WO2002074883A1 - Desulfurizing agent, method for production thereof, and method of use thereof - Google Patents

Desulfurizing agent, method for production thereof, and method of use thereof Download PDF

Info

Publication number
WO2002074883A1
WO2002074883A1 PCT/JP2002/002649 JP0202649W WO02074883A1 WO 2002074883 A1 WO2002074883 A1 WO 2002074883A1 JP 0202649 W JP0202649 W JP 0202649W WO 02074883 A1 WO02074883 A1 WO 02074883A1
Authority
WO
WIPO (PCT)
Prior art keywords
desulfurization
desulfurizing agent
agent
gas
desulfurizing
Prior art date
Application number
PCT/JP2002/002649
Other languages
French (fr)
Japanese (ja)
Inventor
Michihiro Ishimori
Masafumi Katsuta
Nobuyuki Yui
Takashi Inaba
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2002573878A priority Critical patent/JPWO2002074883A1/en
Publication of WO2002074883A1 publication Critical patent/WO2002074883A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/024Compounds of Zn, Cd, Hg
    • B01J20/0244Compounds of Zn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/32Purifying combustible gases containing carbon monoxide with selectively adsorptive solids, e.g. active carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials

Definitions

  • the present invention relates to a desulfurizing agent, a method for producing the same, and a method for using the same, and in particular, high purity hydrogen, highly desulfurized hydrogen, and highly desulfurized synthesis gas
  • the desulfurization methods currently used include the wet method and the dry method.
  • the wet method has problems such as low desulfurization temperature and large energy loss.
  • the dry method has small energy loss but high desulfurization temperature and can be used commercially.
  • the desulfurization system has not been developed yet. Iron oxide and zinc oxide are commonly used dry desulfurization agents.
  • iron oxide as a conventional dry desulfurization agent can not remove sulfur compounds to a great extent. Therefore, iron oxide can not be used to significantly reduce the performance due to the presence of sulfur compounds such as fuel cells, and it is sufficient as a desulfurization agent. Performance is not available.
  • zinc oxide which is used as a desulfurization agent, has a low absorption capacity for sulfur compounds and is difficult to regenerate, so it is possible to use it as a desulfurization agent for coal gasification for power generation, for example. If you use a tray, the amount of desulfurization agent required will be extremely large.
  • a conventional method for producing such advanced desulfurization hydrogen which can be used for fuel cells etc., is a process that can be used for fuel cells etc., by converting natural gas into highly desulfurized hydrogen. And desulfurize hydrogen sulfide with zinc oxide etc. to obtain highly desulfurized natural gas.
  • the highly desulfurized natural gas obtained was Highly desulfurized hydrogen is obtained by feeding to the reformer.
  • the used zinc oxide etc. can not be disposed of and reused.
  • JP-A-4-174526 discloses a method of producing zinc ferrite used as a desulfurization agent.
  • Such zinc ferrite as a desulfurization agent is intended to improve the removal efficiency of sulfur compounds and to further improve its absorption capacity by using a zinc-iron double oxide. It is
  • the above-mentioned zinc ferrite desulfurization agent decomposes the desulfurization agent or precipitates carbon in the desulfurization agent, and the pore of the desulfurization agent to which the sulfur compound gas diffuses
  • the desulfurization efficiency has been reduced by closing down the catalyst and generating byproducts that do not contribute to the desulfurization.
  • the desulfurization performance of the desulfurization agent after regeneration is significantly reduced.
  • Zn F e 2 0 4 with the addition of shea Li Ca Zinc full E Lai DOO as a desulfurizing agent - S i 0 2 also being proposed.
  • a desulfurization agent the also ZnF e 2 0 4 to S i 0 2 a by Ri desulfurization performance and the child to be added is improved, the desulfurization performance after play had island decreased rather than the remarkable, repeat play Ri It was difficult to use it.
  • the object of the present invention is to provide a high degree of repeatability for desulfurization and regeneration.
  • Supply desulfurization agent
  • the present inventors have results studied for solving the above problems, the ZnFe 2 0 4 / Si0 2, ( in the formula, A represents the Zr and / or Ti) A0 2 Ri by the and this you added, The inventors have found that the desulfurization performance is improved, and that the desulfurization agent in which the desulfurization performance does not deteriorate even after repeated use is obtained, and the present invention has been achieved.
  • Desulfurization agent of the present invention have the general formula; ZnFe 2 0 4 / Si0 2 / A0 2 ( in the formula, A represents the Zr and / or Ti) and Oh Ru
  • This desulfurization agent comprising a compound table with It is characterized by The ZnFe 2 O 4 / Si0 2 / A0 2 means (ZnFe 2 0 4) p ( Si0 2) q (A0 2) r (p, q, r denotes any number) (A is Zr And / or indicate Ti).
  • the following formula is used to produce the desulfurizing agent of the present invention: zinc ferrite represented by the following formula: ZnFe 2 O 4 / Si 0 2 a, (in the formula, a represents the Zr and / or Ti) A0 2 were ground and mixed by adding, characterized that you firing by adding a molding aid to the mixture obtained.
  • the zinc ferrite silica is a mixed solution of an aqueous solution of zinc and an aqueous solution of iron.
  • the solution is applied with silica sol, precipitated with ammonia or urea, and then filtered, washed, dried, and calcined to obtain a feature.
  • the method of using the desulfurizing agent of the present invention comprises using the above-mentioned desulfurizing agent of the present invention for desulfurizing crude hydrogen, synthesis gas, hydrogen-containing reducing gas, synthesis gas, natural gas or coal gas. It is a feature.
  • the desulfurizing agent used is regenerated by oxidation, and the regenerated desulfurizing agent is repeatedly used.
  • FIG. 1 is a graph showing the desulfurization regeneration characteristics of the desulfurization agent (ZnFe 2 O 4 / Sio 2 / Zr 0 2 ) of the present invention as a function of time and hydrogen sulfide concentration (desulfurization agent: oxidation regeneration method; hydrogen sulfide Concentration: Desulfurizer exhaust gas).
  • Fig. 2 is a diagram showing the desulfurization regeneration characteristics of the desulfurization agent (ZnFe 2 O 4 / Sio 2 / Ti 0 2 ) of the present invention as a function of time and hydrogen sulfide concentration (desulfurization agent: oxidation regeneration method; hydrogen sulfide Concentration: Desulfurizer exhaust gas).
  • Fig. 3 is a diagram (Desulfurization agent: Regeneration system; Hydrogen sulfide concentration: Desulfurization device outlet gas) showing the desulfurization and regeneration characteristics of the conventional desulfurization agent as a function of time and hydrogen sulfide concentration. .
  • FIG. 4 is a diagram showing the relationship between the number of desulfurization cycles and the amount of absorbed hydrogen sulfide for the desulfurizing agent of the present invention (ZnFe 2 0 4 / Si 0 2 / Zr 0 2 ) and the conventional desulfurizing agent.
  • FIG. 5 is a graph showing the relationship between the number of desulfurization cycles and the amount of absorbed hydrogen sulfide for the desulfurizing agent (ZnFe 2 O 4 / Si 0 2 / Ti 0 2 ) of the present invention.
  • Fig. 6 is a diagram showing the desulfurization regeneration characteristics of the desulfurization agent (ZnFe 2 O 4 / Sio 2 / Zr 0 2 ) of the present invention as a function of time and hydrogen sulfide concentration (desulfurization agent: oxidation regeneration ⁇ reduction treatment method Hydrogen sulfide concentration: Desulfurizer outlet gas).
  • Fig. 7 is a diagram showing the relationship between the number of desulfurization cycles and the amount of absorbed hydrogen sulfide in relation to the hydrogen reduction treatment for the desulfurization agent (ZnFe 2 0 4 / Si 0 2 / Zr 0 2 ) of the present invention. is there.
  • Fig. 8 is a graph showing the desulfurization regeneration characteristics (desulfurization temperature) of the desulfurization agent (ZnFe 2 0 4 / Si 0 2 / Zr 0 2 ) of the present invention as a function of time and hydrogen sulfide concentration (desulfurization agent: oxidation Regeneration method: Hydrogen sulfide concentration: Desulfurization unit outlet gas).
  • FIG. 9 is a graph showing the desulfurization regeneration characteristics (desulfurization temperature) of the desulfurization agent (ZnFe 2 O 4 / Sio 2 / Ti 0 2 ) of the present invention as a function of time and hydrogen sulfide concentration (desulfurization agent: oxidation Regeneration method: Hydrogen sulfide concentration: Desulfurization unit outlet gas).
  • desulfurization agent oxidation Regeneration method: Hydrogen sulfide concentration: Desulfurization unit outlet gas.
  • the preferred desulfurizing agent of the present invention comprises a compound represented by the following general formula: ZnFe 2 O 4 / Sio 2 / A 0 2 (wherein A represents Zr and / or Ti).
  • Zr0 2 or Ti0 2 in the above formula has a function as a ZnFe 2 0 4 / Si0 2 of the structural stabilizer.
  • Ri was using the A1 2 0 3, Or A1 2 0 3 and Zr0 combination with 2 or Ti0 2 also Ru can this and force S to be used.
  • Ti0 2 ⁇ Pi / or Zr 0 2 is suitably use Rere.
  • a precursor of iron oxide and zinc oxide and a precursor of silicon oxide are mixed, and iron, zinc and silicon in the form of hydroxide by coprecipitation method or homogeneous precipitation method. to form a sediment containing the ingredient, filtered, washed, dried, Ri by the and this firing, Ri by the and this is pulverized if necessary to be al, Zn Fe 2 0 4 - Si0 2 to be produced.
  • the form of addition of silicon is not particularly limited as long as zinc, iron and silicon can interact with each other.
  • the mixing ratio of zinc oxide and iron oxide is not particularly limited, but the molar ratio is preferably 1: 2 to 1: 4, preferably 1: 2 to 1: 3 depending on the amount of the desulfurizing agent used. Preferred in terms of desulfurization efficiency.
  • the amount of silicon oxide added is also not particularly limited, and it is l ZASZ l with respect to the weight of the force S, ZnFe 2 0 4 -Si 0 2 is the point of the desulfurization performance of the obtained desulfurization agent I like it.
  • iron oxide or zinc oxide for example, water soluble salts such as nitrate, sulfate and chloride can be used.
  • silicon is a precursor of silicon oxide, such as citric acid, cobalt oxide, and It is possible to use an Amorphous System, etc.
  • a coprecipitation method using ammonia etc. or urea etc. is used.
  • the precipitate is obtained as hydroxide by the homogeneous precipitation method.
  • Sodium hydroxide and potassium hydroxide can also be used as other additives to obtain precipitates.
  • the precipitate is aged, washed, filtered, dried, and calcined at a temperature of 300 to 900 ° C., for example. If necessary, ZnF e 2 0 4 -S i 0 2 is produced by grinding the obtained fired product.
  • the amount of added Zr0 2 or Ti 0 2 is not particularly limited, preferably ZnFe 2 0 4 - in pairs on the weight of the S i 0 2, about 1 to 3 times, to obtain a desulfurizing agent It is preferable from the point of maintaining desulfurization performance even after regeneration.
  • methyl cellulose, polyethyl alcohol, poly alcohol, starch, starch, Organic substances such as lignin can be used. It is also possible to add inorganic agents such as glass fiber, carbon fiber and metal fiber for molding.
  • the calcination is then carried out at a temperature of 400 to 700 ° C., for example, granular, In the present invention, it can be formed by firing into any desired desired shape such as pellet, sphere, cylinder, cavity, cam and plate.
  • the desulfurization agent of the present invention thus obtained can be suitably used for desulfurization of crude hydrogen, synthetic gas, hydrogen-containing reducing gas, natural gas or coal gas.
  • the desulfurization temperature is not particularly limited, and desulfurization at a temperature of 300 to 600 ° C. is preferable.
  • natural gas is first desulfurized by passing through a desulfurizer, then desulfurized gas is passed through a reformer, and part of the H2 gas reformed by the reformer is passed through the reformer.
  • the natural gas flowing into the desulfurization apparatus is treated as a hydrogen-containing reducible natural gas, and is contained in the desulfurization apparatus.
  • a highly desulfurized hydrogen-containing natural gas is obtained by the desulfurizing agent.
  • the highly desulfurized hydrogen-containing natural gas is fed into the reformer to obtain highly dehydrogenated hydrogen. is there.
  • the desulfurizing agent of the present invention can be regenerated by oxidation, and the regenerated desulfurizing agent can be used repeatedly. Desulfurization performance does not deteriorate even with such repeated use.
  • the desulfurizing agent of the present invention high purity hydrogen, high desulfurization hydrogen, highly desulfurized synthesis gas or highly desulfurized reduction gas can be easily and economically obtained. Therefore, synthetic gas for coal gasification such as coal gasification combined power generation, synthesis gas for liquid fuel synthesis such as methanol, etc., and phosphoric acid type fuel cell, solid material whose electrode is easily deteriorated by reaction with hydrogen sulfide etc. It is also industrially very effective in the field (1 ppm or less) where the allowable sulfide concentration in hydrogen gas is severe, such as fuel cells such as polymer fuel cells, molten carbonate fuel cells or solid electrolyte fuel cells. is there.
  • Aqueous solution of zinc nitrate (. 1 5 mol / 1) 5 0 ml iron nitrate aqueous solution (. 1 5 mol / 1) was mixed with 100 ml, a co B A Darcy Li mosquitoes, resulting ZnFe 2 0 4 - Si0 2 of The mixture was added and stirred in an amount corresponding to 1/3 of the weight.
  • the pH of the solution was adjusted to 7 to 8 by adding ammonia to the obtained mixture, and the hydroxide was coprecipitated.
  • the resulting hydroxides are aged for 1 hour, filtered, washed with pure water, dried at 120 ° C for 12 hours, then fired at 80 ° C for 5 hours, and the mortar is and Kona ⁇ using, ZnFe 2 0 4 - was obtained Si0 2. Then, the resulting ZnFe 2 0 4 - Si0 2 to be paired with the addition of Zr0 2 of 2 times by weight, the rig two down of the forming aid is added 5% of the total weight, mortar Mixed at the same time.
  • the substance obtained by mixing is formed into a tablet shape with a tablet molding machine, dried, and fired at 500 ° C. for 3 hours, and the baked product is ground in a mortar.
  • the particles were classified into an average particle size of 500 to 700 ⁇ m to obtain a ZnFe 2 0 4 / Si 0 2 / Zr 0 2 desulfurizing agent of the present invention.
  • Example 1 The desulfurizing agent obtained in Example 1 and Example 2 and Comparative Example 1 was used.
  • the desulfurization test and regeneration test were conducted using the fixed bed flow reactor described below.
  • Reaction tube made of quartz glass, inner diameter 7. 6 outer diameter 0 0 step length 4 0. 0 mm
  • Desulfurization agent sample weight 600 mg (200 mg of ZnFe 2 O 4 / Sio 2 + 400 mg of Z r 0 2 , Ti 0 2 or Sio 2 )
  • Desulfurization agent sample weight 600 mg (200 mg of ZnFe 2 O 4 / Sio 2 + 400 mg of Z r 0 2 , Ti 0 2 or Sio 2 ) 1 minute or less maintenance time (minute) (N desulfurization)
  • Example 1 and Example 2 and Comparative Example 1 are desulfurized under the above desulfurization conditions (desulfurization temperature is 450 ° C.), and then oxidation regeneration is repeated under the above regeneration conditions and repeated. Returned desulfurization test. The results are shown in Fig. 1, Fig. 2 and Fig. 3 respectively.
  • Desulfurization reaction In order to investigate the change in high-performance desulfurization time in which the hydrogen sulfide concentration in the gas at the outlet of the pipe is maintained at 1 ppm or less, using the above equation representing the regeneration rate based on the first time, The playback rate was calculated.
  • the desulfurization agent obtained in Example 1 and Example 2 is found to have superior desulfurization performance even after the regeneration treatment than the desulfurization agent obtained in Comparative Example 1.
  • Figure 4 shows the relationship between the number of desulfurization cycles in the desulfurizing agent and the amount of absorbed hydrogen sulfide in Example 1 and Comparative Example 1
  • Figure 5 shows the number of cycles in the desulfurizing agent of Example 2.
  • H 2 S theoretical absorption value is ZnFe 2 0 4 3 mol
  • Fe 2 0 3 is The ZnFe 2 0 4 / S 0 2 Ti 2 O 2 -based desulfurizing agent was calculated based on the assumption that 2 moles and 1 mole of ZnO absorb 1 mole of H 2 S.
  • the desulfurizing agent based on ZnFe 2 O 4 was superior to the viewpoint of H 2 S absorption capacity.
  • Desulfurizing agent, H 2 S absorption actually measured value is higher than theoretical value It was a good value. This result suggests that the desulfurization reaction as in Reaction formula 2 is also performed in addition to the desulfurization reaction formula (1) conventionally assumed as the desulfurization reaction mechanism. it is conceivable that.
  • Example 1 and Example 2 From the comparison of the absorption capacities of hydrogen sulfide shown in FIGS. 4 and 5, the desulfurizing agents obtained in Example 1 and Example 2 can be compared with the desulfurizing agents obtained in Comparative Example 1 as well. It is possible to have excellent desulfurization performance even after regeneration treatment.
  • the desulfurization agent obtained in Example 1 is desulfurized under the above desulfurization conditions (desulfurization temperature is 45 ° C.), and then oxidized and regenerated under the above regeneration conditions, and then the H 2 reduction treatment is carried out. It is now. The result is shown in Fig.6.
  • the calculation of the regeneration rate was the same as in Test Example 1. Also, in order to compare the influence of H 2 reduction treatment on the desulfurization performance, as shown in FIG. 7, after the desulfurization agent obtained in Example 1 is oxidized and regenerated, H 2 Show the relationship between the number of desulfurization cycles and the amount of absorbed hydrogen sulfide, with and without reduction treatment. Experimental values and theoretical values are test examples
  • H 2 reduction is considered to be Fe S ⁇ F e S 0 4 in the side reaction during regeneration treatment, and H 2 reduction using Fe S 0 4 ⁇ Fe 3 0 4 is considered It is for the future.
  • Fig. 7 and Fig. 7 no difference was seen in the desulfurization performance regardless of whether or not the H 2 reduction treatment was used.
  • This desulfurization agent of the present invention the generation of F e S 0 4 that Ji by Ri production in side reactions during playback Ru Oh than also indicating the this Ru small amount der.
  • Example 1 and Example 2 The desulfurization performance of the desulfurization agent obtained in Example 1 and Example 2 is the same as in Example 1 except that the desulfurization temperature is changed. The results are shown in FIGS. 8 and 9, respectively. Show. The calculation of the regeneration rate was the same as in Test Example 1. It can be seen from FIGS. 8 and 9 that the desulfurizing agent of the present invention can perform high-performance desulfurization particularly in the temperature range of 250 and at 600 °. Industrial applicability
  • the desulfurizing agent of the present invention is a high-performance desulfurizing agent capable of repeated desulfurization and regeneration, and using such a desulfurizing agent, high purity hydrogen, high dehydrogenation hydrogen, high desulfurization synthesis gas or high desulfurization agent It is easy to economically produce desulfurization reducing gas. Therefore, synthesis gas for coal gas such as coal gasification combined generation, liquid fuel synthesis such as methanol, etc., phosphoric acid type whose electrode is easily deteriorated by reaction with hydrogen sulfide etc. It is also very useful industrially in areas where the concentration of sulfides in hydrogen gas is severe (for example, less than about 1 ppm), such as fuel cells and fuel cells such as molten carbonate fuel cells. It is possible. Moreover, the method for producing a desulfurizing agent of the present invention is capable of economically and efficiently producing the desulfurizing agent of the present invention.

Abstract

A desulfurizing agent comprising a compound represented by the general formula: ZnFe2O4/SiO2/AO2 wherein A represents Zr and/or Ti; a method for producing the desulfurizing agent which comprises adding ZrO2 and/or TiO2 to an zinc ferrite silica represented by the formula: ZnFe2O4/SiO2, followed by pulverizing and mixing, adding a forming aid to the resulting mixture and then firing; and the use of the desulfurizing agent in producing a high purity hydrogen, a highly desulfurized hydrogen, a highly desulfurized synthetic gas and a highly desulfurized reducing gas. The desulfurizing agent exhibits high performance in the desulfurization of a crude hyfrogen, a reducing gas containing hydrogen, a synthetic gas or a coal gas and also is capable of being repeatedly used in the cycle of desulfurization-regeneration, and the method allows economical and efficiet production of the desulfurizing agent.

Description

明 細 書 脱硫剤、 そ の製造方法及び利用方法 技術分野  Description Desulfurization agent, method for producing the same and method for using the same
本発明は、 脱硫剤、 そ の製造方法及び利用方法に関 し、 特 に詳 し く は、 高純度水素、 高度脱硫水素、 高度脱硫合成ガス The present invention relates to a desulfurizing agent, a method for producing the same, and a method for using the same, and in particular, high purity hydrogen, highly desulfurized hydrogen, and highly desulfurized synthesis gas
( H 2 - C O混合ガス) ま た は高度脱硫還元性ガス を製造す る た め の再生可能な脱硫剤、 そ の効率的な製造方法及び当該脱硫 剤を用いて高純度水素、 高度脱硫水素、 高度脱硫合成ガス ま たは高度脱硫還元性ガス を製造する利用方法に関する。 背景技術 (H 2 -CO mixed gas) or renewable desulfurizing agent for producing highly desulfurizing gas, efficient production method thereof, high purity hydrogen, highly desulfurizing hydrogen using the desulfurizing agent , The application for producing highly desulfurized synthesis gas or highly desulfurizing reducible gas. Background art
近年、 C 02に よ る地球温暖化が問題 と な っ てお り 地球規模 での環境問題が注 目 さ れてい る。 一方、 石油等の資源枯渴が 懸念 さ れてお り 、 これ ら に対応 して、 埋蔵量の多い石炭を用 いた高効率発電方式の石炭ガス化複合発電、 石炭ガス化燃料 電池複合発電等に期待が寄せ られている。 In recent years, C 0 2 by that global warming to environmental problems in your Ri global scale Tsu Do the problems that have been attention. On the other hand, there is concern that resources such as oil will be depleted, and in response to these, high efficiency power generation coal gasification combined power generation, coal gasification fuel cell combined power generation, etc. using coal with large reserves. There are expectations for
こ の よ う な石炭等を直接ガス化 して、 その精製ガス を発電 に利用する方法は種々提案 されてお り 、 例えば前記 した石炭 ガス化複合発電がある。かかる発電は、石炭等をガス化 して、 そのガス を燃焼させ、 ガス タ ー ビンを駆動 させる一方、 ガス 化で発生する熱及びガス タ ー ビン駆動後の排出ガス の熱を利 用 して蒸気タ ー ビンを駆動 させる も のであ る。 また、 燃料電 池、 例 えば溶融炭酸塩型燃料電池等にて、 石炭をガス化 した ガ ス を直接電力に変換する発電方法も提案 さ れている。 Various methods have been proposed for directly gasifying such coal and the like and using the purified gas for power generation, for example, the above-described combined coal gasification combined cycle power generation. Such power generation gasifies coal, etc., burns the gas, drives the gas turbine, and uses the heat generated by the gasification and the heat of the exhaust gas after the gas turbine drive. It drives the steam turbine. In addition, coal was gasified using a fuel cell, for example, a molten carbonate fuel cell. Power generation methods have also been proposed to convert gas directly into electricity.
しか し、 かかる 発電方法において 、 高い発電効率を得る に は、 硫黄化合物、 例 えば硫化水素、 硫化カルボ二ル等を除去 する脱硫方法が問題 と な る。  However, in such a power generation method, in order to obtain high power generation efficiency, a desulfurization method for removing sulfur compounds such as hydrogen sulfide, carbosulfide sulfur and the like is a problem.
現在使用 されてい る脱硫方法と しては、 湿式方法 と 乾式方 法 と がある。 湿式方法は、 脱硫温度が低 く 、 エネルギー損失 が大き い と い う 問題点が あ り 、 一方、 乾式方法は、 エネルギ 一損失が小 さ い一方、 脱硫温度が高 く 商用的に利用可能な脱 硫方式はま だ開発 されていない。 一般に使用 でき る乾式脱硫 剤 と して酸化鉄や酸化亜鉛があ る。  The desulfurization methods currently used include the wet method and the dry method. The wet method has problems such as low desulfurization temperature and large energy loss. On the other hand, the dry method has small energy loss but high desulfurization temperature and can be used commercially. The desulfurization system has not been developed yet. Iron oxide and zinc oxide are commonly used dry desulfurization agents.
また、 従来の乾式脱硫剤 と し て の酸化鉄は、 硫黄化合物 を 除去でき る程度が あま り 高 く ない。 従っ て、 酸化鉄を燃料電 池の よ う な硫黄化合物の存在に よ っ て著 し く 性能を低下 さ せ て しま う も のに用い る こ と はでき ず、 脱硫剤 と しては十分な 性能を有さ ない。  In addition, iron oxide as a conventional dry desulfurization agent can not remove sulfur compounds to a great extent. Therefore, iron oxide can not be used to significantly reduce the performance due to the presence of sulfur compounds such as fuel cells, and it is sufficient as a desulfurization agent. Performance is not available.
さ ら に、 脱硫剤 と して使用 されている 酸化亜鉛は、 硫黄化 合物の吸収容量が劣 り 、 再生も 困難であ る ため、 例えば発電 用の石炭ガス化処理に脱硫剤 と して用レヽ ょ う と すれば、 必.要 と される脱硫剤の量が き わめて多 く なっ て しま う 。  Furthermore, zinc oxide, which is used as a desulfurization agent, has a low absorption capacity for sulfur compounds and is difficult to regenerate, so it is possible to use it as a desulfurization agent for coal gasification for power generation, for example. If you use a tray, the amount of desulfurization agent required will be extremely large.
また、 天然ガ ス の高度脱硫方法に よ る水素製造方法 と して は、 天然ガ ス · 改質方法があ る。 天然ガ ス を改質 して高度に 脱硫 した水素は燃料電池等に用い る こ と ができ る も のであ る かかる高度脱硫水素を製造する従来の方法は、 天然ガ ス を脱 硫装置に流入 し、 酸化亜鉛等で硫化水素 を精密脱硫 し、 高度 脱硫天然ガ ス を得る。 次いで、 得 られた高度脱硫天然ガス を 改質装置に送入する こ と に よ り 、 高度脱硫水素を得てい る 。 しか し、 かかる従来の天然ガス の高度脱硫方法は、 使用 し た酸化亜鉛等は廃棄 さ れ再利用する こ と はでき ない。 ま た、 天然ガス 中に含まれる 硫化水素の濃度が高い場合 ( 3 0 〜 1 0 0 0 ppm ) には、 精密脱硫を行 う 前に、 MDEA (ァ ミ ン)等を 用いた粗脱硫を実施する必要があ り 、 工程が煩雑 と なっ て し ま う 。 In addition, as a hydrogen production method using advanced desulfurization methods for natural gas, there is a natural gas reforming method. A conventional method for producing such advanced desulfurization hydrogen, which can be used for fuel cells etc., is a process that can be used for fuel cells etc., by converting natural gas into highly desulfurized hydrogen. And desulfurize hydrogen sulfide with zinc oxide etc. to obtain highly desulfurized natural gas. Next, the highly desulfurized natural gas obtained was Highly desulfurized hydrogen is obtained by feeding to the reformer. However, with such conventional natural gas desulfurization methods, the used zinc oxide etc. can not be disposed of and reused. In addition, when the concentration of hydrogen sulfide contained in natural gas is high (30 to 100 ppm), rough desulfurization using MDEA (amino) etc. is carried out before precision desulfurization. It will need to be implemented, and the process will be complicated.
こ の よ う な問題点を解決する ため、 特開平 4 一 7 4 5 2 6 号公報に、 脱硫剤 と して使用する亜鉛フ ェ ラ イ ト の製造方法 が開示 されている。 脱硫剤 と してのかかる亜鉛フ ェ ラ イ ト は、 亜鉛一鉄二元系酸化物 と する こ と で硫黄化合物の除去効率を 向上 させ、 さ らにその吸収容量を向上 させよ う と する も の で あ る。  In order to solve these problems, JP-A-4-174526 discloses a method of producing zinc ferrite used as a desulfurization agent. Such zinc ferrite as a desulfurization agent is intended to improve the removal efficiency of sulfur compounds and to further improve its absorption capacity by using a zinc-iron double oxide. It is
しカゝ し 前記亜鉛フ ェ ライ ト脱硫剤は、 脱硫工程で使用 し た場合に 脱硫剤の分解ま たは脱硫剤の内で炭素が析出 し、 硫黄化合物ガスが拡散する脱硫剤の細孔を閉.塞 した り 、 脱硫 に関与 しない副生成物を生成 した り して脱硫効率を低下 さ せ て しま っ てい る。 ま た、 再生後の脱硫剤の脱硫性能は大幅に 低下 して しま う 。  When the zinc ferrite desulfurization agent is used in the desulfurization process, the above-mentioned zinc ferrite desulfurization agent decomposes the desulfurization agent or precipitates carbon in the desulfurization agent, and the pore of the desulfurization agent to which the sulfur compound gas diffuses In addition, the desulfurization efficiency has been reduced by closing down the catalyst and generating byproducts that do not contribute to the desulfurization. Also, the desulfurization performance of the desulfurization agent after regeneration is significantly reduced.
ま た、 脱硫剤 と して亜鉛フ ェ ライ ト にシ リ カ を添加 した Zn F e204 - S i 02も提案されてい る。 かかる脱硫剤は、 ZnF e204に S i 02を添加する こ と に よ り 脱硫性能は向上する も の の 、 再生後 の脱硫性能は著 し く 低下 して しま い、 繰 り 返 し使用する こ と は困難であっ た。 Also, Zn F e 2 0 4 with the addition of shea Li Ca Zinc full E Lai DOO as a desulfurizing agent - S i 0 2 also being proposed. Such a desulfurization agent, the also ZnF e 2 0 4 to S i 0 2 a by Ri desulfurization performance and the child to be added is improved, the desulfurization performance after play had island decreased rather than the remarkable, repeat play Ri It was difficult to use it.
従っ て、 本発明の 目 的は、 繰 り 返 し脱硫再生の可能な高性 能の脱硫剤を提供する こ と であ る。 Therefore, the object of the present invention is to provide a high degree of repeatability for desulfurization and regeneration. Supply desulfurization agent.
ま た、 他の 目 的は、 かかる 脱硫剤 を経済的かつ効率的に製 造でき る脱硫剤の製造方法を提供する こ と であ る。 さ ら に他 の 目 的は、 かかる脱硫剤 を用いて、 高純度水素、 高度脱硫水 素、 高度脱硫合成ガス又は高度脱硫還元性ガ ス を製造する利 用方法を提供する こ と である。 発明の開示  Another object of the present invention is to provide a process for producing a desulfurizing agent which can produce such desulfurizing agent economically and efficiently. Another object of the present invention is to provide a method of using such desulfurizing agents to produce high purity hydrogen, highly desulfurized hydrogen, highly desulfurized synthesis gas or highly desulfurizable gas. Disclosure of the invention
本発明者 ら は上記課題を解決する ため研究 した結果、 ZnFe 204/Si02に、 A02 (式中、 Aは Zr及び/又は Tiを示す) を添加す る こ と によ り 、 脱硫性能が向上する と と も に、 再生後の繰 り 返 し使用 において も脱硫性能が劣化 しない脱硫剤が得 られ る こ と を見いだ し、 本発明に到達 した。 The present inventors have results studied for solving the above problems, the ZnFe 2 0 4 / Si0 2, ( in the formula, A represents the Zr and / or Ti) A0 2 Ri by the and this you added, The inventors have found that the desulfurization performance is improved, and that the desulfurization agent in which the desulfurization performance does not deteriorate even after repeated use is obtained, and the present invention has been achieved.
本発明の脱硫剤は、 次の一般式; ZnFe204/Si02/ A02 (式中 、 Aは Zr及び/又は Tiを示す) で表 される化合物を含む脱硫剤で あ る こ と を特徴 と する。 前記 ZnFe2O4/Si02/ A02は、 ( ZnFe2 04) p ( Si02) q ( A02) r ( p 、 q 、 r は任意の数を示す) を意味する ( Aは Zr及び/又は Tiを示す) 。 Desulfurization agent of the present invention have the general formula; ZnFe 2 0 4 / Si0 2 / A0 2 ( in the formula, A represents the Zr and / or Ti) and Oh Ru This desulfurization agent comprising a compound table with It is characterized by The ZnFe 2 O 4 / Si0 2 / A0 2 means (ZnFe 2 0 4) p ( Si0 2) q (A0 2) r (p, q, r denotes any number) (A is Zr And / or indicate Ti).
ま た、 本発明 の脱硫剤の製造方法は、 上記本発明 の脱硫剤 を製造する に あた り 、 次の式 ; ZnFe 204/Si02で示さ れる亜鉛 フ ェ ライ ト ' シ リ カ に、 A02 (式中、 Aは Zr及び/又は Tiを示す) を添加 して粉砕混合 し、 得 られた混合物に成形助剤 を添加 し て焼成する こ と を特徴と する。 Further, according to the method for producing the desulfurizing agent of the present invention, the following formula is used to produce the desulfurizing agent of the present invention: zinc ferrite represented by the following formula: ZnFe 2 O 4 / Si 0 2 a, (in the formula, a represents the Zr and / or Ti) A0 2 were ground and mixed by adding, characterized that you firing by adding a molding aid to the mixture obtained.
好適には、 上記本発明の脱硫剤の製造方法において 、 亜鉛 フ ェ ラ イ ト · シ リ カ は、 亜鉛の水溶液 と 鉄の水溶液の混合溶 液に、 シ リ カ ゾルを添力 P し、 ア ンモニア又は尿素を用いて沈 殿 させ、 次いで濾過、 洗浄、 乾燥 した後焼成する こ と に よ り 得 られる 、 こ と を特徴 と する。 Preferably, in the method for producing a desulfurizing agent according to the present invention, the zinc ferrite silica is a mixed solution of an aqueous solution of zinc and an aqueous solution of iron. The solution is applied with silica sol, precipitated with ammonia or urea, and then filtered, washed, dried, and calcined to obtain a feature.
ま た、 本発明 の脱硫剤の利用方法は、 上記本発明の脱硫剤 を、 粗製水素、 合成ガス 、 水素含有還元性ガス 、 合成ガス、 天然ガ ス又は石炭ガ ス の脱硫に用いる こ と を特徴と する。  Moreover, the method of using the desulfurizing agent of the present invention comprises using the above-mentioned desulfurizing agent of the present invention for desulfurizing crude hydrogen, synthesis gas, hydrogen-containing reducing gas, synthesis gas, natural gas or coal gas. It is a feature.
好適には、 上記本発明 の脱硫剤の利用方法において、 使用 した脱硫剤を酸化する こ と に よ り 再生 し、 当該再生 した脱硫 剤を繰 り 返 し使用する こ と を特徴 と する。 図面の簡単な説明  Preferably, in the method of using the desulfurizing agent of the present invention, the desulfurizing agent used is regenerated by oxidation, and the regenerated desulfurizing agent is repeatedly used. Brief description of the drawings
第 1図は、 本発明の脱硫剤 ( ZnFe204/Si02/ Zr02 ) の脱硫 再生特性を時間 と 硫化水素濃度 と の関係で示 した線図 (脱硫 剤 : 酸化再生方式 ; 硫化水素濃度 : 脱硫装置出 口 ガ ス ) であ る。 FIG. 1 is a graph showing the desulfurization regeneration characteristics of the desulfurization agent (ZnFe 2 O 4 / Sio 2 / Zr 0 2 ) of the present invention as a function of time and hydrogen sulfide concentration (desulfurization agent: oxidation regeneration method; hydrogen sulfide Concentration: Desulfurizer exhaust gas).
第 2 図は、 本発明の脱硫剤 ( ZnFe204/Si02/ Ti02 ) の脱硫 再生特性を時間 と 硫化水素濃度 と の関係で示 した線図 (脱硫 剤 : 酸化再生方式 ; 硫化水素濃度 : 脱硫装置出 口 ガス) であ る。 Fig. 2 is a diagram showing the desulfurization regeneration characteristics of the desulfurization agent (ZnFe 2 O 4 / Sio 2 / Ti 0 2 ) of the present invention as a function of time and hydrogen sulfide concentration (desulfurization agent: oxidation regeneration method; hydrogen sulfide Concentration: Desulfurizer exhaust gas).
第 3 図は、 従来の脱硫剤の脱硫再生特性を時間 と 硫化水素 濃度 と の関係で示 した線図 (脱硫剤 : 酸化再生方式 ; 硫化水 素濃度 : 脱硫装置出 口 ガ ス ) であ る。  Fig. 3 is a diagram (Desulfurization agent: Regeneration system; Hydrogen sulfide concentration: Desulfurization device outlet gas) showing the desulfurization and regeneration characteristics of the conventional desulfurization agent as a function of time and hydrogen sulfide concentration. .
第 4 図は、 脱硫サイ ク ル回数 と 硫化水素吸収量と の関係を 本発明の脱硫剤 ( ZnFe204/Si02/ Zr02 ) と 従来の脱硫剤につ いて示 した線図であ る。 第 5 図は、 脱硫サイ ク ル回数 と 硫化水素吸収量と の関係 を 本発明の脱硫剤 ( ZnFe204/Si02/ Ti02 ) について示 した線図 で あ る 。 Fig. 4 is a diagram showing the relationship between the number of desulfurization cycles and the amount of absorbed hydrogen sulfide for the desulfurizing agent of the present invention (ZnFe 2 0 4 / Si 0 2 / Zr 0 2 ) and the conventional desulfurizing agent. Ru. FIG. 5 is a graph showing the relationship between the number of desulfurization cycles and the amount of absorbed hydrogen sulfide for the desulfurizing agent (ZnFe 2 O 4 / Si 0 2 / Ti 0 2 ) of the present invention.
第 6 図は、 本発明の脱硫剤 ( ZnFe204/Si02/ Zr02 ) の脱硫 再生特性を時間 と 硫化水素濃度 と の関係で示 した線図 (脱硫 剤 : 酸化再生 · 還元処理方式 ; 硫化水素濃度 : 脱硫装置出 口 ガス) であ る 。 Fig. 6 is a diagram showing the desulfurization regeneration characteristics of the desulfurization agent (ZnFe 2 O 4 / Sio 2 / Zr 0 2 ) of the present invention as a function of time and hydrogen sulfide concentration (desulfurization agent: oxidation regeneration · reduction treatment method Hydrogen sulfide concentration: Desulfurizer outlet gas).
第 7 図は、 脱硫サイ ク ル回数 と 硫化水素吸収量 と の関係を 本発明 の脱硫剤 ( ZnFe204/Si02/ Zr02 ) について水素還元処 理に関 して示 した線図であ る。 Fig. 7 is a diagram showing the relationship between the number of desulfurization cycles and the amount of absorbed hydrogen sulfide in relation to the hydrogen reduction treatment for the desulfurization agent (ZnFe 2 0 4 / Si 0 2 / Zr 0 2 ) of the present invention. is there.
第 8 図は、 本発明の脱硫剤 ( ZnFe204/Si02/ Zr02 ) の脱硫 再生特性 (脱硫温度) を時間 と 硫化水素濃度 と の関係で示 し た線図 (脱硫剤 : 酸化再生方式 ; 硫化水素濃度 : 脱硫装置出 口 ガス ) であ る。 Fig. 8 is a graph showing the desulfurization regeneration characteristics (desulfurization temperature) of the desulfurization agent (ZnFe 2 0 4 / Si 0 2 / Zr 0 2 ) of the present invention as a function of time and hydrogen sulfide concentration (desulfurization agent: oxidation Regeneration method: Hydrogen sulfide concentration: Desulfurization unit outlet gas).
第 9 図は、 本発明の脱硫剤 ( ZnFe204/Si02/ Ti02 ) の脱硫 再生特性 (脱硫温度) を時間 と 硫化水素濃度 と の関係で示 し た線図 (脱硫剤 : 酸化再生方式 ; 硫化水素濃度 : 脱硫装置出 口 ガス ) であ る。 発明を実施するための最良の形態 FIG. 9 is a graph showing the desulfurization regeneration characteristics (desulfurization temperature) of the desulfurization agent (ZnFe 2 O 4 / Sio 2 / Ti 0 2 ) of the present invention as a function of time and hydrogen sulfide concentration (desulfurization agent: oxidation Regeneration method: Hydrogen sulfide concentration: Desulfurization unit outlet gas). BEST MODE FOR CARRYING OUT THE INVENTION
本発明を、 以下の好適例に基づいて説明する。  The invention will be described on the basis of the following preferred examples.
本発明 の好適な脱硫剤は、 次の一般式 ; ZnFe204/Si02/A02 (式中、 Aは Zr及び/又は Tiを示す) で表される化合物を含む。 上記式中の Zr02又は Ti02は、 ZnFe204/Si02の構造安定化剤 と して の機能を有する。 Zr02や Ti02の他に、 A1203を使用 した り 、 または A1203と Zr02や Ti02と の組み合わせ も使用する こ と 力 S でき る。 The preferred desulfurizing agent of the present invention comprises a compound represented by the following general formula: ZnFe 2 O 4 / Sio 2 / A 0 2 (wherein A represents Zr and / or Ti). Zr0 2 or Ti0 2 in the above formula has a function as a ZnFe 2 0 4 / Si0 2 of the structural stabilizer. In addition to the Zr0 2 and Ti0 2, Ri was using the A1 2 0 3, Or A1 2 0 3 and Zr0 combination with 2 or Ti0 2 also Ru can this and force S to be used.
特に再生後の脱硫剤の高性能性の点か ら 、 Ti02及ぴ /又は Zr 02が好適に用レヽ られる。 Particularly high-performance of a point or these desulfurizing agent after regeneration, Ti0 2及Pi / or Zr 0 2 is suitably use Rere.
こ れ ら の構造安定剤 と して の Zr02や Ti02は、 ZnFe204と Si〇2 と の結合を安定化 させ、 脱硫 した後の再生処理におけ る 亜鉛 フェ ライ ト の凝集を防止する こ と ができ る機能を有する。 Zr0 2 and Ti0 2 in which these structures stabilizer to this stabilizes the binding of ZnFe 2 0 4 and Si_〇 2, the aggregation of zinc Fe Rye preparative that put the regeneration process after the desulfurization Has a function that can be prevented.
上記本発明の脱硫剤の製造方法を以下に説明する。  The method for producing the desulfurizing agent of the present invention is described below.
その製造方法 と して は、 酸化鉄及び酸化亜鉛の前駆物質 と 酸化珪素の前駆物資 と を混合 し、 共沈法ま たは均一沈殿法に よ り 水酸化物の形態で鉄及び亜鉛及び珪素成分を含有する 沈 殿物を形成 させ、 これを濾過、 洗浄 した後、 乾燥、 焼成する こ と に よ り 、 さ ら には必要に応 じて粉砕する こ と に よ り 、 Zn Fe204— Si02を製造する。 As the production method, a precursor of iron oxide and zinc oxide and a precursor of silicon oxide are mixed, and iron, zinc and silicon in the form of hydroxide by coprecipitation method or homogeneous precipitation method. to form a sediment containing the ingredient, filtered, washed, dried, Ri by the and this firing, Ri by the and this is pulverized if necessary to be al, Zn Fe 2 0 4 - Si0 2 to be produced.
亜鉛と 鉄 と 珪素 と が相互作用 でき る状態に あれば珪素の添 加形態は特に制限されない。  The form of addition of silicon is not particularly limited as long as zinc, iron and silicon can interact with each other.
酸化亜鉛 と 酸化鉄 と の混合比は特に制限 さ れないが、 モ ル 比 と して 1 : 2 〜 1 : 4 、 好ま し く は 1 : 2 〜 1 : 3 が使用 する脱硫剤の量に対す る脱硫効率の点か ら好ま しい。 ま た、 酸化珪素の添加量も 、 特に制限 さ れない力 S 、 ZnFe204— Si02 の重量に対 して l Z A S Z l であ る こ と が 、 得られる脱硫 剤の脱硫性能の点か ら好ま しい。 The mixing ratio of zinc oxide and iron oxide is not particularly limited, but the molar ratio is preferably 1: 2 to 1: 4, preferably 1: 2 to 1: 3 depending on the amount of the desulfurizing agent used. Preferred in terms of desulfurization efficiency. In addition, the amount of silicon oxide added is also not particularly limited, and it is l ZASZ l with respect to the weight of the force S, ZnFe 2 0 4 -Si 0 2 is the point of the desulfurization performance of the obtained desulfurization agent I like it.
酸化鉄ま たは酸化亜鉛の前駆物質 と しては、 例えば硝酸塩、 硫酸塩、 塩化塩等の水溶性塩が使用でき る。 ま た、 珪素は、 酸化珪素の前駆物質 と しては、 ケィ 酸、 コ ロ イ ダルシ リ カ 、 ア モル フ ァ ス シ リ 力等が使用でき る。 As a precursor of iron oxide or zinc oxide, for example, water soluble salts such as nitrate, sulfate and chloride can be used. In addition, silicon is a precursor of silicon oxide, such as citric acid, cobalt oxide, and It is possible to use an Amorphous System, etc.
具体的には、 これ ら の鉄前駆物質、 亜鉛前駆物質、 珪素前 駆物質が混合 されてい る 水溶液を攪拌 した後、 ア ンモ ニ ア等 を用いた共沈法あ る いは尿素等を用いた均一沈殿法で水酸化 物 と して沈殿物を得る。 沈殿物を得るための他の添加物質 と しては、 水酸化ナ ト リ ウ ムや水酸化カ リ ウ ム も用 いる こ と が でき る。 こ の沈殿物を熟成、 洗浄、 濾過 した後、 乾燥 し、 例 えば 3 0 0 〜 9 0 0 °Cの温度で焼成する。 必要に応 じて、 得 られた焼成物を粉砕する こ と に よ り 、 ZnF e204— S i02を製造す る。 Specifically, after stirring an aqueous solution in which these iron precursors, zinc precursors, and silicon precursors are mixed, a coprecipitation method using ammonia etc. or urea etc. is used. The precipitate is obtained as hydroxide by the homogeneous precipitation method. Sodium hydroxide and potassium hydroxide can also be used as other additives to obtain precipitates. The precipitate is aged, washed, filtered, dried, and calcined at a temperature of 300 to 900 ° C., for example. If necessary, ZnF e 2 0 4 -S i 0 2 is produced by grinding the obtained fired product.
次いで、 得 られた ZnF e204— S i 02焼成物に構造安定剤 と して の Zr02及ぴ /又は Ti 02を添加する。 こ れ ら の混合物を粉砕混合 し、 得 られた混合物に成形助剤を添加 して焼成する こ と に よ り 、 本発明の ZnF e204— S i 02— A02 (式中、 Aは Zr及び/又は Ti を示す) を得る。 Then, the resulting ZnF e 2 0 4 - adding Zr0 2及Pi / or Ti 0 2 of the structure stabilizer S i 0 2 baked product. The Collector et mixture was mixed and ground, Ri by the and this firing by adding a molding aid to the mixture obtained, ZnF of the present invention e 2 0 4 - S i 0 2 - A0 2 ( in the formula, A represents Zr and / or Ti).
添加する Zr02や Ti 02の量は、 特に制限 さ れないが、 好適に は ZnFe204— S i 02の重量に対 して、 1 〜 3 倍程度が、 得 られる 脱硫剤の脱硫性能を再生後において も維持 させる 点か ら好ま しい。 The amount of added Zr0 2 or Ti 0 2 is not particularly limited, preferably ZnFe 2 0 4 - in pairs on the weight of the S i 0 2, about 1 to 3 times, to obtain a desulfurizing agent It is preferable from the point of maintaining desulfurization performance even after regeneration.
脱硫剤の成形に際 して は、 成形助剤 と して メ チルセ ル ソ ル ブ 、 ポ リ エ チ レ ン グ リ コ ー ル、 ポ リ ビ - ル ア ル コ ール 、 で ん ぷん、 リ グニ ン等の有機物を用レ、 る こ と ができ る。 ガラ ス繊 維、 炭素繊維、 金属繊維等の無機剤を加えて成形する こ と も 可能である。  When forming desulfurization agents, as a forming aid, methyl cellulose, polyethyl alcohol, poly alcohol, starch, starch, Organic substances such as lignin can be used. It is also possible to add inorganic agents such as glass fiber, carbon fiber and metal fiber for molding.
次いで、焼成を温度 4 0 0 〜 7 0 0 °Cで行い、例えば粒状、 ペ レ ッ ト状、 球状、 円筒状、 ハ - カ ム状、 板状等の任意の所 望する形状に焼成成形 して、 本発明 の The calcination is then carried out at a temperature of 400 to 700 ° C., for example, granular, In the present invention, it can be formed by firing into any desired desired shape such as pellet, sphere, cylinder, cavity, cam and plate.
ZnF e204— S i 02— A02 (式中 、 Aは Zr及び/又は Tiを示す) 脱硫 剤を得る。 ZnF e 2 0 4 -S i 0 2 -A 0 2 (wherein, A represents Zr and / or Ti) A desulfurizing agent is obtained.
こ の よ う に して得 られた本発明の脱硫剤を、 粗製水素、 合 成ガス 、 水素含有還元性ガス 、 天然ガス 又は石炭ガス の脱硫 に好適に用 い られる こ と ができ る。 脱硫温度は特に制限 さ れ なレヽが、 好適には 3 0 0 〜 6 0 0 °Cの温度で脱硫する こ と が 好ま しい。  The desulfurization agent of the present invention thus obtained can be suitably used for desulfurization of crude hydrogen, synthetic gas, hydrogen-containing reducing gas, natural gas or coal gas. The desulfurization temperature is not particularly limited, and desulfurization at a temperature of 300 to 600 ° C. is preferable.
例えば、 天然ガス を高度に脱硫 して高純度の水素を製造す る 、 天然ガス · 改質方法に適用で き る。 本発明 においては、 天然ガス を まず脱硫装置に通 じて精密脱硫 し、 次いで脱硫装 置か ら 出たガス を改質装置に通 じ、 改質装置にて改質生成 し た H2ガス の一部を、 例えば 5 %程度の水素ガス を、 脱硫装置 の上流に戻すこ と に よ り 、 脱硫装置に流入する天然ガス を、 水素含有還元性天然ガス と し、 脱硫装置内に含まれる 本発明 の脱硫剤に よ り 高度脱硫 さ れた水素含有天然ガス が得 られ る 次いで、 こ の高度脱硫水素含有天然ガス を改質装置に送入す る こ と に よ り 、 高度脱硫水素が得 られる のであ る。  For example, it can be applied to a natural gas reforming method that produces high purity hydrogen by highly desulfurizing natural gas. In the present invention, natural gas is first desulfurized by passing through a desulfurizer, then desulfurized gas is passed through a reformer, and part of the H2 gas reformed by the reformer is passed through the reformer. For example, by returning about 5% of hydrogen gas to the upstream of the desulfurization apparatus, the natural gas flowing into the desulfurization apparatus is treated as a hydrogen-containing reducible natural gas, and is contained in the desulfurization apparatus. A highly desulfurized hydrogen-containing natural gas is obtained by the desulfurizing agent. Then, the highly desulfurized hydrogen-containing natural gas is fed into the reformer to obtain highly dehydrogenated hydrogen. is there.
ま た、 本発明 の脱硫剤は、 脱硫剤 と して使用 した後、 酸化 する こ と に よ り 再生でき 、 当該再生 した脱硫剤を繰 り 返 し使 用する こ と ができ る。 こ の よ う な繰 り 返 しの使用 に よ っ て も 、 脱硫性能は低下する こ と がない。 これは、 上記 した よ う に、 本発明 の脱硫剤の構造中、 Zr02や Ti 02力 S、 ZnFe204と S i 02と の 結合を安定化 させ、 脱硫 した後の再生処理におけ る 亜鉛フ エ ラ イ ト の凝集を防止する こ と ができ る機能を有するか ら であ る。 In addition, after being used as a desulfurizing agent, the desulfurizing agent of the present invention can be regenerated by oxidation, and the regenerated desulfurizing agent can be used repeatedly. Desulfurization performance does not deteriorate even with such repeated use. This is cormorants I described above, in the structure of the desulfurization agent of the present invention, Zr0 2 and Ti 0 2 force S, to stabilize the bond between ZnFe 2 0 4 and S i 0 2, reproduction process after the desulfurization In the country This is because it has a function that can prevent light aggregation.
ま た、 天然ガス 中 に含まれる硫化水素の濃度が高い場合に おいて も (例え ば約 3 0 〜 : I 0 0 0 pp m ) 、 精密脱硫を行 う 前に従来必要 と さ れた M D E A (ァ ミ ン)等 を用 いた粗脱硫を実 施する必要がな く な る。  In addition, even when the concentration of hydrogen sulfide contained in natural gas is high (for example, about 30 to: I 0 0 0 pp m), MDEA, which was conventionally required before precision desulfurization, There is no need to carry out rough desulfurization using (amino) etc.
こ の よ う に、 本発明の脱硫剤を用 い る と 、 高純度水素、 高 度脱硫水素、 高度脱硫合成ガス又は高度脱硫還元性ガス が容 易にかつ経済的に得 られる。 従っ て、 石炭ガス化複合発電用 等の石炭ガス、 メ タ ノ ール等の液体燃料合成等用 の合成ガス 、 更に電極が硫化水素等 と の反応で劣化 しやすい燐酸型燃料電 池、 固体高分子型燃料電池、 溶融炭酸塩型燃料電池又は固体 電解質型燃料電池等の燃料電池の よ う な水素ガス 中の許容硫 化物濃度が厳しい分野 ( 1 ppm以下) に も産業上非常に有効 である。  Thus, by using the desulfurizing agent of the present invention, high purity hydrogen, high desulfurization hydrogen, highly desulfurized synthesis gas or highly desulfurized reduction gas can be easily and economically obtained. Therefore, synthetic gas for coal gasification such as coal gasification combined power generation, synthesis gas for liquid fuel synthesis such as methanol, etc., and phosphoric acid type fuel cell, solid material whose electrode is easily deteriorated by reaction with hydrogen sulfide etc. It is also industrially very effective in the field (1 ppm or less) where the allowable sulfide concentration in hydrogen gas is severe, such as fuel cells such as polymer fuel cells, molten carbonate fuel cells or solid electrolyte fuel cells. is there.
また、 硫化水素 と の反応で劣化 しやすい銅系の触媒等を使 用 してい る 、 水素 と 一酸化炭素 と の反応に よ る メ タ ノ ール合 成、 ジメ チルエーテル合成、 高品質ディ ーゼル燃料油 ( T一 F 炭化水素) 合成において も 、 本発明 の脱硫剤 を用いて得 られ た高純度水素、 高度脱硫水素又は合成ガス を有効に使用する こ と ができ る。 例  In addition, methanol synthesis, dimethyl ether synthesis, high-quality diesel by reaction of hydrogen and carbon monoxide using a copper-based catalyst or the like that is easily degraded by reaction with hydrogen sulfide. Also in fuel oil (T-F hydrocarbon) synthesis, high purity hydrogen, highly desulfurized hydrogen or synthesis gas obtained using the desulfurization agent of the present invention can be effectively used. Example
本発明 を以下の実施例、 比較例及び試験例に よ り さ ら に具 体的に説明する が、 本発明はこ れ ら の実施例に限定さ れる も のではない。 The present invention will be further described specifically by the following examples, comparative examples and test examples, but the present invention is limited to these examples. It's not.
実施例 1  Example 1
硝酸亜鉛水溶液( 1 . 5 モル /1) 5 0 mlと 硝酸鉄水溶液( 1 . 5 モル /1) 100mlと を混合 し、 コ ロ イ ダルシ リ カ を、 得 られる ZnFe204— Si02の重量に対 して 1/3 に相 当す る 量で添カ卩 して 攪拌混合 した。 得 られた混合液にア ンモ ニア を添加 して溶液 の pHを 7 〜 8 に調整 し、 水酸化物を共沈 させた。 得 られた水 酸化物を 1 時間熟成後、 濾過 し、 純水を用 いて洗浄 し、 1 2 0 °Cで 1 2 時間乾燥 した後、 '8 0 0 °Cで 5 時間焼成 し、 乳鉢 を用いて粉碎して、 ZnFe204— Si02を得た。 ついで、 得 られた ZnFe204— Si02に対 して、 重量で 2 倍の Zr02を添加 して、 成形 助剤 と し ての リ グニ ンを全質量の 5 %添加 し、 乳鉢にて混合 した。 混合 して得 られた物質を、 錠剤成形器にて タ ブ レ ッ ト 状に成形 し、 乾燥させた後、 5 0 0 °Cで 3 時間焼成 して、 焼 成物を乳鉢にて粉砕 し、 平均粒径 5 0 0 〜 7 0 0 μ mに 分級 して、 本発明の ZnFe204/Si02/Zr02脱硫剤を得た。 Aqueous solution of zinc nitrate (. 1 5 mol / 1) 5 0 ml iron nitrate aqueous solution (. 1 5 mol / 1) was mixed with 100 ml, a co B A Darcy Li mosquitoes, resulting ZnFe 2 0 4 - Si0 2 of The mixture was added and stirred in an amount corresponding to 1/3 of the weight. The pH of the solution was adjusted to 7 to 8 by adding ammonia to the obtained mixture, and the hydroxide was coprecipitated. The resulting hydroxides are aged for 1 hour, filtered, washed with pure water, dried at 120 ° C for 12 hours, then fired at 80 ° C for 5 hours, and the mortar is and Kona碎using, ZnFe 2 0 4 - was obtained Si0 2. Then, the resulting ZnFe 2 0 4 - Si0 2 to be paired with the addition of Zr0 2 of 2 times by weight, the rig two down of the forming aid is added 5% of the total weight, mortar Mixed at the same time. The substance obtained by mixing is formed into a tablet shape with a tablet molding machine, dried, and fired at 500 ° C. for 3 hours, and the baked product is ground in a mortar. The particles were classified into an average particle size of 500 to 700 μm to obtain a ZnFe 2 0 4 / Si 0 2 / Zr 0 2 desulfurizing agent of the present invention.
実施例 2  Example 2
Zr02を Ti02に代えた以外は同様に して 、 本発明の ZnFe204/ Si02/ Ti02 脱硫剤を得た。 Was used in place Zr0 2 to Ti0 2 were obtained in the same manner ZnFe 2 0 4 / Si0 2 / Ti0 2 desulfurizing agent of the present invention.
比較例 1  Comparative example 1
Zr02を Si02に代えた以外は、 実施例 1 と 同様に して ZnFe204 /Si02脱硫剤を得て、 比較のための脱硫剤 と した。 But replacing Zr0 2 to Si0 2, with the 2 0 4 / Si0 2 desulfurizing agent ZnFe in the same manner as in Example 1, it was desulfurizing agent for comparison.
試験例  Test example
脱硫試験及ぴ再生試験  Desulfurization test and regeneration test
上記実施例 1 、 実施例 2 及び比較例 1 で得 ら れた脱硫剤を 用いて、 下記の固定床流通式反応装置に よ り 脱硫試験お よび 再生試験を行っ た。 The desulfurizing agent obtained in Example 1 and Example 2 and Comparative Example 1 was used. The desulfurization test and regeneration test were conducted using the fixed bed flow reactor described below.
反応管 : 石英ガ ラ ス製 内径 7 . 6 瞧 外径 0 0 醒 長 さ 4 0 . 0 mm  Reaction tube: made of quartz glass, inner diameter 7. 6 outer diameter 0 0 step length 4 0. 0 mm
( 1 ) 脱硫試験条件  (1) Desulfurization test conditions
圧力 常圧 Pressure Normal pressure
温度 450°C (又は 250°C〜 600。C ) Temperature 450 ° C (or 250 ° C to 600 ° C)
ガ ス組成 H2S lOOOppm Gas composition H 2 S lOOOOppm
H2 20容量% H 2 20% by volume
N バラ ン ス (80容量% )  N balance (80% by volume)
ガ ス流量 100nU/min Gas flow rate 100 nU / min
脱硫剤試料重量 600mg ( 200mgの ZnFe204/Si02 + 400mgの Z r02、 Ti02又は Si02 ) Desulfurization agent sample weight 600 mg (200 mg of ZnFe 2 O 4 / Sio 2 + 400 mg of Z r 0 2 , Ti 0 2 or Sio 2 )
( 2 ) 再生試験条件  (2) Regeneration test conditions
圧力 常圧 Pressure Normal pressure
温度 450°C 450 ° C
ガス組成 酸化再生 ( 6 0 分) 02 2容量% Gas composition Oxidation regeneration (60 minutes) 0 2 2% by volume
N2 98容量% N 2 98 volume%
還元処理 ( 1 0 分) H2 20容量% Reduction treatment (10 minutes) H 2 20% by volume
N2 80容量% N 2 80% by volume
ガス流量 1 OOml/min  Gas flow rate 1 OO ml / min
脱硫剤試料重量 600mg ( 200mgの ZnFe204/Si02 + 400mgの Z r02、 Ti02又は Si02 ) 1 ppm以 下の維持時間(分)(脱硫 N回 目 ) Desulfurization agent sample weight 600 mg (200 mg of ZnFe 2 O 4 / Sio 2 + 400 mg of Z r 0 2 , Ti 0 2 or Sio 2 ) 1 minute or less maintenance time (minute) (N desulfurization)
再生率(%)= X 1 0 0 Reproduction rate (%) = X 1 0 0
1 ppm以下の維持時間(分)(脱硫 1回 目 )  Maintenance time of 1 ppm or less (minute) (first desulfurization)
試験例 1 Test example 1
実施例 1 、 実施例 2 及び比較例 1 で得 られた脱硫剤を上記 脱硫条件 (脱硫温度は 4 5 0 °C ) にて脱硫 し、 次いで上記再 生条件にて酸化再生を して繰 り 返 し脱硫試験をお こ なっ た。 その結果を各々 図 1 、 図 2 及び図 3 にそれぞれ示す。 脱硫反 応管出 口 ガスの硫化水素濃度が 1 ppm以下に維持 さ れる高性 能脱硫時間の変化を調べるため、 第 1 回 目 の時間 を基準に、 再生率を表す上記式を用 いて、 再生率を算出 した。  The desulfurizing agents obtained in Example 1 and Example 2 and Comparative Example 1 are desulfurized under the above desulfurization conditions (desulfurization temperature is 450 ° C.), and then oxidation regeneration is repeated under the above regeneration conditions and repeated. Returned desulfurization test. The results are shown in Fig. 1, Fig. 2 and Fig. 3 respectively. Desulfurization reaction In order to investigate the change in high-performance desulfurization time in which the hydrogen sulfide concentration in the gas at the outlet of the pipe is maintained at 1 ppm or less, using the above equation representing the regeneration rate based on the first time, The playback rate was calculated.
図 1 、 図 2 及び図 3 に示 さ れる再生率の比較 よ り 、 実施例 By comparing the regeneration rates shown in Fig. 1, Fig. 2 and Fig.
1 、 実施例 2 で得 られた脱硫剤は、 比較例 1 で得 られた脱硫 剤 よ り も 、 再生処理後 も優れた脱硫性能を有す る こ と がわか る。 The desulfurization agent obtained in Example 1 and Example 2 is found to have superior desulfurization performance even after the regeneration treatment than the desulfurization agent obtained in Comparative Example 1.
また、 図 4 には実施例 1 及ぴ比較例 1 の脱硫剤の脱硫サイ ク ル回数と硫化水素吸収量と の関係を、 図 5 に は、 実施例 2 の脱硫剤の脱硫サイ ク ル回数 と硫化水素吸収量 と の関係を示 す。 実験値,は、 図 1 、 図 2 お よび図 3 の グ ラ フ の面積に よ り (図積分) 、 ま た H2S理論吸収値は ZnFe2043 モ ル、 Fe203 は 2 モル、 ZnOは 1 モルの H2Sを吸収する と 仮定 と して算出 した 特に、 ZnFe204/Si02 Ti02 系脱硫剤は、 H2S吸収容量と の観 点よ り 優れた脱硫剤であ り 、 H2S吸収量実測値は理論値よ り 高 い値と な っ た。 こ の結果は、 脱硫反応機構 と して従来想定さ れて き た脱硫反応式 ( 1 ) の他に、 反応式 2 の よ う な脱硫反 応 も行なわれている こ と を示唆する も の と 考え られる。 Figure 4 shows the relationship between the number of desulfurization cycles in the desulfurizing agent and the amount of absorbed hydrogen sulfide in Example 1 and Comparative Example 1, and Figure 5 shows the number of cycles in the desulfurizing agent of Example 2. The relationship between and hydrogen sulfide absorption is shown. The experimental values, according to the area of the graphs in Fig. 1, Fig. 2 and Fig. 3 (diagram integral), H 2 S theoretical absorption value is ZnFe 2 0 4 3 mol, Fe 2 0 3 is The ZnFe 2 0 4 / S 0 2 Ti 2 O 2 -based desulfurizing agent was calculated based on the assumption that 2 moles and 1 mole of ZnO absorb 1 mole of H 2 S. The desulfurizing agent based on ZnFe 2 O 4 was superior to the viewpoint of H 2 S absorption capacity. Desulfurizing agent, H 2 S absorption actually measured value is higher than theoretical value It was a good value. This result suggests that the desulfurization reaction as in Reaction formula 2 is also performed in addition to the desulfurization reaction formula (1) conventionally assumed as the desulfurization reaction mechanism. it is conceivable that.
反応式 1 ZnFe204+ 3 H2S + H2 → ZnS + 2FeS + 4H20 Reaction formula 1 ZnFe 2 0 4 + 3H 2 S + H 2 → ZnS + 2FeS + 4H 2 0
(1) 反応式 2 ZnFe204+ 4 H2S → ZnS+ FeS + FeS2 + 4H20 (1) Scheme 2 ZnFe 2 0 4 + 4 H 2 S → ZnS + FeS + FeS 2 + 4H 2 0
(2) 図 4 、 5 に示 される硫化水素の吸収容量の比較 よ り 、 実施 例 1 及ぴ実施例 2 で得 られた脱硫剤は、 比較例 1 で得 られた 脱硫剤 よ り も、 再生処理後 も優れた脱硫性能を有する こ と が ゎカゝる。  (2) From the comparison of the absorption capacities of hydrogen sulfide shown in FIGS. 4 and 5, the desulfurizing agents obtained in Example 1 and Example 2 can be compared with the desulfurizing agents obtained in Comparative Example 1 as well. It is possible to have excellent desulfurization performance even after regeneration treatment.
これは、 比較例 1 の脱硫剤は再生時に亜鉛フ ェ ライ ト と シ リ カ と の結合が再生時に切断され、 亜鉛フ ェ ラ イ ト が凝集 し たため と 考え られる。 一方、 実施例 1 及ぴ実施例 2 の脱硫剤 が再生後 も優れた脱硫性能を維持でき たのは、 上記 した よ う に亜鉛フ ェ ライ ト と シ リ 力 と の結合がジルコ ユアゃチタ ニア に よ っ て安定 し、 亜鉛フ ェ ライ ト の凝集が防止 さ れたため と 考え られる。  It is considered that this is because the desulfurizing agent of Comparative Example 1 was broken during regeneration between the zinc ferrite and the silica during regeneration, and the zinc ferrite was agglomerated. On the other hand, as described above, the desulfurizing agents of Example 1 and Example 2 were able to maintain excellent desulfurization performance even after regeneration, as described above, because the bonding between zinc ferrite and silica was not effective. It is believed that near stability has been achieved and zinc ferrite aggregation has been prevented.
試験例 2  Test example 2
実施例 1 で得 られた脱硫剤を上記脱硫条件 (脱硫温度は 4 5 0 °C ) にて脱硫 し、 次いで上記再生条件にて酸化再生をお こ な っ た後、 H 2還元処理をお こ なっ た。 そ の結果を図 6 に 示す。 再生率の算出は、 試験例 1 と 同様に してお こ なっ た。 ま た、 H 2還元処理に よ る脱硫性能への影響を比較する ため 図 7 に実施例 1 で得 られた脱硫剤を酸化再生処理 した後、 H 2還元処理 した も の と してい ない も の と の脱硫サイ ク ル回数 と 硫化水素吸収量 と の関係 を示す。 実験値と 理論値は試験例The desulfurization agent obtained in Example 1 is desulfurized under the above desulfurization conditions (desulfurization temperature is 45 ° C.), and then oxidized and regenerated under the above regeneration conditions, and then the H 2 reduction treatment is carried out. It is now. The result is shown in Fig.6. The calculation of the regeneration rate was the same as in Test Example 1. Also, in order to compare the influence of H 2 reduction treatment on the desulfurization performance, as shown in FIG. 7, after the desulfurization agent obtained in Example 1 is oxidized and regenerated, H 2 Show the relationship between the number of desulfurization cycles and the amount of absorbed hydrogen sulfide, with and without reduction treatment. Experimental values and theoretical values are test examples
1 と 同様に して算出 した。 Calculated in the same way as 1).
H 2還元の 目 的は、 再生処理する と き の副反応で F e S→ F e S 04が生成する と 考え られ、 F e S 04→ F e304と する H 2還元をお こ な う た めであ る。 し力 し、 図 7 力、 ら 明 ら 力 な よ う に、 H 2 還元処理をお こ な う か否かにかかわ らず、 脱硫性能に差は観 られなかっ た。 これは、 本発明の脱硫剤は、 再生時の副反応 に よ り 生 じ る F e S 04の生成が極少量であ る こ と を示すも の で あ る。 The purpose of H 2 reduction is considered to be Fe S → F e S 0 4 in the side reaction during regeneration treatment, and H 2 reduction using Fe S 0 4 → Fe 3 0 4 is considered It is for the future. As shown in Fig. 7 and Fig. 7, no difference was seen in the desulfurization performance regardless of whether or not the H 2 reduction treatment was used. This desulfurization agent of the present invention, the generation of F e S 0 4 that Ji by Ri production in side reactions during playback Ru Oh than also indicating the this Ru small amount der.
試験例 3  Test example 3
実施例 1 及び実施例 2 で得 られた脱硫剤の脱硫性能を脱硫 温度を変えた以外は同様に して、 上記脱硫条件にて脱硫をお こ ない、 その結果をそれぞれ図 8 及び図 9 に示す。 再生率の 算出は、 試験例 1 と 同様に してお こ なっ た。 図 8 及び図 9 よ り 、 本発明 の脱硫剤は、 特に 2 5 0 で〜 6 0 0 の温度範囲 で高性能脱硫をお こ な う こ と がわかる。 産業上の利用可能性  The desulfurization performance of the desulfurization agent obtained in Example 1 and Example 2 is the same as in Example 1 except that the desulfurization temperature is changed. The results are shown in FIGS. 8 and 9, respectively. Show. The calculation of the regeneration rate was the same as in Test Example 1. It can be seen from FIGS. 8 and 9 that the desulfurizing agent of the present invention can perform high-performance desulfurization particularly in the temperature range of 250 and at 600 °. Industrial applicability
本発明 の脱硫剤は、 繰 り 返 し脱硫再生が可能な高性能の脱 硫剤であ り 、 かかる脱硫剤を用い る と 、 高純度水素、 高度脱 硫水素、 高度脱硫合成ガス 又 は高度脱硫還元性ガス を経済的 に製造する こ と が容易 にで き る。 従っ て、 石炭ガス化複合発 電用等の石炭ガス 、 メ タ ノ ール等の液体燃料合成等用の合成 ガス 、 更 に電極が硫化水素等 と の反応で劣化 しやすい燐酸型 燃料電池、 溶融炭酸塩型燃料電池等の燃料電池の よ う な水素 ガ ス 中 の許容硫化物濃度が厳 しい分野 (例 え ば約 1 p p m以 下) において も産業上非常に有効に用いる こ と ができ る。 ま た、 本発明の脱硫剤の製造方法は、 上記本発明の脱硫剤 を経済的かつ効率的に製造する こ と ができ る も のである。 The desulfurizing agent of the present invention is a high-performance desulfurizing agent capable of repeated desulfurization and regeneration, and using such a desulfurizing agent, high purity hydrogen, high dehydrogenation hydrogen, high desulfurization synthesis gas or high desulfurization agent It is easy to economically produce desulfurization reducing gas. Therefore, synthesis gas for coal gas such as coal gasification combined generation, liquid fuel synthesis such as methanol, etc., phosphoric acid type whose electrode is easily deteriorated by reaction with hydrogen sulfide etc. It is also very useful industrially in areas where the concentration of sulfides in hydrogen gas is severe (for example, less than about 1 ppm), such as fuel cells and fuel cells such as molten carbonate fuel cells. It is possible. Moreover, the method for producing a desulfurizing agent of the present invention is capable of economically and efficiently producing the desulfurizing agent of the present invention.

Claims

求 の Request
1 . 次の一般式 ; The following general formula;
ZnFe204/S i02/ A02 ZnFe 2 0 4 / S i 0 2 / A 0 2
(式中、 Aは Zr及び/又は Tiを示す)  (Wherein, A represents Zr and / or Ti)
で表 さ れる化合物を含む こ と を特徴 とする脱硫剤。 A desulfurization agent characterized by containing a compound represented by
2 . 請求の範囲第 1 項記載の脱硫剤を製造する にあた り 、 次 の式 ; ZnF e 2 04/S i02で示 される 亜鉛フ ェ ライ ト · シ リ カ に、 A02(式中、Aは Zr及び/又は Tiを示す)を添加 して粉砕混合 し、 得 られた混合物に成形助剤を添加 して焼成する こ と を特徴 と する脱硫剤の製造方法。 . 2 Ri per To produce the desulfurizing agent in the range first claim of claim, the following formula: in ZnF e 2 0 4 / S i0 2 at INDICATED the zinc off E Rye preparative Shea Li Ca, A0 2 (In the formula, A represents Zr and / or Ti), and the mixture is pulverized and mixed, and a forming auxiliary agent is added to the obtained mixture and the mixture is calcined.
3 . 請求の範囲第 2 項記載の脱硫剤の製造方法において、 亜 鉛フ ェ ライ ト · シ リ カ は、 亜鉛 と 鉄の水溶液の混合溶液に、 シ リ 力 ゾルを添加 し、 ア ンモ ニ ア又は尿素を用 いて沈殿 させ、 次いで濾過、 洗浄、 乾燥 した後焼成する こ と に よ り 得 られる こ と を特徴と する脱硫剤の製造方法。  In the method for producing a desulfurizing agent according to claim 2, the zinc ferrite sol is added to the mixed solution of an aqueous solution of zinc and iron, and the ammonia sol is added to the ammonia desulfurization agent. A method for producing a desulfurization agent, which is obtained by precipitation using a or urea, followed by filtration, washing, drying and calcination.
4 . 請求の範囲第 1 項記載の脱硫剤を、 粗製水素ガ ス 、 合成 ガス 、 水素を含有する還元性ガス 、 天然ガス 、 又は石炭ガス の脱硫に用いる こ と を特徴と する脱硫剤の利用方法。  4. Use of a desulfurizing agent characterized in that the desulfurizing agent according to claim 1 is used for desulfurizing crude hydrogen gas, synthesis gas, reducing gas containing hydrogen, natural gas, or coal gas. Method.
5 . 請求の範囲第 4 項記載の脱硫剤の利用方法において、 使 用 した脱硫剤を酸化する こ と に よ り 再生 し、 当該再生 した脱 硫剤を繰 り 返 し使用する こ と を特徴 と する脱硫剤の利用方法  5. The method for using a desulfurizing agent according to claim 4, characterized in that the desulfurizing agent used is regenerated by oxidation, and the regenerated desulfurizing agent is repeatedly used. How to use desulfurization agent
PCT/JP2002/002649 2001-03-21 2002-03-20 Desulfurizing agent, method for production thereof, and method of use thereof WO2002074883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002573878A JPWO2002074883A1 (en) 2001-03-21 2002-03-20 Desulfurizing agent, method for producing and using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-81621 2001-03-21
JP2001081621 2001-03-21

Publications (1)

Publication Number Publication Date
WO2002074883A1 true WO2002074883A1 (en) 2002-09-26

Family

ID=18937694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002649 WO2002074883A1 (en) 2001-03-21 2002-03-20 Desulfurizing agent, method for production thereof, and method of use thereof

Country Status (2)

Country Link
JP (1) JPWO2002074883A1 (en)
WO (1) WO2002074883A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080588A1 (en) * 2003-03-11 2004-09-23 Waseda University Desulfurizing agent and method for production thereof, method for desulfurization, and method for producing hydrogen for fuel cell
JP2005281358A (en) * 2004-03-29 2005-10-13 Mitsubishi Heavy Ind Ltd Desulfurization agent for hydrocarbonaceous fuel and method for producing the same
JP2005342611A (en) * 2004-06-02 2005-12-15 Univ Waseda Desulfurizing agent and its manufacturing method, desulfurizing method and method for producing high-purity hydrogen
JP2010100620A (en) * 2008-10-10 2010-05-06 Ifp Use of solid based on zinc ferrite in process for deep-desulphurizing oxygen-containing feed
JP2016064352A (en) * 2014-09-24 2016-04-28 一般財団法人電力中央研究所 Desulfurizing agent, and manufacturing method of desulfurizing agent
CN112156755A (en) * 2020-10-12 2021-01-01 莱西市济蓝环境生态科技院 Sewage treatment material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729889A (en) * 1985-03-29 1988-03-08 California Institute Of Technology High temperature regenerative H2 S sorbents
US4732888A (en) * 1986-05-15 1988-03-22 Amax Inc. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization
JPH08218081A (en) * 1995-02-10 1996-08-27 Central Res Inst Of Electric Power Ind Desulfurizing agent for suppressing deposition of carbon
US5753198A (en) * 1996-12-30 1998-05-19 General Electric Company Hot coal gas desulfurization
JPH11519A (en) * 1997-06-11 1999-01-06 Mitsubishi Heavy Ind Ltd Desulfurizing agent and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729889A (en) * 1985-03-29 1988-03-08 California Institute Of Technology High temperature regenerative H2 S sorbents
US4732888A (en) * 1986-05-15 1988-03-22 Amax Inc. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization
JPH08218081A (en) * 1995-02-10 1996-08-27 Central Res Inst Of Electric Power Ind Desulfurizing agent for suppressing deposition of carbon
US5753198A (en) * 1996-12-30 1998-05-19 General Electric Company Hot coal gas desulfurization
JPH11519A (en) * 1997-06-11 1999-01-06 Mitsubishi Heavy Ind Ltd Desulfurizing agent and its production

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080588A1 (en) * 2003-03-11 2004-09-23 Waseda University Desulfurizing agent and method for production thereof, method for desulfurization, and method for producing hydrogen for fuel cell
JP2005281358A (en) * 2004-03-29 2005-10-13 Mitsubishi Heavy Ind Ltd Desulfurization agent for hydrocarbonaceous fuel and method for producing the same
JP4616569B2 (en) * 2004-03-29 2011-01-19 三菱重工業株式会社 Desulfurization agent for hydrocarbon fuel and method for producing the same
JP2005342611A (en) * 2004-06-02 2005-12-15 Univ Waseda Desulfurizing agent and its manufacturing method, desulfurizing method and method for producing high-purity hydrogen
JP4722414B2 (en) * 2004-06-02 2011-07-13 学校法人早稲田大学 Desulfurizing agent, method for producing the same, desulfurizing method, and method for producing high-purity hydrogen
JP2010100620A (en) * 2008-10-10 2010-05-06 Ifp Use of solid based on zinc ferrite in process for deep-desulphurizing oxygen-containing feed
JP2015061851A (en) * 2008-10-10 2015-04-02 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Use of solids based on zinc ferrite in process for deep desulfurizing oxygen-containing feeds
JP2016064352A (en) * 2014-09-24 2016-04-28 一般財団法人電力中央研究所 Desulfurizing agent, and manufacturing method of desulfurizing agent
CN112156755A (en) * 2020-10-12 2021-01-01 莱西市济蓝环境生态科技院 Sewage treatment material
CN112156755B (en) * 2020-10-12 2021-08-06 四川轻化工大学 Sewage treatment material

Also Published As

Publication number Publication date
JPWO2002074883A1 (en) 2004-07-08

Similar Documents

Publication Publication Date Title
Hou et al. Hydrogen production from ethanol reforming: Catalysts and reaction mechanism
JP5421770B2 (en) Catalyst precursor material and catalyst using the same
JP4747339B2 (en) Iron-based catalyst for Fischer-Tropsch synthesis reaction, method for producing the same, and method for producing hydrocarbons using the same
US8475684B2 (en) Composite oxide for hydrocarbon reforming catalyst, process for producing the same, and process for producing syngas using the same
JP5860415B2 (en) Nano-sized gold catalyst for CO oxidation and water gas shift reaction
JP2013520317A5 (en)
TW200836833A (en) Catalyst for carbon monoxide conversion and method of carbon monoxide modification with the same
JPH0456663B2 (en)
Molina-Ramírez et al. CO2-SR Cyclic Technology: CO2 Storage and in situ Regeneration with CH4 over a new dual function NiBa unsupported catalyst
WO2002074883A1 (en) Desulfurizing agent, method for production thereof, and method of use thereof
JP4722414B2 (en) Desulfurizing agent, method for producing the same, desulfurizing method, and method for producing high-purity hydrogen
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP4625970B2 (en) Desulfurizing agent, method for producing the same, desulfurizing method, and method for producing hydrogen for fuel cell
Liu et al. Probing mesoporous character, desulfurization capability and kinetic mechanism of synergistic stabilizing sorbent CaxCuyMnzOi/MAS-9 in hot coal gas
JP2005066516A (en) Catalyst for reforming dimethyl ether and synthesizing method therefor
US7666377B2 (en) Method for the removal of carbon monoxide from a gas mixture
TW201234703A (en) Desulfurization system for fuel cell, hydrogen production system for fuel cell, fuel cell system, desulfurization method for hydrocarbon fuel, and method for producing hydrogen
JP2002126528A (en) Method for preparing reforming catalyst
JPS63256136A (en) Methanol reforming catalyst
US4369131A (en) Enhanced catalyst stability for cyclic co methanation operations
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JPS6150640A (en) Catalyst for preparing methane-containing gas
JP2002173303A (en) Method of producing synthetic gas
Aunbamrung et al. Effect of calcination temperatures of Cu/CeO2-containing Co on physiochemical properties and catalytic activity to selective CO oxidation
JPH0798149B2 (en) Method for producing desulfurizing agent

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002573878

Country of ref document: JP

122 Ep: pct application non-entry in european phase