WO2002089666A2 - Implantable analyte sensor - Google Patents

Implantable analyte sensor Download PDF

Info

Publication number
WO2002089666A2
WO2002089666A2 PCT/US2002/014522 US0214522W WO02089666A2 WO 2002089666 A2 WO2002089666 A2 WO 2002089666A2 US 0214522 W US0214522 W US 0214522W WO 02089666 A2 WO02089666 A2 WO 02089666A2
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
spes
fine wires
applying
layer
Prior art date
Application number
PCT/US2002/014522
Other languages
French (fr)
Other versions
WO2002089666A3 (en
Inventor
W. Kenneth Ward
Lawrence B. Jansen
Ellen M. Anderson
Original Assignee
Isense Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isense Corporation filed Critical Isense Corporation
Publication of WO2002089666A2 publication Critical patent/WO2002089666A2/en
Publication of WO2002089666A3 publication Critical patent/WO2002089666A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • A61B5/14865Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors

Definitions

  • Blood glucose monitoring is a necessary tool for achieving glycemic control in diabetics. By permitting the patient to recognize when he is in a state of either hypo- or hyperglycemia, this monitoring enables the patient to appropriately intervene to maintain his health.
  • hypoglycemia the condition of having too little blood glucose, in severe form referred to as insulin shock, may lead to unconsciousness and death. As this may occur while the patient is asleep, monitoring methods that require action on the patient's part leave the patient vulnerable during his sleep. Frequent episodes of hyperglycemia lead to chronic diabetes complications, such as blindness, kidney failure and/or limb amputations.
  • continuous in vivo monitoring is done with a sensor that produces an electrical current that is proportional to the blood or subcutaneous tissue glucose level. This is done by creating a reaction between immobilized glucose oxidase mixed with Bovine or Human Serum Albumin and glucose, to form gluconic acid and hydrogen peroxide. The hydrogen peroxide is oxidized at the platinum-indicating electrode 20 or anode surface, thereby freeing electrons that create a current and flow into the anode. Alternatively, or additionally, a current that is proportional to the dissolved oxygen level, which is decreased by the reaction in which glucose is oxidized, can be monitored.
  • barrier breathing film BBF
  • these substances comprise a biocompatible, hydrophilic, segmented block polyurethane copolymer having a number average molecular weight of about 5,000 to 150,000, comprising about 5 to 45 wt % of at least one hard segment, and about 95 to 55 wt % of at least one soft segments comprising at least one hydrophilic, hydrophobic or amphipathic oligomer selected from the group consisting of aliphatic polyols, aliphatic and aromatic polyamines and mixtures thereof.
  • ISF interstitial fluid
  • the common pain reliever acetaminophen may be present in a patient's body and is capable of creating current flow into the anode.
  • ISF interstitial fluid
  • the common pain reliever acetaminophen may be present in a patient's body and is capable of creating current flow into the anode.
  • SPES sulphonated polyethersulphone
  • Another problem encountered in this type of sensor is the tendency for the sensitivity of the sensing surface to drift over time.
  • One cause of this drift is growth of scar tissue about a sensor.
  • needle sensors that can be flexed many times (upwards of 1,000) are highly desirable compared with those that risk breakage with 30 or fewer flexures.
  • the present invention is an insertable analyte needle sensor, comprising a set of fine wires positioned together and a dielectric material covering a substantial portion of the fine wires but defining an opening filled with at least one partially permeable membrane.
  • the present invention is a method of producing an analyte sensor, comprising the steps of providing a conductive wire having an exposed surface and gas plasma treating the exposed surface of the conductive wire to remove oxidation. A SPES membrane is then applied over the platinum-iridium wire prior to the reformation of a layer of oxidation.
  • the present invention is a method of producing an analyte sensor in which, comprising the steps of providing a conductive wire having an exposed surface, applying a SPES membrane over the exposed surface of the conductive wire, and coating the SPES membrane with a solution of silane.
  • FIG. 1 is a side cut-away view of an analyte sensor according to the present invention.
  • FIG. 2 is a cross-sectional view of the analyte sensor of FIG. 1, taken along line 2-2 of FIG. 1.
  • a first preferred embodiment of a sensor 10 according to the present invention is in the form of an elongate structure, having a diameter of from 350 ⁇ m at its widest point, and 250 microns elsewhere, for easy insertion and acceptance into the subcutaneous tissue of a person or animal.
  • the indicating electrode 20 is formed from a set of six platinum-iridium (90% Pt to 10% Ir) wires 12 twisted about a core wire 14.
  • Core wire may be made of platinum- iridium for enhanced conductivity.
  • core wire 14 is made of steel for enhanced strength.
  • Each wire 12 and 14, may be 58 ⁇ m in diameter, giving the set of wires a combined diameter of 174 ⁇ m.
  • an ethylene tetrafluoroethylene (ETFE) hub 16 for facilitating sensor insertion and binding together the ends of the wires 12.
  • EFE ethylene tetrafluoroethylene
  • Proximal from the distal tip is a laser-ablated cavity 18 through the ETFE to form the indicating electrode 20.
  • Cavity 18 is preferably 2-10 mm in length. In one preferred embodiment cavity 18 circumscribes the sensor 10, although this is not necessary for sensor functioning.
  • the sensor 10 is coated with ETFE 22.
  • the presence of ETFE coat 22 and hub 16 facilitate the retention of compounds in cavity 18.
  • Helically wrapped about the coating of ETFE 22 is a thin wire of Ag-AgCl, which serves as a cathode reference electrode 26.
  • a membrane 30 of interferent-excluding sulphonated polyethersulphone This prevents acetaminophen and other interferents from reaching the surface of the wires 12.
  • Polyethersulphone is available from AMOCO Polymers, 4500 McGinnis Ferry Road, Alpharetta, Georgia 30202. The sulphonation process may be accomplished in accordance with the disclosure of Pankaj Vadgama et al. in U.S. Patent 4,832,797, entitled ENZYME ELECTRODE AND MEMBRANE. Constructing the sensor 10 presents a number of challenges that were discussed in the BACKGROUND section of this patent.
  • these surfaces are first washed with an acetone/ethanol application.
  • these surfaces receive a radio frequency oxygen plasma etch at a vacuum of 0.8 Torr for 2 minutes at a frequency of 13.5 MHz.
  • a Plasmod RF plasma chamber available from March Instruments, Concord, CA, 94520, may be used for this purpose.
  • covering membrane 30 is a membrane 36 of glucose oxidase (GO x ) mixed with bovine or human serum albumin (BSA) and glutaraldahyde.
  • BSA bovine or human serum albumin
  • glutaraldahyde This is the chemically active layer that reacts with glucose and oxygen to form gluconic acid and hydrogen peroxide.
  • the hydrogen peroxide provides electrons at the surface of the indicating electrode, which in this case is also the anode.
  • Membrane 30 and its chemistry are already well known and are described in greater detail in U.S. Patent 5,165,407, which has been incorporated by reference.
  • Covering membrane 36 is a permselective membrane 40 made of barrier breathing film (BBF) , an amphiphobic polyurethane material noted in the BACKGROUND section of this patent application.
  • BBF barrier breathing film
  • U.S. Patent 5,882,494 discloses the method of producing and the structure of BBF.
  • the BBF is produced to be about 2,000 times more permeable to oxygen than it is to glucose.
  • sensor 10 responds to the glucose level, as even at a high glucose level there is adequate oxygen to combine with the available glucose.
  • the BBF used is applied as an 8% w/w solution dissolved in DMAC, a low vapor pressure solvent.
  • the BBF is not a hydrogel and has a water uptake of less than 2% at 24 hours.
  • DMAC solvent in which the BBF is dissolved
  • the layer of chemically active membrane coats the SPES at the point that the BBF is applied, this layer provides little protection for the SPES, although it is itself typically not completely removed by the application of the BBF.
  • the SPES is sulphonated by adding sulfuric acid to the SPES. This also lowers the pH of the resultant product For this reason, a layer of silane is added in order to stabilize the SPES layer and prevent its degradation by DMAC.
  • AATS N-2 amino ethyl, 3- aminopropyltrimethoxy silane
  • the AATS solution was made as 20% AATS, 72% ethanol and 8% deionized water (all w/w) .
  • the AATS is applied between the next to the last and the last coats of SPES.
  • the sensor is cured for 2 hours at 40 degrees C after each coat of the SPES and oven- baked for 30 minutes at 150 degrees C after the dip coat of AATS.
  • membrane 50 there is a membrane 50, that is designed to encourage the growth of neovascularized tissue, covering permselective membrane 40.
  • membrane 50 is not present.
  • membrane 50 is not needed because the sensor will be replaced before the neovascularized tissue can form.
  • a membrane should have finely spaced apertures with a typical diameter of about 5 ⁇ m. A number of materials are available for this function. Perhaps the most commonly available membrane for this purpose is expanded poly tetrafluoroethylene, available from W.L Gore and
  • the present invention is applicable in the medical device industry.

Abstract

An insertable analyte needle sensor (10), comprising a set of fine wires (12) positioned together and a dielectric material (22) covering a substantial portion of the fine wires but defining an opening (18) filled with at least one partially permeable membrane (36). The wires (12) may be treated with a gas plasma to facilitate membrane adherence. One membrane layer (30) may comprise sulphonated polyethersulphone coated with silane.

Description

IMPLANTABLE ANALYTE SENSOR
TECHNICAL FIELD
Blood glucose monitoring is a necessary tool for achieving glycemic control in diabetics. By permitting the patient to recognize when he is in a state of either hypo- or hyperglycemia, this monitoring enables the patient to appropriately intervene to maintain his health.
Hypoglycemia, the condition of having too little blood glucose, in severe form referred to as insulin shock, may lead to unconsciousness and death. As this may occur while the patient is asleep, monitoring methods that require action on the patient's part leave the patient vulnerable during his sleep. Frequent episodes of hyperglycemia lead to chronic diabetes complications, such as blindness, kidney failure and/or limb amputations.
Currently available methods of glucose monitoring require the patient to obtain a blood sample. Testing a blood specimen permits detection of both hypoglycemia and hyperglycemia. Unfortunately, the "finger stick" generally required for specimen collection is painful, so this type of testing is unpopular with patients and sometimes avoided. Newer, less painful methods are somewhat cumbersome. Accordingly, continuous in vivo monitoring would yield great advantages by allowing prompter patient intervention. Many efforts to achieve this goal have been made over the years .
BACKGROUND ART
Generally, continuous in vivo monitoring is done with a sensor that produces an electrical current that is proportional to the blood or subcutaneous tissue glucose level. This is done by creating a reaction between immobilized glucose oxidase mixed with Bovine or Human Serum Albumin and glucose, to form gluconic acid and hydrogen peroxide. The hydrogen peroxide is oxidized at the platinum-indicating electrode 20 or anode surface, thereby freeing electrons that create a current and flow into the anode. Alternatively, or additionally, a current that is proportional to the dissolved oxygen level, which is decreased by the reaction in which glucose is oxidized, can be monitored. U.S. Patent No. 5,165,407 ( 07) and U.S. Patent No. 5,711,861 (λ861), which are both hereby incorporated by reference as if fully set forth herein, disclose in vivo devices for sensing glucose levels. There are, however, a number of additional technical problems that must be addressed in the design of a glucose sensor. First, both dissolved oxygen and glucose are necessary to create the reaction that produces H202. Because dissolved oxygen is generally less abundant than glucose, the amount of H202 produced is primarily responsive to the concentration of dissolved oxygen, unless steps are taken to avoid this outcome. The region of linear response to glucose concentration may be increased by a membrane that restricts the passage of glucose molecules while permitting the relatively unrestricted passage of oxygen molecules. As a result, there is adequate dissolved oxygen to permit full registration of even relatively high concentrations of glucose. Permselective membranes currently in use have proven quite problematic, generally displaying poor performance.
One family of substances that has been suggested for use as a permeable selective (permselective) membrane are polyurethane/polyurea compositions containing silicone (taught, intra alia, in U.S. Patent 5,882,494). Compounds from this family are discussed in some detail in U.S. Patent 5,428,123, entitled COPOLYMER AND NON-POROUS SEMI- PERMEABLE MEMBRANE THEREOF AND ITS USE FOR PERMEATING
MOLECULES OF PREDETERMINED MOLECULAR WEIGHT RANGE, which is hereby incorporated by reference as if fully set forth herein. As a term of art, the substances described and claimed in this patent are referred to as barrier breathing film (BBF) . One characteristic of these substances is that they comprise a biocompatible, hydrophilic, segmented block polyurethane copolymer having a number average molecular weight of about 5,000 to 150,000, comprising about 5 to 45 wt % of at least one hard segment, and about 95 to 55 wt % of at least one soft segments comprising at least one hydrophilic, hydrophobic or amphipathic oligomer selected from the group consisting of aliphatic polyols, aliphatic and aromatic polyamines and mixtures thereof.
Another problem encountered is the presence in the interstitial fluid (ISF) of electroactive compounds other than H202. For example, the common pain reliever acetaminophen may be present in a patient's body and is capable of creating current flow into the anode. To prevent this interfering signal it has been suggested by Pankaj Vadgama et al . in U.S. Patent 4,832,797, entitled ENZYME ELECTRODE AND MEMBRANE, to use a membrane of a sulphonated polyethersulphone (SPES) placed directly over the indicating electrode sensing surface. This layer generally prevents the passage of compounds larger than H202.
A review of the art reveals that it appears to have not yet been suggested to use a layer of BBF over a layer of SPES for both selectively passing oxygen and glucose and also filtering out interferents such as acetaminophen. This is not accidental as the general industry understanding has been that it is not possible to coat SPES with BBF due to the fact that the solvents available for creating a solution of BBF (typically dimethyl acetamide [DMAC] or related solvents) are the same ones that dissolve SPES. Accordingly, there has been a long felt need in the industry for a two membrane combination that can both selectively filter oxygen and glucose and can also filter out electro active interferents, despite the industry knowledge of both BBF and SPES. Moreover, it has been difficult to get the SPES to adhere strongly enough to the platinum-iridium surfaces so that a uniform coat of SPES is formed over the exposed platinum-iridium surface (s).
Another problem encountered in this type of sensor is the tendency for the sensitivity of the sensing surface to drift over time. One cause of this drift is growth of scar tissue about a sensor.
Another challenge for those designing needle sensors in general is that of potential breakage. It is unacceptable to leave a piece of a needle sensor within the human body. Accordingly, needle sensors that can be flexed many times (upwards of 1,000) are highly desirable compared with those that risk breakage with 30 or fewer flexures.
DISCLOSURE OF THE INVENTION
In a first separate aspect the present invention is an insertable analyte needle sensor, comprising a set of fine wires positioned together and a dielectric material covering a substantial portion of the fine wires but defining an opening filled with at least one partially permeable membrane.
In a second separate aspect the present invention is a method of producing an analyte sensor, comprising the steps of providing a conductive wire having an exposed surface and gas plasma treating the exposed surface of the conductive wire to remove oxidation. A SPES membrane is then applied over the platinum-iridium wire prior to the reformation of a layer of oxidation. In a third separate aspect the present invention is a method of producing an analyte sensor in which, comprising the steps of providing a conductive wire having an exposed surface, applying a SPES membrane over the exposed surface of the conductive wire, and coating the SPES membrane with a solution of silane.
