WO2002065554A1 - Sustrat transparent muni d'une electrode - Google Patents

Sustrat transparent muni d'une electrode Download PDF

Info

Publication number
WO2002065554A1
WO2002065554A1 PCT/FR2002/000274 FR0200274W WO02065554A1 WO 2002065554 A1 WO2002065554 A1 WO 2002065554A1 FR 0200274 W FR0200274 W FR 0200274W WO 02065554 A1 WO02065554 A1 WO 02065554A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate according
electrode
layers
values
Prior art date
Application number
PCT/FR2002/000274
Other languages
English (en)
Other versions
WO2002065554A8 (fr
Inventor
Renaud Fix
Thibaud Heitz
Véronique Rondeau
Ulf Blieske
Nikolas Janke
Marcus Neander
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8859441&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2002065554(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP2002564768A priority Critical patent/JP4537000B2/ja
Priority to BR0206785-4A priority patent/BR0206785A/pt
Priority to EP02700381A priority patent/EP1356528A1/fr
Priority to MXPA03006682A priority patent/MXPA03006682A/es
Priority to US10/466,335 priority patent/US8148631B2/en
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to AU2002233459A priority patent/AU2002233459A1/en
Priority to KR1020037010022A priority patent/KR100949600B1/ko
Publication of WO2002065554A1 publication Critical patent/WO2002065554A1/fr
Publication of WO2002065554A8 publication Critical patent/WO2002065554A8/fr
Priority to US13/336,197 priority patent/US8809668B2/en
Priority to US13/336,143 priority patent/US20120186646A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to a transparent substrate, in particular made of glass, which is provided with an electrode.
  • This conductive substrate is particularly intended to be part of solar cells.
  • solar cells integrate this type of conductive substrate, then coated with a layer of absorbing agent, generally made of chalcopyrite of copper Cu, indium In, and selenium Se and / or sulfur S It may be, for example, a material of the CulnSe 2 type. This type of material is known by the abbreviation CIS.
  • the electrodes are most often based on molybdenum Mo, because this material has a certain number of advantages: it is a good electrical conductor (relatively low specific resistance of around 5.2 mW.cm). It can be subjected to the necessary high heat treatments, because it has a high melting point (2610 ° C). It is resistant to some extent to selenium and sulfur. The deposition of the layer of absorbent agent most often requires contact with an atmosphere containing selenium or sulfur which tends to deteriorate most metals. On the contrary, molybdenum reacts on the surface, with selenium in particular, forming MoSe 2 . But it retains most of its properties, especially electrical, and maintains adequate electrical contact with the CIS layer. Finally, it is a material that adheres well to CIS layers, it even tends to promote their crystal growth.
  • the object of the invention is therefore to obtain a substrate provided with an electrode, intended for solar cells, which is simpler and / or less expensive to manufacture than known Mo electrodes, but whose performance , especially electrical, are equivalent or at least sufficient for the intended application.
  • the invention firstly relates to a transparent substrate, in particular made of glass, provided with an electrode, in particular suitable for solar cells, and which comprises a conductive layer based on molybdenum Mo of at most 500 nm, in particular not more than 400 or not more than 300 or not more than 200 nm. It has a thickness which, preferably, is at least 20 nm, or at least 50 or 80 or 100 nm.
  • the term “layer” is intended to mean either a continuous layer or a discontinuous layer, in particular having patterns (either by etching a continuous layer, or by directly depositing the discontinuous layer in the desired pattern, by a mask for example). This applies to all of the layers discussed in this application.
  • the approach of the invention did not consist in completely eliminating molybdenum in favor of another metal, since none was considered capable of withstanding sufficiently, in particular in contact with selenium or sulfur and with the heat treatments mentioned above, without significant degradation (the problem of possible degradation of the Mo similarly affects the layer of absorbing agent which covers it).
  • the approach was to significantly reduce the thickness of molybdenum: it turned out, against all expectations, that thicknesses much less than those usually used, well below 1 micrometer, were quite sufficient to obtain the desired electrical performance, with an appreciable gain in terms of raw material costs.
  • Reducing the thickness of the molybdenum layer has another advantage: it has been found that one could afford to deposit these relatively thin layers by sputtering with deposition parameters leading to highly constrained layers, without the problems delamination that can be encountered in this case with thick layers. Thinner layers also tend to have fewer defects known as "pinholes".
  • the invention preferably uses, alternatively or cumulatively, several variants (which however remain optional).
  • a layer called a barrier layer is advantageously inserted between the substrate and the electrode. Its main function is to block the migration of diffusing species from the substrate to the electrode and to the layer of absorbing agent (and possibly, conversely, diffusing species from the electrode to the substrate).
  • the substrate is made of glass
  • the species capable of diffusing out of the glass and of degrading the electrode and the layer of absorbing agent are in particular the alkalis.
  • Providing such a barrier layer makes it possible to use standard silica-soda-lime glass obtained as a substrate, without risking damaging the electrode or the layer of chalcopyrite absorbing agent. This is, in the context of the invention, all the more important that the layer of molybdenum is thin, and that a degradation even on a small thickness would have a greater impact than on a much thicker layer.
  • This barrier layer is based on a dielectric material chosen from at least one of the following compounds: silicon nitride or oxynitride, aluminum nitride or oxynitride, silicon oxide or oxynitride.
  • silicon nitride (possibly containing a minority metal of the Al type or boron) has been found to be particularly effective. It is a very inert material, not very sensitive to heat treatments and satisfactorily blocking the diffusion of alkalis.
  • the barrier layer has a thickness of at least 20 nm, in particular of at least 100 nm or 120 or 150 nm, and a thickness of at most 300 nm, in particular of at most 250 or 200 nm.
  • the solution according to the invention consists in adding, to the electrode, to the Mo-based layer, at least one other conductive layer of a different nature.
  • This or these “complementary” conductive layers are advantageously chosen from materials which are less expensive to deposit in a thin layer than molybdenum (by sputtering).
  • the additional conductive layer or all of the layers complementary conductors if there are several, preferably has a thickness of at least 10 nm, in particular at least 40 nm. Preferably, it has a thickness of at most 300 nm, and it is advantageously chosen from a range from 50 to 200 or 300 nm.
  • the electrode comprises at least one additional conductive layer called M based on metal or on an alloy of at least two metals. It can be, in particular the following metals or alloys: Cu, Ag, Al, Ta, Ni, Cr, NiCr, steel.
  • the molybdenum layer isolates these metallic layers from contact with selenium or sulfur, which are particularly corrosive and to which molybdenum resists correctly.
  • the electrode comprises at least one additional conductive layer called M'N based on a metal nitride; it is in particular a nitride of at least one of the following metals: Ta, Zr, Nb, Ti, Mo, Hf.
  • This layer can be located below or above the molybdenum-based layer (or even be two in number, one below and the other above said layer).
  • the nitride can be stoichiometric, substoichiometric or superstoichiometric in nitrogen.
  • the stoichiometry can be adjusted, in particular by varying the percentage of nitrogen in the spray chamber when the layer is deposited by reactive sputtering from a metal target.
  • a particularly advantageous embodiment consists in combining the two preceding ones, by providing a layer M'N between a layer M and the layer based on Mo.
  • the nitride layer M'N not only plays the role of conductive layer, but also that of a layer preventing (or at least significantly reducing) any interdiffusion of species between the two metal layers (M and Mo).
  • layers of TiN, TaN, ZrN, NbN and MoN are effective in preventing the diffusion of copper to the molybdenum layer.
  • HfN layers have also been shown to be particularly effective in preventing the diffusion of aluminum to the molybdenum layer (this type of HfN formula, etc. does not prejudge the stoichiometry of the nitride, it can also be a sub- or over-stoichiometric nitride, as for all the other nitride formulas mentioned in the present text).
  • the metal layer M is based on silver
  • it is preferable to ensure its good adhesion to the underlying layer for example the barrier layer of the Si 3 N 4 type in a configuration: barrier layer / layer M / layer M'N / layer Mo. by inserting between said barrier layer and said layer based on silver a nucleation layer based on zinc oxide. It can also be advantageous, always to ensure better cohesion to the stack, to provide a second layer based on zinc oxide on top of the silver layer.
  • the layer or layers based on optionally doped ZnO (Al, B, etc.) are chosen for example with a thickness of at least 5 nm, for example between 7 and 20 nm.
  • the sum of the thicknesses of the conductive layers of the electrode is less than or equal to 600 nm, in particular less than or equal to 500 or 400 nm.
  • the electrode advantageously has a resistance per square less than or equal to 2 ⁇ / D, in particular less than or equal to 1 ⁇ / D, preferably less than or equal to 0.50 or 0.45 ⁇ / D: these values are suitable for electrodes of solar cell.
  • the invention sought to improve the appearance of the solar cell. Indeed, when the solar cell equips building facades or roofs, its “interior side” aspect of the building (on the exterior side, the electrode makes a mirror) is not always very aesthetic. The colorimetry in reflection is likely to improve.
  • a first solution to this subsidiary problem according to the invention consisted in including the barrier layer previously mentioned in a multilayer coating for optical purposes "under" the actual electrode.
  • the optical coating consists of at least two layers of dielectric materials with different refractive indices.
  • This coating preferably, comprises an alternation of high index layers (1.9 to 2.3 for example) and low index layers (1.4 to 1.7 for example).
  • Embodiments of this coating are, for example: Si 3 N / SiO 2 or Si 3 N 4 / SiO 2 / Si 3 N 4 .
  • a second solution, alternative or cumulative with the first, consists in using electrodes containing at least one layer based on nitride M'N and in modifying (slightly) the stoichiometry of nitrogen. It has indeed been found that slightly sub-or over-stoichiometric nitrides keep the same electrical properties, but allow the colorimetry of the substrate to be varied to a certain extent. By combining the two solutions, the possibilities of adjusting the colorimetry are increased.
  • a third solution alternative or cumulative with at least one of the first two solutions, consists in placing under the electrode, in particular to interpose between the barrier layer and the electrode, a thin absorbent layer in the visible.
  • They may for example be layers of metal nitride, of the TiN type, and they preferably have a thickness confined to a range going from 2 to 15 nm. It is thus possible to have a sequence of layers of the glass / barrier layer type such as Si 3 N / thin absorbent layer such as TiN / SiO 2 / Mo. In this case, the absorbent layer is "in the middle" of the optical coating Si 3 N 4 / SiO 2 .
  • the subject of the invention is also the substrate previously defined and covered, above the electrode, by a layer of chalcopyrite absorbing agent.
  • Each example uses a substrate of clear silica-soda-lime glass 2 mm thick, (the glasses generally have a thickness between 1 and 4 or between 1 and 3 mm.)
  • All of the layers are deposited on the glasses by sputtering assisted by magnetic field:> - the metal layers from the corresponding metal target, in an inert atmosphere,
  • ⁇ - measurement of the resistance per square RD (1) by the four-point method after depositing all the layers ® - test called “bronze test”: this test consists of heating the glass provided with all layers at 350 ° C for 10 minutes in air. It is intended to check whether or not there has been diffusion of sodium from the glass to the electrode.
  • the resistance per square, RD (2) is measured, again using the four point method. We also check under the microscope (at x100 and x1000 enlargements) whether the heat treatment has caused defects or not (pitting), ...
  • ® - test called “selenization test”: this test consists in reheating the glasses provided with all the layers under an atmosphere of selenium for 10 minutes. The selenium temperature is between 200 and 240 ° C, the glass temperature is between 325 and 365 ° C. At the end of the test, the resistance per square RD (3) is again measured and the difference in resistivity before / after selenization ⁇ RD (3) is deduced therefrom.
  • this selenization test is in fact much “harder” than it is in reality.
  • the invention is here concerned with initially manufacturing only the electrodes.
  • this selenization step is done once the CIS layer has been deposited: in the normal manufacturing cycle of a solar cell, the electrode is "protected” from direct contact with selenium by the layer chalcopyrite.
  • the electrodes it is considered advantageous:
  • Example 1 uses a barrier layer and a single-layer molybdenum electrode, according to the sequence:
  • Figure 1 is a magnification a thousand times under the microscope of the glass, after the selenization step: the photo shows few defects, small in addition. The quality of the electrode is considered to be good.
  • Example 1a
  • This example uses the same stack of layers as in Example 1, but with a significantly thinner Mo layer, according to the sequence:
  • Example 2 Glass / Si 3 N 4 (200nm) / Mo (200 nm)
  • This example uses a barrier layer, and a bi-layer electrode, metal layer M then layer Mo, according to the following sequence:
  • Example 3 This example uses the same configuration as Example 2, but with another type of metal layer M:
  • Example 4 This example uses a barrier layer and a metal / metal nitride / Mo tri-layer electrode according to the sequence: Glass / Si 3 N 4 (200 nm) / Cu (100 nm) / TiN (100 nm) / Mo (175 nm)
  • Example 5 It is the same configuration as Example 4, with a different thickness for the layer of copper: Glass / Si 3 N 4 (200 nm) / Cu (50 nm) / TiN (100 nm) / Mo (175 nm)
  • FIG. 2 corresponds to a photo of a magnification 1000 times using a microscope of this example 5, of a portion of the layered glass after the selenization test: we see few defects, of very small size . It is a cliché quite comparable to the photo according to figure 1.
  • Example 6
  • This example uses a barrier layer and a three-layer electrode, according to the following sequence:
  • Example 7 Glass / Si 3 N 4 (200 nm) / Ag (50 nm) / TiN (100 nm) / Mo (175 nm) It corresponds to Example 2, with an additional layer of Ti.
  • Example 7 Glass / Si 3 N 4 (200 nm) / Ag (50 nm) / TiN (100 nm) / Mo (175 nm) It corresponds to Example 2, with an additional layer of Ti.
  • This example always uses a barrier layer and a tri-layer electrode, according to the following sequence:
  • the Si 3 N barrier layers are effective, and prevent deterioration of the electrode by diffusion of sodium, since in all the examples, the values of RD (1) and RD (2) are the same or almost the same. They therefore also prevent deterioration of the CIS type absorbent layer.
  • the purpose of these examples is to adjust the colorimetry of the electrode in reflection.
  • the molybdenum layer is in all these examples with a thickness of 400 nm or 500 nm. In terms of colorimetry on the glass side, it has no influence from the moment it is at least 50 to 100 nm thick, since it is then a perfectly opaque mirror layer: the results would therefore be the same with a 175 or 200 nm Mo layer.
  • Example 8 This example uses the following stack:
  • the TiN layer being deposited by reactive spraying in a reactive atmosphere containing 20% by volume of nitrogen.
  • Example 8bis This is the same configuration as in Example 8, but here the TiN layer was deposited in an atmosphere containing 40% nitrogen.
  • Example 8b This is the same configuration as in Example 8, but here the TiN layer was deposited in an atmosphere containing 70% nitrogen.
  • Example 8 has a slightly substoichiometric TiN layer, Example 8bis has an approximately stoichiometric TiN layer, while Example 8ter tends to be over-stoichiometric in nitrogen.
  • Example 9 the barrier layer of Si 3 N (refractive index of approximately 2) is associated with an additional layer based on Si0 2 (refractive index of approximately 1.45) to make an optical coating. high index / low index.
  • the configuration is as follows:
  • Example 9bis Example 9 is replicated, this time with 40% nitrogen in the TiN deposition atmosphere.
  • Example 9ter Example 9 is replicated, this time with 70% nitrogen in the TiN deposition atmosphere.
  • Example 10 This time, the nitride layer used is in NbN, according to the following configuration:
  • the NbN layer was deposited in an atmosphere containing 20% nitrogen.
  • Example 10bis is replicated, but here the layer of NbN was deposited in an atmosphere containing 40% nitrogen.
  • Example 10ter Example 10 is replicated, but here the NbN layer was deposited in an atmosphere containing 70% nitrogen.
  • the table below groups together for these three examples the values of a * , b * and Rcarré already explained:
  • Example 11 This example uses the sequence of layers of Examples 10, 10bis, 10ter, but with different thicknesses of Si 3 N and SiO 2 .
  • the configuration is as follows:
  • Example 11a This example replicates Example 11, but here the NbN layer was deposited in an atmosphere containing 40% nitrogen.
  • Example 11b This example replicates Example 11, but here the NbN layer was deposited in an atmosphere containing 70% nitrogen.
  • Example 12 This example shows the following sequence of layers:
  • barrier layer in an optical coating with three high index / low index / high refractive index layers.
  • This example therefore has a color in blue-green, moreover not very intense.

Abstract

L'invention a pour objet un substrat transparent, notamment en verre, qui est muni d'une électrode, notamment pour cellule solaire, comprenant une couche conductrice à base de molybdène Mo d'au plus 500 nm d'épaisseur, notamment d'au plus 400 nm ou d'au plus 300 nm ou d'au plus 200 nm.

Description

SUBSTRAT TRANSPARENT MUNI D'UNE ELECTRODE
L'invention se rapporte à un substrat transparent, notamment en verre, qui est muni d'une électrode. Ce substrat conducteur est tout particulièrement destiné à faire partie de cellules solaires.
En effet, de façon connue, les cellules solaires intègrent ce type de substrat conducteur, ensuite revêtu d'une couche d'agent absorbeur, généralement en chalcopyrite de cuivre Cu, d'indium In, et de sélénium Se et/ou de soufre S. Il peut s'agir, par exemple, d'un matériau du type CulnSe2. Ce type de matériau est connu sous l'abréviation CIS.
Pour ce type d'application, les électrodes sont le plus souvent à base de molybdène Mo, car ce matériau présente un certain nombre d'avantages : c'est un bon conducteur électrique (résistance spécifique relativement faible de l'ordre de 5,2 mW.cm). Il peut être soumis aux traitements thermiques élevés nécessaires, car il a un point de fusion élevé (2610°C). Il résiste bien, dans une certaine mesure, au sélénium et au soufre. Le dépôt de la couche d'agent absorbeur impose le plus souvent un contact avec une atmosphère contenant du sélénium ou du soufre qui tend à détériorer la plupart des métaux. Au contraire, le molybdène réagit en surface, avec le sélénium notamment, formant du MoSe2. Mais il garde l'essentiel de ses propriétés, notamment électriques, et conserve un contact électrique adéquat avec la couche de CIS. Enfin, c'est un matériau qui adhère bien aux couches CIS, il tend même à en favoriser leur croissance cristalline.
Cependant, il présente un inconvénient important quand on envisage une production industrielle : c'est un matériau coûteux. En effet, les couches en Mo sont habituellement déposées par pulvérisation cathodique (assistée par champ magnétique). Or les cibles de Mo sont onéreuses. Cela est d'autant moins négligeable que pour obtenir le niveau de conductivité électrique voulu (une résistance par carré inférieure à 2, et de préférence inférieure à 1 ou 0.5 ohm. carré après traitement dans une atmosphère contenant du S ou du Se), il faut une couche de Mo épaisse, généralement de l'ordre de 700 nm à 1 micromètre. L'invention a alors pour but l'obtention d'un substrat muni d'une électrode, destinée à des cellules solaires, qui soit d'une fabrication plus simple et/ou moins onéreuse que les électrodes de Mo connues, mais dont les performances, notamment électriques, soient équivalentes ou tout au moins suffisantes pour l'application envisagée.
L'invention a tout d'abord pour objet un substrat transparent, notamment en verre, muni d'une électrode, notamment adaptée pour des cellules solaires, et qui comprend une couche conductrice à base de molybdène Mo d'au plus 500 nm, notamment d'au plus 400 ou d'au plus 300 ou d'au plus 200 nm. Elle a une épaisseur qui, de préférence, est d'au moins 20 nm, ou d'au moins 50 ou 80 ou 100 nm.
Au sens de l'invention, on entend par couche soit une couche continue, soit une couche discontinue, présentant notamment des motifs (soit par gravure d'une couche continue, soit par dépôt directement de la couche discontinue au motif voulu, par un système de masque par exemple). Cela s'applique à toutes les couches dont il est question dans la présente demande.
La démarche de l'invention n'a pas consisté à supprimer complètement le molybdène au profit d'un autre métal, car aucun n'a été jugé susceptible de résister suffisamment, notamment au contact avec le sélénium ou le soufre et aux traitements thermiques évoqué plus haut, sans dégradation importante (le problème de la dégradation possible du Mo touche de la même façon la couche d'agent absorbeur qui le recouvre). Par contre, la démarche a été de diminuer significativement l'épaisseur de molybdène : il s'est avéré, contre toutes attentes, que des épaisseurs bien inférieures à celles utilisées habituellement, bien inférieures à 1 micromètre, suffisaient tout-à-fait pour obtenir les performances électriques voulues, avec en conséquence un gain appréciable en termes de coût de matières premières. Diminuer l'épaisseur de la couche de molybdène présente un autre avantage: il s'est avéré que l'on pouvait se permettre de déposer ces couches relativement fines par pulvérisation cathodique avec des paramètres de dépôt conduisant à des couches fortement contraintes, sans les problèmes de délamination que l'on peut rencontrer dans ce cas-là avec des couches épaisses. Des couches plus minces tendent en outre à présenter moins de défauts connus sous le terme de "pinholes" (trous d'épingles).
Pour garantir que des couches de molybdène plus minces gardent toute leur efficacité, l'invention a recours, de préférence, de façon alternative ou cumulative, à plusieurs variantes (qui restent cependant optionnelles).
Selon une première variante, on insère avantageusement entre le substrat et l'électrode une couche dite couche-barrière. Sa fonction principale est de faire barrage à la migration d'espèces diffusantes hors du substrat vers l'électrode et jusqu'à la couche d'agent absorbeur (et éventuellement, réciproquement, des espèces diffusantes de l'électrode vers le substrat). Quand le substrat est en verre, les espèces susceptibles de diffuser hors du verre et de dégrader l'électrode et la couche d'agent absorbeur sont notamment les alcalins. Prévoir une telle couche-barrière permet d'utiliser comme substrat du verre standard silico-sodo-calcique obtenu par flottage, sans risquer de détériorer l'électrode, ni la couche d'agent absorbeur en chalcopyrite. Ceci est, dans le cadre de l'invention, d'autant plus important que la couche de molybdène est mince, et qu'une dégradation même sur une faible épaisseur aurait un impact plus important que sur une couche beaucoup plus épaisse.
Cette couche-barrière, avantageusement, est à base de matériau diélectrique choisi parmi au moins l'un des composés suivantes : nitrure ou oxynitrure de silicium, nitrure ou oxynitrure d'aluminium, oxyde ou oxynitrure de silicium. Le nitrure de silicium (contenant éventuellement un métal minoritaire du type Al ou du bore) s'est avéré particulièrement efficace. C'est un matériau très inerte, peu sensible aux traitements thermiques et bloquant de manière satisfaisante la diffusion des alcalins.
De préférence, la couche-barrière a une épaisseur d'au moins 20 nm, notamment d'au moins 100 nm ou 120 ou 150 nm, et une épaisseur d'au plus 300 nm, notamment d'au plus 250 ou 200 nm.
Selon une seconde variante, on peut vouloir « compenser » la diminution d'épaisseur de la couche en Mo, pour obtenir une électrode qui, globalement, est aussi conductrice voire plus conductrice qu'une couche de Mo épaisse. La solution selon l'invention consiste à ajouter, dans l'électrode, à la couche à base de Mo, au moins une autre couche conductrice de nature différente. On choisit avantageusement cette ou ces couches conductrices « complémentaires » en des matériaux moins coûteux à déposer en couche mince que le molybdène (par pulvérisation cathodique).
La couche conductrice complémentaire, ou l'ensemble des couches conductrices complémentaires s'il y en a plusieurs, a de préférence une épaisseur d'au moins 10 nm, notamment d'au moins 40 nm. De préférence, elle a une épaisseur d'au plus 300 nm, et on la choisit avantageusement dans une gamme allant de 50 à 200 ou 300 nm. Selon un premier mode de réalisation de cette seconde variante, l'électrode comprend au moins une couche conductrice complémentaire dite M à base de métal ou d'un alliage d'au moins deux métaux. Il peut s'agir, notamment des métaux ou alliages suivants : Cu, Ag, Al, Ta, Ni, Cr, NiCr, acier. On a avantage à disposer cette ou ces couches métalliques complémentaires en dessous de la couche à base de molybdène : dans cette configuration, la couche de molybdène isole ces couches métalliques du contact avec le sélénium ou le soufre, qui sont particulièrement corrosifs et auxquels le molybdène résiste de façon correcte.
Selon un second mode de réalisation de la seconde variante, alternatif ou cumulatif avec le premier mode, l'électrode comprend au moins une couche conductrice complémentaire dite M'N à base d'un nitrure métallique ; il s'agit notamment d'un nitrure d'au moins un des métaux suivants : Ta, Zr, Nb, Ti, Mo, Hf. Cette couche peut être située en dessous ou au-dessus de la couche à base de molybdène (voire être au nombre de deux, l'une en dessous et l'autre au- dessus de ladite couche). Le nitrure peut être stoechiometrique, sous- stoechiométrique ou sur-stoechiométrique en azote. On peut ajuster la stoechiométrie, notamment en faisant varier le pourcentage d'azote dans la chambre de pulvérisation quand on dépose la couche par pulvérisation cathodique réactive à partir d'une cible métallique. Un mode de réalisation particulièrement avantageux consiste à cumuler les deux précédents, en prévoyant une couche M'N entre une couche M et la couche à base de Mo. Dans cette configuration, en effet, la couche de nitrure M'N joue non seulement le rôle de couche conductrice, mais également celui d'une couche venant empêcher (ou tout au moins diminuer significativement) toute interdiffusion d'espèces entre les deux couches métalliques (M et Mo). Ainsi, il s'est avéré que des couches de TiN, TaN, ZrN, NbN et MoN étaient efficaces pour empêcher la diffusion du cuivre vers la couche de molybdène. Il a été aussi montré que les couches de HfN étaient particulièrement efficaces pour empêcher la diffusion d'aluminium vers la couche de molybdène (ce type de formule HfN, etc.. ne préjuge pas de la stoechiométrie du nitrure, il peut s'agir aussi d'un nitrure sous- ou sur-stoechiométrique, comme pour toutes les autres formules de nitrure mentionnées dans le présent texte).
On peut avoir, par exemple, des configurations d'électrodes selon l'invention qui comprennent les séquences de couches suivantes :
M/Mo/M'N M/M'N/Mo M/Mo M'N/Mo Mo/M'N
Dans le cas où la couche de métal M est à base d'argent, il est préférable d'assurer sa bonne adhérence à la couche sous jacente (par exemple la couche- barrière du type Si3N4 dans une configuration : couche-barrière/couche M/couche M'N/couche Mo. en insérant entre ladite couche-barrière et ladite couche à base d'argent une couche de nucléation à base d'oxyde de zinc. Il peut aussi être intéressant, toujours pour assurer une meilleure cohésion à l'empilement, de prévoir une seconde couche à base d'oxyde de zinc au-dessus de la couche d'argent. La ou les couches à base de ZnO éventuellement dopé (Al, B ...) sont par exemple choisies d'une épaisseur d'au moins 5 nm, par exemple entre 7 et 20 nm.
De préférence, la somme des épaisseurs des couches conductrices de l'électrode est inférieure ou égale à 600 nm, notamment inférieure ou égale à 500 ou 400 nm.
L'électrode a avantageusement une résistance par carré inférieure ou égale à 2Ω/D, notamment inférieure ou égale à 1Ω/D, de préférence inférieure ou égale à 0,50 ou 0,45Ω/D : ces valeurs sont appropriées pour des électrodes de cellule solaire.
Selon une variante préférée, l'invention a cherché à améliorer l'aspect de la cellule solaire. En effet, quand la cellule solaire équipe des façades ou des toitures de bâtiment, son aspect « côté intérieur » du bâtiment (du côté extérieur, l'électrode fait un miroir) n'est pas toujours très esthétique. La colorimétrie en réflexion est susceptible d'amélioration.
Une première solution à ce problème subsidiaire selon l'invention a consisté à inclure la couche-barrière précédemment évoquée dans un revêtement multicouches à but optique « sous » l'électrode à proprement dit. Le revêtement optique est constitué d'au moins deux couches de matériaux diélectriques d'indices de réfraction différents. En jouant sur les épaisseurs et les différences d'indices entre les couches, on peut ainsi régler assez finement la colorimetrie du substrat à couches en réflexion, par interférence.
Ce revêtement, de préférence, comprend une alternance de couches à haut indice (1,9 à 2,3 par exemple) et des couches à bas indice (1,4 à 1,7 par exemple). Des modes de réalisation de ce revêtement sont, par exemple : Si3N /SiO2 ou Si3N4/SiO2/Si3N4. Une seconde solution, alternative ou cumulative avec la première, consiste à utiliser des électrodes contenant au moins une couche à base de nitrure M'N et à modifier (légèrement) la stoechiométrie de l'azote. Il s'est en effet avéré que des nitrures légèrement sous-ou sur-stoechiométriques gardaient les mêmes propriétés électriques, mais permettaient de faire varier dans une certaine mesure la colorimetrie du substrat. En combinant les deux solutions, on augmente les possibilités d'ajustement de la colorimetrie.
Une troisième solution, alternative ou cumulative avec l'une au moins des deux premières solutions, consiste à disposer sous l'électrode, notamment à interposer entre la couche-barrière et l'électrode, une fine couche absorbante dans le visible. Il peut par exemple s'agir de couches en nitrure de métal, du type TiN, et elles ont de préférence une épaisseur cantonnée à une gamme allant de 2 à 15 nm. On peut avoir ainsi une séquence de couches du type verre/ couche-barrière comme Si3N /fine couche absorbante comme TiN/SiO2/Mo .dans ce cas, la couche absorbante se trouve "au milieu" du revêtement optique Si3N4/SiO2.
On peut ainsi obtenir un substrat muni de ce revêtement et de l'électrode qui, en réflexion, a des valeurs de a* et b* négatives dans les systèmes de colorimetrie (L, a*, b*), ce qui correspond à des couleurs dans les bleus-verts, ou une valeur de a* légèrement positive et une valeur de b* négative, ce qui correspond à une couleur dans les rosés.
L'invention a aussi pour objet le substrat précédemment défini et recouvert, au-dessus de l'électrode, par une couche d'agent absorbeur de chalcopyrite.
Elle a aussi pour objet ledit substrat pour faire des cellules solaires. L'invention sera maintenant détaillée à l'aide d'exemples de réalisation, non limitatifs, d'électrodes pour cellules solaires illustrés aux figures 1 et 2 par des photos d'agrandissement des verres à couches.
Chaque exemple utilise un substrat de verre silico-sodo-calcique clair de 2 mm d'épaisseur, (les verres ont généralement une épaisseur entre 1 et 4 ou entre 1 et 3 mm.)
L'ensemble des couches est déposé sur les verres par pulvérisation cathodique assistée par champ magnétique : >- les couches de métal à partir de la cible de métal correspondante, en atmosphère inerte,
>- les couches de nitrure de métal à partir de la cible de métal correspondante, en atmosphère réactive contenant un mélange de gaz inerte et d'azote, >- les couches de nitrure de silicium à partir d'une cible de Si dopé (Al), en atmosphère réactive contenant un mélange de gaz inerte et d'azote, >- les couches d'oxyde de silicium à partir d'une cible de Si (dopé Al) et d'une atmosphère réactive comprenant un mélange de gaz inerte et d'oxygène.
Les couches sont testées de la façon suivante : Φ - mesure de la résistance par carré RD (1 ) par la méthode des quatre points après dépôt de toutes les couches, ® - test appelé « bronze test » : ce test consiste à chauffer le verre muni de toutes les couches à 350°C pendant 10 minutes à l'air. Il est destiné à vérifier s'il y a eu ou non diffusion du sodium du verre vers l'électrode. A la fin du test, on mesure la résistance par carré, RD (2), toujours par la méthode des quatre points. On vérifie aussi au microscope (à des agrandissements x100 et x1000) si le traitement thermique a provoqué ou non des défauts (piqûres), ...
® - test dit « test de sélénisation » : ce test consiste à chauffer à nouveau les verres munis de toutes les couches sous une atmosphère de sélénium pendant 10 minutes. La température du sélénium est entre 200 et 240 °C, la température du verre est entre 325 et 365 °C. A la fin du test, on mesure à nouveau la résistance par carré RD (3) et on en déduit la différence de résistivité avant/après sélénisation Δ RD (3).
Il est à noter que ce test de sélénisation est en fait beaucoup plus "dur" qu'il ne l'est dans la réalité. En effet, l'invention est ici intéressée à ne fabriquer dans un premier temps que les électrodes. Cependant, quand on fabrique la cellule solaire dans son ensemble, cette étape de sélénisation se fait une fois la couche en CIS déposée : dans le cycle de fabrication normal d'une cellule solaire, l'électrode est « protégée » du contact direct avec le sélénium par la couche de chalcopyrite. Pour que les électrodes soient considérées comme satisfaisantes, il est jugé avantageux :
>- que le sodium du verre soit empêché de diffuser vers l'électrode, >- que l'électrode ait une certaine résistance au « bronze test » et au « test de sélénisation » : peu de défauts, résistance par carré suffisante. >- que l'électrode adhère bien aux couches du type CIS,
>- que l'électrode soit aisément gravable, notamment par laser. EXEMPLES 1 à 7 Exemple 1 Cet exemple utilise une couche-barrière et une électrode mono-couche en molybdène, selon la séquence :
Verre/Si3N4 (200 nm)/Mo (500 nm) La figure 1 est un agrandissement à mille fois sous microscope du verre, après l'étape de sélénisation : la photo montre peu de défauts, de petite taille de surcroît. On considère que la qualité de l'électrode est bonne. Exemple 1 bis
Cet exemple utilise le même empilement de couches qu'à l'exemple 1 , mais avec une couche en Mo nettement plus mince, selon la séquence :
Verre/Si3N4 (200nm)/Mo (200 nm) Exemple 2 Cet exemple utilise une couche-barrière, et une électrode bi-couche, couche de métal M puis couche Mo, selon la séquence suivante :
Verre/Si3N4 ( 200 nm)/Ag (50 nm)/Mo (175 nm) Exemple 3 Cet exemple utilise la même configuration que l'exemple 2 , mais avec un autre type de couche métal M :
Verre/Si3N4 ( 200 nm)/Al (100 nm)/Mo (175 nm) Exemple 4 Cet exemple utilise une couche-barrière et une électrode tri-couche métal/nitrure métallique/Mo selon la séquence : Verre/Si3N4 ( 200 nm)/Cu ( 100 nm)/TiN (100 nm)/Mo (175 nm) Exemple 5 C'est la même configuration que l'exemple 4, avec une épaisseur différente pour la couche de cuivre : Verre/Si3N4 ( 200 nm)/Cu ( 50 nm)/TiN (100 nm)/Mo (175 nm)
La figure 2 correspond à une photo d'un agrandissement 1000 fois à l'aide d'un microscope de cet exemple 5, d'une portion du verre à couches après le test de sélénisation : on voit peu de défauts, de taille très petite. C'est un cliché tout-à-fait comparable à la photo selon la figure 1. Exemple 6
Cet exemple utilise une couche-barière et une électrode tri-couche, selon la séquence suivante :
Verre/Si3N4 ( 200 nm)/Ag ( 50 nm)/TiN (100 nm)/Mo (175 nm) Il correspond à l'exemple 2, avec en plus une couche de Ti . Exemple 7
Cet exemple utilise toujours une couche-barrière et une électrode tri-couche, selon la séquence suivante :
Verre/Si3N4 ( 200 nm)/Al ( 100 nm)/TiN (100 nm)/Mo (175 nm) Il correspond à l'exemple 3, avec une couche de TiN en plus. La tableau 1 ci-dessous regroupe, pour chacun des exemples 1 à 7, les valeurs de RD(1), RD(2), l'évaluation des défauts après le bronze test (" défauts ", et ΔRD (3), ces termes ayant été explicités plus haut.
Figure imgf000011_0001
De ces données peuvent être tirées les conclusions suivantes :
On peut obtenir une valeur de RD nettement inférieure à 1 ohm/carré avec moins de 200 nm de molybdène, que l'on associe avec une couche de nitrure métallique et/ou de métal d'épaisseurs raisonnables (en tout, les électrodes bi ou tri-couches restent d'une épaisseur globale inférieure à 400 ou
500 nm).
Les couches-barrières en Si3N sont efficaces, et empêchent la détérioration de l'électrode par diffusion du sodium, puisque dans tous les exemples, les valeurs de RD (1 ) et RD(2) sont les mêmes ou quasiment les mêmes. Elles empêchent donc également la détérioration de la couche d'agent absorbeur type CIS.
On peut choisir aussi d'avoir une électrode mono-couche en Mo (exemple 1 , avec 500 nm et associée à une couche-barrière. Elle donne de bons résultats: On peut encore avoir une résistance par carré inférieure à 1 ohm. carré avec une électrode composée seulement de 200 nm de Mo. Cela prouve qu'il est inutile d'avoir recours à une couche de Mo bien plus épaisse comme cela a pu se faire jusqu'ici. EXEMPLES 8 à 11 TER
Ces exemples ont pour but d'ajuster la colorimetrie de l'électrode en réflexion.
La couche de molybdène est dans tous ces exemples d'une épaisseur de 400 nm ou 500 nm. Sur le plan de la colorimetrie côté verre, elle n'a pas d'influence à partir du moment où elle est épaisse d'au moins 50 à 100 nm, puisqu'elle est alors une couche-miroir parfaitement opaque : les résultats seraient donc les mêmes avec une couche de Mo de 175 ou 200 nm.
Exemple 8 Cet exemple utilise l'empilement suivant :
Verre/Si3N4 (200 nm)/TiN (100 nm)/Mo (400 nm)
La couche de TiN étant déposée par pulvérisation réactive dans une atmosphère réactive contenant 20 % en volume d'azote.
Exemple 8bis Il s'agit de la même configuration qu'à l'exemple 8, mais ici la couche de TiN a été déposée dans une atmosphère contenant 40 % d'azote.
Exemple 8 ter Il s'agit de la même configuration qu'à l'exemple 8, mais ici la couche de TiN a été déposée dans une atmosphère contenant 70 % d'azote.
Le tableau ci-dessous regroupe pour ces trois exemples des valeurs de a* et b*, selon le système de colorimetrie (L, a*, b*) mesurées côté verre, ainsi que les valeurs de RD (mesures faites avant le « bronze » test)
Figure imgf000012_0001
On constate que la variation dans la stoechiométrie au TiN (en fonction du taux de N2 lors du dépôt) ne modifie pas significativement les propriétés électriques de l'électrode. Par contre, elle permet de modifier beaucoup les valeurs de a*, et, plus encore, de b* : l'exemple 8 est ainsi coloré dans les rouges, avec un b* très positif, alors que l'exemple 8ter est dans les bleus-verts, avec un b* légèrement négatif.
L'exemple 8 a une couche de TiN légèrement sous-stoechiométrique, l'exemple 8bis a une couche de TiN approximativement stoechiometrique, tandis que l'exemple 8ter a tendance à être sur-stoechiométrique en azote.
Exemple 9 Dans cet exemple, la couche-barrière en Si3N (indice de réfraction d'environ 2) est associée à une couche supplémentaire à base de Si02 (indice de réfraction d'environ 1 ,45) pour faire un revêtement optique haut indice/bas indice. La configuration est la suivante :
Verre/Si3N4 (200 nm)/Si02 (20 nm)/TiN (100 nm)/Mo (400 nm) La couche de TiN est déposée dans une atmosphère ayant 20 % en volume d'azote.
Exemple 9bis On réplique l'exemple 9, avec cette fois 40 % d'azote dans l'atmosphère de dépôt du TiN.
Exemple 9ter On réplique l'exemple 9, avec cette fois 70 % d'azote dans l'atmosphère de dépôt du TiN.
Le tableau ci-dessous regroupe pour ces 3 exemples, les valeurs de a*, b* et Rcarré explicitées plus haut.
Figure imgf000013_0001
Exemple 10 Cette fois, la couche de nitrure utilisée est en NbN, selon la configuration suivante :
Verre/Si3N4 (200 nm)/Si02 (30 nm/NbN (100 nm)/Mo (500 nm)
La couche de NbN a été déposée dans une atmosphère contenant 20 % d'azote.
Exemple 10bis On réplique l'exemple 10, mais ici la couche de NbN a été déposée dans une atmosphère contenant 40 % d'azote.
Exemple 10ter On réplique l'exemple 10, mais ici la couche de NbN a été déposée dans une atmosphère contenant 70 % d'azote. Le tableau ci-dessous regroupe pour ces trois exemples les valeurs de a*, b* et Rcarré déjà explicitées :
Figure imgf000014_0001
Ici, que le NbN soit plutôt sous ou sur-stoechiométrique, les valeurs de a* et b* sont négatives, ce qui correspond à une couleur bleu-verte esthétique, dont l'intensité varie.
Exemple 11 Cet exemple reprend la séquence de couches des exemples 10, 10bis, 10ter, mais avec des épaisseurs de Si3N et de SiO2 différentes.
La configuration est la suivante :
Verre/Si3N4 (150 nm)/Si02 (90 nm)/NbN (100 nm)/Mo (500 nm)
Exemple 11 bis Cet exemple réplique l'exemple 11 , mais ici la couche de NbN a été déposée dans une atmosphère contenant 40 % d'azote.
Exemple 11 ter Cet exemple réplique l'exemple 11 , mais ici la couche de NbN a été déposée dans une atmosphère contenant 70 % d'azote.
Le tableau ci-dessous regroupe pour ces trois exemples les valeurs de a*, b* et Rcarré déjà explicitées :
Figure imgf000014_0002
Ces exemples sont donc dans les rosés, couleur également jugée esthétique.
Exemple 12 Cet exemple présente la séquence de couches suivante :
Verre/ Si3N4 (150 nm)/Si02 (65 nm)/Si3N4 (15 nm)/Mo (500nm)
Il intègre donc la couche-barrière dans un revêtement optique à trois couches haut indice/bas indice/haut indice de réfraction.
Le tableau ci-dessous reprend les mêmes données pour cet exemple que dans les exemples précédents.
Figure imgf000015_0001
Cet exemple a donc une couleur dans les bleus-verts, de surcroît peu intense.
En conclusion, on peut donc ajuster finement la couleur des électrodes selon l'invention en jouant sur la stoechiometrie de la couche de nitrure et/ou en ajoutant un filtre à au moins deux couches incluant avantageusement la couche-barrière. On a par ailleurs vérifié que les valeurs de a* et b* de cette seconde série d'exemples variaient peu (moins de ± 2) une fois passé le « bronze » test.

Claims

REVENDICATIONS
1. Substrat transparent, notamment en verre, caractérisé en ce qu'il est muni d'une électrode, notamment pour cellule solaire, comprenant une couche conductrice à base de molybdène Mo d'au plus 500 nm d'épaisseur, notamment d'au plus 400 nm ou d'au plus 300 nm ou d'au plus 200 nm.
2. Substrat selon la revendication 1 , caractérisé en ce que la couche à base de molybdène a une épaisseur d'au moins 20 nm, notamment d'au moins 50 ou 80 nm.
3. Substrat selon l'une des revendications précédentes, caractérisé en ce qu'il est muni d'au moins une couche-barrière, notamment vis-à-vis des alcalins, insérée entre ledit substrat et ladite électrode.
4. Substrat selon la revendication 3, caractérisé en ce que la couche- barrière est à base de matériau diélectrique, choisi parmi au moins l'un des composés suivants : nitrure ou oxynitrure de silicium, nitrure ou oxynitrure d'aluminium, oxyde ou oxycarbure de silicium.
5. Substrat selon la revendication 3 ou la revendication 4, caractérisé en ce que la couche-barrière a une épaisseur d'au moins 20 nm, notamment d'au moins 100 nm, et de préférence d'au plus 300 nm, notamment d'au plus 250 ou 200 nm.
6. Substrat selon l'une des revendications précédentes, caractérisé en ce que l'électrode comprend au moins une couche conductrice complémentaire, différente de la couche à base de molybdène.
7. Substrat selon la revendication 6, caractérisé en ce que la couche conductrice complémentaire, ou au moins l'une d'entre elles s'il y en a au moins deux, a une épaisseur d'au moins 10 nm, notamment d'au moins 40 nm, et de préférence d'au plus 300 nm, avec de préférence une épaisseur comprise entre 50 et 200 nm.
8. Substrat selon la revendication 6 ou la revendication 7, caractérisé en ce que l'électrode comprend au moins une couche conductrice complémentaire M a base de métal ou d'alliage métallique, notamment choisi parmi l'un des métaux ou alliages suivants : Cu, Ag, Al, Ta, Ni, Cr, NiCr, acier.
9. Substrat selon l'une des revendications 6 à 8, caractérisé en ce que l'électrode comprend au moins une couche conductrice complémentaire M à base de métal ou d'alliage métallique en-dessous de la couche conductrice à base de molybdène Mo.
10. Substrat selon l'une des revendications 6 à 9, caractérisé en ce que l'électrode comprend au moins une couche conductrice complémentaire M'N à base d'un nitrure sous-stoechiométπ'que, stoechiometrique ou sur- stoechiometrique, en azote, d'au moins un des métaux suivants : Ta, Zr, Nb, Ti, Mo, Hf.
11. Substrat selon la revendication 10, caractérisé en ce que la couche M'N est en-dessous et/ou au-dessus de la couche à base de molybdène Mo.
12. Substrat selon la revendication 8 et la revendication 10, caractérisé en ce que la couche M'N est disposée entre la couche M et la couche à base de
Mo.
13. Substrat selon la revendication 8 et/ou la revendication 10, caractérisé en ce que l'électrode comporte l'une des séquences de couches suivantes : M/Mo/M'N ; M/M'N/Mo ; M/Mo ; M'N/Mo ; Mo/M'N.
14. Substrat selon l'une des revendications précédentes, caractérisé en ce que la somme des épaisseurs des couches conductrices de l'électrode est inférieure ou égale à 600 nm, notamment inférieure ou égale à 500 nm.
15. Substrat selon l'une des revendications précédentes, caractérisé en ce que l'électrode a une résistance par carré RD inférieure ou égale à 2Ω/D, notamment inférieure ou égale à 1Ω/D, de préférence inférieure ou égale à 0,50 ou 0,45Ω/D.
16. Substrat selon la revendication 3, caractérisé en ce que la couche- barrière fait partie d'un revêtement multicouches à but optique, constitué d'au moins deux couches de matériaux diélectriques d'indices de réfraction différents.
17. Substrat selon la revendication 16, caractérisé en ce qu'il comporte une alternance de couches à haut indice de réfraction, compris entre 1,9 et 2,3, et de couches à bas indice de réfraction, compris entre 1 ,4 et 1,7, notamment selon les séquences Si3N4/Siθ2 ou Si3N4/SiO2/Si3N4.
18. Substrat selon la revendication 16 ou la revendication 17, caractérisé en ce que la composition du revêtement optique règle au moins en partie la colorimetrie en réflexion du substrat, notamment dans les bleus-verts avec des valeurs de a* et de b* négatives ou dans les rosés avec des valeurs de a* légèrement positives et des valeurs de b* négatives.
19. Substrat selon la revendication 10, caractérisé en ce que la stoechiometrie en azote de la couche en nitrure M'N règle au moins en partie la colorimetrie en réflexion du substrat, notamment dans les bleus-verts avec des valeurs de a* et b* négatives ou dans les rosés avec des valeurs de a* positives et des valeurs de b* négatives.
20. Substrat selon la revendication 3 caractérisé en ce qu'une fine couche absorbante dans le visible, notamment en TiN et de préférence d'une épaisseur de 2 à 15 nm, est insérée entre la couche-barrière et l'électrode, de façon à régler, au moins en partie, la colorimetrie en réflexion du substrat, notamment dans les bleus-verts avec des valeurs de a* et b* négatives, ou dans les rosés avec des valeurs de a* légèrement positives et des valeurs de b* négatives.
21. Substrat selon l'une des revendications précédentes, caractérisé en ce qu'il comprend au-dessus de l'électrode une couche d'agent absorbeur de chalcopyrite.
22. Utilisation du substrat selon l'une des revendications 1 à 20 en tant qu'électrode de cellule solaire.
23. Utilisation du substrat selon la revendication 21 pour faire une cellule solaire.
24. Cellule solaire, caractérisée en ce qu'elle comprend le substrat selon la revendication 21.
PCT/FR2002/000274 2001-01-31 2002-01-23 Sustrat transparent muni d'une electrode WO2002065554A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020037010022A KR100949600B1 (ko) 2001-01-31 2002-01-23 전극이 장착된 투명 기판, 상기 기판을 사용하는 방법 및 상기 기판을 포함하는 태양 전지
BR0206785-4A BR0206785A (pt) 2001-01-31 2002-01-23 Substrato transparente, utilização do substrato, e, bateria (célula) solar
EP02700381A EP1356528A1 (fr) 2001-01-31 2002-01-23 Sustrat transparent muni d'une electrode
MXPA03006682A MXPA03006682A (es) 2001-01-31 2002-01-23 Substrato transparente provisto con un electrodo.
US10/466,335 US8148631B2 (en) 2001-01-31 2002-01-23 Transparent substrate equipped with an electrode
JP2002564768A JP4537000B2 (ja) 2001-01-31 2002-01-23 電極を備えた透明基材
AU2002233459A AU2002233459A1 (en) 2001-01-31 2002-01-23 Transparent substrate equipped with an electrode
US13/336,197 US8809668B2 (en) 2001-01-31 2011-12-23 Transparent substrate equipped with an electrode
US13/336,143 US20120186646A1 (en) 2001-01-31 2011-12-23 Transparent substrate equipped with an electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0101292A FR2820241B1 (fr) 2001-01-31 2001-01-31 Substrat transparent muni d'une electrode
FR01/01292 2001-01-31

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10466335 A-371-Of-International 2002-01-23
US13/336,197 Division US8809668B2 (en) 2001-01-31 2011-12-23 Transparent substrate equipped with an electrode
US13/336,143 Division US20120186646A1 (en) 2001-01-31 2011-12-23 Transparent substrate equipped with an electrode

Publications (2)

Publication Number Publication Date
WO2002065554A1 true WO2002065554A1 (fr) 2002-08-22
WO2002065554A8 WO2002065554A8 (fr) 2004-05-06

Family

ID=8859441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/000274 WO2002065554A1 (fr) 2001-01-31 2002-01-23 Sustrat transparent muni d'une electrode

Country Status (12)

Country Link
US (3) US8148631B2 (fr)
EP (5) EP1356528A1 (fr)
JP (3) JP4537000B2 (fr)
KR (1) KR100949600B1 (fr)
CN (1) CN1327533C (fr)
AU (1) AU2002233459A1 (fr)
BR (1) BR0206785A (fr)
ES (1) ES2627686T3 (fr)
FR (1) FR2820241B1 (fr)
MX (1) MXPA03006682A (fr)
PT (1) PT2369633T (fr)
WO (1) WO2002065554A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544884B2 (en) * 2002-09-30 2009-06-09 Miasole Manufacturing method for large-scale production of thin-film solar cells
US7741560B2 (en) 2005-07-22 2010-06-22 Honda Motor Co., Ltd. Chalcopyrite solar cell
US8134069B2 (en) 2009-04-13 2012-03-13 Miasole Method and apparatus for controllable sodium delivery for thin film photovoltaic materials
WO2012085395A2 (fr) 2010-12-21 2012-06-28 Saint-Gobain Glass France Substrat conducteur a base de molybdene
FR2977078A1 (fr) * 2011-06-27 2012-12-28 Saint Gobain Substrat conducteur pour cellule photovoltaique
WO2013068702A1 (fr) 2011-11-09 2013-05-16 Saint-Gobain Glass France Substrat conducteur pour cellule photovoltaïque
EP2800145A1 (fr) 2013-05-03 2014-11-05 Saint-Gobain Glass France Substrat de contact arrière pour module ou cellule photovoltaïque
EP2800146A1 (fr) 2013-05-03 2014-11-05 Saint-Gobain Glass France Substrat de contact arrière pour module ou cellule photovoltaïque
EP2800144A1 (fr) 2013-05-03 2014-11-05 Saint-Gobain Glass France Substrat de contact arrière pour module ou cellule photovoltaïque
EP2871681A1 (fr) 2013-11-07 2015-05-13 Saint-Gobain Glass France Substrat conducteur à contact arrière pour une cellule photovoltaïque ou module
WO2015071589A1 (fr) * 2013-11-15 2015-05-21 Saint-Gobain Glass Grance Substrat de contact arrière pour cellule photovoltaïque
DE202015106923U1 (de) 2015-12-18 2016-01-22 Saint-Gobain Glass France Elektronisch leitfähiges Substrat für Photovoltaikzellen
US10043921B1 (en) 2011-12-21 2018-08-07 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Photovoltaic cell with high efficiency cigs absorber layer with low minority carrier lifetime and method of making thereof

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090111206A1 (en) 1999-03-30 2009-04-30 Daniel Luch Collector grid, electrode structures and interrconnect structures for photovoltaic arrays and methods of manufacture
US8138413B2 (en) 2006-04-13 2012-03-20 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8222513B2 (en) 2006-04-13 2012-07-17 Daniel Luch Collector grid, electrode structures and interconnect structures for photovoltaic arrays and methods of manufacture
US8664030B2 (en) 1999-03-30 2014-03-04 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US7507903B2 (en) 1999-03-30 2009-03-24 Daniel Luch Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US8198696B2 (en) 2000-02-04 2012-06-12 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
JP3910072B2 (ja) * 2002-01-30 2007-04-25 東洋アルミニウム株式会社 ペースト組成物およびそれを用いた太陽電池
US8623448B2 (en) 2004-02-19 2014-01-07 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from chalcogenide microflake particles
US20070163641A1 (en) * 2004-02-19 2007-07-19 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from inter-metallic nanoflake particles
US8372734B2 (en) * 2004-02-19 2013-02-12 Nanosolar, Inc High-throughput printing of semiconductor precursor layer from chalcogenide nanoflake particles
US7604843B1 (en) 2005-03-16 2009-10-20 Nanosolar, Inc. Metallic dispersion
US7663057B2 (en) * 2004-02-19 2010-02-16 Nanosolar, Inc. Solution-based fabrication of photovoltaic cell
US20070163642A1 (en) * 2004-02-19 2007-07-19 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from inter-metallic microflake articles
US8329501B1 (en) 2004-02-19 2012-12-11 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from inter-metallic microflake particles
US20060060237A1 (en) * 2004-09-18 2006-03-23 Nanosolar, Inc. Formation of solar cells on foil substrates
US20070163639A1 (en) * 2004-02-19 2007-07-19 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from microflake particles
US8846141B1 (en) 2004-02-19 2014-09-30 Aeris Capital Sustainable Ip Ltd. High-throughput printing of semiconductor precursor layer from microflake particles
US7605328B2 (en) * 2004-02-19 2009-10-20 Nanosolar, Inc. Photovoltaic thin-film cell produced from metallic blend using high-temperature printing
US20070169809A1 (en) * 2004-02-19 2007-07-26 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer by use of low-melting chalcogenides
US7700464B2 (en) * 2004-02-19 2010-04-20 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from nanoflake particles
US8309163B2 (en) * 2004-02-19 2012-11-13 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer by use of chalcogen-containing vapor and inter-metallic material
JP4695850B2 (ja) * 2004-04-28 2011-06-08 本田技研工業株式会社 カルコパイライト型太陽電池
US7838868B2 (en) 2005-01-20 2010-11-23 Nanosolar, Inc. Optoelectronic architecture having compound conducting substrate
US20090032108A1 (en) * 2007-03-30 2009-02-05 Craig Leidholm Formation of photovoltaic absorber layers on foil substrates
JP2008514006A (ja) * 2004-09-18 2008-05-01 ナノソーラー インコーポレイテッド 箔基板上の太陽電池の形成
US7276724B2 (en) 2005-01-20 2007-10-02 Nanosolar, Inc. Series interconnected optoelectronic device module assembly
US7732229B2 (en) 2004-09-18 2010-06-08 Nanosolar, Inc. Formation of solar cells with conductive barrier layers and foil substrates
US8541048B1 (en) 2004-09-18 2013-09-24 Nanosolar, Inc. Formation of photovoltaic absorber layers on foil substrates
JP4663300B2 (ja) * 2004-11-18 2011-04-06 本田技研工業株式会社 カルコパイライト型薄膜太陽電池の製造方法
JP2006165386A (ja) * 2004-12-09 2006-06-22 Showa Shell Sekiyu Kk Cis系薄膜太陽電池及びその作製方法
JP4664060B2 (ja) * 2004-12-21 2011-04-06 本田技研工業株式会社 カルコパイライト型太陽電池
US8927315B1 (en) 2005-01-20 2015-01-06 Aeris Capital Sustainable Ip Ltd. High-throughput assembly of series interconnected solar cells
JP4969785B2 (ja) * 2005-02-16 2012-07-04 本田技研工業株式会社 カルコパイライト型太陽電池及びその製造方法
JP2007096031A (ja) * 2005-09-29 2007-04-12 Showa Shell Sekiyu Kk Cis系薄膜太陽電池モジュール及びその製造方法
JP4918247B2 (ja) 2005-10-31 2012-04-18 昭和シェル石油株式会社 Cis系薄膜太陽電池モジュール及びその製造方法
US8389852B2 (en) * 2006-02-22 2013-03-05 Guardian Industries Corp. Electrode structure for use in electronic device and method of making same
US9236512B2 (en) 2006-04-13 2016-01-12 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8729385B2 (en) 2006-04-13 2014-05-20 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8884155B2 (en) 2006-04-13 2014-11-11 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9006563B2 (en) 2006-04-13 2015-04-14 Solannex, Inc. Collector grid and interconnect structures for photovoltaic arrays and modules
US8822810B2 (en) 2006-04-13 2014-09-02 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9865758B2 (en) 2006-04-13 2018-01-09 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9147778B2 (en) * 2006-11-07 2015-09-29 First Solar, Inc. Photovoltaic devices including nitrogen-containing metal contact
US20080302413A1 (en) * 2007-03-30 2008-12-11 Craig Leidholm Formation of photovoltaic absorber layers on foil substrates
FR2922046B1 (fr) 2007-10-05 2011-06-24 Saint Gobain Perfectionnements apportes a des elements capables de collecter de la lumiere
FR2924863B1 (fr) * 2007-12-07 2017-06-16 Saint Gobain Perfectionnements apportes a des elements capables de collecter de la lumiere.
AT10578U1 (de) * 2007-12-18 2009-06-15 Plansee Metall Gmbh Dunnschichtsolarzelle mit molybdan-haltiger ruckelektrodenschicht
US8981211B2 (en) * 2008-03-18 2015-03-17 Zetta Research and Development LLC—AQT Series Interlayer design for epitaxial growth of semiconductor layers
US20090260678A1 (en) * 2008-04-16 2009-10-22 Agc Flat Glass Europe S.A. Glass substrate bearing an electrode
US20100180927A1 (en) * 2008-08-27 2010-07-22 Stion Corporation Affixing method and solar decal device using a thin film photovoltaic and interconnect structures
DE202008018125U1 (de) 2008-09-08 2011-12-27 Saint-Gobain Glass France Verbesserungen an Elementen, die Licht aufnehmen können
US8115095B2 (en) * 2009-02-20 2012-02-14 Miasole Protective layer for large-scale production of thin-film solar cells
JP2010212336A (ja) * 2009-03-09 2010-09-24 Fujifilm Corp 光電変換素子とその製造方法、及び太陽電池
US8247243B2 (en) 2009-05-22 2012-08-21 Nanosolar, Inc. Solar cell interconnection
JP2010282997A (ja) * 2009-06-02 2010-12-16 Seiko Epson Corp 太陽電池、太陽電池の製造方法
CN101931011A (zh) * 2009-06-26 2010-12-29 安泰科技股份有限公司 薄膜太阳能电池及其基带和制备方法
JP5114683B2 (ja) * 2009-09-07 2013-01-09 新日鐵住金株式会社 太陽電池用ガラス基板の裏面電極及びその製造方法
US20110067998A1 (en) * 2009-09-20 2011-03-24 Miasole Method of making an electrically conductive cadmium sulfide sputtering target for photovoltaic manufacturing
US20110162696A1 (en) * 2010-01-05 2011-07-07 Miasole Photovoltaic materials with controllable zinc and sodium content and method of making thereof
US20110259395A1 (en) * 2010-04-21 2011-10-27 Stion Corporation Single Junction CIGS/CIS Solar Module
FR2961954B1 (fr) * 2010-06-25 2012-07-13 Saint Gobain Cellule comprenant un materiau photovoltaique a base de cadmium
JP5667027B2 (ja) * 2010-11-02 2015-02-12 富士フイルム株式会社 太陽電池サブモジュール及びその製造方法、電極付き基板
KR101219948B1 (ko) * 2011-01-27 2013-01-21 엘지이노텍 주식회사 태양광 발전장치 및 제조방법
GB201101910D0 (en) * 2011-02-04 2011-03-23 Pilkington Group Ltd Growth layer for the photovol taic applications
US8642884B2 (en) * 2011-09-09 2014-02-04 International Business Machines Corporation Heat treatment process and photovoltaic device based on said process
DE102012205375A1 (de) * 2012-04-02 2013-10-02 Robert Bosch Gmbh Mehrschicht-Rückelektrode für eine photovoltaische Dünnschichtsolarzelle, Verwen-dung der Mehrschicht-Rückelektrode für die Herstellung von Dünnschichtsolarzellen und -modulen, photovoltaische Dünnschichtsolarzellen und -module enthaltend die Mehrschicht-Rückelektrode sowie ein Verfahren zur Herstellung photovoltaischer Dünnschichtsolarzellen und -module
DE102012205378A1 (de) * 2012-04-02 2013-10-02 Robert Bosch Gmbh Verfahren zur Herstellung von Dünnschichtsolarmodulen sowie nach diesem Verfahren erhältliche Dünnschichtsolarmodule
DE102012205377A1 (de) * 2012-04-02 2013-10-02 Robert Bosch Gmbh Mehrschicht-Rückelektrode für eine photovoltaische Dünnschichtsolarzelle, Verwendung der Mehrschicht-Rückelektrode für die Herstellung von Dünnschichtsolarzellen und -modulen, photovoltaische Dünnschichtsolarzellen und -module enthaltend die Mehrschicht-Rückelektrode sowie ein Verfahren zur Herstellung photovoltaischer Dünnschichtsolarzellen und -module
US9246025B2 (en) * 2012-04-25 2016-01-26 Guardian Industries Corp. Back contact for photovoltaic devices such as copper-indium-diselenide solar cells
US9159850B2 (en) * 2012-04-25 2015-10-13 Guardian Industries Corp. Back contact having selenium blocking layer for photovoltaic devices such as copper—indium-diselenide solar cells
US9419151B2 (en) 2012-04-25 2016-08-16 Guardian Industries Corp. High-reflectivity back contact for photovoltaic devices such as copper—indium-diselenide solar cells
US8809674B2 (en) 2012-04-25 2014-08-19 Guardian Industries Corp. Back electrode configuration for electroplated CIGS photovoltaic devices and methods of making same
US9935211B2 (en) 2012-04-25 2018-04-03 Guardian Glass, LLC Back contact structure for photovoltaic devices such as copper-indium-diselenide solar cells
WO2013190898A1 (fr) * 2012-06-19 2013-12-27 富士電機株式会社 Élément de conversion photoélectrique de chalcopyrite, électrode arrière et procédé de production de ceux-ci
US9871155B2 (en) 2012-06-20 2018-01-16 Bengbu Design & Research Institute For Glass Industry Layer system for thin-film solar cells having an NaxIn1SyClz buffer layer
WO2013189976A1 (fr) 2012-06-20 2013-12-27 Saint-Gobain Glass France Système multicouche pour cellules solaires à films minces
EP2865012B1 (fr) 2012-06-20 2023-01-18 Cnbm Research Institute For Advanced Glass Materials Group Co., Ltd. Système à couches pour cellules solaires à couche mince
ES2441428B1 (es) 2012-07-04 2016-02-05 Abengoa Solar New Technologies, S.A. Formulación de tintas con base de nanopartículas cerámicas
JP2014049571A (ja) * 2012-08-30 2014-03-17 Toyota Central R&D Labs Inc 光電素子
WO2014175451A1 (fr) * 2013-04-26 2014-10-30 コニカミノルタ株式会社 Conducteur transparent et dispositif électronique
US20160163905A1 (en) 2013-06-27 2016-06-09 Saint-Gobain Glass France Layer system for thin-film solar cells having a sodium indium sulfide buffer layer
CN103966565A (zh) * 2013-12-13 2014-08-06 云南师范大学 一种用于彩色薄膜太阳电池表面涂层的制备方法
EP2887405A1 (fr) 2013-12-23 2015-06-24 Saint-Gobain Glass France Système à couches pour cellules solaires à couche mince
WO2017047366A1 (fr) * 2015-09-18 2017-03-23 旭硝子株式会社 Substrat de verre pour cellules solaires, et cellule solaire
FR3080221B1 (fr) * 2018-04-11 2020-03-13 Sunpartner Technologies Optimisation du contact electrique metal/metal dans un dispositif photovoltaique semi-transparent en couches minces
EP3627564A1 (fr) 2018-09-22 2020-03-25 (CNBM) Bengbu Design & Research Institute for Glass Industry Co., Ltd. Procédé de traitement ultérieur d'une couche absorbante
CN110970524A (zh) * 2018-09-30 2020-04-07 北京铂阳顶荣光伏科技有限公司 太阳能电池及其制备方法
CN110028137B (zh) * 2019-04-25 2021-11-30 郑州大学 一种去除水体低价离子和cod的电吸附材料及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798660A (en) * 1985-07-16 1989-01-17 Atlantic Richfield Company Method for forming Cu In Se2 films
US5141564A (en) * 1988-05-03 1992-08-25 The Boeing Company Mixed ternary heterojunction solar cell
JPH0563224A (ja) * 1991-09-02 1993-03-12 Fuji Electric Co Ltd 薄膜太陽電池の製造方法
US5356839A (en) * 1993-04-12 1994-10-18 Midwest Research Institute Enhanced quality thin film Cu(In,Ga)Se2 for semiconductor device applications by vapor-phase recrystallization
US5626688A (en) * 1994-12-01 1997-05-06 Siemens Aktiengesellschaft Solar cell with chalcopyrite absorber layer
WO1997022152A1 (fr) * 1995-12-12 1997-06-19 Davis, Joseph & Negley ELABORATION DE PELLICULE-PRECURSEURS EN CuxInyGazSen (x=0-2, y=0-2, z=0-2, n=0-3) PAR GALVANOSPLASTIE POUR LA FABRICATION DE CELLULES SOLAIRES A HAUT RENDEMENT

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3272986A (en) * 1963-09-27 1966-09-13 Honeywell Inc Solar heat absorbers comprising alternate layers of metal and dielectric material
US4612411A (en) * 1985-06-04 1986-09-16 Atlantic Richfield Company Thin film solar cell with ZnO window layer
JPS6220381A (ja) * 1985-07-16 1987-01-28 シーメンス ソーラー インダストリーズ,エル.ピー. 二セレン化インジウム銅半導体膜の製造方法
JPS63242948A (ja) * 1987-03-31 1988-10-07 Asahi Glass Co Ltd 熱線反射ガラス
JPH0645483B2 (ja) * 1988-01-06 1994-06-15 株式会社半導体エネルギー研究所 液晶表示装置用基板およびその作製方法
JP2587972B2 (ja) * 1988-01-06 1997-03-05 株式会社半導体エネルギー研究所 薄膜構造
US4915745A (en) * 1988-09-22 1990-04-10 Atlantic Richfield Company Thin film solar cell and method of making
US5028274A (en) * 1989-06-07 1991-07-02 International Solar Electric Technology, Inc. Group I-III-VI2 semiconductor films for solar cell application
EP0460287A1 (fr) * 1990-05-31 1991-12-11 Siemens Aktiengesellschaft Nouvelle cellule solaire en chalcopyrite
EP0468094B1 (fr) * 1990-07-24 1995-10-11 Siemens Aktiengesellschaft Procédé de fabrication d'une cellule solaire en chalcopyrite
SE468372B (sv) 1991-04-24 1992-12-21 Stiftelsen Im Inst Foer Mikroe Foerfarande foer tillverkning av tunnfilmssolceller varvid deponering av skikt paa substrat sker i roterbar (cylindrisk) baeranordning
JP3100692B2 (ja) * 1991-08-19 2000-10-16 同和鉱業株式会社 CuInSe2系光電変換素子の作製方法
JPH05114749A (ja) * 1991-10-23 1993-05-07 Nikko Kyodo Co Ltd 電子素子部材およびその製造方法
JPH05315633A (ja) * 1992-05-01 1993-11-26 Dowa Mining Co Ltd CuInSe2 系薄膜太陽電池およびその製法
US5477088A (en) * 1993-05-12 1995-12-19 Rockett; Angus A. Multi-phase back contacts for CIS solar cells
DE4333407C1 (de) * 1993-09-30 1994-11-17 Siemens Ag Solarzelle mit einer Chalkopyritabsorberschicht
CZ279603B6 (cs) * 1993-11-03 1995-05-17 Vysoká Škola Chemicko-Technologická Křišťálové bezolovnaté sklo s indexem lomu vyšším než 1,52
US5962883A (en) * 1994-03-23 1999-10-05 Lucent Technologies Inc. Article comprising an oxide layer on a GaAs-based semiconductor body
DE4413215C2 (de) * 1994-04-15 1996-03-14 Siemens Solar Gmbh Solarmodul mit Dünnschichtaufbau und Verfahren zu seiner Herstellung
JPH08125206A (ja) * 1994-10-27 1996-05-17 Yazaki Corp 薄膜太陽電池
JPH08167728A (ja) * 1994-12-14 1996-06-25 Nippon Oil Co Ltd 光起電力素子
JPH08293543A (ja) * 1995-04-25 1996-11-05 Mitsubishi Electric Corp 半導体装置及びその製造方法
US5772431A (en) * 1995-05-22 1998-06-30 Yazaki Corporation Thin-film solar cell manufacturing apparatus and manufacturing method
JPH0957892A (ja) * 1995-08-24 1997-03-04 Mitsui Toatsu Chem Inc 透明導電性積層体
US5674555A (en) * 1995-11-30 1997-10-07 University Of Delaware Process for preparing group Ib-IIIa-VIa semiconducting films
KR100408499B1 (ko) * 1996-06-17 2004-03-12 삼성전자주식회사 실리콘태양전지
JPH10135501A (ja) * 1996-09-05 1998-05-22 Yazaki Corp 半導体装置及びその製造方法並びに太陽電池
JP2904167B2 (ja) * 1996-12-18 1999-06-14 日本電気株式会社 半導体装置の製造方法
JPH1144887A (ja) * 1997-07-28 1999-02-16 Toppan Printing Co Ltd 表示装置用反射電極基板
JP2000012883A (ja) * 1998-06-25 2000-01-14 Yazaki Corp 太陽電池の製造方法
JP2000091603A (ja) * 1998-09-07 2000-03-31 Honda Motor Co Ltd 太陽電池
DE19958878B4 (de) * 1999-12-07 2012-01-19 Saint-Gobain Glass Deutschland Gmbh Dünnschicht-Solarzelle
NL1013900C2 (nl) * 1999-12-21 2001-06-25 Akzo Nobel Nv Werkwijze voor de vervaardiging van een zonnecelfolie met in serie geschakelde zonnecellen.
JP3705736B2 (ja) * 2000-08-29 2005-10-12 株式会社リガク 熱電気測定装置の試料組立体
US7087309B2 (en) * 2003-08-22 2006-08-08 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Coated article with tin oxide, silicon nitride and/or zinc oxide under IR reflecting layer and corresponding method
JP5048141B2 (ja) 2010-07-08 2012-10-17 日本特殊陶業株式会社 プラズマジェット点火プラグ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798660A (en) * 1985-07-16 1989-01-17 Atlantic Richfield Company Method for forming Cu In Se2 films
US5141564A (en) * 1988-05-03 1992-08-25 The Boeing Company Mixed ternary heterojunction solar cell
JPH0563224A (ja) * 1991-09-02 1993-03-12 Fuji Electric Co Ltd 薄膜太陽電池の製造方法
US5356839A (en) * 1993-04-12 1994-10-18 Midwest Research Institute Enhanced quality thin film Cu(In,Ga)Se2 for semiconductor device applications by vapor-phase recrystallization
US5626688A (en) * 1994-12-01 1997-05-06 Siemens Aktiengesellschaft Solar cell with chalcopyrite absorber layer
WO1997022152A1 (fr) * 1995-12-12 1997-06-19 Davis, Joseph & Negley ELABORATION DE PELLICULE-PRECURSEURS EN CuxInyGazSen (x=0-2, y=0-2, z=0-2, n=0-3) PAR GALVANOSPLASTIE POUR LA FABRICATION DE CELLULES SOLAIRES A HAUT RENDEMENT

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 017, no. 378 (E - 1398) 15 July 1993 (1993-07-15) *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838763B2 (en) 2002-09-30 2010-11-23 Miasole Manufacturing apparatus and method for large-scale production of thin-film solar cells
US8618410B2 (en) 2002-09-30 2013-12-31 Miasole Manufacturing apparatus and method for large-scale production of thin-film solar cells
US7544884B2 (en) * 2002-09-30 2009-06-09 Miasole Manufacturing method for large-scale production of thin-film solar cells
US7741560B2 (en) 2005-07-22 2010-06-22 Honda Motor Co., Ltd. Chalcopyrite solar cell
US8134069B2 (en) 2009-04-13 2012-03-13 Miasole Method and apparatus for controllable sodium delivery for thin film photovoltaic materials
US8313976B2 (en) 2009-04-13 2012-11-20 Mackie Neil M Method and apparatus for controllable sodium delivery for thin film photovoltaic materials
WO2012085395A2 (fr) 2010-12-21 2012-06-28 Saint-Gobain Glass France Substrat conducteur a base de molybdene
FR2977078A1 (fr) * 2011-06-27 2012-12-28 Saint Gobain Substrat conducteur pour cellule photovoltaique
WO2013001222A1 (fr) 2011-06-27 2013-01-03 Saint-Gobain Glass France Substrat conducteur pour cellule photovoltaïque
WO2013068702A1 (fr) 2011-11-09 2013-05-16 Saint-Gobain Glass France Substrat conducteur pour cellule photovoltaïque
US10043921B1 (en) 2011-12-21 2018-08-07 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Photovoltaic cell with high efficiency cigs absorber layer with low minority carrier lifetime and method of making thereof
US10211351B2 (en) 2011-12-21 2019-02-19 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Photovoltaic cell with high efficiency CIGS absorber layer with low minority carrier lifetime and method of making thereof
EP2800145A1 (fr) 2013-05-03 2014-11-05 Saint-Gobain Glass France Substrat de contact arrière pour module ou cellule photovoltaïque
EP2800144A1 (fr) 2013-05-03 2014-11-05 Saint-Gobain Glass France Substrat de contact arrière pour module ou cellule photovoltaïque
EP2800146A1 (fr) 2013-05-03 2014-11-05 Saint-Gobain Glass France Substrat de contact arrière pour module ou cellule photovoltaïque
EP2871681A1 (fr) 2013-11-07 2015-05-13 Saint-Gobain Glass France Substrat conducteur à contact arrière pour une cellule photovoltaïque ou module
WO2015067738A1 (fr) 2013-11-07 2015-05-14 Saint-Gobain Glass France Substrat de contact arrière pour cellule ou module photovoltaïque
WO2015071589A1 (fr) * 2013-11-15 2015-05-21 Saint-Gobain Glass Grance Substrat de contact arrière pour cellule photovoltaïque
FR3013507A1 (fr) * 2013-11-15 2015-05-22 Saint Gobain Substrat de contact arriere pour cellule photovoltaique
DE202015106923U1 (de) 2015-12-18 2016-01-22 Saint-Gobain Glass France Elektronisch leitfähiges Substrat für Photovoltaikzellen

Also Published As

Publication number Publication date
EP2369636A3 (fr) 2014-10-01
JP5592461B2 (ja) 2014-09-17
KR20030085524A (ko) 2003-11-05
KR100949600B1 (ko) 2010-03-25
EP2369635A2 (fr) 2011-09-28
US8148631B2 (en) 2012-04-03
EP2369633B1 (fr) 2017-03-15
JP4537000B2 (ja) 2010-09-01
PT2369633T (pt) 2017-06-08
CN1327533C (zh) 2007-07-18
CN1533610A (zh) 2004-09-29
FR2820241A1 (fr) 2002-08-02
JP2010212692A (ja) 2010-09-24
JP2013048297A (ja) 2013-03-07
WO2002065554A8 (fr) 2004-05-06
EP1356528A1 (fr) 2003-10-29
EP2369636A2 (fr) 2011-09-28
FR2820241B1 (fr) 2003-09-19
AU2002233459A1 (en) 2002-08-28
JP5313948B2 (ja) 2013-10-09
EP2369633A3 (fr) 2014-09-24
ES2627686T3 (es) 2017-07-31
US20120167961A1 (en) 2012-07-05
US8809668B2 (en) 2014-08-19
US20120186646A1 (en) 2012-07-26
EP2369635B1 (fr) 2017-06-14
EP2369634A2 (fr) 2011-09-28
JP2004532501A (ja) 2004-10-21
EP2369634A3 (fr) 2014-09-24
US20040144419A1 (en) 2004-07-29
EP2369633A2 (fr) 2011-09-28
MXPA03006682A (es) 2003-10-24
EP2369635A3 (fr) 2014-10-08
BR0206785A (pt) 2004-02-10

Similar Documents

Publication Publication Date Title
EP2369635B1 (fr) Substrat transparent muni d'une électrode
CA2547465C (fr) Substrat transparent utilisable alternativement ou cumulativement pour le controle thermique, le blindage electromagnetique et le vitrage chauffant
CA2630626C (fr) Substrat muni d'un empilement a proprietes thermiques
CA2578126C (fr) Vitrage feuillete muni d'un empilement de couches minces reflechissant les infrarouges et/ou le rayonnement solaire et d'un moyen de chauffage
CA2115320A1 (fr) Substrats en verre revetus d'un empilement de couches minces, application a des vitrages a proprietes de reflexion dans l'infra-rouge et/ou a proprietes dans le domaine du rayonnement solaire
CH679580A5 (fr)
CH679579A5 (fr)
FR2928913A1 (fr) Substrat muni d'un empilement a proprietes thermiques
EP1160214A1 (fr) Vitrage comprenant au moins une couche a proprietes thermochromes
FR2939240A1 (fr) Element en couches et dispositif photovoltaique comprenant un tel element
EP2965367A1 (fr) Support electroconducteur pour oled, oled l'incorporant, et sa fabrication.
EP0037335B1 (fr) Vitrage à spectres de transmission et de réflexion sélectifs
FR2924232A1 (fr) Substrat muni d'un empilement a proprietes thermiques
EP2883257A1 (fr) Support conducteur diffusant pour dispositif oled, ainsi que dispositif oled l'incorporant
WO2020234126A1 (fr) Composite laminé pour éléments de couches à propriétés thermiques et transparents aux radiofréquences
WO2021105374A1 (fr) Materiau comportant un empilement a sous-couche dielectrique fine d'oxide a base de zinc et procede de depot de ce materiau
WO2021219961A1 (fr) Materiau comportant un empilement a sous-couche dielectrique fine d'oxide a base de zinc et procede de depot de ce materiau
FR2536913A1 (fr) Perfectionnement aux cellules photovoltaiques a couche polycristalline a base de cds

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002700381

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/006682

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020037010022

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002564768

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 02805525X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002700381

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037010022

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10466335

Country of ref document: US

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 34/2002 UNDER (30) REPLACE "09/01292" BY "01/01292"