WO2002087669A1 - Fluid handling devices, in particular for medical use - Google Patents

Fluid handling devices, in particular for medical use Download PDF

Info

Publication number
WO2002087669A1
WO2002087669A1 PCT/GB2002/001865 GB0201865W WO02087669A1 WO 2002087669 A1 WO2002087669 A1 WO 2002087669A1 GB 0201865 W GB0201865 W GB 0201865W WO 02087669 A1 WO02087669 A1 WO 02087669A1
Authority
WO
WIPO (PCT)
Prior art keywords
hub
stop element
plunger
needle
blocking portion
Prior art date
Application number
PCT/GB2002/001865
Other languages
French (fr)
Inventor
John Targell
Original Assignee
Nmt Group Plc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nmt Group Plc filed Critical Nmt Group Plc
Priority to EP02720255A priority Critical patent/EP1383562A1/en
Priority to JP2002585010A priority patent/JP2004538050A/en
Priority to MXPA03009710A priority patent/MXPA03009710A/en
Priority to KR10-2003-7014056A priority patent/KR20040012773A/en
Priority to CA002445151A priority patent/CA2445151A1/en
Publication of WO2002087669A1 publication Critical patent/WO2002087669A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3205Apparatus for removing or disposing of used needles or syringes, e.g. containers; Means for protection against accidental injuries from used needles
    • A61M5/321Means for protection against accidental injuries by used needles
    • A61M5/322Retractable needles, i.e. disconnected from and withdrawn into the syringe barrel by the piston
    • A61M5/3234Fully automatic needle retraction, i.e. in which triggering of the needle does not require a deliberate action by the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/50Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for preventing re-use, or for indicating if defective, used, tampered with or unsterile
    • A61M5/508Means for preventing re-use by disrupting the piston seal, e.g. by puncturing

Definitions

  • This invention relates to fluid handling devices, such as medical syringes, in which a plunger is used to deliver fluid from a barrel of the device via a needle.
  • the present invention seeks to provide a fluid handling device having a simplified needle retraction mechanism.
  • a fluid handling device comprising a barrel for containing fluid to be delivered through a needle, a needle-mounting hub at one end of the barrel, a biasing element arranged to urge the hub inwardly of the barrel, a stop element blocking inward movement of the hub into the barrel, a hollow plunger which is movable within the barrel to deliver fluid from the barrel via the needle and has at its forward end a portion which is severable in response to movement of the plunger over the final part of, or at the conclusion of, its delivery stroke to allow retraction of the needle-mounting hub into the hollow plunger, the hub and the stop element being formed as plastics mouldings in such a way that the stop element is axially captive with the hub and the plunger being arranged to disengage the stop element and the hub during said final part of, or at the conclusion of, the delivery stroke to allow the biasing element to drive the needle into the hollow plunger.
  • the stop element may incorporate an integral seal, e.g. a lip seal, which may be
  • the stop element and the hub may have interengaged formations at the location of the moulding interface which are caused to separate from one another during said final part of, or at the conclusion of, the delivery stroke of the plunger.
  • the stop element and the hub may alternatively or additionally be at least partially united, e.g. partially fused, together at the moulding interface, the arrangement being such that the connection is fractured or broken during said final part of, or at the conclusion of, the delivery stroke.
  • the hub may be elongate and may have a central bore for reception of the needle.
  • the needle-receiving bore may be of reducing cross-section.
  • the hub may be produced with some degree of draft, i.e. so as to be of reducing cross section in a direction of travel of the plunger during its delivery stroke.
  • the biasing element may be a helical spring, usually a compression spring, which may be arranged in encircling relation with the hub.
  • One end of the spring may coact with a forward end of the barrel or an end cap attached to the main body of the barrel and the opposite end of the spring may coact with the hub at a location inwardly of the forward end of the barrel.
  • the forward end of the plunger may comprise a rim portion and a central blocking portion, the latter forming said severable portion.
  • the arrangement may be such that, during the final part of or at the conclusion of the plunger delivery stroke, the rim portion of the plunger is arranged to engage the stop element while the hub is arranged to engage the blocking portion, the engagement between the two sets of components being effective to free the hub from the stop element and to free the blocking portion from the rim portion at least to the extent necessary to allow the hub to enter the interior of the plunger.
  • the hub is freed from the stop element before the blocking portion is at least partially freed from the rim portion; however, if desired the blocking portion may be freed first or alternatively the hub and the blocking portion may be freed substantially simultaneously.
  • the arrangement may be such that the hub and stop element are united together by the moulding process to afford a well-defined threshold at which they break away from one another in response to the application of force to the stop element in the course of operating the plunger.
  • one of the components is produced as a plastics moulding in a mould having moulding surfaces defined, in part, by the other component, i.e. moulding of one component being effected with the other component in situ.
  • the two portions may be of plastics materials having different chemical compositions and or characteristics or they may both be of substantially the same or a similar plastics material.
  • the hub and stop element may be capable of being broken away from each other without deformation of either of the two portions and, to this end, the moulding interface may be shaped so that no deformation of either component occurs when breaking one from the other.
  • the hub and the stop element may be interlocked with each other so that some deformation of at least one of the parts occurs when effecting the break.
  • annular surface of one of the components may be have a configuration complementary with an annular surface of the other component.
  • the annular surfaces may be cylindrical or of other configuration, e.g. conical.
  • the components may intimately contact each other with a degree of fusion bonding consistent with securing fracture preferentially at the interface region during the break.
  • the assembly of the hub and stop element may include a detent arrangement acting between the components.
  • the detent arrangement may be provided at or in the vicinity of said moulding interface.
  • the hub and the stop element may, by virtue of the mould design, have interengaging formations which lock the components together to prevent separation, and at least one of the formations may be resiliently deformable to allow the disengagement of the formations on application of sufficient loading to the stop element relative to the hub.
  • Resistance to separation of the two components may additionally or alternatively be afforded by the nature of the interaction between material or materials of the hub and the stop element at the moulding interface. For instance, there may a shrink type fit between the components at the moulding interface obtained by material shrinkage during cooling following the moulding process.
  • resistance to separation may be provided by fusion bonding between the components at the moulding interface.
  • fusion bonding may range from relatively weak, e.g. as a result of some degree of diffusion of material from one component across the moulding interface into the other component, through to relatively strong.
  • the material or materials from which said portions are produced may be selected so as to secure the desired extent of fusion bonding, if any.
  • the materials employed will usually differ in chemical and/or physical characteristics and will be such that no significant diffusion of material takes place across the moulding interface as a result of the moulding process.
  • the materials can be appropriately selected to obtain the desired degree of fusion bonding where there is a requirement to develop a fusion bond at the moulding interface.
  • the hub and the stop element may be composed of the same material so that significant fusion of the material takes place between the two components.
  • the width of the moulding interface and hence the zone of contact between the two components may be selected with regard to the required effectiveness of the seal and/or with regard to the resistance to separation of the components required at said interface. For instance, a given degree of resistance may be secured by a relatively narrow interface where the components are strongly fusion bonded together whereas a wider interface may be required if resistance is afforded by shrinkage and/or a weak fusion bond.
  • the arrangement may be such that the resistance to separation of the two parts is greater with respect to forces applied in one direction compared with forces applied in the opposite direction.
  • the first part to be moulded may have a higher heat distortion temperature than the second part so that the first part is not deformed during moulding of the second part.
  • the stop element and the hub may advantageously be formed in a two- shot moulding process in which one component, e.g. the hub, is initially formed and located so that an annular surface thereof forms a boundary surface of the mould cavity in which the other component is produced so that, during formation of the second component, an annular surface of the latter is conformed with the annular surface of the first component.
  • Figure 1 is a side view of a syringe which may embody features of the present invention
  • Figure 2 is a fragmentary sectional view of the syringe showing the plunger approaching the final part of its delivery stroke
  • Figure 3 is a similar view to that of Figure 2 but with the plunger shown at its point of initial contact with the crown associated with the needle- mounting hub;
  • Figure 4 is similar view to that of Figure 2 at the conclusion of the plunger delivery stroke and showing the needle undergoing retraction into the hollow plunger;
  • Figure 5 is detail view of the needle-mounting hub and crown.
  • the disposable medical syringe 10 comprises a hollow barrel 12, from the rear of which (upper end as viewed in Figure 1) protrudes a plunger 14.
  • a seal 15 is mounted on the plunger to ensure a fluid tight seal with the internal wall of the barrel.
  • the barrel 12 includes an end cap 12A including a cylindrical section 16 which is engaged with a annular collar 18 of the main body of the barrel 12 and a generally conical section 20.
  • the end cap 12A may be permanently bonded to the main body of the barrel 12 or it may be releasably attached thereto.
  • a needle-mounting hub 22 is accommodated within the end cap 12A and is encircled by a spring 24 which engages at its forward end with a flange 26 of the conical section 20 and at its rear end with a radial shoulder 28 on the hub 22 and serves to bias the hub 22 and needle 30 inwardly relative to the barrel 12.
  • the hub 22 is of generally cylindrical configuration and has an axial bore 32 for reception of the needle 30.
  • the bore 32 may be a throughbore as illustrated.
  • the bore 32 is of tapering configuration to allow the needle to be fitted to the hub as a press-fit or by spin-welding either before or after the end cap 12A has been assembled to the main body of the barrel.
  • a stop element in the form of a crown 34 which is carried by hub 22 and is received within the annular collar 18.
  • the crown 34 is of generally cylindrical configuration and comprises a forward portion 36 incorporating an integral annular lip seal 38 and a reduced diameter portion 40.
  • the lip seal flares outwardly as shown in Figure 5 and is resiliently flexible so that, on insertion into the collar, it is deflected radially inwardly so as to bear against and make sealing engagement with the inner surface of the collar 18.
  • the collar 18 includes a lead-in portion 42 to facilitate insertion of the crown 34.
  • the hub and crown are produced as plastics mouldings by two-shot moulding which serves to integrate the two components and render them captive with each other so that they effectively constitute a one-piece component designed to fracture at the interface between the hub and the crown when subjected to a predetermined forwardly directed axial force.
  • the assembly of hub and crown incorporates the lip seal 38 which may be integral with the crown since the latter can be moulded from polyethylene for example. In this way, needle mounting and sealing at the forward end of the barrel is considerably simplified compared for example with the arrangement disclosed in our prior European Patent No. 776225.
  • the components may have interfitting formations, e.g. mating frusto-conical surfaces, which may determine at least in part the force needed to separate the two components.
  • the plunger 14 is hollow and has a closed trailing end.
  • the forward end of the plunger is arranged to receive a closure assembly comprising an insert 52 which engages firmly in the plunger to form an end wall of the plunger while defining an aperture 54 which is sufficiently large to allow the needle 30 and hub 22 to pass through during needle retraction.
  • the insert 52 comprises a rim portion 55 fitted with a forwardly projecting blocking portion 56 of generally frusto-conical configuration so that the blocking portion 56 closes and seals the aperture 54.
  • the blocking portion 56 and rim portion 55 seal the forward end of the plunger to prevent ingress of liquid into the plunger interior from the interior of barrel 12.
  • the rim and blocking portions 55- 56 axe also formed as plastics mouldings by two-shot moulding so that the two portions 55 and 56 are integrated and captive with each other.
  • a closure assembly of this form is disclosed in International Patent Application No.GB00/04573 (the entire contents of which are incorporated herein by this reference) and the design of these components may be as described and illustrated therein.
  • the rim and blocking portions 55, 56 are coupled together in such a way that they can be separated from each other in response to the application of a predetermined axial force as described in International Patent Application No. GBOO/04573.
  • the hub 22 and crown 34 and also the rim and blocking portions 55, 56 may have interengaging formations at the interface between them such that these formations render the respective components captive to one another and contribute to the resistance to separation of the components, such interengaging formations are not essential as long as sufficient resistance to separation at the interface is available, e.g. as described below. Whether or not such formations are provided, it will be appreciated that the "force-to-break" or allow the components to separate from each other can be tailored according to requirements by appropriate design of features such as the angle of the interface between the two parts and/or the surface texture present at the interface and/or extent of the interface.
  • each assembly comprising parts 22, 34 and 55, 56 respectively is produced by a two-shot moulding process, for instance a first stage in which the inner part 22, 56 is produced followed by a second stage in which the outer part 34, 55 is moulded onto the inner part 22, 56 thereby connecting the two parts together, e.g. through the interengaging formations (if present) and/or through a zone of intimate contact which sealingly engages the two parts with each other at the moulding interface.
  • Two-shot moulding technology may be carried out for instance using a multi-stack moulding machine such as available from Milacron Inc of Cincinnati, Ohio, USA in which a two-sided pivoting centre platen allows two simultaneous moulding operations to be carried out.
  • the process starts with a preform injected into cavities on one mould face.
  • the mold opens, the centre platen swivels through 180 degrees in a vertical plane, locks into position, the mold closes, and a second material component is injected.
  • another pre-form is injected into the opposite mould face of the centre platen.
  • a two-shot moulding machine is also disclosed in US-A-6139305.
  • the two parts may be moulded using materials which are compatible with each other and have different characteristics.
  • some degree of fusion bonding between the rim and closure parts may be desirable, e.g. to ensure sealing and, where desired, to play a role in predetermining the loading necessary to break the blocking portion away from the rim portion.
  • the closure assembly in Figures 2 to 4 is shown fitted into the forward end of the plunger 6; however, in an alternative embodiment, the rim portion may be formed integrally with at least the forward end portion of the plunger so that the plunger and rim portion can be produced as a single moulding.
  • both the plunger and rim portion may be made from a plastics material such as polyethylene or polypropylene.
  • the other end of the plunger may be closed by an end cap.
  • the parts 22, 34 and 55, 56 may be held captive to one another by interengaging formations (as illustrated for parts 22, 34) which may act as a detent-type arrangement.
  • the parts may be rendered captive to one another as a result of some degree of fusion or bonding of the materials at the interface and/or by virtue of an interference or shrink type fit between the parts at a zone of contact, e.g. as illustrated in Figure 3 of International Patent Application No. GBOO/04573.
  • the shrink fit may be obtained during the moulding process by moulding the outer part 34, 55 around the inner part 22, 56 and exploiting material shrinkage on cooling to secure the interference fit.
  • the inner part is held captive in this way, there is not necessarily any significant fusion bonding between the materials although, if desired, the material(s) maybe selected so that such fusion bonding is present, e.g. as a result of some degree of diffusion of material between the two parts.
  • the rearward end of the lip seal 38 engages a shoulder 44 while the reduced diameter portion 40 of the crown projects beyond an annular end wall 46 of the main body of the barrel 12 for co-operation with the forward end of the plunger 14 as described below.
  • the blocking portion 56 is arranged for entry into the opening defined by the crown 34 to contact the rearward end of the hub 22.
  • the rim portion 55 displaces the crown 34 forwardly while engagement between the hub, which is blocked from forward movement by the forward end of the portion 12 A, and the blocking portion 56 exerts a rearwardly directed force on the latter.
  • the spring 24 is no longer restrained and becomes effective to propel the hub through the crown, through the aperture created by freeing of the blocking portion 56 and into the interior of the plunger thereby concealing the needle and avoiding the risk of needle stick injury once the contents of the syringe have been delivered.
  • Freeing of the hub and the blocking portion may occur substantially simultaneously or in sequence, freeing of the hub first being currently preferred.
  • the forces required to effect freeing of the hub and the blocking portion may be readily tailored to requirements by for example appropriate selection of the dimensioning/configuration of the components, tuning of the two-shot moulding process etc.
  • the hub may be of generally cylindrical configuration, it is desirable to produce it with a draft (i.e. of reducing cross-section from its trailing end towards its forward end) so as to facilitate easy ejection and prevent binding of the spring against the peripheral surface of the hub.
  • the hub may be manufactured so that, when assembled as shown in Figure 2, there is a small clearance between the shoulder 28 and the adjacent end wall of the end cap 12A thereby eliminating any risk of the hub/crown hub connection being broken during assembly of the syringe (i.e. because of tolerance variations in the length of the hub). This clearance is taken up as when the rim portion of the plunger initially contacts and begins to displace the crown.

Abstract

A fluid handling device comprises a barrel for containing fluid to be delivered through a needle, a needle-mounting hub at one end of the barrel, a biasing element arranged to urge the hub inwardly of the barrel, a stop element blocking inward movement of the hub into the barrel, and a hollow plunger which is movable within the barrel to deliver fluid from the barrel via the needle and has at its forward end a portion which is severable in response to movement of the plunger over the final part of, or at the conclusion of, its delivery stroke to allow retraction of the needle-mounting hub into the hollow plunger, the hub and the stop element being formed as plastics mouldings in such a way that the stop element is axially captive with the hub and the plunger being arranged to disengage the stop element and the hub during said final part of, or at the conclusion of, the delivery stroke to allow the biasing element to drive the needle into the hollow plunger.

Description

FLUID HANDLING DEVICES, IN PARTICULAR FOR MEDICAL USE
This invention relates to fluid handling devices, such as medical syringes, in which a plunger is used to deliver fluid from a barrel of the device via a needle.
For safety reasons, e.g. to avoid needle stick injuries, it is desirable that the needle is retracted into the barrel following delivery of the fluid. Our prior European Patent No. 776225 discloses a fluid handling device provided with a needle retraction mechanism of this type.
The present invention seeks to provide a fluid handling device having a simplified needle retraction mechanism.
According to the present invention there is provided a fluid handling device comprising a barrel for containing fluid to be delivered through a needle, a needle-mounting hub at one end of the barrel, a biasing element arranged to urge the hub inwardly of the barrel, a stop element blocking inward movement of the hub into the barrel, a hollow plunger which is movable within the barrel to deliver fluid from the barrel via the needle and has at its forward end a portion which is severable in response to movement of the plunger over the final part of, or at the conclusion of, its delivery stroke to allow retraction of the needle-mounting hub into the hollow plunger, the hub and the stop element being formed as plastics mouldings in such a way that the stop element is axially captive with the hub and the plunger being arranged to disengage the stop element and the hub during said final part of, or at the conclusion of, the delivery stroke to allow the biasing element to drive the needle into the hollow plunger. The stop element may incorporate an integral seal, e.g. a lip seal, which may be annular so as to encircle the stop element.
The stop element and the hub may have interengaged formations at the location of the moulding interface which are caused to separate from one another during said final part of, or at the conclusion of, the delivery stroke of the plunger.
The stop element and the hub may alternatively or additionally be at least partially united, e.g. partially fused, together at the moulding interface, the arrangement being such that the connection is fractured or broken during said final part of, or at the conclusion of, the delivery stroke.
The hub may be elongate and may have a central bore for reception of the needle.
The needle-receiving bore may be of reducing cross-section.
The hub may be produced with some degree of draft, i.e. so as to be of reducing cross section in a direction of travel of the plunger during its delivery stroke.
The biasing element may be a helical spring, usually a compression spring, which may be arranged in encircling relation with the hub. One end of the spring may coact with a forward end of the barrel or an end cap attached to the main body of the barrel and the opposite end of the spring may coact with the hub at a location inwardly of the forward end of the barrel.
The forward end of the plunger may comprise a rim portion and a central blocking portion, the latter forming said severable portion. The arrangement may be such that, during the final part of or at the conclusion of the plunger delivery stroke, the rim portion of the plunger is arranged to engage the stop element while the hub is arranged to engage the blocking portion, the engagement between the two sets of components being effective to free the hub from the stop element and to free the blocking portion from the rim portion at least to the extent necessary to allow the hub to enter the interior of the plunger.
Preferably the hub is freed from the stop element before the blocking portion is at least partially freed from the rim portion; however, if desired the blocking portion may be freed first or alternatively the hub and the blocking portion may be freed substantially simultaneously.
The arrangement may be such that the hub and stop element are united together by the moulding process to afford a well-defined threshold at which they break away from one another in response to the application of force to the stop element in the course of operating the plunger.
Preferably one of the components (hub and stop element) is produced as a plastics moulding in a mould having moulding surfaces defined, in part, by the other component, i.e. moulding of one component being effected with the other component in situ.
The two portions may be of plastics materials having different chemical compositions and or characteristics or they may both be of substantially the same or a similar plastics material.
The hub and stop element may be capable of being broken away from each other without deformation of either of the two portions and, to this end, the moulding interface may be shaped so that no deformation of either component occurs when breaking one from the other.
Alternatively, the hub and the stop element may be interlocked with each other so that some deformation of at least one of the parts occurs when effecting the break.
At the moulding interface, an annular surface of one of the components may be have a configuration complementary with an annular surface of the other component.
The annular surfaces may be cylindrical or of other configuration, e.g. conical.
At the moulding interface, the components may intimately contact each other with a degree of fusion bonding consistent with securing fracture preferentially at the interface region during the break.
The assembly of the hub and stop element may include a detent arrangement acting between the components. The detent arrangement may be provided at or in the vicinity of said moulding interface. For example, the hub and the stop element may, by virtue of the mould design, have interengaging formations which lock the components together to prevent separation, and at least one of the formations may be resiliently deformable to allow the disengagement of the formations on application of sufficient loading to the stop element relative to the hub.
Resistance to separation of the two components may additionally or alternatively be afforded by the nature of the interaction between material or materials of the hub and the stop element at the moulding interface. For instance, there may a shrink type fit between the components at the moulding interface obtained by material shrinkage during cooling following the moulding process.
As a further addition or alternative to the detent arrangement and/or shrink type fit mentioned above, resistance to separation may be provided by fusion bonding between the components at the moulding interface. Such fusion bonding may range from relatively weak, e.g. as a result of some degree of diffusion of material from one component across the moulding interface into the other component, through to relatively strong.
Depending on the nature of interaction desired between the hub and the stop element at the moulding interface, the material or materials from which said portions are produced may be selected so as to secure the desired extent of fusion bonding, if any. For example, if negligible fusion bonding is desired, the materials employed will usually differ in chemical and/or physical characteristics and will be such that no significant diffusion of material takes place across the moulding interface as a result of the moulding process. Similarly the materials can be appropriately selected to obtain the desired degree of fusion bonding where there is a requirement to develop a fusion bond at the moulding interface.
In the latter case for example, the hub and the stop element may be composed of the same material so that significant fusion of the material takes place between the two components.
The width of the moulding interface and hence the zone of contact between the two components may be selected with regard to the required effectiveness of the seal and/or with regard to the resistance to separation of the components required at said interface. For instance, a given degree of resistance may be secured by a relatively narrow interface where the components are strongly fusion bonded together whereas a wider interface may be required if resistance is afforded by shrinkage and/or a weak fusion bond.
Irrespective of how the hub and the stop element are coupled together, the arrangement may be such that the resistance to separation of the two parts is greater with respect to forces applied in one direction compared with forces applied in the opposite direction.
Where one part is moulded in advance of the other and the second part is then moulded with the first part in situ, the first part to be moulded may have a higher heat distortion temperature than the second part so that the first part is not deformed during moulding of the second part.
The stop element and the hub may advantageously be formed in a two- shot moulding process in which one component, e.g. the hub, is initially formed and located so that an annular surface thereof forms a boundary surface of the mould cavity in which the other component is produced so that, during formation of the second component, an annular surface of the latter is conformed with the annular surface of the first component.
The manner of coupling together the hub and the stop element as referred to in the preceding paragraphs may also be employed to couple together the rim portion and the blocking portion, e.g. as disclosed in our International Patent No. GBOO/04573, the entire disclosure of which is incorporated herein by this reference. Other aspects of the invention include a needle-mounting hub assembly produced as a two-shot moulding and comprising a hub and a stop element captive with the hub, and a method of manufacturing such an assembly.
The invention will now be described by way of example with reference to the accompanying drawings in which:
Figure 1 is a side view of a syringe which may embody features of the present invention;
Figure 2 is a fragmentary sectional view of the syringe showing the plunger approaching the final part of its delivery stroke;
Figure 3 is a similar view to that of Figure 2 but with the plunger shown at its point of initial contact with the crown associated with the needle- mounting hub;
Figure 4 is similar view to that of Figure 2 at the conclusion of the plunger delivery stroke and showing the needle undergoing retraction into the hollow plunger; and
Figure 5 is detail view of the needle-mounting hub and crown.
Referring now to the drawings, the disposable medical syringe 10 comprises a hollow barrel 12, from the rear of which (upper end as viewed in Figure 1) protrudes a plunger 14. A seal 15 is mounted on the plunger to ensure a fluid tight seal with the internal wall of the barrel. The barrel 12 includes an end cap 12A including a cylindrical section 16 which is engaged with a annular collar 18 of the main body of the barrel 12 and a generally conical section 20. The end cap 12A may be permanently bonded to the main body of the barrel 12 or it may be releasably attached thereto. A needle-mounting hub 22 is accommodated within the end cap 12A and is encircled by a spring 24 which engages at its forward end with a flange 26 of the conical section 20 and at its rear end with a radial shoulder 28 on the hub 22 and serves to bias the hub 22 and needle 30 inwardly relative to the barrel 12.
The hub 22 is of generally cylindrical configuration and has an axial bore 32 for reception of the needle 30. The bore 32 may be a throughbore as illustrated. The bore 32 is of tapering configuration to allow the needle to be fitted to the hub as a press-fit or by spin-welding either before or after the end cap 12A has been assembled to the main body of the barrel.
Rearward movement of the hub and needle assembly is prevented by a stop element in the form of a crown 34 which is carried by hub 22 and is received within the annular collar 18. The crown 34 is of generally cylindrical configuration and comprises a forward portion 36 incorporating an integral annular lip seal 38 and a reduced diameter portion 40. As shown in Figure 5, prior to insertion into the annular collar 18, the lip seal flares outwardly as shown in Figure 5 and is resiliently flexible so that, on insertion into the collar, it is deflected radially inwardly so as to bear against and make sealing engagement with the inner surface of the collar 18. At its forward end, the collar 18 includes a lead-in portion 42 to facilitate insertion of the crown 34.
The hub and crown are produced as plastics mouldings by two-shot moulding which serves to integrate the two components and render them captive with each other so that they effectively constitute a one-piece component designed to fracture at the interface between the hub and the crown when subjected to a predetermined forwardly directed axial force. In addition, the assembly of hub and crown incorporates the lip seal 38 which may be integral with the crown since the latter can be moulded from polyethylene for example. In this way, needle mounting and sealing at the forward end of the barrel is considerably simplified compared for example with the arrangement disclosed in our prior European Patent No. 776225. At the interface between the hub and crown, the components may have interfitting formations, e.g. mating frusto-conical surfaces, which may determine at least in part the force needed to separate the two components.
The plunger 14 is hollow and has a closed trailing end. The forward end of the plunger is arranged to receive a closure assembly comprising an insert 52 which engages firmly in the plunger to form an end wall of the plunger while defining an aperture 54 which is sufficiently large to allow the needle 30 and hub 22 to pass through during needle retraction.
The insert 52 comprises a rim portion 55 fitted with a forwardly projecting blocking portion 56 of generally frusto-conical configuration so that the blocking portion 56 closes and seals the aperture 54. The blocking portion 56 and rim portion 55 seal the forward end of the plunger to prevent ingress of liquid into the plunger interior from the interior of barrel 12.
The rim and blocking portions 55- 56 axe also formed as plastics mouldings by two-shot moulding so that the two portions 55 and 56 are integrated and captive with each other. A closure assembly of this form is disclosed in International Patent Application No.GB00/04573 (the entire contents of which are incorporated herein by this reference) and the design of these components may be as described and illustrated therein. The rim and blocking portions 55, 56 are coupled together in such a way that they can be separated from each other in response to the application of a predetermined axial force as described in International Patent Application No. GBOO/04573.
Although the hub 22 and crown 34 and also the rim and blocking portions 55, 56 may have interengaging formations at the interface between them such that these formations render the respective components captive to one another and contribute to the resistance to separation of the components, such interengaging formations are not essential as long as sufficient resistance to separation at the interface is available, e.g. as described below. Whether or not such formations are provided, it will be appreciated that the "force-to-break" or allow the components to separate from each other can be tailored according to requirements by appropriate design of features such as the angle of the interface between the two parts and/or the surface texture present at the interface and/or extent of the interface.
In accordance with a preferred feature of the invention, each assembly comprising parts 22, 34 and 55, 56 respectively is produced by a two-shot moulding process, for instance a first stage in which the inner part 22, 56 is produced followed by a second stage in which the outer part 34, 55 is moulded onto the inner part 22, 56 thereby connecting the two parts together, e.g. through the interengaging formations (if present) and/or through a zone of intimate contact which sealingly engages the two parts with each other at the moulding interface. Two-shot moulding technology may be carried out for instance using a multi-stack moulding machine such as available from Milacron Inc of Cincinnati, Ohio, USA in which a two-sided pivoting centre platen allows two simultaneous moulding operations to be carried out. The process starts with a preform injected into cavities on one mould face. The mold opens, the centre platen swivels through 180 degrees in a vertical plane, locks into position, the mold closes, and a second material component is injected. At the same time, another pre-form is injected into the opposite mould face of the centre platen. In this way, a preform and a completed part are injection-moulded simultaneously during each cycle of operation using two plastic melts which may be the same material, similar or different materials. A two-shot moulding machine is also disclosed in US-A-6139305.
To prevent the inner and outer parts 22, 34 and 55,56 welding together inseparably during the moulding process, the two parts may be moulded using materials which are compatible with each other and have different characteristics. However, some degree of fusion bonding between the rim and closure parts may be desirable, e.g. to ensure sealing and, where desired, to play a role in predetermining the loading necessary to break the blocking portion away from the rim portion.
The closure assembly in Figures 2 to 4 is shown fitted into the forward end of the plunger 6; however, in an alternative embodiment, the rim portion may be formed integrally with at least the forward end portion of the plunger so that the plunger and rim portion can be produced as a single moulding. For example, both the plunger and rim portion may be made from a plastics material such as polyethylene or polypropylene. In this case, the other end of the plunger may be closed by an end cap.
The parts 22, 34 and 55, 56 may be held captive to one another by interengaging formations (as illustrated for parts 22, 34) which may act as a detent-type arrangement. However, instead of or in addition to such a detent-type arrangement, the parts may be rendered captive to one another as a result of some degree of fusion or bonding of the materials at the interface and/or by virtue of an interference or shrink type fit between the parts at a zone of contact, e.g. as illustrated in Figure 3 of International Patent Application No. GBOO/04573. The shrink fit may be obtained during the moulding process by moulding the outer part 34, 55 around the inner part 22, 56 and exploiting material shrinkage on cooling to secure the interference fit. Where the inner part is held captive in this way, there is not necessarily any significant fusion bonding between the materials although, if desired, the material(s) maybe selected so that such fusion bonding is present, e.g. as a result of some degree of diffusion of material between the two parts.
When the hub and crown are assembled as shown in Figure 2, the rearward end of the lip seal 38 engages a shoulder 44 while the reduced diameter portion 40 of the crown projects beyond an annular end wall 46 of the main body of the barrel 12 for co-operation with the forward end of the plunger 14 as described below. Likewise, the blocking portion 56 is arranged for entry into the opening defined by the crown 34 to contact the rearward end of the hub 22.
In operation, as the plunger 14 is displaced inwardly into the barrel 12, the contents of the barrel are delivered through the needle. As the plunger approaches completion of its stroke, the condition shown in Figure 3 is reached in which the rim portion 55 is in contact with, or about to contact, the rearward end of the crown 34 while the blocking portion 56 is in contact with, or about to contact, the rearward end of the hub 22. By appropriate design of the components, the axial force developed by continued displacement of the plunger to the completion of its stroke (see Figure 4) results in the connections between the parts 22, 34 and 55, 56 being broken, e.g. fractured, freeing the hub 22 from the crown 34 and freeing of the blocking portion 56 from the rim portion 55.
More specifically, the rim portion 55 displaces the crown 34 forwardly while engagement between the hub, which is blocked from forward movement by the forward end of the portion 12 A, and the blocking portion 56 exerts a rearwardly directed force on the latter. Under these conditions, once the connections rendering parts 22, 34 and 55, 56 captive with one another are broken, the spring 24 is no longer restrained and becomes effective to propel the hub through the crown, through the aperture created by freeing of the blocking portion 56 and into the interior of the plunger thereby concealing the needle and avoiding the risk of needle stick injury once the contents of the syringe have been delivered. Freeing of the hub and the blocking portion may occur substantially simultaneously or in sequence, freeing of the hub first being currently preferred. The forces required to effect freeing of the hub and the blocking portion may be readily tailored to requirements by for example appropriate selection of the dimensioning/configuration of the components, tuning of the two-shot moulding process etc.
In the course of being displaced by the rim portion 55, the extent of travel of the crown 34 is such that the lip seal 38 remains in sealing contact with the internal surface of the collar 18. Although the hub may be of generally cylindrical configuration, it is desirable to produce it with a draft (i.e. of reducing cross-section from its trailing end towards its forward end) so as to facilitate easy ejection and prevent binding of the spring against the peripheral surface of the hub. The hub may be manufactured so that, when assembled as shown in Figure 2, there is a small clearance between the shoulder 28 and the adjacent end wall of the end cap 12A thereby eliminating any risk of the hub/crown hub connection being broken during assembly of the syringe (i.e. because of tolerance variations in the length of the hub). This clearance is taken up as when the rim portion of the plunger initially contacts and begins to displace the crown.
From the foregoing, it will be seen that the present invention as embodied in the illustrated syringe results in a much simplified design compared with that of European Patent No. 776225. Advantages that can be realised include the following: better control of the release force needed to separate the hub from the crown since the two-shot moulding can be tuned to requirements; the possibility of increasing the diameter of the spring to allow a shorter, more robust design; an integral lip seal rather than an "O" ring seal which reduces the risk of premature firing and low pressure failures; a shorter travel of the crown with reduced risk of accidental firing when expelling air; reduced tolerance dependency; greater control of the timing/sequencing of the needle retraction process; simplified assembly since the hub/crown/lip seal effectively comprises a single component; redesign of the end cap 12A to enable easier moulding; possibility of needle insertion into the hub after the latter has been installed, thereby reducing the risk of needle damage; hub design permits press-fit or spin-weld needle fixation; ullage can be reduced and be more consistent; and higher locking force (inserting needle into vials etc) as the hub and crown are moulded in one piece.
Whilst endeavouring in the foregoing specification to draw attention to those features of the invention believed to be of particular importance, it should be understood that the Applicant claims protection in respect of any patentable feature or combination of features disclosed herein and/or shown in the drawings whether or not particular emphasis has been placed on such feature or features.

Claims

1. A fluid handling device comprising a barrel for containing fluid to be delivered through a needle, a needle-mounting hub at one end of the barrel, a biasing element arranged to urge the hub inwardly of the barrel, a stop element blocking inward movement of the hub into the barrel, a hollow plunger which is movable within the barrel to deliver fluid from the barrel via the needle and has at its forward end a portion which is severable in response to movement of the plunger over the final part of, or at the conclusion of, its delivery stroke to allow retraction of the needle-mounting hub into the hollow plunger, the hub and the stop element being formed as plastics mouldings in such a way that the stop element is axially captive with the hub and the plunger being arranged to disengage the stop element and the hub during said final part of, or at the conclusion of, the delivery stroke to allow the biasing element to drive the needle into the hollow plunger.
2. A device as claimed in Claim 1 in which the stop element incorporates an integral seal.
3. A device as claimed in Claim 1 or 2 in which the seal is annular so as to encircle the stop element.
4. A device as claimed in any one of the preceding claims in which the stop element and the hub have interengaged formations at the location of the moulding interface which are caused to separate from one another during said final part of, or at the conclusion of, the delivery stroke of the plunger.
5. A device as claimed in any one of the preceding claims in which the stop element and the hub are at least partially united together at the moulding interface, the arrangement being such that the connection is fractured or broken during said final part of, or at the conclusion of, the delivery stroke.
6. A device as claimed in any one of the preceding claims in which the hub is elongate and has a central bore for reception of the needle.
7. A device as claimed in Claim 6 in which the needle-receiving bore is of reducing cross-section.
8. A device as claimed in any one of the preceding claims in which the hub is produced with some degree of draft so as to be of reducing cross section in a direction of travel of the plunger during its delivery stroke.
9. A device as claimed in any one of the preceding claims in which the biasing element is a helical spring arranged in encircling relation with the hub.
10. A device as claimed in any one of the preceding claims in which the forward end of the plunger comprises a rim portion and a central blocking portion, the latter forming said severable portion.
11. A device as claimed in Claim 10 in which the arrangement is such that, during the final part of or at the conclusion of the plunger delivery stroke, the rim portion of the plunger is arranged to engage the stop element while the hub is arranged to engage the blocking portion, the engagement between the two sets of components being effective to free the hub from the stop element and to free the blocking portion from the rim portion at least to the extent necessary to allow the hub to enter the interior of the plunger.
12. A device as claimed in Claim 10 or 11 in which the hub is freed from the stop element before the blocking portion is at least partially freed from the rim portion.
13. A device as claimed in Claim 10 or 11 in which the blocking portion is freed before the stop element.
14. A device as claimed in Claim 10 or 11 in which the hub and the blocking portion are freed substantially simultaneously.
15. A device as claimed in any one of the preceding claims in which the arrangement is such that the paired components comprising the hub and the stop element and/or the rim and blocking portion are united together by the moulding process to afford a well-defined threshold at which they break away from one another in response to the application of force to the stop element in the course of operating the plunger.
16. A device as claimed in any one of the preceding claims in which one of the paired components comprising the hub and stop element and/or the rim and the blocking portion is produced as a plastics moulding in a mould having moulding surfaces defined, in part, by the other paired component.
17. A device as claimed in any one of the preceding claims in which the paired components comprising the hub and stop element and/or the rim and the blocking portion are of plastics materials having different chemical compositions and/or characteristics.
18. A device as claimed in any one of Claims 1 to 17 in which the paired components comprising the hub and stop element and/or the rim and the blocking portion are of substantially the same or a similar plastics material.
19. A device as claimed in any one of the preceding claims in which the paired components comprising the hub and stop element and or the rim and the blocking portion are capable of being broken away from each other without deformation of either of the two components.
20. A device as claimed in any one of the preceding claims in which the paired components comprising the hub and stop element and/or the rim and the blocking portion are interlocked with each other so that some deformation of at least one of the components occurs when effecting the break.
21. A device as claimed in any one of the preceding claims in which one of the paired components comprising the hub and stop element and/or the rim and the blocking portion has, at the moulding interface, an annular surface with a configuration complementary with an annular surface of the other component.
22. A device as claimed in Claim 21 in which the annular surfaces are cylindrical or conical configuration.
23. A device as claimed in any one of the preceding claims in which the paired components comprising the hub and stop element and/or the rim and the blocking portion intimately contact each other at the moulding interface with a degree of fusion bonding consistent with securing fracture preferentially at the interface region during the break.
24. A device as claimed in any one of the preceding claims in which the paired components comprising the hub and stop element and/or the rim and the blocking portion include a detent arrangement acting between the components.
25. A needle-mounting hub assembly for a fluid handling assembly, produced as a two-shot moulding and comprising a hub and a stop element captive with the hub.
26. A method of producing a needle-mounting hub assembly for a fluid handling device as claimed in any one of the preceding claims comprising producing the assembly as a two-shot moulding.
PCT/GB2002/001865 2001-04-26 2002-04-23 Fluid handling devices, in particular for medical use WO2002087669A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP02720255A EP1383562A1 (en) 2001-04-26 2002-04-23 Fluid handling devices, in particular for medical use
JP2002585010A JP2004538050A (en) 2001-04-26 2002-04-23 Medical fluid treatment equipment
MXPA03009710A MXPA03009710A (en) 2001-04-26 2002-04-23 Fluid handling devices, in particular for medical use.
KR10-2003-7014056A KR20040012773A (en) 2001-04-26 2002-04-23 Fluid handlig devices, in particular for medical use
CA002445151A CA2445151A1 (en) 2001-04-26 2002-04-23 Fluid handling devices, in particular for medical use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0110194A GB2376889A (en) 2001-04-26 2001-04-26 Fluid handling devices
GB0110194.8 2001-04-26

Publications (1)

Publication Number Publication Date
WO2002087669A1 true WO2002087669A1 (en) 2002-11-07

Family

ID=9913470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2002/001865 WO2002087669A1 (en) 2001-04-26 2002-04-23 Fluid handling devices, in particular for medical use

Country Status (8)

Country Link
EP (1) EP1383562A1 (en)
JP (1) JP2004538050A (en)
KR (1) KR20040012773A (en)
CN (1) CN1585658A (en)
CA (1) CA2445151A1 (en)
GB (1) GB2376889A (en)
MX (1) MXPA03009710A (en)
WO (1) WO2002087669A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028600A1 (en) * 2002-09-25 2004-04-08 Nmt Group Plc A fluid-handling device
WO2004101036A1 (en) * 2003-05-16 2004-11-25 Nmt Group Plc Fluid handling devices
WO2004103444A1 (en) * 2003-05-09 2004-12-02 Hsien-Wen Hsieh Disposable needle of safe syringe
WO2004105842A1 (en) 2003-05-27 2004-12-09 Nmt Group Plc Syringes with restrictor
WO2005030303A1 (en) * 2003-09-25 2005-04-07 Nmt Group Plc Syringe with retractable needle
WO2007112476A1 (en) * 2006-04-04 2007-10-11 Imd Group Limited Improvements in retractable syringes
US9526846B2 (en) 2009-08-19 2016-12-27 Safety Syringes, Inc. Patient-contact activated needle stick safety device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100408120C (en) * 2006-04-05 2008-08-06 刘文杰 Changeable needle structure of needle retraction type injector, and said injector

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460534A (en) * 1982-09-07 1984-07-17 International Business Machines Corporation Two-shot injection molding
EP0413414A1 (en) * 1989-08-14 1991-02-20 Chien-Hua Tsao Safety hypodermic syringe
US5125898A (en) * 1990-03-22 1992-06-30 Harry Kaufhold, Jr. Disposable syringe with automatic needle retraction
US5180370A (en) * 1992-05-18 1993-01-19 Gillespie Elgene R Safety hypodermic syringe with retractable needle
US5385551A (en) * 1993-09-22 1995-01-31 Shaw; Thomas J. Nonreusable medical device with front retraction
EP0776225A1 (en) 1994-08-18 1997-06-04 NMT Group PLC Needle retraction mechanisms
EP0895848A1 (en) * 1997-08-04 1999-02-10 Ferromatik Milacron Maschinenbau GmbH Method for producing injection moulded articles from at least two plastic melts
US6015438A (en) * 1997-11-14 2000-01-18 Retractable Technologies Inc. Full displacement retractable syringe
US6099500A (en) * 1999-12-03 2000-08-08 Dysarz; Edward D. Safety needle cannula module that is activated by a safety syringe and plunger module
WO2001042104A1 (en) 1999-12-08 2001-06-14 Nmt Group Plc Closure assembly in particular for hypodermic syringes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935104A (en) * 1998-08-21 1999-08-10 Safety Medical Manufacturing, Incorporated Safety medical syringe with retractable needle
US6010486A (en) * 1998-12-18 2000-01-04 Becton Dickinson And Company Retracting needle syringe
AU723060B3 (en) * 2000-02-22 2000-08-17 Occupational & Medical Innovations Ltd A single use syringe

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460534A (en) * 1982-09-07 1984-07-17 International Business Machines Corporation Two-shot injection molding
EP0413414A1 (en) * 1989-08-14 1991-02-20 Chien-Hua Tsao Safety hypodermic syringe
US5125898A (en) * 1990-03-22 1992-06-30 Harry Kaufhold, Jr. Disposable syringe with automatic needle retraction
US5180370A (en) * 1992-05-18 1993-01-19 Gillespie Elgene R Safety hypodermic syringe with retractable needle
US5385551A (en) * 1993-09-22 1995-01-31 Shaw; Thomas J. Nonreusable medical device with front retraction
EP0776225A1 (en) 1994-08-18 1997-06-04 NMT Group PLC Needle retraction mechanisms
EP0895848A1 (en) * 1997-08-04 1999-02-10 Ferromatik Milacron Maschinenbau GmbH Method for producing injection moulded articles from at least two plastic melts
US6139305A (en) 1997-08-04 2000-10-31 Ferromatik Milacron Maschinenbau Gmbh Apparatus for production of injection molded articles from at least two plastic melts
US6015438A (en) * 1997-11-14 2000-01-18 Retractable Technologies Inc. Full displacement retractable syringe
US6099500A (en) * 1999-12-03 2000-08-08 Dysarz; Edward D. Safety needle cannula module that is activated by a safety syringe and plunger module
WO2001042104A1 (en) 1999-12-08 2001-06-14 Nmt Group Plc Closure assembly in particular for hypodermic syringes

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028600A1 (en) * 2002-09-25 2004-04-08 Nmt Group Plc A fluid-handling device
WO2004103444A1 (en) * 2003-05-09 2004-12-02 Hsien-Wen Hsieh Disposable needle of safe syringe
WO2004101036A1 (en) * 2003-05-16 2004-11-25 Nmt Group Plc Fluid handling devices
WO2004105842A1 (en) 2003-05-27 2004-12-09 Nmt Group Plc Syringes with restrictor
WO2005030303A1 (en) * 2003-09-25 2005-04-07 Nmt Group Plc Syringe with retractable needle
WO2007112476A1 (en) * 2006-04-04 2007-10-11 Imd Group Limited Improvements in retractable syringes
US9526846B2 (en) 2009-08-19 2016-12-27 Safety Syringes, Inc. Patient-contact activated needle stick safety device
US10314985B2 (en) 2009-08-19 2019-06-11 Safety Syringes, Inc. Patient-contact activated needle stick safety device
US11400234B2 (en) 2009-08-19 2022-08-02 Safety Syringes, Inc. Patient-contact activated needle stick safety device

Also Published As

Publication number Publication date
JP2004538050A (en) 2004-12-24
EP1383562A1 (en) 2004-01-28
CN1585658A (en) 2005-02-23
GB2376889A (en) 2002-12-31
GB0110194D0 (en) 2001-06-20
CA2445151A1 (en) 2002-11-07
MXPA03009710A (en) 2005-03-07
KR20040012773A (en) 2004-02-11

Similar Documents

Publication Publication Date Title
US6800066B2 (en) Retractable needle syringe
AU2005221705B2 (en) Needle and hub assembly for automatic injector
US5180370A (en) Safety hypodermic syringe with retractable needle
US8096974B2 (en) Self-destroying disposable syringe and self-destroying method thereof
US8105293B2 (en) Injection syringe
EP0229017A2 (en) Arrangement in injection syringe for use once only
JP5409615B2 (en) Syringe with disabling mechanism
US6183464B1 (en) Safety syringe with retractable needle and universal luer coupling
EP0559734B1 (en) Syringe unit
JP4698838B2 (en) Retractable needle syringe
EP3146988B1 (en) Passive reuse prevention syringe that uses a flange lock
JPS5850741B2 (en) Hypodermic syringe and its manufacturing method
EP1383562A1 (en) Fluid handling devices, in particular for medical use
WO2005004958A1 (en) Hypodermic syringes
EP1235720B1 (en) Closure assembly in particular for hypodermic syringes
US20030050605A1 (en) Closure assembly in particular for hypodermic syringes
AU629859B2 (en) Safe-disposable hypodermic needle and syringe
WO2004101036A1 (en) Fluid handling devices
IE65414B1 (en) Single-use hypodermic syringe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002585010

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/009710

Country of ref document: MX

Ref document number: 2445151

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 028088956

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020037014056

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002720255

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002720255

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2002720255

Country of ref document: EP