The foregoing and other objectives, features and advantages of the invention will be more readily understood upon consideration of the following detailed description of the preferred embodiment (s) , taken in conjunction with the accompanying drawings .
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a side cut-away view of an analyte sensor according to the present invention. FIG. 2 is a cross-sectional view of the analyte sensor of FIG. 1, taken along line 2-2 of FIG. 1. BEST MODES FOR CARRYING OUT THE INVENTIONS
A first preferred embodiment of a sensor 10 according to the present invention is in the form of an elongate structure, having a diameter of from 350 μm at its widest point, and 250 microns elsewhere, for easy insertion and acceptance into the subcutaneous tissue of a person or animal. The indicating electrode 20 is formed from a set of six platinum-iridium (90% Pt to 10% Ir) wires 12 twisted about a core wire 14. Core wire may be made of platinum- iridium for enhanced conductivity. In an alternative preferred embodiment, core wire 14 is made of steel for enhanced strength. Each wire 12 and 14, may be 58 μm in diameter, giving the set of wires a combined diameter of 174 μm. At the tip or distal end of the sensor is an ethylene tetrafluoroethylene (ETFE) hub 16 for facilitating sensor insertion and binding together the ends of the wires 12. Proximal from the distal tip is a laser-ablated cavity 18 through the ETFE to form the indicating electrode 20. Cavity 18 is preferably 2-10 mm in length. In one preferred embodiment cavity 18 circumscribes the sensor 10, although this is not necessary for sensor functioning. As it extends proximally from the cavity 18, the sensor 10 is coated with ETFE 22. The presence of ETFE coat 22 and hub 16 facilitate the retention of compounds in cavity 18. Helically wrapped about the coating of ETFE 22 is a thin wire of Ag-AgCl, which serves as a cathode reference electrode 26. Immediately coating the fine wires in the laser ablated cavity is a membrane 30 of interferent-excluding sulphonated polyethersulphone (SPES) . This prevents acetaminophen and other interferents from reaching the surface of the wires 12. Polyethersulphone is available from AMOCO Polymers, 4500 McGinnis Ferry Road, Alpharetta, Georgia 30202. The sulphonation process may be accomplished in accordance with the disclosure of Pankaj Vadgama et al. in U.S. Patent 4,832,797, entitled ENZYME ELECTRODE AND MEMBRANE. Constructing the sensor 10 presents a number of challenges that were discussed in the BACKGROUND section of this patent. First, there is the problem of getting the SPES 30 to adhere to the underlying platinum-iridium wires 14 with a strong enough bond so that there are no bare spots on the electrode, unprotected by SPES 30. Analysis has shown that the lack of good adherence found by earlier researchers was caused by a layer of oily residue left on the wires' 14 due to earlier processing. In one preferred embodiment of the present method this layer is removed by gas plasma treatment directly before the application of the SPES 30.
In greater detail, to gain proper adherence of the SPES 30 to the platinum-iridium (Pt-Ir) wire 14 surfaces, these surfaces are first washed with an acetone/ethanol application. In addition, these surfaces receive a radio frequency oxygen plasma etch at a vacuum of 0.8 Torr for 2 minutes at a frequency of 13.5 MHz. A Plasmod RF plasma chamber, available from March Instruments, Concord, CA, 94520, may be used for this purpose.
In addition, to ensure complete coverage, a number of layers (typically between three and six) of SPES are added either through dip coating, loop coating or pipette coating to form layer 30. In turn, covering membrane 30 is a membrane 36 of glucose oxidase (GOx) mixed with bovine or human serum albumin (BSA) and glutaraldahyde. This is the chemically active layer that reacts with glucose and oxygen to form gluconic acid and hydrogen peroxide. The hydrogen peroxide provides electrons at the surface of the indicating electrode, which in this case is also the anode. Membrane 30 and its chemistry are already well known and are described in greater detail in U.S. Patent 5,165,407, which has been incorporated by reference.
Covering membrane 36 is a permselective membrane 40 made of barrier breathing film (BBF) , an amphiphobic polyurethane material noted in the BACKGROUND section of this patent application. As also noted in the background section, U.S. Patent 5,882,494 (incorporated by reference) discloses the method of producing and the structure of BBF. In this instance, the BBF is produced to be about 2,000 times more permeable to oxygen than it is to glucose. In this manner sensor 10 responds to the glucose level, as even at a high glucose level there is adequate oxygen to combine with the available glucose. The BBF used is applied as an 8% w/w solution dissolved in DMAC, a low vapor pressure solvent. The BBF is not a hydrogel and has a water uptake of less than 2% at 24 hours.
Another problem encountered is the undesired removal of the SPES by the solvent in which the BBF is dissolved (typically DMAC) . Although the layer of chemically active membrane coats the SPES at the point that the BBF is applied, this layer provides little protection for the SPES, although it is itself typically not completely removed by the application of the BBF. To prevent this removal the SPES is sulphonated by adding sulfuric acid to the SPES. This also lowers the pH of the resultant product For this reason, a layer of silane is added in order to stabilize the SPES layer and prevent its degradation by DMAC. For this purpose, N-2 amino ethyl, 3- aminopropyltrimethoxy silane (AATS) available from Aldrich chemical under designation #23,577-6. The AATS solution was made as 20% AATS, 72% ethanol and 8% deionized water (all w/w) . The AATS is applied between the next to the last and the last coats of SPES. The sensor is cured for 2 hours at 40 degrees C after each coat of the SPES and oven- baked for 30 minutes at 150 degrees C after the dip coat of AATS.
In some preferred embodiments there is a membrane 50, that is designed to encourage the growth of neovascularized tissue, covering permselective membrane 40. In other preferred embodiments membrane 50 is not present. In particular, if it is anticipated that a sensor will be replaced every few days, then membrane 50 is not needed because the sensor will be replaced before the neovascularized tissue can form. To encourage the growth of neovascularized tissue a membrane should have finely spaced apertures with a typical diameter of about 5 μm. A number of materials are available for this function. Perhaps the most commonly available membrane for this purpose is expanded poly tetrafluoroethylene, available from W.L Gore and
Associates, which has an Internet address of www.gore.com. U.S. Patent application serial no. 09/441,642, filed November 17, 1999 is assigned to the same assignee as this application and is hereby incorporated by reference as if fully set forth herein, describes a method for making an alternative sort of membrane for this purpose. The terms and expressions which have been employed in the foregoing specification are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.
INDUSTRIAL APPLICABILITY
The present invention is applicable in the medical device industry.

Claims

Claims
1. An insertable analyte needle sensor, comprising:
(a) a set of fine wires positioned together; and (b) dielectric material covering a substantial portion of said fine wires but defining an opening filled with at least one partially permeable membrane.
2. The sensor of claim 1 wherein said analyte needle sensor is a glucose sensor.
3. The sensor of claim 1 wherein said fine wires are twisted together into a helix.
4. The sensor of claim 1 wherein said fine wires are positioned together about an additional wire.
5. The sensor of claim 4 wherein said fine wires are twisted about said additional wire to form a set of helixes.
6. The sensor of claim 4 wherein said additional wire is made of steel.
7. The sensor of claim 1 wherein said fine wires are made of a material that includes platinum.
8. The sensor of claim 1 wherein each said fine wire has a diameter of less than 100 μm.
9. The sensor of claim 1 wherein said fine wires collectively have a diameter of less than 300 μm.
10. A method of producing an analyte sensor, comprising the steps of:
(a) providing a conductive wire, having an exposed surface;
(b) gas plasma treating said exposed surface of said conductive wire to remove oxidation; and
(c) applying a SPES membrane over said exposed surface of said conductive wire prior to any reformation of a layer of oxidation.
11. The method of claim 10 wherein said conductive wires are made of a platinum-iridium alloy.
12. The method of claim 10 wherein step (c) more specifically comprises dipping .said sensor into a solution of SPES in dimethyl acetamide.
13. The method of claim 10 further including curing said SPES for at least one hour at between 30 degrees C and 50 degrees C.
14. The method of claim 10 further including a step of applying an additional layer of material, dissolved in dimethyl acetamide.
15. A method of producing an analyte sensor, comprising the steps of:
(a) providing a conductive wire, having at least one exposed surface; (b) applying at least one layer of sulphonated polyethersulphone (SPES) over said at least one exposed surface; and (c) coating the SPES with a solution of silane.
16. The method of claim 15, further comprising oven baking said sensor, after step (c) , for over 15 minutes at over 110 °C.
17. The method of claim 15 further including a step, to be performed after step (c) , of applying a layer of polyurethane material
18. The method of claim 15 further including a step of applying an additional layer of material, dissolved in dimethyl acetamide.
19. The method of claim 15 further including a step of applying an additional layer of SPES after performing step (c) .
PCT/US2002/014522 2001-05-08 2002-05-07 Implantable analyte sensor WO2002089666A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/851,668 2001-05-08
US09/851,668 US6613379B2 (en) 2001-05-08 2001-05-08 Implantable analyte sensor

Publications (2)

Publication Number Publication Date
WO2002089666A2 true WO2002089666A2 (en) 2002-11-14
WO2002089666A3 WO2002089666A3 (en) 2002-12-12

Family

ID=25311352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/014522 WO2002089666A2 (en) 2001-05-08 2002-05-07 Implantable analyte sensor

Country Status (2)

Country Link
US (1) US6613379B2 (en)
WO (1) WO2002089666A2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011520A2 (en) 2003-07-25 2005-02-10 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
EP2564768A1 (en) * 2003-08-14 2013-03-06 Isense Corporation Method of constructing a biosensor
US9055901B2 (en) 2004-07-13 2015-06-16 Dexcom, Inc. Transcutaneous analyte sensor
US9649069B2 (en) 2003-08-22 2017-05-16 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9693721B2 (en) 2008-03-28 2017-07-04 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9750441B2 (en) 2003-12-09 2017-09-05 Dexcom, Inc. Signal processing for continuous analyte sensor
US9895089B2 (en) 2003-08-01 2018-02-20 Dexcom, Inc. System and methods for processing analyte sensor data
US10300507B2 (en) 2005-05-05 2019-05-28 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US10349873B2 (en) 2006-10-04 2019-07-16 Dexcom, Inc. Analyte sensor
US10524703B2 (en) 2004-07-13 2020-01-07 Dexcom, Inc. Transcutaneous analyte sensor
US10610136B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10653835B2 (en) 2007-10-09 2020-05-19 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US10667733B2 (en) 2009-09-30 2020-06-02 Dexcom, Inc. Transcutaneous analyte sensor
US10813577B2 (en) 2005-06-21 2020-10-27 Dexcom, Inc. Analyte sensor
US10966609B2 (en) 2004-02-26 2021-04-06 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US10980461B2 (en) 2008-11-07 2021-04-20 Dexcom, Inc. Advanced analyte sensor calibration and error detection
US11000215B1 (en) 2003-12-05 2021-05-11 Dexcom, Inc. Analyte sensor
US11102306B2 (en) 2008-02-21 2021-08-24 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US11246990B2 (en) 2004-02-26 2022-02-15 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
US11350862B2 (en) 2017-10-24 2022-06-07 Dexcom, Inc. Pre-connected analyte sensors
US11373347B2 (en) 2007-06-08 2022-06-28 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US11382539B2 (en) 2006-10-04 2022-07-12 Dexcom, Inc. Analyte sensor
US11399745B2 (en) 2006-10-04 2022-08-02 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US11437141B2 (en) 2009-04-30 2022-09-06 Dexcom, Inc. Performance reports associated with continuous sensor data from multiple analysis time periods
US11432772B2 (en) 2006-08-02 2022-09-06 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US11559260B2 (en) 2003-08-22 2023-01-24 Dexcom, Inc. Systems and methods for processing analyte sensor data
US11564602B2 (en) 2003-11-19 2023-01-31 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors

Families Citing this family (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9155496B2 (en) 1997-03-04 2015-10-13 Dexcom, Inc. Low oxygen in vivo analyte sensor
US7192450B2 (en) 2003-05-21 2007-03-20 Dexcom, Inc. Porous membranes for use with implantable devices
US20050033132A1 (en) 1997-03-04 2005-02-10 Shults Mark C. Analyte measuring device
US6862465B2 (en) 1997-03-04 2005-03-01 Dexcom, Inc. Device and method for determining analyte levels
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US7899511B2 (en) 2004-07-13 2011-03-01 Dexcom, Inc. Low oxygen in vivo analyte sensor
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
EP1397068A2 (en) 2001-04-02 2004-03-17 Therasense, Inc. Blood glucose tracking apparatus and methods
US6932894B2 (en) * 2001-05-15 2005-08-23 Therasense, Inc. Biosensor membranes composed of polymers containing heterocyclic nitrogens
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US6702857B2 (en) 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US10022078B2 (en) * 2004-07-13 2018-07-17 Dexcom, Inc. Analyte sensor
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US7613491B2 (en) 2002-05-22 2009-11-03 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US9247901B2 (en) 2003-08-22 2016-02-02 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9282925B2 (en) 2002-02-12 2016-03-15 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US7226978B2 (en) 2002-05-22 2007-06-05 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
US6965791B1 (en) * 2003-03-26 2005-11-15 Sorenson Medical, Inc. Implantable biosensor system, apparatus and method
US7134999B2 (en) 2003-04-04 2006-11-14 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
US7875293B2 (en) 2003-05-21 2011-01-25 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
US7146202B2 (en) * 2003-06-16 2006-12-05 Isense Corporation Compound material analyte sensor
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
JP2007500336A (en) 2003-07-25 2007-01-11 デックスコム・インコーポレーテッド Electrode system for electrochemical sensors
WO2007120442A2 (en) 2003-07-25 2007-10-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7467003B2 (en) * 2003-12-05 2008-12-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7366556B2 (en) 2003-12-05 2008-04-29 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7460898B2 (en) * 2003-12-05 2008-12-02 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7424318B2 (en) 2003-12-05 2008-09-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8369919B2 (en) 2003-08-01 2013-02-05 Dexcom, Inc. Systems and methods for processing sensor data
US8845536B2 (en) 2003-08-01 2014-09-30 Dexcom, Inc. Transcutaneous analyte sensor
US7494465B2 (en) 2004-07-13 2009-02-24 Dexcom, Inc. Transcutaneous analyte sensor
US7276029B2 (en) 2003-08-01 2007-10-02 Dexcom, Inc. System and methods for processing analyte sensor data
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US7933639B2 (en) 2003-08-01 2011-04-26 Dexcom, Inc. System and methods for processing analyte sensor data
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US8626257B2 (en) 2003-08-01 2014-01-07 Dexcom, Inc. Analyte sensor
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US8886273B2 (en) 2003-08-01 2014-11-11 Dexcom, Inc. Analyte sensor
US20100168657A1 (en) 2003-08-01 2010-07-01 Dexcom, Inc. System and methods for processing analyte sensor data
USD914881S1 (en) 2003-11-05 2021-03-30 Abbott Diabetes Care Inc. Analyte sensor electronic mount
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
US8425416B2 (en) 2006-10-04 2013-04-23 Dexcom, Inc. Analyte sensor
US20100185071A1 (en) * 2003-12-05 2010-07-22 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8425417B2 (en) 2003-12-05 2013-04-23 Dexcom, Inc. Integrated device for continuous in vivo analyte detection and simultaneous control of an infusion device
US8364230B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US20080200788A1 (en) * 2006-10-04 2008-08-21 Dexcorn, Inc. Analyte sensor
EP2239567B1 (en) 2003-12-05 2015-09-02 DexCom, Inc. Calibration techniques for a continuous analyte sensor
DE602004028164D1 (en) * 2003-12-08 2010-08-26 Dexcom Inc SYSTEMS AND METHOD FOR IMPROVING ELECTROCHEMICAL ANALYTIC SENSORS
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US8277713B2 (en) * 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US7640048B2 (en) 2004-07-13 2009-12-29 Dexcom, Inc. Analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US20090105569A1 (en) 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US8613703B2 (en) 2007-05-31 2013-12-24 Abbott Diabetes Care Inc. Insertion devices and methods
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US20090076360A1 (en) 2007-09-13 2009-03-19 Dexcom, Inc. Transcutaneous analyte sensor
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
WO2006110193A2 (en) * 2005-04-08 2006-10-19 Dexcom, Inc. Cellulosic-based interference domain for an analyte sensor
US8060174B2 (en) 2005-04-15 2011-11-15 Dexcom, Inc. Analyte sensing biointerface
US20060263839A1 (en) * 2005-05-17 2006-11-23 Isense Corporation Combined drug delivery and analyte sensor apparatus
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US11298058B2 (en) 2005-12-28 2022-04-12 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US9757061B2 (en) 2006-01-17 2017-09-12 Dexcom, Inc. Low oxygen in vivo analyte sensor
WO2007097754A1 (en) 2006-02-22 2007-08-30 Dexcom, Inc. Analyte sensor
EP1991110B1 (en) 2006-03-09 2018-11-07 DexCom, Inc. Systems and methods for processing analyte sensor data
EP4218548A1 (en) 2006-03-09 2023-08-02 Dexcom, Inc. Systems and methods for processing analyte sensor data
WO2007120381A2 (en) 2006-04-14 2007-10-25 Dexcom, Inc. Analyte sensor
US9176141B2 (en) 2006-05-15 2015-11-03 Cercacor Laboratories, Inc. Physiological monitor calibration system
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US8275438B2 (en) 2006-10-04 2012-09-25 Dexcom, Inc. Analyte sensor
US8447376B2 (en) * 2006-10-04 2013-05-21 Dexcom, Inc. Analyte sensor
US8562528B2 (en) 2006-10-04 2013-10-22 Dexcom, Inc. Analyte sensor
US8298142B2 (en) 2006-10-04 2012-10-30 Dexcom, Inc. Analyte sensor
US7831287B2 (en) 2006-10-04 2010-11-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8478377B2 (en) 2006-10-04 2013-07-02 Dexcom, Inc. Analyte sensor
US8449464B2 (en) 2006-10-04 2013-05-28 Dexcom, Inc. Analyte sensor
EP2129285B1 (en) 2007-03-26 2014-07-23 Dexcom, Inc. Analyte sensor
US20200037875A1 (en) 2007-05-18 2020-02-06 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
US9839395B2 (en) 2007-12-17 2017-12-12 Dexcom, Inc. Systems and methods for processing sensor data
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
EP2326944B1 (en) 2008-09-19 2020-08-19 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
EP2355705A4 (en) 2008-11-11 2013-12-25 Isense Corp Long-term implantable biosensor
US20100198034A1 (en) 2009-02-03 2010-08-05 Abbott Diabetes Care Inc. Compact On-Body Physiological Monitoring Devices and Methods Thereof
US9351677B2 (en) 2009-07-02 2016-05-31 Dexcom, Inc. Analyte sensor with increased reference capacity
EP2448485B1 (en) 2009-07-02 2021-08-25 Dexcom, Inc. Analyte sensor
US8868151B2 (en) * 2009-08-14 2014-10-21 Bayer Healthcare Llc Electrochemical impedance spectroscopy enabled continuous glucose monitoring sensor system
WO2011025999A1 (en) * 2009-08-29 2011-03-03 Abbott Diabetes Care Inc. Analyte sensor
CA2765712A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Medical devices and methods
WO2011041531A1 (en) 2009-09-30 2011-04-07 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
USD924406S1 (en) 2010-02-01 2021-07-06 Abbott Diabetes Care Inc. Analyte sensor inserter
CA3135001A1 (en) 2010-03-24 2011-09-29 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
US11064921B2 (en) 2010-06-29 2021-07-20 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
EP4344633A2 (en) 2011-12-11 2024-04-03 Abbott Diabetes Care, Inc. Analyte sensor methods
US10598624B2 (en) 2014-10-23 2020-03-24 Abbott Diabetes Care Inc. Electrodes having at least one sensing structure and methods for making and using the same
WO2016183493A1 (en) 2015-05-14 2016-11-17 Abbott Diabetes Care Inc. Compact medical device inserters and related systems and methods
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
WO2016196516A1 (en) 2015-06-03 2016-12-08 William Kenneth Ward Measurement of glucose in an insulin delivery catheter by minimizing the adverse effects of insulin preservatives
CN115444410A (en) 2017-01-23 2022-12-09 雅培糖尿病护理公司 Applicator and assembly for inserting an in vivo analyte sensor
USD1002852S1 (en) 2019-06-06 2023-10-24 Abbott Diabetes Care Inc. Analyte sensor device
USD999913S1 (en) 2020-12-21 2023-09-26 Abbott Diabetes Care Inc Analyte sensor inserter
EP4307999A1 (en) 2021-03-19 2024-01-24 Dexcom, Inc. Drug releasing membrane for analyte sensor
CA3230350A1 (en) 2021-09-15 2023-03-23 Shanger Wang Bioactive releasing membrane for analyte sensor
WO2024050126A2 (en) 2022-09-02 2024-03-07 Dexcom, Inc. Continuous analyte sensor devices and methods
WO2024050124A1 (en) 2022-09-02 2024-03-07 Dexcom, Inc. Devices and methods for measuring a concentration of a target analyte in a biological fluid in vivo

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165407A (en) * 1990-04-19 1992-11-24 The University Of Kansas Implantable glucose sensor
US5387327A (en) * 1992-10-19 1995-02-07 Duquesne University Of The Holy Ghost Implantable non-enzymatic electrochemical glucose sensor
US5515848A (en) * 1991-10-22 1996-05-14 Pi Medical Corporation Implantable microelectrode

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890049A (en) 1973-09-17 1975-06-17 Howell Lab Inc Glossmeter for providing a linear response corresponding to true gloss readings
US4650547A (en) 1983-05-19 1987-03-17 The Regents Of The University Of California Method and membrane applicable to implantable sensor
US4484987A (en) 1983-05-19 1984-11-27 The Regents Of The University Of California Method and membrane applicable to implantable sensor
US4655880A (en) 1983-08-01 1987-04-07 Case Western Reserve University Apparatus and method for sensing species, substances and substrates using oxidase
US4627906A (en) 1983-10-03 1986-12-09 The Regents Of The University Of California Electrochemical sensor having improved stability
US4938860A (en) 1985-06-28 1990-07-03 Miles Inc. Electrode for electrochemical sensors
US5030310A (en) 1985-06-28 1991-07-09 Miles Inc. Electrode for electrochemical sensors
GB8529300D0 (en) 1985-11-28 1986-01-02 Ici Plc Membrane
US5286364A (en) 1987-06-08 1994-02-15 Rutgers University Surface-modified electochemical biosensor
US5540828A (en) 1987-06-08 1996-07-30 Yacynych; Alexander Method for making electrochemical sensors and biosensors having a polymer modified surface
US5200051A (en) * 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US5766934A (en) 1989-03-13 1998-06-16 Guiseppi-Elie; Anthony Chemical and biological sensors having electroactive polymer thin films attached to microfabricated devices and possessing immobilized indicator moieties
US5773270A (en) * 1991-03-12 1998-06-30 Chiron Diagnostics Corporation Three-layered membrane for use in an electrochemical sensor system
GB9105406D0 (en) 1991-03-14 1991-05-01 Ici Plc Sensor devices
US5310469A (en) 1991-12-31 1994-05-10 Abbott Laboratories Biosensor with a membrane containing biologically active material
GB9215971D0 (en) * 1992-07-28 1992-09-09 Univ Manchester Sensor devices
US5387329A (en) 1993-04-09 1995-02-07 Ciba Corning Diagnostics Corp. Extended use planar sensors
US5711861A (en) 1995-11-22 1998-01-27 Ward; W. Kenneth Device for monitoring changes in analyte concentration
US5914026A (en) 1997-01-06 1999-06-22 Implanted Biosystems Inc. Implantable sensor employing an auxiliary electrode
US6060327A (en) 1997-05-14 2000-05-09 Keensense, Inc. Molecular wire injection sensors
GB9717906D0 (en) * 1997-08-23 1997-10-29 Univ Manchester Sensor Devices And Analytical Methods
US6030827A (en) 1998-01-23 2000-02-29 I-Stat Corporation Microfabricated aperture-based sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165407A (en) * 1990-04-19 1992-11-24 The University Of Kansas Implantable glucose sensor
US5515848A (en) * 1991-10-22 1996-05-14 Pi Medical Corporation Implantable microelectrode
US5387327A (en) * 1992-10-19 1995-02-07 Duquesne University Of The Holy Ghost Implantable non-enzymatic electrochemical glucose sensor

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9993186B2 (en) 2003-07-25 2018-06-12 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
EP1648298A2 (en) * 2003-07-25 2006-04-26 DexCom, Inc. Oxygen enhancing membrane systems for implantable devices
EP1648298A4 (en) * 2003-07-25 2010-01-13 Dexcom Inc Oxygen enhancing membrane systems for implantable devices
WO2005011520A2 (en) 2003-07-25 2005-02-10 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US10610140B2 (en) 2003-07-25 2020-04-07 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US9895089B2 (en) 2003-08-01 2018-02-20 Dexcom, Inc. System and methods for processing analyte sensor data
US10786185B2 (en) 2003-08-01 2020-09-29 Dexcom, Inc. System and methods for processing analyte sensor data
EP2564768A1 (en) * 2003-08-14 2013-03-06 Isense Corporation Method of constructing a biosensor
US11559260B2 (en) 2003-08-22 2023-01-24 Dexcom, Inc. Systems and methods for processing analyte sensor data
US9724045B1 (en) 2003-08-22 2017-08-08 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9750460B2 (en) 2003-08-22 2017-09-05 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9649069B2 (en) 2003-08-22 2017-05-16 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US11589823B2 (en) 2003-08-22 2023-02-28 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US11564602B2 (en) 2003-11-19 2023-01-31 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US11000215B1 (en) 2003-12-05 2021-05-11 Dexcom, Inc. Analyte sensor
US11020031B1 (en) 2003-12-05 2021-06-01 Dexcom, Inc. Analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US10898113B2 (en) 2003-12-09 2021-01-26 Dexcom, Inc. Signal processing for continuous analyte sensor
US11638541B2 (en) 2003-12-09 2023-05-02 Dexconi, Inc. Signal processing for continuous analyte sensor
US9750441B2 (en) 2003-12-09 2017-09-05 Dexcom, Inc. Signal processing for continuous analyte sensor
US11246990B2 (en) 2004-02-26 2022-02-15 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US10835672B2 (en) 2004-02-26 2020-11-17 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US10966609B2 (en) 2004-02-26 2021-04-06 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US10709362B2 (en) 2004-07-13 2020-07-14 Dexcom, Inc. Analyte sensor
US10813576B2 (en) 2004-07-13 2020-10-27 Dexcom, Inc. Analyte sensor
US10709363B2 (en) 2004-07-13 2020-07-14 Dexcom, Inc. Analyte sensor
US11026605B1 (en) 2004-07-13 2021-06-08 Dexcom, Inc. Analyte sensor
US10722152B2 (en) 2004-07-13 2020-07-28 Dexcom, Inc. Analyte sensor
US11045120B2 (en) 2004-07-13 2021-06-29 Dexcom, Inc. Analyte sensor
US11064917B2 (en) 2004-07-13 2021-07-20 Dexcom, Inc. Analyte sensor
US10799159B2 (en) 2004-07-13 2020-10-13 Dexcom, Inc. Analyte sensor
US10799158B2 (en) 2004-07-13 2020-10-13 Dexcom, Inc. Analyte sensor
US11883164B2 (en) 2004-07-13 2024-01-30 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10993642B2 (en) 2004-07-13 2021-05-04 Dexcom, Inc. Analyte sensor
US10827956B2 (en) 2004-07-13 2020-11-10 Dexcom, Inc. Analyte sensor
US9055901B2 (en) 2004-07-13 2015-06-16 Dexcom, Inc. Transcutaneous analyte sensor
US10993641B2 (en) 2004-07-13 2021-05-04 Dexcom, Inc. Analyte sensor
US10980452B2 (en) 2004-07-13 2021-04-20 Dexcom, Inc. Analyte sensor
US10524703B2 (en) 2004-07-13 2020-01-07 Dexcom, Inc. Transcutaneous analyte sensor
US10918314B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10918313B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10918315B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10932700B2 (en) 2004-07-13 2021-03-02 Dexcom, Inc. Analyte sensor
US10617336B2 (en) 2005-03-10 2020-04-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10709364B2 (en) 2005-03-10 2020-07-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918316B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10925524B2 (en) 2005-03-10 2021-02-23 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918318B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10898114B2 (en) 2005-03-10 2021-01-26 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10856787B2 (en) 2005-03-10 2020-12-08 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918317B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610136B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US11051726B2 (en) 2005-03-10 2021-07-06 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10743801B2 (en) 2005-03-10 2020-08-18 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US11000213B2 (en) 2005-03-10 2021-05-11 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10716498B2 (en) 2005-03-10 2020-07-21 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610135B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610137B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10300507B2 (en) 2005-05-05 2019-05-28 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US10813577B2 (en) 2005-06-21 2020-10-27 Dexcom, Inc. Analyte sensor
US11432772B2 (en) 2006-08-02 2022-09-06 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US10349873B2 (en) 2006-10-04 2019-07-16 Dexcom, Inc. Analyte sensor
US11399745B2 (en) 2006-10-04 2022-08-02 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US11382539B2 (en) 2006-10-04 2022-07-12 Dexcom, Inc. Analyte sensor
US11373347B2 (en) 2007-06-08 2022-06-28 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US10653835B2 (en) 2007-10-09 2020-05-19 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US11744943B2 (en) 2007-10-09 2023-09-05 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US11160926B1 (en) 2007-10-09 2021-11-02 Dexcom, Inc. Pre-connected analyte sensors
US11102306B2 (en) 2008-02-21 2021-08-24 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US11147483B2 (en) 2008-03-28 2021-10-19 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9693721B2 (en) 2008-03-28 2017-07-04 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US10143410B2 (en) 2008-03-28 2018-12-04 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US10980461B2 (en) 2008-11-07 2021-04-20 Dexcom, Inc. Advanced analyte sensor calibration and error detection
US11437141B2 (en) 2009-04-30 2022-09-06 Dexcom, Inc. Performance reports associated with continuous sensor data from multiple analysis time periods
US10835161B2 (en) 2009-09-30 2020-11-17 Dexcom, Inc. Transcutaneous analyte sensor
US10667733B2 (en) 2009-09-30 2020-06-02 Dexcom, Inc. Transcutaneous analyte sensor
US11937927B2 (en) 2009-09-30 2024-03-26 Dexcom, Inc. Transcutaneous analyte sensor
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
US11706876B2 (en) 2017-10-24 2023-07-18 Dexcom, Inc. Pre-connected analyte sensors
US11350862B2 (en) 2017-10-24 2022-06-07 Dexcom, Inc. Pre-connected analyte sensors
US11382540B2 (en) 2017-10-24 2022-07-12 Dexcom, Inc. Pre-connected analyte sensors
US11943876B2 (en) 2017-10-24 2024-03-26 Dexcom, Inc. Pre-connected analyte sensors

Also Published As

Publication number Publication date
US20020169369A1 (en) 2002-11-14
US6613379B2 (en) 2003-09-02
WO2002089666A3 (en) 2002-12-12

Similar Documents

Publication Publication Date Title
US6613379B2 (en) Implantable analyte sensor
US11865289B2 (en) On-body microsensor for biomonitoring
US6965791B1 (en) Implantable biosensor system, apparatus and method
EP0525127B1 (en) Implantable glucose sensor
US20040074785A1 (en) Analyte sensors and methods for making them
EP2732837B1 (en) Combined sensor and infusion set using separated sites
CA2622503C (en) Sensor with layered electrodes
CN112244839B (en) Flexible electrode probe for long-term implantation and preparation method and equipment thereof
CN110678122A (en) Analyte sensor and method for manufacturing an analyte sensor
EP2163190A1 (en) Electrode system for measurement of an analyte concentration in-vivo
EP0149693A1 (en) Method of forming an antithrombogenic layer on medical devices
Ahmad et al. Minimizing tissue–material interaction in microsensor for subcutaneous glucose monitoring
JP2017093939A (en) Detection element, analyzer and insulin feeding device
JPH0217172B2 (en)
Chung et al. An implantable glucose sensor for closed-loop artificial pancreas
CN116898433A (en) Electrochemical sensor based on spiral electrode and preparation method thereof
CN115644866A (en) Application of SEBS (styrene-ethylene-butylene-styrene) as implantable bioelectrode substrate and implantable bioelectrode
CN116539691A (en) Bending-resistant working electrode for flexible electrochemical bioactive substance detection sensor
Yu Human trials of an implantable glucose sensor
JPS62133938A (en) Percataneous sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP