WO2002082358A1 - Frontlit touch panel - Google Patents

Frontlit touch panel Download PDF

Info

Publication number
WO2002082358A1
WO2002082358A1 PCT/US2002/003207 US0203207W WO02082358A1 WO 2002082358 A1 WO2002082358 A1 WO 2002082358A1 US 0203207 W US0203207 W US 0203207W WO 02082358 A1 WO02082358 A1 WO 02082358A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
face
touch panel
guide
panel according
Prior art date
Application number
PCT/US2002/003207
Other languages
French (fr)
Inventor
Gary T. Boyd
Stephan J. Pankratz
Original Assignee
3M Innovative Properties Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Company filed Critical 3M Innovative Properties Company
Priority to AT02703329T priority Critical patent/ATE283513T1/en
Priority to JP2002580247A priority patent/JP2004533006A/en
Priority to DE60202053T priority patent/DE60202053T2/en
Priority to EP02703329A priority patent/EP1374153B1/en
Priority to KR10-2003-7012956A priority patent/KR20030085590A/en
Publication of WO2002082358A1 publication Critical patent/WO2002082358A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133616Front illuminating devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact

Definitions

  • This invention relates to touch panels and to electronic displays.
  • Displays may also incorporate touch panels that allow the user to input information via a stylus or finger pressure.
  • a common type of touch panel known as a "resistive overlay" design utilizes two transparent layers with partially conductive coatings separated by spacers. When the layers are pressed together, the electrical resistance is sensed in two dimensions to obtain the coordinates of the contact point.
  • the bottom layer typically is quite stiff and made of glass.
  • the top layer typically is fairly flexible and made of plastic.
  • Japanese Published Patent Application No. JP 11344695 A shows an integral front light guide and touch panel in which the light guide portion is made of molded plastic.
  • the upper surface of the light guide is bonded to the lower surface of the touch panel using a layer of transparent resin, and the lower surface of the light guide has a polygonal or circular dot pattern formed by an ink of transparent or semi-transparent resin having a higher refractive index than the light transmission plate and containing a photodiffusion pigment.
  • the lower surface of the light guide can be formed with "fine crimps" or with “prisms” (shown as sawtooth projections) formed parallel to the end face of the input of the light transmission plate.
  • touch panel fabrication requires one or more manufacturing steps that involve high temperatures or other harsh processing conditions.
  • many touch panel designs employ a conductive or capacitive layer of indium tin oxide ("ITO").
  • ITO indium tin oxide
  • the processing temperatures required to apply a satisfactory ITO layer will destroy most plastic substrates.
  • the touch panel also should have good optical properties.
  • the touch panel often includes a heat-resistant glass substrate that can support an ITO layer or other heat-processable layers of the touch panel.
  • Such touch panels can be combined with a separate front light guide, which should also have good optical properties, including good light extraction characteristics.
  • the front light guide can be made, for example, from a molded plastic wedge, and the resulting combination placed atop a reflective light valve.
  • This approach employs extra parts, has an extra interface in the supplied light path, and has increased overall thickness.
  • such an approach also permits the lower slab of the touch panel to be fabricated from flat glass, which is relatively low in cost and can survive the processing steps required to form a layer of ITO or other applied material.
  • the present invention also provides an illuminated touch panel display comprising: a) at least one light source; b) a front light guide having at least one light input face through which light from the source can be supplied to the guide, a viewing face, a light output face opposite the viewing face, and at least one component of a touch-sensitive transducer, the light output face having a light extraction layer thereon having a substantially flat light exit face and containing buried reflective facets that extract supplied light from the guide through the light exit face; and c) a reflective light valve that receives extracted light from the guide and returns at least some of that light through the viewing face.
  • the frontlit touch panels of the invention can have reduced overall thickness, higher transmission and fewer interfaces.
  • Fig. 1 is a side view of an illuminated frontlit touch panel display of the invention.
  • Fig. 2 is a simplified side view of the touch panel of Fig. 1, showing the general path taken by ambient and supplied light rays.
  • Fig. 6 is a graph showing the relationship between the ratio of plateau length to land length and extraction efficiency.
  • Fig. 7 is a magnified partial side view showing a source of light leakage.
  • Fig. 8 is a magnified partial side view showing a source of ghosting.
  • Fig. 9 is a magnified partial side view showing an extraction structure that can reduce light leakage and ghosting.
  • Fig. 10 is a magnified partial side view showing a light guide and an extraction structure that can reduce light leakage.
  • Fig. 11 is an exploded side view of a touch panel and light guide of the invention.
  • Fig. 12 is an exploded side view of another touch panel and light guide of the invention.
  • Viewing face 18 and flexible membrane 26 have respective conductive coatings 20 and 24.
  • Coatings 20 and 24, spacers 28 and flexible membrane 26 form a touch-sensitive transducer 23 that can provide an indication of a command or a position on viewing face 18 when a digit, stylus or other suitable instrument is used to press downward on flexible membrane 26.
  • Associated electronics (not shown in Fig. 1) can be used to interpret the touch location on viewing face 18, and to provide electronic signals to control or otherwise influence other electronic devices or components.
  • Light guide 12 and layer 32 form the remaining portion 21 of illuminated resistive touch panel/front light guide assembly 22.
  • An air gap 35 separates the lower face 33 of layer 32 from polarizer 38, which lies atop reflective LCD 36.
  • Reflective layer 40 is located on the bottom of reflective LCD 36, and (assuming that reflective LCD 36 is suitably modulated to permit the passage of light) serves to return light that passes from assembly 22 through reflective LCD 36 back towards assembly 22.
  • the illuminated touch panel shown in Fig. 1 employs a resistive touch-sensitive transducer.
  • the touch-sensitive transducer can operate via a contact mechanism such as capacitive overlay, guided acoustic wave, surface acoustic wave or near field imaging.
  • the touch-sensitive transducer can also operate via a non-contact mechanism such as a scanning infrared sensor, e.g., via provision of a suitable array of light beams and photosensors above or below the upper face of the light guide.
  • touch-sensitive transducer components can be employed in the present invention, and that the touch-sensitive components need not involve a conductive layer made of JTO or other heat-processed material.
  • Fig. 2 light rays such as supplied light ray 45 from source 42 are reflected towards the opposite end 15 of light guide 12 by total internal reflection off face 18.
  • light output face 16 Upon striking light output face 16 at a suitable angle, light ray 45 will pass into structured light extraction layer 32. If a facet (not shown in Fig. 1 or Fig. 2) of layer 32 is struck at a suitable angle by light ray 45, light ray 45 will be reflected from the facet, exit through the lower face 33 of layer 32 and thereby be extracted from light guide 12.
  • the extracted light will pass through air gap 35, and then enter polarizer 38 and reflective LCD 36.
  • reflective LCD 36 is suitably modulated to transmit light
  • light ray 45 will pass into reflective LCD 36, strike reflector 40, be reflected back through reflective LCD 36 and polarizer 38 into layer 32 and light guide 12, and exit light guide 12 through viewing face 18 (passing through coatings 20 and 24 and membrane 26), whereupon light ray 45 can be seen by viewer 48.
  • light guide 12 In illuminated touch panel display 10, supplied light from light source 42 is guided between two generally parallel faces 16 and 18 within the lower portion 21 of touch panel assembly 22.
  • the light guide need not have generally parallel faces. However, because faces 16 and 18 of the light guide shown in Fig. 1 and Fig. 2 are generally parallel, light guide 12 can be made from a low cost, durable material such as plate glass. Conductive layers, solder traces or other touch-sensitive transducer components can be formed on the first major face of light guide 12.
  • the light extraction layer, optional antireflection coating and other optional light management features or layers can be formed on the second major face of light guide 12.
  • the touch-sensitive transducer components preferably are completely formed on the first major face of light guide 12 prior to formation of the light extraction layer and other optional features or layers on the second major face of light guide 12. Referring to Fig. 3, a portion of the illuminated front light touch panel display of
  • Light extraction layer 32 has a light exit face 33 and an upper surface having a plurality of projections such as projections 52 and 53 that face or point toward (and preferably optically contact) light guide 12. Face 33 is "substantially flat”, that is, face 33 is sufficiently flat to avoid inducing objectionable distortion in display 10.
  • the upper surface of layer 32 is "structured", that is, it has a non- planar topography having finely-shaped features (such as projections 52 and 53) that can affect the direction or intensity of light rays that strike the upper surface of layer 32.
  • Projections 52 and 53 are flanked by land portions such as lands 60a and 60b, and by enclosed pockets such as pockets 58a and 58b containing a medium (e.g., air) having a lower refractive index than the material from which layer 32 is manufactured.
  • the projections have riser, plateau and facet portions such as riser 54a, plateau 55a and facet 56a.
  • projections such as projections 52 and 53 can be referred to as "generally trapezoidal", even though the projections have only three sides and even though a quadrilateral formed by drawing an imaginary line to complete the fourth side of a projection might not have two parallel sides.
  • the facets are adjacent to or very near light output face 16 and spaced more remotely from light exit face 33.
  • Facets such as facet 56a are oriented so that light from the input face of light guide 12 such as supplied light ray 46 can pass through adhesive 50 and plateau 55a, strike facet 56a, be reflected downwards and thereby be extracted from light guide 12 through exit face 33.
  • the supplied light is thus extracted from the light guide using reflective optics.
  • Many of the illuminated touch panel assemblies that have heretofore been proposed ' employ an extraction mechanism that relies on refractive optics, for example by employing a prismatic (e.g., sawtooth) surface on the exit face of the light guide.
  • Supplied light can be extracted from the light guides of the invention at normal or near-normal angles with respect to the reference plane.
  • the supplied light can be extracted at a zero or near-zero angle of incidence with respect to the light valve.
  • This can provide improved coupling of extracted light into the light valve compared to light guides that rely on refractive extraction.
  • refractive extraction it is difficult to achieve extraction angles whose centroid is greater than about 40° with respect to the reference plane. In other words, it is difficult to achieve less than about a 50° angle of incidence of the centroid of the extracted light with respect to a normal to the light valve.
  • an extractor based on reflective optics is less sensitive to variations in wavelength of the supplied light than an extractor based on refractive optics. This can provide improved color uniformity in the illuminated touch panel displays of the invention compared to some illuminated touch panel displays that have heretofore been proposed. Stray reflections, which can lead to objectionable ghosts and loss of contrast, are also less pronounced with reflective extractors compared to refractive extractors. The stray reflections that do arise in reflective extractors tend to be directed away from the viewer.
  • noise bands In refractive extractors, some stray reflections tend to be directed towards the viewer, leading to a loss in overall contrast. If such stray reflections are referred to as noise bands, then their presence along the viewing axis represents a source of noise and a loss in signal to noise ratio.
  • the use of reflective extraction optics in the illuminated touch panels of the invention thus can provide improved design flexibility and performance compared to the use of refractive optics.
  • lands such as lands 60a and 60b are shown in Fig. 3 as being parallel to the reference plane, they need not be parallel.
  • risers such as riser 54a need not be symmetrically inclined with respect to the reference plane.
  • facets such as facet 56a need not be symmetrically inclined with respect to the reference plane.
  • the projections on light extraction layer 32 can have shapes and orientations other than those shown in Fig. 3, so long as proper extraction of light from light guide 12 into reflective LCD 36 takes place.
  • the angle at which supplied light from source 42 enters light guide 12, and the dimensions, pitch and angular orientation of the projections on light extraction layer 32 preferably are selected so that supplied light is evenly distributed across the viewing face of illuminated touch panel display 10.
  • Fig. 4 through Fig. 6 illustrate the effect of the ratio of plateau length to land length upon overall light output from the bottom of a light guide of the invention.
  • Fig. 4 shows a magnified side view of a portion of an illuminated touch panel display generally identified as 70.
  • Structured light extraction layer 71 has projections such as projection 72 bounded by riser 74, plateau 76 and facet 78, and flanked by lands 80a and 80b.
  • the total length of all plateaus in layer 71 is less than the total length of all lands in layer 71, or in other words the ratio of total plateau length to total land length is less than 1:1.
  • the available extraction window is relatively small and some of the potentially reflective portion of buried facets such as facet 78 may be inaccessible to supplied light rays such as ray 46a.
  • Fig. 5 shows a magnified side view of a portion of an illuminated touch panel display generally identified as 90.
  • Structured light extraction layer 91 has projections such as projection 92 bounded by riser 94, plateau 96 and facet 98, and flanked by lands 100a and 100b.
  • the total length of all plateaus in layer 91 is greater than the total length of all lands in layer 91, or in other words the ratio of total plateau length to total land length is greater than 1:1.
  • most or all of the facet area is available for reflection, and supplied light rays such as ray 46b will be able to reflect from facets in layer 91 and be extracted from light guide 12 through light exit face 99.
  • the overall light output from the bottom of light guide 12 in the illuminated touch panel of Fig. 5 will tend to be greater than from the illuminated touch panel of Fig. 4.
  • Fig. 6 is a graph showing the relationship between the ratio of plateau length to land length and light output from the exit face of the light guide.
  • light output increases as the ratio of plateau length to land length increases, in an approximately logarithmic relationship.
  • the ratio of total plateau length to total land length is at least 1:1, more preferably at least 3:1.
  • the plateau length diminishes in importance and the curve shown in Fig. 6 levels off.
  • the land length it is preferred for the land length to be greater than zero.
  • the lands should not be so short that it becomes difficult to peel away the film from the profiled tooling that typically would be used to make a structured flexible film.
  • Fig. 7 is a magnified partial side view of an illuminated touch panel 100 of the invention, illustrating a potential source of light leakage.
  • Some light rays such as ray 46c will be reflected upward via total internal reflection from the lower face 102 of structured light extraction layer 104 towards a buried facet such as facet 103.
  • facet 103 a buried facet
  • light will refracted through the facet, pass through adhesive layer 105 and light guide 108, and exit the upper face 106 of light guide 108 at a high angle of incidence, away from a typical user's view axis. This light will be lost and will not contribute to the viewer's perception of image brightness.
  • Fig. 8 is a magnified partial side view of an illuminated touch panel 110 of the invention, illustrating a potential source of ghosting.
  • Some light rays such as ray 46d will be reflected downward from a facet such as buried facet 111, be reflected upward from the exit face 112 of structured light extraction layer 114, pass through adhesive layer 115 and light guide 118, and exit the upper face 116 of light guide 118.
  • These light rays will exit light guide 118 at a lower angle of incidence than in the case of light ray 46c in Fig. 7, and can be visible as a ghost image of the illumination source.
  • Fig. 9 is a magnified partial side view showing an illuminated touch panel 120 of the invention having a structured light extraction layer 124 that can reduce light leakage such as is shown in Fig. 7, and an antireflection coating that can reduce ghosting of the type shown in Fig. 8.
  • Light rays such as ray 46e that are reflected upward from the lower face 122 of layer 124 are refracted through buried facet 126 and riser 128, and then are recaptured by refraction through nearby buried facet 130 and riser 132 back into layer 124.
  • Light rays such as ray 46f that are reflected from a facet such as buried facet 126 strike the lower face 122 of layer 124 and pass through face 122 due to the presence of antireflection coating 125 on face 122.
  • a plurality of light sources can be placed along light input face 14.
  • a plurality of light sources could also be placed along end 15. If light is supplied along both input face 14 and end 15, then the projections in the structured light extraction layer 32 (e.g., projections such as projections 52 and 53 shown in Fig.
  • Fig. 10 is a magnified partial side view of an illuminated touch panel 140 having a light guide 142 and a structured extraction layer 144 that can reduce light loss.
  • Light guide 142 is equipped with a specular or diffuse reflector 146 that reflects light such as light ray 46h back into light guide 142. The amount of light reaching reflector 146 can be further reduced by tilting or biasing the light source (not shown in Fig.
  • Fig. 11 is an exploded side view of an illuminated touch panel 160 of the invention, showing individual layers that can be assembled together. Touch-sensitive transducer layer 161 is formed on the upper face 164 of light guide 162.
  • Optically transparent adhesive layers 165 and 166 are coated on opposite sides of carrier film 168, and set aside.
  • Structured light extraction layer 170 is formed from base film 172 and a light-curable resin using a suitable profiled tool, then cured to form light-cured structured surface 174 atop base film 172.
  • an optional antireflection coating (not shown in Fig. 11) can be applied to the lower face of base film 172. This will be especially convenient when structured surface 174 is formed on base film 172 using a continuous method, as the antireflection coating can likewise be applied on the reverse side of base film 172 using a continuous method.
  • plateau portions of structured light extraction layer 170 such as plateaus 180a and 180b are laminated to adhesive layer 166, taking care not to damage the structured surface 174 of layer 170 and not to fill the air spaces between projections in layer 170 with adhesive.
  • Adhesive layer 165 can then be laminated to the light output face 163 of light guide 162.
  • the resulting assembly can conveniently be sold as is, or combined with additional touch panel transducer or display components.
  • the assembly can be combined with the remaining components of a capacitive overlay touch-sensitive transducer (not shown in Fig. 11) to provide a touch panel device that can be placed atop a suitable reflective light valve and equipped with a source of supplied light and suitable control electronics.
  • optically transparent adhesive layers 165 and 166 could be coated on opposite sides of carrier film 168, adhesive layer 166 could be laminated to the plateau portions of structured light extraction layer 170, and the resulting assembly sold as is for later lamination to the light output face of a light guide.
  • a more complete assembly can be made by laminating polarizer 176 to the upper face of reflective LCD 182 via adhesive layer 178.
  • Reflective LCD 182 includes light modulation unit 184 and reflective layer 186.
  • Fig. 12 is an exploded side view of another illuminated touch panel 190 of the invention, showing individual layers that can be assembled and fastened to the light output face 193 of light guide 192.
  • Touch-sensitive transducer layer 191 is formed on the upper face 194 of light guide 192.
  • Optically transparent adhesive layer 195 is applied to the light output face 193 of light guide 192.
  • Structured light extraction layer 196 is formed from base film 198 and a light-curable resin using a suitable profiled tool, then cured to form light-cured structured surface 200 atop base film 198.
  • Structured layer 196 is laminated to adhesive layer 202 and polarizer 204, taking care not to damage the structured surface 200 of layer 196 and not to fill the air spaces between projections in layer 196 with adhesive.
  • an optional antireflection coating (not shown in Fig. 12) can be applied to the lower face of base film 198.
  • the assembly of Fig. 12 has fewer layers and fewer optical interfaces in the light path than the assembly of Fig. 11, but requires somewhat greater care in handling and during lamination.
  • the light guide can have any desired overall size and thickness but preferably it is as thin as possible, e.g., 5 mm or less.
  • the light guide can be square, rectangular, oval or any other desired shape when viewed from the intended display observation point.
  • the size and shape of the light guide usually will be dictated by the size and shape of the desired display device or desired touch panel.
  • Light guide thicknesses from about 0.1 to about 5 mm are preferred, more preferably about 1 to about 2 mm.
  • the light guide preferably is an optically suitable material capable of resisting high temperatures and the steps required to fabricate a touch-sensitive surface atop the light guide.
  • the light guide preferably is substantially planar. If planar, the light guide can be fabricated from ordinary sheet glass.
  • the light input face and viewing face of the light guide can each be generally planar or can have a convex or concave curvature.
  • the light input face may be provided with a convex curvature, lenslets, prisms, a roughened surface or other features in order to distribute the incoming light more evenly.
  • the viewing face preferably has an optically smooth finish, in order to minimize transmission losses, undesired scattering and distortion.
  • the light extraction layer can be fabricated from a wide variety of optically suitable materials including polycarbonate; polyacrylates such as polymethyl methacrylate; and polystyrene, with high refractive index plastics such as polycarbonate being preferred.
  • the light extraction layer preferably is a flexible structured film made by molding, embossing, curing or otherwise forming a moldable resin against a lathe-turned tool or other formed surface, made of metal or other durable material that bears a negative replica of the desired structured surface. Methods for making such formed surfaces and for molding, embossing or curing the extraction film will be familiar to those skilled in the art.
  • the facets that are present in the light extraction layer (and are buried in the assembled light guide and extraction layer) preferably are sufficiently small so as to be unobtrusive to an ordinary viewer.
  • the configuration, shape and dimensions of the facets and other light management features of the light extraction layer preferably are chosen to maximize extraction efficiency and provide evenly distributed light output at the desired viewing angle.
  • the projections preferably extend across the full width of the light extraction layer.
  • the projections can be in the form of shorter, less than full width segments, which can be aligned with one another in rows and columns or staggered from row to row. Rows of projections can be arranged parallel to the light input face or faces or at an angle with respect to the light input face or faces. Most preferably, the projections extend across the full width of the light extraction layer and are generally parallel to the light input face or faces.
  • individual projections in the structured light extraction layers are shown as having the same angular orientation, shape and dimensions from projection to projection. The projections need not all be identical and need not all have the same angular orientation, shape or dimensions.
  • a light extraction layer having projections whose riser, plateau and facet segments have the same angular orientation and segment length from projection to projection.
  • the land segments between such projections can if desired also be similar to one another in angular orientation and segment lengths.
  • the projections are spaced at a relatively coarser pitch (repeat interval) near the light input face or faces of the light guide, and at a relatively finer pitch further from the light input face. For a light guide illuminated from only one end, this change in spacing can conveniently be accomplished by progressively decreasing the length of the land segments along the length of the light extraction layer from the light input face to the face at the other end of the light guide.
  • Each light extraction layer riser segment preferably is planar although other shapes such as convex or concave shapes can be used if desired.
  • the facets and other structured surface portions of the light extraction layer are optically smooth, in order to avoid undesirable visual artifacts that may arise due to backscattering of light within the light guide.
  • the light extraction layer preferably has a thickness of about 20 micrometers to about 500 micrometers, more preferably about 75 to about 125 micrometers. Facet heights (or in other words, land depths) of about 5 to about 50 micrometers are preferred, more preferably about 7 to about 20 micrometers. So long as the facets have sufficient height, the chosen extraction layer thickness has a relatively small effect on extraction efficiency. Extraction efficiency tends to increase as facet heights increase, as the light guide thickness is reduced, or as the projection pitch decreases. That is, extraction efficiency tends to scale proportionally to (facet height)/[(light guide thickness)* (pitch)].
  • the adhesive can be coated atop only the plateau portions of the light extraction layer, and the resulting partially-coated surface laminated to the light output face of the light guide, e.g., as described in U.S. Patent No. 5,545,280. In either case, appropriate care should be taken not to damage the structured surface of the light extraction layer and not to fill the pockets between projections with adhesive.
  • the pockets between projections can be filled prior to lamination with a suitable flowable (and preferably hardenable) material having a lower refractive index than the material from which the light extraction layer is made.
  • a suitable flowable (and preferably hardenable) material having a lower refractive index than the material from which the light extraction layer is made.
  • the flowable material has a refractive index between that of air and the material from which the light extraction layer is made, then the use of such a flowable material may adversely affect the reflective characteristics of the facets and may reduce overall extraction efficiency compared to the use of air-filled pockets.
  • the illuminated touch panels of the invention are particularly useful in subminiature or miniature devices illuminated with one or more light emitting diodes (LEDs) powered by small batteries.
  • LEDs light emitting diodes
  • Suitable devices include cell phones, pagers, personal digital assistants, clocks, watches, calculators, still and video cameras, laptop computers, vehicular displays and the like.
  • the reflective light valves in such devices can be made using a variety of color or monochrome devices.
  • the reflective light valve can be a reflective color LCD such as is used in the COMPAQ iPAQTM Pocket PC.
  • the reflective light valve can also be a device capable of controlled frustration of total internal reflection such as the devices described in U.S. Patent No. 6,064,784 and PCT Published Application No.
  • the illuminated touch panels of the invention can be illuminated with more than one light source, e.g., three or more LEDs.
  • An array of colored light sources e.g., one or more of each of a red, green and blue LED
  • the light sources in the array being electronically energized using a continuous or strobed addressing scheme.
  • other suitable illumination sources for the touch panels and displays of the invention include fluorescent or incandescent lamps, electroluminescent lights and the like.
  • a particularly preferred light source for the touch panels of the invention employs the LINEAR ILLUMINATION SOURCE described in copending application Serial No. 09/844,745, filed April 6, 2001.
  • Various modifications and alterations of this invention will be apparent to those skilled in the art without departing from the scope and spirit of this invention. It should be understood that this invention is not limited to the illustrative embodiments set forth above.

Abstract

A frontlit touch panel for use with a reflective light valve, comprising a front light guide having at least one light input face that supplies light to the guide, a viewing face, a light output face opposite the viewing face, and at least one component of a touch-sensitive transducer, the light output face having a light extraction layer thereon having a substantially flat light exit face and containing buried reflective facets that extract supplied light from the guide through the light exit face. The touch panel can be used with a light source, reflective light valve and suitable control electronics to form a compact, efficient illuminated touch panel display assembly.

Description

FRONT IT TOUCH PANEL
Technical Field
This invention relates to touch panels and to electronic displays.
Background Art Flat panel displays are typically backlit by light guide slabs (often referred to as "backlights") that provide uniform illumination to a transmissive light valve. The backlight may be the primary light source1 for the display, or a source of supplemental illumination in a predominantly reflective (often referred to as a "transflective") display. Alternatively, flat panel reflective displays may be front-lit by a light guide slab (often referred to as a "frontlight" or "front light guide") that provides uniform illumination from the viewing side of a reflective light valve. This allows elimination of the backlight and placement of a reflector in the light valve, thereby increasing the display's reflectivity and brightness in well-lit ambient light conditions when the frontlight is turned off. Front light guides should have sufficient clarity so that they do not distort or significantly attenuate the display image. Preferably the front light guide also uniformly illuminates the display at a brightness level sufficient to render the display readable in dark ambient conditions.
Displays may also incorporate touch panels that allow the user to input information via a stylus or finger pressure. For example, a common type of touch panel known as a "resistive overlay" design utilizes two transparent layers with partially conductive coatings separated by spacers. When the layers are pressed together, the electrical resistance is sensed in two dimensions to obtain the coordinates of the contact point. The bottom layer (the layer closest to the display) typically is quite stiff and made of glass. The top layer (the layer that will be touched by the stylus or finger) typically is fairly flexible and made of plastic.
Resistive overlay and other touch panel designs are described in the "Carroll Touch Handbook", available at www.caiTolltouch.com. Many such other touch panel designs, including "capacitive overlay", "guided acoustic wave", "surface acoustic wave" and "near field imaging" (see U.S. Patent No. 5,650,597) touch panels, incorporate an optically clear, relatively stiff slab atop the display. Some types of "scanning infrared" touch panels also incorporate an optically clear, relatively stiff slab atop the display. As with resistive overlay designs, glass is most commonly used to form the stiff slab.
Japanese Published Patent Application No. JP 11344695 A (equivalent to WO 9963394) shows an integral front light guide and touch panel in which the light guide portion is made of molded plastic. The upper surface of the light guide is bonded to the lower surface of the touch panel using a layer of transparent resin, and the lower surface of the light guide has a polygonal or circular dot pattern formed by an ink of transparent or semi-transparent resin having a higher refractive index than the light transmission plate and containing a photodiffusion pigment. Alternatively, the lower surface of the light guide can be formed with "fine crimps" or with "prisms" (shown as sawtooth projections) formed parallel to the end face of the input of the light transmission plate. The light guide of this reference utilizes scattering by the above-mentioned photodiffusion pigment, or refraction through the above-mentioned crimps or prisms, to extract light from the light guide into a light valve. The sawtooth projections in this reference are oriented with the inclined portion of the sawtooth facing away from the light input end of the light guide. Japanese Published Patent Application No. JP 2000-47178 A shows an integral front light guide and touch panel in which the light guide portion is wedge-shaped and has a pattern of spacers on its upper surface. The light guide of this reference utilizes scattering by the spacers to extract light from the light guide into a light valve. Other illuminated touch panel display devices are shown in Japanese Published
Patent Application Nos. JP 61188515A, JP 11065764A, JP 11110131A, JP 11174972A, JP 11260133A, JP 11316553A, JP 11065764A and JP 2000075293A, and in PCT Published Patent Application No. WO 99/63394A.
U.S. Patent No. 5,396,350 shows a backlight having an array of microprisms that reflect light into a transmissive light valve.
U.S. Patent No. 5,428,468 shows an illumination system employing a waveguide and an array of microprisms that reflect light out of the waveguide. U.S. Patent No. 5,995,690 shows a light extraction tape for coupling light out of a waveguide.
Other illuminated frontlit or backlit illumination or display devices are shown in U.S. Patent Nos. 4,373,282; 4,528,617; 4,751,615; 4,799,137; 4,811,507; 4,874,228;
5,005,108; 5,050,946; 5,054,885; 5,190,370; 5, 341,231; 5,359,691; 5,485,354; 5,506,929; 5,555,109; 5,555,329; 5,575,549; 5,594,830; 5,608,550; 5,608,837; 5,613,751; 5,668,913; 5,671,994; 5,835,661; 5,894,539; 6,011,602 and 6,139,163; and in European Patent Application EP 0 802 446 Al.
Summary of Invention Typically, touch panel fabrication requires one or more manufacturing steps that involve high temperatures or other harsh processing conditions. For example, many touch panel designs employ a conductive or capacitive layer of indium tin oxide ("ITO"). The processing temperatures required to apply a satisfactory ITO layer will destroy most plastic substrates. The touch panel also should have good optical properties. Thus the touch panel often includes a heat-resistant glass substrate that can support an ITO layer or other heat-processable layers of the touch panel. Such touch panels can be combined with a separate front light guide, which should also have good optical properties, including good light extraction characteristics. The front light guide can be made, for example, from a molded plastic wedge, and the resulting combination placed atop a reflective light valve. This approach employs extra parts, has an extra interface in the supplied light path, and has increased overall thickness. However, such an approach also permits the lower slab of the touch panel to be fabricated from flat glass, which is relatively low in cost and can survive the processing steps required to form a layer of ITO or other applied material.
Although a number of illuminated touch panel devices have been proposed, there is an ongoing need for thinner, more efficient or more evenly illuminated devices, for devices that could be more easily constructed, and for devices with reduced power consumption. Many current devices do not use all of the light supplied by the light source. If such unused light could be channeled to the display, then power consumption could be further reduced and display brightness could be increased. Some of the above-mentioned illuminated touch panel devices employ scattering or refraction to extract light from the light guide. These approaches can cause reduction in contrast, or can supply light at less than optimal angles to a light valve in the display.
The present invention provides, in one aspect, a frontlit touch panel for use with a reflective light valve, comprising a front light guide having at least one light input face that supplies light to the guide, a viewing face, a light output face opposite the viewing face, and at least one component of a touch-sensitive transducer, the light output face having a light extraction layer thereon having a substantially flat light exit face and containing buried reflective facets that extract supplied light from the guide through the light exit face. The touch panel can be easily fabricated, for example, by fabricating a component (e.g., a conductive or capacitive layer) of a touch-sensitive transducer on an ordinary flat glass sheet, and by laminating the resulting assembly to a plastic extraction film. An optional top membrane can be applied atop the touch panel, and an optional antireflection coating can be applied to the light exit face of the structured-surface film.
The present invention also provides an illuminated touch panel display comprising: a) at least one light source; b) a front light guide having at least one light input face through which light from the source can be supplied to the guide, a viewing face, a light output face opposite the viewing face, and at least one component of a touch-sensitive transducer, the light output face having a light extraction layer thereon having a substantially flat light exit face and containing buried reflective facets that extract supplied light from the guide through the light exit face; and c) a reflective light valve that receives extracted light from the guide and returns at least some of that light through the viewing face. Compared to the use of a separate touch panel and front light guide, the frontlit touch panels of the invention can have reduced overall thickness, higher transmission and fewer interfaces. The panels can be fabricated using ordinary flat glass and existing touch panel manufacturing methods and equipment to provide a touch panel having added functionality. Preferably the frontlit touch panels of the invention have a composite construction comprising a layer of glass and one or more other layers made of different materials (e.g., conductive layers, solder traces, sensors or other touch-sensitive- transducer-related components on one major face of the touch panel, and a microstructured plastic surface and optional antireflection coating on the other major face of the touch panel). Preferred embodiments of the panels efficiently extract supplied light while exhibiting good contrast and low distortion. Because the frontlit touch panel has microstructured reflective optics located between the touch panel and the light valve and because the touch panel can have a smooth viewing face, the frontlit touch panels of the invention are relatively robust and are less likely to be damaged than touch panels having microstructured optical features on the viewing face. Brief Description of the Drawing Fig. 1 is a side view of an illuminated frontlit touch panel display of the invention. Fig. 2 is a simplified side view of the touch panel of Fig. 1, showing the general path taken by ambient and supplied light rays.
Fig. 3 is a magnified side view of a portion of the touch panel of Fig. 1 and Fig. 2, showing the structured light extraction layer and the path taken by a supplied light ray.
Fig. 4 is a magnified side view of a portion of an illuminated frontlit touch panel of the invention having a low ratio of plateau length to land length. Fig. 5 is a magnified side view of a portion of an illuminated frontlit touch panel of the invention having a high ratio of plateau length to land length.
Fig. 6 is a graph showing the relationship between the ratio of plateau length to land length and extraction efficiency.
Fig. 7 is a magnified partial side view showing a source of light leakage. Fig. 8 is a magnified partial side view showing a source of ghosting.
Fig. 9 is a magnified partial side view showing an extraction structure that can reduce light leakage and ghosting.
Fig. 10 is a magnified partial side view showing a light guide and an extraction structure that can reduce light leakage. Fig. 11 is an exploded side view of a touch panel and light guide of the invention.
Fig. 12 is an exploded side view of another touch panel and light guide of the invention.
Detailed Description When terms such as "above", "atop", "upper", "upward", "beneath", "below",
"lower" and "downward" are used in this application to describe the location or orientation of components in a display, these terms are used merely for purposes of convenience assuming that the display is viewed with its touch-sensitive surface facing generally upwards. These terms are not meant to imply any required orientation for the completed display or for the path taken by supplied or ambient light in actual use of the completed display. Some of the components of this invention and their relationship to one another can also conveniently be described by comparison to a reference plane. For purposes of this invention, the reference plane will be taken to be the plane formed by (or closely approximating) the light output face of the front light guide, which using the orientation convention described above would be the lower face of the light guide.
Referring now to Fig. 1, an illuminated touch panel display generally identified as 10 is shown in schematic form. Supplied (in other words, non-ambient) light from source 42 will enter coupler 44, where it typically is converted from a point source or sources to a line source suitable for use in illuminated touch panel display 10. The supplied light then enters light input face 14 of front light guide 12, and as explained in more detail below in Fig. 2 and Fig. 3 passes down into and then back up out of reflective light valve (in this case a reflective LCD) 36. Light guide 12 also has opposing end 15, light output face 16 and viewing face 18. An optically transparent adhesive (not shown in Fig. 1) fastens structured light extraction layer 32 to light output face 16 of light guide 12.
Viewing face 18 and flexible membrane 26 have respective conductive coatings 20 and 24. Coatings 20 and 24, spacers 28 and flexible membrane 26 form a touch-sensitive transducer 23 that can provide an indication of a command or a position on viewing face 18 when a digit, stylus or other suitable instrument is used to press downward on flexible membrane 26. Associated electronics (not shown in Fig. 1) can be used to interpret the touch location on viewing face 18, and to provide electronic signals to control or otherwise influence other electronic devices or components. Light guide 12 and layer 32 form the remaining portion 21 of illuminated resistive touch panel/front light guide assembly 22. An air gap 35 separates the lower face 33 of layer 32 from polarizer 38, which lies atop reflective LCD 36. Reflective layer 40 is located on the bottom of reflective LCD 36, and (assuming that reflective LCD 36 is suitably modulated to permit the passage of light) serves to return light that passes from assembly 22 through reflective LCD 36 back towards assembly 22.
The illuminated touch panel shown in Fig. 1 employs a resistive touch-sensitive transducer. Those skilled in the art will appreciate that other types of touch-sensitive transducers can be used in the invention. For example, the touch-sensitive transducer can operate via a contact mechanism such as capacitive overlay, guided acoustic wave, surface acoustic wave or near field imaging. The touch-sensitive transducer can also operate via a non-contact mechanism such as a scanning infrared sensor, e.g., via provision of a suitable array of light beams and photosensors above or below the upper face of the light guide. Those skilled in the art will also appreciate that a variety of touch-sensitive transducer components can be employed in the present invention, and that the touch-sensitive components need not involve a conductive layer made of JTO or other heat-processed material. Referring now to Fig. 2, light rays such as supplied light ray 45 from source 42 are reflected towards the opposite end 15 of light guide 12 by total internal reflection off face 18. Upon striking light output face 16 at a suitable angle, light ray 45 will pass into structured light extraction layer 32. If a facet (not shown in Fig. 1 or Fig. 2) of layer 32 is struck at a suitable angle by light ray 45, light ray 45 will be reflected from the facet, exit through the lower face 33 of layer 32 and thereby be extracted from light guide 12. The extracted light will pass through air gap 35, and then enter polarizer 38 and reflective LCD 36. Assuming that reflective LCD 36 is suitably modulated to transmit light, light ray 45 will pass into reflective LCD 36, strike reflector 40, be reflected back through reflective LCD 36 and polarizer 38 into layer 32 and light guide 12, and exit light guide 12 through viewing face 18 (passing through coatings 20 and 24 and membrane 26), whereupon light ray 45 can be seen by viewer 48.
If the ambient light level is sufficiently high, then information conveyed by illuminated touch panel display 10 can be seen by viewer 48 without the need for illumination by light source 42. Ambient light rays such as ambient ray 50 enter illuminated touch panel display 10 through membrane 26, pass through the various components and layers mentioned above, and (assuming that reflective LCD 36 is suitably modulated) strike reflector 40 and are reflected back through reflective LCD 36 towards viewer 48.
In illuminated touch panel display 10, supplied light from light source 42 is guided between two generally parallel faces 16 and 18 within the lower portion 21 of touch panel assembly 22. The light guide need not have generally parallel faces. However, because faces 16 and 18 of the light guide shown in Fig. 1 and Fig. 2 are generally parallel, light guide 12 can be made from a low cost, durable material such as plate glass. Conductive layers, solder traces or other touch-sensitive transducer components can be formed on the first major face of light guide 12. The light extraction layer, optional antireflection coating and other optional light management features or layers can be formed on the second major face of light guide 12. Owing to the relatively harsh processing conditions typically required to form such touch-sensitive transducer components, the touch-sensitive transducer components preferably are completely formed on the first major face of light guide 12 prior to formation of the light extraction layer and other optional features or layers on the second major face of light guide 12. Referring to Fig. 3, a portion of the illuminated front light touch panel display of
Fig. 1 and Fig. 2 is shown in a magnified side view. Light extraction layer 32 has a light exit face 33 and an upper surface having a plurality of projections such as projections 52 and 53 that face or point toward (and preferably optically contact) light guide 12. Face 33 is "substantially flat", that is, face 33 is sufficiently flat to avoid inducing objectionable distortion in display 10. The upper surface of layer 32 is "structured", that is, it has a non- planar topography having finely-shaped features (such as projections 52 and 53) that can affect the direction or intensity of light rays that strike the upper surface of layer 32. Projections 52 and 53 are flanked by land portions such as lands 60a and 60b, and by enclosed pockets such as pockets 58a and 58b containing a medium (e.g., air) having a lower refractive index than the material from which layer 32 is manufactured. The projections have riser, plateau and facet portions such as riser 54a, plateau 55a and facet 56a. For purposes of discussion, projections such as projections 52 and 53 can be referred to as "generally trapezoidal", even though the projections have only three sides and even though a quadrilateral formed by drawing an imaginary line to complete the fourth side of a projection might not have two parallel sides.
The plateaus are laminated to light guide 12 using transparent adhesive 50. Plateau 55a lies against adhesive 50 and is generally coplanar with the other plateaus of layer 32. Facets such as facet 56a are "buried" in light extraction layer 32, that is, such facets lie within layer 32, between light output face 16 of light guide 12 and light exit face 33 of layer 32. Riser 54a adjoins plateau 55a, which in turn adjoins facet 56a. Preferably
(disregarding for the moment any intervening layer of transparent adhesive), the facets are adjacent to or very near light output face 16 and spaced more remotely from light exit face 33.
Facets such as facet 56a are oriented so that light from the input face of light guide 12 such as supplied light ray 46 can pass through adhesive 50 and plateau 55a, strike facet 56a, be reflected downwards and thereby be extracted from light guide 12 through exit face 33. The supplied light is thus extracted from the light guide using reflective optics. Many of the illuminated touch panel assemblies that have heretofore been proposed ' employ an extraction mechanism that relies on refractive optics, for example by employing a prismatic (e.g., sawtooth) surface on the exit face of the light guide.
Supplied light can be extracted from the light guides of the invention at normal or near-normal angles with respect to the reference plane. In other words, the supplied light can be extracted at a zero or near-zero angle of incidence with respect to the light valve. This can provide improved coupling of extracted light into the light valve compared to light guides that rely on refractive extraction. Using refractive extraction, it is difficult to achieve extraction angles whose centroid is greater than about 40° with respect to the reference plane. In other words, it is difficult to achieve less than about a 50° angle of incidence of the centroid of the extracted light with respect to a normal to the light valve. If the extracted light reaches the light valve at too high an angle of incidence, then the light valve will not efficiently reflect light toward the viewer, or additional optics (e.g., additional refractive optics) will be required to redirect the extracted light. An extractor based on reflective optics is less sensitive to variations in wavelength of the supplied light than an extractor based on refractive optics. This can provide improved color uniformity in the illuminated touch panel displays of the invention compared to some illuminated touch panel displays that have heretofore been proposed. Stray reflections, which can lead to objectionable ghosts and loss of contrast, are also less pronounced with reflective extractors compared to refractive extractors. The stray reflections that do arise in reflective extractors tend to be directed away from the viewer. In refractive extractors, some stray reflections tend to be directed towards the viewer, leading to a loss in overall contrast. If such stray reflections are referred to as noise bands, then their presence along the viewing axis represents a source of noise and a loss in signal to noise ratio.
The use of reflective extraction optics in the illuminated touch panels of the invention thus can provide improved design flexibility and performance compared to the use of refractive optics.
Those skilled in the art will appreciate that although lands such as lands 60a and 60b are shown in Fig. 3 as being parallel to the reference plane, they need not be parallel. In addition, risers such as riser 54a need not be symmetrically inclined with respect to the reference plane. Likewise, facets such as facet 56a need not be symmetrically inclined with respect to the reference plane.
Those skilled in the art will also appreciate that the projections on light extraction layer 32 can have shapes and orientations other than those shown in Fig. 3, so long as proper extraction of light from light guide 12 into reflective LCD 36 takes place. The angle at which supplied light from source 42 enters light guide 12, and the dimensions, pitch and angular orientation of the projections on light extraction layer 32 preferably are selected so that supplied light is evenly distributed across the viewing face of illuminated touch panel display 10. Fig. 4 through Fig. 6 illustrate the effect of the ratio of plateau length to land length upon overall light output from the bottom of a light guide of the invention. Fig. 4 shows a magnified side view of a portion of an illuminated touch panel display generally identified as 70. Structured light extraction layer 71 has projections such as projection 72 bounded by riser 74, plateau 76 and facet 78, and flanked by lands 80a and 80b. The total length of all plateaus in layer 71 is less than the total length of all lands in layer 71, or in other words the ratio of total plateau length to total land length is less than 1:1. Owing to the relatively small overall plateau area of layer 71, the available extraction window is relatively small and some of the potentially reflective portion of buried facets such as facet 78 may be inaccessible to supplied light rays such as ray 46a. Accordingly, a smaller fraction of such supplied light rays will be able to reach the facets in layer 71 at a suitable angle so that the supplied rays can be extracted from light guide 12 through exit face 82, and the overall light output from light guide 12 may be less than desired.
Fig. 5 shows a magnified side view of a portion of an illuminated touch panel display generally identified as 90. Structured light extraction layer 91 has projections such as projection 92 bounded by riser 94, plateau 96 and facet 98, and flanked by lands 100a and 100b. The total length of all plateaus in layer 91 is greater than the total length of all lands in layer 91, or in other words the ratio of total plateau length to total land length is greater than 1:1. Owing to the relatively large plateau area of layer 91, most or all of the facet area is available for reflection, and supplied light rays such as ray 46b will be able to reflect from facets in layer 91 and be extracted from light guide 12 through light exit face 99. Thus the overall light output from the bottom of light guide 12 in the illuminated touch panel of Fig. 5 will tend to be greater than from the illuminated touch panel of Fig. 4.
Fig. 6 is a graph showing the relationship between the ratio of plateau length to land length and light output from the exit face of the light guide. In general, light output (or extraction efficiency) increases as the ratio of plateau length to land length increases, in an approximately logarithmic relationship. Preferably the ratio of total plateau length to total land length is at least 1:1, more preferably at least 3:1. Once the full facet is exposed and accessible to the supplied light rays, the plateau length diminishes in importance and the curve shown in Fig. 6 levels off. In general, it is preferred for the land length to be greater than zero. For example, if the light extraction layer is formed from a flexible film, then preferably the lands should not be so short that it becomes difficult to peel away the film from the profiled tooling that typically would be used to make a structured flexible film.
Fig. 7 is a magnified partial side view of an illuminated touch panel 100 of the invention, illustrating a potential source of light leakage. Some light rays such as ray 46c will be reflected upward via total internal reflection from the lower face 102 of structured light extraction layer 104 towards a buried facet such as facet 103. At sufficiently low angles of incidence to the facet, light will refracted through the facet, pass through adhesive layer 105 and light guide 108, and exit the upper face 106 of light guide 108 at a high angle of incidence, away from a typical user's view axis. This light will be lost and will not contribute to the viewer's perception of image brightness.
Fig. 8 is a magnified partial side view of an illuminated touch panel 110 of the invention, illustrating a potential source of ghosting. Some light rays such as ray 46d will be reflected downward from a facet such as buried facet 111, be reflected upward from the exit face 112 of structured light extraction layer 114, pass through adhesive layer 115 and light guide 118, and exit the upper face 116 of light guide 118. These light rays will exit light guide 118 at a lower angle of incidence than in the case of light ray 46c in Fig. 7, and can be visible as a ghost image of the illumination source.
Fig. 9 is a magnified partial side view showing an illuminated touch panel 120 of the invention having a structured light extraction layer 124 that can reduce light leakage such as is shown in Fig. 7, and an antireflection coating that can reduce ghosting of the type shown in Fig. 8. Light rays such as ray 46e that are reflected upward from the lower face 122 of layer 124 are refracted through buried facet 126 and riser 128, and then are recaptured by refraction through nearby buried facet 130 and riser 132 back into layer 124. Light rays such as ray 46f that are reflected from a facet such as buried facet 126 strike the lower face 122 of layer 124 and pass through face 122 due to the presence of antireflection coating 125 on face 122.
It is easier to apply a uniform antireflection coating to a flat surface than to a structured surface. Thus it is easier to employ such a coating on the lowermost face (in other words, the light exit face) of the illuminated touch panels of the invention than on the lowermost face of illuminated touch panels that employ refractive optics to extract light through a structured surface on the lowermost face.
Those skilled in the art will appreciate that additional antireflection coating layers or other light management layers or features can be applied to exit face 33, so long as care is taken preserve the substantially flat topography of exit face 33 and to avoid introduction of undesirable distortions in the viewed image. Those skilled in the art will also appreciate that more than one light source can be used to supply light to the touch panel displays of the invention. For example, referring again to Fig. 1, a plurality of light sources can be placed along light input face 14. Although not shown in Fig. 1, a plurality of light sources could also be placed along end 15. If light is supplied along both input face 14 and end 15, then the projections in the structured light extraction layer 32 (e.g., projections such as projections 52 and 53 shown in Fig. 3) preferably should be symmetrically oriented with respect to the supplied light from both input face 14 and end 15. If light is supplied only along input face 14, then end 15 is preferably equipped with a mirrored surface or other suitable reflector to direct light reaching end 15 back into light guide 12. Fig. 10 is a magnified partial side view of an illuminated touch panel 140 having a light guide 142 and a structured extraction layer 144 that can reduce light loss. Light guide 142 is equipped with a specular or diffuse reflector 146 that reflects light such as light ray 46h back into light guide 142. The amount of light reaching reflector 146 can be further reduced by tilting or biasing the light source (not shown in Fig. 10), so that the axis along which the majority of its light output falls is not parallel to the upper face of light guide 142. Light rays such as light ray 46g are reflected downwards from facets such as buried facet 148 and are extracted from layer 144. Light rays such as light ray 46h are reflected from reflector 146 back into layer 144 and reflected downward by reflection from facets such as buried facet 150, which is oppositely inclined from buried facet 148. These oppositely inclined facets can be repeated along the length of light guide 142. Fig. 11 is an exploded side view of an illuminated touch panel 160 of the invention, showing individual layers that can be assembled together. Touch-sensitive transducer layer 161 is formed on the upper face 164 of light guide 162. Optically transparent adhesive layers 165 and 166 are coated on opposite sides of carrier film 168, and set aside. Structured light extraction layer 170 is formed from base film 172 and a light-curable resin using a suitable profiled tool, then cured to form light-cured structured surface 174 atop base film 172. If desired, an optional antireflection coating (not shown in Fig. 11) can be applied to the lower face of base film 172. This will be especially convenient when structured surface 174 is formed on base film 172 using a continuous method, as the antireflection coating can likewise be applied on the reverse side of base film 172 using a continuous method. The plateau portions of structured light extraction layer 170 such as plateaus 180a and 180b are laminated to adhesive layer 166, taking care not to damage the structured surface 174 of layer 170 and not to fill the air spaces between projections in layer 170 with adhesive. Adhesive layer 165 can then be laminated to the light output face 163 of light guide 162. The resulting assembly can conveniently be sold as is, or combined with additional touch panel transducer or display components. For example, the assembly can be combined with the remaining components of a capacitive overlay touch-sensitive transducer (not shown in Fig. 11) to provide a touch panel device that can be placed atop a suitable reflective light valve and equipped with a source of supplied light and suitable control electronics. As a further example, optically transparent adhesive layers 165 and 166 could be coated on opposite sides of carrier film 168, adhesive layer 166 could be laminated to the plateau portions of structured light extraction layer 170, and the resulting assembly sold as is for later lamination to the light output face of a light guide.
If desired, a more complete assembly can be made by laminating polarizer 176 to the upper face of reflective LCD 182 via adhesive layer 178. Reflective LCD 182 includes light modulation unit 184 and reflective layer 186. Other more complete or less complete assemblies can readily be envisioned by those skilled in the art. Fig. 12 is an exploded side view of another illuminated touch panel 190 of the invention, showing individual layers that can be assembled and fastened to the light output face 193 of light guide 192. Touch-sensitive transducer layer 191 is formed on the upper face 194 of light guide 192. Optically transparent adhesive layer 195 is applied to the light output face 193 of light guide 192. Structured light extraction layer 196 is formed from base film 198 and a light-curable resin using a suitable profiled tool, then cured to form light-cured structured surface 200 atop base film 198. Structured layer 196 is laminated to adhesive layer 202 and polarizer 204, taking care not to damage the structured surface 200 of layer 196 and not to fill the air spaces between projections in layer 196 with adhesive. If desired, an optional antireflection coating (not shown in Fig. 12) can be applied to the lower face of base film 198. The assembly of Fig. 12 has fewer layers and fewer optical interfaces in the light path than the assembly of Fig. 11, but requires somewhat greater care in handling and during lamination.
The light guide can have any desired overall size and thickness but preferably it is as thin as possible, e.g., 5 mm or less. The light guide can be square, rectangular, oval or any other desired shape when viewed from the intended display observation point. The size and shape of the light guide usually will be dictated by the size and shape of the desired display device or desired touch panel. Light guide thicknesses from about 0.1 to about 5 mm are preferred, more preferably about 1 to about 2 mm. The light guide preferably is an optically suitable material capable of resisting high temperatures and the steps required to fabricate a touch-sensitive surface atop the light guide. As mentioned above, the light guide preferably is substantially planar. If planar, the light guide can be fabricated from ordinary sheet glass. The light input face and viewing face of the light guide can each be generally planar or can have a convex or concave curvature. When the light source is a point or line source, the light input face may be provided with a convex curvature, lenslets, prisms, a roughened surface or other features in order to distribute the incoming light more evenly. The viewing face preferably has an optically smooth finish, in order to minimize transmission losses, undesired scattering and distortion. The light extraction layer can be fabricated from a wide variety of optically suitable materials including polycarbonate; polyacrylates such as polymethyl methacrylate; and polystyrene, with high refractive index plastics such as polycarbonate being preferred. The light extraction layer preferably is a flexible structured film made by molding, embossing, curing or otherwise forming a moldable resin against a lathe-turned tool or other formed surface, made of metal or other durable material that bears a negative replica of the desired structured surface. Methods for making such formed surfaces and for molding, embossing or curing the extraction film will be familiar to those skilled in the art.
Individual light extraction layer designs can if desired be evaluated without the need for actual layer fabrication, by using suitable ray-tracing modeling software such as "ASAP" from Breault Research Organization, Inc., "Code N" and "Light Tools" from Optical Research Associates, "Optica" from Wolfram Research, Inc. and "ZEMAX" from Focus Software, Inc.
The facets that are present in the light extraction layer (and are buried in the assembled light guide and extraction layer) preferably are sufficiently small so as to be unobtrusive to an ordinary viewer. The configuration, shape and dimensions of the facets and other light management features of the light extraction layer preferably are chosen to maximize extraction efficiency and provide evenly distributed light output at the desired viewing angle.
The projections preferably extend across the full width of the light extraction layer. Although less preferred, the projections can be in the form of shorter, less than full width segments, which can be aligned with one another in rows and columns or staggered from row to row. Rows of projections can be arranged parallel to the light input face or faces or at an angle with respect to the light input face or faces. Most preferably, the projections extend across the full width of the light extraction layer and are generally parallel to the light input face or faces. In the various embodiments of the invention shown in the Drawing, individual projections in the structured light extraction layers are shown as having the same angular orientation, shape and dimensions from projection to projection. The projections need not all be identical and need not all have the same angular orientation, shape or dimensions. For ease of manufacturing, generally it will be preferred to form a light extraction layer having projections whose riser, plateau and facet segments have the same angular orientation and segment length from projection to projection. The land segments between such projections can if desired also be similar to one another in angular orientation and segment lengths. Preferably however the projections are spaced at a relatively coarser pitch (repeat interval) near the light input face or faces of the light guide, and at a relatively finer pitch further from the light input face. For a light guide illuminated from only one end, this change in spacing can conveniently be accomplished by progressively decreasing the length of the land segments along the length of the light extraction layer from the light input face to the face at the other end of the light guide. A preferred pitch is from about 0.06 to about 12 projections per mm at the light input face or faces to a maximum of about 250 to about 1 projection per mm further from the light input face or faces. Those skilled in the art will appreciate that formation of Moire or other interference patterns can be discouraged or prevented in a variety of ways. For example, the dimensions, angular orientation or spacing of the rows of projections can be adjusted relative to the dimensions, angular orientation or spacing of pixels or other repeating elements in the reflective light valve (e.g., by skewing the direction of the rows of projections a few degrees with respect to the direction of the rows of pixels), so that interference patterns are minimized or eliminated at the viewing face of the display.
Each light extraction layer riser segment preferably is planar although other shapes such as convex or concave shapes can be used if desired. Preferably the facets and other structured surface portions of the light extraction layer are optically smooth, in order to avoid undesirable visual artifacts that may arise due to backscattering of light within the light guide.
The light extraction layer preferably has a thickness of about 20 micrometers to about 500 micrometers, more preferably about 75 to about 125 micrometers. Facet heights (or in other words, land depths) of about 5 to about 50 micrometers are preferred, more preferably about 7 to about 20 micrometers. So long as the facets have sufficient height, the chosen extraction layer thickness has a relatively small effect on extraction efficiency. Extraction efficiency tends to increase as facet heights increase, as the light guide thickness is reduced, or as the projection pitch decreases. That is, extraction efficiency tends to scale proportionally to (facet height)/[(light guide thickness)* (pitch)]. Put slightly differently, extraction efficiency tends to scale proportionally to the total cross-sectional area of the facets divided by the total cross-sectional area of the light guide input face. The adhesive layers used to assemble the various layers in the illuminated touch panel displays of the invention can be pressure sensitive adhesives, adhesives cured using energy sources such as heat, UN or electron beam, or any other adhesive having acceptable optical and mechanical properties. Suitable adhesives and joining techniques will be familiar to those skilled in the art. If desired, one or more of the adhesive layers can be cured after assembly, e.g., by applying the adhesive to one or both of the surfaces to be joined together, mating such surfaces together to form a laminated assembly, and exposing the adhesive layer or layers to suitable curing energy (e.g., UV or e-beam) through one or both sides of the laminated assembly to effect cure. The adhesive layer between the light guide and the light extraction layer should be applied with care. Such an adhesive can, for example, be applied to the entire light output face of the light guide and the light extraction layer laminated thereto. If desired, the adhesive can be coated atop only the plateau portions of the light extraction layer, and the resulting partially-coated surface laminated to the light output face of the light guide, e.g., as described in U.S. Patent No. 5,545,280. In either case, appropriate care should be taken not to damage the structured surface of the light extraction layer and not to fill the pockets between projections with adhesive.
If desired, the pockets between projections can be filled prior to lamination with a suitable flowable (and preferably hardenable) material having a lower refractive index than the material from which the light extraction layer is made. This can simplify lamination of the light extraction layer to the light guide, and help discourage the adhesive from filling the pockets. However, if the flowable material has a refractive index between that of air and the material from which the light extraction layer is made, then the use of such a flowable material may adversely affect the reflective characteristics of the facets and may reduce overall extraction efficiency compared to the use of air-filled pockets. The illuminated touch panels of the invention are particularly useful in subminiature or miniature devices illuminated with one or more light emitting diodes (LEDs) powered by small batteries. Suitable devices include cell phones, pagers, personal digital assistants, clocks, watches, calculators, still and video cameras, laptop computers, vehicular displays and the like. The reflective light valves in such devices can be made using a variety of color or monochrome devices. For example, the reflective light valve can be a reflective color LCD such as is used in the COMPAQ iPAQ™ Pocket PC. The reflective light valve can also be a device capable of controlled frustration of total internal reflection such as the devices described in U.S. Patent No. 6,064,784 and PCT Published Application No. WO 00/75720; a fixed graphic device such as a poster or sign (e.g., a printed menu); or a variable-appearance substrate such as "Gyricon" electronic display material (under development by Gyricon Media Inc.). The illuminated touch panels of the invention can be illuminated with more than one light source, e.g., three or more LEDs. An array of colored light sources (e.g., one or more of each of a red, green and blue LED) can be employed, with the light sources in the array being electronically energized using a continuous or strobed addressing scheme. In addition to LEDs, other suitable illumination sources for the touch panels and displays of the invention include fluorescent or incandescent lamps, electroluminescent lights and the like. A particularly preferred light source for the touch panels of the invention employs the LINEAR ILLUMINATION SOURCE described in copending application Serial No. 09/844,745, filed April 6, 2001. Various modifications and alterations of this invention will be apparent to those skilled in the art without departing from the scope and spirit of this invention. It should be understood that this invention is not limited to the illustrative embodiments set forth above.

Claims

We claim:
1. A frontlit touch panel for use with a reflective light valve, comprising a front light guide having at least one light input face that supplies light to the guide, a viewing face, a light output face opposite the viewing face, and at least one component of a touch-sensitive transducer, the light output face having a light extraction layer thereon having a substantially flat light exit face and containing buried reflective facets that extract supplied light from the guide through the light exit face.
2. A touch panel according to claim 1, wherein the guide has a reflective face opposite the light input face, and some of the facets are inclined so that supplied light reflected from the reflective face is extracted from the guide via such inclined facets.
3. A touch panel according to claim 1, wherein the guide comprises a planar glass sheet and the extraction layer comprises a structured surface that faces the guide and a smooth face that faces away from the guide.
4. A touch panel according to claim 1, wherein the extraction layer comprises a film having a structured surface comprising a plurality of projections that face the guide, and wherein pockets adjacent the facets and between the projections contain a medium having a lower refractive index than the material from which the film is made.
5. A touch panel according to claim 4, wherein the projections have a generally trapezoidal shape.
6. A touch panel according to claim 4, wherein the projections comprise the facets and further comprise risers and plateaus, and wherein supplied light passes from the light output face through a plateau and then is reflected from a facet through the light exit face.
7. A touch panel according to claim 4, wherein lands separate the projections and wherein the pockets contain air.
8. A touch panel according to claim 7, wherein the ratio of ratio of total plateau length to total land length is greater than 1: 1.
9. A touch panel according to claim 8, wherein the ratio is greater than 3:1.
10. A touch panel according to claim 4, wherein the projections have dimensions, pitch and angular orientation such that supplied light is evenly distributed across the viewing face.
11. A touch panel according to claim 4, wherein supplied light that is reflected from the exit face and refracted through a facet is recaptured by being refracted through a nearby facet and directed into the light extraction layer.
12. A touch panel according to claim 4, wherein the projections are spaced at a relatively coarser pitch near the light input face and at a relatively finer pitch further from the light input face.
13. A touch panel according to claim 4, wherein the projections have dimensions, pitch and angular orientation such that Moire patterns are not visible on the viewing face.
14. A touch panel according to claim 1, wherein substantially all the facet area is accessible to the supplied light.
15. A touch panel according to claim 1, further comprising an antireflection coating on the light exit face.
16. A touch panel according to claim 1, wherein the touch-sensitive transducer comprises a resistive touch panel.
17. A touch panel according to claim 1, wherein the touch-sensitive transducer comprises a capacitive overlay, guided acoustic wave, surface acoustic wave or near field imaging touch panel.
18. A touch panel according to claim 1, wherein application of the component to the front light guide requires temperatures or processing conditions that would destroy the light extraction layer.
19. A touch panel according to claim 17, wherein the component comprises a layer comprising indium tin oxide and the light extraction layer comprises a structured surface plastic film.
20. An illuminated touch panel display comprising: a) at least one light source; b) a front light guide having at least one light input face through which light from the source can be supplied to the guide, a viewing face, a light output face opposite the viewing face, and at least one component of a touch- sensitive transducer, the light output face having a light extraction layer thereon having a substantially flat light exit face and containing buried reflective facets that extract supplied light from the guide through the light exit face; and c) a reflective light valve that receives extracted light from the guide and returns at least some of that light through the viewing face.
21. A display according to claim 19, wherein the extraction layer comprises a film having a structured surface comprising a plurality of projections that face the guide, and wherein pockets adjacent the facets and between the projections contain a medium having a lower refractive index than the material from which the film is made.
22. A display according to claim 19, further comprising an antireflection coating on the light exit face and an air gap between such coating and the light valve.
23. A cellular telephone, pager, personal digital assistant, clock, watch, calculator, laptop computer or transportation vehicle comprising a display according to claim 19.
PCT/US2002/003207 2001-04-06 2002-02-04 Frontlit touch panel WO2002082358A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT02703329T ATE283513T1 (en) 2001-04-06 2002-02-04 FRONT ILLUMINATED TOUCH PANEL
JP2002580247A JP2004533006A (en) 2001-04-06 2002-02-04 Front light type touch panel
DE60202053T DE60202053T2 (en) 2001-04-06 2002-02-04 FRONT-LIGHT TOUCH PANEL
EP02703329A EP1374153B1 (en) 2001-04-06 2002-02-04 Frontlit touch panel
KR10-2003-7012956A KR20030085590A (en) 2001-04-06 2002-02-04 Frontlit touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/827,732 2001-04-06
US09/827,732 US6738051B2 (en) 2001-04-06 2001-04-06 Frontlit illuminated touch panel

Publications (1)

Publication Number Publication Date
WO2002082358A1 true WO2002082358A1 (en) 2002-10-17

Family

ID=25250000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/003207 WO2002082358A1 (en) 2001-04-06 2002-02-04 Frontlit touch panel

Country Status (8)

Country Link
US (2) US6738051B2 (en)
EP (1) EP1374153B1 (en)
JP (1) JP2004533006A (en)
KR (1) KR20030085590A (en)
CN (1) CN1256698C (en)
AT (1) ATE283513T1 (en)
DE (1) DE60202053T2 (en)
WO (1) WO2002082358A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10802205B2 (en) 2017-01-05 2020-10-13 Boe Technology Group Co., Ltd. Backlight module, display module and display device

Families Citing this family (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2353506A1 (en) 1998-11-02 2000-05-11 3M Innovative Properties Company Transparent conductive oxides for plastic flat panel displays
KR100354906B1 (en) 1999-10-01 2002-09-30 삼성전자 주식회사 A wide viewing angle liquid crystal display
US6803906B1 (en) * 2000-07-05 2004-10-12 Smart Technologies, Inc. Passive touch system and method of detecting user input
JP2002313121A (en) * 2001-04-16 2002-10-25 Nitto Denko Corp Luminaire with touch panel and reflective liquid crystal display device
US7668322B2 (en) * 2001-05-18 2010-02-23 Tpo Hong Kong Holding Limited Device for detecting pressure fluctuations, display device, recording device and sound reproduction system
ATE557337T1 (en) * 2002-02-06 2012-05-15 Soundtouch Ltd TOUCH PAD
ATE334441T1 (en) * 2002-03-13 2006-08-15 O Pen Aps TOUCH PAD AND METHOD OF OPERATING THE TOUCH PAD
FR2841022B1 (en) * 2002-06-12 2004-08-27 Centre Nat Rech Scient METHOD FOR LOCATING AN IMPACT ON A SURFACE AND DEVICE FOR IMPLEMENTING SAID METHOD
US7019734B2 (en) * 2002-07-17 2006-03-28 3M Innovative Properties Company Resistive touch sensor having microstructured conductive layer
JP2004078613A (en) * 2002-08-19 2004-03-11 Fujitsu Ltd Touch panel system
US6954197B2 (en) 2002-11-15 2005-10-11 Smart Technologies Inc. Size/scale and orientation determination of a pointer in a camera-based touch system
US8456447B2 (en) 2003-02-14 2013-06-04 Next Holdings Limited Touch screen signal processing
US8508508B2 (en) 2003-02-14 2013-08-13 Next Holdings Limited Touch screen signal processing with single-point calibration
US7629967B2 (en) 2003-02-14 2009-12-08 Next Holdings Limited Touch screen signal processing
US7532206B2 (en) * 2003-03-11 2009-05-12 Smart Technologies Ulc System and method for differentiating between pointers used to contact touch surface
CN1777859B (en) * 2003-03-12 2010-04-28 平蛙实验室股份公司 System and method for determining ray emmitting unit
US7382360B2 (en) * 2003-04-15 2008-06-03 Synaptics Incorporated Methods and systems for changing the appearance of a position sensor with a light effect
US20040257484A1 (en) * 2003-06-18 2004-12-23 Alps Electric Co., Ltd. Illumination device, tablet, and liquid crystal display
US7442914B2 (en) * 2003-09-12 2008-10-28 Flatfrog Laboratories Ab System and method of determining a position of a radiation emitting element
JP4859053B2 (en) 2003-09-12 2012-01-18 フラットフロッグ・ラボラトリーズ・アクチボラゲット System and method for locating radiation scattering / reflecting elements
US7411575B2 (en) * 2003-09-16 2008-08-12 Smart Technologies Ulc Gesture recognition method and touch system incorporating the same
US7274356B2 (en) * 2003-10-09 2007-09-25 Smart Technologies Inc. Apparatus for determining the location of a pointer within a region of interest
US7355593B2 (en) 2004-01-02 2008-04-08 Smart Technologies, Inc. Pointer tracking across multiple overlapping coordinate input sub-regions defining a generally contiguous input region
US8291762B2 (en) 2004-01-15 2012-10-23 Robert Akins Work capacities testing apparatus and method
US8179361B2 (en) * 2004-01-15 2012-05-15 Hitachi Chemical Co., Ltd. Reflector and backlight device
US20050156901A1 (en) * 2004-01-20 2005-07-21 Guolin Ma Touch screen display system
TWI282937B (en) * 2004-03-29 2007-06-21 Fu-Lin Ye Button device for a touch panel
US7460110B2 (en) 2004-04-29 2008-12-02 Smart Technologies Ulc Dual mode touch system
US7538759B2 (en) 2004-05-07 2009-05-26 Next Holdings Limited Touch panel display system with illumination and detection provided from a single edge
US8120596B2 (en) 2004-05-21 2012-02-21 Smart Technologies Ulc Tiled touch system
TWI278690B (en) * 2004-06-25 2007-04-11 Hannstar Display Corp Input-sensor-integrated liquid crystal display panel
KR101226502B1 (en) * 2004-09-10 2013-02-07 군제 가부시키가이샤 Touch panel and method for manufacturing film material for touch panel
EP1666936A1 (en) * 2004-12-02 2006-06-07 Asulab S.A. Dual illumination function optical device and figurative image formation
EP1666933A1 (en) * 2004-12-02 2006-06-07 Asulab S.A. Dual illumination function optical device and figurative image formation
PL1720255T3 (en) * 2005-04-25 2010-03-31 Electrolux Home Products Corp Nv Control panel with illuminated capacitive touch switches
US8847924B2 (en) * 2005-10-03 2014-09-30 Hewlett-Packard Development Company, L.P. Reflecting light
US7459899B2 (en) * 2005-11-21 2008-12-02 Thermo Fisher Scientific Inc. Inductively-coupled RF power source
KR101442275B1 (en) * 2006-08-01 2014-09-22 쓰리엠 이노베이티브 프로퍼티즈 컴파니 An illumination device and a vehicle glazing
US8441467B2 (en) * 2006-08-03 2013-05-14 Perceptive Pixel Inc. Multi-touch sensing display through frustrated total internal reflection
KR101297216B1 (en) * 2006-09-05 2013-08-16 삼성디스플레이 주식회사 Touch panel, touch screen display device having the touch panel and method of manufacturing the same
JP4351696B2 (en) * 2006-12-01 2009-10-28 アルプス電気株式会社 Input device with illumination mechanism
US9442607B2 (en) * 2006-12-04 2016-09-13 Smart Technologies Inc. Interactive input system and method
CN101211246B (en) 2006-12-26 2010-06-23 乐金显示有限公司 Organic light-emitting diode panel and touch-screen system including the same
KR100856206B1 (en) * 2007-01-31 2008-09-03 삼성전자주식회사 Keypad and keypad assembly
US8115753B2 (en) 2007-04-11 2012-02-14 Next Holdings Limited Touch screen system with hover and click input methods
CN101311002A (en) * 2007-05-25 2008-11-26 富士迈半导体精密工业(上海)有限公司 Writing board
US8094137B2 (en) * 2007-07-23 2012-01-10 Smart Technologies Ulc System and method of detecting contact on a display
WO2009029767A1 (en) 2007-08-30 2009-03-05 Next Holdings, Inc. Optical touchscreen with improved illumination
CA2697856A1 (en) 2007-08-30 2009-03-05 Next Holdings, Inc. Low profile touch panel systems
US8412010B2 (en) 2007-09-10 2013-04-02 Banyan Energy, Inc. Compact optics for concentration and illumination systems
CA2698284C (en) * 2007-09-10 2013-06-25 Banyan Energy, Inc. Compact optics for concentration, aggregation and illumination of light energy
US7672549B2 (en) * 2007-09-10 2010-03-02 Banyan Energy, Inc. Solar energy concentrator
US20090111022A1 (en) * 2007-10-24 2009-04-30 3M Innovative Properties Company Electrode compositions and methods
KR101407301B1 (en) * 2007-12-03 2014-06-13 엘지디스플레이 주식회사 touch panel display apparatus
US20090154198A1 (en) * 2007-12-14 2009-06-18 Joo Hoon Lee Reflection type display apparatus
US8405636B2 (en) 2008-01-07 2013-03-26 Next Holdings Limited Optical position sensing system and optical position sensor assembly
US20090179870A1 (en) * 2008-01-16 2009-07-16 World Properties, Inc. Luminous touch screen with interstitial layers
WO2009116205A1 (en) * 2008-03-21 2009-09-24 シャープ株式会社 Liquid crystal display device with touch sensor housed therein
US20090278795A1 (en) * 2008-05-09 2009-11-12 Smart Technologies Ulc Interactive Input System And Illumination Assembly Therefor
US8902193B2 (en) 2008-05-09 2014-12-02 Smart Technologies Ulc Interactive input system and bezel therefor
WO2010011779A2 (en) * 2008-07-23 2010-01-28 Flextronics Ap, Llc Integration design for capacitive touch panels and liquid crystal displays
US9128568B2 (en) * 2008-07-30 2015-09-08 New Vision Display (Shenzhen) Co., Limited Capacitive touch panel with FPC connector electrically coupled to conductive traces of face-to-face ITO pattern structure in single plane
KR20110043732A (en) * 2008-08-08 2011-04-27 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Lightguide having a viscoelastic layer for managing light
US8870436B2 (en) * 2008-09-17 2014-10-28 3M Innovative Properties Company Patterned adhesives for reflectors
US8810522B2 (en) 2008-09-29 2014-08-19 Smart Technologies Ulc Method for selecting and manipulating a graphical object in an interactive input system, and interactive input system executing the method
US20100083109A1 (en) * 2008-09-29 2010-04-01 Smart Technologies Ulc Method for handling interactions with multiple users of an interactive input system, and interactive input system executing the method
US20100079409A1 (en) * 2008-09-29 2010-04-01 Smart Technologies Ulc Touch panel for an interactive input system, and interactive input system incorporating the touch panel
US20100103140A1 (en) * 2008-10-27 2010-04-29 Sony Ericsson Mobile Communications Ab Touch sensitive device using optical gratings
US8339378B2 (en) * 2008-11-05 2012-12-25 Smart Technologies Ulc Interactive input system with multi-angle reflector
US8209861B2 (en) * 2008-12-05 2012-07-03 Flextronics Ap, Llc Method for manufacturing a touch screen sensor assembly
SE533704C2 (en) 2008-12-05 2010-12-07 Flatfrog Lab Ab Touch sensitive apparatus and method for operating the same
US20100156811A1 (en) * 2008-12-22 2010-06-24 Ding Hua Long New pattern design for a capacitive touch screen
US8274486B2 (en) * 2008-12-22 2012-09-25 Flextronics Ap, Llc Diamond pattern on a single layer
US20100156846A1 (en) * 2008-12-23 2010-06-24 Flextronics Ap, Llc Single substrate capacitive touch panel
US8243426B2 (en) * 2008-12-31 2012-08-14 Apple Inc. Reducing optical effects in a display
US20130181896A1 (en) * 2009-01-23 2013-07-18 Qualcomm Mems Technologies, Inc. Integrated light emitting and light detecting device
JP2010198415A (en) * 2009-02-26 2010-09-09 Seiko Epson Corp Input apparatus, display apparatus, and electronic device
US20100259485A1 (en) * 2009-04-08 2010-10-14 Cheng-Yen Chuang Touch keyboard input device enabling pattern switching
US20110001717A1 (en) * 2009-07-06 2011-01-06 Charles Hayes Narrow Border for Capacitive Touch Panels
US8416206B2 (en) * 2009-07-08 2013-04-09 Smart Technologies Ulc Method for manipulating a graphic widget in a three-dimensional environment displayed on a touch panel of an interactive input system
DE102010026291A1 (en) * 2009-08-06 2011-02-10 Volkswagen Ag motor vehicle
US8730212B2 (en) * 2009-08-21 2014-05-20 Microsoft Corporation Illuminator for touch- and object-sensitive display
US8902195B2 (en) * 2009-09-01 2014-12-02 Smart Technologies Ulc Interactive input system with improved signal-to-noise ratio (SNR) and image capture method
US9075179B2 (en) * 2009-09-14 2015-07-07 Unipixel Displays, Inc. Light-extraction graphics film
US20110095989A1 (en) * 2009-10-23 2011-04-28 Smart Technologies Ulc Interactive input system and bezel therefor
US8502789B2 (en) * 2010-01-11 2013-08-06 Smart Technologies Ulc Method for handling user input in an interactive input system, and interactive input system executing the method
KR20110100792A (en) * 2010-03-05 2011-09-15 삼성전자주식회사 Touch screen module construction
DE102010010464B4 (en) 2010-03-06 2011-11-17 Bcd-Gmbh reading Help
US9323399B2 (en) * 2010-03-25 2016-04-26 Freescale Semiconductor, Inc. Capacitive touch pad with adjacent touch pad electric field suppression
US9285929B2 (en) 2010-03-30 2016-03-15 New Vision Display (Shenzhen) Co., Limited Touchscreen system with simplified mechanical touchscreen design using capacitance and acoustic sensing technologies, and method therefor
TW201135528A (en) * 2010-04-01 2011-10-16 Zone Technologies Co Ltd I Input device, mouse, remoter, control circuit, electronical system and operation method
US8283800B2 (en) 2010-05-27 2012-10-09 Ford Global Technologies, Llc Vehicle control system with proximity switch and method thereof
JP5749975B2 (en) * 2010-05-28 2015-07-15 株式会社半導体エネルギー研究所 Photodetector and touch panel
US8780085B2 (en) * 2010-08-03 2014-07-15 Microsoft Corporation Resolution enhancement
US8454181B2 (en) 2010-08-25 2013-06-04 Ford Global Technologies, Llc Light bar proximity switch
US8575949B2 (en) 2010-08-25 2013-11-05 Ford Global Technologies, Llc Proximity sensor with enhanced activation
JP5944398B2 (en) 2010-10-28 2016-07-05 バニヤン エナジー インコーポレイテッド Turning optics for heat collection and lighting systems
TWI431365B (en) * 2011-03-01 2014-03-21 E Ink Holdings Inc Backlight module having light-emitting diode
TWI518564B (en) * 2011-04-13 2016-01-21 Touch display with front light module
DE102011076232B4 (en) 2011-05-20 2023-10-26 BSH Hausgeräte GmbH Device for uniformly backlighting a transparent or translucent display surface
US8928336B2 (en) 2011-06-09 2015-01-06 Ford Global Technologies, Llc Proximity switch having sensitivity control and method therefor
US8975903B2 (en) 2011-06-09 2015-03-10 Ford Global Technologies, Llc Proximity switch having learned sensitivity and method therefor
US10004286B2 (en) 2011-08-08 2018-06-26 Ford Global Technologies, Llc Glove having conductive ink and method of interacting with proximity sensor
GB2507453A (en) 2011-08-19 2014-04-30 Barnesandnoble Com Llc Planar front illumination system having a light guide with micro lenses formed thereon and method of manufacturing the same
WO2013028467A1 (en) 2011-08-19 2013-02-28 Barnesandnoble.Com Llc Planar front illumination system having a light guide with micro scattering features formed thereon and method of manufacturing the same
CN102999226A (en) * 2011-09-12 2013-03-27 宸鸿科技(厦门)有限公司 Reflection-type touch display device and manufacturing method thereof
US9143126B2 (en) 2011-09-22 2015-09-22 Ford Global Technologies, Llc Proximity switch having lockout control for controlling movable panel
US10112556B2 (en) 2011-11-03 2018-10-30 Ford Global Technologies, Llc Proximity switch having wrong touch adaptive learning and method
US8994228B2 (en) 2011-11-03 2015-03-31 Ford Global Technologies, Llc Proximity switch having wrong touch feedback
US8878438B2 (en) 2011-11-04 2014-11-04 Ford Global Technologies, Llc Lamp and proximity switch assembly and method
US8525955B2 (en) 2012-01-31 2013-09-03 Multek Display (Hong Kong) Limited Heater for liquid crystal display
US8933708B2 (en) 2012-04-11 2015-01-13 Ford Global Technologies, Llc Proximity switch assembly and activation method with exploration mode
US9531379B2 (en) 2012-04-11 2016-12-27 Ford Global Technologies, Llc Proximity switch assembly having groove between adjacent proximity sensors
US9568527B2 (en) 2012-04-11 2017-02-14 Ford Global Technologies, Llc Proximity switch assembly and activation method having virtual button mode
US9219472B2 (en) 2012-04-11 2015-12-22 Ford Global Technologies, Llc Proximity switch assembly and activation method using rate monitoring
US9184745B2 (en) 2012-04-11 2015-11-10 Ford Global Technologies, Llc Proximity switch assembly and method of sensing user input based on signal rate of change
US9559688B2 (en) 2012-04-11 2017-01-31 Ford Global Technologies, Llc Proximity switch assembly having pliable surface and depression
US9944237B2 (en) 2012-04-11 2018-04-17 Ford Global Technologies, Llc Proximity switch assembly with signal drift rejection and method
US9197206B2 (en) 2012-04-11 2015-11-24 Ford Global Technologies, Llc Proximity switch having differential contact surface
US9831870B2 (en) 2012-04-11 2017-11-28 Ford Global Technologies, Llc Proximity switch assembly and method of tuning same
US9660644B2 (en) 2012-04-11 2017-05-23 Ford Global Technologies, Llc Proximity switch assembly and activation method
US9520875B2 (en) 2012-04-11 2016-12-13 Ford Global Technologies, Llc Pliable proximity switch assembly and activation method
US9065447B2 (en) 2012-04-11 2015-06-23 Ford Global Technologies, Llc Proximity switch assembly and method having adaptive time delay
US9287864B2 (en) 2012-04-11 2016-03-15 Ford Global Technologies, Llc Proximity switch assembly and calibration method therefor
US9136840B2 (en) 2012-05-17 2015-09-15 Ford Global Technologies, Llc Proximity switch assembly having dynamic tuned threshold
US10168835B2 (en) 2012-05-23 2019-01-01 Flatfrog Laboratories Ab Spatial resolution in touch displays
US9164309B2 (en) 2012-05-25 2015-10-20 Apple Inc. Display with broadband antireflection film
US8981602B2 (en) 2012-05-29 2015-03-17 Ford Global Technologies, Llc Proximity switch assembly having non-switch contact and method
US9383496B2 (en) * 2012-06-05 2016-07-05 Rambus Delaware Llc Edge lit lighting assembly with spectrum adjuster
US9337832B2 (en) 2012-06-06 2016-05-10 Ford Global Technologies, Llc Proximity switch and method of adjusting sensitivity therefor
US9641172B2 (en) 2012-06-27 2017-05-02 Ford Global Technologies, Llc Proximity switch assembly having varying size electrode fingers
US8922340B2 (en) 2012-09-11 2014-12-30 Ford Global Technologies, Llc Proximity switch based door latch release
US8796575B2 (en) 2012-10-31 2014-08-05 Ford Global Technologies, Llc Proximity switch assembly having ground layer
US9311204B2 (en) 2013-03-13 2016-04-12 Ford Global Technologies, Llc Proximity interface development system having replicator and method
US9499128B2 (en) 2013-03-14 2016-11-22 The Crawford Group, Inc. Mobile device-enhanced user selection of specific rental vehicles for a rental vehicle reservation
WO2014168567A1 (en) 2013-04-11 2014-10-16 Flatfrog Laboratories Ab Tomographic processing for touch detection
EP3017244A1 (en) 2013-07-02 2016-05-11 3M Innovative Properties Company Flat light guide
US9874978B2 (en) 2013-07-12 2018-01-23 Flatfrog Laboratories Ab Partial detect mode
US10126882B2 (en) 2014-01-16 2018-11-13 Flatfrog Laboratories Ab TIR-based optical touch systems of projection-type
US10146376B2 (en) 2014-01-16 2018-12-04 Flatfrog Laboratories Ab Light coupling in TIR-based optical touch systems
US9541965B1 (en) * 2014-03-10 2017-01-10 Amazon Technologies, Inc. Cover assembly for a display stack
US9626024B1 (en) * 2014-03-24 2017-04-18 Amazon Technologies, Inc. Composite cover assembly for electronic devices
WO2015199602A1 (en) 2014-06-27 2015-12-30 Flatfrog Laboratories Ab Detection of surface contamination
US10038443B2 (en) 2014-10-20 2018-07-31 Ford Global Technologies, Llc Directional proximity switch assembly
EP3250993B1 (en) 2015-01-28 2019-09-04 FlatFrog Laboratories AB Dynamic touch quarantine frames
US10318074B2 (en) 2015-01-30 2019-06-11 Flatfrog Laboratories Ab Touch-sensing OLED display with tilted emitters
WO2016130074A1 (en) 2015-02-09 2016-08-18 Flatfrog Laboratories Ab Optical touch system comprising means for projecting and detecting light beams above and inside a transmissive panel
WO2016136786A1 (en) * 2015-02-27 2016-09-01 シャープ株式会社 Laminated optical member, lighting device, display device and television receiver
WO2016140612A1 (en) 2015-03-02 2016-09-09 Flatfrog Laboratories Ab Optical component for light coupling
US9654103B2 (en) 2015-03-18 2017-05-16 Ford Global Technologies, Llc Proximity switch assembly having haptic feedback and method
US10139545B2 (en) * 2015-04-02 2018-11-27 E Ink Holdings Inc. Front light display device and manufacturing thereof
US9734771B2 (en) 2015-04-14 2017-08-15 International Controls And Measurements Corp. Touch-sensitive flat-panel control and interface
US9548733B2 (en) 2015-05-20 2017-01-17 Ford Global Technologies, Llc Proximity sensor assembly having interleaved electrode configuration
CN104808391B (en) 2015-05-26 2018-05-29 京东方科技集团股份有限公司 Integrated preposition light source and preparation method thereof, reflective display
CN108369470B (en) 2015-12-09 2022-02-08 平蛙实验室股份公司 Improved stylus recognition
CN105527745A (en) * 2016-02-02 2016-04-27 武汉华星光电技术有限公司 Mobile terminal
CN110100226A (en) 2016-11-24 2019-08-06 平蛙实验室股份公司 The Automatic Optimal of touch signal
WO2018106176A1 (en) 2016-12-07 2018-06-14 Flatfrog Laboratories Ab An improved touch device
CN110300950B (en) 2017-02-06 2023-06-16 平蛙实验室股份公司 Optical coupling in touch sensing systems
WO2018174788A1 (en) 2017-03-22 2018-09-27 Flatfrog Laboratories Object characterisation for touch displays
EP3602259A4 (en) 2017-03-28 2021-01-20 FlatFrog Laboratories AB Touch sensing apparatus and method for assembly
WO2019045629A1 (en) 2017-09-01 2019-03-07 Flatfrog Laboratories Ab Improved optical component
WO2019172826A1 (en) 2018-03-05 2019-09-12 Flatfrog Laboratories Ab Improved touch-sensing apparatus
WO2020153890A1 (en) 2019-01-25 2020-07-30 Flatfrog Laboratories Ab A videoconferencing terminal and method of operating the same
CN110208898B (en) * 2019-05-31 2020-11-20 内蒙古中森智能终端技术研发有限公司 High-luminous-efficiency end face light guide plate for backlight module and preparation process thereof
JP2023512682A (en) 2020-02-10 2023-03-28 フラットフロッグ ラボラトリーズ アーベー Improved touch detector
CN111640370A (en) * 2020-06-29 2020-09-08 京东方科技集团股份有限公司 Bonding structure, display device, and bonding method for display device
CN112946948A (en) * 2021-02-08 2021-06-11 捷开通讯(深圳)有限公司 Display panel and display device
DE102021108391A1 (en) 2021-04-01 2022-10-06 Lisa Dräxlmaier GmbH LIGHTING DEVICE FOR A MOTOR VEHICLE
CN117666210A (en) * 2022-08-24 2024-03-08 中强光电股份有限公司 Display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053431A1 (en) * 1998-04-09 1999-10-21 Flat Panel Display Co. (Fpd) B.V. Touch sensor display
WO1999063394A1 (en) * 1998-06-02 1999-12-09 Nissha Printing Co., Ltd. Touch screen with front lighting
JP2000187197A (en) * 1998-12-21 2000-07-04 Fujitsu Kasei Kk Touch panel for display device
JP2001051256A (en) * 1999-08-06 2001-02-23 Hitachi Ltd Liquid crystal display device
EP1081633A2 (en) * 1999-08-31 2001-03-07 Daicel Chemical Industries, Ltd. Touch panel and display device using the same
JP2001100186A (en) * 1999-09-30 2001-04-13 Nissha Printing Co Ltd Touch panel device integrated with front light
US20020075245A1 (en) * 2000-12-20 2002-06-20 Satoshi Kawashima Touch panel for display device integrated with front light unit

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4373282A (en) 1979-12-26 1983-02-15 Hughes Aircraft Company Thin-panel illuminator for front-lit displays
US4528617A (en) 1982-02-08 1985-07-09 Sheltered Workshop For The Disabled, Inc. Light distribution apparatus
JPS61188515A (en) 1985-02-18 1986-08-22 Mitsubishi Rayon Co Ltd Optical touch panel switch
US4958148A (en) * 1985-03-22 1990-09-18 Elmwood Sensors, Inc. Contrast enhancing transparent touch panel device
FR2597642B1 (en) 1986-04-18 1990-01-12 Blanchet Pierre LIGHT DISPLAY DEVICE FOR TRANSLUCENT DOCUMENTS
US4751615A (en) 1986-08-07 1988-06-14 International Marketing Concepts, Inc. Page light
US4799137A (en) 1987-03-24 1989-01-17 Minnesota Mining And Manufacturing Company Reflective film
US4874228A (en) 1987-03-24 1989-10-17 Minnesota Mining And Manufacturing Company Back-lit display
NL8801361A (en) * 1988-05-27 1989-12-18 Koninkl Philips Electronics Nv VIEW PROJECTION SCREEN.
US5054885A (en) 1988-10-11 1991-10-08 Minnesota Mining And Manfuacturing Company Light fixture including a partially collimated beam of light and reflective prisms having peaks lying on a curved surface
US5005108A (en) 1989-02-10 1991-04-02 Lumitex, Inc. Thin panel illuminator
US5050946A (en) 1990-09-27 1991-09-24 Compaq Computer Corporation Faceted light pipe
US5190370A (en) 1991-08-21 1993-03-02 Minnesota Mining And Manufacturing Company High aspect ratio lighting element
KR970008351B1 (en) 1991-12-03 1997-05-23 샤프 가부시끼가이샤 Liquid crystal display device
US5268782A (en) 1992-01-16 1993-12-07 Minnesota Mining And Manufacturing Company Micro-ridged, polymeric liquid crystal display substrate and display device
US5528720A (en) 1992-03-23 1996-06-18 Minnesota Mining And Manufacturing Co. Tapered multilayer luminaire devices
US5359691A (en) 1992-10-08 1994-10-25 Briteview Technologies Backlighting system with a multi-reflection light injection system and using microprisms
US5485354A (en) 1993-09-09 1996-01-16 Precision Lamp, Inc. Flat panel display lighting system
US5555329A (en) 1993-11-05 1996-09-10 Alliesignal Inc. Light directing optical structure
US5396350A (en) 1993-11-05 1995-03-07 Alliedsignal Inc. Backlighting apparatus employing an array of microprisms
US5428468A (en) 1993-11-05 1995-06-27 Alliedsignal Inc. Illumination system employing an array of microprisms
US5671994A (en) 1994-06-08 1997-09-30 Clio Technologies, Inc. Flat and transparent front-lighting system using microprisms
DE19521254A1 (en) 1994-06-24 1996-01-04 Minnesota Mining & Mfg Display system with brightness boosting film
US5575549A (en) 1994-08-12 1996-11-19 Enplas Corporation Surface light source device
US5506929A (en) 1994-10-19 1996-04-09 Clio Technologies, Inc. Light expanding system for producing a linear or planar light beam from a point-like light source
US5650597A (en) 1995-01-20 1997-07-22 Dynapro Systems, Inc. Capacitive touch sensor
US5608837A (en) 1995-05-15 1997-03-04 Clio Technologies, Inc. Transmissive type display and method capable of utilizing ambient light
US6712481B2 (en) * 1995-06-27 2004-03-30 Solid State Opto Limited Light emitting panel assemblies
US5613751A (en) 1995-06-27 1997-03-25 Lumitex, Inc. Light emitting panel assemblies
US6011602A (en) 1995-11-06 2000-01-04 Seiko Epson Corporation Lighting apparatus with a light guiding body having projections in the shape of a trapezoid
US5907375A (en) * 1996-03-01 1999-05-25 Fuji Xerox Co., Ltd. Input-output unit
US5995690A (en) 1996-11-21 1999-11-30 Minnesota Mining And Manufacturing Company Front light extraction film for light guiding systems and method of manufacture
EP0879991A3 (en) 1997-05-13 1999-04-21 Matsushita Electric Industrial Co., Ltd. Illuminating system
US6215920B1 (en) 1997-06-10 2001-04-10 The University Of British Columbia Electrophoretic, high index and phase transition control of total internal reflection in high efficiency variable reflectivity image displays
US6064784A (en) 1997-06-10 2000-05-16 The University Of British Columbia Electrophoretic, dual refraction frustration of total internal reflection in high efficiency variable reflectivity image displays
JPH1165764A (en) 1997-08-26 1999-03-09 Matsushita Electric Ind Co Ltd Liquid crystal display element with touch panel
JP3849249B2 (en) 1997-09-29 2006-11-22 カシオ計算機株式会社 Liquid crystal display
WO1999022268A1 (en) 1997-10-28 1999-05-06 Koninklijke Philips Electronics N.V. Display device
JP3808992B2 (en) 1997-11-21 2006-08-16 三菱電機株式会社 LCD panel module
JPH11174972A (en) 1997-12-12 1999-07-02 Stanley Electric Co Ltd Liquid crystal display device
JPH11260133A (en) 1998-03-15 1999-09-24 Omron Corp Surface light source device
JP3644476B2 (en) 1998-04-30 2005-04-27 松下電器産業株式会社 Portable electronic devices
JP4159059B2 (en) 1998-06-05 2008-10-01 シチズン電子株式会社 Planar light source unit
JP3534170B2 (en) 1998-07-31 2004-06-07 シャープ株式会社 Reflective liquid crystal display device with touch panel
JP2000075293A (en) 1998-09-02 2000-03-14 Matsushita Electric Ind Co Ltd Illuminator, touch panel with illumination and reflective liquid crystal display device
US6421104B1 (en) 1999-10-22 2002-07-16 Motorola, Inc. Front illuminator for a liquid crystal display and method of making same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053431A1 (en) * 1998-04-09 1999-10-21 Flat Panel Display Co. (Fpd) B.V. Touch sensor display
WO1999063394A1 (en) * 1998-06-02 1999-12-09 Nissha Printing Co., Ltd. Touch screen with front lighting
JP2000187197A (en) * 1998-12-21 2000-07-04 Fujitsu Kasei Kk Touch panel for display device
JP2001051256A (en) * 1999-08-06 2001-02-23 Hitachi Ltd Liquid crystal display device
EP1081633A2 (en) * 1999-08-31 2001-03-07 Daicel Chemical Industries, Ltd. Touch panel and display device using the same
JP2001100186A (en) * 1999-09-30 2001-04-13 Nissha Printing Co Ltd Touch panel device integrated with front light
US20020075245A1 (en) * 2000-12-20 2002-06-20 Satoshi Kawashima Touch panel for display device integrated with front light unit

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 10 17 November 2000 (2000-11-17) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 19 5 June 2001 (2001-06-05) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 21 3 August 2001 (2001-08-03) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10802205B2 (en) 2017-01-05 2020-10-13 Boe Technology Group Co., Ltd. Backlight module, display module and display device

Also Published As

Publication number Publication date
EP1374153A1 (en) 2004-01-02
EP1374153B1 (en) 2004-11-24
CN1256698C (en) 2006-05-17
ATE283513T1 (en) 2004-12-15
CN1511301A (en) 2004-07-07
US7253809B2 (en) 2007-08-07
DE60202053D1 (en) 2004-12-30
US20020145593A1 (en) 2002-10-10
JP2004533006A (en) 2004-10-28
US20060132453A1 (en) 2006-06-22
DE60202053T2 (en) 2005-12-01
US6738051B2 (en) 2004-05-18
KR20030085590A (en) 2003-11-05

Similar Documents

Publication Publication Date Title
EP1374153B1 (en) Frontlit touch panel
US6592234B2 (en) Frontlit display
US6891530B2 (en) Touch panel-including illuminator and reflective liquid-crystal display device
US7714956B2 (en) Front illuminating device and a reflection-type liquid crystal display using such a device
US9285530B2 (en) Planar front illumination system having a light guide with micro lenses formed thereon and method of manufacturing the same
EP1256834B1 (en) Reflective liquid-crystal display device
US5764322A (en) Light guiding sheet, manufacturing method thereof, back light using the light guiding sheet, and liquid crystal display unit using the back light
US7085060B2 (en) Optical component for liquid crystal display
TW202004079A (en) Optical device
KR100819253B1 (en) Backlight unit for portable terminal
EP0879991A2 (en) Illuminating system
JP2002258277A (en) Reflective display device, method of manufacture therefor, and equipment using the same
KR20010098838A (en) Planar light source and display device using the same
US20020021385A1 (en) Reflective screen lighting device
CN101398508A (en) Attaching light conducting plate for reducing reflector plate optical attrition
JP2001167625A (en) Sheet light source device and liquid crystal display device
JP4379077B2 (en) Backlight unit and liquid crystal display device
JP4618380B2 (en) Backlight unit and liquid crystal display device
JP2017103187A (en) Light guide plate, planar light source device, display device, and electronic apparatus
KR100425561B1 (en) surface light source device, image display and reflecting sheet
CN116520610A (en) Backlight module and display device
JP2004102125A (en) Reflective liquid crystal display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002703329

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020037012956

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002580247

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 028103122

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002703329

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002703329

Country of ref document: EP