WO2002084850A1 - Canned linear motor armature and canned linear motor - Google Patents

Canned linear motor armature and canned linear motor Download PDF

Info

Publication number
WO2002084850A1
WO2002084850A1 PCT/JP2002/003517 JP0203517W WO02084850A1 WO 2002084850 A1 WO2002084850 A1 WO 2002084850A1 JP 0203517 W JP0203517 W JP 0203517W WO 02084850 A1 WO02084850 A1 WO 02084850A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
linear motor
winding
resin
refrigerant
Prior art date
Application number
PCT/JP2002/003517
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Shikayama
Akihiko Maemura
Yuji Nitta
Mitsuhiro Matsuzaki
Yoshiyuki Nagamatsu
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001110101A external-priority patent/JP3539493B2/en
Priority claimed from JP2001122973A external-priority patent/JP4706119B2/en
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Publication of WO2002084850A1 publication Critical patent/WO2002084850A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention eliminates generation of eddy currents in the can and the winding fixed frame, prevents can deformation, and reduces dust and gas generation from the can surface even when exposed to a light source for exposure. Also, the present invention relates to a cand linear motor armature and a cand linear motor that can eliminate liquid leakage of a refrigerant flowing in a can.
  • canned linear motors that have been used for table feed of semiconductor manufacturing equipment and machine tools and that require low temperature rise and constant speed feed accuracy are, for example, those disclosed in FIGS. 6 and 7. is there.
  • FIG. 6 is an overall perspective view of a cand / liner motor showing the first related art.
  • 10 is a stator
  • 11 is a stator base
  • 12 is a can
  • 13 is a header
  • 14 is a refrigerant supply port
  • 15 is a refrigerant outlet
  • 20 is a mover
  • 2 1 is a mover base
  • 2 is a field yoke
  • 23 is a permanent magnet.
  • An armature having an inverted T-shape that forms the stator 10 is disposed between the permanent magnets 23 and 23 that form the mover 20.
  • the mover 20 is supported by the stator 10 by a linear guide or the like (not shown). By passing a predetermined current through the armature winding, a thrust is generated in the mover 20 by acting on the magnetic field created by the permanent magnet 23. Then, the mover 20 moves in the traveling direction indicated by the arrow.
  • FIG. 7 is a front sectional view of the cand linear motor taken along the line AA in FIG.
  • the stator 10 has an inverted T-shape.
  • the stator 10 includes a stator base 11, a can 12 supported upward in a recess of the stator base 11, a header 13 sealing the can 12 (see FIG. 6), and a Winding fixed frame 16 placed in the space created by 1 2 and header 13 3, 3-phase armature winding 17 fixed along the longitudinal direction of winding fixed frame 16 It is constituted by a refrigerant passage 18 through which the refrigerant passes.
  • the armature winding 17 is composed of, for example, a plurality of concentrated winding coils prepared for three phases. It is affixed to the left and right sides of the winding fixed frame 16. In addition, since the winding fixed frame 16 requires its own strength, stainless steel is used.
  • the can 12 is constructed by symmetrically arranging two stainless steel thin plates formed in a U-shape and welding their joint end faces.
  • the two headers 13 also made of stainless steel have a refrigerant supply port 14 for allowing refrigerant to pass through one end of the can 12, and a refrigerant discharge port 15 at the other end. Have each.
  • the can 12 and the header 13 are joined by welding at the joining surface.
  • the shape of the mover 20 has a concave shape so as to sandwich the armature portion of the stator 10.
  • the mover 20 is composed of a permanent magnet 23 disposed on both sides of the can 12 of the stator 10 through a magnetic gap, and a magnetic field made of a magnetic material for passing a magnetic flux generated by the permanent magnet 23. It is composed of yokes 22 and a mover base 21 that supports them.
  • a plurality of permanent magnets 23 are arranged along the moving direction of the mover (perpendicular to the paper surface) so that the polarity is alternately different for each pole pitch.
  • the canned linear motor configured as described above becomes the mover 20 by flowing a predetermined current according to the electrical relative position of the mover 20 and the stator 10 to the armature winding 17. Acting on the magnetic field generated by the permanent magnets 23, thrust is generated in the mover 20. At this time, the armature winding 17 that has generated heat due to the copper loss is cooled by the refrigerant, and the temperature rise on the surface of the stator 10 is suppressed to a low level.
  • the can 12 and the winding fixing frame 16 are made of stainless steel, and the permanent magnet 23 of the mover 20 is provided on the surface of the member made of stainless steel.
  • eddy current is generated according to Lenz's law.
  • the eddy current and the magnetic flux generated by the permanent magnet 23 are linked, and a viscous braking force is generated in a direction opposite to the traveling direction of the mover 20.
  • the magnitude of the viscous braking force is roughly proportional to the thickness and width of the stainless steel, the moving speed of the mover, the number of magnetic poles, and the square of the magnetic flux density. The following problems occurred due to the generation of such viscous braking force.
  • Eddy current is converted to heat at the place where it is generated as so-called eddy current loss.
  • the heat was generated at the can, the winding fixing frame, which caused the heat, causing a further rise in temperature. Therefore, it cannot be used in applications where the temperature rise is very limited.
  • a first object of the present invention is to reduce the viscous braking force, and at the same time, have a strength that can withstand the reaction of thrust, and furthermore, a can that can suppress can deformation into the magnetic gap between the mover and the stator. ⁇ Linear motor armature and cand ⁇ To provide linear motor overnight.
  • FIG. 12 is a front sectional view of an armature of Canned Linear Motors showing the second prior art.
  • 51 is a mover
  • 52 is a yoke
  • 53 is a permanent magnet
  • 54 is a stator
  • 55 is a can
  • 56 is a multi-phase armature winding
  • 57 is a refrigerant passage
  • Reference numeral 58 denotes a fixing screw
  • reference numeral 59 denotes a fixing base.
  • This cand linear motor has an armature winding 56 on the stator 54 side and a yoke 52 and permanent magnet 53 on the mover 51 side. belongs to.
  • the first and second cans 55, 55 are fixedly arranged on a fixed base 59 in a state where they are connected to each other with fixing screws 58.
  • the cans 55, 55 are plate-shaped parts formed by a laminated material formed by impregnating a synthetic resin into a sheet-like member, laminating and pressing the same.
  • Material As a laminate, a laminated material obtained by laminating glass cloth impregnated with epoxy resin and press-molding is used. In this laminated material, first, a sheet-like member such as paper, thick yarn cloth, fine yarn cloth, or glass cloth is impregnated with a synthetic resin such as phenol resin, epoxy resin, silicon, melamine resin, or polyester. Then, a large number of the sheet-like members are stacked and laminated, and are pressed into a plate shape by a multi-stage laminating press or the like to be formed into a plate shape.
  • An armature winding 56 is provided in a winding accommodating groove provided on the facing surface (inner surface side) of the cans 55, 55, and a refrigerant passage 57 for flowing a refrigerant is provided. Refrigerant is evenly distributed around the armature windings 56, so that heat generated from the armature windings 56 is efficiently absorbed.
  • the mover 51 has a concave shape with the armature portion of the stator 54 interposed therebetween.
  • the mover 51 includes permanent magnets 53, 53 arranged through magnetic gaps on both outer sides of the cans 55, 55 of the stator 54, and a magnetic flux generated by the permanent magnets 53, 53. It is composed of a field yoke 52 made of a magnetic material for passing through. Further, a plurality of permanent magnets 53 are arranged along the moving direction of the mover 51 (perpendicular to the paper surface) so that the polarity is alternately different for each pole pitch.
  • the canned linear motor configured as described above becomes the mover 51 by passing a predetermined current according to the electrical relative position of the mover 51 and the stator 54 to the armature winding 56. Acting on the magnetic field generated by the permanent magnet 53, a thrust is generated in the mover 51. At this time, the armature winding 56 heated by the copper loss is cooled by the refrigerant, and the temperature rise on the surface of the stator 54 is suppressed low.
  • the surface of the resin can 55 is not smooth and a fine concave portion is formed. Therefore, it was found that particles of about 0.1 m may adhere to the concave portion directly or through the accumulated water.
  • FIG. 14 is an explanatory diagram showing the relationship between the resin composition and gas generation.
  • Can surface When exposed to a light source, C and H for compositions of resin shown in Fig. 1 4, and ⁇ second aerial is excited by UV CH 4, C 2 H 6, in air becomes C_ ⁇ 2 or H 2 0, etc. And the chemical cleanliness is reduced. Reduced chemical cleanliness, i.e. CH 4, C 2 H 6, when C_ ⁇ 2 or H 2 ⁇ like exist, adheres these CH 4 or the like on a silicon wafer, the manufacturing yield of the silicon chip is deteriorated.
  • a second object of the present invention is to reduce the generation of dust and gas from the can surface even when exposed to a light source for exposure, and to cause leakage of liquid due to erosion of the resin of the can by the refrigerant flowing in the can.
  • a canned motor with a can structure that suppresses dust generation and gas generation due to increased exposure surface area due to the resin surface being damaged due to the contact of the can surface with the stage etc. To provide armature and canned linear motors.
  • the present invention includes a winding fixing frame, an armature winding fixed along a longitudinal direction of the winding fixing frame, and a frame including the winding fixing frame.
  • a metal housing provided so as to surround the armature, a can for sealing both openings of the housing, and the housing and the can so that a refrigerant can flow around the armature winding.
  • a can having a refrigerant passage formed in a closed space formed, and a refrigerant supply port and a refrigerant discharge port provided at one of one end and the other end of both ends of the can *
  • the can is made of resin.
  • the configuration according to claim 1 eliminates the eddy current generated in the can and the winding fixed frame in the past, and eliminates the heat generated in the can part due to the eddy current and the heat generated in the armature winding due to an increase in the thrust corresponding to the viscous braking force.
  • viscous braking force is not generated regardless of the speed, it can be used for high speed applications.Furthermore, the winding fixed frame that receives the reaction of thrust is fixed with a metal housing. As a result, vibration of the winding fixed frame can be suppressed.
  • the can in the canned linear motor armature according to the first aspect, is curved in advance, and the can is connected to both openings of the housing such that the convex surfaces of the curvature face each other. It is characterized by being arranged in.
  • the invention according to claim 3 is the canned linear motor electric device according to claim 1 or 2, wherein the armature winding is constituted by a plurality of concentrated winding coils, and a nonmagnetic material is provided in the air core of the concentrated winding coil. A pillar of material is provided, and the pillar is fastened to the can.
  • the flow rate of the refrigerant can be increased, and the rise in the temperature of the can surface can be reduced.
  • the can and the winding fixing frame are formed of a resin filled with glass fiber or carbon fiber. It is characterized by.
  • the configuration of the fourth aspect it is possible to suppress the deformation of the can into the gap facing the mover due to the pressure of the refrigerant.
  • the flow rate of the refrigerant can be increased, and the rise in temperature can be reduced.
  • the invention of a canned linear motor according to claim 5 is the canned linear motor armature according to claim 1 or 2, wherein the can is formed of a resin plate, and at least an outer surface or an inner surface of the resin plate is provided. A coating cover is provided.
  • the problem of dust generation and gas generation can be reduced, and liquid leakage can be reduced even if the resin in the can is eroded by the refrigerant flowing in the can.
  • the coating cover is a metal film, foil, or plate.
  • the coating cover is formed of a metal film, foil or plate, at least the outer surface or the inner surface of the resin plate material forming the can is covered with the metal film, foil or plate,
  • the refrigerant flowing into the can can erode the resin of the can and reduce the leakage of the liquid, and can also be made robust against mechanical shock.
  • the invention according to claim 7 is the canned linear motor armature according to claim 6, wherein the metal film is formed by plating.
  • a metal plating film is used as the coating cover of claim 6, at least the outer surface or the inner surface of the resin plate material constituting the can is covered with a plating that is strong against mechanical shock.
  • a metal plating film is used as the coating cover of claim 6, at least the outer surface or the inner surface of the resin plate material constituting the can is covered with a plating that is strong against mechanical shock.
  • the stainless steel foil or plate is attached to the can by adhesion.
  • a foil or plate made of stainless steel is used as the coating cover of claim 6, and this is adhered to the can, so that at least the outer surface or the inner surface of the resin plate constituting the can is mechanical. It will be covered with stainless steel, which is strong against impact, and when used for driving the linear stage of a semiconductor exposure apparatus in a clean room, even if the can surface is exposed to the light source for exposure, it will generate dust and dust from the can surface.
  • the resin plate is made of a resin filled with glass fiber or carbon fiber.
  • the configuration of the tenth aspect it is possible to suppress the deformation of the can into the gap facing the mover due to the pressure of the refrigerant, so that the can-free fatigue of the can is eliminated and the liquid leakage can be reduced.
  • the flow rate can be increased and the temperature rise can be reduced.
  • the invention of a canned linear motor according to claim 11 is the armature according to any one of claims 1 to 10, wherein the armature and the armature are arranged to face each other via a magnetic gap and are alternately polarized.
  • a field yoke in which a plurality of permanent magnets different from each other are arranged side by side, and one of the armature and the field yoke as a stator and the other as a movable element, and the field yoke and the electric machine The feature is that the child runs relatively.
  • the can-structured electric machine according to any of claims 1 to 10. At least the outer or inner surface of the resin plate material that composes the can is covered with a coating cover, and when used for driving a linear stage of a semiconductor exposure apparatus in a clean room, the can surface is exposed to a light source for exposure.
  • the problem of dust generation and gas generation from the can surface can be reduced, and liquid leakage can be reduced even if the resin of the can is eroded by the refrigerant flowing in the can.
  • FIG. 1 is an overall perspective view of a canned linear motor showing a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a canned linear motor along the line A--A in FIG. 1
  • FIG. FIG. 4 is a view showing the internal structure of the stator with the can removed
  • FIG. 4 is a front sectional view of a stator of a canned linear motor showing a second embodiment of the present invention
  • FIG. 5 is a third embodiment of the present invention.
  • Fig. 6 is an overall perspective view of a canned linear motor showing the first prior art
  • Fig. 7 is a canned linear along the line A-A in Fig. 6.
  • FIG. 8 is an overall perspective view of a canned linear motor according to a fifth embodiment of the present invention
  • FIG. 8 is an overall perspective view of a canned linear motor according to a fifth embodiment of the present invention
  • FIG. 9 is a front sectional view of the canned linear motor along line A--A in FIG. 10 is an enlarged front sectional view illustrating the configuration of the can 12 of FIG. 9, and FIG. 11 is a coat showing a sixth embodiment of the present invention.
  • enlarged front sectional view of the can in which a Ngukaba In enlarged front sectional view of the can in which a Ngukaba,
  • FIG. 12 is a configuration explanatory view showing a configuration of a can of the second prior art
  • FIG. 3 is an explanatory diagram of the resin surface and dust generation
  • FIG. 14 is an explanatory diagram of the resin composition and gas generation.
  • FIG. 1 is an overall perspective view of a candid linear motor according to a first embodiment of the present invention.
  • 100 is a stator
  • 101 is a housing
  • 102 is a can
  • 103 is a port for fixing a can
  • 100 is a holding plate
  • 105 is a terminal block
  • 106 is a terminal block.
  • a refrigerant supply port Is a refrigerant supply port
  • 107 is a refrigerant discharge port
  • 200 is a mover
  • 201 is a field yoke support member
  • 202 is a field yoke
  • 203 is a permanent magnet.
  • the mover 200 is provided with field yokes 202 above and below at a distance corresponding to the length of the field yoke support member 201, and the field support members 201 are arranged at the four corners. Then, permanent magnets 203 are attached to opposing surfaces of the field yokes 202, respectively.
  • stator 100 is inserted into the hollow space of the mover 200, in which case the permanent magnet 203 is arranged so as to face the armature 108 of the stator 100.
  • the mover 200 is supported by a linear guide (not shown) or the like.
  • FIG. 2 is a front cross-sectional view of the canned linear motor according to the present invention along the line AA in FIG. Fig. 3 shows the internal structure of the stator excluding the can of Fig. 2.
  • the stator 100 has a mouth-shaped (frame-shaped) metal housing 101 having a hollow inside, and a stator 100 for covering the hollow of the mouth-shaped housing 101.
  • the material of the can 102 is made of stainless steel in the first prior art, but is made of resin according to the present invention.
  • resin for example, an epoxy resin, which is a functionalizing resin, or a polyphenylene sulfide (PPS), which is a thermoplastic resin, is used.
  • the shape of the hollow portion of the housing 101 is drawn so as to surround the outer periphery of the armature winding 108.
  • the armature windings 108 are arranged on both sides of a plate-shaped winding fixing frame 109.
  • the winding fixed frame 1 09 integrated with the armature winding 108 is placed in the hollow space of the housing 101, and fixed to the housing 101 with the winding fixing port 1 1 2 Is done. Case 1 0
  • the front and back edges of 1 are provided with orbital grooves, in which the o-rings 11 are arranged.
  • the can 102 is arranged on the front and back of the housing 101 so as to cover the housing 101.
  • a holding plate 104 is laid from the top of the can 102 along the edge of the housing 101, and is tightened with the can fixing bolts 103.
  • the armature winding 108 is formed by preparing a plurality of concentrated winding coils for three phases, and is attached to the left and right sides of the fixed winding frame 109. Power is supplied to the armature winding 108 from a terminal block 105 attached to the housing 101. The terminal block 105 and the armature winding 108 are electrically connected by lead wires (not shown).
  • the refrigerant is supplied from a refrigerant supply port 106 provided in the housing 101 and discharged from a refrigerant discharge port 107. In the meantime, the refrigerant flows through the refrigerant passage 110 between the armature winding 108 and the can 102, and cools the armature winding 108 that generates heat.
  • the cross-sectional shape of the mover 200 as viewed from the traveling direction has a mouth shape so as to sandwich the armature portion of the stator 100.
  • the mover 200 is a magnetic material for passing the magnetic flux created by the permanent magnet 203 and the permanent magnet 203 arranged on both sides of the can 102 of the stator 100 via magnetic gaps.
  • a field yoke supporting member 201 that supports them.
  • a plurality of magnets 203 are arranged along the moving direction of the mover (perpendicular to the plane of the drawing) so that the poles are alternately alternately arranged at every pole pitch.
  • the canned linear motor configured as described above is configured such that a predetermined current corresponding to the electrical relative position of the mover 200 and the stator 100 is supplied to the armature winding 108 so that the mover A thrust is generated in the mover 200 by acting on the magnetic field generated by the permanent magnet 203, which becomes 0.
  • the armature winding 108 heated by the copper loss is cooled by the refrigerant flowing through the refrigerant passage, it is possible to suppress a rise in the temperature of the surface of the can 102 as in the first related art. it can.
  • the effect of the first embodiment is different from the first conventional technique in the following points.
  • the use of resin for the can and winding fixing frame, which conventionally used stainless steel, has eliminated the eddy current generated in that part.
  • problems such as heat generation in the can part due to eddy current and reduction in thrust due to viscous braking force can be solved.
  • FIG. 4 is a front sectional view of a stator of a canned linear motor according to a second embodiment of the present invention.
  • 100 ' is the stator according to the invention.
  • the stator 100 ′ has a frame-shaped metal casing 101 having a hollow inside, and a plate-shaped resin can 1 covering the hollow of the casing 101.
  • 0 2a and resin can 1 0 2a in housing 1 0
  • Port 1 103 for fixing the can for fixing to 1 Port 104 for fixing the port 103 for fixing the can, and a holding plate 104 that evenly presses the can, and placed inside the hollow of the housing 101
  • the three-phase armature winding 108, the winding fixing frame 109 fixing the armature winding 108, the housing 101 and the coolant in the can 102a , Through which the refrigerant passes, an O-ring that is slightly larger than the edge of the housing, and a winding fixing frame
  • the effect of the second embodiment is similar to that of the first embodiment. Since 2a is made of resin, eddy current can be eliminated.
  • the second embodiment differs from the first embodiment in that the can 102 of the first embodiment has a straight plate shape, whereas the can 10 of the second embodiment has a straight plate shape.
  • 2a is that it is formed to be curved in advance. That is, when the refrigerant is not flowing through the refrigerant passage 110, the can 102 a is formed in a shape that is curved in advance so that it does not slightly contact the armature winding 108 at the center thereof. When the refrigerant flows through the refrigerant passage 110, the can 102a is deformed by the pressure of the refrigerant so that the central portion protrudes outward.
  • the can in a curved shape in advance, it is possible to suppress can deformation to the gap facing the mover due to the flow rate of the refrigerant, as an effect exceeding that of the first embodiment. Therefore, the flow rate of the refrigerant can be increased as compared with the first embodiment, and the temperature rise can be further reduced.
  • FIG. 5 is a front sectional view of a canned linear motor stator according to a third embodiment.
  • Reference numeral 100 denotes a stator according to the present invention.
  • a stator 100 includes a frame-shaped metal casing 101 having a hollow interior, A plate-shaped resin can 102 b that covers the hollow of the body 101, a can-fixing port 110 3 for fixing the resin can 102 b to the housing 101, and a can-fix Presser plate 104 that has through-holes of Porto 103 and presses cans evenly, 3-phase armature winding 108 arranged in the hollow of housing 101, Armature winding 1 From the edge of the housing 101, the winding fixing frame 1 09 fixing the housing 8, the refrigerant passage 1 10 through which the refrigerant passes through the housing 101 and the can 102 b, It is composed of an O-ring 111, which is slightly larger, a winding fixing frame 109, and a winding fixing port 112 for fixing the housing 101
  • the difference between the third embodiment and the first and second embodiments is that the pillar 1 13 passing through the air core of the concentrated winding coil and the pillar fixing screw 1 14 are mechanically fastened.
  • the can 1 102 b is fixed by the support 113 fixed to the winding fixed frame 109. Supported in the center.
  • the can 102 b b projects the middle of the column 113 and the housing 101 to the gap facing the mover.
  • the effect of the third embodiment is that the eddy current is eliminated, as in the first and second embodiments. Further, as an effect surpassing the first embodiment, the center of the can is supported by a column. By doing so, it is possible to suppress can deformation into the void due to the pressure of the refrigerant. Since the flow rate of the refrigerant can be increased as compared with the first embodiment, the flow rate of the refrigerant can be increased and the temperature rise can be further reduced as in the second embodiment.
  • the fourth embodiment is different from the first to third embodiments in that a resin filled with glass fiber or carbon fiber is used as the material of the can and the winding frame.
  • the Young's modulus of the unidirectional glass fiber laminated thermosetting resin is about 6 0, 0 0 0 N / mm 2
  • the Young's modulus of the thermosetting resin laminated carbon fibers also becomes about 2 0, 0 0 O NZmm 2 .
  • GFRP and CFRP can obtain a Young's modulus comparable to that of aluminum or stainless steel, so it is possible to reduce the can deformation rate or improve the strength of the winding fixed frame.
  • the can and the winding fixing frame are formed in a flat plate shape, these materials can be easily applied.
  • the effect of the fourth embodiment is that, as in the first to third embodiments, the eddy current is eliminated and the can deformation to the gap facing the mover can be suppressed.
  • the coolant flow rate can be increased, and the temperature rise can be further reduced.
  • the structure in which the armature has the armature winding and the stator has the permanent magnet as the magnetic field has been described, but the permanent magnet is used in the mover, and the armature winding is used in the stator.
  • the structure may be good.
  • the shape of the mover is a mouth shape
  • the present invention is also applicable to the same concave shape as that of the first prior art or a structure in which permanent magnets are simply arranged on one side.
  • FIG. 8 is an overall perspective view of a canned linear motor (magnetic flux penetration type) showing a fifth embodiment of the present invention.
  • 10 is a stator
  • 11 is a stator base
  • 12 is a can
  • 13 is a header
  • 14 is a refrigerant supply port
  • 15 is a refrigerant discharge port
  • 20 is a mover
  • 21 is a mover.
  • the mover base, 22 is a field yoke
  • 23 is a permanent magnet.
  • the stator 10 includes two cans 12, a housing 19 connecting the two cans 12 to each other at an upper portion and a lower portion, and two cans 12 and a housing 19.
  • a winding fixing frame arranged in a closed space consisting of a header 13 that seals the space at the front and rear ends in the longitudinal direction, and a can 12, a housing 19, and a header 13.
  • a three-phase armature winding 17 fixed along the longitudinal direction of the winding fixing frame 16
  • a refrigerant passage 18 through which the refrigerant passes through the can 12. I have.
  • the header 13 is formed of a stainless steel material, and has a refrigerant supply port 14 for allowing a refrigerant to pass at one end and a refrigerant discharge port 15 at the other end of both ends of the can 12.
  • the can 12 and the housing 19 and the header 13 are joined by welding at the joining surface. Further, by supplying the refrigerant from the refrigerant supply port 14 and discharging the refrigerant from the refrigerant discharge port 15, the refrigerant flows through the refrigerant passage 18 between the armature winding 17 and the can 12.
  • the shape of the mover 20 is an inverted concave shape so as to sandwich the armature portion of the stator 10.
  • the mover 20 is composed of a permanent magnet 23 disposed on both sides of the can 12 of the stator 10 through a magnetic gap, and a magnetic field made of a magnetic material for passing a magnetic flux generated by the permanent magnet 23. It is composed of yokes 22 and a mover base 21 that supports them. Further, a plurality of permanent magnets 23 are arranged along the moving direction of the mover (the direction of the arrow in the figure) so that the polarity is alternately different for each pole pitch.
  • the mover 20 is supported by the stator 10 by a linear guide or the like (not shown).
  • the canned linear motor configured as described above becomes a mover 20 by flowing a predetermined current according to the electrical relative position of the mover 20 and the stator 10 through the armature winding 17. Acting on the magnetic field generated by the permanent magnet 23, a thrust is generated in the mover 20, and the mover 20 moves in the traveling direction indicated by the arrow. At this time, the armature windings 17 generated by the copper loss are cooled by the refrigerant to reduce the temperature rise on the surface of the stator 10. I keep it down.
  • FIG. 9 is a front sectional view of the cand linear motor taken along the line AA in FIG.
  • 10 is a stator
  • 12 is a can
  • 16 is a winding fixing frame
  • 17 is an armature winding
  • 18 is a refrigerant passage
  • 19 is a housing.
  • the can 12 uses a resin plate 1 2 2 as a base material, and the resin plate 1 2 2 uses a plate-like GFRP made of glass cloth solidified with epoxy resin, or a plate made of carbon fiber solidified with epoxy resin CFRP can be used. These have good distribution and can be obtained at relatively low cost.
  • the armature winding 17 is formed, for example, by preparing a plurality of concentrated winding coils for three phases, and is attached to the left and right sides of the winding fixed frame 16.
  • the housing 19 is a strength material against the deflection of the stator 10.
  • the housing 19 can be formed by machining stainless steel, machining aluminum, or die casting. Then, it was constructed by machining aluminum material.
  • the armature winding 17 is attached to the winding fixing frame 16 so as to sandwich both sides along the longitudinal direction, and the winding fixing frame 16 is fixed between the upper and lower housings 19. ing.
  • the housing 19 is provided with a can 12 so as to cover these armature windings 17 while keeping a desired gap from the surface of the armature windings 17.
  • a coolant for cooling the armature winding 17 flows through the gap between the armature winding 17 and the can 12, so that the housing 19 and the can 12 are illustrated.
  • HFE-7200 was used in place of florinate, and the solubility of water cannot be ignored.
  • HFE-720 was used as the refrigerant.
  • Reference numeral 121 denotes a coating cover (to be described later) provided according to the present invention, which covers the resin plate 122, which is the base material of the can 12, and separates dust and gas from the surface of the resin plate 122. Has been reduced.
  • FIG. 10 is an enlarged front sectional view illustrating the configuration of the can 12 of FIG.
  • reference numeral 10 denotes a stator
  • reference numeral 12 denotes a can
  • reference numeral 121 denotes a coating cover provided by the present invention
  • reference numeral 122 denotes a can material (resin plate material)
  • reference numeral 19 denotes a housing.
  • the can 12 has a resin plate 1 on the outer surface of the resin plate 1 2 facing the permanent magnet 3 (FIG. 9) and an inner surface facing the armature winding 17 (FIG. 9). It was configured to provide a coating cover 1 2 1 covering 2 2.
  • the coating cover 1 2 1 is provided on at least the outer surface or the inner surface of the resin plate 1 2 2 constituting the can material 1 2, so that the linear stage of the semiconductor exposure apparatus can be driven in a clean room.
  • the can surface is used, even if the can surface is exposed to the UV light from the light source for exposure, the generation of dust and gas from the can surface can be reduced, and the problem of chemical clean can be reduced. Even if the resin of the can is eroded, liquid leakage can be reduced.
  • Table 1 shows the results of counting the number of particles with and without a coating cover by irradiating the surface with UV.
  • a plate-like C F R P was used for the resin plate material, and the coating cover 121 was formed by the nickel plating shown in the following sixth example.
  • the coating cover when used as in the present invention, even if the resin is eroded by the refrigerant, even if a hole is formed in the resin, it can be prevented by the coating cover.
  • the erosion of the resin gradually causes a capillary phenomenon between the resin and the coating cover. As a result, rapid and sudden large leaks can be prevented.
  • FIG. 11 is an enlarged front sectional view of a can provided with a coating cover according to a sixth embodiment of the present invention.
  • (A) is a specific example of a coating cover
  • (B) is a modified example of (A). Is shown.
  • Fig. 11 (A) 10 is a stator
  • 12 is a can
  • 12 la is a metal film according to the present embodiment
  • 122 is a can material (resin plate material)
  • 19 is a housing. It is.
  • the can material 122 and the casing 19 were the same as those shown in FIG. 10, and the can 121 was fixed tightly using an O-ring or the like (not shown).
  • the metal film 122 a is provided by plating. In this embodiment, nickel plating is used, but zinc plating, copper plating, or aluminum plating may be used.
  • the thickness is preferably about 3 to 20 m.
  • At least the outer or inner surface of the resin plate material 1 2 2 constituting the can material 12 is provided with a coating cover made of a metal film 12 1 a, thereby providing a clean room.
  • the problem of dust generation and gas generation from the can surface can be reduced even if the can surface is exposed to the UV light from the exposure light source. It is possible to reduce liquid leakage even if the resin of the can is eroded by the refrigerant flowing inside, and to make the resin can covered with metal made of metal to make it strong against mechanical shock. it can.
  • the coating cover is formed by plating, the work of providing the coating cover on the surface of the resin plate material can be greatly simplified, and a large number of units can be manufactured at low cost.
  • FIG. 11B will be described.
  • 10 is a stator
  • 12 is a can
  • 12 lb is a metal foil according to the present embodiment
  • 122 is a can material (resin plate material)
  • 19 is a housing. .
  • the can material 122 and the housing 19 were the same as those shown in FIG. 10, and the can 122 was fixed so as to be hermetically closed using a ring or the like (not shown).
  • Metal foils 1 2 1 b are formed as coating covers 1 2 1 on the outer and inner surfaces of the resin plate 1 2 2 shown in FIG.
  • the metal foil 121b was made of stainless steel having a thickness of about 5 to 20 m, and this was adhered to the can 122 by bonding.
  • the coating cover 1 21 b made of stainless steel which is strong against mechanical shock.
  • the coating cover 1 21 b made of stainless steel which is strong against mechanical shock.
  • a metal foil is used as the coating cover in this embodiment, a metal plate may be used instead.
  • the number of particles with and without the coating cover using a metal foil was counted by irradiating the surface with UV and the results were similar to those in Table 1. In other words, the generation of particles was class 15 without the coating cover, but it was reduced to class 3 by providing a coating cover 121 using metal foil.
  • the structure has been described in which the stator has the armature winding and the mover has the permanent magnet as the field, but the armature winding is used for the mover and the permanent magnet is used for the stator.
  • the structure may be good.
  • the canned linear motor armature and the canned linear motor according to the present invention are useful as, for example, those used in semiconductor manufacturing equipment and machine tools that require high precision, fine feed and low temperature rise. is there.

Abstract

A canned linear motor stator (100) (armature) includes a winding fixing frame (109), an armature winding (108) fixed to the winding fixing frame (109), a rectangular metal case (101) surrounding the winding fixing frame (109), a can (102) sealing both openings of the case (101), a coolant passage (110) formed in a sealed space defined by the metal case (101) and the can (102), a coolant inlet (106) and a coolant outlet (107) arranged at the entrance and the exit of the coolant passage (110), respectively. The can is made from a resin and especially a filler is made from a resin of glass fiber or carbon fiber. Thus, it is possible to eliminate heating of the can portion attributed to eddy current and the armature can also be used for a high-speed application. Furthermore, it is possible to provide a canned linear motor armature and a canned linear motor capable of suppressing vibration of the winding fixing frame.

Description

明細書  Specification
キャンド ' リニアモー夕電機子およびキャンド · リニアモー夕  Cand 'linear motor
[技術分野]  [Technical field]
本発明は、 キャン、 巻線固定枠の渦電流の発生を皆無にし、 キャン変形を防止 することができると共に、 露光用の光源に曝露されても、 キャン表面からの発塵 および発ガスを少なくし、 また、 キャン内に流れる冷媒の液漏れをなくすことが できるキャンド ·リニアモータ電機子およびキャンド · リニアモ一夕に関する。  INDUSTRIAL APPLICABILITY The present invention eliminates generation of eddy currents in the can and the winding fixed frame, prevents can deformation, and reduces dust and gas generation from the can surface even when exposed to a light source for exposure. Also, the present invention relates to a cand linear motor armature and a cand linear motor that can eliminate liquid leakage of a refrigerant flowing in a can.
[背景技術]  [Background technology]
[第 1の従来技術]  [First conventional technology]
従来、 半導体製造装置や工作機のテーブル送りに用いられると共に、 低温度上 昇と一定速送り精度が要求されるキャンド ·リニアモ一夕は、 例えば、 図 6、 図 7に開示されているものがある。  Conventionally, canned linear motors that have been used for table feed of semiconductor manufacturing equipment and machine tools and that require low temperature rise and constant speed feed accuracy are, for example, those disclosed in FIGS. 6 and 7. is there.
図 6は第 1の従来技術を示すキヤンド ·リニァモータの全体斜視図である。 図 6において、 1 0は固定子、 1 1は固定子ベース、 1 2はキャン、 1 3はへ ッダ、 1 4は冷媒供給口、 1 5は冷媒排出口、 2 0は可動子、 2 1は可動子べ一 ス、 2 2は界磁ヨーク、 2 3は永久磁石である。 可動子 2 0を構成する永久磁石 2 3 , 2 3間に固定子 1 0を構成する逆 T字形の形状を成した電機子が配置され る。 可動子 2 0は、 図示しないリニアガイド等によって固定子 1 0に対して支持 されている。 所定の電流を電機子巻線に流すことにより、 永久磁石 2 3の作る磁 界と作用して可動子 2 0には推力が発生する。 そして、 可動子 2 0は矢印で示す 進行方向に移動する。  FIG. 6 is an overall perspective view of a cand / liner motor showing the first related art. In FIG. 6, 10 is a stator, 11 is a stator base, 12 is a can, 13 is a header, 14 is a refrigerant supply port, 15 is a refrigerant outlet, 20 is a mover, 2 1 is a mover base, 2 is a field yoke, and 23 is a permanent magnet. An armature having an inverted T-shape that forms the stator 10 is disposed between the permanent magnets 23 and 23 that form the mover 20. The mover 20 is supported by the stator 10 by a linear guide or the like (not shown). By passing a predetermined current through the armature winding, a thrust is generated in the mover 20 by acting on the magnetic field created by the permanent magnet 23. Then, the mover 20 moves in the traveling direction indicated by the arrow.
図 7は図 6の A— A線に沿うキャンド ·リニアモー夕の正断面図である。  FIG. 7 is a front sectional view of the cand linear motor taken along the line AA in FIG.
図 7において、 固定子 1 0は逆 T字形の形状を成している。 固定子 1 0は、 固 定子ベース 1 1、固定子ベース 1 1の窪みに上向きに支持されているキヤン 1 2、 このキャン 1 2を密封しているヘッダ 1 3 (図 6参照) 、 このキャン 1 2及びへ ッダ 1 3で作られる空間内に配置される巻線固定枠 1 6、 巻線固定枠 1 6の長手 方向に沿って固定される 3相の電機子巻線 1 7、 キャン 1 2の中を冷媒が通過す る冷媒通路 1 8により構成されている。  In FIG. 7, the stator 10 has an inverted T-shape. The stator 10 includes a stator base 11, a can 12 supported upward in a recess of the stator base 11, a header 13 sealing the can 12 (see FIG. 6), and a Winding fixed frame 16 placed in the space created by 1 2 and header 13 3, 3-phase armature winding 17 fixed along the longitudinal direction of winding fixed frame 16 It is constituted by a refrigerant passage 18 through which the refrigerant passes.
電機子巻線 1 7は、 例えば複数の集中巻コイルを 3相分用意したもので構成さ れ、 巻線固定枠 1 6の左右両側に貼り付けられている。 また、 巻線固定枠 1 6は それ自身の強度を要求されるため、 ステンレスが使われている。 The armature winding 17 is composed of, for example, a plurality of concentrated winding coils prepared for three phases. It is affixed to the left and right sides of the winding fixed frame 16. In addition, since the winding fixed frame 16 requires its own strength, stainless steel is used.
キャン 1 2は、 コの字形に形成された 2個のステンレス製の薄板を対称的に配 置し、 それら接合端面を溶接して構成されており、 電機子巻線 1 7 , 巻線固定枠 1 6を密封している。 同じくステンレス製の铸物で形成された 2個のヘッダ 1 3 は、キャン 1 2の両端のうち、一方端に冷媒を通すための冷媒供給口 1 4を持ち、 他端に冷媒排出口 1 5を各々持っている。 キャン 1 2とヘッダ 1 3は接合面で溶 接によって接合されている。  The can 12 is constructed by symmetrically arranging two stainless steel thin plates formed in a U-shape and welding their joint end faces.The armature winding 17, the winding fixing frame 16 sealed. The two headers 13 also made of stainless steel have a refrigerant supply port 14 for allowing refrigerant to pass through one end of the can 12, and a refrigerant discharge port 15 at the other end. Have each. The can 12 and the header 13 are joined by welding at the joining surface.
また、 冷媒を冷媒供給口 1 4より供給して、 冷媒排出口 1 5より排出すること により、 冷媒は電機子巻線 1 7とキャン 1 2の間にある冷媒通路 1 8を流れる。 一方、 可動子 2 0の形状は、 図 7に示すように、 固定子 1 0の電機子部を挟み 込むようにして凹字形を成している。 可動子 2 0は、 固定子 1 0のキャン 1 2の 両側に磁気的空隙を介して配置された永久磁石 2 3、 永久磁石 2 3の作る磁束を 通すための磁性体で作られた界磁ヨーク 2 2、 それらを支持する可動子ベース 2 1により構成されている。また、永久磁石 2 3は、可動子の移動方向に沿って(紙 面と垂直方向)、極ピッチごとに交互に極性が異なるように複数配置されている。 このように構成されたキャンド ·リニアモー夕は、 可動子 2 0と固定子 1 0の 電気的相対位置に応じた所定の電流を電機子巻線 1 7に流すことにより、 可動子 2 0となる永久磁石 2 3の作る磁界と作用して可動子 2 0に推力が発生する。 こ の際、 銅損によって発熱した電機子巻線 1 7を冷媒により冷却し、 固定子 1 0の 表面の温度上昇を低く抑えている。  Further, by supplying the refrigerant from the refrigerant supply port 14 and discharging the refrigerant from the refrigerant discharge port 15, the refrigerant flows through the refrigerant passage 18 between the armature winding 17 and the can 12. On the other hand, as shown in FIG. 7, the shape of the mover 20 has a concave shape so as to sandwich the armature portion of the stator 10. The mover 20 is composed of a permanent magnet 23 disposed on both sides of the can 12 of the stator 10 through a magnetic gap, and a magnetic field made of a magnetic material for passing a magnetic flux generated by the permanent magnet 23. It is composed of yokes 22 and a mover base 21 that supports them. Further, a plurality of permanent magnets 23 are arranged along the moving direction of the mover (perpendicular to the paper surface) so that the polarity is alternately different for each pole pitch. The canned linear motor configured as described above becomes the mover 20 by flowing a predetermined current according to the electrical relative position of the mover 20 and the stator 10 to the armature winding 17. Acting on the magnetic field generated by the permanent magnets 23, thrust is generated in the mover 20. At this time, the armature winding 17 that has generated heat due to the copper loss is cooled by the refrigerant, and the temperature rise on the surface of the stator 10 is suppressed to a low level.
ところが、 第 1の従来技術では、 キャン 1 2、 巻線固定枠 1 6はステンレスで 構成されており、 これらステンレスで構成された部材には、 可動子 2 0の永久磁 石 2 3がその表面上を通過すると、 レンツの法則により渦電流が発生する。 そし て、 この渦電流と永久磁石 2 3の作る磁束とが鎖交し、 可動子 2 0の進行方向と は逆方向に粘性制動力が発生する。 粘性制動力の大きさは、 ステンレスの厚さや 幅、 可動子の移動速度、 磁極数、 磁束密度の 2乗におおよそ比例する。 このよう な粘性制動力の発生により次のような問題が起きた。  However, in the first conventional technique, the can 12 and the winding fixing frame 16 are made of stainless steel, and the permanent magnet 23 of the mover 20 is provided on the surface of the member made of stainless steel. When passing above, eddy current is generated according to Lenz's law. Then, the eddy current and the magnetic flux generated by the permanent magnet 23 are linked, and a viscous braking force is generated in a direction opposite to the traveling direction of the mover 20. The magnitude of the viscous braking force is roughly proportional to the thickness and width of the stainless steel, the moving speed of the mover, the number of magnetic poles, and the square of the magnetic flux density. The following problems occurred due to the generation of such viscous braking force.
( 1 ) ある推力発生に必要な電機子電流を流しても、 粘性制動力分だけ推力は 小さくなる。 粘性制動力分だけ電機子電流を流さなければならないため、 電機子 巻線の銅損が増加し、 キヤン表面の温度上昇が大きくなつた。 (1) Even if an armature current necessary to generate a certain thrust is applied, the thrust will be equal to the viscous braking force. Become smaller. Since the armature current must flow for the viscous braking force, the copper loss of the armature winding has increased and the temperature rise on the can surface has increased.
( 2 ) 渦電流はいわゆる渦電流損として発生場所で熱に変換される。 つまり、 発生場所であるキヤン、巻線固定枠が発熱し、さらなる温度上昇を引き起こした。 したがって温度上昇が非常に制限される用途には使用することができなかった。 (2) Eddy current is converted to heat at the place where it is generated as so-called eddy current loss. In other words, the heat was generated at the can, the winding fixing frame, which caused the heat, causing a further rise in temperature. Therefore, it cannot be used in applications where the temperature rise is very limited.
( 3 ) 上記したように速度の 2乗で粘性制動力が増加するので、 (1 ) の問題 により、 高速度の送りが要求される用途には使用できなかった。 (3) As described above, since the viscous braking force increases with the square of the speed, it cannot be used for applications requiring high-speed feed due to the problem (1).
( 4 ) 粘性制動力を低減するためにキャンの厚さを薄くすると、 冷媒通路を通 過する冷媒の圧力によってキャンの変形 (空隙へのキャンの膨らみ量) が大きく なった。 その結果、 冷媒流量を上げることができず、 キャン表面の温度上昇が大 きくなつた。  (4) When the thickness of the can was reduced to reduce the viscous braking force, the deformation of the can (the amount of can swelling into the gap) increased due to the pressure of the refrigerant passing through the refrigerant passage. As a result, the flow rate of the refrigerant could not be increased, and the temperature of the can surface increased significantly.
( 5 ) 粘性制動力を低減するために巻線固定枠の厚さを薄くすると、 巻線固定 枠の強度が著しく低下した。 その結果、 推力の反作用を受ける巻線固定枠が、 振 動または変形し、所定の推力、応答性や信頼性を確保することができなくなった。 そこで、 本発明の第 1の目的は粘性制動力を低減するとともに、 推力の反作用 に耐えうる強度を持ち、 さらには、 可動子と固定子の磁気的空隙へのキャン変形 を抑えることができるキャンド · リニアモータ電機子およびキャンド ·リニアモ 一夕を提供することにある。  (5) When the thickness of the winding fixed frame was reduced to reduce the viscous braking force, the strength of the winding fixed frame was significantly reduced. As a result, the winding fixed frame subject to the reaction of thrust vibrated or deformed, and it was no longer possible to ensure the required thrust, response and reliability. Therefore, a first object of the present invention is to reduce the viscous braking force, and at the same time, have a strength that can withstand the reaction of thrust, and furthermore, a can that can suppress can deformation into the magnetic gap between the mover and the stator. · Linear motor armature and cand · To provide linear motor overnight.
[第 2の従来技術]  [Second conventional technology]
図 1 2は第 2の従来技術を示すキャンド · リニアモ一夕の電機子の正断面図で ある。  FIG. 12 is a front sectional view of an armature of Canned Linear Motors showing the second prior art.
図 1 2において、 5 1は可動子、 5 2はヨーク、 5 3は永久磁石、 5 4は固定 子、 5 5はキャン、 5 6は多相の電機子巻線、 5 7は冷媒通路、 5 8は固定ネジ、 5 9は固定べ一スである。 このキャンド ·リニアモー夕は、 固定子 5 4側に電機 子巻線 5 6を配設し、 可動子 5 1側にヨーク 5 2および永久磁石 5 3を配したい わゆる可動磁石型のロングストロークタイプのものである。 固定子 5 4側には、 第 1および第 2のキャン 5 5 , 5 5が固定ネジ 5 8で互いに結合された状態で固 定ベース 5 9に固定配設されている。 キャン 5 5 , 5 5は、 合成樹脂をシート状 の部材に含浸させて積層し押圧して形成された積層材によって形成された板状部 材である。 積層材としてエポキシ樹脂を含浸させたガラス布を積層させてプレス 成形した積層材を用いている。 この積層材は、 まず紙や太糸布、 細糸布、 ガラス 布などのシート状部材にフエノール樹脂やエポキシ樹脂、 シリコン、 メラミン榭 脂、 ポリエステル等の合成樹脂を含浸させる。 そして、 このシート状部材を多数 重ねて積層し、 これを多段積層プレス機等により押圧し板状にして形成される。 キャン 5 5, 5 5の対向面 (内面側) に設けられた巻線収容溝に電機子巻線 5 6 が設けられ、 また、 冷媒を流通させるための冷媒通路 5 7が設けられて、 電機子 巻線 5 6の周囲にまんべんなく冷媒がまわり、 電機子巻線 5 6から発生した熱を 効率よく吸収するようにしている。 In FIG. 12, 51 is a mover, 52 is a yoke, 53 is a permanent magnet, 54 is a stator, 55 is a can, 56 is a multi-phase armature winding, 57 is a refrigerant passage, Reference numeral 58 denotes a fixing screw, and reference numeral 59 denotes a fixing base. This cand linear motor has an armature winding 56 on the stator 54 side and a yoke 52 and permanent magnet 53 on the mover 51 side. belongs to. On the stator 54 side, the first and second cans 55, 55 are fixedly arranged on a fixed base 59 in a state where they are connected to each other with fixing screws 58. The cans 55, 55 are plate-shaped parts formed by a laminated material formed by impregnating a synthetic resin into a sheet-like member, laminating and pressing the same. Material. As a laminate, a laminated material obtained by laminating glass cloth impregnated with epoxy resin and press-molding is used. In this laminated material, first, a sheet-like member such as paper, thick yarn cloth, fine yarn cloth, or glass cloth is impregnated with a synthetic resin such as phenol resin, epoxy resin, silicon, melamine resin, or polyester. Then, a large number of the sheet-like members are stacked and laminated, and are pressed into a plate shape by a multi-stage laminating press or the like to be formed into a plate shape. An armature winding 56 is provided in a winding accommodating groove provided on the facing surface (inner surface side) of the cans 55, 55, and a refrigerant passage 57 for flowing a refrigerant is provided. Refrigerant is evenly distributed around the armature windings 56, so that heat generated from the armature windings 56 is efficiently absorbed.
一方、 可動子 5 1の形状は、 想像線で示すように、 固定子 5 4の電機子部を挟 み込むようにして凹字形を成している。可動子 5 1は、固定子 5 4のキャン 5 5、 5 5の両外側に磁気的空隙を介して配置された永久磁石 5 3 , 5 3と、 永久磁石 5 3, 5 3の作る磁束を通すための磁性体で作られた界磁ヨーク 5 2により構成 されている。 また、 永久磁石 5 3は、 可動子 5 1の移動方向 (紙面と垂直方向) に沿って極ピッチごとに交互に極性が異なるように複数配置されている。  On the other hand, as shown by the imaginary line, the mover 51 has a concave shape with the armature portion of the stator 54 interposed therebetween. The mover 51 includes permanent magnets 53, 53 arranged through magnetic gaps on both outer sides of the cans 55, 55 of the stator 54, and a magnetic flux generated by the permanent magnets 53, 53. It is composed of a field yoke 52 made of a magnetic material for passing through. Further, a plurality of permanent magnets 53 are arranged along the moving direction of the mover 51 (perpendicular to the paper surface) so that the polarity is alternately different for each pole pitch.
このように構成されたキャンド ·リニアモー夕は、 可動子 5 1と固定子 5 4の 電気的相対位置に応じた所定の電流を電機子巻線 5 6に流すことにより、 可動子 5 1となる永久磁石 5 3の作る磁界と作用して可動子 5 1に推力が発生する。 こ の際、 銅損によって発熱した電機子巻線 5 6を冷媒により冷却し、 固定子 5 4の 表面の温度上昇を低く抑えている。  The canned linear motor configured as described above becomes the mover 51 by passing a predetermined current according to the electrical relative position of the mover 51 and the stator 54 to the armature winding 56. Acting on the magnetic field generated by the permanent magnet 53, a thrust is generated in the mover 51. At this time, the armature winding 56 heated by the copper loss is cooled by the refrigerant, and the temperature rise on the surface of the stator 54 is suppressed low.
ところが、 上述した第 2の従来技術のリニアモー夕では、 樹脂表面と発塵の関 係を表した図 1 3に示すように、 樹脂より成るキャン 5 5の表面が滑らかでなく て細かな凹部があるため、 その凹部に直接もしくは溜まった水分を介して 0 . 1 m程度のパーテイクルが付着したりすることがあることが判つた。  However, in the above-described linear motor of the second prior art, as shown in FIG. 13 showing the relationship between the resin surface and dust generation, the surface of the resin can 55 is not smooth and a fine concave portion is formed. Therefore, it was found that particles of about 0.1 m may adhere to the concave portion directly or through the accumulated water.
そのため、 クリーンルーム内で半導体露光装置のリニァステージ駆動として用 いるとき、 キャン表面が露光用光源からの UV (紫外線) により曝露されると、 付着力が弱まりキャン表面からパーティクルが離散し、 クリーン度の低下を招く ことも判明した。  Therefore, when used as a linear stage drive of a semiconductor exposure apparatus in a clean room, if the can surface is exposed to UV (ultraviolet rays) from the exposure light source, the adhesive force is weakened and particles are dispersed from the can surface, resulting in a decrease in cleanliness. It was also found that it caused.
また、 図 1 4は樹脂組成と発ガスの関係を表した説明図である。 キャン表面が 光源に曝露されると、 図 1 4に示す樹脂を組成する Cと H、 および気中の〇2が U Vにより励起され C H4、 C2H6、 C〇2もしくは H20等となり気中に拡散し、 ケミ カルクリーン度の低下を招く。 ケミカルクリーン度が低下、 すなわち C H4、 C2 H6、 C〇2もしくは H2〇等が存在すると、 シリコンウェハにこれら C H4等が付着 し、 シリコンチップの製造歩留まりが悪化していた。 FIG. 14 is an explanatory diagram showing the relationship between the resin composition and gas generation. Can surface When exposed to a light source, C and H for compositions of resin shown in Fig. 1 4, and 〇 second aerial is excited by UV CH 4, C 2 H 6, in air becomes C_〇 2 or H 2 0, etc. And the chemical cleanliness is reduced. Reduced chemical cleanliness, i.e. CH 4, C 2 H 6, when C_〇 2 or H 2 〇 like exist, adheres these CH 4 or the like on a silicon wafer, the manufacturing yield of the silicon chip is deteriorated.
以上のように、 第 2の従来技術のリ二ァモ一夕では露光用光源の UVにより曝 露されると、 キャン表面から発塵および発ガスが生じるという問題があった。 また、 キャン内に流す冷媒の種類によっては、 樹脂中に冷媒が浸透 ·拡散しキ ヤン表面から冷媒がにじみ出ることがあった。 更に、 樹脂が冷媒によって次第に 侵食され、 長期間の使用では最悪の場合、 樹脂に穴があき、 液漏れを起こすこと も起こり得た。  As described above, in the case of the second prior art Linamo, there was a problem that when exposed to UV from the exposure light source, dust and gas were generated from the can surface. Also, depending on the type of refrigerant flowing into the can, the refrigerant sometimes permeated and diffused into the resin and oozed from the surface of the can. Furthermore, the resin was gradually eroded by the refrigerant, and in the worst case over a long period of use, the resin could be perforated, causing liquid leakage.
更に、 リニアステージに組みつける際に、 キャン表面がステージ等と接触する と樹脂が傷つき、樹脂表面に一層の凹凸ができるため、樹脂の露出表面積が増え、 前記発塵および発ガスが増加するという問題があった。  Furthermore, when assembling to a linear stage, if the can surface comes into contact with the stage etc., the resin will be damaged and the resin surface will have more irregularities, so the exposed surface area of the resin will increase, and the dust and gas generation will increase. There was a problem.
そこで、 本発明の第 2の目的は露光用の光源に曝露されても、 キャン表面から の発塵および発ガスが少なく、 また、 キャン内に流す冷媒によりキャンの樹脂が 侵食されて液漏れすることがなく、 更にリニアステージに組みつける際に、 キヤ ン表面がステージ等と接触して樹脂が傷つき露光表面積が増えることによる発塵 および発ガス発生の抑制が可能なキャン構造を持つキャンド ·モータ電機子およ びキャンド ·リニアモー夕を提供することにある。  Accordingly, a second object of the present invention is to reduce the generation of dust and gas from the can surface even when exposed to a light source for exposure, and to cause leakage of liquid due to erosion of the resin of the can by the refrigerant flowing in the can. A canned motor with a can structure that suppresses dust generation and gas generation due to increased exposure surface area due to the resin surface being damaged due to the contact of the can surface with the stage etc. To provide armature and canned linear motors.
[発明の開示]  [Disclosure of the Invention]
上記問題を解決するために、 請求項 1の本発明は、 巻線固定枠と、 前記巻線固 定枠の長手方向に沿って固定される電機子巻線と、 前記卷線固定枠を額縁状に囲 むように設けた金属製の筐体と、 前記筐体の両開口部を密封するキャンと、 前記 電機子巻線の周囲に冷媒を流すことができるように前記筐体と前記キャンとで構 成される密閉空間内に形成される冷媒通路と、 前記キャンの両端のうち一方端側 と他方端側の何れかに設けた冷媒供給口と冷媒排出口とを具備してなるキャン ド * リニアモー夕電機子において、 前記キャンが樹脂で構成してあることを特徴 とする。 請求項 1記載の構成により、 従来キャンと巻線固定枠に発生していた渦電流が 無くなり、 渦電流によるキャン部の発熱、 粘性制動力分の推力増加による電機子 巻線の発熱を無くすことができる。 また、 速度に関係無く粘性制動力は発生しな いので、 高速度の用途にも使用することができ、 さらには、 推力の反作用を受け る巻線固定枠を金属製の筐体で固定していることにより、 巻線固定枠の振動を抑 えることができる。 In order to solve the above problem, the present invention according to claim 1 includes a winding fixing frame, an armature winding fixed along a longitudinal direction of the winding fixing frame, and a frame including the winding fixing frame. A metal housing provided so as to surround the armature, a can for sealing both openings of the housing, and the housing and the can so that a refrigerant can flow around the armature winding. A can having a refrigerant passage formed in a closed space formed, and a refrigerant supply port and a refrigerant discharge port provided at one of one end and the other end of both ends of the can * In the linear motor armature, the can is made of resin. The configuration according to claim 1 eliminates the eddy current generated in the can and the winding fixed frame in the past, and eliminates the heat generated in the can part due to the eddy current and the heat generated in the armature winding due to an increase in the thrust corresponding to the viscous braking force. Can be. Also, since viscous braking force is not generated regardless of the speed, it can be used for high speed applications.Furthermore, the winding fixed frame that receives the reaction of thrust is fixed with a metal housing. As a result, vibration of the winding fixed frame can be suppressed.
請求項 2記載の発明は、 請求項 1記載のキャンド · リニアモー夕電機子におい て、 前記キャンを予め湾曲させて、 前記湾曲の凸面が互いに対向するように前記 キャンを前記筐体の両開口部に配置したことを特徴とする。  According to a second aspect of the present invention, in the canned linear motor armature according to the first aspect, the can is curved in advance, and the can is connected to both openings of the housing such that the convex surfaces of the curvature face each other. It is characterized by being arranged in.
請求項 2記載の構成により、 冷媒の圧力による可動子に対向した空隙へのキヤ ン変形を抑えることができるが小さくなるため、冷媒流量を増加することができ、 請求項 1記載の構成よりも、 さらにキャン表面の温度上昇を低減できる。  According to the configuration of claim 2, it is possible to suppress the deformation of the can into the gap facing the mover due to the pressure of the refrigerant, but it becomes smaller, so that the flow rate of the refrigerant can be increased. Further, a rise in the temperature of the can surface can be reduced.
また、 請求項 3の発明は、 請求項 1または 2記載のキャンド · リニアモータ電 機子において、 前記電機子巻線を複数の集中巻コイルで構成し、 前記集中巻コィ ルの空心に非磁性材の支柱を設け、 前記支柱と前記キヤンを締結して構成したこ とを特徴とする。  Further, the invention according to claim 3 is the canned linear motor electric device according to claim 1 or 2, wherein the armature winding is constituted by a plurality of concentrated winding coils, and a nonmagnetic material is provided in the air core of the concentrated winding coil. A pillar of material is provided, and the pillar is fastened to the can.
請求項 3記載の構成により、 請求項 2記載と同じく、 冷媒流量を増加すること ができ、 キャン表面の温度上昇を低減できる。  According to the configuration of the third aspect, similarly to the second aspect, the flow rate of the refrigerant can be increased, and the rise in the temperature of the can surface can be reduced.
さらに、 請求項 4の発明によると、 請求項 1または 2に記載のキャンド · リニ ァモータ電機子において、 前記キャンおよび前記巻線固定枠を、 ガラス繊維また はカーボン繊維を充填した樹脂で構成したことを特徴とする。  Further, according to the invention of claim 4, in the canned linear motor armature according to claim 1 or 2, the can and the winding fixing frame are formed of a resin filled with glass fiber or carbon fiber. It is characterized by.
請求項 4記載の構成により、 冷媒の圧力による可動子に対向する空隙へのキヤ ン変形を抑えることができる。 請求項 2及び 3と同じく冷媒流量の増加が図れ、 温度上昇を低減することができる。  According to the configuration of the fourth aspect, it is possible to suppress the deformation of the can into the gap facing the mover due to the pressure of the refrigerant. As in claims 2 and 3, the flow rate of the refrigerant can be increased, and the rise in temperature can be reduced.
また、 請求項 5のキャンド ' リニアモータの発明は、 請求項 1または 2に記載 のキャンド · リニアモータ電機子において、 前記キャンを樹脂板材で構成し、 か つ前記樹脂板材の少なくとも外面または内面にコーティングカバーを備えたこと を特徴とする。  The invention of a canned linear motor according to claim 5 is the canned linear motor armature according to claim 1 or 2, wherein the can is formed of a resin plate, and at least an outer surface or an inner surface of the resin plate is provided. A coating cover is provided.
請求項 5記載の構成により、 キャンを構成する樹脂板材の少なくとも外面また は内面はコーティングカバーにより覆われることになるので、 クリーンルーム内 で半導体露光装置のリニァステージ駆動用として用いるとき、 キヤン表面が露光 用の光源に曝露されても、キャン表面からの発塵および発ガスを少なくし、発塵 · 発ガスの問題を低減することができ、 また、 キャン内に流す冷媒によりキャンの 樹脂が侵食されても液漏れを低減することができる。 According to the configuration of claim 5, at least the outer surface of the resin plate material constituting the can or Since the inner surface is covered with a coating cover, when used for driving a linear stage of a semiconductor exposure apparatus in a clean room, even if the can surface is exposed to a light source for exposure, it generates dust and gas from the can surface. Thus, the problem of dust generation and gas generation can be reduced, and liquid leakage can be reduced even if the resin in the can is eroded by the refrigerant flowing in the can.
請求項 6記載の発明は、 請求項 5記載のキャンド ' リニアモー夕電機子におい て、 前記コーティングカバーが金属の膜、 箔または板であることを特徴とする。 請求項 6記載の構成により、 前記コーティングカバーを金属の膜、 箔または板 で構成するため、 キャンを構成する樹脂板材の少なくとも外面または内面は金属 の膜、 箔または板により覆われることになり、 クリーンルーム内で半導体露光装 置のリニァステージ駆動用として用いるとき、 キヤン表面が露光用の光源に曝露 されても、 キャン表面からの発塵および発ガスを少なくし、 ケミカルクリーンの 問題を低減することができ、 また、 キャン内に流す冷媒によりキャンの樹脂が侵 食され液漏れを低減することができると共に、 機械的衝撃に対しても強固にする ことができる。  According to a sixth aspect of the present invention, in the canned linear motor armature according to the fifth aspect, the coating cover is a metal film, foil, or plate. According to the configuration of claim 6, since the coating cover is formed of a metal film, foil or plate, at least the outer surface or the inner surface of the resin plate material forming the can is covered with the metal film, foil or plate, When used in a clean room to drive a linear stage of a semiconductor exposure apparatus, even if the can surface is exposed to a light source for exposure, it can reduce the generation of dust and gas from the can surface and reduce the problem of chemical clean. In addition, the refrigerant flowing into the can can erode the resin of the can and reduce the leakage of the liquid, and can also be made robust against mechanical shock.
そのため、 リニアステージに組みつける際に、 キャン表面がステージ等と接触 することにより生じるキャン表面の凸凹が生じることによる露出面積の増加を押 えることができ、 発塵または発ガスの増加を抑制できる。  Therefore, when assembling to the linear stage, it is possible to suppress the increase in the exposed area due to the unevenness of the can surface caused by the contact of the can surface with the stage, etc. .
請求項 7記載の発明は、 請求項 6記載のキャンド · リニアモー夕電機子におい て、 前記金属の膜をメツキにより構成したことを特徴とする。  The invention according to claim 7 is the canned linear motor armature according to claim 6, wherein the metal film is formed by plating.
請求項 7記載の構成により、 請求項 6記載のコーティングカバーとして金属の メツキ膜を用いるため、 キャンを構成する榭脂板材の少なくとも外面または内面 は機械的衝撃に対しても強固なメツキにより覆われることになり、 クリーンル一 ム内で半導体露光装置のリニァステージ駆動用として用いるとき、 キヤン表面が 露光用の光源に曝露されても、 キャン表面からの発塵および発ガスの問題を低減 することができ、 また、 キャン内に流す冷媒によりキャンの樹脂が侵食されても 液漏れを低減することができると共に、 ステンレスはヤング率が高ぐ皺になり難 いために接着作業が容易に行え、 大掛かりな設備が不要であるので、 少量の台数 を安価に製作することができる。 請求項 8記載の発明は、 請求項 6記載のキャンド ' リニアモータ電機子におい て、 前記金属の箔または板をステンレスで構成したことを特徴とする。 According to the configuration of claim 7, since a metal plating film is used as the coating cover of claim 6, at least the outer surface or the inner surface of the resin plate material constituting the can is covered with a plating that is strong against mechanical shock. In other words, when used for driving a linear stage of a semiconductor exposure apparatus in a clean room, even if the can surface is exposed to an exposure light source, it is possible to reduce the problem of dust and gas generation from the can surface. In addition, the leakage of liquid can be reduced even if the resin in the can is eroded by the refrigerant flowing in the can. Since no equipment is required, small quantities can be manufactured at low cost. The invention according to claim 8 is the canned linear motor armature according to claim 6, characterized in that the metal foil or plate is made of stainless steel.
また、 請求項 9記載の発明は、 請求項 8記載のキャンド ' リニアモー夕電機子 において、 前記ステンレスの箔または板を前記キャンに接着により取り付けたこ とを特徴とする。  According to a ninth aspect of the present invention, in the canned linear motor armature according to the eighth aspect, the stainless steel foil or plate is attached to the can by adhesion.
請求項 8および 9記載の構成により、 請求項 6記載のコーティングカバーとし てステンレスよりなる箔または板を用い、 これをキャンに接着するため、 キャン を構成する樹脂板材の少なくとも外面または内面は機械的衝撃に対しても強固な ステンレスにより覆われることになり、 クリーンルーム内で半導体露光装置のリ ニァステージ駆動用として用いるとき、 キヤン表面が露光用の光源に曝露されて も、 キャン表面からの発塵および発ガスの問題を低減することができ、 また、 キ ャン内に流す冷媒によりキャンの樹脂が侵食されても液漏れを低減することがで きると共に、 ステンレスはヤング率が高く皺になり難いために接着作業が容易に 行え、 大掛かりな設備が不要であるので、 少量の台数を安価に製作することがで さる。  According to the configuration of claims 8 and 9, a foil or plate made of stainless steel is used as the coating cover of claim 6, and this is adhered to the can, so that at least the outer surface or the inner surface of the resin plate constituting the can is mechanical. It will be covered with stainless steel, which is strong against impact, and when used for driving the linear stage of a semiconductor exposure apparatus in a clean room, even if the can surface is exposed to the light source for exposure, it will generate dust and dust from the can surface. It can reduce the problem of gas generation, can reduce liquid leakage even if the resin in the can is eroded by the refrigerant flowing in the can, and the stainless steel has a high Young's modulus and does not easily wrinkle Therefore, the bonding work can be performed easily and large-scale equipment is not required, so that a small number of units can be manufactured at low cost.
請求項 1 0記載の発明は、 請求項 5記載のキャンド · リニアモータ電機子にお いて、 前記樹脂板材をガラス繊維またはカーボン繊維を充填した樹脂で構成した ことを特徴とする。  According to a tenth aspect of the present invention, in the canned linear motor armature according to the fifth aspect, the resin plate is made of a resin filled with glass fiber or carbon fiber.
請求項 1 0記載の構成により、 冷媒の圧力による可動子に対向する空隙へのキ ャン変形を抑えることができるのでキヤンの弹性疲労がなくなり液漏れを低減す ることができると共に、 、 冷媒流量の増加が図れ、 温度上昇を低減することがで きる。  According to the configuration of the tenth aspect, it is possible to suppress the deformation of the can into the gap facing the mover due to the pressure of the refrigerant, so that the can-free fatigue of the can is eliminated and the liquid leakage can be reduced. The flow rate can be increased and the temperature rise can be reduced.
請求項 1 1記載のキャンド · リニアモー夕の発明は、 請求項 1〜1 0の何れか 1項に記載の電機子と、 前記電機子と磁気的空隙を介して対向配置されると共に 交互に極性が異なる複数の永久磁石を隣り合わせに並べて配置した界磁ヨークと を備え、 前記前記電機子と前記界磁ヨークの何れか一方を固定子に、 他方を可動 子として、 前記界磁ヨークと前記電機子を相対的に走行するようにしたことを特 徴とする。  The invention of a canned linear motor according to claim 11 is the armature according to any one of claims 1 to 10, wherein the armature and the armature are arranged to face each other via a magnetic gap and are alternately polarized. A field yoke in which a plurality of permanent magnets different from each other are arranged side by side, and one of the armature and the field yoke as a stator and the other as a movable element, and the field yoke and the electric machine The feature is that the child runs relatively.
請求項 1 1記載の構成により、 前記請求項 1から 1 0記載のキャン構造の電機 子は、 キャンを構成する樹脂板材の少なくとも外面または内面はコーティングカ バーにより覆われることになり、 クリーンルーム内で半導体露光装置のリニァス テージ駆動用として用いるとき、 キャン表面が露光用の光源に曝露されても、 キ ヤン表面からの発塵および発ガスの問題を低減することができ、 また、 キャン内 に流す冷媒によりキヤンの樹脂が侵食されても液漏れを低減することができる。 さらに、 このようなキャンド ·リニアモータにおいて、 電機子巻線を有する電気 装苛手段を固定子とし、 永久磁石により構成される磁気装荷手段を移動子とする と、 該固定子を覆うキャンは直接気中に露出するために、 発塵 ·発ガスの問題を 低減する効果は一層大きい。 According to the configuration of claim 11, the can-structured electric machine according to any of claims 1 to 10. At least the outer or inner surface of the resin plate material that composes the can is covered with a coating cover, and when used for driving a linear stage of a semiconductor exposure apparatus in a clean room, the can surface is exposed to a light source for exposure. However, the problem of dust generation and gas generation from the can surface can be reduced, and liquid leakage can be reduced even if the resin of the can is eroded by the refrigerant flowing in the can. Further, in such a canned linear motor, when the electric loading means having the armature winding is a stator, and the magnetic loading means constituted by a permanent magnet is a moving element, the can covering the stator is directly The effect of reducing dust and gas generation due to exposure to the air is even greater.
それから、 キャンに発生していた渦電流が無くなるので渦電流によるキャン部 の発熱のない電機子が得られ、 これに界磁ヨークを対向配置させることで発熱の ないキャンド ·リニアモータを得ることができる。  In addition, since the eddy current generated in the can is eliminated, an armature that does not generate heat in the can portion due to the eddy current can be obtained, and a canned linear motor that does not generate heat can be obtained by disposing the field yoke opposed thereto. it can.
[図面の簡単な説明]  [Brief description of drawings]
図 1は本発明の第 1の実施例を示すキャンド ·リニアモ一夕の全体斜視図、 図 2は図 1の A— A線に沿うキャンド ·リニアモータの; 断面図、 図 3は図 2のキ ヤンを取り除いた固定子内部の構造を示す図、 図 4は本発明の第 2の実施例を示 すキャンド 'リニアモータの固定子の正断面図、 図 5は本発明の第 3の実施例を 示すキャンド,リニアモ一夕の固定子の正断面図、 図 6は第 1の従来技術を示す キャンド · リニアモータの全体斜視図、 図 7は図 6の A— A線に沿うキャンド · リニアモータの正断面図、 図 8は本発明の第 5の実施例を示すキャンド ·リニア モータの全体斜視図、 図 9は図 8の A— A線に沿うキャンド ·リニアモータの正 断面図、 図 1 0は図 9のキャン 1 2の構成を説明する拡大正断面図、 図 1 1は本 発明の第 6の実施例を示すコ一ティングカバーを設けたキャンの拡大正断面図で、 FIG. 1 is an overall perspective view of a canned linear motor showing a first embodiment of the present invention, FIG. 2 is a cross-sectional view of a canned linear motor along the line A--A in FIG. 1, and FIG. FIG. 4 is a view showing the internal structure of the stator with the can removed, FIG. 4 is a front sectional view of a stator of a canned linear motor showing a second embodiment of the present invention, and FIG. 5 is a third embodiment of the present invention. Fig. 6 is an overall perspective view of a canned linear motor showing the first prior art, and Fig. 7 is a canned linear along the line A-A in Fig. 6. FIG. 8 is an overall perspective view of a canned linear motor according to a fifth embodiment of the present invention, and FIG. 9 is a front sectional view of the canned linear motor along line A--A in FIG. 10 is an enlarged front sectional view illustrating the configuration of the can 12 of FIG. 9, and FIG. 11 is a coat showing a sixth embodiment of the present invention. In enlarged front sectional view of the can in which a Ngukaba,
(A)はコ一ティングカバーの一具体例、 (B)は(A)の変形例を示したもの、 図 1 2は第 2の従来技術を示すキヤンの構成を示す構成説明図、 図 1 3は樹脂表 面と発塵の説明図、 図 1 4は樹脂組成と発ガスの説明図である。 (A) is a specific example of a coating cover, (B) is a modified example of (A), FIG. 12 is a configuration explanatory view showing a configuration of a can of the second prior art, and FIG. 3 is an explanatory diagram of the resin surface and dust generation, and FIG. 14 is an explanatory diagram of the resin composition and gas generation.
[発明を実施するための最良の形態]  [Best Mode for Carrying Out the Invention]
[第 1の実施例]  [First embodiment]
以下、 本発明の実施例を図に基づいて説明する。 図 1は本発明の第 1の実施例を示すキヤンド · リニァモータの全体斜視図であ る。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an overall perspective view of a candid linear motor according to a first embodiment of the present invention.
図において、 1 0 0は固定子、 1 0 1は筐体、 1 0 2はキャン、 1 0 3はキヤ ン固定用ポルト、 1 0 4は押え板、 1 0 5は端子台、 1 0 6は冷媒供給口、 1 0 7は冷媒排出口、 2 0 0は可動子、 2 0 1は界磁ヨーク支持部材、 2 0 2は界磁 ヨーク、 2 0 3は永久磁石である。  In the figure, 100 is a stator, 101 is a housing, 102 is a can, 103 is a port for fixing a can, 100 is a holding plate, 105 is a terminal block, and 106 is a terminal block. Is a refrigerant supply port, 107 is a refrigerant discharge port, 200 is a mover, 201 is a field yoke support member, 202 is a field yoke, and 203 is a permanent magnet.
可動子 2 0 0は、 界磁ヨーク支持部材 2 0 1の長さ分の距離を隔てて上下に界 磁ヨーク 2 0 2を備え、 その四隅に界磁ョ一ク支持部材 2 0 1を配置し、 界磁ョ ーク 2 0 2の互いの対向面に永久磁石 2 0 3をそれぞれ取り付けて成るものであ る。  The mover 200 is provided with field yokes 202 above and below at a distance corresponding to the length of the field yoke support member 201, and the field support members 201 are arranged at the four corners. Then, permanent magnets 203 are attached to opposing surfaces of the field yokes 202, respectively.
そして、 可動子 2 0 0の中空空間内に固定子 1 0 0が挿入され、 その場合、 永 久磁石 2 0 3が固定子 1 0 0の電機子 1 0 8と対向するように配置される。 可動 子 2 0 0は、 図示しないリニアガイド等によって支持されている。  Then, the stator 100 is inserted into the hollow space of the mover 200, in which case the permanent magnet 203 is arranged so as to face the armature 108 of the stator 100. . The mover 200 is supported by a linear guide (not shown) or the like.
そこで、 所定の電流を電機子巻線 1 0 8に流すと永久磁石 2 0 3の作る磁界と の作用により可動子 1 0 0に推力が発生し、 可動子 1 0は矢印で示す進行方向に 移動することとなる。  Therefore, when a predetermined current is applied to the armature winding 108, a thrust is generated in the mover 100 by the action of the magnetic field generated by the permanent magnet 203, and the mover 100 moves in the traveling direction indicated by the arrow. Will move.
図 2は、 図 1の A— A線に沿う本発明におけるキャンド ·リニアモー夕の正断 面図である。 また、 図 3は図 2のキャンを除いた固定子内部の構造を示す。 図 2および図 3において、 固定子 1 0 0は、 内部を中空とする口の字形 (額縁 状) の金属製筐体 1 0 1と、 この口の字形筐体 1 0 1の中空を覆うため筐体 1 0 1の外形を象 (かたちど) つた板状のキャン 1 0 2と、 キャン 1 0 2を筐体 1 0 1に固定するためのキヤン固定用ポルト 1 0 3と、 キャン固定用ボルト 1 0 3の 通し穴を持ちキャンを均等な荷重でもって押さえるための押え板 1 0 4と、 筐体 1 0 1の中空内に配置された 3相の電機子巻線 1 0 8と、 電機子巻線 1 0 8を固 定している巻線固定枠 1 0 9と、 筐体 1 0 1とキャン 1 0 2の中を冷媒が通過す る冷媒通路 1 1 0と、 筐体 1 0 1の縁よりも少し大き目に象られた Oリング 1 1 1と、 巻線固定枠 1 0 9と筐体 1 0 1を固定するための巻線固定用ポルト 1 1 2 と、 により構成されている。 そして、 キャン 1 0 2の材質は、 第 1の従来技術で はステンレス製であつたが、 本発明によって樹脂製とされており、 ここでは熱硬 化性樹脂である例えばエポキシ樹脂や熱可塑性樹脂である例えばポリフエ二レン サルファイド (P P S ) を使用している。 FIG. 2 is a front cross-sectional view of the canned linear motor according to the present invention along the line AA in FIG. Fig. 3 shows the internal structure of the stator excluding the can of Fig. 2. In FIG. 2 and FIG. 3, the stator 100 has a mouth-shaped (frame-shaped) metal housing 101 having a hollow inside, and a stator 100 for covering the hollow of the mouth-shaped housing 101. A plate-shaped can 102 connected to an elephant (shape) of the outer shape of the housing 101, a port 1103 for fixing a can for fixing the can 102 to the housing 101, and a can for fixing the can A holding plate 104 having a through hole of a bolt 103 for holding the can with an even load; a three-phase armature winding 108 arranged in the hollow of the housing 101; Winding fixing frame 1 09 that fixes armature winding 108, refrigerant passage 1 110 through which refrigerant passes through housing 101 and can 102, and housing 1 O 1-ring 1 1 1 slightly larger than the edge of 0 1, and winding fixing port 1 1 2 for fixing the winding fixing frame 1 09 and the housing 1 1 1 ing. The material of the can 102 is made of stainless steel in the first prior art, but is made of resin according to the present invention. For example, an epoxy resin, which is a functionalizing resin, or a polyphenylene sulfide (PPS), which is a thermoplastic resin, is used.
筐体 1 0 1の空洞部の形状は、 電機子巻線 1 0 8の外周を囲うように象られて いる。 電機子巻線 1 0 8は板状に形成された卷線固定枠 1 0 9の両面に配置され ている。 電機子巻線 1 0 8と一体になつた巻線固定枠 1 0 9は、 筐体 1 0 1の中 空内に配置され、 巻線固定用ポルト 1 1 2で筐体 1 0 1と固定される。 筐体 1 0 The shape of the hollow portion of the housing 101 is drawn so as to surround the outer periphery of the armature winding 108. The armature windings 108 are arranged on both sides of a plate-shaped winding fixing frame 109. The winding fixed frame 1 09 integrated with the armature winding 108 is placed in the hollow space of the housing 101, and fixed to the housing 101 with the winding fixing port 1 1 2 Is done. Case 1 0
1の表裏の縁には、 周回した溝が設けられており、 そこに〇リング 1 1 1が配置 される。 そして、 筐体 1 0 1にふたをするようにキャン 1 0 2が筐体 1 0 1の表 裏に配置される。 キャン 1 0 2の上から筐体 1 0 1の縁に沿って押え板 1 0 4が 敷かれ、 キャン固定用ボルト 1 0 3にて締め付けられ、 キャン 1 0 2と筐体 1 0The front and back edges of 1 are provided with orbital grooves, in which the o-rings 11 are arranged. Then, the can 102 is arranged on the front and back of the housing 101 so as to cover the housing 101. A holding plate 104 is laid from the top of the can 102 along the edge of the housing 101, and is tightened with the can fixing bolts 103.
1は固定される。 1 is fixed.
電機子巻線 1 0 8は、 複数の集中巻コイルを 3相分用意したもので構成され、 巻線固定枠 1 0 9の左右両側に貼り付けられている。 電機子巻線 1 0 8への電力 供給は、 筐体 1 0 1に取り付けられた端子台 1 0 5から行われる。 端子台 1 0 5 と電機子巻線 1 0 8はリード線 (図示しない) で各々電気的に接続されている。 また、 冷媒は筐体 1 0 1に設けた冷媒供給口 1 0 6より供給され、 冷媒排出口 1 0 7より排出される。 その間に、 冷媒は電機子巻線 1 0 8とキャン 1 0 2の間 にある冷媒通路 1 1 0を流れ、 発熱する電機子巻線 1 0 8を冷却する。  The armature winding 108 is formed by preparing a plurality of concentrated winding coils for three phases, and is attached to the left and right sides of the fixed winding frame 109. Power is supplied to the armature winding 108 from a terminal block 105 attached to the housing 101. The terminal block 105 and the armature winding 108 are electrically connected by lead wires (not shown). The refrigerant is supplied from a refrigerant supply port 106 provided in the housing 101 and discharged from a refrigerant discharge port 107. In the meantime, the refrigerant flows through the refrigerant passage 110 between the armature winding 108 and the can 102, and cools the armature winding 108 that generates heat.
一方、 可動子 2 0 0の進行方向から見た断面形状は、 図 2に示すように、 固定 子 1 0 0の電機子部を挟み込むようにして口の字形を成している。 可動子 2 0 0 は、 固定子 1 0 0のキャン 1 0 2の両側に磁気的空隙を介して配置された永久磁 石 2 0 3、 永久磁石 2 0 3の作る磁束を通すための磁性体で作られた界磁ヨーク 2 0 2、 それらを支持する界磁ヨーク支持部材 2 0 1により構成されている。 また、 7久磁石2 0 3は、 可動子の移動方向に沿って (紙面と垂直) 、 極ピッチ ごとに交互に異極になるように複数配置されている。  On the other hand, as shown in FIG. 2, the cross-sectional shape of the mover 200 as viewed from the traveling direction has a mouth shape so as to sandwich the armature portion of the stator 100. The mover 200 is a magnetic material for passing the magnetic flux created by the permanent magnet 203 and the permanent magnet 203 arranged on both sides of the can 102 of the stator 100 via magnetic gaps. And a field yoke supporting member 201 that supports them. A plurality of magnets 203 are arranged along the moving direction of the mover (perpendicular to the plane of the drawing) so that the poles are alternately alternately arranged at every pole pitch.
このように構成されたキャンド · リニアモー夕は、 可動子 2 0 0と固定子 1 0 0の電気的相対位置に応じた所定の電流を電機子巻線 1 0 8に流すことにより、 可動子 2 0 0となる永久磁石 2 0 3の作る磁界と作用して可動子 2 0 0に推力が 発生する。 この際、 銅損によって発熱した電機子巻線 1 0 8は冷媒通路を流れる冷媒によ り冷却されるので、 第 1の従来技術同様、 キャン 1 0 2の表面の温度上昇を抑え ることができる。 The canned linear motor configured as described above is configured such that a predetermined current corresponding to the electrical relative position of the mover 200 and the stator 100 is supplied to the armature winding 108 so that the mover A thrust is generated in the mover 200 by acting on the magnetic field generated by the permanent magnet 203, which becomes 0. At this time, since the armature winding 108 heated by the copper loss is cooled by the refrigerant flowing through the refrigerant passage, it is possible to suppress a rise in the temperature of the surface of the can 102 as in the first related art. it can.
ここで、第 1の実施例による効果は、第 1の従来技術と次の点で異なっている。 従来ステンレスを採用していたキャンと巻線固定枠の材質を樹脂にしたことに より、その部分で発生していた渦電流を無くすことができたことである。つまり、 渦電流によるキャン部の発熱、 粘性制動力による推力低下といった問題を解決で きる。 速度が速くなつたとしても渦電流は発生しないため、 速度が速い用途にも 使用できる。  Here, the effect of the first embodiment is different from the first conventional technique in the following points. The use of resin for the can and winding fixing frame, which conventionally used stainless steel, has eliminated the eddy current generated in that part. In other words, problems such as heat generation in the can part due to eddy current and reduction in thrust due to viscous braking force can be solved. Even if the speed increases, no eddy current is generated, so it can be used for high-speed applications.
また、 キャンと巻線固定枠をステンレスから樹脂にただ変更するだけでは、 固 定子またはその部材自身の強度が劣化する。 巻線固定枠は、 推力の反作用を受け るため、 それに耐えうるだけの強度、 もしくは固有振動によって振動しないだけ の剛性が必要である。 第 1の実施例では、 金属製の筐体によって固定子自身の剛 性を高めるとともに、 各樹脂部材の厚さを大きくすることで、 この問題を解消し ている。  Also, simply changing the can and the winding fixing frame from stainless steel to resin deteriorates the strength of the stator or its member itself. The winding fixed frame must be strong enough to withstand the thrust reaction or rigid enough not to vibrate due to natural vibration. In the first embodiment, this problem is solved by increasing the rigidity of the stator itself by using a metal housing and increasing the thickness of each resin member.
[第 2の実施例]  [Second embodiment]
次に、 本発明の第 2の実施例を説明する。  Next, a second embodiment of the present invention will be described.
図 4は、 本発明の第 2の実施例を示すキャンド · リニアモータの固定子の正断 面図である。 1 0 0 ' は本発明による固定子である。 固定子 1 0 0 ' は、 第 1の 実施例と同じく、 内部を中空とする額縁状金属製筐体 1 0 1と、 この筐体 1 0 1 の中空を覆う板状の榭脂製キャン 1 0 2 aと、 樹脂製キャン 1 0 2 aを筐体 1 0 FIG. 4 is a front sectional view of a stator of a canned linear motor according to a second embodiment of the present invention. 100 'is the stator according to the invention. As in the first embodiment, the stator 100 ′ has a frame-shaped metal casing 101 having a hollow inside, and a plate-shaped resin can 1 covering the hollow of the casing 101. 0 2a and resin can 1 0 2a in housing 1 0
1に固定するためのキヤン固定用ポルト 1 0 3と、 キャン固定用ポルト 1 0 3の 通し穴を持ちキャンを均等に押さえる押え板 1 0 4と、 筐体 1 0 1の中空内に配 置された 3相の電機子巻線 1 0 8と、 電機子巻線 1 0 8を固定している巻線固定 枠 1 0 9と、 筐体 1 0 1とキャン 1 0 2 aの中を冷媒が通過する冷媒通路 1 1 0 と、 筐体 1 0 1の縁よりも少し大き目に象られた Oリング 1 1 1と、 巻線固定枠Port 1 103 for fixing the can for fixing to 1, Port 104 for fixing the port 103 for fixing the can, and a holding plate 104 that evenly presses the can, and placed inside the hollow of the housing 101 The three-phase armature winding 108, the winding fixing frame 109 fixing the armature winding 108, the housing 101 and the coolant in the can 102a , Through which the refrigerant passes, an O-ring that is slightly larger than the edge of the housing, and a winding fixing frame
1 0 9と筐体 1 0 1を固定するための巻線固定用ボルト 1 1 2と、 により構成さ れている。 And 109 and winding fixing bolts 112 for fixing the casing 101.
このように第 2の実施例における効果は、 第 1の実施例と同じく、 キャン 1 0 2 aを樹脂製と構成したので、 渦電流を無くすることができる。 Thus, the effect of the second embodiment is similar to that of the first embodiment. Since 2a is made of resin, eddy current can be eliminated.
そして、 第 2の実施例が第 1の実施例と違う点は、 第 1の実施例のキャン 1 0 2が真っ直ぐな板状であったのに対して、 第 2の実施例のキャン 1 0 2 aは予め 湾曲して形成されていることである。 すなわち、 キャン 1 0 2 aは、 冷媒通路 1 1 0に冷媒が流れていないとき、 その中央部で電機子巻線 1 0 8にわずかに接触 しない程度に予め湾曲した形状に形成されている。 冷媒通路 1 1 0に冷媒が流れ ると、 キャン 1 0 2 aはその冷媒による圧力によって中央部が外側に張り出すよ うに変形する。  The second embodiment differs from the first embodiment in that the can 102 of the first embodiment has a straight plate shape, whereas the can 10 of the second embodiment has a straight plate shape. 2a is that it is formed to be curved in advance. That is, when the refrigerant is not flowing through the refrigerant passage 110, the can 102 a is formed in a shape that is curved in advance so that it does not slightly contact the armature winding 108 at the center thereof. When the refrigerant flows through the refrigerant passage 110, the can 102a is deformed by the pressure of the refrigerant so that the central portion protrudes outward.
このようにキヤンを予め湾曲させた形状としたことにより、 第 1の実施例を凌 ぐ効果として、 冷媒の流量による可動子に対向する空隙へのキャン変形を抑える ことができる。 したがって第 1の実施例よりも冷媒流量を増加でき、 温度上昇を より低減することが可能となる。  By thus forming the can in a curved shape in advance, it is possible to suppress can deformation to the gap facing the mover due to the flow rate of the refrigerant, as an effect exceeding that of the first embodiment. Therefore, the flow rate of the refrigerant can be increased as compared with the first embodiment, and the temperature rise can be further reduced.
[第 3の実施例]  [Third embodiment]
次に、 本発明の第 3の実施例を説明する。  Next, a third embodiment of the present invention will be described.
図 5は、 第 3の実施例を示すキャンド ·リニアモー夕の固定子の正断面図であ る。 1 0 0 " は本発明による固定子である。 固定子 1 0 0 " は、 第 1および第 2 の実施例と同じく、 内部を中空とする額縁状金属製筐体 1 0 1と、 この筐体 1 0 1の中空を覆う板状の樹脂製キヤン 1 0 2 bと、 樹脂製キヤン 1 0 2 bを筐体 1 0 1に固定するためのキヤン固定用ポルト 1 0 3と、 キヤン固定用ポルト 1 0 3 の通し穴を持ちキャンを均等に押さえる押え板 1 0 4と、 筐体 1 0 1の中空内に 配置された 3相の電機子巻線 1 0 8と、 電機子巻線 1 0 8を固定している巻線固 定枠 1 0 9と、 筐体 1 0 1とキャン 1 0 2 bの中を冷媒が通過する冷媒通路 1 1 0と、 筐体 1 0 1の縁よりも少し大き目に象られた Oリング 1 1 1と、 巻線固定 枠 1 0 9と筐体 1 0 1を固定するための巻線固定用ポルト 1 1 2と、 により構成 されている。 そして、 1 1 3が電機子巻線 1 0 8の集中巻コイル空心内に設けら れた非磁性材の支柱、 1 1 4が支柱固定用ネジである。  FIG. 5 is a front sectional view of a canned linear motor stator according to a third embodiment. Reference numeral 100 "denotes a stator according to the present invention. As in the first and second embodiments, a stator 100" includes a frame-shaped metal casing 101 having a hollow interior, A plate-shaped resin can 102 b that covers the hollow of the body 101, a can-fixing port 110 3 for fixing the resin can 102 b to the housing 101, and a can-fix Presser plate 104 that has through-holes of Porto 103 and presses cans evenly, 3-phase armature winding 108 arranged in the hollow of housing 101, Armature winding 1 From the edge of the housing 101, the winding fixing frame 1 09 fixing the housing 8, the refrigerant passage 1 10 through which the refrigerant passes through the housing 101 and the can 102 b, It is composed of an O-ring 111, which is slightly larger, a winding fixing frame 109, and a winding fixing port 112 for fixing the housing 101. Numeral 113 denotes a non-magnetic material column provided in the concentrated coil air core of the armature winding 108, and numeral 114 denotes a column fixing screw.
第 3の実施例が第 1及び第 2の実施例と違う点は、 集中巻コイルの空心内を通 る支柱 1 1 3と支柱固定用ネジ 1 1 4にて機械締結されていることである。 すな わち、 巻線固定枠 1 0 9に固定された支柱 1 1 3により、 キャン 1 0 2 bはその 中央で支持されている。 冷媒通路 1 1 0に冷媒が流れると、 キャン 1 0 2 bは、 支柱 1 1 3と筐体 1 0 1の中間が可動子に対向する空隙へ最も張り出す。 The difference between the third embodiment and the first and second embodiments is that the pillar 1 13 passing through the air core of the concentrated winding coil and the pillar fixing screw 1 14 are mechanically fastened. . In other words, the can 1 102 b is fixed by the support 113 fixed to the winding fixed frame 109. Supported in the center. When the refrigerant flows through the refrigerant passage 110, the can 102 b b projects the middle of the column 113 and the housing 101 to the gap facing the mover.
第 3の実施例における効果は、 第 1及び第 2の実施例と同じく、 渦電流を無く したことであり、 さらに、 第 1の実施例を凌ぐ効果として、 キャンの中央を支柱 によつて支持したことにより、 冷媒の圧力に対する空隙へのキャン変形を抑える ことができることである。 第 1の実施例よりも冷媒流量の増加できるので、 第 2 の実施例と同様、 冷媒流量を増加し、 温度上昇をより低減することができる。  The effect of the third embodiment is that the eddy current is eliminated, as in the first and second embodiments. Further, as an effect surpassing the first embodiment, the center of the can is supported by a column. By doing so, it is possible to suppress can deformation into the void due to the pressure of the refrigerant. Since the flow rate of the refrigerant can be increased as compared with the first embodiment, the flow rate of the refrigerant can be increased and the temperature rise can be further reduced as in the second embodiment.
[第 4の実施例]  [Fourth embodiment]
次に、 本発明の第 4の実施例を説明する。  Next, a fourth embodiment of the present invention will be described.
第 4の実施例は、 第 1乃至第 3の実施例において、 キャンおよび卷線固定枠の 材質として、 ガラス繊維もしくはカーボン繊維を充填した樹脂を用いるようにし たことである。  The fourth embodiment is different from the first to third embodiments in that a resin filled with glass fiber or carbon fiber is used as the material of the can and the winding frame.
一般に、 一方向にガラス繊維を積層した熱硬化性樹脂 (G F R P ) のヤング率 は約 6 0, 0 0 0 N/mm2であり、 カーボン繊維を積層した熱硬化性樹脂 (C F R P ) のヤング率は約 2 0 , 0 0 O NZmm2にもなる。 このように G F R P や C F R Pはアルミニウムやステンレス鋼並みのヤング率を得ることができるた め、 キャン変形率の低減、 もしくは巻線固定枠の強度向上が可能である。 本発明 はキャンや巻線固定枠が平板状に形成されていることから、 これらの材料を容易 に適用することができる。 In general, the Young's modulus of the unidirectional glass fiber laminated thermosetting resin (GFRP) is about 6 0, 0 0 0 N / mm 2, the Young's modulus of the thermosetting resin laminated carbon fibers (CFRP) also becomes about 2 0, 0 0 O NZmm 2 . In this way, GFRP and CFRP can obtain a Young's modulus comparable to that of aluminum or stainless steel, so it is possible to reduce the can deformation rate or improve the strength of the winding fixed frame. In the present invention, since the can and the winding fixing frame are formed in a flat plate shape, these materials can be easily applied.
すなわち、 第 4の実施例における効果は、 第 1乃至第 3の実施例と同じく、 渦 電流を無くし、 可動子に対向する空隙へのキャン変形を抑えることができる。 冷 媒流量の増加が図れ、 更なる温度上昇低減が可能となることである。  That is, the effect of the fourth embodiment is that, as in the first to third embodiments, the eddy current is eliminated and the can deformation to the gap facing the mover can be suppressed. The coolant flow rate can be increased, and the temperature rise can be further reduced.
なお、 以上の実施例では、 可動子に電機子巻線、 固定子に界磁とした永久磁石 を持つ構造で説明したが、 可動子に永久磁石を、 固定子に電機子巻線を持つ逆の 構造としても良い。  In the above embodiment, the structure in which the armature has the armature winding and the stator has the permanent magnet as the magnetic field has been described, but the permanent magnet is used in the mover, and the armature winding is used in the stator. The structure may be good.
また、 可動子の形状を口の字形としたが、 第 1の従来技術と同じ凹形や片側に 永久磁石を並べるだけの構造としても、本発明が成り立つことは言うまでもない。  In addition, although the shape of the mover is a mouth shape, it goes without saying that the present invention is also applicable to the same concave shape as that of the first prior art or a structure in which permanent magnets are simply arranged on one side.
[第 5の実施例]  [Fifth embodiment]
以下、 本発明の第 5の実施例を図 8〜図 1 0を用いて説明する。 図 8は本発明の第 5の実施例を示すキャンド · リニアモー夕 (磁束貫通形) の 全体斜視図である。 図において、 1 0は固定子、 1 1は固定子ベース、 1 2はキ ヤン、 1 3はヘッダ、 1 4は冷媒供給口、 1 5は冷媒排出口、 2 0は可動子、 2 1は可動子べ一ス、 2 2は界磁ヨーク、 2 3は永久磁石である。 Hereinafter, a fifth embodiment of the present invention will be described with reference to FIGS. FIG. 8 is an overall perspective view of a canned linear motor (magnetic flux penetration type) showing a fifth embodiment of the present invention. In the figure, 10 is a stator, 11 is a stator base, 12 is a can, 13 is a header, 14 is a refrigerant supply port, 15 is a refrigerant discharge port, 20 is a mover, and 21 is a mover. The mover base, 22 is a field yoke, and 23 is a permanent magnet.
固定子 1 0は、 2枚のキヤン 1 2と、 この 2枚のキヤン 1 2を上部と下部とで 互いに結合する筐体 1 9と、 2枚のキャン 1 2と筐体 1 9とから成る空間を長さ 方向の先端と後端で密封しているヘッダ 1 3と、 このキャン 1 2と筐体 1 9とへ ッダ 1 3とから成る閉じた空間内に配置される巻線固定枠 1 6と、 巻線固定枠 1 6の長手方向に沿って固定される 3相の電機子巻線 1 7と、 キャン 1 2の中を冷 媒が通過する冷媒通路 1 8とにより構成されている。  The stator 10 includes two cans 12, a housing 19 connecting the two cans 12 to each other at an upper portion and a lower portion, and two cans 12 and a housing 19. A winding fixing frame arranged in a closed space consisting of a header 13 that seals the space at the front and rear ends in the longitudinal direction, and a can 12, a housing 19, and a header 13. 16, a three-phase armature winding 17 fixed along the longitudinal direction of the winding fixing frame 16, and a refrigerant passage 18 through which the refrigerant passes through the can 12. I have.
ヘッダ 1 3はステンレス製铸物で形成され、 キャン 1 2の両端のうち、 一方端 に冷媒を通すための冷媒供給口 1 4を持ち、 他端に冷媒排出口 1 5を各々持って いる。 キャン 1 2および筐体 1 9とヘッダ 1 3とは接合面で溶接によって接合さ れている。 また、 冷媒を冷媒供給口 1 4より供給して、 冷媒排出口 1 5より排出 することにより、 冷媒は電機子巻線 1 7とキャン 1 2の間にある冷媒通路 1 8を 流れる。  The header 13 is formed of a stainless steel material, and has a refrigerant supply port 14 for allowing a refrigerant to pass at one end and a refrigerant discharge port 15 at the other end of both ends of the can 12. The can 12 and the housing 19 and the header 13 are joined by welding at the joining surface. Further, by supplying the refrigerant from the refrigerant supply port 14 and discharging the refrigerant from the refrigerant discharge port 15, the refrigerant flows through the refrigerant passage 18 between the armature winding 17 and the can 12.
一方、 可動子 2 0の形状は、 固定子 1 0の電機子部を挟み込むようにして逆凹 字形を成している。 可動子 2 0は、 固定子 1 0のキャン 1 2の両側に磁気的空隙 を介して配置された永久磁石 2 3、 永久磁石 2 3の作る磁束を通すための磁性体 で作られた界磁ヨーク 2 2、 それらを支持する可動子ベース 2 1により構成され ている。 また、 永久磁石 2 3は、 可動子の移動方向 (図の矢印方向) に沿って、 極ピッチごとに交互に極性が異なるように複数配置されている。  On the other hand, the shape of the mover 20 is an inverted concave shape so as to sandwich the armature portion of the stator 10. The mover 20 is composed of a permanent magnet 23 disposed on both sides of the can 12 of the stator 10 through a magnetic gap, and a magnetic field made of a magnetic material for passing a magnetic flux generated by the permanent magnet 23. It is composed of yokes 22 and a mover base 21 that supports them. Further, a plurality of permanent magnets 23 are arranged along the moving direction of the mover (the direction of the arrow in the figure) so that the polarity is alternately different for each pole pitch.
可動子 2 0は、 図示しないリニアガイド等によって固定子 1 0に対して支持さ れている。  The mover 20 is supported by the stator 10 by a linear guide or the like (not shown).
このように構成されたキャンド · リニアモータは、 可動子 2 0と固定子 1 0の 電気的相対位置に応じた所定の電流を電機子巻線 1 7に流すことにより、 可動子 2 0となる永久磁石 2 3の作る磁界と作用して可動子 2 0に推力が発生し、 可動 子 2 0は矢印で示す進行方向に移動する。 その際、 銅損によって発熱した電機子 巻線 1 7を冷媒により冷却することによって、 固定子 1 0の表面の温度上昇を低 く抑えている。 The canned linear motor configured as described above becomes a mover 20 by flowing a predetermined current according to the electrical relative position of the mover 20 and the stator 10 through the armature winding 17. Acting on the magnetic field generated by the permanent magnet 23, a thrust is generated in the mover 20, and the mover 20 moves in the traveling direction indicated by the arrow. At this time, the armature windings 17 generated by the copper loss are cooled by the refrigerant to reduce the temperature rise on the surface of the stator 10. I keep it down.
図 9は図 8の A— A線に沿うキャンド · リニアモー夕の正断面図である。 図 9において、 1 0は固定子、 1 2はキャン、 1 6は巻線固定枠、 1 7は電機 子巻線、 1 8は冷媒通路、 1 9は筐体である。  FIG. 9 is a front sectional view of the cand linear motor taken along the line AA in FIG. In FIG. 9, 10 is a stator, 12 is a can, 16 is a winding fixing frame, 17 is an armature winding, 18 is a refrigerant passage, and 19 is a housing.
キャン 1 2は、 基材として樹脂板材 1 2 2を用い、 樹脂板材 1 2 2としてはガ ラス布をエポキシ樹脂で固めた板状の G F R P、 もしくは、 カーボン繊維をェポ キシ樹脂で固めた板状の C F R Pを用いることができる。 これらは流通性が良く 比較的安価に入手できるものである。  The can 12 uses a resin plate 1 2 2 as a base material, and the resin plate 1 2 2 uses a plate-like GFRP made of glass cloth solidified with epoxy resin, or a plate made of carbon fiber solidified with epoxy resin CFRP can be used. These have good distribution and can be obtained at relatively low cost.
巻線固定枠 1 6はそれ自身の強度を要求されるため、 ステンレスが使われてい る。  Since the winding fixed frame 16 requires its own strength, stainless steel is used.
電機子巻線 1 7は、 例えば複数の集中巻コイルを 3相分用意したもので構成さ れ、 巻線固定枠 1 6の左右両側に貼り付けられている。  The armature winding 17 is formed, for example, by preparing a plurality of concentrated winding coils for three phases, and is attached to the left and right sides of the winding fixed frame 16.
筐体 1 9は固定子 1 0のたわみに対する強度材となっており、 本実施例の場合 には、 ステンレス材の機械加工、 もしくはアルミ材の機械加工もしくはダイカス ト成形により構成でき、 本実施例では、 アルミ材の機械加工により構成した。 このように、 巻線固定枠 1 6には長手方向に沿って両面を挟むように電機子巻 線 1 7が貼り付けられ、 巻線固定枠 1 6は上下の筐体 1 9間に固定されている。 また、 筐体 1 9には、 電機子巻線 1 7の表面と所望の隙間を保ちながらこれらの 電機子巻線 1 7を覆うようにキャン 1 2を取りつけている。 そして、 電機子巻線 1 7とキャン 1 2の隙間には、 電機子巻線 1 7を冷却するための冷媒が流れるよ うになつており、 そのため筐体 1 9とキャン 1 2とは図示していない 0リング等 を用いて密閉するように固定した。 冷媒は、 近年オゾン層破壊の問題から、 フロ リナ一卜に代わり H F E— 7 2 0 0等が用いられるようになつてきており、 榭月旨 の溶解性は無視できない。 本発明の実施例では、 冷媒に H F E— 7 2 0 0を用い た。  The housing 19 is a strength material against the deflection of the stator 10. In the case of the present embodiment, the housing 19 can be formed by machining stainless steel, machining aluminum, or die casting. Then, it was constructed by machining aluminum material. As described above, the armature winding 17 is attached to the winding fixing frame 16 so as to sandwich both sides along the longitudinal direction, and the winding fixing frame 16 is fixed between the upper and lower housings 19. ing. The housing 19 is provided with a can 12 so as to cover these armature windings 17 while keeping a desired gap from the surface of the armature windings 17. A coolant for cooling the armature winding 17 flows through the gap between the armature winding 17 and the can 12, so that the housing 19 and the can 12 are illustrated. It was fixed so that it was tightly closed using a 0 ring or the like. Due to the problem of depletion of the ozone layer in recent years, HFE-7200 and the like have been used in place of florinate, and the solubility of water cannot be ignored. In the examples of the present invention, HFE-720 was used as the refrigerant.
そして、 1 2 1が本発明により設けられるコーティングカバ一 (後述) で、 キ ヤン 1 2の基材である樹脂板材 1 2 2を覆って、 樹脂板材 1 2 2の表面から塵や ガスの離反を低減している。  Reference numeral 121 denotes a coating cover (to be described later) provided according to the present invention, which covers the resin plate 122, which is the base material of the can 12, and separates dust and gas from the surface of the resin plate 122. Has been reduced.
図 1 0は図 9のキヤン 1 2の構成を説明する拡大正断面図である。 図 1 0において、 1 0は固定子、 1 2はキャン、 1 2 1は本発明により設けら れたコーティングカバー、 1 2 2はキャン材 (樹脂板材) 、 1 9は筐体である。 図 1 0に示すように、 キャン 1 2は、 永久磁石 3 (図 9 ) と対向する樹脂板材 1 2 2の外面および電機子巻線 1 7 (図 9 ) と対向する内面に、 樹脂板材 1 2 2 を覆うコーティングカバー 1 2 1を設けるように構成した。 FIG. 10 is an enlarged front sectional view illustrating the configuration of the can 12 of FIG. In FIG. 10, reference numeral 10 denotes a stator, reference numeral 12 denotes a can, reference numeral 121 denotes a coating cover provided by the present invention, reference numeral 122 denotes a can material (resin plate material), and reference numeral 19 denotes a housing. As shown in FIG. 10, the can 12 has a resin plate 1 on the outer surface of the resin plate 1 2 facing the permanent magnet 3 (FIG. 9) and an inner surface facing the armature winding 17 (FIG. 9). It was configured to provide a coating cover 1 2 1 covering 2 2.
以上のようなキャンの構造によれば、 キャン材 1 2を構成する樹脂板材 1 2 2 の少なくとも外面または内面にコーティングカバー 1 2 1を備えたことにより、 クリーンルーム内で半導体露光装置のリニァステージ駆動用として用いるとき、 キャン表面が露光用光源の U Vに曝露されても、 キヤン表面からの発塵および発 ガスを少なくし、 ケミカルクリーンの問題を低減することができ、 また、 キャン 内に流す冷媒によりキャンの樹脂が侵食されても液漏れを低減することができる。 表 1に、 コ一ティングカバーの有無によるパーティクル数を表面に UVを照射 してカウントした結果を示す。  According to the above-described structure of the can, the coating cover 1 2 1 is provided on at least the outer surface or the inner surface of the resin plate 1 2 2 constituting the can material 1 2, so that the linear stage of the semiconductor exposure apparatus can be driven in a clean room. When the can surface is used, even if the can surface is exposed to the UV light from the light source for exposure, the generation of dust and gas from the can surface can be reduced, and the problem of chemical clean can be reduced. Even if the resin of the can is eroded, liquid leakage can be reduced. Table 1 shows the results of counting the number of particles with and without a coating cover by irradiating the surface with UV.
ほ 1 ] [1]
本実施例では樹脂板材に板状の C F R Pを用い、 コーティングカバー 1 2 1は 下記の第 6の実施例に示す二ッケルメツキにより構成した。  In this example, a plate-like C F R P was used for the resin plate material, and the coating cover 121 was formed by the nickel plating shown in the following sixth example.
表 1に示すように、 コーティングカバ一なしの場合だとパーティクルの発生が クラス 1 5であったものが、 コーティングカバー 1 2 1を設けるとクラス 3と激 減した。 このように、 コーティングカバー 1 2 1を付けることにより、 樹月旨板材 5 5の表面の凹凸が少なくなるのでその凹部に直接もしくは水分を介してパーテ ィクルが樹脂板材 5 5の表面に付きにくくなるため、発塵は激減した。すなわち、 コーティングカバーがあるリニアモータは、 光源に曝露されても殆ど発塵しない ことが確認できた。  As shown in Table 1, particles were generated in class 15 without the coating cover, but dropped dramatically to class 3 with the coating cover 121. As described above, by attaching the coating cover 1 2 1, the irregularities on the surface of the lumber plate 55 are reduced, so that the particles are less likely to adhere to the surface of the resin plate 55 directly or via moisture. As a result, dust generation has been dramatically reduced. That is, it was confirmed that the linear motor with the coating cover hardly generated dust even when exposed to the light source.
また、 本発明のようにコーティングカバーを用いると、 仮に冷媒によって樹脂 が侵食され、 樹脂に穴が開いてもコーティングカバ一で防止できる。  In addition, when the coating cover is used as in the present invention, even if the resin is eroded by the refrigerant, even if a hole is formed in the resin, it can be prevented by the coating cover.
更に樹脂の侵食は、 樹脂とコーティングカバーの間を毛細管現象を伴って徐々 に進行するため、 急激かつ突然の大量の液漏れは防止できる。 In addition, the erosion of the resin gradually causes a capillary phenomenon between the resin and the coating cover. As a result, rapid and sudden large leaks can be prevented.
[第 6の実施例]  [Sixth embodiment]
次に、 本発明のコーティングカバーの具体例について説明する。  Next, specific examples of the coating cover of the present invention will be described.
図 1 1は本発明の第 6の実施例を示すコーティングカバ一を設けたキャンの拡 大正断面図で、 (A) はコーティングカバーの一具体例、 (B) は (A) の変形 例を示している。  FIG. 11 is an enlarged front sectional view of a can provided with a coating cover according to a sixth embodiment of the present invention. (A) is a specific example of a coating cover, and (B) is a modified example of (A). Is shown.
まず、 図 1 1 (A) において、 1 0は固定子、 1 2はキャン、 1 2 l aは本実 施例による金属の膜、 1 2 2はキャン材 (樹脂板材) 、 1 9は筐体である。 キヤ ン材 1 2 2および筐体 1 9は図 1 0で示したものと同じであり、 キャン 1 2 1は 図示していない Oリング等を用いて密閉するよう固定した。 図 1 0で示した樹脂 板材 1 2 2の外面および内面のコーティングカバー 1 2 1として、 金属の膜 1 2 1 aが形成されている。 そして、 この金属の膜 1 2 1 aはメツキにより設ける構 成としている。 本実施例ではニッケルメツキで行ったが、 その他、 亜鉛メツキ、 銅メツキまたはアルミメツキにより行っても良く、 その厚さは 3〜2 0 m程度 が良い。  First, in Fig. 11 (A), 10 is a stator, 12 is a can, 12 la is a metal film according to the present embodiment, 122 is a can material (resin plate material), and 19 is a housing. It is. The can material 122 and the casing 19 were the same as those shown in FIG. 10, and the can 121 was fixed tightly using an O-ring or the like (not shown). As a coating cover 122 on the outer and inner surfaces of the resin plate material 122 shown in FIG. 10, a metal film 121 a is formed. The metal film 122 a is provided by plating. In this embodiment, nickel plating is used, but zinc plating, copper plating, or aluminum plating may be used. The thickness is preferably about 3 to 20 m.
以上のキヤン構造によれば、 キヤン材 1 2を構成する樹脂板材 1 2 2の少なく とも外面または内面にメツキで構成された金属の膜 1 2 1 aによるコーティング カバーを備えたことにより、 クリーンルーム内で半導体露光装置のリニアステー ジ駆動用として用いるとき、 キャン表面が露光用光源の UVに曝露されても、 キ ヤン表面からの発塵および発ガスの問題を低減することができ、 また、 キャン内 に流す冷媒によりキヤンの樹脂が侵食されても液漏れを低減することができると 共に、 樹脂より成るキャンをメツキにより構成した金属で覆うために機械的衝撃 に対しても強固にすることができる。 そのため、 リニアステ ジに組みつける際 に、 キャン表面がステージ等と接触することにより生じるキャン表面の凸凹が生 じることによる露出面積の増加を押えることができ、 発塵または発ガスの増加を 抑制できる。 また、 コーティングカバーをメツキにより構成するため、 コーティ ングカバーを樹脂板材の表面に設ける作業が大幅に簡素化でき、 大量の台数を安 価に製作することができる。  According to the above-described can structure, at least the outer or inner surface of the resin plate material 1 2 2 constituting the can material 12 is provided with a coating cover made of a metal film 12 1 a, thereby providing a clean room. When used for driving a linear stage of a semiconductor exposure apparatus, the problem of dust generation and gas generation from the can surface can be reduced even if the can surface is exposed to the UV light from the exposure light source. It is possible to reduce liquid leakage even if the resin of the can is eroded by the refrigerant flowing inside, and to make the resin can covered with metal made of metal to make it strong against mechanical shock. it can. Therefore, when assembling to a linear stage, it is possible to suppress the increase in the exposed area due to the unevenness of the can surface caused by the contact of the can surface with the stage, etc., and to suppress the increase in dust generation or gas generation. it can. In addition, since the coating cover is formed by plating, the work of providing the coating cover on the surface of the resin plate material can be greatly simplified, and a large number of units can be manufactured at low cost.
次に、 図 1 1 (B ) について説明する。 図 1 1 ( B ) において、 1 0は固定子、 1 2はキャン、 1 2 l bは本実施例に よる金属の箔、 1 2 2はキャン材 (樹脂板材) 、 1 9は筐体である。 Next, FIG. 11B will be described. In FIG. 11 (B), 10 is a stator, 12 is a can, 12 lb is a metal foil according to the present embodiment, 122 is a can material (resin plate material), and 19 is a housing. .
キャン材 1 2 2および筐体 1 9は図 1 0で示したものと同じであり、 キャン 1 2 1は図示していない〇リング等を用いて密閉するよう固定した。 図 1 0で示し た樹脂板材 1 2 2の外面および内面のコーティングカバー 1 2 1として、 金属の 箔 1 2 1 bが形成されている。 本実施例では金属の箔 1 2 1 bを、 厚さ 5〜2 0 m程度のステンレスにより構成し、 これを接着によってキャン材 1 2 2に貼り 付けた。  The can material 122 and the housing 19 were the same as those shown in FIG. 10, and the can 122 was fixed so as to be hermetically closed using a ring or the like (not shown). Metal foils 1 2 1 b are formed as coating covers 1 2 1 on the outer and inner surfaces of the resin plate 1 2 2 shown in FIG. In the present embodiment, the metal foil 121b was made of stainless steel having a thickness of about 5 to 20 m, and this was adhered to the can 122 by bonding.
以上のキャン構造によれば、 キャン材 1 2を構成する樹脂板材 1 2 2の少なく とも外面または内面に機械的衝撃に対しても強固なステンレスよりなるコーティ ングカバー 1 2 1 bを備えたことにより、 クリーンルーム内で半導体露光装置の リニアステージ駆動用として用いるとき、 キヤン表面が露光用光源の U Vに曝露 されても、 キャン表面からの発塵および発ガスを少なくし、 ケミカルクリーンの 問題を低減することができ、 また、 キャン内に流す冷媒によりキャンの樹脂が侵 食されても液漏れ低減することができると共に、 ステンレスよりなる箔は、 ヤン グ率が高く皺になり難いため、 金属箔としてステンレスを用いることは接着作業 が容易に行え、 少量の台数を製作する際は大掛かりな設備が不要という利点を有 する。  According to the above-described can structure, at least the outer or inner surface of the resin plate material 12 constituting the can material 12 is provided with the coating cover 1 21 b made of stainless steel which is strong against mechanical shock. When used for driving a linear stage of a semiconductor exposure apparatus in a clean room, even if the surface of the can is exposed to the UV light from the exposure light source, the generation of dust and gas from the can surface is reduced, and the problem of chemical clean is reduced. In addition, the leakage of liquid can be reduced even if the resin in the can is eroded by the refrigerant flowing in the can.Foils made of stainless steel have a high Young's modulus and are unlikely to wrinkle, so they are used as metal foils. The use of stainless steel has the advantage that the bonding work can be performed easily and large-scale equipment is not required when a small number is manufactured.
なお、 本実施例ではコーティングカバ一として金属の箔を用いているが、 他に 金属の板でもかまわない。  Although a metal foil is used as the coating cover in this embodiment, a metal plate may be used instead.
金属の箔を用いたコーティングカバーの有無によるパーティクル数を表面に U Vを照射して、カウントした結果、表 1と同じような結果が得られた。すなわち、 コ一ティングカバーなしの場合だとパーティクルの発生がクラス 1 5であったも のが、 金属の箔を用いたコーティングカバ一 1 2 1を設けるとクラス 3にまで激 減した。  The number of particles with and without the coating cover using a metal foil was counted by irradiating the surface with UV and the results were similar to those in Table 1. In other words, the generation of particles was class 15 without the coating cover, but it was reduced to class 3 by providing a coating cover 121 using metal foil.
なお、 以上の実施例では、 固定子に電機子巻線、 可動子に界磁とした永久磁石 を持つ構造で説明したが、 可動子に電機子巻線を、 固定子に永久磁石を持つ逆の 構造としても良い。  In the above embodiment, the structure has been described in which the stator has the armature winding and the mover has the permanent magnet as the field, but the armature winding is used for the mover and the permanent magnet is used for the stator. The structure may be good.
[産業上の利用可能性] 以上のように本発明にかかるキャンド · リニアモー夕電機子およびキャンド · リニアモータは、 例えば、 高精度 '微細送り、 低温度上昇が要求される半導体製 造装置や工作機に用いられるものとして有用である。 [Industrial applicability] As described above, the canned linear motor armature and the canned linear motor according to the present invention are useful as, for example, those used in semiconductor manufacturing equipment and machine tools that require high precision, fine feed and low temperature rise. is there.

Claims

請求の範囲 The scope of the claims
1 .巻線固定枠と、前記巻線固定枠の長手方向に沿って固定される電機子巻線と、 前記巻線固定枠を額縁状に囲むように設けた金属製の筐体と、 前記筐体の両開口 部を密封するキャンと、 前記電機子巻線の周囲に冷媒を流すことができるように 前記筐体と前記キャンとで構成される密閉空間内に形成される冷媒通路と、 前記 キャンの両端のうち一方端側と他方端側の何れかに設けた冷媒供給口と冷媒排出 口とを具備してなるキャンド · リニアモータ電機子において、  1.A winding fixed frame, an armature winding fixed along the longitudinal direction of the winding fixed frame, a metal housing provided so as to surround the winding fixed frame in a frame shape, A can that seals both openings of the housing, a refrigerant passage formed in a closed space formed by the housing and the can so that a refrigerant can flow around the armature winding, A canned linear motor armature comprising a refrigerant supply port and a refrigerant discharge port provided on one of one end side and the other end side of both ends of the can.
前記キャンは樹脂で構成してあることを特徴とするキャンド · リニアモ一夕電 機子。  The canned linear motor overnight electric machine wherein the can is made of resin.
2. 前記キャンを予め湾曲させて、 前記湾曲の凸面が互いに対向するように前記 キャンを前記筐体の両開口部に配置したことを特徴とする請求項 1記載のキャン ド · リニアモー夕電機子。  2. The can-linear motor armature according to claim 1, wherein the can is curved in advance, and the can is arranged in both openings of the housing such that the convex surfaces of the curve face each other. .
3 . 前記電機子卷線を複数の集中巻コイルで構成し、 前記集中巻コイルの空心に 非磁性材の支柱を設け、 前記支柱と前記キャンを締結して構成したことを特徴と する請求項 1または 2記載のキャンド · リニアモータ電機子。  3. The armature winding is composed of a plurality of concentrated winding coils, a support made of a non-magnetic material is provided in the air core of the concentrated winding coil, and the support and the can are fastened. The canned linear motor armature according to 1 or 2.
4. 前記キャンおよび前記巻線固定枠を、 ガラス繊維またはカーボン繊維を充填 した樹脂で構成したことを特徴とする請求項 1または 2記載のキャンド · リニア モー夕電機子。  4. The canned linear motor armature according to claim 1, wherein the can and the winding fixing frame are made of a resin filled with glass fiber or carbon fiber.
5 . 前記キャンは樹脂板材で構成し、 かつ前記樹脂板材の少なくとも外面または 内面にコーティングカバーを備えたことを特徴とする請求項 1または 2記載のキ ヤンド · リニアモータ電機子。  5. The armature according to claim 1, wherein the can is made of a resin plate, and a coating cover is provided on at least an outer surface or an inner surface of the resin plate.
6 . 前記コーティングカバーが金属の膜、 箔または板であることを特徴とする請 求項 5記載のキャンド · リニアモー夕電機子。  6. The canned linear motor armature according to claim 5, wherein the coating cover is a metal film, foil or plate.
7 . 前記金属の膜をメツキにより構成したことを特徴とする請求項 6記載のキヤ ンド · リニアモー夕電機子。  7. The can-linear motor armature according to claim 6, wherein the metal film is formed by plating.
8 . 前記金属の箔または板がステンレスで構成したことを特徴とする請求項 6記 載のキャンド · リニアモー夕電機子。  8. The canned linear motor armature according to claim 6, wherein said metal foil or plate is made of stainless steel.
9 . 前記ステンレスの箔または板を前記キャンに接着により取り付けたことを特 徴とする請求項 8記載のキャンド · リニアモータ電機子。 9. The armature for a canned linear motor according to claim 8, wherein the stainless steel foil or plate is attached to the can by adhesion.
1 0 . 前記樹脂板材がガラス繊維またはカーボン繊維を充填した樹脂で構成した ことを特徴とする請求項 5記載のキャンド ·リニアモー夕電機子。 10. The canned linear motor armature according to claim 5, wherein the resin plate is made of a resin filled with glass fiber or carbon fiber.
1 1 . 請求項 1〜1 0の何れか 1項に記載の電機子と、 前記電機子と磁気的空隙 を介して対向配置されると共に交互に極性が異なる複数の永久磁石を隣り合わせ に並べて配置した界磁ヨークとを備え、 前記前記電機子と前記界磁ヨークの何れ か一方を固定子に、 他方を可動子として、 前記界磁ヨークと前記電機子を相対的 に走行するようにしたことを特徴とするキャンド ·リニアモー夕。  11. The armature according to any one of claims 1 to 10, and a plurality of permanent magnets, which are arranged to face the armature with a magnetic gap therebetween and alternately have different polarities, are arranged side by side. A field yoke, wherein one of the armature and the field yoke serves as a stator, and the other serves as a mover, and the field yoke and the armature run relatively. It is characterized by cand linear motion.
PCT/JP2002/003517 2001-04-09 2002-04-08 Canned linear motor armature and canned linear motor WO2002084850A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001110101A JP3539493B2 (en) 2001-04-09 2001-04-09 Canned linear motor armature and canned linear motor
JP2001-110101 2001-04-09
JP2001-122973 2001-04-20
JP2001122973A JP4706119B2 (en) 2001-04-20 2001-04-20 Canned linear motor armature and canned linear motor

Publications (1)

Publication Number Publication Date
WO2002084850A1 true WO2002084850A1 (en) 2002-10-24

Family

ID=26613299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003517 WO2002084850A1 (en) 2001-04-09 2002-04-08 Canned linear motor armature and canned linear motor

Country Status (1)

Country Link
WO (1) WO2002084850A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7414336B2 (en) 2003-07-15 2008-08-19 Nikon Corporation Dual flow circulation system for a mover
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4625132A (en) * 1984-08-07 1986-11-25 Anorad Linear motor with seal
JPH05275755A (en) * 1992-03-25 1993-10-22 Toshiba Corp Cryostat
JP2000004572A (en) * 1998-04-13 2000-01-07 Hitachi Metals Ltd Linear motor
JP2001037200A (en) * 1999-07-19 2001-02-09 Canon Inc Linear motor, stage apparatus, aligner and manufacture of device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4625132A (en) * 1984-08-07 1986-11-25 Anorad Linear motor with seal
JPH05275755A (en) * 1992-03-25 1993-10-22 Toshiba Corp Cryostat
JP2000004572A (en) * 1998-04-13 2000-01-07 Hitachi Metals Ltd Linear motor
JP2001037200A (en) * 1999-07-19 2001-02-09 Canon Inc Linear motor, stage apparatus, aligner and manufacture of device

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US7414336B2 (en) 2003-07-15 2008-08-19 Nikon Corporation Dual flow circulation system for a mover
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8508717B2 (en) 2007-10-16 2013-08-13 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
WO2002084850A1 (en) Canned linear motor armature and canned linear motor
JP5423392B2 (en) Canned linear motor armature and canned linear motor
US20200177062A1 (en) Axial Flux Machine Manufacture
JP4636019B2 (en) Canned linear motor armature and canned linear motor
EP2348617A2 (en) Coolant-cooled linear motor
WO2007046200A1 (en) Armature of canned linear motor and canned linear motor
EP2424087A2 (en) Linear motor armature and linear motor
WO2001063733A1 (en) Canned linear motor
TWI271019B (en) Can type linear motor armature and can type linear motor
WO1992006529A1 (en) Liquid cooling device of motor
JP3539493B2 (en) Canned linear motor armature and canned linear motor
CN110476340B (en) Linear motor
JP2004328927A (en) Yoke with permanent magnet and manufacturing method therefor, permanent magnet type rotary electric machine, and linear motor
WO1992000627A1 (en) Structure for cooling stator winding
JP2005210775A (en) Coreless linear motor and canned linear motor
CN109004778B (en) Stator frame, stator and rotating electrical machine
JP4656306B2 (en) Canned linear motor armature and canned linear motor
WO2004105219A1 (en) Linear motor armature and linear motor using the same
JP4706119B2 (en) Canned linear motor armature and canned linear motor
JP2007159286A (en) Linear motor
JP2010220396A (en) Canned linear-motor armature and canned linear motor
JP5347596B2 (en) Canned linear motor armature and canned linear motor
WO2003047075A1 (en) Linear motor armature and linear motor
JP3698585B2 (en) Linear motor
JP5126652B2 (en) Moving coil linear motor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase