WO2002076724A1 - Coatings containing carbon nanotubes - Google Patents

Coatings containing carbon nanotubes Download PDF

Info

Publication number
WO2002076724A1
WO2002076724A1 PCT/US2002/009140 US0209140W WO02076724A1 WO 2002076724 A1 WO2002076724 A1 WO 2002076724A1 US 0209140 W US0209140 W US 0209140W WO 02076724 A1 WO02076724 A1 WO 02076724A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
nanotubes
polymeric material
layered structure
group
Prior art date
Application number
PCT/US2002/009140
Other languages
French (fr)
Inventor
Paul J. Glatkowski
Original Assignee
Eikos, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eikos, Inc. filed Critical Eikos, Inc.
Priority to CA 2442310 priority Critical patent/CA2442310A1/en
Priority to EP02723596A priority patent/EP1392500A1/en
Priority to AU2002254367A priority patent/AU2002254367B2/en
Priority to JP2002575217A priority patent/JP3665969B2/en
Priority to KR10-2003-7012636A priority patent/KR20040030553A/en
Priority to CN028106016A priority patent/CN1543399B/en
Publication of WO2002076724A1 publication Critical patent/WO2002076724A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D185/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Coating compositions based on derivatives of such polymers
    • C09D185/02Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Coating compositions based on derivatives of such polymers containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/013Additives applied to the surface of polymers or polymer particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/249942Fibers are aligned substantially parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/249942Fibers are aligned substantially parallel
    • Y10T428/249945Carbon or carbonaceous fiber

Definitions

  • the present invention relates electrically conductive coatings. More particularly, the invention relates to transparent electrically conductive coatings comprising carbon nanotubes.
  • Electrically conductive transparent films are known in the art. In general, such films are generally formed on an electrical insulating substrate by either a dry or a wet process. In the dry process, PVD (including sputtering, ion plating and vacuum deposition) or CVD is used to form a conductive transparent film of a metal oxide type, e.g., tin-indium mixed oxide (ITO), antimony-tin mixed oxide (ATO), fluorine-doped tin oxide
  • ITO tin-indium mixed oxide
  • ATO antimony-tin mixed oxide
  • a conductive coating composition is formed using an electrically conductive powder, e.g., one of the above-described mixed oxides and a binder.
  • the dry process produces a film having both good transparency and good conductivity.
  • it requires a complicated apparatus having a vacuum system and has poor productivity.
  • Another problem of the dry process is that it is difficult to apply to a continuous or big substrate such as photographic films or show windows.
  • the wet process requires a relatively simple apparatus, has high productivity, and is easy to apply to a continuous or big substrate.
  • the electrically conductive powder used in the wet process is a very fine powder having an average primary particle diameter of 0.5 ⁇ m or less so as not to interfere with transparency of the resulting film.
  • the conductive powder has an average primary particle diameter of half or less (0.2 ⁇ m) of the shortest wave of visible light so as not to absorb visible light, and to controlling scattering of the visible light.
  • U.S. Patent No. 5,853,877 the disclosure of which is incorporated by reference in its entirety, relates to the use of chemically-modified multiwalled nanotubes (MWNT).
  • MWNT chemically-modified multiwalled nanotubes
  • Patent No. 5,853,877 are optically transparent when formed as a very thin layer. As the thickness of the films increases to greater than about 5 ⁇ m, the films lose their optical properties.
  • U.S. Patent No. 5,853,877 also relates to films that are formed with and without binders.
  • the films include binders with a very high nanotube concentration and are extremely thin in order to maintain the optical properties.
  • the patent discloses a film with 40% wt MWNT loading to get good ESD conductivities.
  • the invention provides electrostatic dissipative transparent coatings comprising nanotubes.
  • the invention provides an electrically conductive film comprising: a plurality of nanotubes with an outer diameter of less than 3.5 nm.
  • the invention provides a method for making an electrically conductive film of claim 1 comprising: providing a plurality of nanotubes with an outer diameter of less than 3.5 nm; and forming a film of said nanotubes on a surface of a substrate.
  • the invention provides a multi-layered structure comprising: an electrically conductive film, and a polymeric layer disposed on at least a portion of said electrically conductive film.
  • the invention provides dispersions of nanotubes suitable for forming films and other compositions.
  • Such compositions may contain additional conductive, partially conductive or non-conductive materials.
  • the presence of nanotubes reduces the manufacturing costs of conventional materials that do not contain nanotubes while increasing product effectiveness, preferably product conductivity.
  • Compositions may be in any form such as a solid or liquid, and is preferably a powder, a film, a coating, an emulsion, or mixed dispersion.
  • Fig. 1 is a plot of conductivity verses thickness for SWNT coatings according to one embodiment of the present invention
  • Fig. 2 depicts a plot of the affect of high humidity on an ESD coating over an extended period of time according to one embodiment of the present invention
  • Fig. 3 depicts a plot of surface resistivity versus temperature data for Si- DETA-50-Ti with 0.30% SWNT cast on to a glass slide according to one embodiment of the present invention
  • Fig. 4 depicts a plot of surface resistivity versus temperature data for Si-
  • Fig. 5 depicts a plot of surface resistivity versus test voltage data for Si- DETA-50-Ti with 0.3% SWNT cast on to a glass slide according to one embodiment ofthe present invention
  • Fig. 6 depicts the percent nanotubes cast on glass slides labeled with resistance measurements according to one embodiment of the present invention.
  • Fig. 7 depicts advantages of SWNTs used to impart electrical properties to films.
  • Fig. 8 depicts results showing how each of the three films resistivity (@500V) varied with temperature from -78 to +300°C.
  • Fig. 9 depicts resistivity in Ohms/Sq. for 1 mil POLYIMIDE-1 film as voltage is reduced.
  • Fig. 10 depicts tensile properties for POLYIMIDE-1, POLYIMIDE-2, and
  • TPO resins with and without nanotubes are TPO resins with and without nanotubes.
  • Fig. 11 depicts CTE Data on POLYIMIDE-1, POLYIMIDE-2, and TPO lmil films with and without 0.1% SWnTs.
  • Fig. 12 depicts a POLYIMIDE-1 coating with 0.3% SWNTs @ 1.5 ⁇ m thick, slide is tilted off the paper/pavement by piece of mica, and is illuminated by sunlight.
  • the instant invention relates to particular electrically conductive films comprising nanotubes and methods of forming the same.
  • the instant films comprising nanotubes demonstrate advantageous light transmissions over those materials comprising nanotubules disclosed heretofore.
  • the instant invention relies on nanotubes with a particular diameter which impart surprising advantages over those films disclosed in the prior art.
  • nanotubes with an outer diameter of less than 3.5 nm are particularly good candidates to impart conductivity and transparency at low loading doses. These nanotubes can exhibit electrical conductivity as high as copper, thermal conductivity as high as diamond, strength 100 times greater than steel at one sixth the weight, and high strain to failure.
  • electrical conductivity as high as copper
  • thermal conductivity as high as diamond
  • strength 100 times greater than steel at one sixth the weight and high strain to failure.
  • Nanotubes are known and have a conventional meaning. (R. Saito, G. Dresselhaus, M. S. Dresselhaus, "Physical Properties of Carbon Nanotubes,” Imperial College Press, London U.K. 1998, or A. Zettl "Non-
  • nanotubes of this invention comprises straight and bent multi- walled nanotubes (MWNTs), straight and bent double- walled nanotubes (DWNTs) and straight and bent single- walled nanotubes (SWNTs), and various compositions of these nanotube forms and common by-products contained in nanotube preparations such as described in U.S. Patent No. 6,333,016 and WO 01/92381, which are inco ⁇ orated herein by reference in their entirety.
  • MWNTs straight and bent multi- walled nanotubes
  • DWNTs straight and bent double- walled nanotubes
  • SWNTs straight and bent single- walled nanotubes
  • the nanotubes of the instant invention have an outer diameter of less than 3.5 nm. In another preferred embodiment, nanotubes of the instant invention have an outer diameter of less than 3.25 nm. In another preferred embodiment, nanotubes of the instant invention have an outer diameter of less than 3.0 nm. In another preferred embodiment, the nanotubes have an outer diameter of about 0.5 to about 2.5 nm. In another preferred embodiment, the nanotubes have an outer diameter of about 0.5 to about 2.0 nm. In another preferred embodiment, the nanotubes have an outer diameter of about 0.5 to about 1.5 nm. In another preferred embodiment, the nanotubes have an outer diameter of about 0.5 to about 1.0 nm. The aspect ratio may be between 10 and 2000.
  • the nanotubes comprise single walled carbon- based SWNT-containing material.
  • SWNTs can be formed by a number of techniques, such as laser ablation of a carbon target, decomposing a hydrocarbon, and setting up an arc between two graphite electrodes.
  • U.S. Pat. No. 5,424,054 to Bethune et al. describes a process for producing single-walled carbon nanotubes by contacting carbon vapor with cobalt catalyst.
  • the carbon vapor is produced by electric arc heating of solid carbon, which can be amorphous carbon, graphite, activated or decolorizing carbon or mixtures thereof.
  • Other techniques of carbon heating are discussed, for instance laser heating, electron beam heating and RF induction heating.
  • Smalley (Guo, T., Nikoleev, P., Thess, A., Colbert, D. T., and Smally, R. E., Chem. Phys. Lett. 243: 1-12 (1995)) describes a method of producing single- walled carbon nanotubes wherein graphite rods and a transition metal are simultaneously vaporized by a high-temperature laser.
  • Smalley (Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C, Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G.
  • SWNTs are very flexible and naturally aggregate to form ropes of tubes.
  • the formation of SWNT ropes in the coating or film allows the conductivity to be very high, while loading is very low, and results in a good transparency and low haze.
  • the instant films provide excellent conductivity and transparency at low loading of nanotubes.
  • the nanotubes are present in the film at about 0.001 to about 1% based on weight.
  • the nanotubes are present in said film at about 0.01 to about 0.1%, which results in a good transparency and low haze.
  • the instant films are useful in a variety of applications for transparent conductive coatings such as ESD protection, EMI/RFI shielding, low observability, polymer electronics (e.g., transparent conductor layers for ESD protection, EMI/RFI shielding, low observability, polymer electronics (e.g., transparent conductor layers for ESD protection, EMI/RFI shielding, low observability, polymer electronics (e.g., transparent conductor layers for
  • the surface resistance of the instant films can easily be adjusted to adapt the films to these applications that have different target ranges for electrical conductivity.
  • the resistance target range for ESD protection is 10 6 -10 10 ohms/square.
  • a resistance for conductive coatings for EMI/RFI shielding should be ⁇ 10 4 ohms/square.
  • low observability coatings for transparencies is typically ⁇ 10 ohms/square, preferably ⁇ 10 ohms/square.
  • the resistivity values typically are ⁇ 10 4 ohms/square.
  • the film has a surface resistance in the range of less than about 10 1 ohms/square.
  • the film has a surface resistance in the range of about 10°-10 10 ohms/square.
  • the film has a surface resistance in the range of about lO'-lO 4 ohms/square.
  • the film has a surface resistance in the range of less than about 10 3 ohms/square.
  • the film has a surface resistance in the range of less than about 10 ohms/square.
  • the film has a surface resistance in the range of about 10 " -10 ohms/square.
  • the instant films also have volume resistances in the range of about 10 "2 ohms-cm to about 10 10 ohms-cm.
  • the volume resistances are as defined in ASTM D4496-87 and ASTM D257-99.
  • the instant films demonstrate excellent transparency and low haze.
  • the instant film has a total transmittance of at least about 60% and a haze value of visible light of about 2.0% or less.
  • the instant films have a haze value of 0.5% or less.
  • the film has a total light transmittance of about 80% or more. In another preferred embodiment, the film has a total light transmittance of about 85% or more. In another preferred embodiment, the film has a total light transmittance of about 90% or more. In another preferred embodiment, the film has a total light transmittance of about 95% or more. In another preferred embodiment, has a haze value less than 1%. In another preferred embodiment, film has a haze value less than
  • Total light transmittance refers to the percentage of energy in the electromagnetic spectrum with wavelengths less than lxl 0 "2 cm that passes through the films, thus necessarily including wavelengths of visible light.
  • the films range from moderately thick to very thin.
  • the films can have a thickness between about 0.5 nm to about 1000 microns.
  • the films can have a thickness between about 0.005 to about 1000 microns.
  • the film has a thickness between about 0.05 to about 500 microns.
  • the film has a thickness between about 0.05 to about 500 microns.
  • the film has a thickness between about 0.05 to about 400 microns.
  • the film has a thickness between about 1.0 to about 300 microns.
  • the film has a thickness between about 1.0 to about 200 microns.
  • the film has a thickness between about 1.0 to about 100 microns.
  • the film has a thickness between about 1.0 to about 50 microns.
  • the film further comprises a polymeric material.
  • the polymeric material may be selected from a wide range of natural or synthetic polymeric resins. The particular polymer may be chosen in accordance with the strength, structure, or design needs of a desired application.
  • the polymeric material comprises a material selected from the group consisting of thermoplastics, thermosetting polymers, elastomers and combinations thereof.
  • the polymeric material comprises a material selected from the group consisting of polyethylene, polypropylene, polyvinyl chloride, styrenic, polyurethane, polyimide, polycarbonate, polyethylene terephthalate, cellulose, gelatin, chitin, polypeptides, polysaccharides, polynucleotides and mixtures thereof.
  • the polymeric material comprises a material selected from the group consisting of ceramic hybrid polymers, phosphine oxides and chalcogenides. Films of this invention may be easily formed and applied to a substrate such as a dispersion of nanotubes alone in solvents such as acetone, water, ethers, and alcohols.
  • the solvent may be removed by normal processes such as air drying, heating or reduced pressure to form the desired film of nanotubes.
  • the films may be applied by other known processes such as spray painting, dip coating, spin coating, knife coating, kiss coating, gravure coating, screen printing, ink jet printing, pad printing, other types of printing or roll coating.
  • a dispersion is a composition comprising preferably, but not limited to, a uniform or non-uniform distribution of two or more heterogeneous materials. Those materials may or may not chemically interact with each other or other components of the dispersion or be totally or partially inert to components of the dispersion. Heterogeneity may be reflected in the chemical composition, or in the form or size of the materials of the dispersion.
  • the instant films may be in a number and variety of different forms including, but not limited to, a solid film, a partial film, a foam, a gel, a semi-solid, a powder, or a fluid. Films may exist as one or more layers of materials of any thickness and three-dimensional size.
  • the substrate is not critical and can be any conductive or non-conductive material, for example, metals, organic polymers, inorganic polymers, glasses, crystals, etc.
  • the substrate for example, maybe, transparent, semi-transparent, or opaque.
  • the substrate may be a woven carbon or glass fabric to form a prepreg (resin coated fabric) wherein the instant conductive films enhance visual quality inspection of the prepreg.
  • the substrate may be an electronic enclosure with a conductive film to render the surface conductive without significantly changing the appearance of the enclosure.
  • the instant films comprising nanotubes in a proper amount mixed with a polymer can be easily synthesized. At most a few routine parametric variation tests may be required to optimize amounts for a desired purpose.
  • Appropriate processing control for achieving a desired array of nanotubes with respect to the plastic material can be achieved using conventional mixing and processing methodology, including but not limited to, conventional extrusion, multi-dye extrusion, press lamination, etc. methods or other techniques applicable to incorporation of nanotubes into a polymer.
  • the nanotubes may be dispersed substantially homogeneously throughout the polymeric material but can also be present in gradient fashion, increasing or decreasing in amount (e.g. concentration) from the external surface toward the middle of the material or from one surface to another, etc.
  • the nanotubes can be dispersed as an external skin or internal layer thus forming interlaminate structures.
  • the instant nanotube films can themselves be over-coated with a polymeric material.
  • the invention contemplates, in a preferred embodiment, novel laminates or multi-layered structures comprising films of nanotubes over coated with another coating of an inorganic or organic polymeric material.
  • These laminates can be easily formed based on the foregoing procedures and are highly effective for distributing or transporting electrical charge.
  • the layers may be conductive, such as tin-indium mixed oxide (ITO), antimony-tin mixed oxide (ATO), fluorine-doped tin oxide (FTO), aluminum- doped zinc oxide (FZO) layer, or provide UV absorbance, such as a zinc oxide
  • each layer may provide a separate characteristic.
  • the multi-layered structures have alternating layers of nanotube-containing and non-nanotube containing layers.
  • the nanotubes are oriented by exposing the films to a shearing, stretching, or elongating step or the like, e.g., using conventional polymer processing methodology.
  • shearing-type processing refers to the use of force to induce flow or shear into the film, forcing a spacing, alignment, reorientation, disentangling etc. of the nanotubes from each other greater than that achieved for nanotubes simply formulated either by themselves or in admixture with polymeric materials.
  • Oriented nanotubes are discussed, for example in U.S. Patent No.
  • Such disentanglement etc. can be achieved by extrusion techniques, application of pressure more or less parallel to a surface of the composite, or application and differential force to different surfaces thereof, e.g., by shearing treatment by pulling of an extruded plaque at a variable but controlled rate to control the amount of shear and elongation applied to the extruded plaque. It is believed that this orientation results in superior properties of the film, e.g., enhanced electromagnetic (EM) shielding.
  • EM enhanced electromagnetic
  • Oriented refers to the axial direction of the nanotubes.
  • the tubes can either be randomly oriented, orthoganoly oriented (nanotube arrays), or preferably, the nanotubes are oriented in the plane of the film.
  • the invention contemplates a plurality of differentially-oriented nanotube film layers wherein each layer can be oriented and adjusted, thus forming filters or polarizers.
  • the invention also provides dispersions comprising nanotubes.
  • the nanotubes have an outer diameter less than 3.5 nm.
  • the instant dispersions are suitable for forming films as described herein. Accordingly, the instant dispersions may optionally further comprise a polymeric material as described herein.
  • the instant dispersions may optionally further comprise an agent such as a plasticizer, softening agent, filler, reinforcing agent, processing aid, stabilizer, antioxidant, dispersing agent, binder, a cross-linking agent, a coloring agent, a UV absorbent agent, or a charge adjusting agent.
  • Dispersions of the invention may further comprise additional conductive organic materials , inorganic materials or combinations or mixtures of such materials.
  • the conductive organic materials may comprise particles containing buckeyballs, carbon black, fullerenes, nanotubes with an outer diameter of greater than about 3.5 nm, and combinations and mixtures thereof.
  • Conductive inorganic materials may comprise particles of aluminum, antimony, beryllium, cadmium, chromium, cobalt, copper, doped metal oxides, iron, gold, lead, manganese, magnesium, mercury, metal oxides, nickel, platinum, silver, steel, titanium, zinc, or combinations or mixtures thereof.
  • Preferred conductive materials include tin-indium mixed oxide, antimony-tin mixed oxide, fluorine-doped tin oxide, aluminum- doped zinc oxide and combinations and mixtures thereof.
  • Preferred dispersion may also contain fluids, gelatins, ionic compounds, semiconductors, solids, surfactants, and combinations and mixtures thereof.
  • the nanotubes in Table 1 were sonicated for eight minutes into Titanium SI-DETA (ceramer hybrid resin, this work has been repeated for other resin systems like epoxy and urethane) and then cast onto a glass or polycarbonate slide.
  • a set of Hyperion MWNT was sonicated in toluene then rinsed in IPA and added to the Titanium SI-DETA were it was sonicated for another 4 minutes.
  • the thickness of the cast films is 0.5 mils thick.
  • U.S. Patent No. 5,908,585 discloses a film having two conductive additives. In this table they did not create a film with high enough conductivity to qualify as an ESD films ( ⁇ 10E10 Ohms/sq). Only when they add a substantial (>20%) loading of conductive metal oxide does the films function as claimed. All claims are founded on this use of both fillers.
  • a plot of conductivity verses thickness for SWNT coatings is provided. Note that new HiPCO CNI nanotubes provide lower resistance.
  • Fig. 2 shows the affect of high humidity over an extended period of time. The resistance was unchanged over a month at saturated conditions.
  • Fig. 3 surface resistivity data for Si-DETA-50-Ti with 0.3% SWNT cast on to a glass slide is shown.
  • the test period was over eight days with long soak times at each temperature. Very little hysteresis was observed, from starting values, when the sample was removed from the apparatus and returned to room temperature several times during the test. Note that the sample turned dark brown and cracked once the temperature exceeded 300 °C. It is also interesting to note that even though the sample looked destroyed after testing it still have nearly the same resistivity as prior to testing.
  • This test was repeated using a sample with lower loading of SWNT (0.2%) cast form the same batch of ceromer resin, see Fig. 4.
  • the dependence on test voltage is also depicted.
  • the ASTM test voltage is 500V, preferred. Actual static charge is much higher, up to 20,000V.
  • the ceromer ESD coating has reduced resistivity with increasing voltage.
  • the peak at 50 to 100 °C may be due to moisture.
  • the present inventors have noted reduced magnitude during second cycle of testing the same specimen. The voltage dependence is shown in detail in Fig. 5.
  • the surface resistivity of the nanotubes will remain constant after exposure to temperatures exceeding 800 °C, and at temperatures exceeding 1000 °C.
  • the coating provides substantially the same ESD protection even after high temperature exposure.
  • Fig. 6 shows the percent nanotubes cast on glass slides labeled with resistance measurements.
  • Optical transparency of SWNT filled matrix for window and lens applications Transmission loss of only 10-15% for 25 micron thick films with bulk conductivity. Transmission loss of only 1-5% for thinner 2-10 micron conductive films. Haze values typically ⁇ 1%.
  • the films and coatings used for testing form two classes.
  • the first class of films are those made for comparative properties testing between
  • POLYIMIDE-1, POLYIMIDE-2, and TPO films with and without nanotubes In this matrix of films samples, all preparation conditions, procedures, and materials where identical for the films made with or without nanotubes. A uniform final film thickness of 25 microns was also maintained.
  • the loading concentration of SWNTs was determined from preliminary test films created with nanotube filling weight percentage between 0.03 to 0.30%. From this test, the films were standardized to 0.1% to give films with resistivity between 10 5 -10 9 Ohms/sq. During the concentration test films with resistivity from 50 Ohms/sq to over 10 Ohms/Sq were able to be made.
  • the film thickness was selected to be 1 mil (25 um) since current application make use of this thickness and based on observations that resistivity, at a set concentration of nanotubes, does not vary with thickness unless film is below 2 microns.
  • This resulting set of specimens was used in a test matrix comparing: 1) electrical resistivity at various temperatures, 2) optical transmittance and haze, 3) mechanical properties of tensile, modulus, elongation, and 4) coefficient of thermal expansion (CTE). The preparation and results of testing the films in this matrix are presented as listed above.
  • the second class of films and coatings for testing were prepared by various means and represent special coatings and films which demonstrate the wide variety of properties attainable using this nanotechnology enhancement to these resins.
  • these samples include measurement of resistivity as a function of the film thickness and nanotube loading level. The methods used for preparation of these special demonstrations are presented.
  • the resins were made in large batches, purged with nitrogen and stirred at 30 RPM for 18 hours. Each batch of resin was split in half and placed into two fresh flasks. Then two aliquots of NMP were placed in small jars for cutting the concentration of resin to casting viscosity. SWNTs were weighed out and added to pure NMP.
  • SWNTs and NMP were sonicated for 12 minutes.
  • an aliquot of pure NMP was added to the concentrate while the other half of the resin solution an aliquot of NMP containing SWNTs was added.
  • Both flasks were stirred at 30 RPM for half an hour, filtered and placed in jars for casting.
  • attention to stirring, mixing and other details were standardized to keep processing ofthe virgin and 0.1 % SWNT resins the same.
  • the samples were cast onto V ⁇ inch thick glass panels that were cleaned with soap and water and then rinsed in pure water and allowed to dry.
  • the glass was washed and with methanol and a lint free cloth. When the methanol dried the samples were cast two inches wide using a casting knife to make a final thickness of 1 mil final thickness.
  • the cast samples were died at 130°C overnight and then at 130°C under vacuum for an hour.
  • the thin samples prepared for optical testing were not removed from the glass but dried and heated like all the other coatings. The films were then floated off the glass by using purified water, to reduce water spots.
  • the samples were tested for residual solvents using a TGA. The remaining solvent was about 10, which was too high.
  • the samples were then taped on the glass panels using Kapton tape and heated to 130°C under vacuum for 18 hours. Using the TGA again to check for solvent content it was found that the coatings were reduced to about 3-6% solvent.
  • the samples were placed back into the oven and heated to 160°C under vacuum for 18 hours. After this heating process the solvent levels were below 2% and used for testing.
  • percolation threshold is characterized by a large change in the electrical resistance.
  • the theory is based on the agglomeration of particles, and particle-to-particle interactions resulting in a transition from isolated domains to those forming a continuous pathway through the material.
  • Nanotubes have a much lower percolation threshold than typical fillers due to their high aspect ratio of >1000 and high conductivity.
  • the calculated percolation threshold for carbon black is 3-4% while for typical carbon nanotubes the threshold is below 0.04% or two orders of magnitude lower. This threshold value is one of the lowest ever calculated and confirmed.
  • the high conductivity imparted when NT's are dispersed in a polymer at low concentrations is not typically observed in a filled material. This is one of the most attractive aspects to using NT to make conductive materials.
  • a typical filled system like polyaniline (PAN) particles in a polymer matrix, a 6 to 8% volume fraction is required to reach percolation threshold for conductivity. Even when PAN is solution blended the loading exceeds 2 wt.%.
  • PAN polyaniline
  • Another, more common example is found in ESD plastics used in the electronics industry were polymers are filled with carbon black to a loading of 10 to 30- wt. %.
  • the high conductivity at low concentration is due to the extraordinarily high aspect ration of SWNTs and the high tube conductivity. In fact, the electrical conductivity of individual tubes has been measured and determined to exhibit metallic behavior.
  • the decrease in the TGA and T g of the films is a result of residual NMP trapped in the film.
  • the TPO resin did not give a clean or good DSC curve until thermally cycled a couple times. Summary of electrical test results.
  • Films have electrical resistivity much lower than required for ESD applications and can be easily designed for any level of electrical resistance above a 100 Ohms/sq. using very low loading level of nanotubes. Electrical properties are insensitive to temperature, humidity, ageing. The presence of the nanotube does not harm the other thermal properties of the films.
  • SWNTs are excellent additives to impart conductivity to polymeric systems and consequently function well in an ESD role.
  • the resulting films or coatings must also be transparent.
  • Samples of each film made for the comparative test matrix were tested using ASTM D1003 "Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics" This test method covers the evaluation of specific light-transmitting and wide-angle-light- scattering properties of planar sections of materials such as essentially transparent plastic. A procedure is provided for the measurement of luminous transmittance and haze. We also tested thinner films made from the same resin batch. This data is presented in the Table 8 below.
  • POLYIMIDE-1 was cast onto glass substrates with and without SWNTs at 2 and 6 mils thick. An additional ultrathin sample was prepared using POLYIMIDE-1 compounded with 0.3% SWNTs and cast at 0.5 mil thick. These samples were tested on the UV-Vis spectrometer for percent transmission at 500 nm, an industry standard for comparison. The glass was subtracted out of each sample. Table 9 presents the optical and resistivity data for these samples cast on glass. The same tests were run on POLYIMIDE-2 and TPO, with very similar results. Table 9 POLYIMIDE-1 on glass
  • the strain gage clamps were placed onto the film using a standard 4" gage length. The film was then loaded with approximately 15 grams, which would provide a suitable stress to initiate elongation during heating but not permanent deformation.
  • the POLYIMIDE-1 and POLYIMIDE-2 samples behaved as expected throughout the temperature range.
  • the TPO samples behaved irregularly as compared to the polyimide. Initially, the samples appeared to shrink when heat was first applied then would grow normally as the temperature increased. The behavior seemed typical for the TPO VIR trial 1 on the ramp upward once the film normalized. Interestingly, the TPO material followed a different profile on the temperature ramp down and actually decreased in size before growing back to its original size. Another interesting behavior is that the TPO material seemed to change size if left to soak at 177C (350°F) for any length of time. The virgin TPO shrank when soaked at 177°C while the TPO with SWNTs grew when soaked at 177°C. Since the behavior was the same for both trials, it was determined that neither operator error nor instrument error was at fault. All CTE measurements fell within 10% of known values and are presented in Table 11 and in Fig. 11.
  • TPO (trial 1) 55.42 ppm/C 57.04 ppm/C
  • TPO (trial2) 50.70 ppm/C 57.60 1 ppm/C
  • Bilayer films where very thin, high nanotube loading level is layered on standard thickness films.
  • This excellent coating demonstrates that by manipulating the concentration and coating thickness excellent optical and electrical properties can be obtained in the same film.
  • the same sample was tested in our UV-Vis spectrometer at 500nm.
  • the glass complicates the results since the ESD layer acts as an antireflective coating to the glass and alters the reflective components contribution to the transmission result. Nevertheless, this coating demonstrates the potential for very high clarity ESD coatings.
  • the coating can be formed from a thin monolayer of high concentration nanotubes.
  • Several other techniques have also been demonstrated to achieve the same high optical transparency while maintaining high electrical conductivity in the film. Two of the most successful rely on the same concept just shown, they are: 1) the use of bi-layers and 2) ultra thin polymer wrapped nanotubes.
  • Bi-layer and Special ultra thin ESD Films A natural extension of the thin coating method for high optical clarity coatings, is to form a bi-layer free standing film by cast the thin 1 ⁇ m layer first on glass and then over coating with the thicker, 25 um layer of virgin resin. The resulting film has a conductive surface without conductivity through the thickness. We made films from the TPO resin to demonstrate the concept. The specifications for this film are provided in Table 13.
  • Nanotube concentration was increased to almost 50% in the conductive layer. This was done by modifying the nanotubes with a coating of polyvinylpyrrolidone (PVP). This is also referred to as wrapping the nanotubes with a helical layer of polymer. To accomplish this, SWNTs were suspended in sodium dodecy sulfate and PVP. This solution was then incubated at 50°C for 12 hours and then flocculated with IPA. The solution is centrifuged and washed in water three times and then suspended in water. The resulting nanotubes are water soluble and easily sprayed or cast onto any surface. This solution was spray coated onto virgin films to create a fine coating ( ⁇ lum thick) that has ESD properties and is very clear and colorless.
  • PVP polyvinylpyrrolidone
  • the resulting coating can be coated with a thin binder while still remaining conductive or coated with a thicker layer to make free standing films. Using this technique, coatings with a resistivity down to 100 Ohms were generated.

