WO2002080816A1 - Element a electrodes de stimulation retinienne, et dispositif retinien artificiel utilisant l'element a electrodes - Google Patents

Element a electrodes de stimulation retinienne, et dispositif retinien artificiel utilisant l'element a electrodes Download PDF

Info

Publication number
WO2002080816A1
WO2002080816A1 PCT/JP2002/001340 JP0201340W WO02080816A1 WO 2002080816 A1 WO2002080816 A1 WO 2002080816A1 JP 0201340 W JP0201340 W JP 0201340W WO 02080816 A1 WO02080816 A1 WO 02080816A1
Authority
WO
WIPO (PCT)
Prior art keywords
retinal
electrode
retina
electrode member
electrodes
Prior art date
Application number
PCT/JP2002/001340
Other languages
English (en)
French (fr)
Inventor
Satoshi Suzuki
Original Assignee
Nagoya Ind Science Reserach I
Satoshi Suzuki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Ind Science Reserach I, Satoshi Suzuki filed Critical Nagoya Ind Science Reserach I
Priority to JP2002578855A priority Critical patent/JP4130589B2/ja
Priority to US10/469,559 priority patent/US7158836B2/en
Publication of WO2002080816A1 publication Critical patent/WO2002080816A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0543Retinal electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36046Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the eye

Definitions

  • the present invention relates to an electrode member for retinal stimulation, an artificial retinal device using the electrode member, and the like.
  • blindness is a disease that has significant consequences for the mental and social life of patients, not just the loss of visual function. Thus, there is a pressing need for techniques to treat blindness.
  • FIG. 1 shows a cross-sectional view of the retina.
  • the sclera A which forms the outer layer of the eyeball.
  • photoreceptor cells B Inside the retina, there are, in order, photoreceptor cells B, retinal bipolar cells C, and retinal ganglion cells D.
  • photoreceptor B plays the role of receiving light and converting it into an electrical signal
  • retinal bipolar cell C and retinal ganglion cell D play the role of transmitting that electrical signal into the brain.
  • retinal ganglion cells D and retinal bipolar cells C Light entering from the front of the eyeball (below in the figure) passes through transparent retinal ganglion cells D and retinal bipolar cells C, is sensed by visual cells B, is converted into an electric signal, and the electric signal is It is transmitted to retinal ganglion cells D via retinal bipolar cells C. Ends of retinal ganglion cells D enter the brain, and electrical signals form images in the brain.
  • FIG. 2 shows a cross-sectional view when a conventional retinal stimulation electrode member 100 (hereinafter, referred to as an electrode member 100) is mounted on the retina.
  • the electrode member 100 is connected to one end of an electric wire 104, and transmits an image electric signal transmitted from the other end (not shown) of the electric wire 104 to the retinal bipolar cell C. introduce.
  • the electrode member 100 includes a plurality of electrodes 101 for transmitting electric signals, a support portion 102 for holding the electrodes 101 at a predetermined position (for example, a matrix shape), and a support portion 1.
  • a fixing pin 103 for fixing 02 to the sclera A is provided.
  • each electrode 101 has a support portion 102 It is provided so as to be exposed in a planar manner on the back side (the side contacting the retina).
  • the fixing member 103 is inserted into the sclera A to fix the electrode member 100 on the retina, the support 102 may be pressed against the retina more than necessary.
  • the entire back surface of the support portion 102 was mounted on the retina in a state of contact with the surface, there was a possibility that the back surface of the support portion 1 ′ 02 pressed the retina and had an adverse effect.
  • the conventional electrode member 100 also gives an electrical signal to the retinal ganglion cell D It has a structure.
  • the retinal ganglion cells D extend in a stalk shape in order to transmit electric signals from the plurality of retinal bipolar cells C. Therefore, for example, as shown in FIG. 3, in the electrode member 100 having 36 electrodes 101, an image of the letter “H” (applying a voltage to the electrode 101 with a “+” shown) is displayed. Even when a voltage equivalent to was applied, the user (blind patient) was sometimes recognized as an image with a “U” character.
  • the present invention has been made in view of the above circumstances, and has as its object to form an image of an actually transmitted image without pressing the retina over an unnecessarily wide area.
  • An object of the present invention is to provide a retinal stimulation electrode member that can be used.
  • Another object of the present invention is to provide an artificial retinal device capable of transmitting an image signal into the brain using such an electrode member. Disclosure of the invention
  • a first invention is an electrode member for retinal stimulation provided with a plurality of electrodes for transmitting an electric signal to the retina and a support for holding these electrodes at predetermined positions.
  • a positioning projection is provided on the opposing surface of the support that opposes the retina, while allowing the electrode to contact the retina, while restricting the entire opposing surface from contacting the retina. It is characterized by the following.
  • the retina means the sensory neuroepithelium located at the innermost side of the eyeball, and includes photoreceptors, retinal bipolar cells, and retinal ganglion cells.
  • the positioning projection is a projection protruding from the opposing surface of the support toward the retina.
  • the position at which the positioning protrusion is provided does not necessarily need to be inside the support portion, and may be provided at a position protruding from the side of the support portion.
  • the number of the positioning protrusions may be one or more, regardless of the number of the positioning protrusions.
  • a plurality of electrodes may be arranged only in the central portion of the support portion, and all other peripheral portions of the support portion may be used as positioning projections.
  • the positioning projection of the support comes into contact with the retina.
  • the effect of the compression on the retina in the area where the electrodes are to be stimulated can be reduced as compared to the case where the electrodes are in contact.
  • a second invention is according to the first invention, characterized in that the positioning projection also serves as a fixing part for fixing the support part on a retina.
  • the shape of the electrode is not limited.
  • the electrode may be a planar electrode that contacts the retinal ganglion cells of the retina as in the related art, or may be a needle-like electrode.
  • the fixing portion means a portion for fixing the support portion of the retinal stimulation electrode member at a predetermined position on the retina, and (a) provided on the support portion, And (b) provided separately from the electrode member and fixed by pressing the support portion toward the retina.
  • those included in (a) include, for example, pins reaching the sclera, adhesives, threads for sewing between the support member and the retina, and those included in (b).
  • a member that fixes the supporting portion by pressing the anterior hemisphere inside the eyeball is exemplified.
  • the same physical configuration is used so that the tip surface (contact surface to the retina) of the positioning protrusion is fixed on the retina using an adhesive or a thread.
  • the base portion of the pin as a fixing portion is formed thick with a step, and the fixing portion serves as a positioning protrusion that contacts the retina. Is used also as a positioning projection.
  • the positioning projection and the fixing portion are shared by one configuration, the configuration of the retinal stimulation electrode member is more improved than when the projections are separately provided. It can be simplified.
  • a third invention is a retinal stimulation electrode member provided with a plurality of electrodes for transmitting an electrical signal to the retina and a support for holding these electrodes at predetermined positions.
  • the protruding portion has a needle-like shape having a height reaching the retinal bipolar cells of the retina from a surface facing the retina.
  • the protruding height of the electrode may be at least a height that reaches the retinal bipolar cell from the retina surface side (retinal ganglion cell side). Since the height is expected to be different for each blind patient, it is preferable to measure in advance for each actual patient. As described above, the protruding height of the electrode cannot be specified unconditionally, but is generally about 100 1m to about 300 ⁇ .
  • the electrode for giving an electric signal is formed in a needle shape having a predetermined height, the electrode is mounted on the retina so as to directly contact the retinal bipolar cell. Is done. For this reason, it is possible to form an image closer to the actually given image compared to the case where an electric signal is applied to retinal bipolar cells via retinal ganglion cells as in the past.
  • a fourth invention is the electrode member for retinal stimulation according to any one of the first invention and the second invention, wherein the electrode is a retinal bipolar cell of the retina from a surface facing the retina in the support portion. It is characterized in that it is provided in a needle-like shape having a height that reaches the height.
  • the electrode is covered with an insulator over the entire periphery except for a tip portion thereof. It is characterized by the following.
  • ⁇ Excluding the tip '' means that the electrical signal provided by the electrode is configured to stimulate only the targeted retinal bipolar cells and avoid stimulating other cells. I have.
  • a sixth invention is characterized in that, in the third invention to the fifth invention, a ground electrode is provided on the opposing surface of the support portion.
  • the portion where the ground electrode is provided may be a part of the opposing surface of the support portion or may be provided on the entire opposing surface.
  • the ground electrode could not be brought into contact with the retina, and the ground electrode was provided in a portion different from the eyeball.
  • the electrode since the electrode is formed in a needle shape and is configured to pierce the retina, the ground electrode can be provided so as to be in contact with the retina.
  • a first stimulus voltage is applied to an electrode corresponding to a predetermined image pattern with respect to a plurality of electrodes for retinal stimulation arranged in a matrix in a matrix
  • a retinal stimulating method characterized in that a second stimulus voltage having a polarity opposite to that of the first stimulus voltage is applied to an electrode corresponding to a background region of an image pattern with respect to a ground electrode.
  • an electrode member for retinal stimulation according to any one of claims 1 to 6, a fixing portion for fixing the electrode member on the retina, and transmitting an electric signal for imaging to the electrode. And a signal transmitting unit.
  • the signal transmitting unit has a function of transmitting an electric signal to the electrode.
  • This signal transmission unit can be provided outside the eyeball via an electric wire extending from the electrode.However, the signal transmission unit is provided integrally with the retinal stimulation electrode member and is embedded in the eyeball. Is preferred. In such a case, it is preferable that a circuit for transmitting a signal is provided outside the body of the user, and an electric signal is transmitted to the signal transmitting unit by a wireless method (for example, a radio wave or an optical signal).
  • the electric signal transmitted from the signal transmission unit is transmitted to the retinal ganglion cells of the retina via the electrodes, and an image is formed in the brain.
  • a ninth invention is directed to a retinal stimulation electrode member provided with a plurality of electrodes for transmitting an electric signal to the retina and a support for holding the electrodes at predetermined positions, and fixing the electrode member on the retina.
  • a retinal prosthesis comprising: a fixed portion to be fixed; and a signal transmission portion that transmits an electric signal for imaging to the electrodes.
  • the plurality of electrodes are arranged in a matrix in a matrix, and the plurality of electrodes are arranged in a matrix.
  • the electrode corresponding to the predetermined image pattern has the first A stimulus voltage is applied, and a second stimulus voltage having a polarity opposite to the first stimulus voltage with respect to a ground electrode is applied to an electrode corresponding to a background area of the image pattern.
  • an electrode member for retinal stimulation according to any one of claims 1 to 6, a fixing portion for fixing the electrode member on the retina, and an image forming member on the electrode.
  • a retinal prosthesis device including a signal transmitting unit that transmits an electric signal, the plurality of electrodes are arranged in a matrix in a matrix, and among the plurality of electrodes, an electrode corresponding to a predetermined image pattern is provided. Applying a first stimulus voltage, and applying, to an electrode corresponding to a background area of the image pattern, a second stimulus voltage having a polarity opposite to that of the first stimulus voltage with respect to a ground electrode.
  • retinal bipolar cells There are two types of retinal bipolar cells: an ON type that sends a positive voltage pulse to retinal ganglion cells and an OFF type that sends a negative voltage pulse to retinal ganglion cells in response to light stimulation of photoreceptors.
  • the cells are known to be present.
  • the stimulation voltage is applied only to the electrode corresponding to the image pattern among the plurality of electrodes, it is difficult to obtain a sufficient contrast for the image pattern.
  • the first stimulation voltage corresponding to the image pattern and the image pattern are considered in consideration of ON-type and OFF-type retinal bipolar cells. Since the second stimulus voltage having the opposite polarity to the ground electrode is applied to the background region, it is possible to give a sufficient contrast to the image pattern formed in the brain.
  • a control device for controlling the electric signal for imaging is provided, and the fixing unit also serves as a coil capable of supplying power to the control device.
  • the signal transmitting unit and the electrode member are mounted in the eyeball, it is preferable to wirelessly transmit the signal from the outside of the eyeball to the signal transmitting unit.
  • a control device for example, a microcomputer
  • the fixed portion also serves as a coil, and an induced current is generated in the coil. Thus, power can be supplied to the control device.
  • a twelfth invention is a surgical method characterized by opening an anterior surface of an eyeball to form an opening, and inserting an artificial retinal device into the eyeball through the opening.
  • the retinal prosthesis device at this time is preferably as described in any one of the eighth to eleventh inventions.
  • FIG. 1 is a side sectional view of the retina.
  • FIG. 2 is a side cross-sectional view when a retinal stimulation electrode member in a conventional example is mounted on a retina.
  • FIG. 3 shows an application method when a stimulus voltage is applied to a plurality of electrodes in the conventional example.
  • FIG. 4 is a side sectional view when the retinal stimulation electrode member according to the first embodiment is mounted on the retina.
  • FIG. 5 is an enlarged side sectional view when the retinal stimulation electrode member according to the first embodiment is mounted on the retina.
  • FIG. 6 is a configuration diagram of the retinal prosthesis device according to the first embodiment.
  • FIG. 7 shows an application method when a stimulation voltage is applied to a plurality of electrodes in the first embodiment.
  • FIG. 8 is a timing chart showing a first stimulation voltage (A) applied to a plurality of electrodes and a stimulation voltage (B) of the cable 2 in the first embodiment.
  • FIG. 9 is a side sectional view when the human retinal device according to the second embodiment is worn in an eyeball.
  • FIG. 10 is a front view of the eyeball showing the size of the incision when the artificial retinal device according to the second embodiment is mounted in the eyeball.
  • FIG. 11 is a configuration diagram of the retinal prosthesis device in the second embodiment.
  • FIG. 12 is a side cross-sectional view when the retinal prosthesis device according to the third embodiment is worn in an eyeball.
  • FIG. 13 is a front view of the eyeball showing the size of the incision when the artificial retinal device according to the third embodiment is mounted in the eyeball.
  • FIG. 14 is a configuration diagram of the retinal prosthesis device according to the third embodiment.
  • FIG. 15 is a drawing showing the external shape of the retinal prosthesis device according to the third embodiment after being mounted in the eyeball.
  • (A) is a front view
  • (B) is a side view
  • (C) is a rear view.
  • FIG. 16 is a side view of the retinal prosthesis device according to the third embodiment before being mounted in an eyeball.
  • the reference numerals in the figure are: 1 ... an electrode member for retinal stimulation, 2 ... an electrode, 3 ... a support part, 3 A ... an opposing surface, 4, 23 ... a fixed part, 5 ... a positioning protrusion, 6 ... Ground electrode, 7, 11 1, 21 ... signal transmission section, 22 ... control device, 8, 10, 20 ... artificial retinal device, C ... retinal bipolar cell, F ... retina.
  • FIG. 1 shows a cross-sectional view of the retina F in a healthy person.
  • the sclera A that covers the outer surface of the eyeball, and inside this, the photoreceptor cell B, the retinal bipolar cell C, and the retinal ganglion cell D are present.
  • the electrode member 1 for retinal stimulation of the present embodiment
  • FIG. 4 shows a state in which the electrode member 1 is mounted on the retina F.
  • the electrode member 1 includes a plurality of electrodes 2 for transmitting an electric signal to the retina F, a support section S for holding the electrodes 2 in a matrix in a matrix, and a fixing section for fixing the support section 3 on the retina. And a pin 4 (corresponding to the fixing portion in the present invention).
  • the support part 3 is integrally formed in a substantially rectangular thin plate shape using an insulating resin (for example, kepton (manufactured by CHOMERICS)). As shown in an enlarged manner in FIG. 5, the electrode 2 is arranged at a predetermined position inside the support portion 3.
  • the electrode 2 (which can be made of, for example, iridium) protrudes in a needle-like manner from the opposing surface 3 A opposing the retina F (the lower part in FIG. 5) in the support part 3.
  • the height L at which the electrode 2 protrudes from the facing surface 3A is a height that allows the electrode 2 to reach the retinal bipolar cell C from the retinal surface E.
  • the entire periphery of the electrode 2 is coated with an insulating resin except for the tip portion 2A.
  • the fixing pin 4 is made of, for example, ceramic, and has a pressing portion 4A at the rear end protruding from the upper surface 3B of the supporting portion 3.
  • the pressing portion 4A has a disc shape, and a pressing operation is performed when the tip 4B side of the fixing pin 4 is pressed into the sclera A. Further, a positioning projection 5 is fitted into each fixing pin 4 from the tip 4B side.
  • the positioning protrusion 5 is formed of a synthetic resin into a substantially cylindrical shape having an inner diameter slightly smaller than the outer diameter of the fixing pin 4, and one surface of the positioning protrusion 5 is bonded to the opposing surface 3A.
  • the height M of the positioning projection 5 is set higher by a predetermined amount than the projection height L of the electrode 2 (the details will be described later).
  • the total area of four lower end surfaces 5A of the positioning projections 5 (the side contacting the retina F) is set to be smaller than the area of the opposing surface 3A.
  • a ground electrode 6 is provided as shown in FIG.
  • the ground electrode 6 is formed as a continuous body. And is integrally attached to the opposing surface 3A side.
  • the entire electrode member 1 is arranged at a predetermined position while the opposing surface 3A of the support portion 3 faces the retina F.
  • the tip 4B of the fixing pin 4 is inserted into the retina F, and the pushing portion 4A is pressed so that the tip 4B is pushed into the sclera A.
  • the pushing operation proceeds so that the retina F is sandwiched between the lower end surface 5A of the positioning projection 5 and the sclera A. Since the sclera A has an appropriate strength, when the pressing portion 4A is pushed to a predetermined depth, the sclera A pushes back the lower end surface 5A (via the sandwiched retina F).
  • the fixing pin 4 has been pushed into the predetermined depth position.
  • the positioning of the lower end face 5A of the positioning projection 5 is performed.
  • the difference between the height M of the positioning protrusion 5 and the protrusion height L of the electrode 2 causes the tip portion 2 A of the electrode 2 to become retinal nerve It will pass through node cell D and come into contact with retinal bipolar cell C.
  • the image signal can be sent into the user's brain by transmitting an electric signal corresponding to the image pattern to the retinal bipolar cell C via the electrode 2. As shown in FIG.
  • a signal circuit 7 (corresponding to a signal transmission unit of the present invention) is provided on an electrode member 1 mounted on the retina in the eyeball P via an electric wire W extending from the electrode 2.
  • the retinal prosthesis device 8 having the signal circuit 7 and the electrode member 1 is attached to the user (blind patient).
  • a predetermined electric signal corresponding to the image is transmitted from the signal circuit 7 to the plurality of electrodes 2, and the electric signal is transmitted from the tip 2 A of the electrode 2 to the retinal bipolar cell C.
  • a method of processing an electrical signal (retinal stimulation method) that the signal circuit 7 sends to the plurality of electrodes 2 will be described with reference to FIGS. 7 and 8.
  • the electrode member 1 provided with 36 electrodes 2 arranged in a matrix of 6 ⁇ 6 vertically and horizontally.
  • the first stimulus voltage (Fig. 8 (Fig. 8)) is applied to the electrode marked with "10" in the figure (that is, the electrode corresponding to the image pattern of ten characters).
  • A) Apply Also, at this time, the electrodes (electrodes marked with “1” in the figure) corresponding to the background area of the cross-shaped image pattern are applied to the ground electrode with the polarity opposite to the first stimulus voltage with respect to the ground electrode. Apply the stimulus voltage (Fig. 8 (B)). In this way, since the stimulus voltages having the polarities of “ten” and “one” are applied, the contrast of the image image can be improved.
  • the positioning protrusion having an area smaller than the area of the opposing surface 3A of the support portion 3 with respect to the retina F. Since 5 contacts, the influence of the compression on the retina F can be reduced as compared with the case where the entire back surface of the support portion 102 contacts the retina F as in the related art.
  • the positioning projection 5 and the fixing pin 4 are shared by one configuration, the configuration of the electrode member 1 can be simplified as compared with the case where the projection is separately provided.
  • the fixing pin 4 comes into contact with the retina F, it tends to be stressed. For this reason, by using the positioning projection 5 and the fixing pin 4 together, the position where the stress is most likely to be applied is fixed, so that the entire electrode member 1 can be easily positioned.
  • the electrode 2 for giving an electric signal is formed in a needle shape having a predetermined height, the electrode 2 is mounted on the retina in direct contact with the retinal bipolar cells. For this reason, it is possible to form an image closer to the actually given image compared to the case where an electric signal is applied to retinal bipolar cells via retinal ganglion cells as with the conventional electrode 101. Becomes
  • the electric signal is easily applied only to the target retinal bipolar cell C. An image close to the image can be formed.
  • the electrode 2 is formed in a needle shape and is configured to pierce the retina
  • the ground electrode 6 can be provided so as to be in contact with the retina.
  • the retinal prosthesis 10 includes an electrode member 1 and a signal transmission unit 11, and both members 1 and 11 are connected by an electric wire W.
  • the retinal prosthesis 10 is designed to be worn inside the eyeball G.
  • the signal transmission unit 11 is a receiver, and receives an imaging electric signal from a transmitter 12 provided outside the eyeball G by a wireless method.
  • the outer diameter of the signal transmitting section 11 is about 5 mm to about 8 mm, and is formed to be substantially equal to or slightly larger than the inner diameter of the lens H.
  • the transmitter 12 is connected to a signal control device 13 (including, for example, a CCD camera, a microcomputer, and the like) for generating and controlling an image signal.
  • a signal control device 13 including, for example, a CCD camera, a microcomputer, and the like
  • an opening J is formed by incising the front surface of the eyeball along the outer circumference of the lens H as shown in FIG.
  • the electrode member 1 and the signal transmission unit 11 are sequentially mounted inside the eyeball G from the opening J.
  • the electric signal transmitted from the signal transmission unit 11 via the transmitter 12 is transmitted to the retinal ganglion cell D of the retina F via the electrode 2, and the image is formed in the brain.
  • the image is formed.
  • the retinal prosthesis device 20 includes an electrode member 1, a signal transmission unit 21 for transmitting an electric signal to the electrode member 1, a control device (including a microcomputer) 22 for controlling the electric signal, and a fixing unit 2. 3 and are provided.
  • the signal transmission unit 21 is a receiver, and receives an imaging electric signal from a transmitter 24 provided outside the eyeball G by a wireless method.
  • the control device 22 is provided with a control circuit 25 and a power supply device 26.
  • the power supply 26 is, for example, a secondary battery such as a lithium battery.
  • the fixing portion 23 is for fixing the electrode member 1 on the retina (the configuration will be described in detail later).
  • the power is transmitted from the external primary coil 27 by electromagnetic induction to the power supply device 26.
  • the transmitter 24 is connected to a signal control device 29 (for example, including a CCD camera and a microcomputer) for generating and controlling an image signal.
  • the signal controller 29 also controls the primary coil 27.
  • the electrode member 1, the signal transmission section 21 and the control device 22 are integrally formed as a substantially cylindrical tubular body 28.
  • the cylindrical body 28 has a size just enough to be accommodated inside the eyeball G. That is, the length of the cylindrical body 28 is substantially equal to the length from the macula to the back of the iris of the eyeball G, and the outer diameter of the cylindrical body 28 is strong at the front of the eyeball G. The diameter of the boundary between the membrane and the cornea is also slightly reduced.
  • each fixing part 23 is made of a member having appropriate elasticity (for example, a shape memory alloy).
  • the fixing portion 23 has both ends connected to the outer surface of the cylindrical body 28, and has a bridge shape.
  • the front part 23 A of the fixing part 23 is formed in an arc shape according to the shape of the inner wall of the eyeball G.
  • the fixing portion 23 is folded along the outer surface of the cylindrical body 28 before the artificial retinal device 20 is mounted inside the eyeball G.
  • the retinal prosthesis 20 is mounted inside the eyeball G, as shown in FIGS. 12 and 15, it protrudes in the outer diameter direction of the cylindrical body 28 and the first half of the eyeball G It is in contact with the inner wall of the ball.
  • the fixing part 23 presses the cylindrical body 28 backward in the eyeball G, thereby pressing the support part 3 of the electrode member 1 toward the retina F side. It is fixed at a predetermined position.
  • an opening K is formed by opening the front surface of the eyeball G, as shown in FIG.
  • the retinal prosthesis device 20 is inserted into the center of the sphere G.
  • laser photocoagulation By the processing, even if retinal detachment occurs due to the fixing portion 23, it is possible to regulate the progress toward the macula.
  • the fixed portion 23 also serves as a coil, and power can be supplied to the control device 22 by generating an induced current to the coil.
  • the human retinal device 20 can be easily inserted.
  • the fixing portion 23 is configured to also serve as a coil, but may be configured to also serve as a ground as another modified example. Further, in the present embodiment, since the fixing portion 23 is configured to position the support portion 3, the fixing pin 4 of the electrode member 1 does not need to be provided.

Description

明 細 書 網膜刺激用電極部材、 およびその電極部材を用いた人工網膜装置等 技術分野
本発明は、 網膜刺激用電極部材および、 その電極部材を用いた人工網膜装置 等に関するものである。 背景技術
近年の医療技術の進歩にもかかわらず、 失明に対しては有効な治療法はいまだ 存在していない。 失明は、 単なる視覚機能の喪失に止まらず、 患者の精神生活お よび社会生活に対して重大な影響を及ぼす疾患である。 このため、 失明を治療す るための技術が切実に求められている。
図 1には、 網膜の断面図を示した。 網膜の外側には、 眼球の外層を形成する強 膜 Aがあり、 その内側には、 順に視細胞 B、 網膜双極細胞 C、 および網膜神経節 細胞 Dが存在している。 このうち、 視細胞 Bは光を受容して電気信号に変換する 役割を、 また網膜双極細胞 Cと網膜神経節細胞 Dとは、 その電気信号を脳内に伝 達する役割を果たしている。 眼球の前方 (図において下方) から進入した光は、 透明な網膜神経節細胞 Dと網膜双極細胞 Cとを素通りして視細胞 Bによって感知 され、 電気信号に変換された後、 その電気信号が網膜双極細胞 Cを経て網膜神経 節細胞 Dへと伝達される。 網膜神経節細胞 Dの末端は脳内に進入しており、 電気 信号が脳内で画像を形成する。
図 2には、 従来の網膜刺激用電極部材 1 0 0 (以下、 電極部材 1 0 0と言う。) を網膜上に装着したときの断面図を示した。 電極部材 1 0 0は、 電線 1 0 4の一 端部分に接続されており、 その電線 1 0 4の他端 (図示せず) から送信される画 像用の電気信号を網膜双極細胞 Cに伝達する。 電極部材 1 0 0には、 電気信号を 伝達する複数の電極 1 0 1と、 それらの電極 1 0 1を所定の位置 (例えばマトリ ックス状) に保持する支持部 1 0 2と、 支持部 1 0 2を強膜 Aに固定する固定用 ピン 1 0 3とが設けられている。 また、 それぞれの電極 1 0 1は、 支持部 1 0 2 の裏面側(網膜に接触する面側) に平面状に露出するようにして設けられている。 ところが、 固定用ピン 1 0 3を強膜 Aに差し込んで電極部材 1 0 0を網膜上に 固定するときに、必要以上に支持部 1 0 2を網膜に押し付けてしまうことがある。 このとき、 支持部 1 0 2の裏面全体が面当たり状態で網膜上に装着される構成で あつたため、 支持部 1' 0 2の裏面が網膜を圧迫して悪影響を与えるおそれがあつ た。
また、 本来的には、 電極 1 0 1が電気信号を与える部位は、 網膜双極細胞 Cで あるにも拘わらず、 従来の電極部材 1 0 0では網膜神経節細胞 Dにも電気信号が 与えられる構造となっている。 ここで、 網膜神経節細胞 Dは、 複数の網膜双極細 胞 Cからの電気信号を送信するために茎状に伸びている。 このため例えば、 図 3 に示すように、 3 6個の電極 1 0 1を備えた電極部材 1 0 0において、 「H」文字 (図示 +を付した電極 1 0 1に電圧を加える) の画像に相当する電圧を加えた場 合であっても、 使用者 (失明患者) にとつては、 「U」 文字の画像として認識され ることがあった。
本発明は、 上記した事情に鑑みてなされたものであり、 その目的は、 必要以上 の広範囲に渡って網膜を圧迫することがなく、 かつ実際に送信された画像ィメー ジを結像することができる網膜刺激用電極部材を提供することにある。
また、 他の目的は、 そのような電極部材を用いて、 画像信号を脳内に伝達する ことが可能な人工網膜装置を提供することにある。 発明の開示
上記の課題を解決するために第 1の発明は、 網膜に電気信号を送信する複数の 電極と、 これらの電極を所定の位置に保持する支持部とが設けられた網膜刺激用 電極部材であって、 前記支持部において網膜に対向する対向面には、 前記電極が 網膜に接触するのを許容する一方、 前記対向面の全体が網膜に接触するのを規制 する位置決め突部が設けられていることを特徴とする。
本明細書中において、 網膜とは、 眼球の最も内側に位置する感覚神経上皮組織 のことを意味しており、 視細胞、 網膜双極細胞、 および網膜神経節細胞を含むも のである。 本明細書中において、 位置決め突部とは、 支持部の対向面から網膜側に向かつ て突設されたものである。 また、 位置決め突部が設けられる位置は、 必ずしも支 持部の内側にある必要はなく、 支持部の側方に突設した位置に設けられていても よい。 また、 位置決め突部の個数には、 こだわらず、 一^ ^またはそれ以上のぃく ' つでもよい。 また、 支持部の中央部分のみに複数の電極を配置し、 支持部のそれ 以外の周辺部分全てを位置決め突部とすることもできる。
第 1の発明によれば、 網膜刺激用電極部材が網膜上に装着されたときには、 網 膜に対しては支持部の位置決め突部が接触するので、 従来のように支持部の裏面 全体が網膜に接触する場合に比べると、 電極が刺激しようとする部分の網膜に対 する圧迫の影響を減少できる。
第 2の発明は、 第 1の発明に記載のものであって、 前記位置決め突部は、 前記 支持部を網膜上に固定する固定部を兼ねることを特徴とする。
第 1の発明および第 2の発明においては、 電極の形状は問われず、 例えば従来 のように網膜の網膜神経節細胞に接触する面状電極でもよく、 また針状の電極で もよレ、。
本明細書中において、 固定部とは、 網膜刺激用電極部材の支持部を網膜上の所 定の位置に固定する部位のことを意味しており、 (a )支持部に設けられて、支持 部と網膜との間を引力的に固定するもの、 または (b ) 電極部材とは別に設けて、 支持部を網膜側に押圧することで固定するものの両者を含む。 そのような構成の うち、 (a ) に含まれるものとしては、 強膜に達するピン、 接着剤、 支持部材と網 膜との間を縫い付ける糸などが例示され、 (b ) に含まれるものとしては、眼球内 部において前半球を押圧することで支持部を固定する部材が例示される。
「兼ねる」 とは、 例えば、 ①位置決め突部の先端面 (網膜への接触面) を接着 剤または糸を用いて網膜上に固定するように、 物理的の同じ構成が位置決め突部 と固定部とを兼用する場合の他に、 ②固定部としてのピンの基端部分を段差を備 えて太く形成し、 その段差が網膜上に接触する位置決め突部としての役割を持た せるように、 固定部の一部を位置決め突部として兼用する場合の構成を含む。 第 2の発明によれば、 位置決め突部と固定部とを一つの構成により兼用させて いるので、 別々に突設させた場合に比べると、 網膜刺激用電極部材の構成をより 簡易とすることができる。
第 3の発明は、 網膜に電気信号を送信する複数の電極と、 これらの電極を所定 の位置に保持する支持部とが設けられた網膜刺激用電極部材であって、 前記電極 は、 前記支持部において網膜に対向する対向面から、 網膜の網膜双極細胞に到達 する高さを備えた針状に突設されていることを特徴とする。
電極の突設高さは、 少なくとも網膜の表面側 (網膜神経節細胞側) から網膜双 極細胞に達する高さを備えていればよい。 その高さは、 失明患者毎に異なること が予想されるので、 実際の患者毎に予.め測定しておくことが好ましい。 このよう に、 電極の突設高さは、 一概には規定できないが、 一般的には約 1 0 0 ^ m〜約 3 0 0 μ ηιである。
第 3の発明によれば、 電気信号を与える電極は、 所定の高さを備えた針状に形 成されているので、 網膜双極細胞に対して直接に接触するようにして、 網膜上に 装着される。 このため、 従来のように網膜神経節細胞を介して網膜双極細胞に電 気信号を与える場合に比べると、 実際に与えた画像ィメージに近い画像を結像さ せることが可能となる。
第 4の発明は、 第 1の発明及び第 2の発明のいずれかに記載の網膜刺激用電極 部材において、 前記電極は、 前記支持部において網膜に対向する対向面から、 網 膜の網膜双極細胞に到達する高さを備えた針状に突設されていることを特徴とす る。
第 4の発明によれば、 位置決め突部が設けられているので網膜に対する圧迫の 影響を減少できると共に、 針状の電極が網膜双極細胞に対して直接に電気信号を 伝達するので実際に与えた画像ィメージに近い画像を結像することが可能となる 第 5の発明は、 第 3の発明及び第 4の発明において、 前記電極は、 その先端部 分を除いて全周を絶縁体で被覆したことを特徴とする。
「先端部分を除いて」 とは、 電極が与える電気信号が、 標的となる網膜双極細 胞のみを刺激し、 それ以外の細胞を刺激することを回避するように構成されるこ とを示している。
第 5の発明によれば、 電気信号が標的となる網膜双極細胞のみに与えられやす いので、 実際に与えた画像ィメージに近い画像を結像させることができる。 第 6の発明は、 第 3の発明〜第 5の発明において、 前記支持部の対向面には、 接地電極が設けられていることを特徴とする。
接地電極が設けられる部位は、 支持部の対向面の一部でもよく、 対向面の全体 に設けてもよい。
支持部の対向面に面状の電極を設けた場合には、 接地電極を網膜上に接触させ ることができず、 眼球とは別の部位に接地電極を設けていた。 ところが、 第 6の 発明によれば、電極を針状に形成して網膜内に突き刺すように構成しているので、 接地電極を網膜上に接触するように設けることができる。
第 7の発明は、 縦横にマトリッ'クス状に配置された網膜刺激用の複数の電極に 対して、 所定の画像パターンに対応する電極には第 1の刺激電圧を印加するとと もに、 前記画像パターンの背景領域に対応する電極には、 接地電極に対して前記 第 1の刺激電圧とは逆極性の第 2の刺激電圧を印加することを特徴とする網膜刺 激方法である。
第 8の発明は、請求項 1〜請求項 6のいずれかに記載の網膜刺激用電極部材と、 この電極部材を網膜上に固定する固定部と、 前記電極に結像用の電気信号を伝え る信号送信部とを備えたことを特徴とする人工網膜装置である。
信号送信部とは、 電極に電気信号を送る作用をするものである。 この信号送信 部は、電極から延設された電線を介して眼球の外部に設けることも可能であるが、 信号送信部を網膜刺激用電極部材と一体化して設けて、 眼球内に埋め込む構成と することが好ましい。 その場合には、 信号を発信する回路を使用者の体外に設け ておき、 信号送信部に無線方式 (例えば、 電波、 光信号など) で電気信号を送る 構成とすることが好ましい。
第 8の発明によれば、 信号送信部から伝えられた電気信号が電極を介して網膜 の網膜神経節細胞に伝達されて、 脳内に画像イメージが結像'される。
第 9の発明は、 網膜に電気信号を送信する複数の電極とこれらの電極を所定の 位置に保持する支持部とが設けられた網膜刺激用電極部材と、 この電極部材を網 膜上に固定する固定部と、 前記電極に結像用の電気信号を伝える信号送信部とを 備えた人工網膜装置において、 前記複数の電極は縦横にマトリックス状に配置さ れており、 前記複数の電極の内、 所定の画像パターンに対応する電極には第 1の 刺激電圧を印加するとともに、前記画像パターンの背景領域に対応する電極には、 接地電極に対して前記第 1の刺激電圧とは逆極性の第 2の刺激電圧を印加するこ とを特徴とする。
また、 第 1 0の発明は、 請求項 1〜請求項 6のいずれかに記載の網膜刺激用電 極部材と、 この電極部材を網膜上に固定する固定部と、 前記電極に結像用の電気 信号を伝える信号送信部とを備えた人工網膜装置において、 前記複数の電極は縦 横にマトリ ックス状に配置されており、 前記複数の電極の内、 所定の画像パター ンに対応する電極には第 1の刺激電圧を印加するとともに、 前記画像パターンの 背景領域に対応する電極には、 接地電極に対して前記第 1の刺激電圧とは逆極性 の第 2の刺激電圧を印加することを特徴とする。
網膜双極細胞には、 視細胞への光刺激に対して、 正の電圧パルスを網膜神経節 細胞へ送る O N型と、 負の電圧パルスを網膜神経節細胞へ送る O F F型との二種 類の細胞が存在することが分かっている。 従来の人工網膜装置では、 複数の電極 のうち画像パターンに対応する電極のみに刺激電圧を印加していたため、 画像パ ターンについて十分なコントラストを得ることが困難であった。
そこで、 第 7の発明、 第 9の発明、 及び第 1 0の発明では、 O N型および O F F型の網膜双極細胞を考慮して、 画像パターンに対応する第 1の刺激電圧と、 そ の画像パターンの背景領域に接地電極に対して逆極性の第 2の刺激電圧とを印加 するようにしたので、 脳内に結像される画像パターンに十分なコントラストを与 えることが可能となる。
第 1 1の発明は、 第 1 0の発明において、 前記結像用の電気信号を制御する制 御装置を備えるとともに、 前記固定部が、 前記制御装置に対する電源を供給可能 なコイルを兼ねることを特徴とする。
眼球内に信号送信部と電極部材とを装着した場合には、 眼球の外部から信号送 信部に対して無線で信号を送信することが好ましい。 このような構成とした場合 には、 更に信号送信部と電極部材との間に、 電気信号を制御する制御装置 (例え ば、 マイクロコンピュータ) を設けることが好ましい構成となる。 しかしながら、 その場合には、 制御装置への電源を供給することが困難となるため、 本発明では 固定部がコイルを兼ねる構成とし、 そのコイルに対して誘導電流を発生させるこ とにより、 制御装置に対する電源を供給できるようにした。
第 1 2の発明は、 眼球の前面を開放して開口を形成し、 その開口から眼球の内 部に人工網膜装置を挿入することを特徴とする手術方法である。 また、 このとき の人工網膜装置は、 第 8の発明〜第 1 1の発明のいずれかに記載したものである ことが好ましい。
8の発明〜第 1 iの発明に記載した人工網膜装置を眼球内に埋設する丰術を 受ける人に対しては、 必ずしも眼球の前面にある組織 (例えば、 角膜) を残して おく必要がない。 このため、 眼球の前面を開放して開口を形成することが可能と なり、 そのような術式では、 人工網膜装置の挿入を容易に行うことができる。 図面の簡単な説明
第 1図は、 網膜の側断面図である。
第 2図は、 従来例における網膜刺激用電極部材を網膜に装着したときの側断面 図である。
第 3図は、 従来例において、 複数の電極に刺激電圧をかけたときの印加方法で ある。
第 4図は、 第 1実施形態における網膜刺激用電極部材を網膜に装着したときの 側断面図である。
第 5図は、 第 1実施形態における網膜刺激用電極部材を網膜に装着したときの 拡大側断面図である。
第 6図は、 第 1実施形態における人工網膜装置の構成図である。
第 7図は、 第 1実施形態において、 複数の電極に刺激電圧をかけたときの印加 方法である。
第 8図は、 第 1実施形態において、 複数の電極にかける第 1の刺激電圧 (A) と索 2の刺激電圧 (B ) とを示すタイミングチャートである。
第 9図は、 第 2実施形態における人ェ網膜装置を眼球内に装着したときの側断 面図である。
第 1 0図は、 第 2実施形態における人工網膜装置を眼球内に装着したときの切 開の大きさを示す眼球の前面図である。 第 1 1図は、 第 2実施形態における人工網膜装置の構成図である。 第 1 2図は、 第 3実施形態における人工網膜装置を眼球内に装着したときの側 断面図である。
第 1 3図は、 第 3実施形態における人工網膜装置を眼球内に装着したときの切 開の大きさを示す眼球の前面図である。
第 1 4図は、 第 3実施形態における人工網膜装置の構成図である。
第 1 5図は、 第 3実施形態における人工網膜装置を眼球内に装着した後の外形 を示す図面である。 (A ) は正面図、 (B ) は側面図、 (C ) は背面図である。 第 1 6図は、 第 3実施形態における人工網膜装置を眼球内に装着する前の側面 図である。
なお、 図中の符号は、 それぞれ、 1…網膜刺激用電極部材、 2…電極、 3…支 持部、 3 A…対向面、 4, 2 3…固定部、 5…位置決め突部、 6…接地電極、 7 , 1 1 , 2 1…信号送信部、 2 2…制御装置、 8, 1 0, 2 0…人工網膜装置、 C …網膜双極細胞、 F…網膜である。
·
発明を実施するための最良の形態
次に本発明を実施するためのいくつかの実施形態について、 図面を参照しつつ 詳細に説明する。 しかしながら、 本発明の技術的範囲は、 下記の実施形態によつ て限定されるものではなく、 要旨を変更することなく、 様々に改変して実施する ことができる。 また、 本発明の技術的範囲は、 均等の範囲にまで及ぶものである。
第 1実施形態
図 1〜図 8を参照しつつ、 第 1実施形態を説明する。 図 1には、 健常者におけ る網膜 Fの断面図を示した。 前述のように、 網膜 Fの外側には、 眼球の外面を覆 う強膜 Aがあり、 その内側に順に、 視細胞 B、 網膜双極細胞 C、 および網膜神経 節細胞 Dが存在している。 本実施形態の網膜刺激用電極部材 1 (以下、 「電極部材 1」 と言う。) の適用が予想される網膜色素変性症や加齢性黄班変性症の患者の病 態としては、まず視細胞 Bが変性して光を電気信号に変えることができなくなり、 次に網膜双極細胞 Cや網膜神経節細胞 Dなどの視覚経路が機能しなくなって失明 に至るというものである。 しかしながら、 重度の網膜色素変性症の患者において も、 網膜内層の網膜双極細胞 Cの約 7 0 %、 網膜神経節細胞 Dの約 3 0 %程度が 残されていることが知られている。 電極部材 1は、 網膜神経節細胞 D側から取り 付けられて、 網膜双極細胞 Cに対して直接に電気信号を伝達するものである。 次に、 図 4〜図 7を参照しつつ説明する。 図 4には、 電極部材 1を網膜 Fに装 着したときの様子を示した。 電極部材 1には、 網膜 Fに電気信号を送信する複数 の電極 2と、 これらの電極 2を縦横にマトリックス状に保持する支持部 Sと、 こ の支持部 3を網膜上に固定する固定用ピン 4 (本発明における固定部に該当す る。) とが設けられている。 このうち、 支持部 3は、 絶縁性の樹脂 (例えば、 ケプ トン(CHOMERICS 社製)) により略長方形の薄板状に一体に形成されている。 図 5 に拡大して示すように、 支持部 3の内部には、 所定の位置に電極 2が配置されて いる。 電極 2 (例えばイリジウムから形成することができる。) は、 支持部 3にお いて網膜 F (図 5において下方) に対向する対向面 3 Aから針状に突設されてい る。 また、 電極 2が対向面 3 Aから突設する高さ Lは、 網膜の表面 Eから網膜双 極細胞 Cに到達できる高さとされている。 また、 電極 2は、 その先端部分 2 Aを 除いて全周が絶縁性の樹脂で被覆されている。
また、 支持部 3の四隅には、 その先端 4 Bが対向面 3 Aに突出する固定用ピン 4が設けられている。 この固定用ピン 4は、 例えばセラミック製のものであり、 後端の押圧部 4 Aが支持部 3の上面 3 B側に突設されている。 押圧部 4 Aは、 円 板状とされており、固定用ピン 4の先端 4 B側を強膜 Aの内部に押し込むときに、 押圧操作がなされる。 また、 各固定用ピン 4には、 先端 4 B側から位置決め突部 5が嵌め込まれている。
この位置決め突部 5は合成樹脂により、 固定用ピン 4の外径よりも僅かに小さ い内径を備えた略円筒状に形成されており、 その一面側が対向面 3 Aに接着され ている。 また、 位置決め突部 5の高さ Mは、 電極 2の突設高さ Lに比べて所定の 分だけ高く設定されている (詳細については後述する。)。 なお、 位置決め突部 5 の下端面 5 A (網膜 Fに接触する面側) を四個合わせたときの面積の合計は、 対 向面 3 Aの面積よりも小さく設定されている。
また、 対向面 3 Aにおいて、 電極 2が突設されていないところには、 図 5に示 すように、 接地電極 6が設けられている。 接地電極 6は、 連続体として形成され ており、 対向面 3 A側に一体に取り付けられている。
電極部材 1を網膜上に装着するには、 支持部 3の対向面 3 Aを網膜 Fに対向さ せながら、 電極部材 1全体を所定の位置に配置する。 次に、 固定用ピン 4の先端 4 Bを網膜 Fに差し込み、 さらに先端 4 Bを強膜 Aに押し入れるように押圧部 4 Aを押し付ける。 このとき、 位置決あ突部 5の下端面 5 Aと強膜 Aとの間に、 網 膜 Fが挟み付けられるようにして押し込み操作が進行する。 強膜 Aは適当な強度 を備えているので、 押圧部 4 Aを所定の深さまで押し込むと、 強膜 Aが (挾み付 けられた網膜 F介して) 下端面 5 Aを押し返すことにより、 固定用ピン 4が所定 の深さ位置まで押し込まれたことが分かる。 こうして、 位置決め突部 5の下端面 5 Aの位置決めがなされる。 電極部材 1が所定の位置に装着されると、 位置決め 突部 5の高さ Mと電極 2の突設高さ Lとの差 (M— L ) によって、 電極 2の先端 部分 2 Aは網膜神経節細胞 Dを通り超えて網膜双極細胞 Cに接触することになる。 このようにして電極部材 1を装着した後には、 電極 2を介して画像パターンに 対応する電気信号を網膜双極細胞 Cに送信することにより、 使用者の脳内に画像 イメージを送り込むことができる。 図 6に示すように、 眼球 Pにおいて網膜上に 装着される電極部材 1には、電極 2から延設される電線 Wを介して信号回路 7 (本 発明の信号送信部に該当する。) が接続されており、 使用者 (失明患者) に対して は、 この信号回路 7と電極部材 1とを備えた人工網膜装置 8が取り付けられる。 信号回路 7からは、 複数の電極 2に対して、 画像イメージに対応する所定の電気 信号が発信されるようになつており、 その電気信号が電極 2の先端部分 2 Aから 網膜双極細胞 Cに伝えられる。 . ここで、信号回路 7が複数の電極 2に流す電気信号の処理方法(網膜刺激方法) について、 図 7およぴ図 8を参照しつつ説明する。 図 7では、 縦横に 6 x 6のマ トリックス状に配置された三十六個の電極 2が設けられた電極部材 1を示してい る。 例えば、 全体として十文字の画像パターンを送信しょうとする場合には、 図 中の 「十」 が付された電極 (すなわち、 十文字の画像パターンに対応する電極) に第 1の刺激電圧 (図 8 ( A) ) を印加する。 また、 このとき、 十文字の画像バタ ーンの背景領域に対応する電極 (図中の 「一」 が付された電極) には、 接地電極 に対して第 1の刺激電圧とは逆極性の第 2の刺激電圧 (図 8 ( B ) ) を印加する。 こうして、 「十」 と 「一」 との両極性を備えた刺激電圧が印加されるため、 画像ィ メージのコントラストを向上させることができる。
このように本実施形態によれば、 電極部材 1が網膜上に装着されたときには、 網膜 Fに対しては支持部 3の対向面 3 Aの面積よりも小さな面積を備えた位置決 め突部 5が接触するので、 従来のように支持部 1 0 2の裏面全体が網膜 Fに接触 する場合に比べると、 網膜 Fに対する圧迫の影響を減少できる。
また、 位置決め突部 5と固定用ピン 4とを一つの構成により兼用させているの で、 別々に突設させた場合に比べると、 電極部材 1の構成をより簡易とすること ができる。 加えて、 固定用ピン 4は網膜 Fと接触するので、 応力がかかりやすレ、。 このため、 位置決め突部 5と固定用ピン 4とを兼用させることにより、 最も応力 がかかりやすい位置が固定されるので電極部材 1全体の位置決めが行いやすい。 さらに、 電気信号を与える電極 2は、 所定の高さを備えた針状に形成されてい るので、 網膜双極細胞に対して直接に接触するようにして網膜上に装着される。 このため、 従来の電極 1 0 1のように網膜神経節細胞を介して網膜双極細胞に電 気信号を与える場合に比べると、 実際に与えた画像イメージに近い画像を結像さ せることが可能となる。
また、 電極 2は、 その先端部分 2 Aを除いて全周が絶縁体で被覆されているこ とから、 電気信号が標的となる網膜双極細胞 Cのみに与えられやすいので、 実際 に与えた画像イメージに近い画像を結像させることができる。
また、 電極 2を針状に形成して網膜内に突き刺すように構成しているので、 接 地電極 6を網膜上に接触するように設けることができる。
さらに、 網膜双極細胞には O N型と O F F型との二種類の細胞が存在するとい う特性を考慮し、 複数の電極 2に対して、 画像パターンに対応する第 1の刺激電 圧と、 その画像パターンの背景領域に接地電極 6に対して逆極性の第 2の刺激電 圧とを印加するようにしたので、 脳内に結像される画像パターンに十分なコント ラス トを与えることが可能となる。 また、 副次的な効果として、 従来と同様のコ ントラストを備えた画像パターンを送信するときには (条件によっては、 従来よ りも良好なコントラストを備えた画像パターンを送信する場合でも)、全体として 小さな電流で済むことになり、 網膜 Fに与える電気的なダメージを減少させるこ とができる。
第 2実施形態
次に、 図 9〜図 1 1を参照しつつ、 第 2実施形態について説明する。 まず図 1 1を参照しつつ、 本実施形態の構成について説明する。 人工網膜装置 1 0は、 電 極部材 1と信号送信部 1 1から構成されており、 両部材 1、 1 1は電線 Wにより 接続されている。 この人工網膜装置 1 0は、 眼球 Gの内部に装着されるようにな つている。 信号送信部 1 1は受信器であり、 眼球 Gの外部に設けられる送信機 1 2からの結像用電気信号を無線方式で受信する。 信号送信部 1 1の外径は、 約 5 m m〜約 8 m mであり、 水晶体 Hの内径よりとほぼ同等か、 それよりも僅かに大 きく形成されている。 なお、 送信機 1 2には、 画像信号を作成 ·制御するための 信号制御装置 1 3 (例えば、 C C Dカメラ、 マイクロコンピュータ等を備えてい る) が接続されている。
人工網膜装置 1 0を眼球 Gの内部に装着するには、 図 1 0に示すように、 眼球 前面において、 水晶体 Hの外周に沿うようにして切開することにより、 開口 Jを 形成する。 その開口 Jから眼球 Gの内部に、 電極部材 1及ぴ信号送信部 1 1を順 に装着する。
本実施形態によれば、 送信機 1 2を介して、 信号送信部 1 1から伝えられた電 気信号が電極 2を介して網膜 Fの網膜神経節細胞 Dに伝達されて、 脳内に画像ィ メージが結像される。
第 3実施形態
次に、 図 1 2〜図 1 6を参照しつつ、 第 3実施形態について説明する。 まず、 図 1 4を参照しつつ、本実施形態の構成について説明する。人工網膜装置 2 0は、 電極部材 1と、 この電極部材 1に電気信号を送る信号送信部 2 1と、 その電気信 号を制御する制御装置 (マイクロコンピュータを含む) 2 2と、 固定部 2 3とを 備えている。 信号送信部 2 1は受信器であり、 眼球 Gの外部に設けられる送信機 2 4からの結像用電気信号を無線方式で受信する。 制御装置 2 2には、 制御回路 2 5と電源装置 2 6とが設けられている。 電源装置 2 6は、 例えばリチウム電池 などの二次電池とされている。 また、 固定部 2 3は、 電極部材 1を網膜上に固定 するためのものである (構成については、 後に詳述する。 ) 固定部 2 3は、 コィ ルを兼ねる構成とされており、 外部の一次コイル 2 7から電磁誘導によって送電 される電源を電源装置 2 6に供給する。.なお、送信機 2 4には、画像信号を作成 · 制御するための信号制御装置 2 9 (例えば、 C C Dカメラ、 マイクロコンピュー タ等を備えている) が接続されている。 また、 信号制御装置 2 9は、 一次コイル 2 7の制御も行う。
電極部材 1と信号送信部 2 1と制御装置 2 2は、 図 1 5及び図 1 6に示すよう に、 略円筒状の筒状体 2 8として一体に形成されている。 筒状体 2 8は、 図 1 4 に示すように、 ちょうど眼球 Gの内部に収容可能な程度の大きさとされている。 すなわち、 筒状体 2 8の長さは、 眼球 Gの黄班部から虹彩裏面までの長さとほぼ 同等とされており、 筒状体 2 8の外径は、 眼球 Gの前部において、 強膜と角膜と の境界部分の径ょりも僅かに小さくされている。
また、 四個の固定部 2 3は、 筒状体 2 8の前半部分 (眼球 G内において前半球 部分に位置する部分。 毛様体周辺部の内面。 ) の外周面の周方向に沿って、 ほぼ 均等に配置されており、 それぞれ外方に張り出されている。 各固定部 2 3は、 適 度な弾性を備えた部材 (例えば形状記憶合金) から構成されている。 固定部 2 3 は、 その両端縁が筒状体 2 8の外表面に連結されており、 ブリッジ状とされてい る。 固定部 2 3の前部 2 3 Aは、 眼球 G内壁の形状に合わせて、 円弧状に形成さ れている。 また、 固定部 2 3は、 人工網膜装置 2 0が眼球 Gの内部に装着される 前には、 筒状体 2 8の外表面に沿うようにして折り畳まれている。 一方、 人工網 膜装置 2 0が眼球 Gの内部に装着された後には、図 1 2及び図 1 5に示すように、 筒状体 2 8の外径方向に張り出すと共に、 眼球 Gにおいて前半球部分の内壁に接 触している。 こうして、 固定部 2 3が筒状体 2 8を眼球 G内の後方に押圧するこ とにより、 電極部材 1の支持部 3を網膜 F側に押圧することで、 支持部 3が網膜 F上の所定の位置に固定される。
上記のように構成された人工網膜装置 2 0を眼球 Gの内部に装着するには、 図 1 3に示すように、 眼球 Gの前面を開放して開口 Kを形成し、 その開口 Kから眼 球 Gの内都に人工網膜装置 2 0を挿入する。 なお、 人工網膜装置 2 0の眼球 Gへ の埋め込み手術の際には、 固定部 2 3が眼球 G内壁に接触する位置よりも後方側 を内周面に沿ってレーザ処理しておくことが好ましい。 そのようなレーザ光凝固 処理により、 固定部 2 3による網膜剥離が発生したとしても、 黄班部方向への進 行を規制できる。
本実施形態によれば、 固定部 2 3がコイルを兼ねる構成とされており、 そのコ ィルに対して誘導電流を発生させることにより、 制御装置 2 2に対する電源を供 給できる。
また、 眼球 Gの前面を開放して開口 Kを形成する術式を用いることにより、 人 ェ網膜装置 2 0の揷入を容易に行うことができる。
なお、 本実施形態では、 固定部 2 3はコイルを兼ねる構成とされているが、 こ の他の変形例として、 アースを兼ねる構成としてもよい。 また、 本実施形態では、 固定部 2 3が支持部 3の位置決めを行う構成とされているので、 電極部材 1の固 定用ピン 4は設ける必要はない。

Claims

請 求 の 範 囲
1 . 網膜に電気信号を送信する複数の電極と、 これらの電極を所定の位置に保 持する支持部とが設けられた網膜刺激用電極部材であって、
前記支持部において網膜に対向する対向面には、 位置決め突部が設けられてい ることを特徴とする網膜刺激用電極部材。
2 . 前記位置決め突部は、 前記支持部を網膜上に固定する固定部を兼ねること を特徴とする請求項 1に記載の網膜刺激用電極部材。
3 . 網膜に電気信号を送信する複数の電極と、 これらの電極を所定の位置に保 持する支持部とが設けられた網膜刺激用電極部材であって、
前記電極は、 前記支持部において網膜に対向する対向面から、 網膜の網膜双極 細胞に到達する高さを備えた針状に突設されていることを特徴とする網膜刺激用 電極部材。
4 . 請求項 1及び請求項 2のいずれかに記載の網膜刺激用電極部材において、 前記電極は、 前記支持部において網膜に対向する対向面から、 網膜の網膜双極細 胞に到達する高さを備えた針状に突設されていることを特徴とする網膜刺激用電 極部材。
5 . 前記電極は、 その先端部分を除いて全周を絶縁体で被覆したことを特徴と する請求項 3及び請求項 4のいずれかに記載の網膜刺激用電極部材。
6 . 前記支持部の対向面には、 接地電極が設けられていることを特徴とする請 求項 3〜請求項 5のいずれかに記載の網膜刺激用電極部材。
7 . 縦横にマトリックス状に配置された網膜刺激用の複数の電極に対して、 所 定の画像パターンに対応する電極には第 1の刺激電圧を印加するとともに、 前記 画像パターンの背景領域に対応する電極には、 接地電極に対して前記第 1の刺激 電圧とは逆極性の第 2の刺激電圧を印加することを特徴とする網膜刺激方法。
8 . 請求項 1〜請求項 6のいずれかに記載の網膜刺激用電極部材と、 この電極 部材を網膜上に固定する固定部と、 前記電極に結像用の電気信号を伝える信号送 信部とを備えたことを特徴とする人工網膜装置。
9 . 網膜に電気信号を送信する複数の電極とこれらの電極を所定の位置に保持 する支持部とが設けられた網膜刺激用電極部材と、 こ'の電極部材を網膜上に固定 する固定部と、 前記電極に結像用の電気信号を伝える信号送信部とを備えた人工 網膜装置において、
前記複数の電極は縦横にマトリックス状に配置されており、 前記複数の電極の 内、所定の画像パターンに対応する電極には第 1の朿 I]激電圧を印加するとともに、 5 前記画像パターンの背景領域に対応する電極には、 接地電極に対して前記第 1の 刺激電圧とは逆極性の第 2の刺激電圧を印加することを特徴とする人工網膜装置。
• 1 0 . 請求項 1〜請求項 6のいずれかに記載の網膜刺激用電極部材と、 この電 極部材を網膜上に固定する固定部と、 前記電極に結像用の電気信号を伝える信号 送信部とを備えた人工網膜装置において、
10 前記複数の電極は縦横にマトリックス状に配置されており、 前記複数の電極の 内、所定の画像パターンに対応する電極には第 1の刺激電圧を印加するとともに、 前記画像パターンの背景領域に対応する電極には、 接地電極に対して前記第 1の 刺激電圧とは逆極性の第 2の刺激電圧を印加することを特徴とする人工網膜装置 c
1 1 . 前記結像用の電気信号を制御する制御装置を備えるとともに、 前記固定 15 部が、 前記制御装置に対する電源を供給可能なコイルを兼ねることを特徴とする 請求項 1 0に記載の人工網膜装置。
1 2 . 眼球の前面を開放して開口を形成し、 その開口から眼球の内部に人工網 膜装置を挿入することを特徴とする手術方法。
1 3 . 前記人工網膜装置は、 請求項 8〜請求項 1 1のいずれかに記載したもの 0 であることを特徴'とする請求項 1 2に記載の手術方法。
PCT/JP2002/001340 2001-03-30 2002-02-15 Element a electrodes de stimulation retinienne, et dispositif retinien artificiel utilisant l'element a electrodes WO2002080816A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002578855A JP4130589B2 (ja) 2001-03-30 2002-02-15 網膜刺激用電極部材、およびその電極部材を用いた人工網膜装置等
US10/469,559 US7158836B2 (en) 2001-03-30 2002-02-15 Electrode member for retinal stimulation, and artificial retinal device using the electrode member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-101483 2001-03-30
JP2001101483 2001-03-30

Publications (1)

Publication Number Publication Date
WO2002080816A1 true WO2002080816A1 (fr) 2002-10-17

Family

ID=18954785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001340 WO2002080816A1 (fr) 2001-03-30 2002-02-15 Element a electrodes de stimulation retinienne, et dispositif retinien artificiel utilisant l'element a electrodes

Country Status (3)

Country Link
US (1) US7158836B2 (ja)
JP (1) JP4130589B2 (ja)
WO (1) WO2002080816A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6976998B2 (en) 2002-01-17 2005-12-20 Massachusetts Institute Of Technology Minimally invasive retinal prosthesis
WO2008150005A1 (en) * 2007-06-04 2008-12-11 Sharp Kabushiki Kaisha Irox nanowire neural sensor
JP2009501030A (ja) * 2005-07-14 2009-01-15 アイエムアイ インテリジェント メディカル インプランツ アクチエンゲゼルシャフト 外眼網膜上移植組織

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4138407B2 (ja) * 2002-08-30 2008-08-27 株式会社ニデック 眼内埋殖装置
JP4204066B2 (ja) * 2002-12-05 2009-01-07 保雄 田野 人工視覚システム
US7321795B2 (en) * 2003-03-24 2008-01-22 Les Bogdanowicz Compositions for electric stimulation of the eye
US8457752B2 (en) * 2005-09-16 2013-06-04 Second Sight Medical Products, Inc. Neural stimulation for increased contrast
US20070093877A1 (en) * 2005-10-26 2007-04-26 Beecham Michael C System for maintaining normal health of retinal cells and promoting regeneration of retinal cells
DE102005056771A1 (de) * 2005-11-28 2007-08-02 Gerding, Heinrich, Prof. Dr. Retina Implantat zur elektrischen Stimulation der Netzhaut
US8190266B2 (en) * 2006-02-15 2012-05-29 Dohey Eye Institute Wide-field retinal prosthesis
US20070191910A1 (en) * 2006-02-16 2007-08-16 Qiushi Ren Visual prosthesis
DE102006015113A1 (de) * 2006-03-31 2007-10-04 Imi Intelligent Medical Implants Ag Vorrichtung zur reversiblen Befestigung eines Implantats im Auge
DE102006048819A1 (de) * 2006-10-10 2008-04-17 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Vorrichtung mit einem Grundkörper
JP4472727B2 (ja) * 2007-06-14 2010-06-02 オリンパスメディカルシステムズ株式会社 内視鏡装置
US8489206B2 (en) * 2007-07-16 2013-07-16 Francisco José Arriaza Muñoz Device for neuronal therapies
US8718784B2 (en) * 2010-01-14 2014-05-06 Nano-Retina, Inc. Penetrating electrodes for retinal stimulation
US8442641B2 (en) 2010-08-06 2013-05-14 Nano-Retina, Inc. Retinal prosthesis techniques
US8150526B2 (en) * 2009-02-09 2012-04-03 Nano-Retina, Inc. Retinal prosthesis
US8428740B2 (en) 2010-08-06 2013-04-23 Nano-Retina, Inc. Retinal prosthesis techniques
US8706243B2 (en) 2009-02-09 2014-04-22 Rainbow Medical Ltd. Retinal prosthesis techniques
JP5545962B2 (ja) * 2010-02-16 2014-07-09 株式会社ニデック 視覚再生補助装置
US8530265B2 (en) 2010-10-27 2013-09-10 National Tsing Hua University Method of fabricating flexible artificial retina devices
US8954156B2 (en) 2010-10-27 2015-02-10 National Tsing Hua University Methods and apparatuses for configuring artificial retina devices
US9114004B2 (en) 2010-10-27 2015-08-25 Iridium Medical Technology Co, Ltd. Flexible artificial retina devices
US8571669B2 (en) 2011-02-24 2013-10-29 Nano-Retina, Inc. Retinal prosthesis with efficient processing circuits
US8613135B2 (en) 2011-05-06 2013-12-24 National Tsing Hua University Method for non-planar chip assembly
US9155881B2 (en) 2011-05-06 2015-10-13 Iridium Medical Technology Co, Ltd. Non-planar chip assembly
US9370417B2 (en) 2013-03-14 2016-06-21 Nano-Retina, Inc. Foveated retinal prosthesis
US9474902B2 (en) 2013-12-31 2016-10-25 Nano Retina Ltd. Wearable apparatus for delivery of power to a retinal prosthesis
US9331791B2 (en) 2014-01-21 2016-05-03 Nano Retina Ltd. Transfer of power and data
US10226625B2 (en) 2016-11-03 2019-03-12 Nano Retina Ltd. Surgical techniques for implantation of a retinal implant
US10272244B2 (en) * 2016-11-03 2019-04-30 Nano Retina Ltd. Retinal implant fixation
KR102095437B1 (ko) 2017-12-06 2020-04-01 재단법인대구경북과학기술원 풍선 타입 망막 자극장치 및 이의 제조방법
US10583283B2 (en) 2018-01-31 2020-03-10 Nano-Retina, Inc. Retinal implant with image registration
EP3860703A1 (en) 2018-10-01 2021-08-11 Biovisics Medical, Inc. System and methods for controlled electrical modulation for vision therapy
WO2020112980A2 (en) 2018-11-30 2020-06-04 Biovisics Medical, Llc Head worn apparatuses for vision therapy
EP3952979A1 (en) 2019-04-10 2022-02-16 Biovisics Medical, Inc. Systems and interfaces for ocular therapy
EP3983055A1 (en) 2019-06-14 2022-04-20 Biovisics Medical, Inc. Wearable medical device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016633A (en) * 1989-08-08 1991-05-21 Chow Alan Y Artificial retina device
US5397350A (en) * 1993-05-03 1995-03-14 Chow; Alan Y. Independent photoelectric artificial retina device and method of using same
US5836996A (en) * 1996-12-30 1998-11-17 Doorish; John F. Artificial retina

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628933A (en) * 1985-07-23 1986-12-16 Michelson Robin P Method and apparatus for visual prosthesis
US5024223A (en) * 1989-08-08 1991-06-18 Chow Alan Y Artificial retina device
US5556423A (en) * 1993-05-03 1996-09-17 Alan Y. Chow Independent photoelectric artificial retina device and method of using same
US5865839A (en) * 1996-12-30 1999-02-02 Doorish; John F. Artificial retina
US5935155A (en) * 1998-03-13 1999-08-10 John Hopkins University, School Of Medicine Visual prosthesis and method of using same
US8180453B2 (en) * 1999-03-24 2012-05-15 Second Sight Medical Products, Inc. Electrode array for neural stimulation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016633A (en) * 1989-08-08 1991-05-21 Chow Alan Y Artificial retina device
US5397350A (en) * 1993-05-03 1995-03-14 Chow; Alan Y. Independent photoelectric artificial retina device and method of using same
US5836996A (en) * 1996-12-30 1998-11-17 Doorish; John F. Artificial retina

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6976998B2 (en) 2002-01-17 2005-12-20 Massachusetts Institute Of Technology Minimally invasive retinal prosthesis
JP2009501030A (ja) * 2005-07-14 2009-01-15 アイエムアイ インテリジェント メディカル インプランツ アクチエンゲゼルシャフト 外眼網膜上移植組織
WO2008150005A1 (en) * 2007-06-04 2008-12-11 Sharp Kabushiki Kaisha Irox nanowire neural sensor

Also Published As

Publication number Publication date
US20040078064A1 (en) 2004-04-22
US7158836B2 (en) 2007-01-02
JP4130589B2 (ja) 2008-08-06
JPWO2002080816A1 (ja) 2004-07-29

Similar Documents

Publication Publication Date Title
WO2002080816A1 (fr) Element a electrodes de stimulation retinienne, et dispositif retinien artificiel utilisant l'element a electrodes
JP6746767B2 (ja) 埋込型マイクロ刺激ユニット
US20190344077A1 (en) Stimulation devices and methods
JP4138407B2 (ja) 眼内埋殖装置
US8265764B2 (en) Artificial vision system
JP3599237B2 (ja) 網膜インプラントおよびその製造方法
JP4913132B2 (ja) 互いに別個の中央電極アレイと周辺電極アレイを備えた人工網膜
JP3926564B2 (ja) 人工眼
EP2219728B1 (en) Electrode array for even neural pressure having multiple attachment points
US7818064B2 (en) Fitting of brightness in a visual prosthesis
US20060095108A1 (en) Extraocular device
US7974699B2 (en) Vision regeneration assisting device
US7398124B2 (en) Visual restoration aiding device
JP2013542838A (ja) ドライアイを治療するためのシステムおよび方法
JP2005279001A (ja) 視覚再生補助装置
JP2003230590A (ja) 眼内埋埴装置
JP2004298299A (ja) 視覚再生補助装置
JP2003230581A (ja) 眼内埋埴装置
JP2005080360A (ja) 視覚再生補助装置
JP4188034B2 (ja) 眼内埋殖装置
JP5284014B2 (ja) 視覚再生補助装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002578855

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10469559

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase