WO2002093529A1 - Dispositivo de detecciónde presencia de objetos en un ángulo muerto de un vehículo automóvil - Google Patents

Dispositivo de detecciónde presencia de objetos en un ángulo muerto de un vehículo automóvil Download PDF

Info

Publication number
WO2002093529A1
WO2002093529A1 PCT/ES2002/000128 ES0200128W WO02093529A1 WO 2002093529 A1 WO2002093529 A1 WO 2002093529A1 ES 0200128 W ES0200128 W ES 0200128W WO 02093529 A1 WO02093529 A1 WO 02093529A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection device
vehicle
sensors
magnetic field
detecting
Prior art date
Application number
PCT/ES2002/000128
Other languages
English (en)
French (fr)
Inventor
Francesc Daura Luna
Lluís MARTINEZ GARCIA
Original Assignee
Fico Mirrors S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fico Mirrors S.A. filed Critical Fico Mirrors S.A.
Priority to JP2002590124A priority Critical patent/JP4219173B2/ja
Priority to AT02714224T priority patent/ATE285617T1/de
Priority to ES02714224T priority patent/ES2236496T3/es
Priority to US10/478,042 priority patent/US7049946B2/en
Priority to EP02714224A priority patent/EP1414003B1/en
Priority to DE60202375T priority patent/DE60202375T2/de
Publication of WO2002093529A1 publication Critical patent/WO2002093529A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/15Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/12Mirror assemblies combined with other articles, e.g. clocks
    • B60R2001/1223Mirror assemblies combined with other articles, e.g. clocks with sensors or transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R2021/01306Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over monitoring vehicle inclination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0134Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the invention relates to a device for detecting the presence of objects in a blind spot of a motor vehicle, where the objects contain or are made of a ferromagnetic material in such a way that they generate a distortion of the earth's magnetic field.
  • the device is mounted on a motor vehicle, which has at least one dead angle, such that the detection device is capable of detecting the object located in the dead angle.
  • Conventional motor vehicles usually have rear-view mirrors, usually one internal and one or two external, which allow the user or driver to look back without the need for the user to turn on himself.
  • rear-view mirrors usually one internal and one or two external, which allow the user or driver to look back without the need for the user to turn on himself.
  • dead angles there are usually some areas, called dead angles, that are not covered by such mirrors.
  • the detection device is suitable for detecting an object located in the dead angle and comprises: a receiver capable of detecting electromagnetic waves, with a focusing device, and a photosensor that transforms said received electromagnetic waves into electrical signals, an electronic circuit that transforms electrical signals into digitized signals, a logical circuit that analyzes the digitized signals to analyze the presence of objects in the blind spot with a relative movement with respect to said vehicle, and that emits variable output signals depending on the result of the analysis, and some indicator elements, activated by the output signals, suitable for being perceived by the driver.
  • a receiver capable of detecting electromagnetic waves, with a focusing device, and a photosensor that transforms said received electromagnetic waves into electrical signals
  • an electronic circuit that transforms electrical signals into digitized signals
  • a logical circuit that analyzes the digitized signals to analyze the presence of objects in the blind spot with a relative movement with respect to said vehicle, and that emits variable output signals depending on the result of the analysis, and some indicator elements, activated by the output signals, suitable for being perceived by the driver.
  • optical systems are not free from problems in certain low visibility situations (glare, fog, etc.).
  • the object of the invention is to overcome these drawbacks.
  • This purpose is achieved by means of a device for detecting the presence of objects of the type indicated at the beginning, characterized in that it has means for detecting said distortion of said terrestrial magnetic field caused by said object.
  • the detection of the earth's magnetic field as well as possible distortions of it is not influenced by the environmental conditions (glare, fog, etc.) that cause problems in the detection devices of the optical type.
  • the invention allows to develop competitive cost detection devices.
  • the detection device comprises: [a] at least one magnetic field sensor, capable of generating electrical signals according to the detected magnetic field, [b] an electronic circuit that transforms the electrical signals into digitized signals, [c ] a logic circuit that analyzes the digitized signals to analyze the presence of the object in the dead angle, and that generates variable output signals depending on the result of the analysis, and [d] indicator elements, activated by the output signals.
  • the earth's magnetic field is distorted in the presence of a ferromagnetic material.
  • a conventional motor vehicle which has a significant amount of components made with ferromagnetic materials, creates a distortion in the earth's magnetic field in its surroundings.
  • This distorted magnetic field once captured by the sensor and processed by an electronic circuit, is analyzed by a logic circuit that determines whether the detected values correspond to the presence of an object in the dead angle.
  • the sensors can be any as long as they meet the requirements demanded by the invention. In this sense they can be, for example, flow interruption magnetometers ("flux-gate" sensor), Hall-type sensors, magneto-inductive sensors or magnetoresistive sensors.
  • the resolution that should preferably be able to detect should be less than or equal to 0.01 Gauss.
  • the detector be able to place the object in the space surrounding the vehicle, in particular it must be able to know if it is in the blind spot. In this sense it is advantageous that the sensors are capable of detecting at least two of the three spatial components of a magnetic field.
  • the magnetic field signals detected may be influenced by the inclination of the vehicle with respect to the horizontal. Therefore, it is advantageous that the detection device according to the invention additionally comprises a device for measuring the inclination of said vehicle with respect to a horizontal plane. In this way, this inclination can be taken into account when evaluating the detected values.
  • This inclination measuring device can be, for example, a device for detecting the third spatial component of the magnetic field, an inclinometer, etc.
  • the sensors in particular flux-gate sensors, can be supplied with current or voltage.
  • the sensitivity of the sensor depends on the amplitude of the current flowing through the primary, it is advantageous for the sensors to be supplied with current.
  • the detection device makes a reading of said magnetic field at least once every 100 ms.
  • the detection device is able to distinguish whether the object is another approaching vehicle or if it is another object.
  • the detection device is capable of eliminating possible false alarms by detecting the presence of objects that are not a danger to the vehicle, such as vehicles that circulate in the opposite direction, static objects of the road, parked vehicles, etc.
  • the logic circuit preferably comprises neural networks. The detection device can then be subjected to a learning stage that allows it to discern the conditions of potential risk to the vehicle from the remaining conditions that, while generating a distortion of the earth's magnetic field, do not represent a potential danger to the vehicle.
  • the detection device preferably has a radius of action of at least 4 meters, measured from each of said sensors. This radius of action can thus substantially cover the dead angle present in most conventional vehicles. It is interesting that the sensor is as far away as possible from the ferromagnetic materials of the vehicle, since these also introduce distortions in the earth's magnetic field. In this sense it is interesting that the sensor is housed inside an exterior rearview mirror assembly of said vehicle.
  • the distortion of the earth's magnetic field caused by a vehicle is of relatively small dimensions. In this sense, it can be advantageous to position the sensor on the rear of the vehicle. In this way, the detector's radius of action can be extended towards the rear of the vehicle.
  • the vehicle itself causes a distortion of the earth's magnetic field.
  • the part corresponding to the field distortion can be discounted from the signal generated by each of said sensors Earth magnetic caused by the car itself.
  • the detection device has a sensor in each of the exterior rearview mirrors of said vehicle.
  • the ability of the detection device to analyze risk situations can be improved if, to the detection characteristics of an approaching object, the ability to detect if the vehicle on which the detection device is mounted has been added has been added Initialized actions indicating an approach to the object.
  • the detection device it is advantageous for the detection device to be able to detect the start-up of an intermittent light and / or to be able to detect a turn in the steering wheel of the vehicle.
  • the detection device is capable of communicating various signals to the user or driver of the vehicle, which allow the warning signal to be qualified according to the risk of collision.
  • the indicator elements include light signals with at least two colors, where each color indicates a different warning level. It is also advantageous to include an output element that allows the representation of pictograms, where said output element is an array of LEDs or a graphic display.
  • the distortion of the Earth's magnetic field is small. In this sense, it is useful for detecting objects in the blind spot.
  • object detectors such as the one described in the aforementioned ES P200000378 document, which detect objects at greater distances, even outside the dead angle of the vehicle. It may be interesting that the detection device therefore includes other means for detecting the presence of objects, in addition to the means for detecting said distortion of the earth's magnetic field. In this way, the advantages of the detection of these magnetic distortions (such as their insensitivity to weather conditions, glare, etc.) can be combined with the advantages of the other detection means (such as the greater range of action) ).
  • Fig. 2 graphs of the magnetic field detected during a rotation.
  • Fig. 3 graphs of some functions of the magnetic field detected during a rotation.
  • Fig. 1 the detected magnetic field (Bx and By, in Gauss) is shown when the vehicle is advanced by an object (another vehicle) as a function of the distance (in cm) between centers of the two vehicles.
  • Curves 1 and 3 correspond to the driver's side mirror sensor (r1), while curves 2 and 4 correspond to the passenger side mirror sensor (r2). These curves are a function of the orientation of the vehicle in relation to the earth's magnetic field.
  • Fig. 2 the detected magnetic field (Bx and By, in Gauss) is shown when both vehicles perform a rotation (for example if both vehicles circulate through a curve keeping the relative position between them constant) depending on the angle turned (in sexagesimal degrees).
  • Curves 5 and 7 correspond to sensor r1 while curves 6 and 8 correspond to sensor r2.
  • Curves 9, 10, 11 and 12 are the curves corresponding to a rotation performed by the vehicle carrying the detection device in the absence of an object (in the absence of a second vehicle).
  • the vehicle is rotated 360 ° and the values (Bxmax, Bxmin, Bymax, Bymin) are determined for each of the sensors r1 and r2
  • Fig. 3 shows curves 13, 14, 15 and 16 that represent the case of the existence of an object in each of the quadrants.
  • the calibrated values that are obtained when there is no object form a line c of constant value and equal to 0. It is also interesting to obtain the data of the sum of the signals of the sensors r1 and r2 Bxsum and Bysum, also as calibrated values, which are also shown in Fig. 3.
  • the quadrant in which the object is located can be determined and, therefore, if it is in the dead angle.
  • curves 13 and 14 correspond to an object located at the front of the sensor.
  • both the position of the object and its relative speed with respect to the sensor can be determined.
  • the signal detected by the sensor is amplified and digitized by the corresponding electronic circuit.
  • the signal is very sensitive to all kinds of electromagnetic noises, particularly those generated by the vehicle itself, such as those generated by the turn signals. In this sense it is convenient to analyze and prepare conveniently the environment of the place where you want to position the sensor, and try to shield the sensor from possible sources of noise. It is also convenient to add the necessary filters to obtain the cleanest possible noise signal.
  • the correction of the sensor data to compensate for the effects of the distortion caused by the carrier vehicle of the detection device can be performed either on the analog signal or on the digital signal.
  • the detection device In order to know the orientation of the vehicle with respect to the terrestrial magnetic field, information is obtained on the three spatial components of the detected magnetic field, which are filtered or averaged over time. Information about a possible presence of an object is then determined from the orientation of the vehicle and the signals received, as previously mentioned. It is also possible that the detection device only works with magnetic field values of only two spatial components.
  • the signal can be treated analytically since the received signals are simple enough and without overlapping effects.
  • the received signals include a plurality of overlapping effects (other vehicles that circulate in different directions or that are stopped, fixed elements of the roadway, etc.).
  • a neuronal processor This neuronal processor is able to recognize situations of overtaking of the vehicle carrying the detection device by an object (another vehicle) once it has passed a learning stage. This saves the analytical resolution of complex mathematical equations.
  • the processor consists of a specialized neural machine, designed in VLSI technology and capable of complementing a layer of a special type of artificial neural network: the multilayer perceptron.
  • the recognition processor contains a central sequential process unit, connected to a parallel processor consisting of a series of process units or artificial neurons that operate simultaneously on the same data and that are optimized for the calculation of the output of a neural network of a multilayer perceptron.
  • the central processor and the parallel processor are housed in a highly complex integrated circuit based on semiconductors (chip).
  • the neural network can be trained by various methods, such as "reactive taboo search” or “backpropagation", which are known to a person skilled in the art. The training is done through a selected database that includes significant and paradigmatic cases of interest.
  • neural networks different from the multilayer perceptron can be used that can be implemented as an executable program in a central unit of sequential process.

Abstract

Dispositivo de detección de presecia de objetos en un ángulo muerto de un vehículo automóvil. La invención hace referencia a un dispositivo de detección de presencia de objetos en un ángulo muerto de un vehículo automóvil, donde los objetos contienen por lo menos un material ferromagnético de tal manera que generan una distorsión del campo magnético terrestre. El dispositivo va montado en un vehículo automóvil que presenta por lo menos un ángulo muerto. El dispositivo de detección es apto para detectar al objeto situado en el ángulo muerto porque dispone de unos medios de detección de la distorsión del campo magnético terrestre provocada por el objeto. Preferentemente incluye un circuito lógico con redes neuronales para el procesado de las señales recibidas de los sensores.

Description

DISPOSITIVO DE DETECCIÓN DE PRESENCIA DE OBJETOS EN UN ÁNGULO MUERTO DE UN VEHÍCULO AUTOMÓVIL
DESCRIPCIÓN
Objeto de la invención
La invención se refiere a un dispositivo de detección de presencia de objetos en un ángulo muerto de un vehículo automóvil, donde los objetos contienen o están fabricados de un material ferromagnético de tal manera que generan una distorsión del campo magnético terrestre. El dispositivo va montado en un vehículo automóvil, que presenta por lo menos un ángulo muerto, de tal manera que el dispositivo de detección es apto para detectar el objeto situado en el ángulo muerto.
Estado de la técnica
Los vehículos automóviles convencionales suelen disponer de unos espejos retrovisores, generalmente uno interno y uno o dos externos, que permiten al usuario o conductor ver hacia atrás sin necesidad de que el usuario se gire sobre sí mismo. Sin embargo, a pesar de disponer de una pluralidad de espejos, suelen quedar unas zonas, llamadas ángulos muertos, que no quedan cubiertas por dichos espejos.
Existen diversas alternativas, como el empleo de dispositivos de radar, el empleo de retrovisores basculantes, etc. que tienen por objeto cubrir estos ángulos muertos y el peligro que comportan. Sin embargo, no han resuelto totalmente el problema y/o son dispositivos de elevado coste y, por tanto, con una introducción en el mercado limitada.
También es conocido el empleo de sistemas que captan una imagen orientada hacia un ángulo muerto mediante una cámara CCD y que la muestran al usuario a través de una pantalla colocada en el habitáculo del vehículo. Estos sistemas permiten que el usuario pueda ver los ángulos muertos sin necesidad de incorporarse, sin embargo, presentan una serie de inconvenientes: requieren unos sistemas de transmisión de imagen con una calidad suficiente para que el usuario perciba una imagen clara, lo que requiere trabajar con una elevada cantidad de pixels, se debe disponer de espacio en el habitáculo para poder colocar la correspondiente pantalla, el sistema no procesa la imagen, sino que únicamente la transmite, etc. Son, por tanto, unos sistemas caros y que no colaboran activamente en la detección de situaciones de riesgo.
También existen unos dispositivos de detección de presencia de objetos, del tipo que van montados en un vehículo automóvil, que presenta por lo menos un ángulo muerto, donde el dispositivo de detección es apto para detectar un objeto situado en el ángulo muerto y comprende: un receptor apto para detectar unas ondas electromagnéticas, con un dispositivo focalizador, y un fotosensor que transforma dichas ondas electromagnéticas recibidas en unas señales eléctricas, un circuito electrónico que transforma las señales eléctricas en unas señales digitalizadas, un circuito lógico que analiza las señales digitalizadas para analizar la presencia de objetos en el ángulo muerto con un movimiento relativo respecto de dicho vehículo, y que emite unas señales de salida variables en función del resultado del análisis, y unos elementos indicadores, activados mediante las señales de salida, aptos para ser percibidos por el conductor. Estos dispositivos han sido descritos en el documento ES P200000378, que se incorpora en la presente descripción por referencia, y que representan una serie de mejoras sobre los dispositivos anteriormente existentes en el mercado.
Sin embargo, los sistemas de tipo óptico no están libres de problemas en determinadas situaciones de baja visibilidad (deslumbramiento, niebla, etc.).
Sumario de la invención
La invención tiene por objeto superar estos inconvenientes. Esta finalidad se consigue mediante un dispositivo de detección de presencia de objetos del tipo indicado al principio, caracterizado porque dispone de unos medios de detección de dicha distorsión de dicho campo magnético terrestre provocada por dicho objeto. Efectivamente, la detección del campo magnético terrestre así como de posibles distorsiones del mismo no está influenciada por las condiciones ambientales (deslumbramiento, niebla, etc.) que causan problemas en los dispositivos de detección de tipo óptico. Adicionalmente, la invención permite desarrollar unos dispositivos de detección de coste competitivo.
Preferentemente el dispositivo de detección comprende: [a] por lo menos un sensor de campo magnético, apto para generar unas señales eléctricas en función del campo magnético detectado, [b] un circuito electrónico que transforma las señales eléctricas en unas señales digitalizadas, [c] un circuito lógico que analiza las señales digitalizadas para analizar la presencia del objeto en el ángulo muerto, y que genera unas señales de salida variables en función del resultado del análisis, y [d] unos elementos indicadores, activados mediante las señales de salida. El campo magnético terrestre queda distorsionado ante la presencia de un material ferromagnético. Así un vehículo automóvil convencional, que tiene una cantidad importante de componentes hechos con materiales ferromagnéticos, crea una distorsión en el campo magnético terrestre en sus alrededores. La presencia de un objeto, asimismo compuesto por lo menos parcialmente con materiales ferromagnéticos, crea una segunda distorsión en el campo magnético. Este campo magnético distorsionado, una vez captado por el sensor y procesado por un circuito electrónico, es analizado por un circuito lógico que determina si los valores detectados corresponden a la presencia de un objeto en el ángulo muerto. Los sensores pueden ser cualesquiera con tal que cumplan con los requisitos exigidos por la invención. En este sentido pueden ser, por ejemplo, magnetómetros de interrupción de flujo (sensor "flux-gate"), sensores de tipo Hall, sensores magnetoinductivos o sensores magnetorresistivos. La resolución que preferentemente deben ser capaces de detectar debe ser menor o igual que 0,01 Gauss.
Es necesario que el detector sea capaz de situar al objeto en el espacio que rodea al vehículo, en particular ha de ser capaz de saber si está en el ángulo muerto. En este sentido es ventajoso que los sensores sean aptos para detectar por lo menos dos de las tres componentes espaciales de un campo magnético.
Las señales del campo magnético detectadas pueden estar influenciadas por la inclinación del vehículo respecto de la horizontal. Por tanto, es ventajoso que el dispositivo de detección de acuerdo con la invención comprenda, adicionalmente, un dispositivo de medición de la inclinación de dicho vehículo respecto de un plano horizontal. De esta forma se puede tener en cuenta dicha inclinación en el momento de evaluar los valores detectados. Este dispositivo de medición de la inclinación puede ser, por ejemplo, un dispositivo de detección de la tercera componente espacial del campo magnético, un inclinómetro, etc.
Los sensores, en particular los sensores flux-gate, pueden ser alimentados en corriente o en tensión. Sin embargo, dado que la sensibilidad del sensor depende de la amplitud de la corriente que circula por el primario, es ventajoso que los sensores se alimenten en corriente.
Preferentemente el dispositivo de detección realiza una lectura de dicho campo magnético por lo menos una vez cada 100 ms.
Ventajosamente el dispositivo de detección es apto para distinguir si el objeto es otro vehículo en aproximación o si es otro objeto. De esta manera el dispositivo de detección es capaz de eliminar posibles falsas alarmas al detectar la presencia de objetos que no son un peligro para el vehículo, como vehículos que circulan en sentido opuesto, objetos estáticos de la calzada, vehículos aparcados, etc. El circuito lógico comprende preferentemente unas redes neuronales. El dispositivo de detección puede ser entonces sometido a una etapa de aprendizaje que le permita discernir las condiciones de riesgo potencial para el vehículo de las restantes condiciones que, si bien generan una distorsión del campo magnético terrestre, no significan un peligro potencial para el vehículo.
El dispositivo de detección tiene preferentemente un radio de acción de por lo menos 4 metros, medidos a partir cada uno de dichos sensores. Este radio de acción puede cubrir así substancialmente el ángulo muerto presente en la mayoría de los vehículos convencionales. Interesa que el sensor esté lo más alejado posible de los materiales ferromagnéticos del vehículo, ya que éstos también introducen distorsiones en el campo magnético terrestre. En este sentido es interesante que el sensor esté alojado en el interior de un conjunto espejo retrovisor exterior de dicho vehículo.
Por otro lado, la distorsión del campo magnético terrestre provocada por un vehículo es de dimensiones relativamente pequeñas. En este sentido, puede ser ventajoso posicionar el sensor en la parte posterior del vehículo. De esta manera, se puede alargar el radio de acción del detector hacia la parte posterior del vehículo.
Como ya se ha indicado, el propio vehículo provoca una distorsión del campo magnético terrestre. Para extraer esta distorsión de la señal detectada por los sensores, es ventajoso disponer de dos sensores dispuestos simétricamente respecto del eje longitudinal del vehículo, y calcular la diferencia de las señales generadas por cada uno de dichos sensores. Adicionalmente, mediante unos datos de calibrado (que nos dan los valores de los sensores al rotar el vehículo sobre sí mismo, en ausencia de objetos) se puede descontar de la señal generada por cada uno de dichos sensores la parte correspondiente a la distorsión del campo magnético terrestre ocasionada por el propio vehículo automóvil. Preferentemente el dispositivo de detección dispone de un sensor en cada uno de los espejos retrovisores exteriores de dicho vehículo.
Opcionalmente se puede mejorar la capacidad del dispositivo de detección de analizar las situaciones de riesgo si, a las características de detección de un objeto que se aproxima, se le añade la capacidad de detectar si el vehículo en el que va montado el dispositivo de detección ha inicializado acciones indicadoras de una aproximación al objeto. En particular, es ventajoso que el dispositivo de detección sea capaz de detectar la puesta en marcha de una luz intermitente y/o que sea capaz de detectar un giro en el volante del vehículo.
También es interesante que el dispositivo de detección sea capaz de comunicar al usuario o conductor del vehículo diversas señales, que permitan matizar la señal de aviso en función del riesgo de colisión. Así es preferible que los elementos indicadores incluyan unas señales luminosas con por lo menos dos colores, donde cada color indica un nivel de aviso diferente. También es ventajoso incluir un elemento de salida que permita la representación de pictogramas, donde dicho elemento de salida es una matriz de LED's o una pantalla gráfica.
Asimismo puede haber una situación de riesgo si un pasajero del vehículo portador del dispositivo de detección abre una puerta sin mirar si se aproxima otro vehículo por detrás. Es, por tanto, ventajoso que el dispositivo de detección indique también a los pasajeros del vehículo dichas situaciones de riesgo.
Finalmente es ventajoso permitir que el dispositivo de detección actúe sobre el cierre de las puertas. Así, por ejemplo, puede bloquear una puerta si detecta una situación de riesgo.
Como ya se ha indicado, la distorsión del campo magnético terrestre es de reducidas dimensiones. En este sentido, es útil para detectar objetos en el ángulo muerto. Sin embargo, existen otros detectores de objetos, como por ejemplo el descrito en el ya citado documento ES P200000378, que detectan objetos a distancias mayores, incluso fuera del ángulo muerto del vehículo. Puede ser interesante que el dispositivo de detección incluya, por tanto, otros medios de detección de presencia de objetos, adicionalmente a los medios de detección de dicha distorsión del campo magnético terrestre. De esta manera se puede simultanear las ventajas de la detección de estas distorsiones magnéticas (como por ejemplo su insensibilidad a las condiciones climatológicas, de deslumbramiento, etc.) con las ventajas de los otros medios de detección (como por ejemplo el mayor radio de acción).
Breve descripción de los dibujos
Otras ventajas y características de la invención se aprecian a partir de la siguiente descripción, en la que, sin ningún carácter limitativo, se relata un modo preferente de realización de la invención, haciendo mención de los dibujos que se acompañan. Las figuras muestran: Fig. 1 , unos gráficos del campo magnético detectado durante un adelantamiento
Fig. 2, unos gráficos del campo magnético detectado durante una rotación. Fig. 3, unos gráficos de unas funciones del campo magnético detectadas durante una rotación.
Descripción detallada de la invención - Ejemplos de realización A continuación se describen unos ejemplos de formas de realización de la invención. Para ello se ha partido de un vehículo que dispone de dos sensores bidireccionales alojado cada uno de ellos en un espejo retrovisor del vehículo. A efectos de simplificación, se ha supuesto que el origen de coordenadas está en el centro geométrico del vehículo y que el eje X es el eje longitudinal del vehículo. El eje Y es horizontal y el eje Z es vertical. Cada sensor (r1 y r2) detecta las dos componentes del campo magnético Bx y By. El vehículo está orientado de tal manera que su eje X es paralelo al eje NS del campo magnético terrestre, y el vehículo está encarado hacia el norte magnético.
En la Fig. 1 se muestra el campo magnético detectado (Bx y By, en Gauss) al ser adelantado el vehículo por un objeto (otro vehículo) en función de la distancia (en cm) entre centros de los dos vehículos. Las curvas 1 y 3 corresponden al sensor del retrovisor del lado conductor (r1 ), mientras que las curvas 2 y 4 corresponden al sensor del retrovisor del lado acompañante (r2). Estas curvas son función de la orientación del vehículo en relación con el campo magnético terrestre.
En la Fig. 2 se muestra el campo magnético detectado (Bx y By, en Gauss) al efectuar ambos vehículos una rotación (por ejemplo si circulan ambos vehículos por una curva manteniendo constante la posición relativa entre ellos) en función del ángulo girado (en grados sexagesimales). Las curvas 5 y 7 corresponden al sensor r1 mientras que las curvas 6 y 8 corresponden al sensor r2. Las curvas 9, 10, 11 y 12 son las curvas correspondientes a una rotación realizada por el vehículo portador del dispositivo de detección en ausencia de un objeto (en ausencia de un segundo vehículo).
Una forma de realizar la calibración es mediante el siguiente procedimiento:
1. Se hace girar el vehículo 360° y se determinan los valores (Bxmax, Bxmin, Bymax, Bymin) para cada uno de los sensores r1 y r2
2. Se calculan los factores de corrección y de offset:
Xcorr = (Bymax - Bymin)/(Bxmax - Bxmín) Ycorr = (Bymax - Bymin)/(Bxmax - Bxmin) Xoff = [(Bxmax - Bxmin)/2 - Bxmax] Xcorr Xoff = [(Bymax - Bymin)/2 - BymaxJΥcorr
3. Se recalculan los valores del campo magnético medido como:
Bx' = Bxcorr Bx + Bxoff By' = Bycorr By + Byoff
A partir de los datos calibrados se puede detectar un objeto en cualquiera de los cuatro cuadrantes posibles, respecto del centro de coordenadas (centro del vehículo). En la Fig. 3 se muestran las curvas 13, 14, 15 y 16 que representan el caso de la existencia de un objeto en cada uno de los cuadrantes. En el eje vertical se representan los valores calibrados de:
Bxdif=Bx(r1 )-Bx(r2) Bydif=By(r1 )-By(r2)
y en el eje horizontal se representa el ángulo girado (en grados sexagesimales).
Los valores calibrados que se obtienen cuando no hay ningún objeto forman una recta c de valor constante e igual a 0. Asimismo es interesante obtener los datos de la suma de las señales de los sensores r1 y r2 Bxsum y Bysum , también como valores calibrados, que también se muestran en la Fig. 3.
Para determinar en qué cuadrante se halla el objeto se puede hacer mediante los datos Bydif. Con estos datos, y conociendo la orientación respecto del campo magnético terrestre del vehículo portador del dispositivo de detección se puede determinar el cuadrante en el que se encuentra el objeto y, por tanto, si se halla en el ángulo muerto. Así, por ejemplo, las curvas 13 y 14 corresponden a un objeto situado en la parte delantera del sensor.
Con estos datos y con unos gráficos equivalentes a los de la Fig. 1
(adelantamiento del vehículo portador del dispositivo de detección por otro vehículo) pero con los valores Bxsum, Bysum, Bxdíf, y Bydif indicados anteriormente se puede determinar tanto la posición del objeto como su velocidad relativa respecto del sensor.
En general, la señal detectada por el sensor es amplificada y digitalizada mediante el circuito electrónico correspondiente. La señal es muy sensible a toda clase de ruidos electromagnéticos, en particular los generados por el propio vehículo, como por ejemplo los generados por los intermitentes. En este sentido es conveniente analizar y preparar convenientemente el entorno del lugar donde se desea posicionar el sensor, e intentar apantallar el sensor de las posibles fuentes de ruido. También es conveniente añadir los filtros necesarios para obtener la señal lo más limpia posible de ruidos. La corrección de los datos de los sensores para compensar los efectos de la distorsión provocada por el vehículo portador del dispositivo de detección (la calibración anteriormente citada) puede realizarse bien sobre la señal analógica o bien sobre la señal digital.
Para conocer la orientación del vehículo respecto del campo magnético terrestre, se obtiene la información de las tres componentes espaciales del campo magnético detectado, que se filtran o se promedian en el tiempo. La información sobre una posible presencia de un objeto se determina entonces a partir de la orientación del vehículo y de las señales recibidas, como ya se ha comentado anteriormente. También es posible que el dispositivo de detección trabaje únicamente con valores del campo magnético de únicamente dos componentes espaciales.
En algunos casos sencillos la señal puede ser tratada analíticamente ya que las señales recibidas son suficientemente sencillas y sin efectos superpuestos. Sin embargo, en el caso de situaciones de tráfico más complejas, las señales recibidas incluyen una pluralidad de efectos superpuestos (otros vehículos que circulan en diversas direcciones o que están parados, elementos fijos de la calzada, etc.). En estos casos, es recomendable emplear un procesador neuronal. Este procesador neuronal es capaz de reconocer situaciones de adelantamiento del vehículo portador del dispositivo de detección por un objeto (otro vehículo) una vez ha superado una etapa de aprendizaje. Ello permite ahorrar la resolución analítica de ecuaciones matemáticas complejas. El procesador consiste en una máquina neuronal especializada, diseñada en tecnología VLSI y capaz de ¡mplementar una capa de un tipo especial de red neuronal artificial: el perceptron multicapa. El procesador de reconocimiento contiene una unidad central de proceso secuencial, conectada a un procesador paralelo que consiste en una serie de unidades de proceso o neuronas artificiales que operan simultáneamente sobre los mismos datos y que están optimizadas para el cálculo de la salida de una red neuronal de un perceptron multicapa. El procesador central y el procesador paralelo están alojados en un circuito integrado de alta complejidad basado en semiconductores (chip). La red neuronal puede ser entrenada mediante diversos métodos, como por ejemplo el "reactive tabú search" o el "backpropagation", que son conocidos por un experto en la materia. El entrenamiento se hace mediante una base de datos seleccionada que incluye casos significativos y paradigmáticos de interés.
Lógicamente, se pueden emplear otras redes neuronales diferentes del perceptron multicapa que pueda ser implementado como un programa ejecutable en una unidad central de proceso secuencial.

Claims

REIVINDICACIONFS
1.- Dispositivo de detección de presencia de objetos en un ángulo muerto de un vehículo automóvil, dichos objetos conteniendo por lo menos un material ferromagnético o estando fabricados de por lo menos un material ferromagnético de tal manera que generan una distorsión del campo magnético terrestre, dicho dispositivo siendo del tipo que va montado en un vehículo automóvil, dicho vehículo automóvil presentando por lo menos un ángulo muerto, donde dicho dispositivo de detección es apto para detectar dicho objeto situado en dicho ángulo muerto, caracterizado porque dispone de unos medios de detección de dicha distorsión de dicho campo magnético terrestre provocada por dicho objeto.
2.- Dispositivo de detección según la reivindicación 1 , caracterizado porque comprende: [a] por lo menos un sensor de campo magnético, apto para generar unas señales eléctricas en función de dicho campo magnético, [b] un circuito electrónico que transforma dichas señales eléctricas en unas señales digitalizadas, [c] un circuito lógico que analiza dichas señales digitalizadas para analizar la presencia de dicho objeto en dicho ángulo muerto, y que genera unas señales de salida variables en fun ón del resultado de dicho análisis, y [d] unos elementos indicadores, activados mediante dichas señales de salida.
3.- Dispositivo de detección según una de las reivindicaciones 1 ó
2, caracterizado porque dichos sensores son unos del grupo formado por magnetómetros de interrupción de flujo (sensor "flux-gate"), sensores de tipo Hall, sensores magnetoinductivos y sensores magnetorresistivos.
4.- Dispositivo de detección según una de las reivindicaciones 2 ó
3, caracterizado porque dichos sensores son aptos para detectar por lo menos dos de las tres componentes espaciales de un campo magnético.
5.- Dispositivo de detección según por lo menos una de las reivindicaciones 1 a 4, caracterizado porque comprende un dispositivo de medición de la inclinación de dicho vehículo respecto de un plano horizontal.
6.- Dispositivo de detección según por lo menos una de las reivindicaciones 2 a 5, caracterizado porque dichos sensores tienen una resolución menor o igual que 0,01 Gauss.
7.- Dispositivo de detección según por lo menos una de las reivindicaciones 2 a 6, caracterizado porque dichos sensores se alimentan en corriente.
8.- Dispositivo de detección según por lo menos una de las reivindicaciones 1 a 7, caracterizado porque realiza una lectura de dicho campo magnético por lo menos una vez cada 100 ms.
9.- Dispositivo de detección según por lo menos una de las reivindicaciones 1 a 8, caracterizado porque es apto para distinguir si dicho objeto es otro vehículo en aproximación o si es otro objeto.
10.- Dispositivo de detección según por lo menos una de las reivindicaciones 2 a 9, caracterizado porque dicho circuito lógico comprende unas redes neuronales.
11.- Dispositivo de detección según por lo menos una de las reivindicaciones 2 a 10, caracterizado porque tiene un radio de acción de por lo menos 4 metros, medidos a partir cada uno de dichos sensores.
12.- Dispositivo de detección según por lo menos una de las reivindicaciones 1 a 11 , caracterizado porque dispone de un sensor alojado en el interior de un conjunto espejo retrovisor exterior de dicho vehículo.
13.- Dispositivo de detección según la reivindicación 12, caracterizado porque dispone de un sensor en cada uno de los espejos retrovisores exteriores de dicho vehículo.
14.- Dispositivo de detección según por lo menos una de las reivindicaciones 1 a 13, caracterizado porque dispone de por lo menos un sensor en la parte posterior de dicho vehículo.
15.- Dispositivo de detección según por lo menos una de las reivindicaciones 1 a 14, caracterizado porque dispone de dos sensores dispuestos simétricamente respecto del eje longitudinal del vehículo, y porque calcula la diferencia de las señales generadas por cada uno de dichos sensores.
16.- Dispositivo de detección según por lo menos una de las reivindicaciones 2 a 15, caracterizado porque dispone de unos datos de calibrado que le permiten descontar de la señal generada por cada uno de dichos sensores la parte correspondiente a la distorsión del campo magnético terrestre ocasionada por el propio vehículo automóvil.
17.- Dispositivo de detección según por lo menos una de las reivindicaciones 1 a 16, caracterizado porque detecta, adicionalmente si dicho vehículo ha inicializado acciones indicadoras de una aproximación a dicho objeto.
18.- Dispositivo de detección según la reivindicación 17, caracterizado porque dichas acciones indicadoras comprenden por lo menos una de las acciones indicadores del grupo formado por: la puesta en marcha de una luz intermitente, efectuar un giro de un volante, y activar el dispositivo de apertura de puerta.
19.- Dispositivo de detección según por lo menos una de las reivindicaciones 1 a 18, caracterizado porque dichos elementos indicadores incluyen unas señales luminosas con por lo menos dos colores, donde cada color indica un nivel de aviso diferente.
20.- Dispositivo de detección según por lo menos una de las reivindicaciones 1 a 19, caracterizado porque dichos elementos indicadores incluyen un elemento de salida que permite la representación de pictogramas, donde dicho elemento de salida es una matriz de LED's o una pantalla.
21.- Dispositivo de detección según por lo menos una de las reivindicaciones 1 a 20, donde dicho vehículo dispone de unas puertas con un cierre de seguridad, caracterizado porque es apto para actuar sobre dicho cierre.
22.- Dispositivo de detección según por lo menos una de las reivindicaciones 1 a 21 , caracterizado porque comprende otros medios de detección de presencia de objetos, adicionalmente a dichos medios de detección de dicha distorsión de dicho campo magnético terrestre.
PCT/ES2002/000128 2001-05-16 2002-03-15 Dispositivo de detecciónde presencia de objetos en un ángulo muerto de un vehículo automóvil WO2002093529A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002590124A JP4219173B2 (ja) 2001-05-16 2002-03-15 自動車の目視不能スポットにおける物体の存在を検出するための装置
AT02714224T ATE285617T1 (de) 2001-05-16 2002-03-15 Einrichtung zum erkennen der anwesenheit von objekten in einem toten winkel eines kraftfahrzeugs
ES02714224T ES2236496T3 (es) 2001-05-16 2002-03-15 Dispositivo de deteccion de presencia de objetos en un angulo muerto de un vehiculo automovil.
US10/478,042 US7049946B2 (en) 2001-05-16 2002-03-15 Device for detecting the presence of objects in a blind angle of a motor vehicle
EP02714224A EP1414003B1 (en) 2001-05-16 2002-03-15 Device for detecting the presence of objects in a blind angle of a motor vehicle
DE60202375T DE60202375T2 (de) 2001-05-16 2002-03-15 Einrichtung zum erkennen der anwesenheit von objekten in einem toten winkel eines kraftfahrzeugs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200101105 2001-05-16
ES200101105A ES2177469B1 (es) 2001-05-16 2001-05-16 Dispositivo de deteccion de presencia de objetos en un angulo muerto de un vehiculo automovil.

Publications (1)

Publication Number Publication Date
WO2002093529A1 true WO2002093529A1 (es) 2002-11-21

Family

ID=8497719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2002/000128 WO2002093529A1 (es) 2001-05-16 2002-03-15 Dispositivo de detecciónde presencia de objetos en un ángulo muerto de un vehículo automóvil

Country Status (7)

Country Link
US (1) US7049946B2 (es)
EP (1) EP1414003B1 (es)
JP (1) JP4219173B2 (es)
AT (1) ATE285617T1 (es)
DE (1) DE60202375T2 (es)
ES (2) ES2177469B1 (es)
WO (1) WO2002093529A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005017856A1 (es) * 2003-08-18 2005-02-24 Fico Mirrors, Sa Sistema y método de detección magnética de presencia de objetos en un ángulo muerto de un vehículo automóvil
US7354166B2 (en) 2003-11-25 2008-04-08 Temic Automotive Of North America, Inc. Automatic viewing of vehicle blind spot

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158051B2 (en) * 2003-06-06 2007-01-02 Ford Global Technologies, Llc Lane changing assist system for an automotive vehicle
US7161472B2 (en) * 2003-06-06 2007-01-09 Ford Global Technologies, Llc Blind-spot warning system for an automotive vehicle
ES2259543B1 (es) * 2005-02-04 2007-11-16 Fico Mirrors, S.A. Sistema para la deteccion de objetos en una zona exterior frontal de un vehiculos, aplicable a vehiculos industriales.
WO2007121769A1 (en) 2006-04-26 2007-11-01 Analisi Tecnologica Innovadora Per A Processos Industrials Competitius, S.L. System and method for detecting the heart beat rate of a person in a vehicle, and system and method for detecting fatigue
ES2435212B1 (es) * 2012-06-15 2014-11-21 Matinsa Proyectos E Instalaciones Industriales, S.L. Dispositivo, sistema y método de detección de metales
CN109955777A (zh) * 2017-12-14 2019-07-02 蔚来汽车有限公司 用于提示车辆侧方区域状态的方法和装置
US10974727B2 (en) 2018-06-26 2021-04-13 Ford Global Technologies, Llc Transportation infrastructure communication and control
US10953871B2 (en) * 2018-06-26 2021-03-23 Ford Global Technologies, Llc Transportation infrastructure communication and control
US10474930B1 (en) * 2018-10-05 2019-11-12 StradVision, Inc. Learning method and testing method for monitoring blind spot of vehicle, and learning device and testing device using the same
US10984262B2 (en) * 2018-10-08 2021-04-20 StradVision, Inc. Learning method and testing method for monitoring blind spot of vehicle, and learning device and testing device using the same
JP7092641B2 (ja) * 2018-10-26 2022-06-28 京セラ株式会社 電子機器、電子機器の制御方法、及び電子機器の制御プログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4232286A (en) * 1977-05-18 1980-11-04 Walter Voll Apparatus to indicate the spacing between a vehicle and a metal article
GB2130729A (en) * 1982-10-12 1984-06-06 Plessey Co Plc Electronic compasses
GB2248692A (en) * 1990-10-09 1992-04-15 Marconi Gec Ltd Detecting localised magnetic field changes
EP0591743A1 (en) * 1992-10-05 1994-04-13 GILARDINI S.p.A. Device for detecting relative positions between vehicles, principally for anti-collision purposes
DE19534942C1 (de) * 1995-09-20 1998-05-28 Siemens Ag Verfahren zur Kollisionsvermeidung von einem entgegenkommenden Fahrzeug und einem ausweichenden Fahrzeug mit Hilfe neuronaler Netze
US6140933A (en) * 1999-03-02 2000-10-31 Gentex Corporation Rearview mirror assembly with internally mounted compass sensor
WO2001015110A1 (en) * 1999-08-26 2001-03-01 Automotive Systems Laboratory, Inc. Magnetic sensor
ES2164568A1 (es) * 1998-08-11 2002-02-16 Lazaro Manuel Lazaro Detector con discriminacion de objetos metalicos.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303205A (en) * 1990-02-26 1994-04-12 Trend Tec Inc. Vehicular distance measuring system with integral mirror display
US6370475B1 (en) * 1997-10-22 2002-04-09 Intelligent Technologies International Inc. Accident avoidance system
AU705003B2 (en) * 1995-06-12 1999-05-13 Toyoda Gosei Co. Ltd. Information indicator for vehicle
WO2001015108A1 (en) * 1999-08-26 2001-03-01 Automotive Systems Lyboratory, Inc. Magnetic sensor
US6424273B1 (en) * 2001-03-30 2002-07-23 Koninklijke Philips Electronics N.V. System to aid a driver to determine whether to change lanes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4232286A (en) * 1977-05-18 1980-11-04 Walter Voll Apparatus to indicate the spacing between a vehicle and a metal article
GB2130729A (en) * 1982-10-12 1984-06-06 Plessey Co Plc Electronic compasses
GB2248692A (en) * 1990-10-09 1992-04-15 Marconi Gec Ltd Detecting localised magnetic field changes
EP0591743A1 (en) * 1992-10-05 1994-04-13 GILARDINI S.p.A. Device for detecting relative positions between vehicles, principally for anti-collision purposes
DE19534942C1 (de) * 1995-09-20 1998-05-28 Siemens Ag Verfahren zur Kollisionsvermeidung von einem entgegenkommenden Fahrzeug und einem ausweichenden Fahrzeug mit Hilfe neuronaler Netze
ES2164568A1 (es) * 1998-08-11 2002-02-16 Lazaro Manuel Lazaro Detector con discriminacion de objetos metalicos.
US6140933A (en) * 1999-03-02 2000-10-31 Gentex Corporation Rearview mirror assembly with internally mounted compass sensor
WO2001015110A1 (en) * 1999-08-26 2001-03-01 Automotive Systems Laboratory, Inc. Magnetic sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005017856A1 (es) * 2003-08-18 2005-02-24 Fico Mirrors, Sa Sistema y método de detección magnética de presencia de objetos en un ángulo muerto de un vehículo automóvil
US7489234B2 (en) 2003-08-18 2009-02-10 Fico Mirrors, S.A. System and method for the magnetic detection of the presence of objects in a blind angle of an automobile vehicle
US7354166B2 (en) 2003-11-25 2008-04-08 Temic Automotive Of North America, Inc. Automatic viewing of vehicle blind spot

Also Published As

Publication number Publication date
JP4219173B2 (ja) 2009-02-04
DE60202375T2 (de) 2005-12-08
US20040233048A1 (en) 2004-11-25
DE60202375D1 (de) 2005-01-27
EP1414003A1 (en) 2004-04-28
ATE285617T1 (de) 2005-01-15
EP1414003B1 (en) 2004-12-22
ES2177469B1 (es) 2003-12-16
JP2004526267A (ja) 2004-08-26
US7049946B2 (en) 2006-05-23
ES2177469A1 (es) 2002-12-01
ES2236496T3 (es) 2005-07-16

Similar Documents

Publication Publication Date Title
ES2236496T3 (es) Dispositivo de deteccion de presencia de objetos en un angulo muerto de un vehiculo automovil.
US11267313B2 (en) Vehicular vision system with enhanced functionality
US8777431B2 (en) Integrated automatic compass for vehicle
WO2006082502A1 (es) Método y sistema para mejorar la supervisión de un ambiente exterior de un vehiculo automóvil
ES2391556T3 (es) Sistema de detección de objetos para vehículo
US9826200B2 (en) Rear obstruction detection
US6470273B2 (en) Collision warning system
KR20010102430A (ko) 내부장착의 컴패스 센서를 가진 후사경 어셈블리
US20060067378A1 (en) Apparatus and method for thermal detection
US5568137A (en) Vehicle lane guide and alerting device
KR20000062977A (ko) 대상물의 광정렬 및 이미지화 방법 및 시스템과 차량의좌석 점유자 존재 및 위치를 결정하여 전기 지시 신호를제공하는 시스템
WO2005017554A1 (es) Sistema y método para la supervisión de un ambiente exterior de un vehículo automóvil
US5684488A (en) Rearview mirror mounted detection signal sensor system
WO2006082503A1 (es) Sistema para detecciòn de objetos en una zona exterior frontal de un vehìculo aplicable a vehìculos industriales
US20120092315A1 (en) Method and device for determining a control signal
WO1999025584A1 (en) Tunnel sensor
JP6500692B2 (ja) 車両用防犯システム、車両用防犯方法
ES2325255T3 (es) Sistema y metodo de deteccion magnetica de presencia de objetos en un angulo muerto de un vehiculo automovil.
US6388566B1 (en) Infrared sensor device for motor-vehicles, adapted for detecting presence of an overtaking vehicle
JP4622606B2 (ja) 日射検出装置および車両用計器システム
JPH07167962A (ja) 車搭載用接近物検知センサおよびその連動装置
JP6796889B2 (ja) システムおよびプログラム等
ES2339474T3 (es) Procedimiento y dispositivo para la deteccion de una colision con un peaton.
US20050017859A1 (en) Object discriminating system for vehicles
KR20220019538A (ko) 오염 감지 장치 및 이를 이용한 오염 감지 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002590124

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002714224

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2002714224

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10478042

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2002714224

Country of ref document: EP