Abstract

Electrically conductive films containing nanotubes are disclosed. The disclosed films demonstrate excellent conductivity and transparency (Figure 12). Methods of preparing and using the films are also disclosed.

Description

COATINGS CONTAINING CARBON NANOTUBES
Reference to Related Applications
This application claims priority to U.S. Provisional Application No.
60/278,419 entitled "Electrodissipative Transparent Coatings Comprising Single- Wall Nanotubes and Methods for Forming Same" filed March 26, 2001, U.S. Provisional Application No. 60/311,810 entitled "EMI IR Materials" filed August 14, 2001, U.S. Provisional Application No. 60/311,811 entitled "Biodegradable Film" filed August 14, 2001, and U.S.
Provisional Application No. 60/311,815 entitled "EMI Optical Materials" filed August 14, 2001, each of which is entirely and specifically incorporated by reference.
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates electrically conductive coatings. More particularly, the invention relates to transparent electrically conductive coatings comprising carbon nanotubes.
Description of the Related Art
Electrically conductive transparent films are known in the art. In general, such films are generally formed on an electrical insulating substrate by either a dry or a wet process. In the dry process, PVD (including sputtering, ion plating and vacuum deposition) or CVD is used to form a conductive transparent film of a metal oxide type, e.g., tin-indium mixed oxide (ITO), antimony-tin mixed oxide (ATO), fluorine-doped tin oxide
(FTO), aluminum-doped zinc oxide (FZO). In the wet process, a conductive coating composition is formed using an electrically conductive powder, e.g., one of the above-described mixed oxides and a binder. The dry process produces a film having both good transparency and good conductivity. However, it requires a complicated apparatus having a vacuum system and has poor productivity. Another problem of the dry process is that it is difficult to apply to a continuous or big substrate such as photographic films or show windows.
The wet process requires a relatively simple apparatus, has high productivity, and is easy to apply to a continuous or big substrate. The electrically conductive powder used in the wet process is a very fine powder having an average primary particle diameter of 0.5 μm or less so as not to interfere with transparency of the resulting film. To obtain a transparent coating film, the conductive powder has an average primary particle diameter of half or less (0.2 μm) of the shortest wave of visible light so as not to absorb visible light, and to controlling scattering of the visible light.
The development of intrinsically conductive organic polymers and plastics has been ongoing since the late 1970's. These efforts have yielded conductive materials based on polymers such as polyanaline, polythiophene, polypyrrole, and polyacetylene. (See "Electrical Conductivity in Conjugated Polymers. " Conductive Polymers and Plastics in Industrial Applications", Arthur E. Epstein; "Conductive Polymers." Ease of Processing Spearheads Commercial Success. Report from Technical Insights. Frost & Sullivan; and "From Conductive Polymers to Organic Metals." Chemical Innovation, Bernhard Wessling.
A significant discovery was that of carbon nanotubes, which are essentially single graphite layers wrapped into tubes, either single walled nanotubes (SWNTs) or double walled (DWNTs) or multi walled (MWNTs) wrapped in several concentric layers. (B. I. Yakobson and R. E. Smalley, "Fullerene Nanotubes: C 1,000,000 and Beyond", American Scientist v.85, July-August 1997). Although only first widely reported in 1991, (Phillip Ball, "Through the Nanotube", New Scientist, 6 July 1996, p. 28-31.) carbon nanotubes are now readily synthesized in gram quantities in the laboratories all over the world, and are also being offered commercially. The tubes have good intrinsic electrical conductivity and have been used in conductive materials.
U.S. Patent No. 5,853,877, the disclosure of which is incorporated by reference in its entirety, relates to the use of chemically-modified multiwalled nanotubes (MWNT). The coating and films disclosed in U.S.
Patent No. 5,853,877 are optically transparent when formed as a very thin layer. As the thickness of the films increases to greater than about 5μm, the films lose their optical properties.
U.S. Patent No. 5,853,877 also relates to films that are formed with and without binders. The films include binders with a very high nanotube concentration and are extremely thin in order to maintain the optical properties. For example, the patent discloses a film with 40% wt MWNT loading to get good ESD conductivities.
U.S. Patent No. 5,908,585, the disclosure of which is incorporated by reference in its entirety, relates the use of two conductive additives, both
MWNT and an electrically conductive metal oxide powder.
SUMMARY OF THE INVENTION
Therefore, a need has arisen for an electrically conductive film comprising nanotubes with a particular diameter that overcome those drawbacks ofthe related art. Accordingly, in a preferred embodiment, the invention provides electrostatic dissipative transparent coatings comprising nanotubes.
Accordingly, in another preferred embodiment, the invention provides an electrically conductive film comprising: a plurality of nanotubes with an outer diameter of less than 3.5 nm.
In another preferred embodiment, the invention provides a method for making an electrically conductive film of claim 1 comprising: providing a plurality of nanotubes with an outer diameter of less than 3.5 nm; and forming a film of said nanotubes on a surface of a substrate.
In another preferred embodiment, the invention provides a multi-layered structure comprising: an electrically conductive film, and a polymeric layer disposed on at least a portion of said electrically conductive film.
In another preferred embodiment, the invention provides dispersions of nanotubes suitable for forming films and other compositions. Such compositions may contain additional conductive, partially conductive or non-conductive materials. The presence of nanotubes reduces the manufacturing costs of conventional materials that do not contain nanotubes while increasing product effectiveness, preferably product conductivity. Compositions may be in any form such as a solid or liquid, and is preferably a powder, a film, a coating, an emulsion, or mixed dispersion.
Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate a presently preferred embodiment of the invention, and, together with the general description given above and the detailed description of the preferred embodiment given below, serve to explain the principles of the invention. Thus, for a more complete understanding of the present invention, the objects and advantages thereof, reference is now made to the following descriptions taken in connection with the accompanying drawings in which:
Fig. 1 is a plot of conductivity verses thickness for SWNT coatings according to one embodiment of the present invention;
Fig. 2 depicts a plot of the affect of high humidity on an ESD coating over an extended period of time according to one embodiment of the present invention;
Fig. 3 depicts a plot of surface resistivity versus temperature data for Si- DETA-50-Ti with 0.30% SWNT cast on to a glass slide according to one embodiment of the present invention;
Fig. 4 depicts a plot of surface resistivity versus temperature data for Si-
DETA-50-Ti with 0.20% SWNT cast on to a glass slide according to one embodiment ofthe present invention;
Fig. 5 depicts a plot of surface resistivity versus test voltage data for Si- DETA-50-Ti with 0.3% SWNT cast on to a glass slide according to one embodiment ofthe present invention; and Fig. 6 depicts the percent nanotubes cast on glass slides labeled with resistance measurements according to one embodiment of the present invention.
Fig. 7 depicts advantages of SWNTs used to impart electrical properties to films.
Fig. 8 depicts results showing how each of the three films resistivity (@500V) varied with temperature from -78 to +300°C.
Fig. 9 depicts resistivity in Ohms/Sq. for 1 mil POLYIMIDE-1 film as voltage is reduced.
Fig. 10 depicts tensile properties for POLYIMIDE-1, POLYIMIDE-2, and
TPO resins with and without nanotubes.
Fig. 11 depicts CTE Data on POLYIMIDE-1, POLYIMIDE-2, and TPO lmil films with and without 0.1% SWnTs.
Fig. 12 depicts a POLYIMIDE-1 coating with 0.3% SWNTs @ 1.5 μm thick, slide is tilted off the paper/pavement by piece of mica, and is illuminated by sunlight. Stats: 96%T, 0.6% Haze, resistivity 3x108 Ohms/sq.
DETAILED DESCRIPTION OF THE INVENTION
The preferred embodiments of the present invention and its advantages are understood by referring to the Figs, of the drawings, wherein like numerals being used for like and corresponding parts of the various drawings.
The instant invention relates to particular electrically conductive films comprising nanotubes and methods of forming the same. The instant films comprising nanotubes demonstrate advantageous light transmissions over those materials comprising nanotubules disclosed heretofore. In this connection the instant invention relies on nanotubes with a particular diameter which impart surprising advantages over those films disclosed in the prior art.
In relation to the above, it has surprisingly been found that nanotubes with an outer diameter of less than 3.5 nm are particularly good candidates to impart conductivity and transparency at low loading doses. These nanotubes can exhibit electrical conductivity as high as copper, thermal conductivity as high as diamond, strength 100 times greater than steel at one sixth the weight, and high strain to failure. However, heretofore, there has been no report of such nanotubes in an electrically conductive and transparent film.
Nanotubes are known and have a conventional meaning. (R. Saito, G. Dresselhaus, M. S. Dresselhaus, "Physical Properties of Carbon Nanotubes," Imperial College Press, London U.K. 1998, or A. Zettl "Non-
Carbon Nanotubes" Advanced Materials, 8, p. 443 (1996)).
In a preferred embodiment, nanotubes of this invention comprises straight and bent multi- walled nanotubes (MWNTs), straight and bent double- walled nanotubes (DWNTs) and straight and bent single- walled nanotubes (SWNTs), and various compositions of these nanotube forms and common by-products contained in nanotube preparations such as described in U.S. Patent No. 6,333,016 and WO 01/92381, which are incoφorated herein by reference in their entirety.
The nanotubes of the instant invention have an outer diameter of less than 3.5 nm. In another preferred embodiment, nanotubes of the instant invention have an outer diameter of less than 3.25 nm. In another preferred embodiment, nanotubes of the instant invention have an outer diameter of less than 3.0 nm. In another preferred embodiment, the nanotubes have an outer diameter of about 0.5 to about 2.5 nm. In another preferred embodiment, the nanotubes have an outer diameter of about 0.5 to about 2.0 nm. In another preferred embodiment, the nanotubes have an outer diameter of about 0.5 to about 1.5 nm. In another preferred embodiment, the nanotubes have an outer diameter of about 0.5 to about 1.0 nm. The aspect ratio may be between 10 and 2000.
In a preferred embodiment, the nanotubes comprise single walled carbon- based SWNT-containing material. SWNTs can be formed by a number of techniques, such as laser ablation of a carbon target, decomposing a hydrocarbon, and setting up an arc between two graphite electrodes. For example, U.S. Pat. No. 5,424,054 to Bethune et al. describes a process for producing single-walled carbon nanotubes by contacting carbon vapor with cobalt catalyst. The carbon vapor is produced by electric arc heating of solid carbon, which can be amorphous carbon, graphite, activated or decolorizing carbon or mixtures thereof. Other techniques of carbon heating are discussed, for instance laser heating, electron beam heating and RF induction heating. Smalley (Guo, T., Nikoleev, P., Thess, A., Colbert, D. T., and Smally, R. E., Chem. Phys. Lett. 243: 1-12 (1995)) describes a method of producing single- walled carbon nanotubes wherein graphite rods and a transition metal are simultaneously vaporized by a high-temperature laser. Smalley (Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C, Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tonarek, D., Fischer, J. E., and Smalley, R. E., Science, 273: 483-487 (1996)) also describes a process for production of single-walled carbon nanotubes in which a graphite rod containing a small amount of transition metal is laser vaporized in an oven at about 1200°C. Single- wall nanotubes were reported to be produced in yields of more than 70%. U.S. Patent No. 6,221,330, which is incorporated herein by reference in its entirety, discloses methods of producing single- walled carbon nanotubes which employs gaseous carbon feedstocks and unsupported catalysts.
SWNTs are very flexible and naturally aggregate to form ropes of tubes. The formation of SWNT ropes in the coating or film allows the conductivity to be very high, while loading is very low, and results in a good transparency and low haze.
The instant films provide excellent conductivity and transparency at low loading of nanotubes. In a preferred embodiment, the nanotubes are present in the film at about 0.001 to about 1% based on weight.
Preferably, the nanotubes are present in said film at about 0.01 to about 0.1%, which results in a good transparency and low haze.
The instant films are useful in a variety of applications for transparent conductive coatings such as ESD protection, EMI/RFI shielding, low observability, polymer electronics (e.g., transparent conductor layers for
OLED displays, EL lamps, plastic chips, etc.). The surface resistance of the instant films can easily be adjusted to adapt the films to these applications that have different target ranges for electrical conductivity. For example, it is generally accepted that the resistance target range for ESD protection is 106-1010 ohms/square. It is also generally accepted that a resistance for conductive coatings for EMI/RFI shielding should be <104 ohms/square. It is also generally accepted that low observability coatings for transparencies is typically <10 ohms/square, preferably <10 ohms/square. For polymer electronics, and inherently conductive polymers (ICPs), the resistivity values typically are <104 ohms/square.
Accordingly, in a preferred embodiment, the film has a surface resistance in the range of less than about 101 ohms/square. Preferably, the film has a surface resistance in the range of about 10°-1010 ohms/square. Preferably, the film has a surface resistance in the range of about lO'-lO4 ohms/square. Preferably, the film has a surface resistance in the range of less than about 103 ohms/square. Preferably, the film has a surface resistance in the range of less than about 10 ohms/square. Preferably, the film has a surface resistance in the range of about 10" -10 ohms/square.
The instant films also have volume resistances in the range of about 10"2 ohms-cm to about 1010 ohms-cm. The volume resistances are as defined in ASTM D4496-87 and ASTM D257-99.
The instant films demonstrate excellent transparency and low haze. For example, the instant film has a total transmittance of at least about 60% and a haze value of visible light of about 2.0% or less. In a preferred embodiment, the instant films have a haze value of 0.5% or less.
In a preferred embodiment, the film has a total light transmittance of about 80% or more. In another preferred embodiment, the film has a total light transmittance of about 85% or more. In another preferred embodiment, the film has a total light transmittance of about 90% or more. In another preferred embodiment, the film has a total light transmittance of about 95% or more. In another preferred embodiment, has a haze value less than 1%. In another preferred embodiment, film has a haze value less than
0.5%.
Total light transmittance refers to the percentage of energy in the electromagnetic spectrum with wavelengths less than lxl 0"2 cm that passes through the films, thus necessarily including wavelengths of visible light.
The instant films range from moderately thick to very thin. For example, the films can have a thickness between about 0.5 nm to about 1000 microns. In a preferred embodiment, the films can have a thickness between about 0.005 to about 1000 microns. In another preferred embodiment, the film has a thickness between about 0.05 to about 500 microns. In another preferred embodiment, the film has a thickness between about 0.05 to about 500 microns. In another preferred embodiment, the film has a thickness between about 0.05 to about 400 microns. In another preferred embodiment, the film has a thickness between about 1.0 to about 300 microns. In another preferred embodiment, the film has a thickness between about 1.0 to about 200 microns. In another preferred embodiment, the film has a thickness between about 1.0 to about 100 microns. In another preferred embodiment, the film has a thickness between about 1.0 to about 50 microns.
In another preferred embodiment, the film further comprises a polymeric material. The polymeric material may be selected from a wide range of natural or synthetic polymeric resins. The particular polymer may be chosen in accordance with the strength, structure, or design needs of a desired application. In a preferred embodiment, the polymeric material comprises a material selected from the group consisting of thermoplastics, thermosetting polymers, elastomers and combinations thereof. In another preferred embodiment, the polymeric material comprises a material selected from the group consisting of polyethylene, polypropylene, polyvinyl chloride, styrenic, polyurethane, polyimide, polycarbonate, polyethylene terephthalate, cellulose, gelatin, chitin, polypeptides, polysaccharides, polynucleotides and mixtures thereof. In another preferred embodiment, the polymeric material comprises a material selected from the group consisting of ceramic hybrid polymers, phosphine oxides and chalcogenides. Films of this invention may be easily formed and applied to a substrate such as a dispersion of nanotubes alone in solvents such as acetone, water, ethers, and alcohols. The solvent may be removed by normal processes such as air drying, heating or reduced pressure to form the desired film of nanotubes. The films may be applied by other known processes such as spray painting, dip coating, spin coating, knife coating, kiss coating, gravure coating, screen printing, ink jet printing, pad printing, other types of printing or roll coating.
A dispersion is a composition comprising preferably, but not limited to, a uniform or non-uniform distribution of two or more heterogeneous materials. Those materials may or may not chemically interact with each other or other components of the dispersion or be totally or partially inert to components of the dispersion. Heterogeneity may be reflected in the chemical composition, or in the form or size of the materials of the dispersion.
The instant films may be in a number and variety of different forms including, but not limited to, a solid film, a partial film, a foam, a gel, a semi-solid, a powder, or a fluid. Films may exist as one or more layers of materials of any thickness and three-dimensional size.
The substrate is not critical and can be any conductive or non-conductive material, for example, metals, organic polymers, inorganic polymers, glasses, crystals, etc. The substrate for example, maybe, transparent, semi-transparent, or opaque. For example, the substrate may be a woven carbon or glass fabric to form a prepreg (resin coated fabric) wherein the instant conductive films enhance visual quality inspection of the prepreg.
Alternatively, the substrate may be an electronic enclosure with a conductive film to render the surface conductive without significantly changing the appearance of the enclosure. The instant films comprising nanotubes in a proper amount mixed with a polymer can be easily synthesized. At most a few routine parametric variation tests may be required to optimize amounts for a desired purpose. Appropriate processing control for achieving a desired array of nanotubes with respect to the plastic material can be achieved using conventional mixing and processing methodology, including but not limited to, conventional extrusion, multi-dye extrusion, press lamination, etc. methods or other techniques applicable to incorporation of nanotubes into a polymer.
The nanotubes may be dispersed substantially homogeneously throughout the polymeric material but can also be present in gradient fashion, increasing or decreasing in amount (e.g. concentration) from the external surface toward the middle of the material or from one surface to another, etc. Alternatively, the nanotubes can be dispersed as an external skin or internal layer thus forming interlaminate structures.
In a preferred embodiment, the instant nanotube films can themselves be over-coated with a polymeric material. In this way, the invention contemplates, in a preferred embodiment, novel laminates or multi-layered structures comprising films of nanotubes over coated with another coating of an inorganic or organic polymeric material. These laminates can be easily formed based on the foregoing procedures and are highly effective for distributing or transporting electrical charge. The layers, for example, may be conductive, such as tin-indium mixed oxide (ITO), antimony-tin mixed oxide (ATO), fluorine-doped tin oxide (FTO), aluminum- doped zinc oxide (FZO) layer, or provide UV absorbance, such as a zinc oxide
(ZnO) layer, or a doped oxide layer, or a hard coat such as a silicon coat. In this way, each layer may provide a separate characteristic. In a preferred embodiment, the multi-layered structures have alternating layers of nanotube-containing and non-nanotube containing layers.
In a preferred embodiment, the nanotubes are oriented by exposing the films to a shearing, stretching, or elongating step or the like, e.g., using conventional polymer processing methodology. Such shearing-type processing refers to the use of force to induce flow or shear into the film, forcing a spacing, alignment, reorientation, disentangling etc. of the nanotubes from each other greater than that achieved for nanotubes simply formulated either by themselves or in admixture with polymeric materials. Oriented nanotubes are discussed, for example in U.S. Patent No.
6,265,466, which is incorporated herein by reference in its entirety. Such disentanglement etc. can be achieved by extrusion techniques, application of pressure more or less parallel to a surface of the composite, or application and differential force to different surfaces thereof, e.g., by shearing treatment by pulling of an extruded plaque at a variable but controlled rate to control the amount of shear and elongation applied to the extruded plaque. It is believed that this orientation results in superior properties of the film, e.g., enhanced electromagnetic (EM) shielding.
Oriented refers to the axial direction of the nanotubes. The tubes can either be randomly oriented, orthoganoly oriented (nanotube arrays), or preferably, the nanotubes are oriented in the plane of the film.
In a preferred embodiment, the invention contemplates a plurality of differentially-oriented nanotube film layers wherein each layer can be oriented and adjusted, thus forming filters or polarizers.
In a preferred embodiment, the invention also provides dispersions comprising nanotubes. Preferably, the nanotubes have an outer diameter less than 3.5 nm. The instant dispersions are suitable for forming films as described herein. Accordingly, the instant dispersions may optionally further comprise a polymeric material as described herein. The instant dispersions may optionally further comprise an agent such as a plasticizer, softening agent, filler, reinforcing agent, processing aid, stabilizer, antioxidant, dispersing agent, binder, a cross-linking agent, a coloring agent, a UV absorbent agent, or a charge adjusting agent.
Dispersions of the invention may further comprise additional conductive organic materials , inorganic materials or combinations or mixtures of such materials. The conductive organic materials may comprise particles containing buckeyballs, carbon black, fullerenes, nanotubes with an outer diameter of greater than about 3.5 nm, and combinations and mixtures thereof. Conductive inorganic materials may comprise particles of aluminum, antimony, beryllium, cadmium, chromium, cobalt, copper, doped metal oxides, iron, gold, lead, manganese, magnesium, mercury, metal oxides, nickel, platinum, silver, steel, titanium, zinc, or combinations or mixtures thereof. Preferred conductive materials include tin-indium mixed oxide, antimony-tin mixed oxide, fluorine-doped tin oxide, aluminum- doped zinc oxide and combinations and mixtures thereof. Preferred dispersion may also contain fluids, gelatins, ionic compounds, semiconductors, solids, surfactants, and combinations and mixtures thereof.
The present invention, thus generally described, will be understood more readily by reference to the following examples, which are provided by way of illustration and are not intended to be limiting of the present invention. EXAMPLES
COMPARISON OF ELECTRICAL PROPERTIES FOR MWNT (Hyperion and Carbolex) AND SWNT (CNI (laser ablated and HiPCO))
The nanotubes in Table 1 were sonicated for eight minutes into Titanium SI-DETA (ceramer hybrid resin, this work has been repeated for other resin systems like epoxy and urethane) and then cast onto a glass or polycarbonate slide. A set of Hyperion MWNT was sonicated in toluene then rinsed in IPA and added to the Titanium SI-DETA were it was sonicated for another 4 minutes. The thickness of the cast films is 0.5 mils thick.
Table 1
Figure imgf000018_0001
As discussed above, U.S. Patent No. 5,908,585 discloses a film having two conductive additives. In this table they did not create a film with high enough conductivity to qualify as an ESD films (<10E10 Ohms/sq). Only when they add a substantial (>20%) loading of conductive metal oxide does the films function as claimed. All claims are founded on this use of both fillers.
OPTICAL PROPERTIES, TRANSMISSION, COLOR AND HAZE FOR THREE COATINGS. 0.1%, 0.2%, AND 0.3% SWNT IN CERAMER COATING
Table 2 Haze Test Results for Si-DETA-50-Ti coatings on glass at 18 um thickness
Sample Name Number Thickness Haze % Total Luminous Diffuse inches Transmirtance(%) Trans %
Blank 1 0.044 0.1 92.0 0.1
2 0.044 0.1 92.0 0.1
3 0.044 0.1 92.0 0.1
0.1% SWNT 1 0.044 3.2 85.2 3.8
2 0.044 3 85.0 3.5
3 0.044 3 85.2 3.5
0.2% SWNT 1 0.044 3.8 81.9 4.6
2 0.044 4.3 81.3 5.3
3 0.044 3.7 81.9 4.5
0.3% SWNT 1 0.044 5.7 76.8 7.4
2 0.044 5.5 77.3 7.1
3 0.044 5.6 76.9 7.3
BLANK
0.1% SWNT
0.2 % SWNT
0.3 % SWNT
Figure imgf000020_0001
Referring to Fig. 1, a plot of conductivity verses thickness for SWNT coatings is provided. Note that new HiPCO CNI nanotubes provide lower resistance.
CONDUCTIVITY VERSES HUMIDITY FOR SWNT COATINGS
Referring to Table 3 and Fig. 2, humidity does not affect the electrical conductivity of the SWNT/Si-DETA coating. Fig. 2 shows the affect of high humidity over an extended period of time. The resistance was unchanged over a month at saturated conditions.
Table 3
Figure imgf000021_0001
Referring to Fig. 3, surface resistivity data for Si-DETA-50-Ti with 0.3% SWNT cast on to a glass slide is shown. The test period was over eight days with long soak times at each temperature. Very little hysteresis was observed, from starting values, when the sample was removed from the apparatus and returned to room temperature several times during the test. Note that the sample turned dark brown and cracked once the temperature exceeded 300 °C. It is also interesting to note that even though the sample looked destroyed after testing it still have nearly the same resistivity as prior to testing. This test was repeated using a sample with lower loading of SWNT (0.2%) cast form the same batch of ceromer resin, see Fig. 4. The dependence on test voltage is also depicted. The ASTM test voltage is 500V, preferred. Actual static charge is much higher, up to 20,000V.
Apparently, the ceromer ESD coating has reduced resistivity with increasing voltage. The peak at 50 to 100 °C may be due to moisture. The present inventors have noted reduced magnitude during second cycle of testing the same specimen. The voltage dependence is shown in detail in Fig. 5.
Based on the foregoing, it is projected that the surface resistivity of the nanotubes will remain constant after exposure to temperatures exceeding 800 °C, and at temperatures exceeding 1000 °C. Thus, the coating provides substantially the same ESD protection even after high temperature exposure.
Fig. 6 shows the percent nanotubes cast on glass slides labeled with resistance measurements.
ESD COATINGS
Electrical conductivity to a resin system without adversely affecting the other physical properties is demonstrated. This data presented in this section was obtained using three polyimides; POLYIMIDE-1 (CP-1 from SRS), POLYIMIDE-2 (CP-2 from SRS), and TPO (triphenyl phosphine oxide polymer from Triton Systems, Inc.). Similar results to those presented below, have been collected on other resins and are expected from most other polymer resins useful for film forming and coatings applications. Summary of Results
Electrical conductivity has been imparted to a resin system without adversely affecting other physical properties. Data presented in this section demonstrate three polyimides; POLYIMIDE-1, POLYIMIDE-2, and TPO. Similar results to those presented below, have been collected on other resins and are expected from most other polymer resins useful for film forming and coatings applications.
Successful incorporation of SWNTs into ESD films and coatings are listed here with a brief summary of some ofthe results obtained:
Electrical resistivity; concentration, and thickness of nanotube filled films. Resistivity easily adjusted from 10 to 1012 at any thickness greater than 1 micron. Resistivity through bulk or surface of films demonstrated with very high optical clarity and low haze.
Thermal effect on conductivity. Resistivity insensitive to temperature and humidity from at least -78 to +300°C. Resistivity lowers with increasing voltage. Resistivity insensitive to temperature cycling and soak.
Optical transparency of SWNT filled matrix for window and lens applications. Transmission loss of only 10-15% for 25 micron thick films with bulk conductivity. Transmission loss of only 1-5% for thinner 2-10 micron conductive films. Haze values typically <1%. Mechanical property changes to the resin and final films due to presence of nanotubes. Tensile, modulus, and elongation to break unaffected by addition of nanotubes. Coefficient of thermal expansion unaffected by addition of nanotubes. No other qualitative differences between films with or without nanotubes observed. Processing of resin and films unaffected by incorporation of nanotubes. Viscosity, surface tension, wetting, equivalent to unfilled resin. Casting, drying, curing, film parting, and final surface appearance identical. In special cases of high nanotube loading some viscosity increase is observed.
Formulation of the SWNT homogeneously throughout the matrix for uniform properties. Large area (2 ft. sq.) films have very uniform electrical characteristics. Processing used in phase I is scalable using continuous homogenizers and mixers. Some inclusions due in part to impurities in nanotubes still present a challenge.
Each of these key areas is presented in detail following a brief discussion on experimental plan.
The films and coatings used for testing form two classes. The first class of films are those made for comparative properties testing between
POLYIMIDE-1, POLYIMIDE-2, and TPO films with and without nanotubes. In this matrix of films samples, all preparation conditions, procedures, and materials where identical for the films made with or without nanotubes. A uniform final film thickness of 25 microns was also maintained. The loading concentration of SWNTs was determined from preliminary test films created with nanotube filling weight percentage between 0.03 to 0.30%. From this test, the films were standardized to 0.1% to give films with resistivity between 105-109 Ohms/sq. During the concentration test films with resistivity from 50 Ohms/sq to over 10 Ohms/Sq were able to be made. Lastly, the film thickness was selected to be 1 mil (25 um) since current application make use of this thickness and based on observations that resistivity, at a set concentration of nanotubes, does not vary with thickness unless film is below 2 microns. This resulting set of specimens was used in a test matrix comparing: 1) electrical resistivity at various temperatures, 2) optical transmittance and haze, 3) mechanical properties of tensile, modulus, elongation, and 4) coefficient of thermal expansion (CTE). The preparation and results of testing the films in this matrix are presented as listed above.
The second class of films and coatings for testing were prepared by various means and represent special coatings and films which demonstrate the wide variety of properties attainable using this nanotechnology enhancement to these resins. For example, these samples include measurement of resistivity as a function of the film thickness and nanotube loading level. The methods used for preparation of these special demonstrations are presented.
Preparation and test results for films in comparative matrix
The materials used were POLYIMIDE-1 and POLYIMIDE-2, and TPO. Both POLYIMIDE-1 and POLYIMIDE-2 were cast at a final concentration of 15% while TPO was cast at a final concentration of 20% in NMP. To prepare the resins for casting, each resin was placed in a three-neck round bottom flask with enough NMP to make more concentrated 20% solution for POLYIMIDE-1 and POLYIMIDE-2 and a 25 % solution for TPO. This concentrate is later reduced by the addition of NMP and nanotubes. The resins were made in large batches, purged with nitrogen and stirred at 30 RPM for 18 hours. Each batch of resin was split in half and placed into two fresh flasks. Then two aliquots of NMP were placed in small jars for cutting the concentration of resin to casting viscosity. SWNTs were weighed out and added to pure NMP. The
SWNTs and NMP were sonicated for 12 minutes. To one flask of resin concentrate, an aliquot of pure NMP was added to the concentrate while the other half of the resin solution an aliquot of NMP containing SWNTs was added. Both flasks were stirred at 30 RPM for half an hour, filtered and placed in jars for casting. Through the task of preparing the resins for casting, attention to stirring, mixing and other details were standardized to keep processing ofthe virgin and 0.1 % SWNT resins the same.
The samples were cast onto VΛ inch thick glass panels that were cleaned with soap and water and then rinsed in pure water and allowed to dry. The glass was washed and with methanol and a lint free cloth. When the methanol dried the samples were cast two inches wide using a casting knife to make a final thickness of 1 mil final thickness. For POLYIMIDE- 1 and POLYIMIDE-2 a 12.5 mil casting thickness was used while TPO required 10-mil casting to achieve 1 mil. The cast samples were died at 130°C overnight and then at 130°C under vacuum for an hour. The thin samples prepared for optical testing were not removed from the glass but dried and heated like all the other coatings. The films were then floated off the glass by using purified water, to reduce water spots. After drying, the samples were tested for residual solvents using a TGA. The remaining solvent was about 10, which was too high. The samples were then taped on the glass panels using Kapton tape and heated to 130°C under vacuum for 18 hours. Using the TGA again to check for solvent content it was found that the coatings were reduced to about 3-6% solvent. The samples were placed back into the oven and heated to 160°C under vacuum for 18 hours. After this heating process the solvent levels were below 2% and used for testing.
The following test results were obtained: 1) electrical resistivity at various temperatures; 2) optical transmittance and haze; 3) mechanical properties of tensile, modulus, elongation; and 4) coefficient of thermal expansion (CTE). Resistivity in comparative matrix as a function of temperature, voltage, and humidity.
Background:
To impart the conductive path throughout a structure, a three-dimensional network of filler particles was required. This is referred to as percolation threshold and is characterized by a large change in the electrical resistance. Essentially, the theory is based on the agglomeration of particles, and particle-to-particle interactions resulting in a transition from isolated domains to those forming a continuous pathway through the material. Nanotubes have a much lower percolation threshold than typical fillers due to their high aspect ratio of >1000 and high conductivity. As and example, the calculated percolation threshold for carbon black is 3-4% while for typical carbon nanotubes the threshold is below 0.04% or two orders of magnitude lower. This threshold value is one of the lowest ever calculated and confirmed. (See J. Sandier, M.S.P. Shaffer, T. Prasse, W.
Bauhofer, A.H. Windle and K. Schulte, " Development of a dispersion process for catalytically grown carbon nanotubes in a epoxy matrix and the resulting electrical properties", University of Cambridge, United Kingdom, and the Technical University Hamburg-Hamburg, Germany).
The high conductivity imparted when NT's are dispersed in a polymer at low concentrations (0.05 to 2-wt. %) is not typically observed in a filled material. This is one of the most attractive aspects to using NT to make conductive materials. For a typical filled system, like polyaniline (PAN) particles in a polymer matrix, a 6 to 8% volume fraction is required to reach percolation threshold for conductivity. Even when PAN is solution blended the loading exceeds 2 wt.%. Another, more common example is found in ESD plastics used in the electronics industry were polymers are filled with carbon black to a loading of 10 to 30- wt. %. The high conductivity at low concentration is due to the extraordinarily high aspect ration of SWNTs and the high tube conductivity. In fact, the electrical conductivity of individual tubes has been measured and determined to exhibit metallic behavior.
Electrical resistivity and thermal stability.
To demonstrate the thermal stability through a wide range of temperatures we mounted samples from each film in the test matrix onto glass slides using Kapton tape. These slides were placed in an environmental test chamber with leads attached to silver-metal painted stripes on each of the three types, POLYIMIDE-1, POLYIMIDE-2, and TPO. The results showing how each of the three films resistivity varied with temperature from -78 to +300°C, are presented in Fig. 8.
The results indicate that electrical resistivity in all three films is insensitive to a wide range of temperatures. The relative value of resistivity between the films is not important since it can be adjusted easily by changing the concentration of the tubes. However, in general TPO has a high resistivity at a given nanotube concentration in all the samples made in the phase I. This data also indicates that imparting conductivity to polymer by addition of SWNTs will produce a film with excellent thermal stability, at least as good as the base resins. These films were cycled through this test several times without any notable change in resistivity. In addition, we left then to soak for a period of 63 hours in air at 250°C to observe the long-term stability as shown in Table 4 below: Table 4
Figure imgf000029_0001
Also of interest was the relationship between test voltage and measure resistivity. The resistivity was calculated by holding the test voltage constant and recording the current across the sample using ohms law. POLYIMIDE-1 coated on glass with 0.1% SWNTs was tested from 1 Volt to 20 KV, with the calculated resistivity, normalized to Ohms/sq, plotted in Fig. 9. This graph shows that the resistance of these films reduces with increasing voltage. This is also observed at elevated temperatures. From a design stand point, this meant those films tested using low voltage meters is adequate, since the resistance was only going to reduce is the film is subject to higher voltage in the application. In fact these carbon nanocomposite films may be developed for lightening protection.
To test thermal stability, samples of each of the six films in the test matrix were scanned by TGA and DSC to evaluate how they behave with and without nanotube present. The percent weight loss at 350 °C and the glass transition temperature was recorded. See the Tables 6 and 7 below for results: Table 6 TGA Data on POLYIMIDE-1, POLYIMIDE-2 and TPO films with and with nanotubes
Figure imgf000030_0002
Table 7 DSC Data on POLYIMIDE-1, POLYIMIDE-2, TPO Films
Figure imgf000030_0001
The decrease in the TGA and Tg of the films is a result of residual NMP trapped in the film. The TPO resin did not give a clean or good DSC curve until thermally cycled a couple times. Summary of electrical test results.
Films have electrical resistivity much lower than required for ESD applications and can be easily designed for any level of electrical resistance above a 100 Ohms/sq. using very low loading level of nanotubes. Electrical properties are insensitive to temperature, humidity, ageing. The presence of the nanotube does not harm the other thermal properties of the films.
Optical transmittance and haze.
SWNTs are excellent additives to impart conductivity to polymeric systems and consequently function well in an ESD role. However, for application to optics and windows, the resulting films or coatings must also be transparent. Samples of each film made for the comparative test matrix were tested using ASTM D1003 "Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics" This test method covers the evaluation of specific light-transmitting and wide-angle-light- scattering properties of planar sections of materials such as essentially transparent plastic. A procedure is provided for the measurement of luminous transmittance and haze. We also tested thinner films made from the same resin batch. This data is presented in the Table 8 below. For comparison, the same films were tested for %T at fixed frequency of 500 nm using a Beckman UV-Vis spectrometry on both glass, see Table 9 , and as free standing films, see Table 10. Table 8 ASTM D1003-00B, optical haze, luminous and diffuse transmittance data for films with and without nanotubes. Note all thee films are conductive in the ESD range
Figure imgf000032_0001
POLYIMIDE-1 was cast onto glass substrates with and without SWNTs at 2 and 6 mils thick. An additional ultrathin sample was prepared using POLYIMIDE-1 compounded with 0.3% SWNTs and cast at 0.5 mil thick. These samples were tested on the UV-Vis spectrometer for percent transmission at 500 nm, an industry standard for comparison. The glass was subtracted out of each sample. Table 9 presents the optical and resistivity data for these samples cast on glass. The same tests were run on POLYIMIDE-2 and TPO, with very similar results. Table 9 POLYIMIDE-1 on glass
Figure imgf000033_0001
Another set of samples were cast at the same thickness and removed from the glass. The freestanding films were also analyzed using the UV-Vis at 500 nm. Table 10 represents the results of the freestanding films.
Table 10. Freestanding POLYIMIDE-1
Figure imgf000033_0002
Summary of optical test results.
The optical testing of these ESD films in the test matrix demonstrates excellent transmission with low loss. Even more exciting are the results of thin film and bi-layer experiments where optical properties were the focus and result in near colorless (>95%T) films and coatings. With successful demonstration of optically clear, low resistivity films, the next step was to confirm that these films have the same or better mechanical properties as those not enhance with nanotubes.
Mechanical properties of tensile, modulus, elongation.
The use of these films inmost application requires good mechanical properties. In this section, it is demonstrated that the presence of nanotube to impart the ESD characteristic does not adversely affect the mechanical properties of these polymer films. To that end, each type of film with and with out nanotube present was tested for tensile strength, tensile modulus, and elongation at break. The results of these tests are in Table 11 and graphed in Fig. 10.
Coefficient of thermal expansion (CTE).
SWNTs' ability to impart ESD characteristics does not adversely affect the coefficient of thermal expansion (CTE) properties of polymer films. To that end, each type of film with and with out nanotube present was tested. The CTE tests were conducted using Universal Testing Machine from
SRS. The testing was conducted on 6 samples of film: Virgin POLYIMIDE-1 , POLYIMIDE-1 with SWNT, Virgin POLYIMIDE-2, POLYIMIDE-2 with SWNT, Virgin TPO, and TPO with SWNT.
Each sample was first mounted onto a strip of 5 mil Kapton since the samples alone were slightly too short to be placed on the fixtures properly.
Once the sample was fixed to the machine, the strain gage clamps were placed onto the film using a standard 4" gage length. The film was then loaded with approximately 15 grams, which would provide a suitable stress to initiate elongation during heating but not permanent deformation.
The POLYIMIDE-1 and POLYIMIDE-2 samples behaved as expected throughout the temperature range. The TPO samples behaved irregularly as compared to the polyimide. Initially, the samples appeared to shrink when heat was first applied then would grow normally as the temperature increased. The behavior seemed typical for the TPO VIR trial 1 on the ramp upward once the film normalized. Interestingly, the TPO material followed a different profile on the temperature ramp down and actually decreased in size before growing back to its original size. Another interesting behavior is that the TPO material seemed to change size if left to soak at 177C (350°F) for any length of time. The virgin TPO shrank when soaked at 177°C while the TPO with SWNTs grew when soaked at 177°C. Since the behavior was the same for both trials, it was determined that neither operator error nor instrument error was at fault. All CTE measurements fell within 10% of known values and are presented in Table 11 and in Fig. 11.
Table 11 The CTE values for each material
Material CTE (ramp up) CTE (ramp down)
POLYIMIDE-1 53.27 ppm/C 57.18 ppm/C
POLYIMIDE-1 with SWnT 56.87 ppm C 55.58 ppm/C
POLYIMIDE-2 63.38 ppm/C 64.45 ppm/C
POLYIMIDE-2 with SWnT 56.00 ppm/C 56.43 ppm/C
TPO (trial 1) 55.42 ppm/C 57.04 ppm/C
TPO with SWnT (trial 1) 53.81 ppm/C 56.13 ppm/C
TPO (trial2) 50.70 ppm/C 57.601 ppm/C
TPO with SWnT (trial2) 60.86 ppm/C 55.78 ppm/C
Summary of CTE testing As with the tensile properties, the CTE properties of these films were generally unchanged by the addition of nanotubes. This will permit the use of these other polymers enhanced by the addition of nanotubes for coating and multilayer applications were CTE matching is important for bonding and temperature cycling.
Results obtained from exploratory films and coatings.
In this section are provided those results obtained from films and coating made from the same three resins, however, in these samples film thickness and nanotube concentration were not held fix. Samples were generated to demonstrate the ease at which very high clarity, high conductivity coatings and films can be produced using Nano ESD technology. In brief, the following samples were prepared and presented in the subsequent subsections of the proposal:
High clarity 1-2 micron thick coatings on glass with high loading levels of (0.2 and 0.3%) nanotubes.
Bilayer films, where very thin, high nanotube loading level is layered on standard thickness films.
Special polymer wrapped SWNT layered on 1 mil films.
High clarity ESD films
It is possible to obtain a highly absorbing film by increasing the nanotube concentration. A 1.5 % loading level of multiwalled nanotubes in polymer matrix is black and dull in appearance. In contrast, an 8-micron thick polymer coating loaded with 0.2% SWNTs is still conductive yet nearly colorless as depicted in Fig. 12. This coating was formed by casting a solution of POLYIMIDE-1 with 0.3% SWNTs @ 1.5 μm final thickness. It has a resistivity of 10 Ohms sq with transparency 96%T with haze of 0.6%.
This excellent coating demonstrates that by manipulating the concentration and coating thickness excellent optical and electrical properties can be obtained in the same film. For comparison, the same sample was tested in our UV-Vis spectrometer at 500nm. The glass complicates the results since the ESD layer acts as an antireflective coating to the glass and alters the reflective components contribution to the transmission result. Nevertheless, this coating demonstrates the potential for very high clarity ESD coatings.
Table 12 Transmission at 500nm for thin 0.3% POLYIMIDE-1 coating on glass
Figure imgf000037_0001
To reduce optical absorbance in nanocomposite conductive films the coating can be formed from a thin monolayer of high concentration nanotubes. Several other techniques have also been demonstrated to achieve the same high optical transparency while maintaining high electrical conductivity in the film. Two of the most successful rely on the same concept just shown, they are: 1) the use of bi-layers and 2) ultra thin polymer wrapped nanotubes.
Bi-layer and Special ultra thin ESD Films. A natural extension of the thin coating method for high optical clarity coatings, is to form a bi-layer free standing film by cast the thin 1 μm layer first on glass and then over coating with the thicker, 25 um layer of virgin resin. The resulting film has a conductive surface without conductivity through the thickness. We made films from the TPO resin to demonstrate the concept. The specifications for this film are provided in Table 13.
Nanotube concentration was increased to almost 50% in the conductive layer. This was done by modifying the nanotubes with a coating of polyvinylpyrrolidone (PVP). This is also referred to as wrapping the nanotubes with a helical layer of polymer. To accomplish this, SWNTs were suspended in sodium dodecy sulfate and PVP. This solution was then incubated at 50°C for 12 hours and then flocculated with IPA. The solution is centrifuged and washed in water three times and then suspended in water. The resulting nanotubes are water soluble and easily sprayed or cast onto any surface. This solution was spray coated onto virgin films to create a fine coating (<lum thick) that has ESD properties and is very clear and colorless.
The resulting coating can be coated with a thin binder while still remaining conductive or coated with a thicker layer to make free standing films. Using this technique, coatings with a resistivity down to 100 Ohms were generated.
Although only a few exemplary embodiments of the present invention have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible in the exemplary embodiments (such as variations in sizes, structures, shapes and proportions of the various elements, values of parameters, or use of materials) without materially departing from the novel teachings and advantages of the invention. Accordingly, all such modifications are intended to be included within the scope of the invention as defined in the appended claims.
Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the preferred embodiments without departing from the spirit of the invention as expressed in the appended claims.
Additional advantages, features and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, and representative devices, shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
All references cited herein, including all U.S. and foreign patents and patent applications, all priority documents, all publications, and all citations to government and other information sources, are specifically and entirely hereby incorporated herein by reference. It is intended that the specification and examples be considered exemplary only, with the true scope and spirit of the invention indicated by the following claims.
As used herein and in the following claims, articles such as "the", "a" and
"an" can connote the singular or plural.

Claims

Claims:
1. An electrically conductive film comprising: a plurality of nanotubes with an outer diameter of less than 3.5 nm.
2. The film of claim 1, wherein said nanotubes have an outer diameter of about 0.5 to 3.5 nm.
3. The film of claim 1, wherein said nanotubes have an outer diameter of about 0.5 to about 1.5 nm.
4. The film of claim 1, wherein said nanotubes are selected from the group consisting of single-walled nanotubes (SWNTs), double-walled nanotubes (DWNTs), multi-walled nanotubes (MWNTs), and mixtures thereof.
5. The film of claim 1, wherein said nanotubes are substantially single- walled nanotubes (SWNTs).
6. The film of claim 1, wherein said nanotubes are present in said film at about 0.001 to about 1% based on weight.
7. The film of claim 1, wherein said nanotubes are present in said film at about 0.05%.
8. The film of claim 1, wherein the film has a surface resistance in the range of less than about 1010 ohms/square.
9. The film of claim 1, wherein the film has a surface resistance in the range of about 102-1010 ohms/square.
10. The film of claim 1, wherein the film has a surface resistance in the range of about 106-1010 ohms/square.
11. The film of claim 1 , wherein the film has a surface resistance in the range of less than about 103 ohms/square.
12. The film of claim 1, wherein the film has a volume resistances in the range of about 10" ohms-cm to about 10 ohms-cm.
13. The film of claim 1, further comprising a polymeric material.
14. The film of claim 1, wherein the film is in the form of a solid film, a foam, or a fluid.
15. The film of claim 1, further comprising a polymeric material, wherein the polymeric material comprises a material selected from the group consisting of thermoplastics, thermosetting polymers, elastomers, conducting polymers and combinations thereof.
16. The film of claim 1, further comprising a polymeric material, wherein the polymeric material comprises a material selected from the group consisting of polyethylene, polypropylene, polyvinyl chloride, styrenic, polyurethane, polyimide, polycarbonate, polyethylene terephthalate, cellulose, gelatin, chitin, polypeptides, polysaccharides, polynucleotides and mixtures thereof.
17. The film of claim 1, further comprising a polymeric material, wherein the polymeric material comprises a material selected from the group consisting of ceramic hybrid polymers, phosphine oxides and chalcogenides.
18. The film of claim 1, further comprising a polymeric material wherein the nanotubes are dispersed substantially homogenously throughout the polymeric material.
19. The film of claim 1, further comprising a polymeric material wherein the nanotubes are present in a gradient fashion.
20. The film of claim 1, further comprising a polymeric material wherein the nanotubes are present on a surface of said polymeric material.
21. The film of claim 1, further comprising a polymeric material wherein the nanotubes are formed in an internal layer of said polymeric material.
22. The film of claim 1, further comprising an opaque substrate, wherein the nanotubes are present on a surface of said opaque substrate.
23. The film of claim 1, further comprising an additive selected from the group consisting of a dispersing agent, a binder, a cross-linking agent, a stabilizer agent, a coloring agent, a UV absorbent agent, and a charge adjusting agent.
24. The film of claim 1 , wherein the film has a total transmittance of at least about 60%.
25. The film of claim 1, wherein said film has a total light transmittance of about 80% or more.
26. The film of claim 1, wherein said film has a total light transmittance of about 90% or more.
27. The film of claim 1, wherein said film has a total light transmittance of about 95% or more.
28. The film of claim 1, wherein said film has a haze value less than 2.0%.
29. The film of claim 1 , wherein said film has a haze value less than 0.1%.
30. The film of claim 1, wherein said film has a thickness between about 0.5 nm to about 1000 microns.
31. The film of claim 1 , wherein said film has a thickness between about 0.05 to about 500 microns.
32. The film of claim 1, wherein the nanotubes are oriented.
33. The film of claim 1, wherein the nanotubes are oriented in the plane ofthe film.
34. The film of claim 1, wherein the nanotubes are oriented, further comprising an additional layer of oriented nanotubes.
35. A method for making an electrically conductive film of claim 1 comprising: providing a plurality of nanotubes with an outer diameter of less than
3.5 nm; and forming a film of said nanotubes on a surface of a substrate.
36. The method of claim 35, wherein the step of forming the film comprises a method selected from the group consisting of spray painting, dip coating, spin coating, knife coating, kiss coating, gravure coating, screen printing, ink jet printing, and pad printing.
37. The method of claim 35, wherein said nanotubes have an outer diameter of about 0.5 to 3.5 nm.
38. The method of claim 35, wherein said nanotubes are selected from the group consisting of single-walled nanotubes (SWNTs), double- walled nanotubes (DWNTs), multi-walled nanotubes (MWNTs), and mixtures thereof.
39. The method of claim 35, wherein said nanotubes are substantially single-walled nanotubes (SWNTs).
40. The method of claim 35, wherein the film has a volume resistances in the range of about 10"2 ohms/cm to about 1010 ohms/cm.
41. The method of claim 35, further comprising orienting the nanotubes.
42. A multi-layered structure comprising: an electrically conductive film comprising a plurality of nanotubes with an outer diameter of less than 3.5 nm; and a polymeric layer disposed on at least a portion of said electrically conductive film.
43. The multi-layered structure of claim 42, wherein said nanotubes have an outer diameter of about 0.5 to 3.5 nm.
44. The multi-layered structure of claim 42, wherein said nanotubes are selected from the group consisting of single-walled nanotubes (SWNTs), double- walled nanotubes (DWNTs), multi-walled nanotubes (MWNTs), and mixtures thereof.
45. The multi-layered structure of claim 42, wherein said nanotubes are substantially single- walled nanotubes (SWNTs).
46. The multi-layered structure of claim 42, wherein said nanotubes are present in said film at about 0.001 to about 1% based on weight.
47. The multi-layered structure of claim 42, wherein the film has a volume resistances in the range of about 10"2 ohms/cm to about 1010 ohms/cm.
48. The multi-layered structure of claim 42, wherein the film is in the form of a solid film, a foam, or a fluid.
49. The multi-layered structure of claim 42, further comprising a polymeric material, wherein the polymeric material comprises a material selected from the group consisting of thermoplastics, thermosetting polymers, elastomers, conducting polymers and combinations thereof.
50. The multi-layered structure of claim 42, further comprising a polymeric material, wherein the polymeric material comprises a material selected from the group consisting of ceramic hybrid polymers, phosphine oxides and chalcogenides.
51. The multi-layered structure of claim 42, further comprising a polymeric material wherein the nanotubes are dispersed substantially homogenously throughout the polymeric material.
52. The multi-layered structure of claim 42, further comprising a polymeric material wherein the nanotubes are present in a gradient fashion.
53. The multi-layered structure of claim 42, further comprising a polymeric material wherein the nanotubes are present on a surface of said polymeric material.
54. The multi-layered structure of claim 42, further comprising a polymeric material wherein the nanotubes are formed in an internal layer of said polymeric material.
55. The multi-layered structure of claim 42, further comprising an opaque substrate, wherein the nanotubes are present on a surface of said opaque substrate.
56. The multi-layered structure of claim 42, further comprising an additive selected from the group consisting of a dispersing agent, a binder, a cross-linking agent, a stabilizer agent, a coloring agent, a UV absorbent agent, and a charge adjusting agent.
57. The multi-layered structure of claim 42, wherein the film has a total transmittance of at least about 60%.
58. The multi-layered structure of claim 42, wherein said film has a thickness between about 0.005 to about 1,000 microns.
59. The multi-layered structure of claim 42, wherein the nanotubes are oriented.
60. The multi-layered structure of claim 42, wherein the nanotubes are oriented in the plane of the film.
61. A dispersion of nanotubes comprising a plurality of nanotubes with an outer diameter of less than 3.5 nm.
62. The dispersion of claim 61, wherein said nanotubes have an outer diameter of about 0.5 to 3.5 nm.
63. The dispersion of claim 61, wherein said nanotubes are selected from the group consisting of single-walled nanotubes (SWNTs), double-walled nanotubes (DWNTs), multi-walled nanotubes (MWNTs), and mixtures thereof.
64. The dispersion of claim 61, wherein said nanotubes are substantially single- walled nanotubes (SWNTs).
65. The dispersion of claim 61, further comprising a polymeric material, wherein the polymeric material comprises a material selected from the group consisting of thermoplastics, thermosetting polymers, elastomers, conducting polymers and combinations thereof.
66. The dispersion of claim 61, further comprising a polymeric material, wherein the polymeric material comprises a material selected from the group consisting of ceramic hybrid polymers, and phosphine oxides chalcogenides.
67. The dispersion of claim 61, further comprising a plasticizer, softening agent, filler, reinforcing agent, processing aid, stabilizer, antioxidant, dispersing agent, binder, a cross-linking agent, a coloring agent, a UV absorbent agent, or a charge adjusting agent.
68. The dispersion of claim 61, further comprising conductive organic materials, inorganic materials, or combinations or mixtures thereof.
69. The dispersion of claim 68 wherein the conductive organic materials are selected from the group consisting of buckeyballs, carbon black, fullerenes, nanotubes with an outer diameter of greater than about 3.5 nm, and combinations and mixtures thereof.
70. The dispersion of claim 68 wherein the conductive inorganic materials are selected from the group consisting of aluminum, antimony, beryllium, cadmium, chromium, cobalt, copper, doped metal oxides, iron, gold, lead, manganese, magnesium, mercury, metal oxides, nickel, platinum, silver, steel, titanium, zinc, and combinations and mixtures thereof.
71. The dispersion of claim 61, further comprising a conductive material selected from the group consisting of tin-indium mixed oxide, antimony-tin mixed oxide, fluorine-doped tin oxide, aluminum-doped zinc oxide and combinations and mixtures thereof.
72. The dispersion of claim 61, further comprising conductors, fluids, gelatins, ionic compounds, semiconductors, solids, surfactants, or combinations or mixtures thereof.
PCT/US2002/009140 2001-03-26 2002-03-26 Coatings containing carbon nanotubes WO2002076724A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA 2442310 CA2442310A1 (en) 2001-03-26 2002-03-26 Coatings containing carbon nanotubes
EP02723596A EP1392500A1 (en) 2001-03-26 2002-03-26 Coatings containing carbon nanotubes
AU2002254367A AU2002254367B2 (en) 2001-03-26 2002-03-26 Coatings containing carbon nanotubes
JP2002575217A JP3665969B2 (en) 2001-03-26 2002-03-26 Method for producing carbon nanotube-containing film and carbon nanotube-containing coating
KR10-2003-7012636A KR20040030553A (en) 2001-03-26 2002-03-26 Coatings containing carbon nanotubes
CN028106016A CN1543399B (en) 2001-03-26 2002-03-26 Coatings containing carbon nanotubes

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US27841901P 2001-03-26 2001-03-26
US60/278,419 2001-03-26
US31181501P 2001-08-14 2001-08-14
US31181001P 2001-08-14 2001-08-14
US31181101P 2001-08-14 2001-08-14
US60/311,815 2001-08-14
US60/311,810 2001-08-14
US60/311,811 2001-08-14

Publications (1)

Publication Number Publication Date
WO2002076724A1 true WO2002076724A1 (en) 2002-10-03

Family

ID=27501222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/009140 WO2002076724A1 (en) 2001-03-26 2002-03-26 Coatings containing carbon nanotubes

Country Status (8)

Country Link
US (2) US7060241B2 (en)
EP (1) EP1392500A1 (en)
JP (6) JP3665969B2 (en)
KR (1) KR20040030553A (en)
CN (1) CN1543399B (en)
AU (1) AU2002254367B2 (en)
CA (1) CA2442310A1 (en)
WO (1) WO2002076724A1 (en)

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145054A (en) * 2002-10-25 2004-05-20 Dainippon Toryo Co Ltd Membrane material for optical filter and optical filter using same
WO2004097848A1 (en) * 2003-04-28 2004-11-11 Eastman Kodak Company Terminated conductive patterned sheet utilizing conductive conduits
WO2004107360A1 (en) * 2003-05-22 2004-12-09 General Electric Company (A New York Corporation) Electrically conductive compositions and method of manufacture thereof
WO2005014475A2 (en) * 2003-07-08 2005-02-17 Seldon Technologies, Inc. Carbon nanotube containing materials and articles containing such materials for altering electromagnetic radiation
WO2005033753A1 (en) * 2003-10-01 2005-04-14 Eastman Kodak Company Conductive color filters
WO2005068556A1 (en) * 2004-01-20 2005-07-28 National Institute Of Advanced Industrial Science And Technology Carbon nanotube-dispersed polyimide composition
WO2005082775A1 (en) * 2004-03-02 2005-09-09 National Institute Of Advanced Industrial Science And Technology Thin film containing carbon nanotube
EP1578857A1 (en) * 2002-12-23 2005-09-28 Dow Global Technologies Inc. Electrically conductive polymerized macrocyclic oligomer carbon nanofiber compositions
WO2005096089A1 (en) * 2004-04-02 2005-10-13 National Institute Of Advanced Industrial Science And Technology Saturable absorber of polyimide containing dispersed carbon nanotubes
JP2005321733A (en) * 2004-05-11 2005-11-17 National Institute Of Advanced Industrial & Technology Optical device with built-in saturable absorber
EP1619524A1 (en) * 2003-04-28 2006-01-25 Takiron Co., Ltd. Electromagnetic-shielding light diffusion sheet
WO2006008978A1 (en) * 2004-07-16 2006-01-26 Konica Minolta Holdings, Inc. Method for producing carbon nanotube-containing body
WO2006008518A1 (en) * 2004-07-23 2006-01-26 Cpfilms Inc. A film having an electrically conductive coating
KR100548826B1 (en) * 2003-11-28 2006-02-02 제일모직주식회사 Anti-static Hard Coating Solution and Hard Coating Film
JP2006035774A (en) * 2004-07-29 2006-02-09 Takiron Co Ltd Antistatic resin molded product
US7029603B2 (en) 2001-08-17 2006-04-18 University Of Dayton Conductive polymeric nanocomposite materials
US7094467B2 (en) 2004-07-20 2006-08-22 Heping Zhang Antistatic polymer monofilament, method for making an antistatic polymer monofilament for the production of spiral fabrics and spiral fabrics formed with such monofilaments
WO2006130366A3 (en) * 2005-06-02 2007-07-19 Eastman Kodak Co Touchscreen with one carbon nanotube conductive layer
EP1832632A1 (en) 2006-03-07 2007-09-12 DSM IP Assets B.V. Conductive ink
WO2007134004A1 (en) * 2006-05-15 2007-11-22 General Electric Company High temperature lead-free paint compositions for uv-control lamps
WO2008013517A2 (en) * 2005-06-02 2008-01-31 Eastman Kodak Company Touchscreen with conductive layer comprising carbon nanotubes
WO2008018852A2 (en) * 2005-06-02 2008-02-14 Eastman Kodak Company Multi-layer conductor with carbon nanotubes
JPWO2005104141A1 (en) * 2004-04-20 2008-03-13 タキロン株式会社 Transparent conductive molded body for touch panel and touch panel
EP1932805A1 (en) * 2006-12-15 2008-06-18 Alcan Technology &amp; Management Ltd. Web containing carbon nanotubes and production process therefor
WO2008078849A1 (en) 2006-12-22 2008-07-03 Cheil Industries Inc. Electroconductive thermoplastic resin composition and plastic article
WO2008085550A3 (en) * 2006-08-02 2009-02-05 Battelle Memorial Institute Electrically conductive coating composition
EP2154690A1 (en) * 2007-04-27 2010-02-17 Kuraray Co., Ltd. Transparent conductive film and method for producing transparent conductive film
US7948674B2 (en) 2006-12-13 2011-05-24 Bae Systems Plc Electro-optic windows
US7947145B2 (en) 2007-12-21 2011-05-24 Tsinghua University Method for making carbon nanotube composite
JP2011138768A (en) * 2001-03-26 2011-07-14 Eikos Inc Coating containing carbon nanotubes
US8021902B2 (en) 2009-02-27 2011-09-20 Tsinghua University Method for fabricating light emitting diode
US8105126B2 (en) 2008-07-04 2012-01-31 Tsinghua University Method for fabricating touch panel
US8111245B2 (en) 2007-12-21 2012-02-07 Tsinghua University Touch panel and display device using the same
US8115742B2 (en) 2007-12-12 2012-02-14 Tsinghua University Touch panel and display device using the same
EP2421008A1 (en) * 2010-08-20 2012-02-22 Airbus Operations Limited Bond lead
US8125878B2 (en) 2007-12-27 2012-02-28 Tsinghua University Touch panel and display device using the same
US8199119B2 (en) 2007-12-12 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
CN102529262A (en) * 2011-12-30 2012-07-04 常熟市富邦胶带有限责任公司 High temperature resistant coating-type black matt polyimide film
US8237671B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237669B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237668B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch control device
US8237672B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237675B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237673B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237670B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237674B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8243029B2 (en) 2007-12-14 2012-08-14 Tsinghua University Touch panel and display device using the same
US8243030B2 (en) 2007-12-21 2012-08-14 Tsinghua University Touch panel and display device using the same
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248377B2 (en) 2007-10-23 2012-08-21 Tsinghua University Touch panel
US8248378B2 (en) 2007-12-21 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
US8363017B2 (en) 2007-12-12 2013-01-29 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8377590B2 (en) 2006-05-04 2013-02-19 Lg Chem, Ltd. Electrochemical energy storage device with high capacity and high power using conductive polymer composite
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8414964B2 (en) 2007-09-28 2013-04-09 Toray Industries, Inc. Process for producing electrically conductive film
DE102011088329A1 (en) 2011-12-13 2013-06-13 Emil Frei Gmbh & Co. Kg Powder coating composition useful as a protective or decorative finish on home furnishings for explosion protected areas or a region with electronic devices at work, comprises binding agent, additive, and carbon nanotubes
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
TWI416380B (en) * 2007-11-09 2013-11-21 Hon Hai Prec Ind Co Ltd Touch panel
US8603585B2 (en) 2007-12-14 2013-12-10 Tsinghua University Method for making carbon nanotube composite
US8632699B2 (en) * 2004-04-07 2014-01-21 Eikos, Inc. Fugitive viscosity and stability modifiers for carbon nanotube compositions
US8642895B2 (en) 2008-02-29 2014-02-04 Toray Industries, Inc. Substrate with transparent conductive layer and method for producing the same, and touch panel using the same
US8962131B2 (en) 2009-07-17 2015-02-24 Carestream Health Inc. Transparent conductive film comprising water soluble binders
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
JPWO2015001803A1 (en) * 2013-07-05 2017-02-23 パナソニック株式会社 Electrochemical energy storage device
US9791597B2 (en) 2007-12-27 2017-10-17 Essilor International (Compagie Generale D'optique) Carbon nanotube-based curable coating composition providing antistatic abrasion-resistant coated articles
WO2018189479A1 (en) 2017-04-10 2018-10-18 Ecole Polytechnique Chemical sensors based on carbon nanotubes functionalised by conjugated polymers for analysis in aqueous medium
CN109749107A (en) * 2019-02-26 2019-05-14 中国人民解放军国防科技大学 Oriented carbon nanotube/resin film and preparation method thereof
WO2019125979A1 (en) * 2017-12-18 2019-06-27 Basf Qtech Inc. Catalytic coatings, methods of making and use thereof
US11450446B2 (en) 2015-05-05 2022-09-20 Nano-C, Inc. Carbon nanotube based hybrid films for mechanical reinforcement of multilayered, transparent-conductive, laminar stacks
US11912898B2 (en) 2020-03-12 2024-02-27 Cabot Corporation Light color conductive coatings

Families Citing this family (399)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9056783B2 (en) 1998-12-17 2015-06-16 Hach Company System for monitoring discharges into a waste water collection system
US8958917B2 (en) 1998-12-17 2015-02-17 Hach Company Method and system for remote monitoring of fluid quality and treatment
US7454295B2 (en) 1998-12-17 2008-11-18 The Watereye Corporation Anti-terrorism water quality monitoring system
US6265466B1 (en) * 1999-02-12 2001-07-24 Eikos, Inc. Electromagnetic shielding composite comprising nanotubes
US7265174B2 (en) * 2001-03-22 2007-09-04 Clemson University Halogen containing-polymer nanocomposite compositions, methods, and products employing such compositions
US6723299B1 (en) * 2001-05-17 2004-04-20 Zyvex Corporation System and method for manipulating nanotubes
JP2002365427A (en) * 2001-06-04 2002-12-18 Toray Ind Inc Polarizer and method for manufacturing the same
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US7259410B2 (en) * 2001-07-25 2007-08-21 Nantero, Inc. Devices having horizontally-disposed nanofabric articles and methods of making the same
US6919592B2 (en) * 2001-07-25 2005-07-19 Nantero, Inc. Electromechanical memory array using nanotube ribbons and method for making same
US6835591B2 (en) * 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
US7563711B1 (en) * 2001-07-25 2009-07-21 Nantero, Inc. Method of forming a carbon nanotube-based contact to semiconductor
US7118693B2 (en) * 2001-07-27 2006-10-10 Eikos, Inc. Conformal coatings comprising carbon nanotubes
WO2003024798A1 (en) * 2001-09-18 2003-03-27 Eikos, Inc. Esd coatings for use with spacecraft
JP2003100147A (en) * 2001-09-25 2003-04-04 Nagase & Co Ltd Conductive material containing carbon nanotube and its manufacturing method
US7588699B2 (en) * 2001-11-02 2009-09-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof
EP1370489B1 (en) * 2002-03-14 2014-03-12 Samsung Electronics Co., Ltd. Composite materials comprising polycarbonate and single-wall carbon nanotubes
JP2003303540A (en) * 2002-04-11 2003-10-24 Sony Corp Field electron emission membrane, field electron emission electrode, and field electron emission display device
ATE363716T1 (en) * 2002-06-14 2007-06-15 Hyperion Catalysis Int CARBON FIBRIL-BASED ELECTROCONDUCTIVE DYES AND COATINGS
US7776444B2 (en) * 2002-07-19 2010-08-17 University Of Florida Research Foundation, Inc. Transparent and electrically conductive single wall carbon nanotube films
US7261852B2 (en) * 2002-07-19 2007-08-28 University Of Florida Research Foundation, Inc. Transparent electrodes from single wall carbon nanotubes
AU2003251307A1 (en) * 2002-09-10 2004-04-30 The Trustees Of The University Pennsylvania Carbon nanotubes: high solids dispersions and nematic gels thereof
CN1281982C (en) * 2002-09-10 2006-10-25 清华大学 Polarized element and method for manufacturing same
KR100720628B1 (en) * 2002-11-01 2007-05-21 미츠비시 레이온 가부시키가이샤 Composition containing carbon nanotubes, composite having coating thereof and process for producing them
US20040265550A1 (en) * 2002-12-06 2004-12-30 Glatkowski Paul J. Optically transparent nanostructured electrical conductors
WO2004056917A1 (en) * 2002-12-19 2004-07-08 Nippon Chemical Industrial Co., Ltd. Antistatic agents for resins, antistatic resin compositions, and moldings of antistatic resins
EP2099050A3 (en) * 2002-12-27 2009-10-07 Fujifilm Corporation Method for producing a metallic silver pattern on a transparent substrate and manufacture of a light-transmitting electromagnetic wave-shielding film
US9574290B2 (en) 2003-01-13 2017-02-21 Nantero Inc. Methods for arranging nanotube elements within nanotube fabrics and films
US7560136B2 (en) * 2003-01-13 2009-07-14 Nantero, Inc. Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
US7858185B2 (en) * 2003-09-08 2010-12-28 Nantero, Inc. High purity nanotube fabrics and films
WO2004065655A1 (en) * 2003-01-13 2004-08-05 Nantero, Inc. Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
US8937575B2 (en) 2009-07-31 2015-01-20 Nantero Inc. Microstrip antenna elements and arrays comprising a shaped nanotube fabric layer and integrated two terminal nanotube select devices
US8920619B2 (en) 2003-03-19 2014-12-30 Hach Company Carbon nanotube sensor
US7285591B2 (en) * 2003-03-20 2007-10-23 The Trustees Of The University Of Pennsylvania Polymer-nanotube composites, fibers, and processes
JP4005048B2 (en) * 2003-04-09 2007-11-07 日信工業株式会社 Carbon fiber composite material and method for producing the same
US8062734B2 (en) * 2003-04-28 2011-11-22 Eastman Kodak Company Article comprising conductive conduit channels
US20060110580A1 (en) * 2003-04-28 2006-05-25 Aylward Peter T Article comprising conductive conduit channels
US7371452B2 (en) * 2003-04-28 2008-05-13 Eastman Kodak Company Conductive patterned sheet utilizing multi-layered conductive conduit channels
US7001658B2 (en) * 2003-04-28 2006-02-21 Eastman Kodak Company Heat selective electrically conductive polymer sheet
US7780918B2 (en) 2003-05-14 2010-08-24 Nantero, Inc. Sensor platform using a horizontally oriented nanotube element
US7786736B2 (en) * 2003-08-06 2010-08-31 University Of Delaware Method and system for detecting damage in aligned carbon nanotube fiber composites using networks
US20070176319A1 (en) * 2003-08-06 2007-08-02 University Of Delaware Aligned carbon nanotube composite ribbons and their production
US7375369B2 (en) 2003-09-08 2008-05-20 Nantero, Inc. Spin-coatable liquid for formation of high purity nanotube films
US7504051B2 (en) * 2003-09-08 2009-03-17 Nantero, Inc. Applicator liquid for use in electronic manufacturing processes
US7416993B2 (en) * 2003-09-08 2008-08-26 Nantero, Inc. Patterned nanowire articles on a substrate and methods of making the same
US7062848B2 (en) * 2003-09-18 2006-06-20 Hewlett-Packard Development Company, L.P. Printable compositions having anisometric nanostructures for use in printed electronics
JP4945888B2 (en) * 2003-10-09 2012-06-06 富士ゼロックス株式会社 Composite and production method thereof
US7682590B2 (en) * 2003-11-27 2010-03-23 National Institute Of Advanced Industrial Science And Technology Carbon nanotube dispersed polar organic solvent and method for producing the same
US20050209392A1 (en) * 2003-12-17 2005-09-22 Jiazhong Luo Polymer binders for flexible and transparent conductive coatings containing carbon nanotubes
US20050156318A1 (en) * 2004-01-15 2005-07-21 Douglas Joel S. Security marking and security mark
GB2426826B (en) * 2004-02-23 2008-06-25 Joel S Douglas Strip electrode with conductive nano tube printing
WO2005116757A2 (en) * 2004-03-23 2005-12-08 Sierracin Corporation Coatings containing nanotubes, methods of applying the same and transparencies incorporating the same
WO2005119772A2 (en) * 2004-06-02 2005-12-15 Douglas Joel S Coatings comprising carbon nanotubes
US7658869B2 (en) * 2004-06-03 2010-02-09 Nantero, Inc. Applicator liquid containing ethyl lactate for preparation of nanotube films
US7556746B2 (en) 2004-06-03 2009-07-07 Nantero, Inc. Method of making an applicator liquid for electronics fabrication process
US7709880B2 (en) * 2004-06-09 2010-05-04 Nantero, Inc. Field effect devices having a gate controlled via a nanotube switching element
US20060008745A1 (en) * 2004-06-23 2006-01-12 Fuji Photo Film Co., Ltd. Translucent electromagnetic shield film, producing method therefor and emulsifier
US20060293434A1 (en) * 2004-07-07 2006-12-28 The Trustees Of The University Of Pennsylvania Single wall nanotube composites
US8048940B2 (en) * 2004-07-09 2011-11-01 Vanderbilt University Reactive graphitic carbon nanofiber reinforced polymeric composites showing enhanced flexural strength
JP3751016B2 (en) * 2004-07-16 2006-03-01 国立大学法人 東京大学 Carbon nanotube dispersion film and phosphor
US7238415B2 (en) * 2004-07-23 2007-07-03 Catalytic Materials, Llc Multi-component conductive polymer structures and a method for producing same
US20100062229A1 (en) * 2004-07-27 2010-03-11 Kenji Hata Aligned single-walled carbon nanotube aggregate, bulk aligned single-walled carbon nanotube aggregate, powdered aligned single-walled carbon nanotube aggregate, and production method thereof
US7223922B2 (en) * 2004-07-28 2007-05-29 International Business Machines Corporation ESD dissipative coating on cables
US20060047053A1 (en) * 2004-08-27 2006-03-02 Ivan Pawlenko Thermoconductive composition for RF shielding
WO2006026691A2 (en) * 2004-08-31 2006-03-09 Hyperion Catalysis International, Inc. Conductive thermosets by extrusion
TWI399864B (en) 2004-09-16 2013-06-21 Nantero Inc Light emitters using nanotubes and methods of making same
JP4617479B2 (en) * 2004-09-17 2011-01-26 独立行政法人産業技術総合研究所 Touch panel using transparent conductive carbon nanotube film
CA2581058C (en) * 2004-09-21 2012-06-26 Nantero, Inc. Resistive elements using carbon nanotubes
JP4843932B2 (en) * 2004-10-29 2011-12-21 東レ株式会社 Method for producing epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
EP1807919A4 (en) * 2004-11-02 2011-05-04 Nantero Inc Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches
US20100147657A1 (en) * 2004-11-02 2010-06-17 Nantero, Inc. Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches
JP2006167710A (en) * 2004-11-22 2006-06-29 Nissin Kogyo Co Ltd Method of manufacturing thin film, substrate having thin-film, electron emission material, method of manufacturing electron emission material, and electron emission device
US20060124028A1 (en) * 2004-12-09 2006-06-15 Xueying Huang Inkjet ink compositions comprising carbon nanotubes
US20060291142A1 (en) * 2004-12-13 2006-12-28 Ohio State University Research Foundation Composite material containing nanotubes and an electrically conductive polymer
JP2006171336A (en) * 2004-12-15 2006-06-29 Takiron Co Ltd Transparent electrode member for image display, and the image display device
EP1825038B1 (en) * 2004-12-16 2012-09-12 Nantero, Inc. Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof
FR2880353B1 (en) * 2005-01-05 2008-05-23 Arkema Sa USE OF CARBON NANOTUBES FOR THE MANUFACTURE OF A CONDUCTIVE ORGANIC COMPOSITION AND APPLICATIONS THEREOF
US20060188723A1 (en) * 2005-02-22 2006-08-24 Eastman Kodak Company Coating compositions containing single wall carbon nanotubes
US7686994B2 (en) * 2005-03-02 2010-03-30 Cabot Microelectronics Corporation Method of preparing a conductive film
JP2006269311A (en) * 2005-03-25 2006-10-05 Toray Ind Inc Transparent conductive film containing carbon nano-tube obtained by making metal-carrying carrier contact with carbon-containing organic compound
JP2006272876A (en) * 2005-03-30 2006-10-12 Takiron Co Ltd Electroconductive element
US9287356B2 (en) * 2005-05-09 2016-03-15 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8941094B2 (en) 2010-09-02 2015-01-27 Nantero Inc. Methods for adjusting the conductivity range of a nanotube fabric layer
US20060276056A1 (en) * 2005-04-05 2006-12-07 Nantero, Inc. Nanotube articles with adjustable electrical conductivity and methods of making the same
US20100119789A1 (en) * 2005-04-06 2010-05-13 Grande William J Advanced conductive ink
EP2570385A3 (en) * 2005-05-03 2013-10-16 Nanocomp Technologies, Inc. Carbon composite materials and methods of manufacturing same
US7782650B2 (en) * 2005-05-09 2010-08-24 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7781862B2 (en) 2005-05-09 2010-08-24 Nantero, Inc. Two-terminal nanotube devices and systems and methods of making same
US8513768B2 (en) 2005-05-09 2013-08-20 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7479654B2 (en) 2005-05-09 2009-01-20 Nantero, Inc. Memory arrays using nanotube articles with reprogrammable resistance
US8217490B2 (en) * 2005-05-09 2012-07-10 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8013363B2 (en) * 2005-05-09 2011-09-06 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US9911743B2 (en) 2005-05-09 2018-03-06 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7835170B2 (en) * 2005-05-09 2010-11-16 Nantero, Inc. Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks
US8183665B2 (en) * 2005-11-15 2012-05-22 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US9196615B2 (en) * 2005-05-09 2015-11-24 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7598127B2 (en) 2005-05-12 2009-10-06 Nantero, Inc. Nanotube fuse structure
TWI264271B (en) * 2005-05-13 2006-10-11 Delta Electronics Inc Heat sink
US7915122B2 (en) * 2005-06-08 2011-03-29 Nantero, Inc. Self-aligned cell integration scheme
US20060292360A1 (en) * 2005-06-28 2006-12-28 Xerox Corporation Fuser and fixing members and process for making the same
US7538040B2 (en) * 2005-06-30 2009-05-26 Nantero, Inc. Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers
KR100702873B1 (en) * 2005-07-19 2007-04-03 전북대학교산학협력단 Carbon nanotube-chitosan composites and method of manufacturing the same
US7993620B2 (en) 2005-07-28 2011-08-09 Nanocomp Technologies, Inc. Systems and methods for formation and harvesting of nanofibrous materials
JP2007039567A (en) * 2005-08-03 2007-02-15 Kri Inc Composite molded article for high-frequency electronic component and composition for producing composite molded article for high-frequency electronic component
US20070037057A1 (en) * 2005-08-12 2007-02-15 Douglas Joel S Non printed small volume in vitro analyte sensor and methods
EP1962348B1 (en) * 2005-08-12 2013-03-06 Cambrios Technologies Corporation Nanowires-based transparent conductors
WO2007025035A1 (en) * 2005-08-24 2007-03-01 University Of Houston Nanocomposites of polymers with dispersed nanotubes
JP2009506546A (en) 2005-08-24 2009-02-12 ザ トラスティーズ オブ ボストン カレッジ Apparatus and method for solar energy conversion using nanoscale co-metallic structures
US7850778B2 (en) * 2005-09-06 2010-12-14 Lemaire Charles A Apparatus and method for growing fullerene nanotube forests, and forming nanotube films, threads and composite structures therefrom
CA2621924A1 (en) 2005-09-06 2007-03-06 Nantero, Inc. Carbon nanotubes for the selective transfer of heat from electronics
AU2006287610A1 (en) * 2005-09-06 2007-03-15 Nantero, Inc. Nanotube fabric-based sensor systems and methods of making same
WO2007030483A2 (en) 2005-09-06 2007-03-15 Nantero, Inc. Method and system of using nanotube fabrics as joule heating elements for memories and other applications
JP5028593B2 (en) * 2005-09-30 2012-09-19 国立大学法人名古屋大学 Method for producing transparent conductive film
DE602006011772D1 (en) * 2005-10-07 2010-03-04 Sulzer Mixpac Ag DYNAMIC MIXER
TW200730436A (en) * 2005-12-19 2007-08-16 Advanced Tech Materials Production of carbon nanotubes
US20080023067A1 (en) * 2005-12-27 2008-01-31 Liangbing Hu Solar cell with nanostructure electrode
US8264137B2 (en) * 2006-01-03 2012-09-11 Samsung Electronics Co., Ltd. Curing binder material for carbon nanotube electron emission cathodes
US9315678B2 (en) * 2006-01-20 2016-04-19 Ezaki Glico Co., Ltd. Affinity of hardly soluble or insoluble substance solvent by water-soluble xylan
JP5107523B2 (en) * 2006-02-24 2012-12-26 三菱樹脂株式会社 Conductive film
JP2007229989A (en) * 2006-02-28 2007-09-13 Takiron Co Ltd Conductive molded body and its manufacturing method
WO2008054472A2 (en) * 2006-03-09 2008-05-08 Battelle Memorial Institute Methods of dispersing carbon nanotubes
EP2374754B1 (en) * 2006-03-09 2018-01-10 Battelle Memorial Institute Multi-layer structure comprising carbon nanotubes
WO2008048705A2 (en) 2006-03-10 2008-04-24 Goodrich Corporation Low density lightning strike protection for use in airplanes
JP4536031B2 (en) * 2006-04-27 2010-09-01 株式会社竹中製作所 Coating composition and coating
EP2013408B2 (en) * 2006-05-02 2016-09-28 Rohr, Inc. Nacelles and components thereof using nanoreinforcements
US8623509B2 (en) * 2006-05-06 2014-01-07 Anchor Science Llc Thermometric carbon composites
JP2009537339A (en) * 2006-05-19 2009-10-29 マサチューセッツ・インスティテュート・オブ・テクノロジー Nanostructure reinforced composite and nanostructure strengthening method
US8337979B2 (en) 2006-05-19 2012-12-25 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
US20110014460A1 (en) * 2006-06-22 2011-01-20 Arnis Kazakevics Conductive, EMI shielding and static dispersing laminates and method of making same
JP2008001866A (en) * 2006-06-26 2008-01-10 Toyo Tire & Rubber Co Ltd Polyurethane sheet and its production process
EP2279986B1 (en) * 2006-06-30 2014-12-17 Cardinal CG Company Carbon nanotube coating technology
JP2009541198A (en) * 2006-06-30 2009-11-26 ユニバーシティー オブ ウロンゴング Nanostructured composites
KR100798131B1 (en) 2006-07-11 2008-01-28 한국화학연구원 Coating Method of titanium dioxide of a lower order on Carbon Nanotube
JP2010515238A (en) * 2006-07-29 2010-05-06 ショッキング テクノロジーズ インコーポレイテッド Dielectrically switchable dielectric with conductive or semiconductive organic material
US7851111B2 (en) * 2006-07-31 2010-12-14 Xerox Corporation Imaging belt with nanotube backing layer, and image forming devices including the same
CN101121791B (en) * 2006-08-09 2010-12-08 清华大学 Method for preparing carbon nano-tube/polymer composite material
US8551141B2 (en) * 2006-08-23 2013-10-08 Pioneer Surgical Technology, Inc. Minimally invasive surgical system
CN101138896B (en) * 2006-09-08 2010-05-26 清华大学 Carbon nano-tube/ polymer composite material
KR100797094B1 (en) * 2006-09-29 2008-01-22 한국기계연구원 Trasparent heater and fabricating method thereof
DE102006048920B3 (en) * 2006-10-10 2008-05-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Preparing light-weight component, useful e.g. in vehicle, comprises pre-impregnating semi-fabricated product having e.g. glass and electrically conductive fiber, inserting product into heatable molding tool, applying pressure and hardening
JP5409369B2 (en) 2006-10-12 2014-02-05 カンブリオス テクノロジーズ コーポレイション Nanowire-based transparent conductor and its application
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
TWI434904B (en) * 2006-10-25 2014-04-21 Kuraray Co Transparent conductive film, transparent electrode substrate, and liquid crystal alignment film using the same, and carbon nanotube tube and preparation method thereof
US20100096004A1 (en) * 2006-10-25 2010-04-22 Unidym, Inc. Solar cell with nanostructure electrode(s)
JP2008133178A (en) * 2006-10-25 2008-06-12 Kuraray Co Ltd Method for manufacturing carbon nanotube
EP1918249B1 (en) * 2006-10-31 2009-05-27 Alcan Technology &amp; Management Ltd. Material comprising carbon nanotubes, a method of its preparation, and its use
KR100801595B1 (en) * 2006-11-09 2008-02-05 제일모직주식회사 Composition of carbon nano tube and transparent and conductive film
CN101192493B (en) * 2006-11-22 2011-02-02 鸿富锦精密工业(深圳)有限公司 Anode device and its producing method
CN101192492B (en) * 2006-11-22 2010-09-29 清华大学 Transparent conductive film preparation method
US20120141678A1 (en) 2006-11-27 2012-06-07 Fujifilm Dimatix, Inc. Carbon Nanotube Ink
US8088352B2 (en) * 2006-11-28 2012-01-03 Vanderbilt University Graphitic-carbon-nanofiber/polymer brushes as gas sensors
US20080131705A1 (en) * 2006-12-01 2008-06-05 International Business Machines Corporation Method and system for nanostructure placement using imprint lithography
US20080136861A1 (en) * 2006-12-11 2008-06-12 3M Innovative Properties Company Method and apparatus for printing conductive inks
US20080152870A1 (en) * 2006-12-22 2008-06-26 Katsunori Takada Transparent electrically-conductive hard-coated substrate and method for producing the same
JP2008159812A (en) * 2006-12-22 2008-07-10 Sharp Corp Device for forming semiconductor layer and method for forming semiconductor layer
KR101221765B1 (en) * 2006-12-26 2013-01-14 주식회사 엘지화학 Electrically conductive films by self patterned carbon nanotubes
US20080187725A1 (en) * 2006-12-28 2008-08-07 Exatec, Llc Functional layers for polycarbonate glazing
US20080166563A1 (en) 2007-01-04 2008-07-10 Goodrich Corporation Electrothermal heater made from thermally conducting electrically insulating polymer material
WO2008082272A1 (en) * 2007-01-05 2008-07-10 Top Nanosys, Inc. Carbon nanotube dispersing agent, carbon nanotube composite, carbon nanotube film, and method for manufacturing the carbon nanotube film
KR101007064B1 (en) 2007-01-05 2011-01-12 (주)탑나노시스 Dispersion agent for carbon nanotube, carbon nano composite, carbon nanotube film and method for manufacturing the carbon nano tube film
DE102007004953A1 (en) * 2007-01-26 2008-07-31 Tesa Ag heating element
JP5041822B2 (en) * 2007-02-09 2012-10-03 グランデックス株式会社 Electrostatic low-friction coating and anti-static low-friction coating
JP5194480B2 (en) * 2007-02-20 2013-05-08 東レ株式会社 Carbon nanotube coating film and manufacturing method thereof
JP4325726B2 (en) * 2007-02-20 2009-09-02 東レ株式会社 Carbon nanotube aggregate and conductive film
US20080238882A1 (en) * 2007-02-21 2008-10-02 Ramesh Sivarajan Symmetric touch screen system with carbon nanotube-based transparent conductive electrode pairs
CA2679401A1 (en) * 2007-02-27 2008-09-04 Nanocomp Technologies, Inc. Materials for thermal protection and methods of manufacturing same
WO2008112764A1 (en) 2007-03-12 2008-09-18 Nantero, Inc. Electromagnetic and thermal sensors using carbon nanotubes and methods of making same
KR100761548B1 (en) * 2007-03-15 2007-09-27 (주)탑나노시스 Film speaker
EP2477229B1 (en) 2007-04-20 2021-06-23 Cambrios Film Solutions Corporation Composite transparent conductors and methods of forming the same
JP5004078B2 (en) * 2007-04-24 2012-08-22 独立行政法人産業技術総合研究所 Actuator element with highly oriented electrodes using high aspect ratio carbon nanotubes
KR101118497B1 (en) * 2007-04-27 2012-03-13 가부시키가이샤 구라레 Single-walled carbon nanotube dispersion liquid and method for producing single-walled carbon nanotube dispersion liquid
JP5570686B2 (en) * 2007-05-07 2014-08-13 国立大学法人北海道大学 Fine carbon fiber dispersed film and method for producing the same
KR100869163B1 (en) * 2007-05-18 2008-11-19 한국전기연구원 Fabrication method of transparent conductive films containing carbon nanotubes and polymer binders and the transparent conductive films
US8115187B2 (en) * 2007-05-22 2012-02-14 Nantero, Inc. Triodes using nanofabric articles and methods of making the same
US20080292979A1 (en) * 2007-05-22 2008-11-27 Zhe Ding Transparent conductive materials and coatings, methods of production and uses thereof
KR100895878B1 (en) * 2007-06-08 2009-05-04 한국기계연구원 Monolayer coating structure of cabon nanotubu and manufacturing methood threrof
US9061913B2 (en) * 2007-06-15 2015-06-23 Nanocomp Technologies, Inc. Injector apparatus and methods for production of nanostructures
KR100817856B1 (en) * 2007-07-13 2008-03-31 주식회사 신우테크 Transparent heating plate for monitoring camera
US20090035707A1 (en) * 2007-08-01 2009-02-05 Yubing Wang Rheology-controlled conductive materials, methods of production and uses thereof
US8309226B2 (en) * 2007-08-03 2012-11-13 Yazaki Corporation Electrically conductive transparent coatings comprising organized assemblies of carbon and non-carbon compounds
CA2695853A1 (en) * 2007-08-07 2009-02-12 Nanocomp Technologies, Inc. Electrically and thermally non-metallic conductive nanostructure-based adapters
KR100856137B1 (en) * 2007-08-08 2008-09-02 제일모직주식회사 Electro-conductive thermoplastic resin compositions and articles manufactured therefrom
JP2010537410A (en) * 2007-08-14 2010-12-02 ナノコンプ テクノロジーズ インコーポレイテッド Nanostructured material-based thermoelectric generator
US20090050856A1 (en) * 2007-08-20 2009-02-26 Lex Kosowsky Voltage switchable dielectric material incorporating modified high aspect ratio particles
US20090056589A1 (en) * 2007-08-29 2009-03-05 Honeywell International, Inc. Transparent conductors having stretched transparent conductive coatings and methods for fabricating the same
KR20100063091A (en) * 2007-08-29 2010-06-10 노쓰웨스턴유니버시티 Transparent electrical conductors prepared from sorted carbon nanotubes and methods of preparing same
CN101376497B (en) * 2007-08-31 2011-06-22 清华大学 Carbon nano-tube composite material precast member and preparation thereof
CN101381071B (en) * 2007-09-07 2011-05-04 清华大学 Carbon nanotube compound film and preparation method thereof
US20100206811A1 (en) * 2007-09-10 2010-08-19 National University Of Singapore Polymeric membranes incorporating nanotubes
JP5221088B2 (en) * 2007-09-12 2013-06-26 株式会社クラレ Transparent conductive film and method for producing the same
TWI405719B (en) * 2007-09-14 2013-08-21 Hon Hai Prec Ind Co Ltd Carbon nanotube composite film and method of making the same
US9305735B2 (en) * 2007-09-28 2016-04-05 Brigham Young University Reinforced polymer x-ray window
US20090087663A1 (en) * 2007-09-28 2009-04-02 Samsung Electronics Co., Ltd. Free-standing metallic micromechanical structure, method of manufacturing the same, resonator structure using the same, and method of manufacturing a resonator structure using the same
CN101409962B (en) * 2007-10-10 2010-11-10 清华大学 Surface heat light source and preparation method thereof
US8498381B2 (en) 2010-10-07 2013-07-30 Moxtek, Inc. Polymer layer on X-ray window
CN101409961B (en) * 2007-10-10 2010-06-16 清华大学 Surface heat light source, preparation method thereof and method for heating object using the same
CN101400198B (en) * 2007-09-28 2010-09-29 北京富纳特创新科技有限公司 Surface heating light source, preparation thereof and method for heat object application
TWI376190B (en) * 2007-10-05 2012-11-01 Hon Hai Prec Ind Co Ltd Composite for electromagnetic shielding and method for making the same
FR2921930B1 (en) * 2007-10-05 2012-12-07 Valeo Systemes Dessuyage PIECE COMPRISING A SUPERFICIAL LAYER REDUCING THE COEFFICIENT OF FRICTION WITH A GLAZED SURFACE
CN101676832B (en) * 2008-09-19 2012-03-28 清华大学 Desktop computer
CN101620454A (en) * 2008-07-04 2010-01-06 清华大学 Potable computer
JP5473148B2 (en) * 2007-11-14 2014-04-16 チェイル インダストリーズ インコーポレイテッド Transparent conductive film with improved conductivity and method for producing the same
WO2009064133A2 (en) * 2007-11-14 2009-05-22 Cheil Industries Inc. Conductivity enhanced transparent conductive film and fabrication method thereof
WO2009063744A1 (en) 2007-11-16 2009-05-22 Konica Minolta Holdings, Inc. Method for producing metal nanowire, metal nanowire and transparent conductor
US20090142579A1 (en) * 2007-11-30 2009-06-04 Honeywell International, Inc. High security window film with sensing capability
KR101132498B1 (en) * 2007-11-30 2012-04-02 도레이 카부시키가이샤 Carbon nanotube assembly and process for producing the same
JP5431960B2 (en) 2007-12-07 2014-03-05 大同塗料株式会社 Method for producing carbon nanotube-containing conductor
CN101480858B (en) * 2008-01-11 2014-12-10 清华大学 Carbon nano-tube composite material and preparation method thereof
US7727578B2 (en) * 2007-12-27 2010-06-01 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
JP5386822B2 (en) * 2007-12-28 2014-01-15 東レ株式会社 Transparent conductive film and method for producing the same
WO2009089268A2 (en) * 2008-01-07 2009-07-16 Wisys Technology Foundation, Inc. Method and apparatus for identifying and characterizing material solvents and composite matrices and methods of using same
US7642463B2 (en) * 2008-01-28 2010-01-05 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
US8597547B2 (en) * 2008-01-28 2013-12-03 Yazaki Corporation Electrically conductive polymer composites
US7960027B2 (en) * 2008-01-28 2011-06-14 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
CN101497436B (en) * 2008-02-01 2015-06-03 清华大学 Carbon nano-tube thin-film structure and preparation method thereof
CN105670394A (en) * 2008-02-05 2016-06-15 普林斯顿大学理事会 Coatings containing functionalized graphene sheets and articles coated therewith
KR100950933B1 (en) * 2008-02-05 2010-04-01 웅진케미칼 주식회사 Manufacturing method of optical antistatic film
US8308930B2 (en) 2008-03-04 2012-11-13 Snu R&Db Foundation Manufacturing carbon nanotube ropes
CN102017012B (en) 2008-03-14 2014-08-20 Nano-C公司 Carbon nanotube-transparent conductive inorganic nanoparticles hybrid thin films for transparent conductive applications
CN101952906B (en) 2008-03-25 2012-12-19 东丽株式会社 Electrically conductive complex and process for production thereof
EP2279512B1 (en) 2008-05-07 2019-10-23 Nanocomp Technologies, Inc. Carbon nanotube-based coaxial electrical cables and wiring harness
CA2723619A1 (en) * 2008-05-07 2009-11-12 Nanocomp Technologies, Inc. Nanostructure-based heating devices and method of use
US7973295B2 (en) * 2008-05-23 2011-07-05 Tsinghua University Method for making transparent carbon nanotube film
WO2009145080A1 (en) * 2008-05-24 2009-12-03 株式会社クラレ Touch panel
JP5274103B2 (en) * 2008-05-24 2013-08-28 株式会社クラレ Electrode substrate and touch panel
JP5266889B2 (en) * 2008-06-04 2013-08-21 ソニー株式会社 Method for manufacturing light transmissive conductor
CN101868071A (en) * 2009-04-20 2010-10-20 清华大学 Line heat source
CN101868073B (en) * 2009-04-20 2013-04-10 清华大学 Line heat source
CN101868074B (en) * 2009-04-20 2013-07-03 清华大学 Line heat source
CN101868059B (en) * 2009-04-20 2013-10-09 清华大学 Three-dimensional heat source
US8587989B2 (en) * 2008-06-20 2013-11-19 Nantero Inc. NRAM arrays with nanotube blocks, nanotube traces, and nanotube planes and methods of making same
CN101625617B (en) * 2008-07-09 2012-03-14 清华大学 Touch screen and display device
CN101625465B (en) * 2008-07-09 2012-05-23 清华大学 Touch liquid crystal display screen
JP5409094B2 (en) 2008-07-17 2014-02-05 富士フイルム株式会社 Curved molded body and manufacturing method thereof, front cover for vehicle lamp and manufacturing method thereof
US9206665B2 (en) * 2008-07-28 2015-12-08 Baker Hughes Incorporated Coatings for downhole seal materials and method of making the same
US20110262772A1 (en) * 2008-07-31 2011-10-27 William Marsh Rice University Method for Producing Aligned Near Full Density Pure Carbon Nanotube Sheets, Ribbons, and Films From Aligned Arrays of as Grown Carbon Nanotube Carpets/Forests and Direct Transfer to Metal and Polymer Surfaces
CA2923361C (en) * 2008-08-11 2018-10-09 Greenhill Antiballistics Corporation Composite material
JP4737249B2 (en) 2008-08-12 2011-07-27 ソニー株式会社 Thin film manufacturing method and apparatus, and electronic device manufacturing method
TWI381227B (en) * 2008-08-12 2013-01-01 Ind Tech Res Inst Transparent conductive film and method for manufacturing the same
US8673258B2 (en) * 2008-08-14 2014-03-18 Snu R&Db Foundation Enhanced carbon nanotube
US8357346B2 (en) 2008-08-20 2013-01-22 Snu R&Db Foundation Enhanced carbon nanotube wire
US20100045610A1 (en) * 2008-08-20 2010-02-25 Snu R&Db Foundation Transparent conductive films
US7959842B2 (en) * 2008-08-26 2011-06-14 Snu & R&Db Foundation Carbon nanotube structure
US20100055341A1 (en) * 2008-08-26 2010-03-04 Seoul National University Research & Development Business Foundation (Snu R&Db Foundation) Carbon nanotube networks with conductive polymer
US8021640B2 (en) * 2008-08-26 2011-09-20 Snu R&Db Foundation Manufacturing carbon nanotube paper
US8414792B2 (en) * 2008-09-09 2013-04-09 Sun Chemical Corporation Carbon nanotube dispersions
CN101712468B (en) * 2008-09-30 2014-08-20 清华大学 Carbon nanotube composite material and preparation method thereof
US20100084161A1 (en) * 2008-10-08 2010-04-08 Robert A. Neal Conductive film and process for making same
DE102008053030A1 (en) * 2008-10-24 2010-04-29 Kme Germany Ag & Co. Kg Metal / CNT and / or fullerene composite coating on tape materials
JP5304538B2 (en) * 2008-10-31 2013-10-02 東レ株式会社 Polymer composition comprising bilayer CNT having an average outer diameter of 4 nm or less and production method
CN101734645B (en) * 2008-11-14 2015-09-30 清华大学 carbon nano-tube film
CN101734646B (en) 2008-11-14 2012-03-28 清华大学 Carbon nano-tube film
CN101734644B (en) 2008-11-14 2012-01-25 清华大学 Method for stretching carbon nano-tube films
US7915637B2 (en) 2008-11-19 2011-03-29 Nantero, Inc. Switching materials comprising mixed nanoscopic particles and carbon nanotubes and method of making and using the same
WO2010071652A1 (en) * 2008-12-18 2010-06-24 Hewlett-Packard Development Company, L.P. Carbon nanotube film
WO2010144161A2 (en) * 2009-02-17 2010-12-16 Lockheed Martin Corporation Composites comprising carbon nanotubes on fiber
JP5521348B2 (en) * 2009-02-17 2014-06-11 東レ株式会社 Transparent conductive laminate
US8323439B2 (en) * 2009-03-08 2012-12-04 Hewlett-Packard Development Company, L.P. Depositing carbon nanotubes onto substrate
US20110088931A1 (en) * 2009-04-06 2011-04-21 Vorbeck Materials Corp. Multilayer Coatings and Coated Articles
KR101091744B1 (en) * 2009-04-15 2011-12-08 한국과학기술연구원 Method for fabrication of conductive film using metal wire and conductive film
TWI383950B (en) 2009-04-22 2013-02-01 Ind Tech Res Inst Method of forming nanometer-scale point materials
CN101870463A (en) * 2009-04-27 2010-10-27 清华大学 Carbon nano tube Poisson ratio material
WO2010129196A2 (en) * 2009-04-28 2010-11-11 Board Of Trustees Of The University Of Arkansas Broadband optical limiter based on nano-graphene and method of fabricating same
US9243873B2 (en) * 2009-04-28 2016-01-26 Board Of Trustees Of The University Of Arkansas Broadband optical limiter based on nano-graphene and method of fabricating same
TWI415790B (en) * 2009-04-30 2013-11-21 Hon Hai Prec Ind Co Ltd Carbon nanotube poisson's ratio material
JP5723870B2 (en) 2009-04-30 2015-05-27 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インク.University Of Florida Reseatch Foundation,Inc. Air electrode mainly composed of single-walled carbon nanotubes
CN101880023B (en) * 2009-05-08 2015-08-26 清华大学 Nanomaterial membrane structure
IT1394220B1 (en) * 2009-05-15 2012-06-01 Univ Padova PROCEDURE FOR THE PRODUCTION OF A MANUFACTURE OF FLEXIBLE AND TRANSPARENT PLASTIC MATERIAL WITH LOW ELECTRIC SURFACE RESISTANCE AND PLASTIC MATERIAL OBTAINED WITH THIS PROCEDURE.
JP5565766B2 (en) * 2009-05-20 2014-08-06 東海光学株式会社 Eyeglass plastic lens
WO2010144762A1 (en) * 2009-06-12 2010-12-16 Lord Corporation Method for protecting a substrate from lightning strikes
JP5463749B2 (en) * 2009-06-17 2014-04-09 ソニー株式会社 Transparent conductive film and method for producing transparent conductive film
NO333507B1 (en) 2009-06-22 2013-06-24 Condalign As A method of making an anisotropic conductive layer and an object produced therefrom
US9786444B2 (en) * 2009-06-25 2017-10-10 Nokia Technologies Oy Nano-structured flexible electrodes, and energy storage devices using the same
US8513531B2 (en) * 2009-07-15 2013-08-20 The Board Of Trustees Of The University Of Arkansas Electrodynamic arrays having nanomaterial electrodes
US8574673B2 (en) 2009-07-31 2013-11-05 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US8128993B2 (en) * 2009-07-31 2012-03-06 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US20110034008A1 (en) * 2009-08-07 2011-02-10 Nantero, Inc. Method for forming a textured surface on a semiconductor substrate using a nanofabric layer
US8561934B2 (en) 2009-08-28 2013-10-22 Teresa M. Kruckenberg Lightning strike protection
CN102024524B (en) * 2009-09-11 2012-08-29 群康科技(深圳)有限公司 Preparation method of transmitting film, and transmitting film
KR101356260B1 (en) * 2009-10-06 2014-01-28 코오롱인더스트리 주식회사 Preparing method of Electrode substrate
US8895950B2 (en) 2009-10-23 2014-11-25 Nantero Inc. Methods for passivating a carbonic nanolayer
WO2011050331A2 (en) * 2009-10-23 2011-04-28 Nantero, Inc. Method for passivating a carbonic nanolayer
US8351239B2 (en) * 2009-10-23 2013-01-08 Nantero Inc. Dynamic sense current supply circuit and associated method for reading and characterizing a resistive memory array
US8673416B2 (en) * 2009-10-28 2014-03-18 Xerox Corporation Multilayer electrical component, coating composition, and method of making electrical component
TWI415139B (en) * 2009-11-02 2013-11-11 Ind Tech Res Inst Electrically conductive composition and fabrication method thereof
US20110124253A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Cnt-infused fibers in carbon-carbon composites
US20110123735A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Cnt-infused fibers in thermoset matrices
JP2013511429A (en) 2009-11-23 2013-04-04 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー CNT-based space-based composite structure
EP2513250A4 (en) * 2009-12-14 2015-05-27 Applied Nanostructured Sols Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials
KR101219613B1 (en) * 2009-12-21 2013-01-09 성균관대학교산학협력단 Metal-carbon hybrid nanostructure film and preparing method of the same
EP2521138A4 (en) 2009-12-28 2015-11-25 Toray Industries Conductive laminated body and touch panel using the same
CN102107546B (en) * 2009-12-29 2013-04-24 北京富纳特创新科技有限公司 Automobile glass sticking film and automobile
KR101269422B1 (en) * 2009-12-30 2013-06-04 제일모직주식회사 Polycarbonate Resin Composition having Excellent Wear resistance and Electric Conductivity, and Method of Preparing the Same
US8222704B2 (en) * 2009-12-31 2012-07-17 Nantero, Inc. Compact electrical switching devices with nanotube elements, and methods of making same
WO2011091263A1 (en) * 2010-01-25 2011-07-28 The Board Of Trustees Of The Leland Stanford Junior University Fullerene-doped nanostructures and methods therefor
WO2011091257A1 (en) * 2010-01-25 2011-07-28 The Board Of Trustees Of The Leland Stanford Junior University Joined nanostructures and methods therefor
BR112012018244A2 (en) 2010-02-02 2016-05-03 Applied Nanostructured Sols carbon nanotube infused fiber materials containing parallel aligned carbon nanotubes, methods for producing them and composite materials derived therefrom
TWI477541B (en) * 2010-02-03 2015-03-21 Beijing Funate Innovation Tech Car windows film and car using the same
EP2531566B1 (en) 2010-02-05 2018-09-12 CAM Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
KR101709823B1 (en) 2010-02-12 2017-02-23 난테로 인크. Methods for controlling density, porosity, and/or gap size within nanotube fabric layers and films
KR101643760B1 (en) * 2010-02-19 2016-08-01 삼성전자주식회사 Electroconductive fiber and use thereof
US20110203632A1 (en) * 2010-02-22 2011-08-25 Rahul Sen Photovoltaic devices using semiconducting nanotube layers
CN102917977A (en) 2010-03-30 2013-02-06 南泰若股份有限公司 Methods for arranging nanoscopic elements within networks, fabrics, and films
US10661304B2 (en) 2010-03-30 2020-05-26 Nantero, Inc. Microfluidic control surfaces using ordered nanotube fabrics
JP5615134B2 (en) 2010-04-30 2014-10-29 日東電工株式会社 Manufacturing method of transparent substrate
JP5883085B2 (en) * 2010-04-30 2016-03-09 日東電工株式会社 Manufacturing method of transparent substrate
CN102906165B (en) * 2010-05-12 2016-05-25 多伦多大学董事局 Produce the method for conducting polymer and cellulose nano-complex
GB201009276D0 (en) 2010-06-03 2010-07-21 Devan Chemicals Nv Coated fibres,yarns and textiles
US8940194B2 (en) 2010-08-20 2015-01-27 The Board Of Trustees Of The Leland Stanford Junior University Electrodes with electrospun fibers
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
US9162883B2 (en) * 2010-09-01 2015-10-20 International Business Machines Corporation Doped carbon nanotubes and transparent conducting films containing the same
NL2005365C2 (en) 2010-09-17 2012-03-20 Univ Delft Tech Carbon nanostructures and networks produced by chemical vapor deposition.
US8491970B2 (en) * 2010-09-29 2013-07-23 Teledyne Scientific & Imaging, Llc Vertically aligned carbon nanotube arrays from liquid dispersions
US20150237929A1 (en) * 2010-10-18 2015-08-27 Greenhill Antiballistics Corporation Gradient nanoparticle-carbon allotrope polymer composite
WO2012054472A2 (en) * 2010-10-18 2012-04-26 Greenhill Antiballistics Corporation Gradient nanoparticle-carbon allotrope-polymer composite material
TWI515165B (en) * 2010-10-29 2016-01-01 東麗股份有限公司 Method for producing carbon nanotube assembly dispersion liquid
KR101238435B1 (en) * 2010-12-03 2013-03-04 도레이첨단소재 주식회사 Method of manufacturing transparent conducting film
US20120148835A1 (en) * 2010-12-08 2012-06-14 Bayer Materialscience Ag Hybrid conductive composite
RU2013132367A (en) 2010-12-17 2015-01-27 Юниверсити Оф Флорида Рисеч Фаундэйшн, Инк. OXIDATION AND GENERATION OF HYDROGEN ON CARBON FILMS
TWI471072B (en) * 2010-12-30 2015-01-21 Ind Tech Res Inst Substrate assembly containing conductive film and fabrication method thereof
JP2012162411A (en) * 2011-02-03 2012-08-30 Shinshu Univ Method of producing sheet-like carbon nanostructure
US20120213983A1 (en) * 2011-02-22 2012-08-23 Brewer Science Inc. Materials and method utilizing short carbon nanotubes in transparent printed electronics
US10494720B2 (en) 2011-02-28 2019-12-03 Nthdegree Technologies Worldwide Inc Metallic nanofiber ink, substantially transparent conductor, and fabrication method
US20120217453A1 (en) 2011-02-28 2012-08-30 Nthdegree Technologies Worldwide Inc. Metallic Nanofiber Ink, Substantially Transparent Conductor, and Fabrication Method
US20140008115A1 (en) 2011-03-28 2014-01-09 Toray Advanced Film Co., Ltd. Conductive laminate and touch panel
RU2013148843A (en) 2011-04-04 2015-05-10 Юниверсити Оф Флорида Рисеч Фаундэйшн, Инк. DISPERSING SUBSTANCES FOR NANOTUBES AND FILMS FROM NANOTUBES NOT CONTAINING DISPERSING SUBSTANCES ON THEIR BASIS
US9278856B2 (en) 2011-04-08 2016-03-08 Covestro Llc Flexible sensing material containing carbon nanotubes
US9174412B2 (en) 2011-05-16 2015-11-03 Brigham Young University High strength carbon fiber composite wafers for microfabrication
US8753735B2 (en) * 2011-06-15 2014-06-17 Xerox Corporation Bias charge roller surface coating comprised of carbon nanotubes
DE102011051705A1 (en) * 2011-07-08 2013-01-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Layer system with a layer of parallel arranged carbon tubes and an electrically conductive cover layer, method for producing the layer system and its use in microsystems technology
KR20140053825A (en) * 2011-08-31 2014-05-08 세키스이가가쿠 고교가부시키가이샤 Multilayered resin molding body and method for manufacturing same
US9593014B2 (en) * 2011-09-07 2017-03-14 The Board Of Trustees Of The Leland Stanford Junior University Methods of establishing low-resistance electrical contact to carbon nanostructures with graphitic interfacial layer
US10468327B2 (en) * 2011-09-21 2019-11-05 Georgia Tech Research Corporation Methods for reducing thermal resistance of carbon nanotube arrays or sheets
JPWO2013047341A1 (en) * 2011-09-29 2015-03-26 国立大学法人九州大学 Transparent conductor and method for producing the same
KR101335683B1 (en) 2011-10-06 2013-12-03 한국전기연구원 One-dimensional conductive nanomaterial-based conductive films with enhanced conductivities by coating with two-dimensional nanomaterials
US9177688B2 (en) * 2011-11-22 2015-11-03 International Business Machines Corporation Carbon nanotube-graphene hybrid transparent conductor and field effect transistor
TWI466140B (en) * 2011-11-23 2014-12-21 Ind Tech Res Inst Transparent conductive films and methods for manufacturing the same
KR20130070729A (en) * 2011-12-20 2013-06-28 제일모직주식회사 Transparent conductive films including metal nanowires and carbon nanotubes
CN103183328B (en) * 2011-12-28 2015-08-26 清华大学 The preparation method of carbon nano-tube compound film
KR101457016B1 (en) 2011-12-30 2014-11-03 제일모직주식회사 Thermal conductive thermoplastic resin composition having excellent water-resistance and article using the same
US10543509B2 (en) * 2012-04-09 2020-01-28 Nanocomp Technologies, Inc. Nanotube material having conductive deposits to increase conductivity
CN103377755B (en) * 2012-04-25 2015-12-09 北京富纳特创新科技有限公司 Conducting element
US20130332120A1 (en) * 2012-06-06 2013-12-12 University Of Southern California System and method for aggregating reservoir connectivities
EP2875081B1 (en) 2012-07-23 2018-03-07 HP Indigo B.V. Electrostatic ink compositions
CN103631415A (en) * 2012-08-24 2014-03-12 天津富纳源创科技有限公司 Touch screen and touch-controlled display device
CN103631416A (en) * 2012-08-24 2014-03-12 天津富纳源创科技有限公司 Touch screen and touch-controlled display device
US9040114B2 (en) 2012-08-29 2015-05-26 Rohm And Haas Electronic Material Llc Method of manufacturing silver miniwire films
CN104769661B (en) 2012-11-05 2017-07-18 佛罗里达大学研究基金会有限公司 Luminance compensation in display
CN103854804B (en) 2012-11-28 2016-10-26 清华大学 The preparation method of transparent conductive element
JP6373284B2 (en) 2013-02-28 2018-08-15 エヌ12 テクノロジーズ, インク.N12 Technologies, Inc. Nano-structured film cartridge-based dispensing
DE102013004611B4 (en) 2013-03-14 2014-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Coating, process for its preparation and its use
US9650732B2 (en) 2013-05-01 2017-05-16 Nantero Inc. Low defect nanotube application solutions and fabrics and methods for making same
ES2943257T3 (en) 2013-06-17 2023-06-12 Nanocomp Technologies Inc Exfoliating-dispersing agents for nanotubes, bundles and fibers
US9115266B2 (en) 2013-07-31 2015-08-25 E I Du Pont De Nemours And Company Carbon nanotube-polymer composite and process for making same
US9845396B2 (en) * 2013-08-12 2017-12-19 The Boeing Company Methods for making static dissipative coatings
US9828658B2 (en) 2013-08-13 2017-11-28 Rolls-Royce Corporation Composite niobium-bearing superalloys
US10654718B2 (en) 2013-09-20 2020-05-19 Nantero, Inc. Scalable nanotube fabrics and methods for making same
US9938610B2 (en) 2013-09-20 2018-04-10 Rolls-Royce Corporation High temperature niobium-bearing superalloys
CN104553160B (en) * 2013-10-24 2018-02-06 中兴通讯股份有限公司 A kind of display screen film and preparation method thereof, power-economizing method
US10815576B2 (en) 2013-11-20 2020-10-27 University Of Florida Research Foundation, Incorporated Carbon dioxide reduction over carbon-containing materials
US10839975B2 (en) * 2014-03-10 2020-11-17 The Boeing Company Graphene coated electronic components
US20150274924A1 (en) * 2014-04-01 2015-10-01 Council Of Scientific & Industrial Research Electrostatic dissipative foams and process for the preparation thereof
JP5751379B1 (en) 2014-06-12 2015-07-22 東洋インキScホールディングス株式会社 Laminated body
US10159642B2 (en) 2014-06-12 2018-12-25 Seed Co., Ltd. Functional polymer gel containing organic nanotubes and method for producing same
JP7191310B2 (en) 2014-09-02 2022-12-19 国立大学法人 東京大学 solar cell
EP3204223A4 (en) * 2014-10-05 2018-12-19 EOS GmbH Electro Optical Systems 3d printers and feedstocks for 3d printers
GB2531522B (en) * 2014-10-20 2018-05-09 Bae Systems Plc Strain sensing in composite materials
TWI704249B (en) * 2014-11-21 2020-09-11 日商琳得科股份有限公司 Manufacturing method of carbon nanotube sheet, carbon nanotube sheet and carbon nanotube sheet laminate
US9299430B1 (en) 2015-01-22 2016-03-29 Nantero Inc. Methods for reading and programming 1-R resistive change element arrays
WO2016126818A1 (en) 2015-02-03 2016-08-11 Nanocomp Technologies, Inc. Carbon nanotube structures and methods for production thereof
JP6913628B2 (en) * 2015-03-31 2021-08-04 リンテック株式会社 Laminate
CN104804205B (en) * 2015-04-23 2017-12-05 天津大学 Preparation method with anisotropic polymer/carbon pipe composite film material
JP6468103B2 (en) * 2015-07-15 2019-02-13 東洋インキScホールディングス株式会社 Laminate
US20170021380A1 (en) 2015-07-21 2017-01-26 Tangitek, Llc Electromagnetic energy absorbing three dimensional flocked carbon fiber composite materials
CN105273614B (en) * 2015-10-12 2017-08-22 广东省宜华木业股份有限公司 Prepared by room temperature reaction be used for the super-hydrophobic polyimide paints of wooden material surface UV
JP6687736B2 (en) * 2015-12-17 2020-04-28 エシロール アンテルナショナルEssilor International Optical article with hard multi-coat
US10724136B2 (en) * 2016-01-20 2020-07-28 Honda Motor Co., Ltd. Conducting high transparency thin films based on single-walled carbon nanotubes
US10364333B2 (en) * 2016-02-16 2019-07-30 Georgia Tech Research Corporation Ordered wrapping of poly(methyl methacrylate) on single wall carbon nanotubes
US20190115278A1 (en) * 2016-04-06 2019-04-18 Sanctioned Risk Solutions, Inc. Heat dissipation using nanoscale materials
US10350837B2 (en) 2016-05-31 2019-07-16 Massachusetts Institute Of Technology Composite articles comprising non-linear elongated nanostructures and associated methods
US9941001B2 (en) 2016-06-07 2018-04-10 Nantero, Inc. Circuits for determining the resistive states of resistive change elements
US9934848B2 (en) 2016-06-07 2018-04-03 Nantero, Inc. Methods for determining the resistive states of resistive change elements
US10581082B2 (en) 2016-11-15 2020-03-03 Nanocomp Technologies, Inc. Systems and methods for making structures defined by CNT pulp networks
EP3541762B1 (en) 2016-11-17 2022-03-02 Cardinal CG Company Static-dissipative coating technology
US11279836B2 (en) 2017-01-09 2022-03-22 Nanocomp Technologies, Inc. Intumescent nanostructured materials and methods of manufacturing same
TW201827120A (en) * 2017-01-27 2018-08-01 國立大學法人信州大學 Method of manufacturing carbon coating and method of manufacturing coating
EP3366474B1 (en) * 2017-02-22 2020-06-24 KBA-NotaSys SA Printing press with in-line casting device for the replication and formation of a micro-optical structure
US10873026B2 (en) * 2017-03-10 2020-12-22 Wisconsin Alumni Research Foundation Alignment of carbon nanotubes in confined channels
KR102128067B1 (en) * 2017-03-27 2020-06-29 주식회사 엘지화학 Multi-layer graphene-metal-polymer sheet for shielding electromagnetic wave
US20210115258A1 (en) * 2017-04-21 2021-04-22 Ares Materials Inc. Polymer substrate design parameters for electronic microfabrication
CN107297314A (en) * 2017-06-13 2017-10-27 四川大学 A kind of adjustable semiconductor leather of electrical conductivity and preparation method thereof
WO2019055155A1 (en) 2017-09-15 2019-03-21 Massachusetts Institute Of Technology Low-defect fabrication of composite materials
US11031657B2 (en) 2017-11-28 2021-06-08 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods, including devices and methods for energy storage and/or use
US11253824B1 (en) * 2018-03-29 2022-02-22 Trusscore Inc. Apparatus, methods, and systems for mixing and dispersing a dispersed phase in a medium
CN108666012A (en) * 2018-03-30 2018-10-16 深圳市亮键电子科技有限公司 A kind of nano conductive film and preparation method thereof
CN111086979B (en) * 2019-12-16 2021-11-12 北京航空航天大学 Compressible carbon black/wood derived carbon sponge and preparation method thereof
US11090687B1 (en) * 2020-03-10 2021-08-17 Tesla Nanocoatings, Inc. Fast coating compositions and methods
EP4208514A1 (en) * 2020-09-01 2023-07-12 Sika Technology AG Transparent electrically conductive epoxy resin coating and electrostatic dissipative floor
KR102488382B1 (en) 2021-04-19 2023-01-17 한국화학연구원 CNT film coated substrate using click reaction and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099965A (en) * 1996-05-15 2000-08-08 Hyperion Catalysis International, Inc. Rigid porous carbon structures, methods of making, methods of using and products containing same
WO2000051936A2 (en) * 1999-03-01 2000-09-08 The University Of North Carolina - Chapel Hill Nanotube-based high energy material and method
US6350516B1 (en) * 1999-11-01 2002-02-26 Xerox Corporation Protective corona coating compositions and processes thereof

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041235A (en) 1983-08-15 1985-03-04 Seiko Epson Corp Manufacture of semiconductor device
US4663230A (en) * 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
JP2760498B2 (en) 1987-07-17 1998-05-28 日本バルカ−工業株式会社 Shaft sealing material
US5159054A (en) 1989-05-16 1992-10-27 The United States Of America As Represented By The Secretary Of The Navy Synthesis of phthalonitrile resins containing ether and imide linkages
US5424054A (en) 1993-05-21 1995-06-13 International Business Machines Corporation Carbon fibers and method for their production
JPH0822733B2 (en) 1993-08-04 1996-03-06 工業技術院長 Separation and purification method of carbon nanotube
JP4071832B2 (en) * 1993-09-10 2008-04-02 ハイピリオン カタリシス インターナショナル インコーポレイテッド Liquid-containing carbon fibril material
US5547525A (en) 1993-09-29 1996-08-20 Thiokol Corporation Electrostatic discharge reduction in energetic compositions
JP2590442B2 (en) 1994-09-27 1997-03-12 工業技術院長 Separation and purification method of carbon nanotube
US5849830A (en) 1995-06-07 1998-12-15 Amcol International Corporation Intercalates and exfoliates formed with N-alkenyl amides and/or acrylate-functional pyrrolidone and allylic monomers, oligomers and copolymers and composite materials containing same
US5939508A (en) 1995-09-01 1999-08-17 The United States Of America As Represented By The Secretary Of The Navy High temperature epoxy-phthalonitrile blends
US6183714B1 (en) * 1995-09-08 2001-02-06 Rice University Method of making ropes of single-wall carbon nanotubes
JPH09115334A (en) 1995-10-23 1997-05-02 Mitsubishi Materiais Corp Transparent conductive film and composition for film formation
US5640705A (en) 1996-01-16 1997-06-17 Koruga; Djuro L. Method of containing radiation using fullerene molecules
US5576162A (en) * 1996-01-18 1996-11-19 Eastman Kodak Company Imaging element having an electrically-conductive layer
JP2873930B2 (en) 1996-02-13 1999-03-24 工業技術院長 Carbonaceous solid structure having carbon nanotubes, electron emitter for electron beam source element composed of carbonaceous solid structure, and method of manufacturing carbonaceous solid structure
US5965202A (en) 1996-05-02 1999-10-12 Lucent Technologies, Inc. Hybrid inorganic-organic composite for use as an interlayer dielectric
CA2254911C (en) 1996-05-15 2006-07-25 Hyperion Catalysis International, Inc. Graphitic nanofibers in electrochemical capacitors
US5853877A (en) * 1996-05-31 1998-12-29 Hyperion Catalysis International, Inc. Method for disentangling hollow carbon microfibers, electrically conductive transparent carbon microfibers aggregation film amd coating for forming such film
US6124365A (en) 1996-12-06 2000-09-26 Amcol Internatioanl Corporation Intercalates and exfoliates formed with long chain (C6+) or aromatic matrix polymer-compatible monomeric, oligomeric or polymeric intercalant compounds and composite materials containing same
US6038060A (en) 1997-01-16 2000-03-14 Crowley; Robert Joseph Optical antenna array for harmonic generation, mixing and signal amplification
US5753088A (en) 1997-02-18 1998-05-19 General Motors Corporation Method for making carbon nanotubes
US6205016B1 (en) 1997-06-04 2001-03-20 Hyperion Catalysis International, Inc. Fibril composite electrode for electrochemical capacitors
US6280677B1 (en) 1997-11-05 2001-08-28 North Carolina State University Physical property modification of nanotubes
ATE240906T1 (en) 1998-04-09 2003-06-15 Horcom Ltd COMPOSITION CONTAINING NANOTUBE AND AN ORGANIC COMPOUND
JP4087508B2 (en) * 1998-06-09 2008-05-21 タキロン株式会社 Antistatic resin molded product and its secondary molded product
JP2002518280A (en) 1998-06-19 2002-06-25 ザ・リサーチ・ファウンデーション・オブ・ステイト・ユニバーシティ・オブ・ニューヨーク Aligned free-standing carbon nanotubes and their synthesis
US6426134B1 (en) * 1998-06-30 2002-07-30 E. I. Du Pont De Nemours And Company Single-wall carbon nanotube-polymer composites
JP2000026760A (en) 1998-07-14 2000-01-25 Suzuki Sogyo Co Ltd Functional coating composition
US6221939B1 (en) * 1998-08-31 2001-04-24 General Electric Company Flame retardant resin compositions containing phosphoramides, and method for making
JP3116929B2 (en) 1998-12-08 2000-12-11 トヨタ自動車株式会社 Assembling method of variable valve timing mechanism
JP3943272B2 (en) 1999-01-18 2007-07-11 双葉電子工業株式会社 Film forming method of carbon nanotube
US6250984B1 (en) * 1999-01-25 2001-06-26 Agere Systems Guardian Corp. Article comprising enhanced nanotube emitter structure and process for fabricating article
US6283812B1 (en) 1999-01-25 2001-09-04 Agere Systems Guardian Corp. Process for fabricating article comprising aligned truncated carbon nanotubes
US6265466B1 (en) 1999-02-12 2001-07-24 Eikos, Inc. Electromagnetic shielding composite comprising nanotubes
EP1054036A1 (en) * 1999-05-18 2000-11-22 Fina Research S.A. Reinforced polymers
AUPQ065099A0 (en) 1999-05-28 1999-06-24 Commonwealth Scientific And Industrial Research Organisation Substrate-supported aligned carbon nanotube films
US6333016B1 (en) 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
JP2001011344A (en) 1999-06-30 2001-01-16 Nec Corp Coating and film formed using the same and their production
JP2001030200A (en) 1999-07-22 2001-02-06 Nec Corp Film and manufacture of laminate using the film
EP1073090A3 (en) * 1999-07-27 2003-04-16 Iljin Nanotech Co., Ltd. Field emission display device using carbon nanotubes and manufacturing method thereof
US6299812B1 (en) 1999-08-16 2001-10-09 The Board Of Regents Of The University Of Oklahoma Method for forming a fibers/composite material having an anisotropic structure
US20060047052A1 (en) 1999-12-07 2006-03-02 Barrera Enrique V Oriented nanofibers embedded in polymer matrix
US6395199B1 (en) 2000-06-07 2002-05-28 Graftech Inc. Process for providing increased conductivity to a material
US6782154B2 (en) * 2001-02-12 2004-08-24 Rensselaer Polytechnic Institute Ultrafast all-optical switch using carbon nanotube polymer composites
US7265174B2 (en) * 2001-03-22 2007-09-04 Clemson University Halogen containing-polymer nanocomposite compositions, methods, and products employing such compositions
AU2002254367B2 (en) * 2001-03-26 2007-12-06 Eikos, Inc. Coatings containing carbon nanotubes
US20040265550A1 (en) * 2002-12-06 2004-12-30 Glatkowski Paul J. Optically transparent nanostructured electrical conductors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099965A (en) * 1996-05-15 2000-08-08 Hyperion Catalysis International, Inc. Rigid porous carbon structures, methods of making, methods of using and products containing same
WO2000051936A2 (en) * 1999-03-01 2000-09-08 The University Of North Carolina - Chapel Hill Nanotube-based high energy material and method
US6350516B1 (en) * 1999-11-01 2002-02-26 Xerox Corporation Protective corona coating compositions and processes thereof

Cited By (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138768A (en) * 2001-03-26 2011-07-14 Eikos Inc Coating containing carbon nanotubes
US7029603B2 (en) 2001-08-17 2006-04-18 University Of Dayton Conductive polymeric nanocomposite materials
JP2004145054A (en) * 2002-10-25 2004-05-20 Dainippon Toryo Co Ltd Membrane material for optical filter and optical filter using same
EP1578857A1 (en) * 2002-12-23 2005-09-28 Dow Global Technologies Inc. Electrically conductive polymerized macrocyclic oligomer carbon nanofiber compositions
CN100458471C (en) * 2003-04-28 2009-02-04 多喜兰株式会社 Electromagnetic-shielding light diffusion sheet
WO2004097848A1 (en) * 2003-04-28 2004-11-11 Eastman Kodak Company Terminated conductive patterned sheet utilizing conductive conduits
EP1619524A1 (en) * 2003-04-28 2006-01-25 Takiron Co., Ltd. Electromagnetic-shielding light diffusion sheet
EP1619524A4 (en) * 2003-04-28 2009-05-20 Takiron Co Electromagnetic-shielding light diffusion sheet
WO2004107360A1 (en) * 2003-05-22 2004-12-09 General Electric Company (A New York Corporation) Electrically conductive compositions and method of manufacture thereof
WO2005014475A3 (en) * 2003-07-08 2005-03-17 Seldon Technologies Inc Carbon nanotube containing materials and articles containing such materials for altering electromagnetic radiation
WO2005014475A2 (en) * 2003-07-08 2005-02-17 Seldon Technologies, Inc. Carbon nanotube containing materials and articles containing such materials for altering electromagnetic radiation
WO2005033753A1 (en) * 2003-10-01 2005-04-14 Eastman Kodak Company Conductive color filters
US7294372B2 (en) 2003-10-01 2007-11-13 Eastman Kodak Company Conductive color filters
KR100548826B1 (en) * 2003-11-28 2006-02-02 제일모직주식회사 Anti-static Hard Coating Solution and Hard Coating Film
WO2005068556A1 (en) * 2004-01-20 2005-07-28 National Institute Of Advanced Industrial Science And Technology Carbon nanotube-dispersed polyimide composition
JP5019152B2 (en) * 2004-01-20 2012-09-05 独立行政法人産業技術総合研究所 Carbon nanotube-dispersed polyimide composition
JPWO2005082775A1 (en) * 2004-03-02 2007-10-25 独立行政法人産業技術総合研究所 Carbon nanotube-containing thin film
WO2005082775A1 (en) * 2004-03-02 2005-09-09 National Institute Of Advanced Industrial Science And Technology Thin film containing carbon nanotube
WO2005096089A1 (en) * 2004-04-02 2005-10-13 National Institute Of Advanced Industrial Science And Technology Saturable absorber of polyimide containing dispersed carbon nanotubes
US8632699B2 (en) * 2004-04-07 2014-01-21 Eikos, Inc. Fugitive viscosity and stability modifiers for carbon nanotube compositions
JPWO2005104141A1 (en) * 2004-04-20 2008-03-13 タキロン株式会社 Transparent conductive molded body for touch panel and touch panel
JP2005321733A (en) * 2004-05-11 2005-11-17 National Institute Of Advanced Industrial & Technology Optical device with built-in saturable absorber
WO2006008978A1 (en) * 2004-07-16 2006-01-26 Konica Minolta Holdings, Inc. Method for producing carbon nanotube-containing body
JP4735540B2 (en) * 2004-07-16 2011-07-27 コニカミノルタホールディングス株式会社 Method for producing carbon nanotube-containing body
JPWO2006008978A1 (en) * 2004-07-16 2008-05-01 コニカミノルタホールディングス株式会社 Method for producing carbon nanotube-containing body
US7094467B2 (en) 2004-07-20 2006-08-22 Heping Zhang Antistatic polymer monofilament, method for making an antistatic polymer monofilament for the production of spiral fabrics and spiral fabrics formed with such monofilaments
WO2006008518A1 (en) * 2004-07-23 2006-01-26 Cpfilms Inc. A film having an electrically conductive coating
JP4488825B2 (en) * 2004-07-29 2010-06-23 タキロン株式会社 Antistatic resin molding
JP2006035774A (en) * 2004-07-29 2006-02-09 Takiron Co Ltd Antistatic resin molded product
WO2008018852A3 (en) * 2005-06-02 2009-01-15 Eastman Kodak Co Multi-layer conductor with carbon nanotubes
WO2008013517A2 (en) * 2005-06-02 2008-01-31 Eastman Kodak Company Touchscreen with conductive layer comprising carbon nanotubes
WO2008013517A3 (en) * 2005-06-02 2008-03-20 Eastman Kodak Co Touchscreen with conductive layer comprising carbon nanotubes
US7535462B2 (en) 2005-06-02 2009-05-19 Eastman Kodak Company Touchscreen with one carbon nanotube conductive layer
US7645497B2 (en) 2005-06-02 2010-01-12 Eastman Kodak Company Multi-layer conductor with carbon nanotubes
WO2006130366A3 (en) * 2005-06-02 2007-07-19 Eastman Kodak Co Touchscreen with one carbon nanotube conductive layer
WO2008018852A2 (en) * 2005-06-02 2008-02-14 Eastman Kodak Company Multi-layer conductor with carbon nanotubes
EP1832632A1 (en) 2006-03-07 2007-09-12 DSM IP Assets B.V. Conductive ink
US8377590B2 (en) 2006-05-04 2013-02-19 Lg Chem, Ltd. Electrochemical energy storage device with high capacity and high power using conductive polymer composite
WO2007134004A1 (en) * 2006-05-15 2007-11-22 General Electric Company High temperature lead-free paint compositions for uv-control lamps
WO2008085550A3 (en) * 2006-08-02 2009-02-05 Battelle Memorial Institute Electrically conductive coating composition
US8581158B2 (en) 2006-08-02 2013-11-12 Battelle Memorial Institute Electrically conductive coating composition
EP2392623A3 (en) * 2006-08-02 2012-08-01 Battelle Memorial Institute Electrically conductive coating composition
US7948674B2 (en) 2006-12-13 2011-05-24 Bae Systems Plc Electro-optic windows
WO2008071312A1 (en) * 2006-12-15 2008-06-19 Alcan Technology & Management Ltd. Fabrics containing carbon nano tubes, and method for the production thereof
EP1932805A1 (en) * 2006-12-15 2008-06-18 Alcan Technology &amp; Management Ltd. Web containing carbon nanotubes and production process therefor
WO2008078849A1 (en) 2006-12-22 2008-07-03 Cheil Industries Inc. Electroconductive thermoplastic resin composition and plastic article
EP2121848A1 (en) * 2006-12-22 2009-11-25 Cheil Industries Inc. Electroconductive thermoplastic resin composition and plastic article
EP2121848A4 (en) * 2006-12-22 2012-10-10 Cheil Ind Inc Electroconductive thermoplastic resin composition and plastic article
EP2154690A4 (en) * 2007-04-27 2015-04-01 Kuraray Co Transparent conductive film and method for producing transparent conductive film
EP2154690A1 (en) * 2007-04-27 2010-02-17 Kuraray Co., Ltd. Transparent conductive film and method for producing transparent conductive film
US9315679B2 (en) 2007-04-27 2016-04-19 Kuraray Co., Ltd. Transparent conductive film and method for producing transparent conductive film
US9299477B2 (en) 2007-09-28 2016-03-29 Toray Industries, Inc. Electrically conductive film
US8414964B2 (en) 2007-09-28 2013-04-09 Toray Industries, Inc. Process for producing electrically conductive film
US8248377B2 (en) 2007-10-23 2012-08-21 Tsinghua University Touch panel
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
TWI416380B (en) * 2007-11-09 2013-11-21 Hon Hai Prec Ind Co Ltd Touch panel
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8237671B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8115742B2 (en) 2007-12-12 2012-02-14 Tsinghua University Touch panel and display device using the same
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
US8363017B2 (en) 2007-12-12 2013-01-29 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8237670B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8199119B2 (en) 2007-12-12 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8237674B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8243029B2 (en) 2007-12-14 2012-08-14 Tsinghua University Touch panel and display device using the same
US8237672B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237673B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8603585B2 (en) 2007-12-14 2013-12-10 Tsinghua University Method for making carbon nanotube composite
US8243030B2 (en) 2007-12-21 2012-08-14 Tsinghua University Touch panel and display device using the same
US7947145B2 (en) 2007-12-21 2011-05-24 Tsinghua University Method for making carbon nanotube composite
US8248378B2 (en) 2007-12-21 2012-08-21 Tsinghua University Touch panel and display device using the same
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
US8111245B2 (en) 2007-12-21 2012-02-07 Tsinghua University Touch panel and display device using the same
US8237668B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch control device
US8237675B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8125878B2 (en) 2007-12-27 2012-02-28 Tsinghua University Touch panel and display device using the same
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US9791597B2 (en) 2007-12-27 2017-10-17 Essilor International (Compagie Generale D'optique) Carbon nanotube-based curable coating composition providing antistatic abrasion-resistant coated articles
US8237669B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8642895B2 (en) 2008-02-29 2014-02-04 Toray Industries, Inc. Substrate with transparent conductive layer and method for producing the same, and touch panel using the same
US8237679B2 (en) 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US8228308B2 (en) 2008-07-04 2012-07-24 Tsinghua University Method for making liquid crystal display adopting touch panel
US8105126B2 (en) 2008-07-04 2012-01-31 Tsinghua University Method for fabricating touch panel
US8237677B2 (en) 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US8199123B2 (en) 2008-07-04 2012-06-12 Tsinghua University Method for making liquid crystal display screen
US8237680B2 (en) 2008-07-04 2012-08-07 Tsinghua University Touch panel
US8411051B2 (en) 2008-07-09 2013-04-02 Tsinghua University Liquid crystal display screen
US8411052B2 (en) 2008-07-09 2013-04-02 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
US8021902B2 (en) 2009-02-27 2011-09-20 Tsinghua University Method for fabricating light emitting diode
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
US8962131B2 (en) 2009-07-17 2015-02-24 Carestream Health Inc. Transparent conductive film comprising water soluble binders
US8854787B2 (en) 2010-08-20 2014-10-07 Airbus Operations Limited Bond lead
EP2421008A1 (en) * 2010-08-20 2012-02-22 Airbus Operations Limited Bond lead
DE102011088329A1 (en) 2011-12-13 2013-06-13 Emil Frei Gmbh & Co. Kg Powder coating composition useful as a protective or decorative finish on home furnishings for explosion protected areas or a region with electronic devices at work, comprises binding agent, additive, and carbon nanotubes
CN102529262B (en) * 2011-12-30 2014-07-16 常熟市富邦胶带有限责任公司 High temperature resistant coating-type black matt polyimide film
CN102529262A (en) * 2011-12-30 2012-07-04 常熟市富邦胶带有限责任公司 High temperature resistant coating-type black matt polyimide film
JPWO2015001803A1 (en) * 2013-07-05 2017-02-23 パナソニック株式会社 Electrochemical energy storage device
US11450446B2 (en) 2015-05-05 2022-09-20 Nano-C, Inc. Carbon nanotube based hybrid films for mechanical reinforcement of multilayered, transparent-conductive, laminar stacks
WO2018189479A1 (en) 2017-04-10 2018-10-18 Ecole Polytechnique Chemical sensors based on carbon nanotubes functionalised by conjugated polymers for analysis in aqueous medium
US11697707B2 (en) 2017-04-10 2023-07-11 Ecole Polytechnique Chemical sensors based on carbon nanotubes functionalised by conjugated polymers for analysis in aqueous medium
WO2019125979A1 (en) * 2017-12-18 2019-06-27 Basf Qtech Inc. Catalytic coatings, methods of making and use thereof
US11484874B2 (en) 2017-12-18 2022-11-01 Basf Qtech Inc. Catalytic coatings, methods of making and use thereof
CN109749107A (en) * 2019-02-26 2019-05-14 中国人民解放军国防科技大学 Oriented carbon nanotube/resin film and preparation method thereof
CN109749107B (en) * 2019-02-26 2021-07-30 中国人民解放军国防科技大学 Oriented carbon nanotube/resin film and preparation method thereof
US11912898B2 (en) 2020-03-12 2024-02-27 Cabot Corporation Light color conductive coatings

Also Published As

Publication number Publication date
JP2010245051A (en) 2010-10-28
CN1543399B (en) 2011-02-23
JP2007314417A (en) 2007-12-06
US7060241B2 (en) 2006-06-13
KR20040030553A (en) 2004-04-09
AU2002254367B2 (en) 2007-12-06
JP2004526838A (en) 2004-09-02
CN1543399A (en) 2004-11-03
JP3665969B2 (en) 2005-06-29
US20060060825A1 (en) 2006-03-23
JP2005008893A (en) 2005-01-13
EP1392500A1 (en) 2004-03-03
JP2011138768A (en) 2011-07-14
CA2442310A1 (en) 2002-10-03
JP2005255985A (en) 2005-09-22
US20030122111A1 (en) 2003-07-03

Similar Documents

Publication Publication Date Title
AU2002254367B2 (en) Coatings containing carbon nanotubes
AU2002254367A1 (en) Coatings containing carbon nanotubes
US20030164427A1 (en) ESD coatings for use with spacecraft
US20080044651A1 (en) Coatings Comprising Carbon Nanotubes
AU2009260690B2 (en) Carbon nanotube-transparent conductive inorganic nanoparticles hybrid thin films for transparent conductive applications
WO2017188175A1 (en) Carbon nanotube dispersion, method for producing same, and conductive molded body
KR101307303B1 (en) Transparent electroconductive thin film and process for producing the transparent electroconductive thin film
EP2219995B1 (en) Carbon nanotube films and methods of forming films of carbon nanotubes by dispersing in a superacid
EP1993106A1 (en) Method of manufacturing transparent conductive film containing carbon nanotubes and binder, and transparent conductive film manufactured thereby
JP2018500194A (en) Property-enhancing fillers for transparent coatings and transparent conductive films
CA2511771A1 (en) Optically transparent nanostructured electrical conductors
KR102329706B1 (en) Conductive film and manufacturing method of conductive film
Li et al. Fabrication of transparent and conductive carbon nanotube/polyvinyl butyral films by a facile solution surface dip coating method
EP3294543B1 (en) Carbon nanotube based hybrid films for mechanical reinforcement of multilayered, transparent-conductive, laminar stacks
Glatkowski Carbon nanotube based transparent conductive coatings
Choi et al. Fabrication of water-dispersible single-walled carbon nanotube powder using N-methylmorpholine N-oxide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002575217

Country of ref document: JP

Ref document number: 2442310

Country of ref document: CA

Ref document number: 1020037012636

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002254367

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1657/DELNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2002723596

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 028106016

Country of ref document: CN

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2002723596

Country of ref document: EP