6;
  • Figure 8 is a section similar to that of Figure 7 but illustrating the capacitance presented by a patient's surgical gown;
  • Figure 9 is a perspective view of a cover adapted for encasing any of the embodiments of Figures 6-8;
  • Figure 10 is a view illustrating one of the embodiments of Figures 6-8 encased within the cover of Figure 9;
  • Figure 11 is a perspective view illustrating, for the purpose of analysis, the circuit equivalent of a patient in operative association with the ohmic and capacitive regions of a pad according to the invention;
  • Figure 12 is a simple electronic schematic circuit equivalent to Figure 11;
  • Figure 13 is a graph depicting percent capacitive power conduction as a function of bulk resistivity of the resistive layer for different electrosurgical operating frequencies
  • Figure 14 is a perspective view of a pad according to the invention illustrating a simulated condition when the effective contact area with a patient is substantially less than the physical pad size;
  • Figure 15 is a view illustrating current flow density within the pad when the effective patient contact area is much smaller than the total pad area
  • Figure 16 is a graph showing minimum bulk resistivity of the resistive layer as a function of pad thickness for different electrosurgical generator frequencies.
  • Impedance z 2 is provided to represent the impedance presented by the patient's tissue lying between the operation site and the return electrode.
  • the initial embodiment, hereof, is that of an electrode operating in a combined resistive and/or capacitive mode. Accordingly, if the relatively small stray capacitive and inductive reactances are disregarded, the total effective impedance of the circuit will be equal to the sum of the individual impedances z,, z, and z 3 ; and since essentially the same current will pass through all three, the voltage generated by RF generator 10 will be distributed across impedances z l3 T ⁇ and z 3 in direct proportion to their respective values. Thus, the energy released in each of such components will also be directly proportional to their values.
  • the resistive component of the impedance represented by z be substantial and that current passing therethrough (and consequent energy release) be concentrated in a very small region. The latter is accomplished by making the region of contact with the patient at the operative site very small.
  • the surface 20a of return electrode 20 is preferably smooth and homogeneous and includes a thin resistive and/or dielectric layer 21a (Fig. 2C).
  • surface 20a of return electrode 20 may include a capacitive and/or inductive layer, depending on the particular operation of return electrode 20.
  • electrode 20 may be thought of as including a plurality of uniformly-sized regions or segments as represented by regions 21, 21a, 21b, 21c 21 n. It will be appreciated by one skilled in the art, however, that return electrode may or may not include discontinuous regions or segment, it being preferred that electrode 20 have continuous segments.
  • Region/segment 21 is shown larger in Figure 2B in order to be similar in scale to the resistive impedance z 3 ' it represents. It thus will now be evident that each of the segments of electrode 20 corresponding to segments 21 . . . 21n inherently has the capability of presenting an impedance similar to that of impedance z 3 '. However, the number of such segments which are effectively active in parallel within the circuit is a direct function of the surface area of the patient that overlies the electrode.
  • the effective contact area between the patient and electrode were to be reduced to the surface of only one of the segments 21-2 In, then the effective impedance (combined capacitive reactance and resistance in the example under consideration) would increase to 100 ohms; and at some point of reduction in contact area, the effective impedance would rise to a level relative to the impedance presented at the site of the electrosurgical instrument so as to diminish the electrosurgical effect of the surgical instrument or otherwise prevent effective use of the instrument by the surgeon, thus signaling the surgeon that the patient should be repositioned so as to present a greater surface area in contact with the return electrode.
  • the total circuit impedance would be increased so that the total current that would flow if the surgeon attempted to employ his instrument without repositioning the patient would be reduced to a value below that which would cause undesired trauma to the patient. Accordingly, there is provided a self-limiting feature that enhances safety in use without the need for the aforementioned separate circuit monitoring and control circuits.
  • Figure 2C is a cross section taken along the section lines 2C-2C of Figure 2B and illustrating the effective circuit impedance z 3 ' represented by the segment 21 of 2B.
  • each of the impedances represented by the remaining segments are connected at their lower extremities in parallel to terminal 22; whereas, if such highly conductive layer is absent, then, in addition to the impedance represented by the material lying between the upper and lower regions of each segment, there will be an additional impedance (not shown) that is represented by the material through which current would have to pass transversely or laterally through the electrode in order to get to terminal 22.
  • Figure 3 is a chart generally illustrating in graphic form the relationships between the effective surface area of the return electrode and the effective radio frequency current densities developed at the electrode.
  • the chart is simplified so as to illustrate the principles underlying die invention and does not represent actual data that may vary substantially.
  • RF Current Density versus Electrode Effective Surface Area the latter (as should now be evident to those skilled in the art) being that part of the surface of the return electrode that makes effective electrical contact with the body of a patient.
  • Various embodiments of the present invention may have substantially simultaneous changes in current density and available current, while other embodiments of the present invention may include a lag period therebetween.
  • the parameters selected for the materials and electrode dimensions are chosen so that current density and corresponding tissue temperature elevation adjacent the return electrode do not exceed the limits mentioned in the introduction hereof. It will now be seen that by a proper selection of such parameters the return electrode is made self-limiting, thereby obviating the need for the additional monitoring circuits to which reference is made above.
  • impedances whose principal components are resistances and capacitive reactances.
  • the principles of the invention are also applicable to other embodiments in which the impedances include any combination of resistive, capacitive and/or inductive impedances.
  • an effective dielectric layer is represented by a physical dielectric layer on the upper surface of the electrode, by the material of a surgical gown worn by the patient, by a bed sheet or other operating room linens interposed between the patient and the return electrode, by the material of a protective sleeve fitted over the return electrode, or any combination thereof.
  • FIG 4 illustrates in perspective an operating table 40 with an electrosurgical return electrode 41 according to the invention disposed on the upper surface thereof, an edge of which is identified by the numerals 42.
  • the operating table is shown to have conventional legs 44a-44d that may be fitted with wheels or rollers as shown.
  • Table 40 is one structure that is capabe of performing the function of supporting means for supporting a patient during treatment. It may be appreciated by one skilled in the art, however, that various other configurations of support means are possible and capable of performing this function.
  • supporting means may include, but not limited to, chairs, plates, beds, carts, and the like.
  • the effective working surface area will vary depending on the material used, in some geometrical configurations, and in instances where various layers of operating room linens are placed over the electrode. The principles hereof may be successfully employed and the effective working surface area of the return electrode determined in such circumstances by routine experimentation. Under certain conditions, the effective working surface may be as small as about seven square inches (or about 45 square centimeters).
  • the electrode be configured so that when the electrode is used: (1) the return current density on the surface of the patient is sufficiently low; (2) the electrical impedance between the electrode and the patient is sufficiently low so that electrical energy is not concentrated sufficiently to heat the skin of the patient at any location in the electrical return path by more than six degrees (6°) Celsius; and (3) the characteristics of the materials and geometries are such that if the effective area of the electrode is reduced below a selected threshold level, there will be insufficient energy dissipated at the surgeon's implement for him to continue effectively using the implement in its electrosurgical mode.
  • C capacitance in Farads
  • K is the dielectric constant of the material lying between the effective plates of the capacitor
  • A is the area of the smallest one of the effective plates of the capacitor in square meters
  • t is separation of the surfaces of the effective plates in meters
  • e 0 is the pen ttivity of air in Farads per meter.
  • a return electrode according to the invention hereof would need a minimum effective area of between about 7 and about 11 square inches (or about 45 cm 2 to about 70cm 2 ) with a relatively small separation from the slcin of the patient such as that provided by a surgical gown or no interposing gown at all. Such an effective area is easy to obtain if the patient is positioned on an electrode that is the size of their upper torso or larger.
  • the characteristics of the desired dielectric for the present embodiment are sufficiently comparable to those of selected rubbers, plastics and other related materials that the latter may be satisfactorily employed as materials for the return electrode.
  • the results would be that the current flow from the electrosurgical generator would be reduced to a level making it difficult for the surgeon to perform surgery.
  • the features described above will continue to occur.
  • Figure 5 is a front view illustrating a surgical chair 50 with an electrosurgical return electrode 51 according to the invention disposed on the upper surface of the seat thereof. Accordingly, when a patient is sitting in the chair, the buttocks and upper part of the thighs overlie and are in sufficiently close proximity to the return electrode so that coupling there between presents an impedance meeting the foregoing criteria; namely, that the electrical impedance between it and the patient is sufficiently low to allow the surgeon to perform the procedure while providing that current density is sufficiently low and that insufficient electrical energy is developed across the return impedance to heat the slcin of the patient at any location in the electrical return path by more than six degrees (6°) Celsius.
  • FIG. 6 is a top view of another electrosurgical return electrode according to the invention. It will be observed that the upper exposed, or working, surface of the electrode again is expansive so as to meet the foregoing criteria for low impedance. Although it is not necessary that the electrode cover the entire surface of an operating table or the entire seat surface of a dental or other patient chair, it has been found advantageous in some instances to provide a greater surface area than that of the projected area of the buttocks or torso of a patient so that if a patient moves position during the course of a procedure, a sufficient portion of the patient will remain in registration with the electrode surface so that the effective impedance will remain less than the above-described level.
  • the electrode does not need to be in direct contact with a patient, either directly or through intervening conductive or nonconductive gel.
  • the electrode does not need to be in direct contact with a patient, either directly or through intervening conductive or nonconductive gel.
  • the electrode because of its expansive size, there is no need for tailoring the electrode to fit physical contours of a patient.
  • the self-correcting and self-limiting principles hereof could be achieved in an electrode as small as seven square inches (or 45 square centimeters) in working surface area, the preferable range of exposed upper working surface area of the electrode lies in the range of from about 11 to 1,500 square inches (or about 70 to 9,680 square centimeters).
  • the electrode according to the invention hereof, as illustrated in Figure 6, may be made of conductive plastic, rubber or other flexible material which, when employed in the electrode will result in an effective dc resistance presented by each square centimeter of working surface to be greater than about 8000 ohms. Silicone or butyl rubber have been found to be particularly attractive materials as they are flexible, as well as readily washable, sterilizable, and disinfectable.
  • the main body of the return electrode may be made of inherently relatively high resistance flexible material altered to provide the requisite conductivity.
  • a preferred example of the latter is that of silicone rubber material in which there are impregnated conductive fibers, such as carbon fiber, or in which there have been distributed quantities of other conductive substances such as carbon black, quantities of gold, silver, nickel, copper, steel, iron, stainless steel, brass, aluminum, or other conductors.
  • Connector 54 is another structure capable of performing the function of connecting means for making electrical connection to the sheet.
  • Connector 54 is only illustrative of one possible structure for performing the desired function; it being appreciated by one skilled in the art that various other structures are capable of performing this function.
  • Figure 7 is a section taken along the lines 7-7 of Figure 6.
  • Figure 7 shows an electrode 46 similar to electrode 20 of Figures 2A-2C, except that electrode 46 includes a thin highly-conductive lower stratum 46c to facilitate conduction of current outwardly to terminal 54.
  • the thickness of the electrode lies in a range from about 1/32 inch to 1/4 inch (about 0.08 cm to 0.64 cm), which, with the aforementioned range of impedance of the main body of material and the capacitive reactance of the upper dielectric layer, provides the required impedance together with desired physical flexibility for ease of use and handling.
  • Figure 8 is a section similar to that of Figure 7, but presenting a multiple layer embodiment illustrating the separation presented by a patient's gown according to the invention hereof.
  • a layer 46a similar to layer 46 of Figure 7
  • an overlying effectively capacitive layer 47 representing an insulating dielectric layer, a patient's surgical gown, an operating room linen, a protective sleeve or sheath, or any combination thereof.
  • a conductive layer 47a of Figure 8 could comprise a sheet or screen of gold, brass, aluminum, copper, silver, nickel, steel, stainless steel, conductive carbon, conductive fluids, gels, saline, and the like.
  • Further reference ' to Figure 8 reveals another dielectric layer 47b covering the lower surfaces of layer 46a.
  • Figure 9 is a perspective view of a sleeve 50 adapted for encasing any one of the embodiments of Figures 6-8.
  • a sleeve 50 adapted for encasing any one of the embodiments of Figures 6-8.
  • such a sleeve may preferably be made of any of a variety of known materials, such as vinyl plastics, polyester or polyethylene.
  • Figure 10 is a view illustrating one of the embodiments of Figures 6-8 encased within the sleeve of Figure 9. There, it will be seen, is outer surface 50a of sleeve 50; and shown encased within sleeve 50 for illustrative purposes is electrode 41 of Figure 6.
  • Figures 11-16 are set forth to define the geometries and characteristics of materials employed to obtain the foregoing self-limiting action. Discussion will be made hereinafter to an illustrative electrode that may be used for electrosurgical procedures utilizing capacitive conduction while still remaining self- limiting. Although discussion is made herein with respect to an electrosurgical electrode functioning under capacitive conduction, similar illustrative information and examples may be provided for resistive and inductive conduction, as described herein and known by one skilled in the art.
  • Figure 11 depicts an electrosurgical electrode 60 consisting of a conductive metal backing 61 and a semi-insulating layer 62 of material with bulk resistivity p, thickness t and area A.
  • the electrode is in contact with another conducting layer 63 which represents a patient thereupon.
  • the circuit can be modeled as a resistor R in parallel with a capacitor C ( Figure 12).
  • the resistance R is related to the bulk resistivity p, area A, and thickness t by the formula
  • the ratio Y is independent of the electrode area and thickness, depending only upon K and p .
  • Y For principally capacitive coupling, Y»l , whereas for principally resistive power conduction, Y «1
  • K ranges from 3 to 5.
  • Commercially available electrosurgical generators presently have operating frequencies ranging from 200 kHz to 4 MHz.
  • Figure 13 illustrates the percentage (%) of capacitive coupling for various frequency electrosurgical generators.
  • a minimum bulk resistivity of 100,000 Ohm-cm is required for the majority of the power to be passed through capacitive coupling.
  • This minimum bulk resistivity number is greater than required by the available prior art. Consequently, the capacitive coupling electrode grounding pad according to the invention hereof appears to be neither taught nor suggested by known prior art.
  • a product according to the invention hereof can be easily distinguished from previous art through a simple test of the bulk resistivity of the insulating material, independent of pad area or pad thickness.
  • the self-limiting feature of the electrosurgical return electrode arises due to the impedance of the electrode material.
  • This impedance may arise from resistive, inductive, or capacitive components, or a combination thereof. For example ⁇ a single layer of insulative material placed between a conductive surface and the patient presents an impedance equivalent to a resistor in parallel with a capacitor.
  • the total impedance of the electrosurgical electrode should be less than 75 ⁇ under normal operating conditions. It is preferred, therefore, that
  • I max may vary from patient to patient due to changes in the amount of time that the electrode is in contact with the patient, the electrical characteristics of the patient's skin (i.e., resistivity and the like), the amount of heat being conducted by the patient, the patients initial skin temperature, and the like.
  • an electrosurgical return electrode designed according to the prior art, in the event that the contact area with the patient reduces below the A C0Macl (mjn) , while maintaining the I max , a burn may result because (I/A) crilica , is greater than lOOmA/cm 2 , which is the burn tlireshold.
  • the present invention limits the possibility of a burn caused from a reduction of the contact area below A conlacl(min) , while also preventing electrosurgical procedures when the contact area is significantly reduced. Therefore, by selecting the appropriate impedance of the electrode, the current I is always reduced below I max when
  • a.atA conlacl(min have a value from about 7 cm 2 to about 22 cm 2 , and more preferably about 10 cm 2 .
  • range from about 10 to about 50, and more preferably have a value of about 10.
  • the factor of 1.2 is included within the resistivity and reactance terms of the equation; however, it may be appreciated by one skilled in the art that the factor of 1.2 is geometry dependent for both the resistive and reactance terms and may vary. Additionally, the value of 1.2 is based on the illustrative geometry of the presently described self limiting electrode and when the geometry of the electrode varies, the factor value will also vary to account for the different edge effects.
  • the maximum electrode thickness one could imagine using would range from about 0.5 to about 4 inches (about 1.3 cm to about 10.2 cm), and more preferably about 1 inch (2.5 cm) thick. At this thickness the electrode may become unwieldy to use and uncomfortable for the patient.
  • the minimum bulk resistivity for a electrode of such thickness is about 4000 ⁇ -cm to be self-limiting in a resistive mode as previously noted.

Abstract

A capacitive reusable electrosurgical return electrode pad (60) for use with electrosurgery. Through selection of the electrode geometries and the impedance characteristics of the electrode, the electrode is self-regulating and self-limiting as to current density and temperature rise so as to prevent patient trauma. The electrosurgical return electrode can include a connector and a sheet of material having an effective bulk impedance equal to or greater than about 100,000 ohm cm. The electrode can have a working surface area from about 11 to about 1,500 square inches (or about 70 to about 10,000 square centimeters). The electrode can be disposed on the working surface of an operating table or dentist's chair immediately underlying a patient during electrosurgery. This very large working surface area eliminates the need for direct contact or contact through conducting gels and by employing washable surface areas, it is made readily cleanable and reusable.

Description

CAPACITIVE REUSABLE ELECTROSURGICAL RETURN ELECTRODE
BACKGROUND OF THE INVENTION
1. The Field of the Invention This invention relates to electrosurgery and, more particularly, to return electrodes adapted for providing effective and safe electrosurgical energy return without conducting or dielectric gels or polymers, which may be reusable and/or disposable.
2. The Relevant Technology
As is known to those skilled in the art, modern surgical techniques typically employ radio frequency (RF) power to cut tissue and coagulate bleeding encountered in performing surgical procedures. For historical perspective and details of such techniques, reference is made to United States Patent No. 4,936,842, issued to D'Amelio et al., and entitled "Electrosurgical Probe Apparatus," the disclosure of which is incorporated by this reference. As is known to those skilled in the medical arts, electrosurgery is widely used and offers many advantages including the use of a single surgical tool for both cutting and coagulation. Every monopolar electrosurgical generator system, must have an active electrode that is applied by the surgeon to the patient at the surgical site to perform surgery and a return path from the patient back to the generator. The active electrode at the point of contact with the patient must be small in size to produce a high current density in order to produce a surgical effect of cutting or coagulating tissue. The return electrode, which carries the same current as the active electrode, must be large enough in effective surface area at the point of communication with the patient such that a low density current flows from the patient to the return electrode. If a relatively high current density is produced at the return electrode, the temperature of the patient's skin and tissue will rise in this area and can result in an undesirable patient burn.
In 1985, the Emergency Care Research Institute, a well-known medical testing agency, published the results of testing it had conducted on electrosurgical return electrode site burns, stating that the heating of body tissue to the threshold of necrosis occurs when the current density exceeds 100 milliamperes per square centimeter.
The Association for the Advancement of Medical Instrumentation ("AAMI") has published standards that require that the maximum patient surface tissue temperature adjacent an electrosurgical return electrode shall not rise more than six degrees (6°) Celsius under stated test conditions. Over the past twenty years, industry has developed products in response to the medical need for a safer return electrode in two major ways. First, they went from a small, about 12 x 7 inches, flat stainless steel plate coated with a conductive gel placed under the patient's buttocks, thigh, shoulders, or any location where gravity can ensure adequate contact area to a flexible electrode. These flexible electrodes, which are generally about the same size as the stainless steel plates, are coated with a conductive or dielectric polymer and have an adhesive border on them so they will remain attached to the patient without the aid of gravity, and are disposed of after use. By the early 1980's, most hospitals in the United States had switched over to using this type of return electrode. These return electrodes are an improvement over the old steel plates and resulted in fewer patient return electrode burns but have resulted in additional surgical costs in the United States of several tens of millions of dollars each year. Even with this improvement, hospitals were still experiencing some patient burns caused by electrodes that would accidentally fall off or partially separate from the patient during surgery.
Subsequently, there was proposed a further improvement, an Electrode Contact Quality Monitoring System that would monitor the contact area of the electrode that is in contact with the patient and turn off the electrosurgical generator whenever there was insufficient contact area. Such circuits are shown, for example, in United States patent 4,231,372, issued to Newton, and entitled "Safety Monitoring Circuit for Electrosurgical Unit," the disclosure of which is incorporated by this reference. This system has resulted in an additional reduction in patient return electrode burns, but requires a special disposable electrode and an added circuit in the generator that drives the cost per procedure even higher. Fifteen years after this system was first introduced, fewer than 40 percent of all the surgical operations performed in the United States use this system because of its high costs.
SUMMARY OF THE INVENTION The present invention overcomes the problems of the prior art by providing a return electrode that eliminates patient burns without the need for expensive disposable electrodes and monitoring circuits in specialized RF generators.
Briefly, the improved return electrode according to the preferred embodiment of the invention hereof includes an effective surface area that is larger than other return electrodes that have been disclosed or used in surgery previously. It is so large and so adapted for positioning relative to the body of a patient that it eliminates the need for conductive or dielectric gels. Moreover, the exposed surface is of a material that is readily washable and/or sterilizable so as to facilitate easy and rapid conditioning for repeated reuse. It employs geometries and materials whose impedance characteristics, at typically used electrosurgical frequencies, are such that it self-limits the current densities (and corresponding temperature rises) to safe thresholds, should the effective area of the working surface of the electrode be reduced below otherwise desirable levels. Accordingly, the need for the foregoing expensive monitoring circuits in specialized RF generators is eliminated.
These and other features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
BRIEF DESCRIPTION OF THE DRAWINGS In order that the manner in which the above-recited and other advantages and objects of the invention are obtained, a more particular description of the invention briefly described above will be rendered by reference to a specific embodiment thereof which is illustrated in the appended drawings. Understanding that these drawings depict only a typical embodiment of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which: Figure 1 is a simplified electrical schematic diagram illustrating typical impedances effectively included in the operative path of radio frequency current flow as presented to an electrosurgical generator during an operative procedure;
Figure 2 A is a top view of a wide-area distributed electrosurgical return electrode illustrating the principles of the invention. Figure 2B is an enlargement of a segment of the electrosurgical return electrode of Figure 2 A;
Figure 2C is a cross section taken along the section lines 2C-2C of Figure 2B and illustrating the effective circuit impedance represented by the segment of 2B;
Figure 3 is a chart illustrating in graphical form the relationships between effective surface area of the return electrode and the effective radio frequency current density developed at the electrode;
Figure 4 is a perspective view showing an operating table with the electrosurgical return electrode according to the invention disposed on the upper surface thereof;
Figure 5 is a front view illustrating a surgical chair with an electrosurgical return electrode according to the invention disposed on the surface of the seat thereof;
Figure 6 is a top view of an electrosurgical return electrode according to the invention;
Figure 7 is a section taken along the lines 7-7 of Figure 6; Figure 8 is a section similar to that of Figure 7 but illustrating the capacitance presented by a patient's surgical gown; Figure 9 is a perspective view of a cover adapted for encasing any of the embodiments of Figures 6-8;
Figure 10 is a view illustrating one of the embodiments of Figures 6-8 encased within the cover of Figure 9; Figure 11 is a perspective view illustrating, for the purpose of analysis, the circuit equivalent of a patient in operative association with the ohmic and capacitive regions of a pad according to the invention;
Figure 12 is a simple electronic schematic circuit equivalent to Figure 11;
Figure 13 is a graph depicting percent capacitive power conduction as a function of bulk resistivity of the resistive layer for different electrosurgical operating frequencies;
Figure 14 is a perspective view of a pad according to the invention illustrating a simulated condition when the effective contact area with a patient is substantially less than the physical pad size;
Figure 15 is a view illustrating current flow density within the pad when the effective patient contact area is much smaller than the total pad area; and
Figure 16 is a graph showing minimum bulk resistivity of the resistive layer as a function of pad thickness for different electrosurgical generator frequencies.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Now turning to the drawing, and more particularly Figure 1 thereof, it will be seen to depict a simplified electrical schematic diagram illustrating typical impedances effectively included in the operative path of radio frequency current flow as presented to an electrosurgical generator during an operative procedure. There, it will be seen are conventional radio frequency electrical power generator 10, such as but not limited to constant power, voltage, and/or current or variable power, voltage and/or current. Connected to electrical power generator 10 are conventional electrical conductors 11 and
12 which respectively connect the generator 10 to the surgeon's implement represented by impedance zλ and an electrosurgical return electrode represented by impedance z3.
Impedance z2 is provided to represent the impedance presented by the patient's tissue lying between the operation site and the return electrode. Although the diagram of Figure 1 is simplified and generally considers circuit elements in terms of the principal resistances, including the reactances contributed by the surgical instrument, the patient's body and the return electrode, so as to clearly and succinctly illustrate principles of the invention, it should be understood that in reality certain other parameters would be encountered, parameters such as distributed inductance and distributed capacitance which, for purposes of clarity in illustration of the principles hereof, are deemed relatively small and so not considered at this point in this description. However, as set forth below, when an insulating sleeve is interposed between the electrode and the body of a patient, a significant element of capacitive reactance may be included in the impedance of Z3. It should also be noted that Figures 1-10 are intentionally simplified so as to present the principles of the invention succinctly, with a more rigorous and complete discussion being presented in connection with Figures
11-16.
The initial embodiment, hereof, is that of an electrode operating in a combined resistive and/or capacitive mode. Accordingly, if the relatively small stray capacitive and inductive reactances are disregarded, the total effective impedance of the circuit will be equal to the sum of the individual impedances z,, z, and z3; and since essentially the same current will pass through all three, the voltage generated by RF generator 10 will be distributed across impedances zl3 T^ and z3 in direct proportion to their respective values. Thus, the energy released in each of such components will also be directly proportional to their values. Since it is desired that developed energy be concentrated in the region where the surgeon's implement contacts the patient's tissue, it is desirable that the resistive component of the impedance represented by z, be substantial and that current passing therethrough (and consequent energy release) be concentrated in a very small region. The latter is accomplished by making the region of contact with the patient at the operative site very small.
It is known that, in contrast with the foregoing series circuit, components of combined resistive and capacitive reactance, when connected in parallel, present a total effective impedance that is given by the formula:
Z Z eeffff == J_ + : 1 + : 1 1 : + : 1 1 • ■ • • C1)
Z\ Z2 Z3 Z4 Z5 Z6
Thus, if 100 similar impedances, each of 100 ohms, were connected in parallel, the effective impedance Zeff would equal one ohm. If half of such impedances were effectively disconnected, the remaining effective impedance would be two ohms, and if only one of the impedances were active in the circuit, the remaining effective impedance would be 100 ohms. The significance of these considerations and their employment to render the electrode hereof self-limiting and fail-safe will be evident from the following description of the elements illustrated in Figures 2A, 2B, 2C and 3. Now turning to Figure 2A, there will be seen a schematic representation of a top view of a wide-area distributed electrosurgical return electrode 20 illustrating the principles of the invention. At the right hand side of the figure there is shown an electrical connection terminal 22 to facilitate connection to an electrical return conductor, such as conductor 12 of Figure 1.
The surface 20a of return electrode 20 is preferably smooth and homogeneous and includes a thin resistive and/or dielectric layer 21a (Fig. 2C). Alternatively, surface 20a of return electrode 20 may include a capacitive and/or inductive layer, depending on the particular operation of return electrode 20. For instructional purposes of this description and to aid in the mathematical modeling of return electrode 20, electrode 20 may be thought of as including a plurality of uniformly-sized regions or segments as represented by regions 21, 21a, 21b, 21c 21 n. It will be appreciated by one skilled in the art, however, that return electrode may or may not include discontinuous regions or segment, it being preferred that electrode 20 have continuous segments. Region/segment 21 is shown larger in Figure 2B in order to be similar in scale to the resistive impedance z3' it represents. It thus will now be evident that each of the segments of electrode 20 corresponding to segments 21 . . . 21n inherently has the capability of presenting an impedance similar to that of impedance z3'. However, the number of such segments which are effectively active in parallel within the circuit is a direct function of the surface area of the patient that overlies the electrode. Thus, in the case of a large supine patient whose body is in effective contact with 50 percent (50%) of the upper surface of the electrode, 50 percent of the segments corresponding to segments 21-2 In will be effectively paralleled in the circuit to form an impedance represented by impedance z3 of Figure 1; and, accordingly, if electrode 20 contains 1 0 segments of 100 ohms each, the effective impedance operatively presented by the effective 50 percent of the electrode elements would be 2 ohms. Since 2 ohms is very small compared with the impedance represented by elements z, and Zy, very little energy is dissipated at the region of contact between the patient and the electrode, and due also to the relatively large effective working area of the electrode, current density, and temperature elevation are maintained below the danger thresholds mentioned above.
Now, if for any reason, the effective contact area between the patient and electrode were to be reduced to the surface of only one of the segments 21-2 In, then the effective impedance (combined capacitive reactance and resistance in the example under consideration) would increase to 100 ohms; and at some point of reduction in contact area, the effective impedance would rise to a level relative to the impedance presented at the site of the electrosurgical instrument so as to diminish the electrosurgical effect of the surgical instrument or otherwise prevent effective use of the instrument by the surgeon, thus signaling the surgeon that the patient should be repositioned so as to present a greater surface area in contact with the return electrode. At the same time, the total circuit impedance would be increased so that the total current that would flow if the surgeon attempted to employ his instrument without repositioning the patient would be reduced to a value below that which would cause undesired trauma to the patient. Accordingly, there is provided a self-limiting feature that enhances safety in use without the need for the aforementioned separate circuit monitoring and control circuits.
Figure 2C is a cross section taken along the section lines 2C-2C of Figure 2B and illustrating the effective circuit impedance z3' represented by the segment 21 of 2B.
There, in Figure 2C are seen small segment 21 with its upper patient-contacting surface 24 represented electrically by terminal 23 and its lower surface 25 represented by electrical terminal 22 A. For the purpose of this description (and in order to present the principles underlying this embodiment clearly), the impedance z3' may be thought of as existing between terminals 23 and 22A. Of course, it will be evident to those skilled in the art that in an embodiment in which a thin but highly conductive layer is included along the lower surface of electrode 20, each of the impedances represented by the remaining segments are connected at their lower extremities in parallel to terminal 22; whereas, if such highly conductive layer is absent, then, in addition to the impedance represented by the material lying between the upper and lower regions of each segment, there will be an additional impedance (not shown) that is represented by the material through which current would have to pass transversely or laterally through the electrode in order to get to terminal 22.
It should now be evident that if lateral impedance is minimized by provision of the aforementioned thin conducting layer, or if the effective conductivity at the lower part of the material of region 21 is otherwise increased, the effective impedance presented by the return electrode will be inversely proportional to the effective upper surface of the electrode that is in contact with a patient.
Figure 3 is a chart generally illustrating in graphic form the relationships between the effective surface area of the return electrode and the effective radio frequency current densities developed at the electrode. However, before proceeding to a consideration of such chart, it should be noted that the chart is simplified so as to illustrate the principles underlying die invention and does not represent actual data that may vary substantially. In Figure 3 there is seen a plot of RF Current Density versus Electrode Effective Surface Area, the latter (as should now be evident to those skilled in the art) being that part of the surface of the return electrode that makes effective electrical contact with the body of a patient. As would be expected from the foregoing discussion, when the effective area is large, the current at the surgeon's implement is high (dashed graph line 30) and the corresponding current density across the return electrode is very low (solid graph line 31). This is, of course, the condition desired for conducting surgery. However, if we assume constant current throughout the circuit, as the effective surface area decreases, the current density across the return electrode (solid graph line 31) increases with a corresponding decrease of the current at the surgeon's instrument (dashed graph line 30). When the effective surface area declines to some predetermined point, there will remain insufficient current at the surgical instrument to effectively conduct surgery. It may be appreciated by one skilled in the art that the change in current density and available current to the surgeon may or may not occur simultaneously with the variations in effective surface area. Various embodiments of the present invention may have substantially simultaneous changes in current density and available current, while other embodiments of the present invention may include a lag period therebetween. The parameters selected for the materials and electrode dimensions are chosen so that current density and corresponding tissue temperature elevation adjacent the return electrode do not exceed the limits mentioned in the introduction hereof. It will now be seen that by a proper selection of such parameters the return electrode is made self-limiting, thereby obviating the need for the additional monitoring circuits to which reference is made above.
To facilitate description of the principles underlying the invention, the foregoing is described in terms of impedances whose principal components are resistances and capacitive reactances. However, the principles of the invention are also applicable to other embodiments in which the impedances include any combination of resistive, capacitive and/or inductive impedances.
The invention hereof is now further described in connection with applications in which an effective dielectric layer is represented by a physical dielectric layer on the upper surface of the electrode, by the material of a surgical gown worn by the patient, by a bed sheet or other operating room linens interposed between the patient and the return electrode, by the material of a protective sleeve fitted over the return electrode, or any combination thereof.
Reference is now made to Figure 4, which illustrates in perspective an operating table 40 with an electrosurgical return electrode 41 according to the invention disposed on the upper surface thereof, an edge of which is identified by the numerals 42. The operating table is shown to have conventional legs 44a-44d that may be fitted with wheels or rollers as shown. Table 40 is one structure that is capabe of performing the function of supporting means for supporting a patient during treatment. It may be appreciated by one skilled in the art, however, that various other configurations of support means are possible and capable of performing this function. For example, supporting means may include, but not limited to, chairs, plates, beds, carts, and the like. Although in Figure 4, the entire upper surface of the table is shown as being covered with return electrode 41, it should be understood that entire coverage is by no means required in order to practice the principles of the invention. Thus, when used with conventional electrosurgical generators, the return electrode needs only to present an effective working surface area which is sufficient to provide adequate resistive, capacitive or inductive coupling at the typically employed RF frequencies so as not to interfere with the surgeon's ability to perform surgery while at the same time avoiding undesired tissue damage. It has been found that at conventional electrosurgical frequencies, this has necessitated only an effective working surface area no larger than about the projected outline of one-half of the torso for an adult patient lying on an operating table or the buttocks of a patient sitting in a chair such as is illustrated in Figure 5. However, the effective working surface area will vary depending on the material used, in some geometrical configurations, and in instances where various layers of operating room linens are placed over the electrode. The principles hereof may be successfully employed and the effective working surface area of the return electrode determined in such circumstances by routine experimentation. Under certain conditions, the effective working surface may be as small as about seven square inches (or about 45 square centimeters).
Moreover, although the return electrodes shown in Figures 6-8 axe depicted as being rectangular in shape, it will be evident that they could be oval or contoured as, for example, to follow the silhouette of the torso or other principal part of the body of a patient. As will be evident from the foregoing, it is important that the electrode be configured so that when the electrode is used: (1) the return current density on the surface of the patient is sufficiently low; (2) the electrical impedance between the electrode and the patient is sufficiently low so that electrical energy is not concentrated sufficiently to heat the skin of the patient at any location in the electrical return path by more than six degrees (6°) Celsius; and (3) the characteristics of the materials and geometries are such that if the effective area of the electrode is reduced below a selected threshold level, there will be insufficient energy dissipated at the surgeon's implement for him to continue effectively using the implement in its electrosurgical mode. As will be recognized by those skilled in the art, it is not necessary for there to be direct ohmic contact between the skin of a patient and the return electrode hereof for the electrode to perform generally according the foregoing description, for although capacitive reactance (represented by the distance between a patient's body and the electrode) will be introduced if something such as a surgical gown separates them, such capacitive reactance will modify rather than destroy the impedance identified as z3. As is known to those skilled in the art, in an alternating current circuit (e.g., such as those used in electrosurgery) the capacitive reactance of an impedance is a function both of capacitance and the frequency of the alternating current electrical signal presented to the reactance. Thus, the formula for capacitive reactance (in ohms) is
ι
X, = — — (2) c 2 fC }
where Xc is capacitive reactance in ohms, π is 3.14159, f is frequency in hertz, and C is capacitance in farads. The formula for capacitance in a parallel plate capacitor is:
C = — ?- (3)
where C is capacitance in Farads, K is the dielectric constant of the material lying between the effective plates of the capacitor, A is the area of the smallest one of the effective plates of the capacitor in square meters, t is separation of the surfaces of the effective plates in meters, and e0 is the pen ttivity of air in Farads per meter. Thus, it will be seen that to meet maximum permissible temperature rise criteria in an embodiment in which electrode circuit capacitance is substantial, different minimum sizes of electrodes may be required depending upon the frequency of the electrical generator source, the separation of the body of the patient from the electrode, and the material lying between the effective conductive region of the electrode and the adjacent body surface. Accordingly, although the principles of the invention are applicable to a wide range of frequencies of electrosurgical energy, the considerations set forth herein for minimum sizes of return pads specifically contemplate frequencies typically employed in conventional electrosurgical energy generators.
Those skilled in the art know that, with the currently used disposable return electrodes, reducing the effective size of the electrode to three square inches will not reduce the RF current flow to a level where it will impede the surgeon's ability to perform surgery nor concentrate current to a level to cause patient trauma. However, to provide for some spacing of the electrode from patient's body, a return electrode according to the invention hereof, would need a minimum effective area of between about 7 and about 11 square inches (or about 45 cm2 to about 70cm2 ) with a relatively small separation from the slcin of the patient such as that provided by a surgical gown or no interposing gown at all. Such an effective area is easy to obtain if the patient is positioned on an electrode that is the size of their upper torso or larger.
The characteristics of the desired dielectric for the present embodiment are sufficiently comparable to those of selected rubbers, plastics and other related materials that the latter may be satisfactorily employed as materials for the return electrode. As mentioned above, with such a return electrode, if the patient is positioned such that not enough of the return electrode is in close proximity to the patient to result in as low impedance as needed, the results would be that the current flow from the electrosurgical generator would be reduced to a level making it difficult for the surgeon to perform surgery. Thus, in the present embodiment, notwithstanding interposition of some additional capacitance represented by a surgical gown, the features described above will continue to occur.
As mentioned above, Figure 5 is a front view illustrating a surgical chair 50 with an electrosurgical return electrode 51 according to the invention disposed on the upper surface of the seat thereof. Accordingly, when a patient is sitting in the chair, the buttocks and upper part of the thighs overlie and are in sufficiently close proximity to the return electrode so that coupling there between presents an impedance meeting the foregoing criteria; namely, that the electrical impedance between it and the patient is sufficiently low to allow the surgeon to perform the procedure while providing that current density is sufficiently low and that insufficient electrical energy is developed across the return impedance to heat the slcin of the patient at any location in the electrical return path by more than six degrees (6°) Celsius.
Figure 6 is a top view of another electrosurgical return electrode according to the invention. It will be observed that the upper exposed, or working, surface of the electrode again is expansive so as to meet the foregoing criteria for low impedance. Although it is not necessary that the electrode cover the entire surface of an operating table or the entire seat surface of a dental or other patient chair, it has been found advantageous in some instances to provide a greater surface area than that of the projected area of the buttocks or torso of a patient so that if a patient moves position during the course of a procedure, a sufficient portion of the patient will remain in registration with the electrode surface so that the effective impedance will remain less than the above-described level. At this juncture, it may be helpful to emphasize characteristics of the improved electrode according to the invention hereof that are deemed particularly relevant to an understanding of the inventive character thereof. First, as mentioned above, the electrode does not need to be in direct contact with a patient, either directly or through intervening conductive or nonconductive gel. In addition, because of its expansive size, there is no need for tailoring the electrode to fit physical contours of a patient. In this connection, it has been found that although with selected materials and geometries, the self-correcting and self-limiting principles hereof could be achieved in an electrode as small as seven square inches (or 45 square centimeters) in working surface area, the preferable range of exposed upper working surface area of the electrode lies in the range of from about 11 to 1,500 square inches (or about 70 to 9,680 square centimeters). By making the electrode several times larger (typically, at least an order of magnitude larger) in working surface area than previous proposals, the need for direct physical attachment, either directly to the skin of the patient or through gels, is eliminated. The electrode according to the invention hereof, as illustrated in Figure 6, may be made of conductive plastic, rubber or other flexible material which, when employed in the electrode will result in an effective dc resistance presented by each square centimeter of working surface to be greater than about 8000 ohms. Silicone or butyl rubber have been found to be particularly attractive materials as they are flexible, as well as readily washable, sterilizable, and disinfectable. Alternatively, the main body of the return electrode may be made of inherently relatively high resistance flexible material altered to provide the requisite conductivity. A preferred example of the latter is that of silicone rubber material in which there are impregnated conductive fibers, such as carbon fiber, or in which there have been distributed quantities of other conductive substances such as carbon black, quantities of gold, silver, nickel, copper, steel, iron, stainless steel, brass, aluminum, or other conductors.
Further reference to Figure 6 reveals the presence of a conventional electrical connector 54 attached to the electrode 41 to provide a conventional electrical return to the electrosurgical radio frequency energy source (not shown). Connector 54 is another structure capable of performing the function of connecting means for making electrical connection to the sheet. Connector 54 is only illustrative of one possible structure for performing the desired function; it being appreciated by one skilled in the art that various other structures are capable of performing this function.
As mentioned above, Figure 7 is a section taken along the lines 7-7 of Figure 6. Figure 7 shows an electrode 46 similar to electrode 20 of Figures 2A-2C, except that electrode 46 includes a thin highly-conductive lower stratum 46c to facilitate conduction of current outwardly to terminal 54. In one preferred form, the thickness of the electrode lies in a range from about 1/32 inch to 1/4 inch (about 0.08 cm to 0.64 cm), which, with the aforementioned range of impedance of the main body of material and the capacitive reactance of the upper dielectric layer, provides the required impedance together with desired physical flexibility for ease of use and handling.
Figure 8 is a section similar to that of Figure 7, but presenting a multiple layer embodiment illustrating the separation presented by a patient's gown according to the invention hereof. There, in Figure 8 are shown a layer 46a (similar to layer 46 of Figure 7) and an overlying effectively capacitive layer 47 representing an insulating dielectric layer, a patient's surgical gown, an operating room linen, a protective sleeve or sheath, or any combination thereof. It should be understood that in addition to a construction similar to that of the electrode of Figures 6-7, a conductive layer 47a of Figure 8 could comprise a sheet or screen of gold, brass, aluminum, copper, silver, nickel, steel, stainless steel, conductive carbon, conductive fluids, gels, saline, and the like. Further reference ' to Figure 8 reveals another dielectric layer 47b covering the lower surfaces of layer 46a.
Figure 9 is a perspective view of a sleeve 50 adapted for encasing any one of the embodiments of Figures 6-8. Thus, provision is optionally made for encasing the foregoing return pad-shaped electrodes within protective envelopes in situations in which it is desired to eliminate the need for cleaning the electrode itself by protecting it from contamination through the use of a sleeve of impervious material from which the electrode, after use, can merely be withdrawn and the sleeve discarded. As will be evident to those skilled in the art, such a sleeve may preferably be made of any of a variety of known materials, such as vinyl plastics, polyester or polyethylene.
Figure 10 is a view illustrating one of the embodiments of Figures 6-8 encased within the sleeve of Figure 9. There, it will be seen, is outer surface 50a of sleeve 50; and shown encased within sleeve 50 for illustrative purposes is electrode 41 of Figure 6.
INTERRELATIONSHIPS OF GEOMETRIES MATERIALS AND POWER SOURCES As mentioned above, Figures 11-16 are set forth to define the geometries and characteristics of materials employed to obtain the foregoing self-limiting action. Discussion will be made hereinafter to an illustrative electrode that may be used for electrosurgical procedures utilizing capacitive conduction while still remaining self- limiting. Although discussion is made herein with respect to an electrosurgical electrode functioning under capacitive conduction, similar illustrative information and examples may be provided for resistive and inductive conduction, as described herein and known by one skilled in the art.
Figure 11 depicts an electrosurgical electrode 60 consisting of a conductive metal backing 61 and a semi-insulating layer 62 of material with bulk resistivity p, thickness t and area A. The electrode is in contact with another conducting layer 63 which represents a patient thereupon. The circuit can be modeled as a resistor R in parallel with a capacitor C (Figure 12). The resistance R is related to the bulk resistivity p, area A, and thickness t by the formula
R - -^ (4)
A
The capacitance C is approximately related to the area A, thickness t, electric permittivity constant e0 = 8.85xl0"12 F/m and the dielectric constant of the material K:
C = — ^ (5)
The magnitude of the capacitor impedance is
Figure imgf000016_0001
The ratio Y of the current flow due to the capacitive path to the current flow due to the resistive path is
1 ω e0A
7 = χc t ωκenp (7)
1 A
R
The ratio Y is independent of the electrode area and thickness, depending only upon K and p . For principally capacitive coupling, Y»l , whereas for principally resistive power conduction, Y «1 The boundary between the capacitive current and the resistive current is Y = l.
1 = 2πfkeQp (8) We can use this, along with the value of e0, to find the necessary values of p for capacitive conduction, given nominal values of K and ω=2πf where f is the signal frequency.
1 (9)
2π e
For most insulating materials, K ranges from 3 to 5. Commercially available electrosurgical generators presently have operating frequencies ranging from 200 kHz to 4 MHz. For κ=5 and f = 4 MHz, we need p > lxlO5 Ω-cm for the electrosurgical electrode to ground the majority of its current through capacitive coupling. For K =3 and f = 200 kHz, we require p ≥ 3x106 Ω-cm.
The percentage of total current derived through capacitive coupling is given by
( Pif
X} pet = R A
I R + \ x ( pi.2
I Λ I2 \ X A AeQκω
P' (e0κωp)2
(10)
,2 + ( l (e0κω p)2 + 1 eQκω
Figure 13 illustrates the percentage (%) of capacitive coupling for various frequency electrosurgical generators. At the extreme (4 MHz), a minimum bulk resistivity of 100,000 Ohm-cm is required for the majority of the power to be passed through capacitive coupling. This minimum bulk resistivity number is greater than required by the available prior art. Consequently, the capacitive coupling electrode grounding pad according to the invention hereof appears to be neither taught nor suggested by known prior art. A product according to the invention hereof can be easily distinguished from previous art through a simple test of the bulk resistivity of the insulating material, independent of pad area or pad thickness.
TOTAL ELECTRODE GROUND PAD IMPEDANCE AND SELF-LIMITING FEATURE The self-limiting feature of the electrosurgical return electrode arises due to the impedance of the electrode material. This impedance may arise from resistive, inductive, or capacitive components, or a combination thereof. For example^ a single layer of insulative material placed between a conductive surface and the patient presents an impedance equivalent to a resistor in parallel with a capacitor.
For the resistor in parallel with the capacitor combination, the total impedance is
Figure imgf000018_0001
where j is an imaginary component of reactance, and ω is the angular frequency and is defined as ω=2πf where f is the electrosurgical generator frequency. The magnitude of the impedance is
Figure imgf000018_0002
Substituting the dependence of R and C on the area A, thickness t, bulk resistivity p, and the dielectric constant of the material K, as defined by Equations 4 and 5, gives
Figure imgf000018_0003
According to the AAMI standard, the total impedance of the electrosurgical electrode should be less than 75 Ω under normal operating conditions. It is preferred, therefore, that
Pi 1
≤ 75Ω (14)
A 1 + ω2κ2e0p2
We define β as
-tot β (15)
75 Ω If β « 1, the electrode will have very low impedance compared to the AAMI standard, and the surgeon will not notice any degradation in the electrosurgical cutting power due to the electrode. If β » 1, the electrosurgical electrode will have such a large impedance that the surgeon will no longer be able to perform electrosurgery. Using β in the above inequality, the expression becomes an equality:
Figure imgf000019_0001
It is preferred that self-limiting occurs when the electrode has a large electrode area in contact with the patient; however it is also necessary for self-limiting to occur when the patient only makes contact with a small fraction of the total electrode area (Figure 14). For self-limiting to work properly, it is necessary for the current density (I/A), where / is the total current through the contact area A of the electrosurgical return electrode, through this reduced area to not exceed a critical value
(i}
Figure imgf000019_0002
{i)criticai ~~ 10° mA/cmZ (17) AAMI standards indicate that normal electrosurgical currents are on the order of 500-700 mA. If we set 1000 mA = Imax as a safe upper limit as to what one might expect for an above average power surgery, then, in order to return the current to the electrode without exceeding Icriticah the contact aιeaAconlacl(min for traditional electrosurgical return electrodes must have a minimum size:
Figure imgf000019_0003
It can be appreciated that Imax may vary from patient to patient due to changes in the amount of time that the electrode is in contact with the patient, the electrical characteristics of the patient's skin (i.e., resistivity and the like), the amount of heat being conducted by the patient, the patients initial skin temperature, and the like. With an electrosurgical return electrode designed according to the prior art, in the event that the contact area with the patient reduces below the AC0Macl (mjn), while maintaining the Imax, a burn may result because (I/A)crilica, is greater than lOOmA/cm2, which is the burn tlireshold. In contrast, the present invention limits the possibility of a burn caused from a reduction of the contact area below Aconlacl(min), while also preventing electrosurgical procedures when the contact area is significantly reduced. Therefore, by selecting the appropriate impedance of the electrode, the current I is always reduced below Imax when
" Λ< ■rΛconlacl(mm)'
As such, the impedance between the small electrode with area Aconlact(min) and the larger metal foil is not simply
R = ?1 (19) contact(ra )
as current can flow through the areas not directly below the patient contact area Aconlacl (Figure 15). Approximately 10-20% more current flows through the area patient contact
A coma than one would expect if the total area of the resistive layer were Acontact(min). Equivalently, the effective impedance of the electrode is 10-20% less than what one would normally expect if these edge effects were not present resulting in additional current flow. As previously mentioned, Figure 15 reveals current flow distribution through the semi-insulating part of the electrode when the upper contact area with the patient is much smaller than the total electrode surface area. As depicted, current flows through parallel paths around the contact region thus reducing the overall impedance to current flow and thereby increasing the effective area about 10-20 percent. In the Figure, the opaque or heavily hatched region denotes heavier current flow, and the lighter or lightly hatched regions denote lessor current flow.
In order for the electrode to be self limiting, which is efficacious as defined by the AAMI standard, it is preferred a.atAconlacl(min have a value from about 7 cm2 to about 22 cm2, and more preferably about 10 cm2. Similarly, it is preferred that β range from about 10 to about 50, and more preferably have a value of about 10. Using the various values for Acontαct(min) and β, it is preferable to solve Equation 16 for the thickness t as a function of the bulk impedance p at different electrosurgical generator frequencies ω, inserting a factor to account for the edge effects described above. In the particular illustrative embodiment of the present invention the factor of 1.2 is included within the resistivity and reactance terms of the equation; however, it may be appreciated by one skilled in the art that the factor of 1.2 is geometry dependent for both the resistive and reactance terms and may vary. Additionally, the value of 1.2 is based on the illustrative geometry of the presently described self limiting electrode and when the geometry of the electrode varies, the factor value will also vary to account for the different edge effects.
The resulting equation (which identifies and defines the interrelationships of parameters affecting self-limitation) is
Figure imgf000021_0001
P
As previously mentioned, Figure 16 illustrates the variation of mimmum impedance with electrode thickness, requiring κ=5. The maximum electrode thickness one could imagine using would range from about 0.5 to about 4 inches (about 1.3 cm to about 10.2 cm), and more preferably about 1 inch (2.5 cm) thick. At this thickness the electrode may become unwieldy to use and uncomfortable for the patient. Thus, the minimum bulk resistivity for a electrode of such thickness is about 4000 Ω-cm to be self-limiting in a resistive mode as previously noted.
Although discussion is made herein to calculating the bulk resistivity of the electrosurgical electrode of the present invention, it may be appreciated by one skilled in the art that similar analysis is possible with respect to the generalized bulk impedance of the electrode. Therefore, usage of the term "resistive" or "resistivity" is deemed to include resistive, capacitive, and/or inductive components that may combine to give an effective bulk resistivity or impedance. In light of this, the present invention requires a mimmum bulk impedance of 100,000 Ω-cm for the majority of the electrical power of the electrosurgical electrode to come from capacitive coupling. It will now be evident that there has been described herein an improved electrosurgical return electrode characterized by being generally pad-shaped and evidencing the features of being self-limiting while being reusable, readily cleanable and obviating the necessity for use of conducting gels or supplementary circuit monitoring equipment. Although the invention hereof has been described by way of preferred embodiments, it will be evident that adaptations and modifications may be employed without departing from the spirit and scope thereof.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope. What is claimed is:

Claims

I . An electrosurgical return electrode comprising:
(a) a sheet of material having an effective bulk impedance equal to or greater than about 100,000 Ω-cm; and
(b) connecting means for making electrical connection to said sheet.
2. An electrosurgical return electrode according to claim 1, wherein said sheet comprises electrically conducting material having an effective bulk impedance equal to or greater than about 100,000 Ω-cm.
3. An electrosurgical return electrode according to claim 1, wherein said sheet comprises normally insulating material impregnated with electrically conducting fibers to render said sheet to have an effective bulk impedance equal to or greater than about 100,000 Ω-cm.
4. An electrosurgical return electrode according to claim 1, wherein said sheet comprises normally insulating material impregnated with electrically conducting carbon black to render said sheet to have an effective bulk impedance equal to or greater than about 100,000 Ω -cm.
5. An electrosurgical return electrode according to claim 1, wherein said sheet comprises:
(i) a first layer of predetermined limited electrical conductivity; and
(ii) a second layer of dielectric material having a predetermined capacitive reactance, said second layer contacting and overlying said first layer.
6. The electrosurgical return electrode of claim 1, wherein said sheet comprises a working surface for being positioned in contact with or in close proximity to a patient, said working surface having a surface area equal to or greater than about 11 square inches.
7. The electrosurgical return electrode of claim 6, wherein said working surface having a surface area within a range from about 11 to about 1 ,500 square inches.
8. An electrosurgical return electrode according to claim 1 wherein the return electrode is sterilizable.
9. An electrosurgical return electrode according to claim 1 wherein the return electrode is washable.
10. An electrosurgical return electrode according to claim 1 wherein the return electrode is reusable.
I I. An electrosurgical return electrode according to claim 1 wherein the return electrode is disinfectable.
12. An electrosurgical return electrode according to claim 1, wherein the return electrode is disposable.
13. The electrosurgical return electrode of claim 1, 2, 3, 4, 5, 6, 7, 8 , 9, 10, 11, or 12 further comprising an insulating sleeve substantially enclosing said sheet.
14. An electrosurgical return electrode according to claim 6 or 7, wherein said sheet has a predetermined thickness and wherein the relationship between a bulk resistivity, the surface area, and the predetermined thickness are defined by the equation:
Figure imgf000024_0001
where t = thickness
K = dielectric constant of insulating material β = total impedance divided by the AAMI standard (75 ohms) ω = angular frequency of electrosurgical generator (radians/sec) p = bulk resistivity (Ω-cm)
A = electrode or pad area (cm2) e0 = electrical permeability constant (F/m).
15. A reusable electrosurgical return electrode comprising a sheet of material having an effective bulk resistivity equal to or greater than about 100,000 Ω-cm, said sheet having connection means for making electrical connection to said sheet; said sheet having a first major surface including a working surface adapted for disposition immediately adjacent the trunk region of a patient positioned for electrosurgery, wherein said area of said working surface is at least substantially equal to or greater than the projected area of the entire trunk region of said patient.
16. The reusable electrosurgical return electrode according to claim 15 wherein said major surface is sterilizable.
17. The reusable electrosurgical return electrode according to claim 15 wherein said major surface is washable.
18. An electrosurgical return electrode according to claim 15 wherein the return electrode is disinfectable.
19. An electrosurgical return electrode according to claim 15, wherein the return electrode is disposable.
20. The reusable electrosurgical return electrode accordmg to claim 15 wherein said sheet is principally comprised of electrically conducting material having limited conductivity.
21. The reusable electrosurgical return electrode according to claim 15 wherein said sheet is comprised of normally insulating material impregnated with electrically conducting fibers to render said sheet at least partially conductive.
22. The reusable electrosurgical return electrode according to claim 15 wherein said sheet is comprised of normally insulating material impregnated with electrically conducting carbon black to render said sheet at least partially conductive.
23. The reusable electrosurgical return electrode according to claim 15 wherein said area of said major surface is greater than the projected area of the entire body of the said patient.
24. The reusable electrosurgical return electrode according to claim 15 wherein said area of said working surface is at least substantially equal to the projected area of the entire body of said patient.
25. The electrosurgical electrode according to claim 15, wherein the electrode is incorporated within a supporting means for supporting the patient during treatment and having an insulating material coupled thereto.
26. The electrosurgical electrode according to claim 15, wherein the electrode includes a single sheet of material.
27. In combination, an operating table and a reusable electrosurgical return electrode comprising a sheet of material having an effective bulk resistivity equal to or greater than about 100,000 Ω-cm, said sheet having connection means for making electrical connection to said sheet; said sheet having a major surface including a working surface adapted for disposition immediately adjacent the trunk region of a patient when positioned for electrosurgery on said operating table, wherein said area of said major surface is sufficient to substantially cover said operating table when said patient is in a horizontal position on said operating table.
28. In combination, an operating table and a reusable electrosurgical return electrode comprising a sheet of material having an effective bulk resistivity equal to or greater than about 100,000 Ω-cm, said sheet having connection means for making electrical connection to said sheet; said sheet having a major surface, including a working surface adapted for disposition immediately adjacent the trunk region of a patient when positioned for electrosurgery on said operating table wherein said area of said major surface is sufficient to substantially cover said operating table when said patient is in a horizontal position on said operating table, and an insulating sleeve substantially covering said major surface of said sheet when said sheet is disposed on the patient- supporting surface of said operating table.
29. In combination, a reusable electrosurgical return electrode comprising a sheet of material having an effective bulk resistivity equal to or greater than about 100,000 Ω-cm, said sheet having connection means for making electrical connection to said sheet; said sheet having a first major surface including a working surface adapted for disposition immediately adjacent the trunk region of a patient positioned for electrosurgery, wherein said area of said working surface is at least substantially equal to the projected area of the entire trunk region of said patient, and an insulating sleeve substantially covering said major surface of said sheet.
30. In combination, a reusable electrosurgical return electrode according to claim 21 further including a second major surface and a metallized conductive region upon one of said major surfaces.
31. A reusable electrosurgical return electrode comprising a sheet of material having an effective bulk resistivity equal to or greater than about 100,000 Ω-cm, said sheet having connection means for making electrical connection to said sheet; said sheet having a major surface including a working surface adapted for disposition immediately adjacent the trunk region of a patient positioned for electrosurgery, said working surface having an area of at least 11 square inches, and self-limiting means including said predetermined limited electrical conductivity for limiting density of electrosurgical current flowing through said electrode to less than 100 milliamperes per square centimeter of said working surface area.
32. A reusable electrosurgical return electrode according to claim 31 wherein said self-limiting means includes means for limiting temperature rise of patient tissue in registration with said electrode to six degrees (6°) Celsius when current is flowing through said electrode during a surgical procedure.
33. In combination, a reusable electrosurgical return electrode according to claim 31 and means including an electrosurgical instrument in operating deployment.
34. A reusable electrosurgical return electrode comprising:
(a) a sheet of material having an effective bulk resistivity equal to or greater than about 100,000 Ω-cm; and (b) connecting means for making electrical connection to said sheet. wherein the effective bulk resistivity of said electrode automatically and continuously limits the density of electrosurgical current flowing through said electrode to less than
100 milliamperes per square centimeter.
35. A reusable electrosurgical return electrode comprising: (a) a sheet of material having an effective bulk resistivity equal to or greater than about 100,000 Ω-cm; and (b) connection means for making electrical connection to said sheet; and
(c) self-limiting means for limiting the density of electrosurgical current flowing through said electrode to less than 100 milliamperes per square centimeter of said electrode.
36. A reusable electrosurgical return electrode comprising:
(a) a sheet of material having an effective bulk resistivity equal to or greater than about 100,000 Ω-cm and having a working surface adapted for disposition adjacent the tissue of a patient positioned thereon for electrosurgery; and
(b) com ecting means for making electrical connection to said sheet, wherein the effective bulk resistivity of said sheet continuously and automatically regulates the electrosurgical current flowing through said electrode as a function of the area of contact between said electrode and said patient's tissue so as to limit the density of said electrosurgical current to less than 100 milliamperes per square centimeter.
37. A reusable electrosurgical return electrode comprising:
(a) a sheet of electrically-conductive material having an effective bulk resistivity equal to or greater than about 100,000 Ω-cm and having a working surface adapted for disposition adjacent the tissue of a patient positioned thereon for electrosurgery; and
(b) connection means for making electrical connection to said sheet; wherein the effective impedance of the electrode varies as an inverse function of the area of contact between said electrode and said patient's tissue so as to continuously and automatically limit the density of electrosurgical current passing through the electrosurgical return electrode to less than 100 milliamperes per square centimeter.
38. The reusable electrosurgical return electrode of claim 34, 35, 36,or 37, wherein said sheet has a surface area equal to or greater than about 100 square centimeters.
39. The reusable electrosurgical return electrode of claim 34, 35, 36,or 37, wherein said sheet has a surface area within a range from about 11 to about 1,500 square inches.
40. The reusable electrosurgical return electrode of claim 34, 35, 36,or 37, further comprising an insulating sleeve substantially enclosing said sheet.
41. In combination, a reusable electrosurgical return electrode according to claim 37 and means including an electrosurgical instrument in operating deployment, wherein said self-limiting means includes means for noticeably reducing the effectiveness of said electrosurgical instrument when said density of said electrosurgical current rises to approach a predetermined level.
42. The reusable electrosurgical return electrode according to claim 37 wherein said sheet of material is sterilizable.
43. A reusable electrosurgical return electrode according to claim 37 wherein said sheet of material is washable.
44. A reusable electrosurgical return electrode according to claim 37 wherein the sheet of material is disinfectable.
45. A reusable electrosurgical return electrode according to claim 37 wherein the sheet of material is disposable.
46. A reusable electrosurgical return electrode according to claim 37 wherein said sheet is principally comprised of electrically conducting material having limited conductivity.
47. A reusable electrosurgical return electrode according to claim 37 wherein said sheet is comprised of normally insulating material impregnated with electrically conducting fibers to render said sheet at least partially conductive.
48. A reusable electrosurgical return electrode according to claim 37 wherein said sheet is comprised of normally insulating material impregnated with electrically conducting carbon black to render said sheet at least partially conductive.
49. A reusable electrosurgical return electrode according to claim 37 wherein the area of said sheet is greater than the projected area of the entire body of the said patient.
50. A reusable electrosurgical return electrode according to claim 37 wherein the area of said sheet is at least substantially equal to the projected area of the entire body of said patient.
PCT/US2001/017435 2001-01-24 2001-05-31 Capacitive reusable electrosurgical return electrode WO2002058579A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/769,025 US6582424B2 (en) 1996-10-30 2001-01-24 Capacitive reusable electrosurgical return electrode
US09/769,025 2001-01-24

Publications (1)

Publication Number Publication Date
WO2002058579A1 true WO2002058579A1 (en) 2002-08-01

Family

ID=25084191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/017435 WO2002058579A1 (en) 2001-01-24 2001-05-31 Capacitive reusable electrosurgical return electrode

Country Status (2)

Country Link
US (1) US6582424B2 (en)
WO (1) WO2002058579A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1265672A1 (en) * 2001-01-31 2002-12-18 Megadyne Medical Products, Inc. Pressure sore pad having self-limiting electrosurgical return electrode properties and optional heating/cooling capabilities
US6997735B2 (en) 2001-06-01 2006-02-14 Sherwood Services Ag Return pad cable connector
US7736359B2 (en) 2006-01-12 2010-06-15 Covidien Ag RF return pad current detection system
US8523853B2 (en) 2008-02-05 2013-09-03 Covidien Lp Hybrid contact quality monitoring return electrode
US8690867B2 (en) 2007-05-11 2014-04-08 Covidien Lp Temperature monitoring return electrode
US9539051B2 (en) 2007-08-01 2017-01-10 Covidien Lp System and method for return electrode monitoring
US11364076B2 (en) 2019-12-12 2022-06-21 Covidien Lp Monopolar return pad

Families Citing this family (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004529473A (en) * 2001-06-01 2004-09-24 シャーウッド・サービシーズ・アクチェンゲゼルシャフト Return pad cable connector
JP3778432B2 (en) 2002-01-23 2006-05-24 東京エレクトロン株式会社 Substrate processing method and apparatus, and semiconductor device manufacturing apparatus
US6860881B2 (en) 2002-09-25 2005-03-01 Sherwood Services Ag Multiple RF return pad contact detection system
US20040115477A1 (en) * 2002-12-12 2004-06-17 Bruce Nesbitt Coating reinforcing underlayment and method of manufacturing same
AU2003284929B2 (en) 2003-10-23 2010-07-22 Covidien Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation
CA2541037A1 (en) * 2005-03-31 2006-09-30 Sherwood Services Ag Temperature regulating patient return electrode and return electrode monitoring system
US8814861B2 (en) * 2005-05-12 2014-08-26 Innovatech, Llc Electrosurgical electrode and method of manufacturing same
US7147634B2 (en) * 2005-05-12 2006-12-12 Orion Industries, Ltd. Electrosurgical electrode and method of manufacturing same
US20070167942A1 (en) * 2006-01-18 2007-07-19 Sherwood Services Ag RF return pad current distribution system
US7909819B2 (en) * 2006-09-01 2011-03-22 Applied Medical Resources Corporation Monopolar electrosurgical return electrode
US7927329B2 (en) 2006-09-28 2011-04-19 Covidien Ag Temperature sensing return electrode pad
US7722603B2 (en) 2006-09-28 2010-05-25 Covidien Ag Smart return electrode pad
US8021360B2 (en) 2007-04-03 2011-09-20 Tyco Healthcare Group Lp System and method for providing even heat distribution and cooling return pads
US8777940B2 (en) 2007-04-03 2014-07-15 Covidien Lp System and method for providing even heat distribution and cooling return pads
US8080007B2 (en) 2007-05-07 2011-12-20 Tyco Healthcare Group Lp Capacitive electrosurgical return pad with contact quality monitoring
US8388612B2 (en) 2007-05-11 2013-03-05 Covidien Lp Temperature monitoring return electrode
US8100898B2 (en) 2007-08-01 2012-01-24 Tyco Healthcare Group Lp System and method for return electrode monitoring
US8486059B2 (en) * 2008-02-15 2013-07-16 Covidien Lp Multi-layer return electrode
ES2442241T3 (en) 2008-03-31 2014-02-10 Applied Medical Resources Corporation Electrosurgical system with a switching mechanism
US8876812B2 (en) * 2009-02-26 2014-11-04 Megadyne Medical Products, Inc. Self-limiting electrosurgical return electrode with pressure sore reduction and heating capabilities
US8628524B2 (en) * 2009-04-27 2014-01-14 Bovie Medical Corporation Return electrode detection and monitoring system and method thereof
US20110238058A1 (en) * 2010-03-29 2011-09-29 Estech, Inc. (Endoscopic Technologies, Inc.) Indifferent electrode pad systems and methods for tissue ablation
ES2664081T3 (en) 2010-10-01 2018-04-18 Applied Medical Resources Corporation Electrosurgical system with a radio frequency amplifier and with means for adapting to the separation between electrodes
US20140152094A1 (en) * 2011-08-16 2014-06-05 Koninklijke Philips N.V. Capacitive wireless power inside a tube-shaped structure
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US20150107022A1 (en) * 2013-10-18 2015-04-23 Phoenix Chemical Corp. Meditation surface adaptable for electrical grounding and method for using same
US9867650B2 (en) 2013-12-26 2018-01-16 Megadyne Medical Products, Inc. Universal self-limiting electrosurgical return electrode
US10085791B2 (en) 2013-12-26 2018-10-02 Megadyne Medical Products, Inc. Universal self-limiting electrosurgical return electrode
KR102537276B1 (en) 2014-05-16 2023-05-26 어플라이드 메디컬 리소시스 코포레이션 Electrosurgical system
AU2015266619B2 (en) 2014-05-30 2020-02-06 Applied Medical Resources Corporation Electrosurgical instrument for fusing and cutting tissue and an electrosurgical generator
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
US10420603B2 (en) 2014-12-23 2019-09-24 Applied Medical Resources Corporation Bipolar electrosurgical sealer and divider
USD748259S1 (en) 2014-12-29 2016-01-26 Applied Medical Resources Corporation Electrosurgical instrument
US11283213B2 (en) 2016-06-17 2022-03-22 Megadyne Medical Products, Inc. Cable connection systems for electrosurgical systems
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11229436B2 (en) 2017-10-30 2022-01-25 Cilag Gmbh International Surgical system comprising a surgical tool and a surgical hub
US20190125320A1 (en) 2017-10-30 2019-05-02 Ethicon Llc Control system arrangements for a modular surgical instrument
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11123070B2 (en) 2017-10-30 2021-09-21 Cilag Gmbh International Clip applier comprising a rotatable clip magazine
US11096693B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US11278281B2 (en) 2017-12-28 2022-03-22 Cilag Gmbh International Interactive surgical system
US11304763B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US10695081B2 (en) 2017-12-28 2020-06-30 Ethicon Llc Controlling a surgical instrument according to sensed closure parameters
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11179208B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Cloud-based medical analytics for security and authentication trends and reactive measures
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11844579B2 (en) 2017-12-28 2023-12-19 Cilag Gmbh International Adjustments based on airborne particle properties
US10987178B2 (en) 2017-12-28 2021-04-27 Ethicon Llc Surgical hub control arrangements
US20190201146A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Safety systems for smart powered surgical stapling
US11179175B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Controlling an ultrasonic surgical instrument according to tissue location
US11051876B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Surgical evacuation flow paths
US10755813B2 (en) 2017-12-28 2020-08-25 Ethicon Llc Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US10849697B2 (en) 2017-12-28 2020-12-01 Ethicon Llc Cloud interface for coupled surgical devices
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US11100631B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Use of laser light and red-green-blue coloration to determine properties of back scattered light
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11571234B2 (en) 2017-12-28 2023-02-07 Cilag Gmbh International Temperature control of ultrasonic end effector and control system therefor
US20190201090A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Capacitive coupled return path pad with separable array elements
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US11633237B2 (en) 2017-12-28 2023-04-25 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US20190200981A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US10892899B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Self describing data packets generated at an issuing instrument
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11304745B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical evacuation sensing and display
US11273001B2 (en) 2017-12-28 2022-03-15 Cilag Gmbh International Surgical hub and modular device response adjustment based on situational awareness
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US11234756B2 (en) 2017-12-28 2022-02-01 Cilag Gmbh International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US10944728B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Interactive surgical systems with encrypted communication capabilities
US11529187B2 (en) 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US10966791B2 (en) 2017-12-28 2021-04-06 Ethicon Llc Cloud-based medical analytics for medical facility segmented individualization of instrument function
US11056244B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks
US10898622B2 (en) 2017-12-28 2021-01-26 Ethicon Llc Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US10943454B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Detection and escalation of security responses of surgical instruments to increasing severity threats
US10932872B2 (en) 2017-12-28 2021-03-02 Ethicon Llc Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US11213359B2 (en) 2017-12-28 2022-01-04 Cilag Gmbh International Controllers for robot-assisted surgical platforms
US11672605B2 (en) 2017-12-28 2023-06-13 Cilag Gmbh International Sterile field interactive control displays
US11376002B2 (en) 2017-12-28 2022-07-05 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
US11013563B2 (en) 2017-12-28 2021-05-25 Ethicon Llc Drive arrangements for robot-assisted surgical platforms
US11771487B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11284936B2 (en) 2017-12-28 2022-03-29 Cilag Gmbh International Surgical instrument having a flexible electrode
US11253315B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Increasing radio frequency to create pad-less monopolar loop
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11147607B2 (en) 2017-12-28 2021-10-19 Cilag Gmbh International Bipolar combination device that automatically adjusts pressure based on energy modality
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
WO2019130091A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Capacitive coupled return path pad with separable array elements
US11160605B2 (en) 2017-12-28 2021-11-02 Cilag Gmbh International Surgical evacuation sensing and motor control
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11337746B2 (en) 2018-03-08 2022-05-24 Cilag Gmbh International Smart blade and power pulsing
US11534196B2 (en) 2018-03-08 2022-12-27 Cilag Gmbh International Using spectroscopy to determine device use state in combo instrument
EP3545887A1 (en) 2018-03-28 2019-10-02 Ethicon LLC Method for smoke evacuation for surgical hub
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US10973520B2 (en) 2018-03-28 2021-04-13 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
US11589865B2 (en) 2018-03-28 2023-02-28 Cilag Gmbh International Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US11207067B2 (en) 2018-03-28 2021-12-28 Cilag Gmbh International Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US11096688B2 (en) 2018-03-28 2021-08-24 Cilag Gmbh International Rotary driven firing members with different anvil and channel engagement features
US11166716B2 (en) 2018-03-28 2021-11-09 Cilag Gmbh International Stapling instrument comprising a deactivatable lockout
CN111936071A (en) 2018-03-30 2020-11-13 爱惜康有限责任公司 Method for smoke evacuation for surgical hub
JP2021536299A (en) 2018-09-05 2021-12-27 アプライド メディカル リソーシーズ コーポレイション Electrosurgery generator control system
CA3120182A1 (en) 2018-11-16 2020-05-22 Applied Medical Resources Corporation Electrosurgical system
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US11751872B2 (en) 2019-02-19 2023-09-12 Cilag Gmbh International Insertable deactivator element for surgical stapler lockouts
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11259807B2 (en) 2019-02-19 2022-03-01 Cilag Gmbh International Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
USD964564S1 (en) 2019-06-25 2022-09-20 Cilag Gmbh International Surgical staple cartridge retainer with a closure system authentication key
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3089496A (en) * 1959-08-19 1963-05-14 Code Inc Control system for surgical apparatus
US3720209A (en) * 1968-03-11 1973-03-13 Medical Plastics Inc Plate electrode
US5836942A (en) * 1996-04-04 1998-11-17 Minnesota Mining And Manufacturing Company Biomedical electrode with lossy dielectric properties
US6083221A (en) * 1996-10-30 2000-07-04 Megadyne Medical Products, Inc. Resistive reusable electrosurgical return electrode

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3543760A (en) 1968-03-11 1970-12-01 Medical Plastic Inc Disposable ground plate electrode
US3848600A (en) 1972-02-03 1974-11-19 Ndm Corp Indifferent electrode in electrosurgical procedures and method of use
GB1480736A (en) 1973-08-23 1977-07-20 Matburn Ltd Electrodiathermy apparatus
US4231372A (en) 1974-11-04 1980-11-04 Valleylab, Inc. Safety monitoring circuit for electrosurgical unit
US4092985A (en) 1974-11-25 1978-06-06 John George Kaufman Body electrode for electro-medical use
US4237887A (en) 1975-01-23 1980-12-09 Valleylab, Inc. Electrosurgical device
US4117846A (en) 1976-05-07 1978-10-03 Consolidated Medical Equipment Skin conducting electrode and electrode assembly
US4094320A (en) 1976-09-09 1978-06-13 Valleylab, Inc. Electrosurgical safety circuit and method of using same
US4088133A (en) 1976-09-13 1978-05-09 Products International Company Electrode for electrosurgical procedure
US4207904A (en) 1977-01-28 1980-06-17 Greene Ronald W Constant power density electrode adapted to be useful in bio-medical applications
CA1111503A (en) 1977-04-02 1981-10-27 Isoji Sakurada Biomedical electrode
US4166465A (en) 1977-10-17 1979-09-04 Neomed Incorporated Electrosurgical dispersive electrode
US4200104A (en) 1977-11-17 1980-04-29 Valleylab, Inc. Contact area measurement apparatus for use in electrosurgery
US4226247A (en) 1978-08-21 1980-10-07 Hauser Laboratories Biological electrode
CA1105565A (en) 1978-09-12 1981-07-21 Kaufman (John G.) Hospital Products Ltd. Electrosurgical electrode
US4267840A (en) 1979-01-08 1981-05-19 Johnson & Johnson Electrosurgical grounding pad
US4669468A (en) 1979-06-15 1987-06-02 American Hospital Supply Corporation Capacitively coupled indifferent electrode
EP0040658A3 (en) 1980-05-28 1981-12-09 Drg (Uk) Limited Patient plate for diathermy apparatus, and diathermy apparatus fitted with it
US4387714A (en) 1981-05-13 1983-06-14 Purdue Research Foundation Electrosurgical dispersive electrode
DE3623293C2 (en) 1986-07-10 1995-09-07 Hagen Uwe Multi-part flat electrode, especially for HF surgery
US4799480A (en) 1987-08-04 1989-01-24 Conmed Electrode for electrosurgical apparatus
US5143071A (en) * 1989-03-30 1992-09-01 Nepera, Inc. Non-stringy adhesive hydrophilic gels
AU2377592A (en) 1991-07-12 1993-02-11 Ludlow Corporation Biomedical electrode
US5520683A (en) 1994-05-16 1996-05-28 Physiometrix, Inc. Medical electrode and method
US6053910A (en) 1996-10-30 2000-04-25 Megadyne Medical Products, Inc. Capacitive reusable electrosurgical return electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3089496A (en) * 1959-08-19 1963-05-14 Code Inc Control system for surgical apparatus
US3720209A (en) * 1968-03-11 1973-03-13 Medical Plastics Inc Plate electrode
US5836942A (en) * 1996-04-04 1998-11-17 Minnesota Mining And Manufacturing Company Biomedical electrode with lossy dielectric properties
US6083221A (en) * 1996-10-30 2000-07-04 Megadyne Medical Products, Inc. Resistive reusable electrosurgical return electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1265672A1 (en) * 2001-01-31 2002-12-18 Megadyne Medical Products, Inc. Pressure sore pad having self-limiting electrosurgical return electrode properties and optional heating/cooling capabilities
EP1265672A4 (en) * 2001-01-31 2009-11-25 Megadyne Med Prod Inc Pressure sore pad having self-limiting electrosurgical return electrode properties and optional heating/cooling capabilities
US6997735B2 (en) 2001-06-01 2006-02-14 Sherwood Services Ag Return pad cable connector
US7736359B2 (en) 2006-01-12 2010-06-15 Covidien Ag RF return pad current detection system
US8690867B2 (en) 2007-05-11 2014-04-08 Covidien Lp Temperature monitoring return electrode
US9539051B2 (en) 2007-08-01 2017-01-10 Covidien Lp System and method for return electrode monitoring
US8523853B2 (en) 2008-02-05 2013-09-03 Covidien Lp Hybrid contact quality monitoring return electrode
US11364076B2 (en) 2019-12-12 2022-06-21 Covidien Lp Monopolar return pad

Also Published As

Publication number Publication date
US20010021848A1 (en) 2001-09-13
US6582424B2 (en) 2003-06-24

Similar Documents

Publication Publication Date Title
US6582424B2 (en) Capacitive reusable electrosurgical return electrode
US6454764B1 (en) Self-limiting electrosurgical return electrode
AU731933B2 (en) Reusable electrosurgical return pad
US6053910A (en) Capacitive reusable electrosurgical return electrode
US7166102B2 (en) Self-limiting electrosurgical return electrode
AU757953B2 (en) Resistive reusable electrosurgical return electrode
AU746469B2 (en) Reusable electrosurgical return pad
AU761024B2 (en) Capacitive reusable electrosurgical return electrode

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP