WO2002081397A2 - Method for producing mullite - Google Patents

Method for producing mullite Download PDF

Info

Publication number
WO2002081397A2
WO2002081397A2 PCT/DE2002/001273 DE0201273W WO02081397A2 WO 2002081397 A2 WO2002081397 A2 WO 2002081397A2 DE 0201273 W DE0201273 W DE 0201273W WO 02081397 A2 WO02081397 A2 WO 02081397A2
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
mullite
sio
powder
pasty
Prior art date
Application number
PCT/DE2002/001273
Other languages
German (de)
French (fr)
Inventor
Hans Schmidt
Hans-Joachim Kleebe
Günter Ziegler
Original Assignee
Universität Bayreuth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universität Bayreuth filed Critical Universität Bayreuth
Priority to DE10291464T priority Critical patent/DE10291464D2/en
Publication of WO2002081397A2 publication Critical patent/WO2002081397A2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/02Pretreated ingredients
    • C03C1/026Pelletisation or prereacting of powdered raw materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/214Al2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions

Definitions

  • the invention relates to a method for producing mullite and a mullite component.
  • Aluminum silicates are understood to mean compounds which have different proportions of Al 2 O 3 and SiO 2 .
  • Aluminum silicates represent borderline cases of aluminum salts.
  • the invention relates to minerals in which aluminum also occupies silicon lattice sites. These compounds are called aluminosilicates, such as. B. zeolites, feldspars, inosilicates, andalusite, sillimariite, cyanite and mullite.
  • mullite the composition of which can be expressed as a series with increasing Al 2 ⁇ 3: Si0 2 ratio. Most multilites have compositions of 3 A1 2 0 3 • 2 SiC »2 to 2 Al 2 O3 • Si0.
  • Mullite has a defect niktiir, which can be seen as a disordered Sillimanit structure, in which 19% of the bridging oxygen between the [A10 4 ] “ and [Si ⁇ 4 ] " tetrahedra is missing.
  • Natural mullite is only present in a negligible amount and therefore mullite is produced synthetically. These raw materials are used to manufacture ceramic components. Structural and flashing applications are also in the field of high performance ceramic Materials. However, mullite can also be found in refractory materials, glass ceramics and as a support material for catalysts for the afterburning of car exhaust gases. In addition, mullite forms the essential crystalline component of porcelain and, with its fine-felted crystalline aggregates, brings about the strength of the porcelain body. Firebricks are therefore more useful as refractory material the higher their mullite content.
  • the raw materials aluminum oxide and silicon dioxide have to be reacted with one another in a certain ratio. It is known to carry out the formation of the mullite in situ during the production of a ceramic component by means of the so-called reaction sinter.
  • Manufacturing processes are known from the prior art, according to which Al 2 ⁇ 3 powder with Si0 2 powder and Al 2 ⁇ 3 powder with SiC> 2 precursors are converted to mullite according to powder-ceramic molding methods.
  • the synthetic mullite is produced by reacting reactant mixtures and powder mixtures, powder from the sol-gel process or powder from co-precipitation of salt solutions.
  • powdered starting materials or a powdered starting material for the higher mass part (AI 2 O3) and a liquid precursor for the lower mass part (Si0 2 ) is disadvantageous, since in both cases only powder-ceramic decay for the manufacture of the components are possible.
  • Powder ceramic processes lead to simple geometries with mostly thick layers. Extremely thin-walled parts in the micrometer range with any geometry can either not be produced at all or only with great effort.
  • the object of the invention is to propose a process for the production of aluminum silicates, preferably mullite, which also makes it possible to enable complicated or complex shapes.
  • a mullite component is to be proposed that is easy to manufacture in complex shapes.
  • This object is achieved with a process for producing aluminum silicates, preferably mullite, in which silicon dioxide (SiO 2 ) is subjected to a sintering process together with an AbC-VPrecursor.
  • silicon dioxide SiO 2
  • Al 2 O 3 precursor leads to a liquid, pasty or soluble precursor for the mass-wise higher A ⁇ CV portion, which enables shaping without the need for complex powder ceramic processes (powder technology) that restrict the formation. Due to the manufacturing process on which the invention is based, complicated or complex shapes, such as those which can be achieved in glass processing (quartz glass, silicon dioxide), are also suitable for producing multi-parts.
  • the invention is based on the knowledge that, by using non-powdery starting materials, a process for In-situ production of mullite is to be provided, in which a mullite body can be produced starting from the basic shape of a powder-free formable body by melting SiCvGlass with liquid or soluble Al 2 0 3 precursors. Sintering actually means only physical-chemical reactions in the Thennian range from approx. 10% below the SMP of the substances in question (calculated in ° C). However, the conversion of the precursor into Al 2 ⁇ 3 precursors and then ultimately into the Al 2 O 3 takes place at much lower temperatures.
  • silicon dioxide is used as the body.
  • Geometrically complex structures which are obtained, for example, by thermal treatment of amorphous silicon dioxide glass in the form of a solid base body, can thus be converted into mullite parts.
  • the prefabricated silicon dioxide body is coated with a liquid or soluble Al 2 O 3 precursor.
  • the coated Grand body via a hydrolysis and / or Wännebe is andlung in Al 2 O 3 is converted, and in-situ formed Al 2 O 3 2 base in mullite is converted during the reaction-sintering process with the SiO, so that Si0 2 - tofonnt Fonn emotions as Mullitbauteil can be.
  • the invention thus makes it possible to produce mullite bodies with a complicated or complex geometry.
  • the new method is based on the replacement of powdery raw materials by using suitable liquid, pasty or soluble Al 2 ⁇ 3 precursors for the higher proportion of Al 2 ⁇ 3 in mullite and the use of Si0 2 in the form of a glassy substance, for which the known and generally used forming processes, such as melting at relatively low temperatures, can be used for the production of complicated or complex geometries.
  • a method variant provides that an amorphous Si0 2 shaped body is doped or coated with a liquid A Os precursor before sintering.
  • This enables the arbitrary shaping of a component by melting glass as the raw material of the SiO 2 portion in the mullite, the production of thin mullite layers by removing an SiO 2 carrier body by applying a previously calculated mass of liquid, pasty or dissolved precursor for the Al 2 O 3 content in the mullite and the subsequent reaction sintering as well as the relatively low temperature of the molding raw material Si0 2 compared to the raw material ⁇ -Al 2 03 (mp. 2045 ° C.).
  • the method thus makes it possible to use known glass melting techniques for the formation of the later mullite component or carrier component, even though the raw material ⁇ -Al 2 03 cannot be melted under normal conditions.
  • SiO 2 moldings can also be embedded in a pasty AbCV precursor before sintering.
  • Organo-aluminum compounds are particularly suitable as Al 2 C> 3 precursors.
  • Possible Al 2 0 3 precursors are Al (-OR) 3 , A1- (NR) 3 , Al-R 3 .
  • R stands for unbranched, branched, saturated or unsaturated hydrocarbon radicals with 1 to 20 C atoms.
  • alkyl groups which can optionally be branched and optionally unsaturated. More preferred are methyl, Ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl and tert-butyl, particularly preferably ethyl and propyl.
  • Preferred precursors are ethyl aluminum alcoholate and propyl aluminum alcoholate. These precursors can be converted into oxidic Al 2 O 3 precursors by hydrolysis and / or heat treatment.
  • the object on which the invention is based is also achieved with a mullite component which has a glass body made of SiC and a surface made of mullite.
  • FIG. 1 shows a sphere made of amorphous SiO 2 , which has been coated with a liquid Ai 2 O 3 precursor for removal,
  • Figure 2 is a ball made of amorphous SiO 2 , which in a pasty AJ. 2 ⁇ 3 precursor was embedded and
  • FIG. 3 shows an enlargement of a detail from FIG. 2.
  • the figures show examples of completion rankings from different experiments.
  • the ball made of amorphous SiO 2 shown in FIG. 1 was next coated with a liquid Al 2 ⁇ 3 precursor for removal.
  • the subsequent thennisc e treatment of the coated ball led in situ to the formation of Al 2 O 3 from the precursor and then, at higher temperatures, to the formation of a thin mullite layer of approximately 10 ⁇ m on the SiO 2 base.
  • the ball of amorphous SiO 2 shown in FIGS. 2 and 3 was first embedded in a pasty Al 2 O 3 precursor and treated thermally.
  • the thermal treatment led to the formation of Al 2 O 3 from the precursor in situ and then, at higher temperatures, to the conversion of at least part of the SiO 2 granules to mullite (reaction sintering).
  • the SiO 2 granules can be produced using conventional thermal treatment methods for glass.
  • the solid SiO 2 is doped or coated with liquid, pasty or soluble precursors of Al 2 O 3 .
  • the Al 2 O 3 component of the mullite is produced from an AbOs precursor by hydrolysis or thermal decomposition before or during the stripping process for reaction sintering.
  • Known and commercially available organoaluminium compounds, such as, for example, are suitable as bOs precursors.
  • B. alumini nalkoholate which are known from sol-gel technology and can be used directly as a liquid.
  • the precursors can also be mixed with fine A ⁇ Os powders to form a pasty mass or dissolved in suitable solvents.
  • the reaction sintering process takes place through a defined pickling process. The formation of mullite can be controlled by selecting the test parameters.
  • the base body made of SiO 2 can, for example, be spheroidal, rod-shaped, roller-shaped, fibrous, platelet-shaped, dense or porous or in the form of a hollow or solid part. It is doped with an aluminum-inorganic compound on the surface or by infiltration of open porosity.
  • the subsequent conversion to mullite takes place by hydrolysis of the Al 2 ⁇ precursor to Al (OH) 3 and subsequent heat treatment for conversion to Al 2 O3 during the thermal compression (sintering cycle).
  • Al 2 ⁇ 3 precursors can be hydrolyzed with water and thus converted into Al hydroxides (precursors) (Al (OH) 3 , AIO (OH)).
  • These precursors change during the heat treatment (up to 800 ° C) due to loss of water and / or the organic fraction via various modifications of Al 2 O3 (up to 1100 ° C) ultimately between 1100 ° C and 1200 ° C in ⁇ - A1 2 0 3 (Korand). Between 1200 ° C and 1600 ° C, ⁇ - A1 2 0 3 reacts with Si0 2 to mullite.
  • porous SiC> 2 which is blow-dried over glass bubbles, was placed in a solution of Al-alcoholate.
  • the hydrolysis reaction is completed by adding water in portions.
  • the organometallic compound in is treated with a heat treatment in air of up to 800 ° C Al 2 O 3 converted and at temperatures between 1400 and 1600 ° C the conversion to mullite takes place.

Abstract

Mullite is mainly produced from Al2O3 powder and SiO2 powder by sintering. Powder ceramic methods or casting techniques are employed for shaping. In order to enable complex shaping, a method is disclosed whereby SiO2 is sintered together with an Al2O3 precursor. The Al2O3 precursor can exist in a liquid, pasty or soluble form and SiO2 can be used as a shaped body which is obtained by means of known thermal hyalotechnic shaping processes. This enables the production or second casting of components having complicated geometrical structures and expands the range of use of said materials for structural and functional purposes such as in microsystem technology and electronic components.

Description

Verfahren zur Herstellung von Mullit und Mullitbauteil Process for the production of mullite and mullite component
Die Erfindung betrifft ein Verfahren zur Herstellung von Mullit und ein Mullitbauteil.The invention relates to a method for producing mullite and a mullite component.
Unter Aluminiumsilikaten werden Verbindungen verstanden, die unter- schiedliche Anteile von AI2O3 und SiÜ2 aufweisen. Aliuniniuinsilikate stellen Grenzfälle der Aluminiumsalze dar. Insbesondere betrifft die Erfindung Minerale, in denen Aluminium auch Siliziumgitterplätze besetzt. Diese Verbindungen nennt man Alumosilikate, wie z. B. Zeolithe, Feldspäte, Inosilika- te, Andalusit, Sillimariit, Cyanit und Mullit. Hierbei ist vor allem auf das Mullit zu verweisen, dessen Zusammensetzung als eine Reihe mit zunehmendem Al2θ3:Si02- Verhältnis ausgedrückt werden kann. Die meisten Mul- lite haben Zusammensetzungen von 3 A1203 • 2 SiC»2 bis 2 AI2O3 • Si0 . Mullit hat eine Defektstniktiir, die man als fehlgeordnete Sillimanitstraktur auffassen kann, in der 19 % der Brücken-Sauerstoffe zwischen den [A104]" und [Siθ4]"Tetraedern fehlen.Aluminum silicates are understood to mean compounds which have different proportions of Al 2 O 3 and SiO 2 . Aluminum silicates represent borderline cases of aluminum salts. In particular, the invention relates to minerals in which aluminum also occupies silicon lattice sites. These compounds are called aluminosilicates, such as. B. zeolites, feldspars, inosilicates, andalusite, sillimariite, cyanite and mullite. In particular, reference should be made to mullite, the composition of which can be expressed as a series with increasing Al 2 θ3: Si0 2 ratio. Most multilites have compositions of 3 A1 2 0 3 • 2 SiC »2 to 2 Al 2 O3 • Si0. Mullite has a defect niktiir, which can be seen as a disordered Sillimanit structure, in which 19% of the bridging oxygen between the [A10 4 ] " and [Siθ 4 ] " tetrahedra is missing.
Natürliches Mullit ist nur in nicht nennenswerter Menge vorhanden und deshalb wird Mullit synthetisch hergestellt. Diese Rohstoffe werden zur Herstellung von Keramikbauteilen eingesetzt. Strukturelle und flinktionelle Anwendungen liegen auch auf dem Gebiet der keramischen Hochleistungs- Werkstoffe. Mullit ist jedoch auch in feuerfesten Materialien, Glaskeramiken und als Trägeπnaterial für Katalysatoren zur Nachverbrennung von Autoab- gasen zu finden. Außerdem bildet Mullit die wesentliche kristalline Komponente von Porzellan und bewirkt mit seinen feinfilzigen kristallinen Aggrega- ten die Festigkeit des Porzellanscherbens. Schamottsteine sind daher als feuerfester Werkstoff um so brauchbarer je höher ihr Mullitgehalt ist.Natural mullite is only present in a negligible amount and therefore mullite is produced synthetically. These raw materials are used to manufacture ceramic components. Structural and flashing applications are also in the field of high performance ceramic Materials. However, mullite can also be found in refractory materials, glass ceramics and as a support material for catalysts for the afterburning of car exhaust gases. In addition, mullite forms the essential crystalline component of porcelain and, with its fine-felted crystalline aggregates, brings about the strength of the porcelain body. Firebricks are therefore more useful as refractory material the higher their mullite content.
Um Mullitbauteile herzustellen, müssen die Rohstoffe Aluminiumoxid und Siliziumdioxid in einem bestimmten Verhältnis miteinander zur Reaktion gebracht werden. Es ist bekannt, die Bildung des Mullits in-situ bei der Her- Stellung eines keramischen Bauteils durch das sogenannte Reaktionssintera durchzufxihren. Aus dem Stand der Technik sind Herstellungsverfahren bekannt, nach denen Al2θ3-Pulver mit Si02-Pulver sowie Al2θ3-Pulver mit SiC>2-Precursoren nach pulverkeramischen Fonngebimgsveifahren zu Mullit umgesetzt werden. Die Herstellung des synthetischen Mullits erfolgt dabei durch Umsetzung von Reaktandengemischen sowie Pulvermischlingen, Pulver aus dem Sol-Gel-Verfahren oder Pulver aus Cofällungen von Salzlösungen. Diese Herstellungsverfahren fuhren zu bestimmten Möglichkeiten der Formgebung über die Pulverroute (z. B. Schlickergießen, Presstechnik) oder über Gießtecliniken von Fluiden (z. B. Gel-Casting).In order to produce mullite components, the raw materials aluminum oxide and silicon dioxide have to be reacted with one another in a certain ratio. It is known to carry out the formation of the mullite in situ during the production of a ceramic component by means of the so-called reaction sinter. Manufacturing processes are known from the prior art, according to which Al 2 θ3 powder with Si0 2 powder and Al 2 θ3 powder with SiC> 2 precursors are converted to mullite according to powder-ceramic molding methods. The synthetic mullite is produced by reacting reactant mixtures and powder mixtures, powder from the sol-gel process or powder from co-precipitation of salt solutions. These manufacturing processes lead to certain possibilities of shaping via the powder route (e.g. slip casting, press technology) or via casting clinics of fluids (e.g. gel casting).
Die Verwendung von pulverförmigen Ausgangsstoffen oder einem pulverförmigen Ausgangsstoff für den höheren Massenteil (AI2O3) und einem flüssigen Precursor für den niedrigeren Massenteil (Si02) ist nachteilig, da in beiden Fällen für die Herstellung der Bauteile nur pulverkeramische Verfall- ren in Frage kommen. Pulverkeramische Verfahren führen jedoch zu einfachen Geometrien bei meist großer Sc ichtdicke. Extrem dünnwandige Teile im Mikrometerbereich mit beliebiger Geometrie können entweder gar nicht oder nur unter sehr hohem Aufwand hergestellt werden.The use of powdered starting materials or a powdered starting material for the higher mass part (AI 2 O3) and a liquid precursor for the lower mass part (Si0 2 ) is disadvantageous, since in both cases only powder-ceramic decay for the manufacture of the components are possible. Powder ceramic processes, however, lead to simple geometries with mostly thick layers. Extremely thin-walled parts in the micrometer range with any geometry can either not be produced at all or only with great effort.
Der Erfindung liegt die Aufgabe zugmnde, ein Verfaliren zur Herstellung von Aliuniniumsilikaten, vorzugsweise von Mullit, vorzuschlagen, das es erlaubt, auch komplizierte oder komplexe Formgebungen zu ermöglichen. Weiterliin soll ein Mullitbauteil vorgeschlagen werden, das in komplexen Formen einfach herstellbar ist.The object of the invention is to propose a process for the production of aluminum silicates, preferably mullite, which also makes it possible to enable complicated or complex shapes. Next, a mullite component is to be proposed that is easy to manufacture in complex shapes.
Diese Aufgabe wird mit einem Verfaliren zur Herstellung von Aluminiumsi- likaten, vorzugsweise Mullit, gelöst, bei dem Siliziumdioxid (Si02) zusammen mit einem AbC-VPrecursor einem Sinterprozess unterzogen wird.This object is achieved with a process for producing aluminum silicates, preferably mullite, in which silicon dioxide (SiO 2 ) is subjected to a sintering process together with an AbC-VPrecursor.
Die Verwendung eines Al2θ3-Precursors führt zu einem flüssigen, pastösen oder löslichen Precursor für den massenmäßig höheren A^CVAnteil, der eine Formgebung unter Verzicht auf aufwendige und für die Foπngebung einschränkende pulverkeramische Verfaliren (Pulvertechnologie) ermöglicht. Durch den der Erfindung zugrunde liegenden Herstellungsprozess sind auch komplizierte oder komplexe Formgebungen, wie sie sich bei der Glasbearbeitung (Quarzglas, Siliziumdioxid) erzielen lassen zur Herstellung von Mul- litteilen geeignet.The use of an Al 2 O 3 precursor leads to a liquid, pasty or soluble precursor for the mass-wise higher A ^ CV portion, which enables shaping without the need for complex powder ceramic processes (powder technology) that restrict the formation. Due to the manufacturing process on which the invention is based, complicated or complex shapes, such as those which can be achieved in glass processing (quartz glass, silicon dioxide), are also suitable for producing multi-parts.
Der Erfindung liegt die Erkenntnis zugrunde, dass durch die Verwendung nicht notwendigerweise piüverförmiger Ausgangsstoffe ein Verfahren für die in-situ-Herstellung von Mullit bereitzustellen ist, bei dem ausgehend von der Grundform eines pulverlos herstellbaren Fonnkörpers über Schmelzen von SiCvGlas mit flüssigen oder löslichen Al203-Precursoren ein Mullitkörper erzeugt werden kann. Sintern bezeichnet ün eigentlichen Sinn nur physika- lisch-chemische Reaktionen im thennischen Bereich ab ca. 10 % unterhalb des SMP der betreffenden Substanzen (in °C gerechnet). Die Umwandlung des Precursors in Al2θ3-Vorstufen und dann letztlich in das AI2O3 erfolgt jedoch bereits bei wesentlich niedrigeren Temperaturen.The invention is based on the knowledge that, by using non-powdery starting materials, a process for In-situ production of mullite is to be provided, in which a mullite body can be produced starting from the basic shape of a powder-free formable body by melting SiCvGlass with liquid or soluble Al 2 0 3 precursors. Sintering actually means only physical-chemical reactions in the Thennian range from approx. 10% below the SMP of the substances in question (calculated in ° C). However, the conversion of the precursor into Al 2 θ 3 precursors and then ultimately into the Al 2 O 3 takes place at much lower temperatures.
Vorteilhaft ist es, wenn Siliziumdioxid als Fonnkörper verwendet wird. Ge- ometrisch komplexe Strakturen, die beispielsweise durch thennische Behandlung von amorphem Siliziumdioxidglas in Fonn eines festen Grundkörpers erhalten werden, können so in Mullitteile umgewandelt werden. Dabei wird der vorgefonnte Siliziumdioxidkörper mit einem flüssigen oder löslichen Al2θ3-Precursor beschichtet. Anschließend wird der beschichtete Grandkörper über eine Hydrolyse und/oder Wännebe andlung in AI2O3 umgewandelt und in-situ gebildetes AI2O3 wird während des Reaktionssinterprozesses mit dem Siθ2-Grundkörper in Mullit umgewandelt, so dass Si02- Fonnkörper als Mullitbauteil abgefonnt werden können. Die Erfindung erlaubt es somit, Mullitfomikörper auch mit komplizierter oder komplexer Geometrie herzustellen.It is advantageous if silicon dioxide is used as the body. Geometrically complex structures, which are obtained, for example, by thermal treatment of amorphous silicon dioxide glass in the form of a solid base body, can thus be converted into mullite parts. In this case, the prefabricated silicon dioxide body is coated with a liquid or soluble Al 2 O 3 precursor. Subsequently, the coated Grand body via a hydrolysis and / or Wännebe is andlung in Al 2 O 3 is converted, and in-situ formed Al 2 O 3 2 base in mullite is converted during the reaction-sintering process with the SiO, so that Si0 2 - abgefonnt Fonnkörper as Mullitbauteil can be. The invention thus makes it possible to produce mullite bodies with a complicated or complex geometry.
Das neuartige Verfahren bera t auf dem Ersatz von pulverfönnigen Rohstoffen durch die Verwendung geeigneter flüssiger, pastöser oder löslicher Al2θ3-Precursoren für den im Mullit massenmäßig höheren Al2θ3-Anteil und der Nutzung von Si02 in Fonn eines glasigen Stoffes, für den die bekannten und allgemein angewandten Fonngebungsverfahren, wie Schmelzen bei relativ niedrigen Temperaturen, zur Herstellung auch komplizierter oder komplexer Geometrien nutzbar sind. Hierbei sieht eine Verfahrensvariante vor, dass vor dem Sintern ein amorpher Si02-Foπrιkörper mit einem flüssigen A Os-Precursor dotiert oder beschichtet wird. Dies ennöglicht die beliebige Formgebung eines Bauteils durch Schmelzen von Glas als Rohstoff des Siθ2-Anteils im Mullit, das Herstellen dünner Mullitschichten durch Ab- fonnen eines Si02-Trägerkörpers durch die Auftragung einer vorher berech- neten Masse an flüssigem, pastösem oder gelöstem Precursor für den AI2O3- Anteil im Mullit und das anschließende Reaktionssintern sowie die relativ niedrige Sclimelztemperatur des formgebenden Rohstoffes Si02 gegenüber dem Rohstoff α-Al203 (Smp. 2045 °C). Das Verfahren ennöglicht es somit, bereits bekannte Techniken des Glasschmelzens für die Fonngebung des späteren Mullitbauteils oder Trägerbauteils zu verwenden, obwohl der Rohstoff α-Al203 unter Noraialbedingungen nicht schmelzbar ist.The new method is based on the replacement of powdery raw materials by using suitable liquid, pasty or soluble Al 2 θ 3 precursors for the higher proportion of Al 2 θ3 in mullite and the use of Si0 2 in the form of a glassy substance, for which the known and generally used forming processes, such as melting at relatively low temperatures, can be used for the production of complicated or complex geometries. Here, a method variant provides that an amorphous Si0 2 shaped body is doped or coated with a liquid A Os precursor before sintering. This enables the arbitrary shaping of a component by melting glass as the raw material of the SiO 2 portion in the mullite, the production of thin mullite layers by removing an SiO 2 carrier body by applying a previously calculated mass of liquid, pasty or dissolved precursor for the Al 2 O 3 content in the mullite and the subsequent reaction sintering as well as the relatively low temperature of the molding raw material Si0 2 compared to the raw material α-Al 2 03 (mp. 2045 ° C.). The method thus makes it possible to use known glass melting techniques for the formation of the later mullite component or carrier component, even though the raw material α-Al 2 03 cannot be melted under normal conditions.
Außerdem können auch vor dem Sintern Siθ2-Fonnkörper in einen pastösen AbCVPrecursor eingebettet werden.In addition, SiO 2 moldings can also be embedded in a pasty AbCV precursor before sintering.
Als Al2C>3-Precursor eignen sich vor allem aluminiumorganische Verbindun- gen. Mögliche Al203-Precursoren sind Al(-OR)3, A1-(N-R)3, Al-R3. R ste t für unverzweigte, verzweigte, gesättigte oder ungesättigte Kohlenwasserstoffreste mit 1 bis 20 C-Atomen. Bevorzugt sind Alkylgruppen, die optional verzweigt und optional ungesättigt sein können. Bevorzugter sind Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl und tert.-Butyl, besonders bevorzugt Ethyl und Propyl. Bevorzugte Precursoren sind Ethylaluminiu- malkoholat und Propylaluminiumalkoholat. Diese Precursoren können durch Hydrolyse und/oder Wärmebehandlung in oxidische AI2O3 -Vorstufen um- gewandelt werden.Organo-aluminum compounds are particularly suitable as Al 2 C> 3 precursors. Possible Al 2 0 3 precursors are Al (-OR) 3 , A1- (NR) 3 , Al-R 3 . R stands for unbranched, branched, saturated or unsaturated hydrocarbon radicals with 1 to 20 C atoms. Preferred are alkyl groups, which can optionally be branched and optionally unsaturated. More preferred are methyl, Ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl and tert-butyl, particularly preferably ethyl and propyl. Preferred precursors are ethyl aluminum alcoholate and propyl aluminum alcoholate. These precursors can be converted into oxidic Al 2 O 3 precursors by hydrolysis and / or heat treatment.
Die Herstellung oder Abfonnung von Bauteilen mit auch komplizierter oder komplexer Geometrie erweitert den Einsatzbereich für Almiiiniumsilikate und insbesondere von Mullit für strakturelle und fiinktionelle Anwendungen, wie z. B. im Bereich der Mikrosystemteclinik und bei Elektronikbausteinen.The manufacture or splitting of components with even complicated or complex geometry extends the area of application for aluminum silicates and especially of mullite for structural and functional applications, such as. B. in the field of microsystem technology and electronic components.
Die der Erfindung zugrunde hegende Aufgabe wird auch mit einem Mullit- bauteil gelöst, das einen Glaskörper aus SiC und eine Oberfläche aus Mullit aufweist.The object on which the invention is based is also achieved with a mullite component which has a glass body made of SiC and a surface made of mullite.
Im Folgenden wird das erfindungsgemäße Verfahren im Hinblick auf die anliegenden Figuren näher erläutert. Es zeigtThe method according to the invention is explained in more detail below with reference to the attached figures. It shows
Figur 1 eine aus amorphem Siθ2 hergestellte Kugel, die mit einem flüssigen Ai2θ3-Precursor zur Abfonnung beschichtet wurde,FIG. 1 shows a sphere made of amorphous SiO 2 , which has been coated with a liquid Ai 2 O 3 precursor for removal,
Figur 2 eine aus amorphem Siθ2 hergestellte Kugel, die in einem pastö- sen AJ.2θ3-Precursor eingebettet wurde undFigure 2 is a ball made of amorphous SiO 2 , which in a pasty AJ. 2 θ3 precursor was embedded and
Figur 3 eine Vergrößerung eines Aussclrnitts aus Figur 2.3 shows an enlargement of a detail from FIG. 2.
Die Figuren zeigen Ausfülrrangsbeispiele aus unterschiedlichen Versuchen. Die in Figur 1 gezeigte aus amorphem Si02 hergestellte Kugel wurde zu- nächst mit einem flüssigen Al2θ3-Precursor zur Abfonnung beschichtet. Die anschließende thennisc e Behandlung der beschichteten Kugel führte in-situ zur Bildung von AI2O3 aus dem Precursor und anschließend bei höheren Temperaturen zur Bildung einer dünnen Mullitschicht von etwa 10 μm auf dem Siθ2-Grundkörper.The figures show examples of completion rankings from different experiments. The ball made of amorphous SiO 2 shown in FIG. 1 was next coated with a liquid Al 2 θ 3 precursor for removal. The subsequent thennisc e treatment of the coated ball led in situ to the formation of Al 2 O 3 from the precursor and then, at higher temperatures, to the formation of a thin mullite layer of approximately 10 μm on the SiO 2 base.
Die in den Figuren 2 und 3 gezeigte Kugel aus amorphem Siθ2 wurde zunächst in einen pastösen Al2θ3-Precursor eingebettet und thennisch behandelt. Die thennische Behandlung führte in-situ zur Bildung von AI2O3 aus dem Precursor und anschließend bei höheren Temperaturen zur Umwand- ing zumindest eines Teils des Siθ2-Grandkörpers zu Mullit (Reaktionssintern).The ball of amorphous SiO 2 shown in FIGS. 2 and 3 was first embedded in a pasty Al 2 O 3 precursor and treated thermally. The thermal treatment led to the formation of Al 2 O 3 from the precursor in situ and then, at higher temperatures, to the conversion of at least part of the SiO 2 granules to mullite (reaction sintering).
Der Siθ2-Grandkörper kann mit gängigen thermischen Behandlungsverfahren von Glas hergestellt werden. Das feste Siθ2 wird mit flüssigen, pastösen oder löslichen Precursoren von AI2O3 dotiert oder beschichtet. Die AI2O3- Komponente des Mullits wird aus einem AbOs-Precursor durch Hydrolyse oder thennische Zersetzung vor oder beim Auflieizvorgang zum Reaktionssintern erzeugt. Als bOs-Precursor eignen sich bekannte und kommerziell verfügbare aluminiumorganische Verbindungen, wie z. B. Alumini nalkoholate, die aus der Sol-Gel-Technologie bekannt sind und direkt als Flüssigkeit eingesetzt werden können. Die Precursor können auch mit feinen A^Os-Pulvern zu einer pastösen Masse vennischt oder in geeigneten Lösungsmitteln gelöst sein. Wie für herkömmliche Reaktandenmischungen für Mullit erfolgt der Prozess des Reaktionssinterns durch einen definierten Auf eizprozess. Durch Wahl der Versuchsparameter kann die Bildung von Mullit gesteuert werden.The SiO 2 granules can be produced using conventional thermal treatment methods for glass. The solid SiO 2 is doped or coated with liquid, pasty or soluble precursors of Al 2 O 3 . The Al 2 O 3 component of the mullite is produced from an AbOs precursor by hydrolysis or thermal decomposition before or during the stripping process for reaction sintering. Known and commercially available organoaluminium compounds, such as, for example, are suitable as bOs precursors. B. alumini nalkoholate, which are known from sol-gel technology and can be used directly as a liquid. The precursors can also be mixed with fine A ^ Os powders to form a pasty mass or dissolved in suitable solvents. As for conventional reactant mixtures for mullite, the reaction sintering process takes place through a defined pickling process. The formation of mullite can be controlled by selecting the test parameters.
Der Grundkörper aus Siθ2 kann dabei beispielsweise kugelfönnig, stäbchen- fönnig, rölirenfönnig, faserartig, plättchenföraiig, dicht oder porös bzw. als Hohl- oder Vollteil ausgebildet sein. Er wird mit einer aluminiiunorgani- schen Verbindung oberflächlich oder durch Infiltration offener Porosität dotiert. Die anschließende Umwandlung zu Mullit erfolgt durch Hydrolyse des Al2θ -Precursors zu Al(OH)3 und anschließender Wärmebehandlung zur Umwandlung in AI2O3, wälirend der thennischen Verdichtung (Sinterzyklus). Al2θ3-Precursoren können mit Wasser hydrolysiert werden und damit in Al-Hydroxide (Vorstufen) umgewandelt werden (Al(OH)3, AIO(OH)). Diese Vorstufen, oder alternativ auch direkt die Precursoren, wandeln sich wälirend der Wärmebehandlung (bis 800 °C) durch Verlust von Wasser und/oder des organischen Anteils über verschiedene Modifikationen von AI2O3 (bis 1100 °C) letztlich zwischen 1100 °C und 1200 °C in α- A1203 (Korand) um. Zwischen 1200 °C und 1600 °C reagiert α- A1203 mit Si02 zu Mullit.The base body made of SiO 2 can, for example, be spheroidal, rod-shaped, roller-shaped, fibrous, platelet-shaped, dense or porous or in the form of a hollow or solid part. It is doped with an aluminum-inorganic compound on the surface or by infiltration of open porosity. The subsequent conversion to mullite takes place by hydrolysis of the Al 2 θ precursor to Al (OH) 3 and subsequent heat treatment for conversion to Al 2 O3 during the thermal compression (sintering cycle). Al 2 θ 3 precursors can be hydrolyzed with water and thus converted into Al hydroxides (precursors) (Al (OH) 3 , AIO (OH)). These precursors, or alternatively directly the precursors, change during the heat treatment (up to 800 ° C) due to loss of water and / or the organic fraction via various modifications of Al 2 O3 (up to 1100 ° C) ultimately between 1100 ° C and 1200 ° C in α- A1 2 0 3 (Korand). Between 1200 ° C and 1600 ° C, α- A1 2 0 3 reacts with Si0 2 to mullite.
Bei einem Ausführangsbeispiel wurde poröses, über Glasblasen gefonntes SiC>2 in eine Lösung von Al-Alcoholat gelegt. Die Hydrolysereaktion wird durch portionsweise Zugabe von Wasser vervollständigt. Über eine Wärmebehandlung bis 800 °C an Luft wird die metallorganische Verbindung in AI2O3 mngewandelt und bei Temperaturen zwischen 1400 und 1600 °C erfolgt die Umwandlung zu Mullit. In one exemplary embodiment, porous SiC> 2, which is blow-dried over glass bubbles, was placed in a solution of Al-alcoholate. The hydrolysis reaction is completed by adding water in portions. The organometallic compound in is treated with a heat treatment in air of up to 800 ° C Al 2 O 3 converted and at temperatures between 1400 and 1600 ° C the conversion to mullite takes place.

Claims

Patentansprüche: claims:
1. Verfaliren zur Herstellung von Aluminiumsilikaten, vorzugsweise Mullit bei dem Siθ2 zusammen mit einem Al2θ3-Precursor einem Sin- teφrozess unterzogen wird.1. Process for the production of aluminum silicates, preferably mullite, in which SiO 2 is subjected to a sintering process together with an Al 2 O 3 precursor.
2. Verfaliren nach Ansprach 1, dadurch gekennzeichnet, dass ein Al2θ3-Precursor in flüssiger, pastöser oder löslicher Form verwendet wird.2. According to spoke 1, characterized in that an Al 2 θ 3 precursor is used in liquid, pasty or soluble form.
3, Verfaliren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Siθ2 als Fonnköφer verwendet wird.3, Verfaliren according to any one of the preceding claims, characterized in that the SiO 2 is used as Fonnköφer.
4. Verfaliren nach Anspruch 3, dadurch gekennzeichnet, dass der Siθ2- Fonnköφer durch thennische Bearbeitung von Si02-Glas hergestellt wird.4. Verfaliren according to claim 3, characterized in that the SiO 2 - Fonnköφer is produced by thermal processing of SiO 2 glass.
5. Verfaliren nach Ansprach 4, dadurch gekennzeichnet, dass der Si02- Foraiköφer durch Schmelzen von Si02-Glas hergestellt wird.5. According to spoke 4, characterized in that the Si0 2 - Foraiköφer is produced by melting Si0 2 glass.
6. Verfaliren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass vor dem Sintern ein amoφher Siθ2-Fonnköφer mit einem flüssigen bOs-Precursor dotiert oder beschichtet wird.6. Verfaliren according to any one of the preceding claims, characterized in that before the sintering an amorphous SiO 2 -Fonnköφer is doped or coated with a liquid bOs precursor.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Siθ2-Fonnköφer in einen pastösen AI2O3- Precursor eingebettet wird. 7. The method according to any one of the preceding claims, characterized in that an SiO 2 -Fonnköφer is embedded in a pasty Al 2 O 3 precursor.
8. Verfaliren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Al2θ3-Vorstufe aus dem Al2θ3-Precursor durch Hydrolyse erzeugt wird.8. Verfaliren according to any one of the preceding claims, characterized in that an Al 2 θ 3 precursor is generated from the Al 2 θ3 precursor by hydrolysis.
9. Verfaliren nach einem der Ansprüche 1 bis 7, dadurch gekennzeich- riet, dass eine Al2θ3-Vorstufe aus dem Al2θ3-Precursor durch thennische Zersetzung erzeugt wird.9. The process according to one of claims 1 to 7, characterized in that an Al 2 θ 3 precursor is generated from the Al 2 θ 3 precursor by thermal decomposition.
10. Verfaliren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Al203-Precursor AI-organische Verbindungen verwendet werden.10. Verfaliren according to any one of the preceding claims, characterized in that Al-organic compounds are used as Al 2 0 3 precursor.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Al20 -Precursor Ethyl- oder Propylaluminiu- malkoholate verwendet werden.11. The method according to any one of the preceding claims, characterized in that ethyl or propyl aluminum alcoholates are used as Al 2 0 precursors.
12. Mullitbauteil mit einem Glasköφer aus Si02 und einer Oberfläche aus Mullit. 12. Mullite component with a glass body made of Si0 2 and a surface made of mullite.
PCT/DE2002/001273 2001-04-06 2002-04-08 Method for producing mullite WO2002081397A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10291464T DE10291464D2 (en) 2001-04-06 2002-04-08 Process for the production of mullite and mullite component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10117470.5 2001-04-06
DE2001117470 DE10117470A1 (en) 2001-04-06 2001-04-06 Process for the production of mullite and mullite component

Publications (1)

Publication Number Publication Date
WO2002081397A2 true WO2002081397A2 (en) 2002-10-17

Family

ID=7680822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/001273 WO2002081397A2 (en) 2001-04-06 2002-04-08 Method for producing mullite

Country Status (2)

Country Link
DE (2) DE10117470A1 (en)
WO (1) WO2002081397A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2078705A1 (en) * 2008-01-08 2009-07-15 Guardian Industries Corp. Method of making a temperable antiglare coating, and resulting products containing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079064A (en) * 1990-04-30 1992-01-07 E. I. Du Pont De Nemours And Company Thermal shock resistant ceramic honeycomb structures of cordierite, mullite and corundum
WO1992009541A1 (en) * 1990-12-03 1992-06-11 Manville Corporation Method of producing mullite materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2078705A1 (en) * 2008-01-08 2009-07-15 Guardian Industries Corp. Method of making a temperable antiglare coating, and resulting products containing the same
US8114472B2 (en) 2008-01-08 2012-02-14 Guardian Industries Corp. Method of making a temperable antiglare coating, and resulting products containing the same

Also Published As

Publication number Publication date
DE10117470A1 (en) 2002-10-17
DE10291464D2 (en) 2004-04-15

Similar Documents

Publication Publication Date Title
EP2736979B1 (en) Method for producing hydrophobic, heat-insulating mouldings
EP2982660B1 (en) Method for producing moulded hydrophobic heat insulation forms
EP0254165A2 (en) High-temperature resistant catalyst body and process for its manufacture
EP1852405A2 (en) Reactive liquid ceramics bonding agent
EP3625191A1 (en) Core-hydrophobic thermal insulation sheet having hardened surface
WO2011089130A2 (en) Method for producing hollow bodies having enclosed freely displaceable particles
EP3280689B1 (en) Method for producing a molded heat-insulating element
DE10220086A1 (en) Solidification of mineral materials
DE3741059A1 (en) POLYSILAZANES, METHOD FOR THE PRODUCTION THEREOF, CERAMIC MATERIALS CONTAINING THEIR PRODUCTABLE SILICON NITRIDE, AND THEIR PRODUCTION
DE102014002594A1 (en) Bulk or shaped bodies of inorganic polymers and their preparation
DE3738916A1 (en) Large-sized or small-sized molecular sieve shaped body and process for the production thereof
DE3236276A1 (en) NEW SILICON MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
WO2002081397A2 (en) Method for producing mullite
DE19605149A1 (en) High strength fired porous ceramic structure production
WO1999067185A2 (en) Construction and insulation materials, method for their production and their use and binder for producing materials
EP0775672B1 (en) Process for producing a flat, glasslike or ceramic shaped article of structured surface
DE4116523A1 (en) Alpha-alumina prodn. with narrow particle size distribution - by preparing beta-di:ketone complex, hydrolytic condensation to colloid and crystallisation
DE19949776A1 (en) Preparing spherical, porous silicon dioxide particles or sheets, involves using a template surfactant with an at least 18C polymer chain and a polar hydrophilic group
EP3428135A1 (en) Heat insulating materials based on high-density silicic acid
DE102005030518A1 (en) Process for mullite production by suspension of Al powder in an aqueous silica-sol suspension used in building ceramics and fire resistant materials in which silica particles have a specified diameter,
DE3512586A1 (en) EXHAUST CATALYST CARRIER FROM INORGANIC SHAPING MEASURES
WO1994003410A1 (en) Refractory moulded articles made of silicon carbide with mullite bonding, a method of producing such articles, a moulding compound for use as an intermediate in the method, and the use of such articles as kiln furniture
EP0810982B1 (en) Process for producing ceramic, metallic or ceramo-metallic shaped bodies
DE102005031856A1 (en) Process for the production of ceramic filters, engobe and ceramic filter
DE4428465A1 (en) Polymer-ceramic composite prodn.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application
WWW Wipo information: withdrawn in national office

Ref document number: 2002315639

Country of ref document: AU

REF Corresponds to

Ref document number: 10291464

Country of ref document: DE

Date of ref document: 20040415

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10291464

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8629