WO2002078055A2 - Light extractor apparatus - Google Patents

Light extractor apparatus Download PDF

Info

Publication number
WO2002078055A2
WO2002078055A2 PCT/US2002/008390 US0208390W WO02078055A2 WO 2002078055 A2 WO2002078055 A2 WO 2002078055A2 US 0208390 W US0208390 W US 0208390W WO 02078055 A2 WO02078055 A2 WO 02078055A2
Authority
WO
WIPO (PCT)
Prior art keywords
led
combination
light
sides
pyramid
Prior art date
Application number
PCT/US2002/008390
Other languages
French (fr)
Other versions
WO2002078055A3 (en
Inventor
David G. Phelka
Roland Winston
William A. Parkyn, Jr.
Original Assignee
Teledyne Lighting And Display Products, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teledyne Lighting And Display Products, Inc. filed Critical Teledyne Lighting And Display Products, Inc.
Publication of WO2002078055A2 publication Critical patent/WO2002078055A2/en
Publication of WO2002078055A3 publication Critical patent/WO2002078055A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0008Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V2200/00Use of light guides, e.g. fibre optic devices, in lighting devices or systems
    • F21V2200/10Use of light guides, e.g. fibre optic devices, in lighting devices or systems of light guides of the optical fibres type
    • F21V2200/13Use of light guides, e.g. fibre optic devices, in lighting devices or systems of light guides of the optical fibres type the light being emitted at the end of the guide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V2200/00Use of light guides, e.g. fibre optic devices, in lighting devices or systems
    • F21V2200/10Use of light guides, e.g. fibre optic devices, in lighting devices or systems of light guides of the optical fibres type
    • F21V2200/17Use of light guides, e.g. fibre optic devices, in lighting devices or systems of light guides of the optical fibres type characterised by the admission of light into the guide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • This invention concerns efficient extraction of light from solid transparent media, and more particularly by the use of pyramidal structure.
  • Various means have been suggested or actually used, to extract light by geometric means, but these are not particularly efficient.
  • the LED can be embedded in a sphere of the same high index material. This is possible only for a point source at the emitter center and not for a finite size emitter.
  • An aplanatic lens which is a hemisphere of radius r with conjugates at r/n and nr, has been used to collimate the light within the Brewster Angle in an attempt to reduce Fresnel reflections.
  • the extraction means comprises, in combination: a) an LED, and b) a light transmitting pyramid mounted with respect to the LED to transmit light therefrom, the pyramid having at least three sides, c) said sides defining planes extending upwardly toward an apex that is spaced in a longitudinal direction from the LED, said planes angled in excess of 45° relative to a lateral plane normal to said longitudinal direction such that essentially all LED light incident on said three sides from within the pyramid is extracted from said sides.
  • Such a device can attain efficiencies in excess of 90% in transferring light from a higher index of refraction material into air. Also, such a device is much more compact than the aplanatic device.
  • the monochrome LED aplanat system is somewhat larger in diameter and has no ability to mix together light from an RGB LED triad, because the aplanat system is an imaging system whereas the LED pyramidal extractor is non-imaging and therefore a good RGB mixer.
  • the new pyramidal extractor disclosed herein has almost no losses due to Fresnel reflections, which are themselves extracted. While a 3-sided pyramidal structure is a preferred configuration, one with more than 3 sides is also effective. Additionally, an RGB (red, green, blue) extractor system that varies its color balance can be made very compactly. Three LEDs, each emitting at a specific wavelength or color, can be combined into one extractor system that can change color output by independently varying the emission of each LED.
  • the aplanat system of prior art requires a system diameter at least twice the diameter of the pyramidal extractor.
  • the present pyramidal system design is independent of the index of refraction within the extractor.
  • Three LEDs may be employed, in a cluster, and may, for example, respectively be red, green and blue light emitting, and there may be means for controlling the relative emissions from the LEDs, for color control of the mixed light transmitted from the third region.
  • a further object of the invention is to provide phosphorous overlying the LED at the side thereof facing the pyramid apex, to enhance light transmission.
  • phosphorous may be yellow phosphorous.
  • Yet another object is to provide a reflector underlying the LED at the side thereof facing away from said apex to reflect light toward said body.
  • An additional object is to provide a TIR lens in the path of light extracted from the pyramid sides.
  • Fig. 1 is a perspective view of a pyramidal light extractor incorporating the invention
  • Fig. 2 is a graph
  • Fig. 3 is a perspective view of an LED mounted within a reflector
  • Fig. 4 is a section taken in elevation through the Fig. 3 reflector and showing the centered LED;
  • Fig. 5 is a tabulation;
  • Figs. 6 and 7 are elevations showing modifications
  • Fig. 8 is a diagram
  • Fig. 9 is a side elevation showing a modification
  • Fig. 10 is a view like Fig. 9, but taken toward one flat side of the body upper portion;
  • Fig. 11 is a view like Fig. 10, but taken edgewise of the one flat side of the body upper portion;
  • Fig. 12 is a perspective view of the Fig. 9 modification
  • Fig. 13 is a top perspective view of the Fig. 9 modification
  • Fig. 14 is a top side perspective view of the Fig. 9 modification
  • Fig. 15 is another top and side perspective view of the Fig. 9 modification.
  • Fig. 16-23 are schematic views of modifications. DETAILED DESCRIPTION
  • a cylindrical or columnar body 10 of height consists of light transmitting material such as thermo-setting polymer, UV curable polymer or injection moldable material such as acrylic or polycarbonate, all of the foregoing materials with a common index of refraction in the 1.5 to 1.6 range.
  • That body has a bottom 10a and a cylindrical side wall 10b.
  • the body diameter D generally is less than the axial height or length L, + Lj.
  • a pyramidal body 11 of height Lj is located above the upper side of body 10, and is shown as having a base 1 la, and three sides 1 lb, 1 lc and 1 Id, and tip 1 le.
  • Base 1 la is spaced above the plane of the top of body 10, typically halfway between said tip 1 le and the horizontal plane indicated at 13a.
  • Body 11 also consists of light transmitting material, which may be the same as that of body 10.
  • a third body 12 of height L_ is located between bodies 10 and 11 , and may be unitary or integral therewith, whereby only one overall body is provided, having first, second and third body regions 10, 11 and 12.
  • the overall body may consist of plastic material, such as thermosetting polymer or UV curable polymers.
  • LED means generally is shown at 14, located in body 10 in spaced relation to the pyramidal body region 11, and oriented to transmit light in body 10 and toward body 11, for example through region 12.
  • Region 12 may be characterized as acting to mix light transmission of different wavelengths, from multiple LEDs, and body 11 may be characterized as in the path of light transmission from region 12, body 11 being of reduced volume, and from which light is efficiently transmitted into the surrounding air.
  • Second body region 12 typically has modified cylindrical shape, i.e. with a wall 13 that is a continuation of cylindrical side wall 10b, and with a circular base indicated at 13a coincident with or integral with the upper side of body 10. If bodies 10 and 12 are integral, as is preferred, then the top of 10 and the base of 12 are unitary, i.e. no physically coincident surfaces exist, and the bodies 10, 11 and 12 may then be unitary and homogeneous.
  • Wall 13 is cylindrical between planar surface areas 1 lb 1 , lie' and 1 Id' which are downward continuations of the body 11 pyramid planes 1 lb, 1 lc and lid, respectively.
  • Planes l ib', l ie', and l id' are alike, and spaced equidistantly about the vertical and longitudinal axis 15 of the overall body; also, those planes intersect the cylindrical surface 13 along elliptical section lines 16 that are curved, and tangent at 17 to the upper edge circle 13a defined by the uppermost full horizontal extent of the body 10. Line 13a also shows a plane defined by tangent points 17.
  • Planes l ib', 11a', and l id' are typically angled in excess of 45° relative to a lateral plane normal to longitudinal axis 15.
  • a variation of this invention includes micro-optical means on some or all surfaces whereby total internal reflection is laterally scattered. That is, an internally reflected ray will continue upwards but will be fanned out into a sheet of rays, thereby promoting mixing. Conventional scattering means would send too much energy back down the extractor, to be lost. Instead, a holographic diffuser with a narrow elliptical scattering pattern oriented circumferentially on the extractor would help mix the colors. In Fig. 8 a small portion of a surface is shown, with tangent plane 100. Tangent plane
  • Plane 100 reflects ray 101 into ray 102. Both said rays lie in plane 103, which is orthogonal to plane 100, and contains surface normal 104. Line 105 indicates a circumference of the invention. Scattered rays 106 and 107 form plane 108, which is orthogonal to plane 103. Said scattered rays form the limiting angles of a fan of rays into which ray 102 is smeared. Plane 100 could either have a circumferentially oriented elliptical- patterned holographic diffuser or a diffraction grating to implement the scattering pattern. Also, provided are generally non-imaging reflector means associated with the one or more LED means 14.
  • LEDs there are three LEDs, in a cluster, at 14a, 14b and 14c. They may be cylindrical as shown or rectangular. They may be red, green and blue light emitting LEDs, and means to control the relative levels of light transmission from the LEDs is shown at 19.
  • Figs. 1 and 3 show the LEDs as centered within the cup-like reflectors 20a, 20b and 20c, which may consist of aluminum shells, with about 0.88 reflectivity.
  • Fig. 2 shows the dimensions of a typical reflector, having a toroidal elliptical surface. The reflector is non-imaging, and acts to reflect light upwardly with a maximum angle such that no light passes through cylinder walls 10b or 13.
  • the material of body 10 fills the cup formed by each reflector, about the LED in that cup.
  • the geometry of the pyramidal extractor is depicted in Fig. 1 and is formed by taking a cylinder with diameter D and shaving off three planes.
  • the geometry of the planes is described by two lengths L, and Lj.
  • the length of the pyramidal region is L, , while the total length of the extractor is L, + 1 ⁇ _ is the length of the extractor surface that contains parts of the original i.e. lower cylinder).
  • Each plane is determined by three points that are the vertices of triangle 1 la. (All planes share a common point at the tip (O.O.Lj + h_).
  • Lj L
  • the faces 1 lb' , 1 lc' , and 1 Id' are coplanar with faces l ib, lie, and lid, respectively.
  • the metal reflector cusp and LED are embedded inside the cylindrical region 10, which has height
  • Fig. 5 is a summary table comparing the performance of the present pyramidal extractor with the hemispherical aplanat system of the prior art. Only light rays exiting with a positive direction vertically are considered extracted, resulting in a loss of around 1 % for both systems.
  • the extractor will be of the same index material as and in optical contact with the LED material. If made of a lesser index material, say n ⁇ 1.5, at least all of the light already inside the n * 1.5 material will emerge. This is significantly better than achieved by current practice.
  • ⁇ (0, ⁇ ) is the absorptivity
  • 0 is the angle with respect to the surface normal of the LED
  • is the polarization.
  • the LEDs are typically formed as cubes, each having a bottom conductor layer
  • LED compositions determine the color of emitted light. LEDs are known, and supplied by companies such as Hewlett Packard Corp. , Toshiba Corp. and Sony Corp.
  • the reflectors as described are typically thin metallic stampings.
  • the height H of the reflector cup, above the level of the bottom of the LED cube, must be such that the extreme rays 64 from the LED reach the cylindrical wall 10b of body
  • Fig. 6 shows three LEDs 70, 71, and 72 (red, green and blue light emitting) placed in one hemispherical reflector 73, all embedded in cylindrical body 10' (below regions 11 and 12, as before), to produce light mixing.
  • Fig. 7 shows another modification, wherein a three-sided light transmitting pyramid 80 is located at the top of an LED 81, for transmitting light upwardly. It is preferable that the LED substrate have relatively low absorption, so as to allow the extractor pyramid sufficient optical path length for efficient transmission outwards.
  • the apparatus shown in Figs. 9-15 includes or comprises: a) a cylindrical body consisting of light transmitting material, said body having a cylindrical outer wall, b) a pyramidal body having at least three planar sides and consisting of light transmitting material, said pyramidal body located longitudinally endwise of said cylindrical body, to expose said three or more sides, said planar sides defining planes which intersect said cylindrical body outer wall at curved edges, said cylindrical outer wall terminating at said curved edges, c) LED means located in spaced relation to said pyramidal body, and oriented to transmit light in said cylindrical body and toward said pyramidal body.
  • the apparatus shown in Figs. 9-15, as in Fig. 1, also may be defined to comprise:
  • a transparent body 80 having a first region 81 which is cylindrical and in which the LED's 82 are at least partly received, b) said body having a second and upper region 83 in the upward paths of light transmission from the LEDs, and acting to mix such light transmission, c) said body 80 having a third uppermost region 84 in the path of light transmission from the second region, said third region being of reduced volume from which mixed light is transmitted, d) said second region having a discontinuous cylindrical surface shape at 83a between planar surface areas 83b which are downward continuations of three planes 84a defined by sides of said third region, which has three-sided pyramid form, e) said planar surface areas 83b intersecting said surface 83a along curved lines which are portions of ellipses.
  • the body apex appears at 99.
  • the apparatus of Figs. 9-15 performs the same functions as does the Figs. 1-8 apparatus.
  • Fig. 16 and 16a show a transparent body 111, typically of glass or plastic material, having three planar sides Ilia, 11 lb, and 11 lc. They form a pyramid having a base 11 Id and an apex 11 le. The three sides are alike and each extends upwardly at an angle ⁇ relative to the horizontal base, where ⁇ preferably exceeds 45°.
  • Body 111 consists of light transmitting material, the same as referred to above, for body 10.
  • An LED, or LED means 114 is located in the body 111 , as at its lower center, adjacent or proximate base 11 Id, in spaced relation to the planar sides Ilia, 111b, and 11 lc, and oriented to transmit light in the body interior 11 If, and toward those sides. Interior 11 If is characterized as acting to mix light, for efficient extraction, in the general direction 120. Even if the light distribution from the LED is hemispherical, proximate the base, essentially all the light will emerge, as described above in connection with Fig. 1 , because of multiple reflections inside the extraction body 111.
  • Fig. 17 is the same as Fig. 16 except that multiple LEDs are employed, and may be clustered in a line or about a center, which may be at the vertical center line of the pyramidal body 111, directly beneath apex 11 le.
  • 114c may be employed, to emit red, green and blue light, respectively, as for example as described above, in connection with Figs. 1-4, and at 70, 71, and 72.
  • the LEDs may be organic, or inorganic, or may be visible or ultra violet light emitting.
  • Fig. 18 is like Fig. 17, except that a layer 130 of phosphorous overlies the LED
  • YAG yellow phosphorous may be employed.
  • Fig. 19 shows layers 131-133 of phosphorous overlying the respective LEDs 114a, 114b, and 114c.
  • Fig. 20 is like Fig. 16, but shows the provision of a reflector 140 for example in the form of a cup underlying the LED 114, to reflect light transmitted generally downwardly by the LED. Such reflected light travels back upwardly within the pyramidal body 111, and is efficiently extracted, as explained above.
  • the reflector extends at the lower side of the LED, facing away from the apex 11 le.
  • Fig. 21 is like Fig. 17, but shows use of reflector 146, as in the form of a cup, underlying multiple LEDs 114a, 114b, and 114c.
  • Fig. 22 is like Fig. 16, excepting that a lens 150 is positioned in the path of light rays 151 transmitted from the body 111.
  • That lens may be a light collimating TIR lens, of the type disclosed in U.S. Patent 5,404,869, and having facets 150a, as shown.
  • Fig. 23 shows in plan view a phosphorus layer 160 overlying an LED, as in Fig. 18; however, the layer 160 includes three segments 160a, 160b and 160c spaced about a vertical 161 defined by the LED body 111.
  • the segments comprise green, red and blue phosphorous, to create these colors in light passing through the phosphorous and extracted from body 111.

Abstract

The combination that includes an LED (14) a light transmitting pyramid (11) mounted with respect to the LED to transmit light therefrom, the pyramid having at least three sides (11b-11d), the sides defining planes extending upwardly toward an apex (11e) that is spaced in a longitudinal direction from the LED, the planes angled in excess of 45 degrees relative to a lateral plane normal to longitudinal direction such that essentially all LED light incident on the three sides from within the pyramid is extracted from the sides.

Description

LIGHT EXTRACTOR APPARATUS
BACKGROUND OF THE INVENTION
This invention concerns efficient extraction of light from solid transparent media, and more particularly by the use of pyramidal structure.
Light produced inside a high index of refraction material may be trapped by total internal reflection. This is particularly true in a geometry of high symmetry, say a cube or parallelepiped. This poses a problem for light emitting diodes (LED's) where the index of refraction is very high, i.e. greater than three, so that only a small fraction of the light emerges. There is need for a means to enable a very large fraction of the light to emerge from LED associated transmission media, in order to significantly increase the efficiency of light transmission from LED's.
Various means have been suggested or actually used, to extract light by geometric means, but these are not particularly efficient. For example: a) The LED can be embedded in a sphere of the same high index material. This is possible only for a point source at the emitter center and not for a finite size emitter. In addition, emerging light has large Fresnel reflection at the interface, [(n-l)/(n+ l)]2 which is » 25% for n =3. b) An aplanatic lens, which is a hemisphere of radius r with conjugates at r/n and nr, has been used to collimate the light within the Brewster Angle in an attempt to reduce Fresnel reflections. Typically, the material has index n = 1.5, so that much of the light, i.e. over 16%, remains trapped in the aplanatic lens, because of its high (rotational) symmetry. By keeping all reflections at angles inside the Brewster' s Angle, losses are relatively small, but the tradeoff is a much greater system size than the actual LED. SUMMARY OF THE INVENTION
It is a major object of the invention to provide an improved LED light extraction means embodying a pyramidal configuration. Basically, the extraction means comprises, in combination: a) an LED, and b) a light transmitting pyramid mounted with respect to the LED to transmit light therefrom, the pyramid having at least three sides, c) said sides defining planes extending upwardly toward an apex that is spaced in a longitudinal direction from the LED, said planes angled in excess of 45° relative to a lateral plane normal to said longitudinal direction such that essentially all LED light incident on said three sides from within the pyramid is extracted from said sides.
Such a device can attain efficiencies in excess of 90% in transferring light from a higher index of refraction material into air. Also, such a device is much more compact than the aplanatic device.
Comparison of the two systems shows that the monochrome LED aplanat system is somewhat larger in diameter and has no ability to mix together light from an RGB LED triad, because the aplanat system is an imaging system whereas the LED pyramidal extractor is non-imaging and therefore a good RGB mixer. The new pyramidal extractor disclosed herein has almost no losses due to Fresnel reflections, which are themselves extracted. While a 3-sided pyramidal structure is a preferred configuration, one with more than 3 sides is also effective. Additionally, an RGB (red, green, blue) extractor system that varies its color balance can be made very compactly. Three LEDs, each emitting at a specific wavelength or color, can be combined into one extractor system that can change color output by independently varying the emission of each LED. In this regard, the aplanat system of prior art requires a system diameter at least twice the diameter of the pyramidal extractor. Also, the present pyramidal system design is independent of the index of refraction within the extractor. Three LEDs may be employed, in a cluster, and may, for example, respectively be red, green and blue light emitting, and there may be means for controlling the relative emissions from the LEDs, for color control of the mixed light transmitted from the third region.
A further object of the invention is to provide phosphorous overlying the LED at the side thereof facing the pyramid apex, to enhance light transmission. Such phosphorous may be yellow phosphorous.
Yet another object is to provide a reflector underlying the LED at the side thereof facing away from said apex to reflect light toward said body.
An additional object is to provide a TIR lens in the path of light extracted from the pyramid sides.
It is yet another object to provide, in combination: a) a columnar body consisting of light transmitting material, said body having a bounding outer wall, b) a pyramidal body having at least three planar sides and consisting of light transmitting material, said pyramidal body located longitudinally endwise of said columnar body, to expose said three or more sides, said planar sides defining planes which intersect said body outer wall at edges, said outer wall terminating at said edges, c) at least one LED located in spaced relation to said pyramidal body, and oriented to transmit light in said columnar body and toward said pyramidal body, d) said planes extending upwardly toward an apex that is spaced in a longitudinal direction from said at least one LED , said planes angled in excess of 45 ° relative to a lateral plane normal to said longitudinal direction such that essentially all LED light incident on said sides from within the pyramid is extracted.
These and other objects and advantages of the invention, as well as the details of an illustrative embodiment, will be more fully understood from the following specification and drawings, in which:
DRAWING DESCRIPTION
Fig. 1 is a perspective view of a pyramidal light extractor incorporating the invention;
Fig. 2 is a graph;
Fig. 3 is a perspective view of an LED mounted within a reflector;
Fig. 4 is a section taken in elevation through the Fig. 3 reflector and showing the centered LED; Fig. 5 is a tabulation;
Figs. 6 and 7 are elevations showing modifications;
Fig. 8 is a diagram;
Fig. 9 is a side elevation showing a modification;
Fig. 10 is a view like Fig. 9, but taken toward one flat side of the body upper portion;
Fig. 11 is a view like Fig. 10, but taken edgewise of the one flat side of the body upper portion;
Fig. 12 is a perspective view of the Fig. 9 modification;
Fig. 13 is a top perspective view of the Fig. 9 modification; Fig. 14 is a top side perspective view of the Fig. 9 modification;
Fig. 15 is another top and side perspective view of the Fig. 9 modification; and
Fig. 16-23 are schematic views of modifications. DETAILED DESCRIPTION
Referring first to Fig. 1 , a cylindrical or columnar body 10 of height
Figure imgf000006_0001
consists of light transmitting material such as thermo-setting polymer, UV curable polymer or injection moldable material such as acrylic or polycarbonate, all of the foregoing materials with a common index of refraction in the 1.5 to 1.6 range. That body has a bottom 10a and a cylindrical side wall 10b. As shown, the body diameter D, generally is less than the axial height or length L, + Lj. A pyramidal body 11 of height Lj is located above the upper side of body 10, and is shown as having a base 1 la, and three sides 1 lb, 1 lc and 1 Id, and tip 1 le. Base 1 la is spaced above the plane of the top of body 10, typically halfway between said tip 1 le and the horizontal plane indicated at 13a.
Body 11 also consists of light transmitting material, which may be the same as that of body 10. A third body 12 of height L_ is located between bodies 10 and 11 , and may be unitary or integral therewith, whereby only one overall body is provided, having first, second and third body regions 10, 11 and 12. The overall body may consist of plastic material, such as thermosetting polymer or UV curable polymers.
LED means generally is shown at 14, located in body 10 in spaced relation to the pyramidal body region 11, and oriented to transmit light in body 10 and toward body 11, for example through region 12. Region 12 may be characterized as acting to mix light transmission of different wavelengths, from multiple LEDs, and body 11 may be characterized as in the path of light transmission from region 12, body 11 being of reduced volume, and from which light is efficiently transmitted into the surrounding air.
Second body region 12 typically has modified cylindrical shape, i.e. with a wall 13 that is a continuation of cylindrical side wall 10b, and with a circular base indicated at 13a coincident with or integral with the upper side of body 10. If bodies 10 and 12 are integral, as is preferred, then the top of 10 and the base of 12 are unitary, i.e. no physically coincident surfaces exist, and the bodies 10, 11 and 12 may then be unitary and homogeneous. Wall 13 is cylindrical between planar surface areas 1 lb1, lie' and 1 Id' which are downward continuations of the body 11 pyramid planes 1 lb, 1 lc and lid, respectively. Planes l ib', l ie', and l id' are alike, and spaced equidistantly about the vertical and longitudinal axis 15 of the overall body; also, those planes intersect the cylindrical surface 13 along elliptical section lines 16 that are curved, and tangent at 17 to the upper edge circle 13a defined by the uppermost full horizontal extent of the body 10. Line 13a also shows a plane defined by tangent points 17.
Planes l ib', 11a', and l id' are typically angled in excess of 45° relative to a lateral plane normal to longitudinal axis 15.
A variation of this invention includes micro-optical means on some or all surfaces whereby total internal reflection is laterally scattered. That is, an internally reflected ray will continue upwards but will be fanned out into a sheet of rays, thereby promoting mixing. Conventional scattering means would send too much energy back down the extractor, to be lost. Instead, a holographic diffuser with a narrow elliptical scattering pattern oriented circumferentially on the extractor would help mix the colors. In Fig. 8 a small portion of a surface is shown, with tangent plane 100. Tangent plane
100 reflects ray 101 into ray 102. Both said rays lie in plane 103, which is orthogonal to plane 100, and contains surface normal 104. Line 105 indicates a circumference of the invention. Scattered rays 106 and 107 form plane 108, which is orthogonal to plane 103. Said scattered rays form the limiting angles of a fan of rays into which ray 102 is smeared. Plane 100 could either have a circumferentially oriented elliptical- patterned holographic diffuser or a diffraction grating to implement the scattering pattern. Also, provided are generally non-imaging reflector means associated with the one or more LED means 14. As shown, there are three LEDs, in a cluster, at 14a, 14b and 14c. They may be cylindrical as shown or rectangular. They may be red, green and blue light emitting LEDs, and means to control the relative levels of light transmission from the LEDs is shown at 19. Figs. 1 and 3 show the LEDs as centered within the cup-like reflectors 20a, 20b and 20c, which may consist of aluminum shells, with about 0.88 reflectivity. Fig. 2 shows the dimensions of a typical reflector, having a toroidal elliptical surface. The reflector is non-imaging, and acts to reflect light upwardly with a maximum angle such that no light passes through cylinder walls 10b or 13. The material of body 10 fills the cup formed by each reflector, about the LED in that cup.
The geometry of the pyramidal extractor is depicted in Fig. 1 and is formed by taking a cylinder with diameter D and shaving off three planes. The geometry of the planes is described by two lengths L, and Lj. The length of the pyramidal region is L, , while the total length of the extractor is L, + 1^ _ is the length of the extractor surface that contains parts of the original i.e. lower cylinder). Each plane is determined by three points that are the vertices of triangle 1 la. (All planes share a common point at the tip (O.O.Lj + h_). The other points for the i* plane (i= 1,2,3) are (Rcos(2πi)/3,Rsin(2πi)/3,L2) and (Rcos(2π(i-f- l))/3,Rsin(2π(i+ l))/3,L2), where R=D/2 is the cylinder radius. In order for the cylindrical region in Fig. 1 to have a finite length (and allow the extractor to be coupled to a circular aperture), the condition Lj > L, must be satisfied. When L, = Lj, the faces 1 lb' , 1 lc' , and 1 Id' are coplanar with faces l ib, lie, and lid, respectively. In the Fig. 1 design, the metal reflector cusp and LED (depicted in Fig. 4) are embedded inside the cylindrical region 10, which has height
Figure imgf000008_0001
Fig. 5 is a summary table comparing the performance of the present pyramidal extractor with the hemispherical aplanat system of the prior art. Only light rays exiting with a positive direction vertically are considered extracted, resulting in a loss of around 1 % for both systems.
As respects operation, consider a pyramidal structure of high index of refraction material and low symmetry, say 3-sided. Even if the light distribution is hemispherical at the base, essentially all of the light will emerge or be turned back by phase space conservation. In a situation of high symmetry, say rotational symmetry, the skew invariant will cause much of the light to turn back. But in a situation of low symmetry such as a 3-sided pyramid, there is no invariance principle that requires rays to turn back, and by varying the taper angle as an adjustable parameter, essentially none of the light is turned back. It is important to note that the fraction of light extracted considerably exceeds even that of a single Fresnel reflection, because of multiple reflections inside the extractor. Therefore, essentially all of the light is extracted.
Ideally, the extractor will be of the same index material as and in optical contact with the LED material. If made of a lesser index material, say n ~ 1.5, at least all of the light already inside the n * 1.5 material will emerge. This is significantly better than achieved by current practice.
Pyramidal extractors have been proposed and used for high flux solar energy concentration. The Weizmann Institute of Science group in Rethoven, Israel (Amnon Yogev, Harald Ries, A. Segal and Jacob Kami) has used them in conjunction with dielectric CPC nonimaging cones for a high temperature receiver in a solar furnace. The University of Chicago group (Roland Winston, David Jenkins, Joe O' Gallagher) has used them in conjunction with dielectric CPC nonimaging cone in a solar furnace to achieve a concentration of 50,000 suns.
The radiation pattern at an LED surface can be deduced by considering the LED inside a cavity with index n ~ 1 in equilibrium with its own radiation. Then applying the Kirchoff relations, the emissivity e(θ,π) e(θ,π) = α(0,π) = 1- p(0,π). Here, α(0,π) is the absorptivity, 0 is the angle with respect to the surface normal of the LED and π is the polarization. Dependence on other variables such as wavelength λ has been suppressed. Now p (0,π) is just the Fresnel reflection coefficient at the n = 1, n ~ 3 interface, which is [(n-l)/(n+ 1)]2. This formula can be found, for example in Born and Wolf, Principles of Optics (6th edition, page 40). It follows that the angular distribution can be modeled as: dN/dΩ = a COSΘ [1- p(0,π)] where Ω is the solid angle of emission.
This means that the angular distribution is more peaked in the forward direction than a simple lambertian distribution (α cosθ). This result is expected to closely model an ergodic situation such as the regular volume of, an LED, but not the extractor, where the light distribution is best obtained by detailed ray-tracing.
The LEDs are typically formed as cubes, each having a bottom conductor layer
(cathode) as at 60 in Fig. 4, a top anode 61 , an intermediate PIN junction 62, and body 63. LED compositions determine the color of emitted light. LEDs are known, and supplied by companies such as Hewlett Packard Corp. , Toshiba Corp. and Sony Corp.
The reflectors as described are typically thin metallic stampings.
As shown in Fig. 4, depicting only one of the three RGB LED's in body 10, the height H of the reflector cup, above the level of the bottom of the LED cube, must be such that the extreme rays 64 from the LED reach the cylindrical wall 10b of body
10 at an angle 0 that is greater than θc = arcsin(l/n), which is the critical angle for total internal reflection. θc = 42° for n = 1.5. Thus, all light or essentially all light from the three RGB LEDs is reflected back into, and upwardly, in body 10 for mixing by multiple reflections off the walls of 10, 11 and 12, to eventually exit the top pyramid. Fig. 6 shows three LEDs 70, 71, and 72 (red, green and blue light emitting) placed in one hemispherical reflector 73, all embedded in cylindrical body 10' (below regions 11 and 12, as before), to produce light mixing.
Fig. 7 shows another modification, wherein a three-sided light transmitting pyramid 80 is located at the top of an LED 81, for transmitting light upwardly. It is preferable that the LED substrate have relatively low absorption, so as to allow the extractor pyramid sufficient optical path length for efficient transmission outwards.
In the modifications shown in Figs. 9-15, the elements corresponding to those of Fig. 1 bear the same identifying numerals.
The apparatus shown in Figs. 9-15, as in Fig. 1, includes or comprises: a) a cylindrical body consisting of light transmitting material, said body having a cylindrical outer wall, b) a pyramidal body having at least three planar sides and consisting of light transmitting material, said pyramidal body located longitudinally endwise of said cylindrical body, to expose said three or more sides, said planar sides defining planes which intersect said cylindrical body outer wall at curved edges, said cylindrical outer wall terminating at said curved edges, c) LED means located in spaced relation to said pyramidal body, and oriented to transmit light in said cylindrical body and toward said pyramidal body.
The apparatus shown in Figs. 9-15, as in Fig. 1, also may be defined to comprise:
a) a transparent body 80 having a first region 81 which is cylindrical and in which the LED's 82 are at least partly received, b) said body having a second and upper region 83 in the upward paths of light transmission from the LEDs, and acting to mix such light transmission, c) said body 80 having a third uppermost region 84 in the path of light transmission from the second region, said third region being of reduced volume from which mixed light is transmitted, d) said second region having a discontinuous cylindrical surface shape at 83a between planar surface areas 83b which are downward continuations of three planes 84a defined by sides of said third region, which has three-sided pyramid form, e) said planar surface areas 83b intersecting said surface 83a along curved lines which are portions of ellipses.
The body apex appears at 99. The apparatus of Figs. 9-15 performs the same functions as does the Figs. 1-8 apparatus.
Fig. 16 and 16a show a transparent body 111, typically of glass or plastic material, having three planar sides Ilia, 11 lb, and 11 lc. They form a pyramid having a base 11 Id and an apex 11 le. The three sides are alike and each extends upwardly at an angle γ relative to the horizontal base, where γ preferably exceeds 45°. Body 111 consists of light transmitting material, the same as referred to above, for body 10.
An LED, or LED means 114, is located in the body 111 , as at its lower center, adjacent or proximate base 11 Id, in spaced relation to the planar sides Ilia, 111b, and 11 lc, and oriented to transmit light in the body interior 11 If, and toward those sides. Interior 11 If is characterized as acting to mix light, for efficient extraction, in the general direction 120. Even if the light distribution from the LED is hemispherical, proximate the base, essentially all the light will emerge, as described above in connection with Fig. 1 , because of multiple reflections inside the extraction body 111.
Therefore, essentially all the light is extracted.
Fig. 17 is the same as Fig. 16 except that multiple LEDs are employed, and may be clustered in a line or about a center, which may be at the vertical center line of the pyramidal body 111, directly beneath apex 11 le. Three LEDs 114a, 114b, and
114c may be employed, to emit red, green and blue light, respectively, as for example as described above, in connection with Figs. 1-4, and at 70, 71, and 72.
The LEDs may be organic, or inorganic, or may be visible or ultra violet light emitting.
Fig. 18 is like Fig. 17, except that a layer 130 of phosphorous overlies the LED
114, within the pyramidal body 111, to create color in the light emanating from the pyramidal body 111. YAG yellow phosphorous may be employed. Fig. 19 shows layers 131-133 of phosphorous overlying the respective LEDs 114a, 114b, and 114c.
Fig. 20 is like Fig. 16, but shows the provision of a reflector 140 for example in the form of a cup underlying the LED 114, to reflect light transmitted generally downwardly by the LED. Such reflected light travels back upwardly within the pyramidal body 111, and is efficiently extracted, as explained above. The reflector extends at the lower side of the LED, facing away from the apex 11 le. Fig. 21 is like Fig. 17, but shows use of reflector 146, as in the form of a cup, underlying multiple LEDs 114a, 114b, and 114c.
Fig. 22 is like Fig. 16, excepting that a lens 150 is positioned in the path of light rays 151 transmitted from the body 111. That lens may be a light collimating TIR lens, of the type disclosed in U.S. Patent 5,404,869, and having facets 150a, as shown. Fig. 23 shows in plan view a phosphorus layer 160 overlying an LED, as in Fig. 18; however, the layer 160 includes three segments 160a, 160b and 160c spaced about a vertical 161 defined by the LED body 111. The segments comprise green, red and blue phosphorous, to create these colors in light passing through the phosphorous and extracted from body 111.

Claims

CLAIMS:
1. The combination that includes a) an LED, and b) a light transmitting pyramid mounted with respect to the LED to transmit light therefrom, the pyramid having at least three sides, c) said sides defining planes extending upwardly toward an apex that is spaced in a longitudinal direction from the LED, said planes angled in excess of 45° relative to a lateral plane normal to said longitudinal direction such that essentially all LED light incident on said three sides from within the pyramid is extracted from said sides.
2. The combination of claim 1 wherein the LED is located at or proximate the base of the pyramidal body.
3. The combination of claim 1 including phosphorus overlyingthe LED at the side thereof facing said apex.
4. The combination of claim 3 wherein said phosphorus is yellow phosphorus.
5. The combination of claim 1 including phosphorus overlying the LED at the side thereof facing said apex.
6. The combination of claim 2 wherein said phosphorus is yellow phosphorus.
7. The combination of claim 1 including a reflector underlying the LED at the side thereof facing away from said apex to reflect light toward said body.
8. The combination of claim 2 including a reflector underlying the LED at the side thereof facing away from said apex to reflect light toward said body.
9. The combination of claim 1 including a TIR lens in the path of light extracted from the pyramid sides.
10. In apparatus to extract light from an LED, the combination comprising a) a columnar body consisting of light transmitting material, said body having a bounding outer wall, b) a pyramidal body having at least three planar sides and consisting of light transmitting material, said pyramidal body located longitudinally endwise of said columnar body, to expose said three or more sides, said planar sides defining planes which intersect said body outer wall at edges, said outer wall terminating at said edges, c) at least one LED located in spaced relation to said pyramidal body, and oriented to transmit light in said columnar body and toward said pyramidal body, d) said planes extending upwardly toward an apex that is spaced in a longitudinal direction from said at least one LED, said planes angled in excess of 45° relative to a lateral plane normal to said longitudinal direction such that essentially all LED light incident on said sides from within the pyramid is extracted.
11. The combination of claim 10 including phosphorus overlying said at least one LED at the side thereof facing said apex.
12. The combination of claim 11 wherein said phosphorus is yellow phosphorus.
13. The combination of claim 10 including a reflector or reflectors underlying said at least one LED at the side thereof facing away from said apex to reflect light toward said body.
14. The combination of claim 10 wherein there are at least three of said LEDs, in a cluster.
15. The combination of claim 14 including a reflective surface underlying each LED at the side thereof facing away from said apex to reflect light toward said body.
16. The combination of claim 10 including a TIR lens in the path of light extracted from the pyramid sides.
17. The combination of claim 13 including a TIR lens in the path of light extracted from the pyramid sides.
18. The combination of claim 1 wherein said LED is one of the following: i) organic ii) inorganic.
19. The combination of claim 10 wherein said LED is one of the following: i) organic ii) inorganic.
20. The combination that includes: a) three LEDs, and b) a light transmitting pyramid mounted with respect to the three LEDs to transmit light therefrom, the pyramid having at least three sides, c) said sides defining planes extending upwardly toward an apex that is spaced in a longitudinal direction from the three LEDs, said planes angled in excess of 45° relative to a lateral plane normal to said longitudinal direction such that essentially all light incident on said three sides from within the pyramid is extracted from said sides.
21. The combination of claim 20 wherein said LEDs are characterized as emitting at different wavelengths or colors.
22. The combination of claim 20 including phosphorus overlying said LEDs.
23. The combination of claim 20 including a reflector underlying said LEDs.
24. The combination of claim 20 including a TIR lens in the path of light extracted from said pyramid sides.
25. The combination of claim 1 wherein the pyramidal body and LED consist essentially of the same optical index material.
26. The combination of claim 10 wherein the pyramidal body and LED consist essentially of the same optical index material.
PCT/US2002/008390 2001-03-26 2002-03-19 Light extractor apparatus WO2002078055A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/815,607 US20020135298A1 (en) 2001-03-26 2001-03-26 Light extractor apparatus
US09/815,607 2001-03-26

Publications (2)

Publication Number Publication Date
WO2002078055A2 true WO2002078055A2 (en) 2002-10-03
WO2002078055A3 WO2002078055A3 (en) 2003-04-10

Family

ID=25218290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/008390 WO2002078055A2 (en) 2001-03-26 2002-03-19 Light extractor apparatus

Country Status (2)

Country Link
US (1) US20020135298A1 (en)
WO (1) WO2002078055A2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100750130B1 (en) 2005-03-23 2007-08-21 삼성전자주식회사 Light emitting assembly, backlight unit and display
KR101113236B1 (en) * 2005-04-26 2012-02-20 삼성전자주식회사 Backlight unit for dynamic image and display employing the same
EP1932178B1 (en) 2005-09-28 2012-02-08 Koninklijke Philips Electronics N.V. High brightness light emitting diode device
US7525126B2 (en) 2006-05-02 2009-04-28 3M Innovative Properties Company LED package with converging optical element
US7390117B2 (en) * 2006-05-02 2008-06-24 3M Innovative Properties Company LED package with compound converging optical element
US20070257271A1 (en) * 2006-05-02 2007-11-08 3M Innovative Properties Company Led package with encapsulated converging optical element
US20070257270A1 (en) * 2006-05-02 2007-11-08 3M Innovative Properties Company Led package with wedge-shaped optical element
US7953293B2 (en) * 2006-05-02 2011-05-31 Ati Technologies Ulc Field sequence detector, method and video device
US20080012034A1 (en) * 2006-07-17 2008-01-17 3M Innovative Properties Company Led package with converging extractor
US7980727B2 (en) * 2008-10-07 2011-07-19 Reflexite Corporation Monolithic tiring condensing arrays and methods thereof
US8576406B1 (en) 2009-02-25 2013-11-05 Physical Optics Corporation Luminaire illumination system and method
US20130271978A1 (en) * 2012-04-16 2013-10-17 Carl Gould Large-scale prism luminaires
US8430536B1 (en) 2012-10-01 2013-04-30 Zumtobel Lighting Inc. LED lighting system including TIR optic

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5018053A (en) * 1990-10-18 1991-05-21 Lazerware, Inc. Illuminated jewelry
US5567037A (en) * 1995-05-03 1996-10-22 Ferber Technologies, L.L.C. LED for interfacing and connecting to conductive substrates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5018053A (en) * 1990-10-18 1991-05-21 Lazerware, Inc. Illuminated jewelry
US5567037A (en) * 1995-05-03 1996-10-22 Ferber Technologies, L.L.C. LED for interfacing and connecting to conductive substrates

Also Published As

Publication number Publication date
US20020135298A1 (en) 2002-09-26
WO2002078055A3 (en) 2003-04-10

Similar Documents

Publication Publication Date Title
US6177761B1 (en) LED with light extractor
US7582913B2 (en) Lens and LED using the lens to achieve homogeneous illumination
EP2951626B1 (en) Optical waveguides
US7329029B2 (en) Optical device for LED-based lamp
CN105842762B (en) Lens and the light-emitting device using the lens
US11555597B2 (en) Lens for improved color mixing and beam control of an LED light source
CN101711327B (en) Light source
US9458973B2 (en) Optical element for uniform lighting
JP2017208576A (en) Light emitting devices that propagate light asymmetrically
US20020135298A1 (en) Light extractor apparatus
US20090225552A1 (en) Light source-modulating device having composite curved surfaces
CN1948822A (en) Illuminating system
KR20160101093A (en) Led module with uniform phosphor illumination
US20120020058A1 (en) Solar Powered Airfield Light
US8662716B2 (en) Side-emitting optical elements and methods thereof
US9773760B2 (en) LED packages and luminaires incorporating same
US8602577B2 (en) Side-emitting solid state light source modules with funnel-shaped phosphor surface
CN104251459A (en) Lens for illumination device and illumination device with lens
US20100271828A1 (en) light-emitting device and method for its design
JP2006196569A (en) Light emitting device
US8506117B2 (en) LED illumination device having reflector for producing required light pattern
US10466404B2 (en) Collimating on-die optic
EP3485521B1 (en) Collimating on-die optic, light-emitting diode package with the same and method for manufacturing the same
CN111609330A (en) Light source with small beam angle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002753783

Country of ref document: EP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWW Wipo information: withdrawn in national office

Ref document number: 2002753783

Country of ref document: EP

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP