WO2002095856A2 - Brennstoffzelle - Google Patents

Brennstoffzelle Download PDF

Info

Publication number
WO2002095856A2
WO2002095856A2 PCT/DE2002/001518 DE0201518W WO02095856A2 WO 2002095856 A2 WO2002095856 A2 WO 2002095856A2 DE 0201518 W DE0201518 W DE 0201518W WO 02095856 A2 WO02095856 A2 WO 02095856A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell according
rubber
membrane
polymer substance
Prior art date
Application number
PCT/DE2002/001518
Other languages
English (en)
French (fr)
Other versions
WO2002095856A3 (de
Inventor
Werner Schunk
Michael Bruder
Uwe Heiber
Karl-Heinz Krause
Gerhard Merkmann
Original Assignee
Intech Thüringen Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intech Thüringen Gmbh filed Critical Intech Thüringen Gmbh
Priority to US10/476,046 priority Critical patent/US20040137296A1/en
Priority to EP02732405A priority patent/EP1405360A2/de
Publication of WO2002095856A2 publication Critical patent/WO2002095856A2/de
Publication of WO2002095856A3 publication Critical patent/WO2002095856A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell, comprising at least the following components:
  • a generic fuel cell is described in detail, for example, in the following publications, namely DE-A-36 40 108, DE-A-195 44 323, WO-A-94/09519, WO-A-01/28023, US-A-5 292 600 and in "Spectrum of Science” (July 1995), pages 92 to 98.
  • Fuel cells are electrochemical energy converters and comparable to battery systems that convert stored chemical energy into electricity. In contrast to today's conventional power generators, electricity is generated in a fuel cell without the detour via heat generation.
  • the heart of the fuel cell is the membrane, which may only be permeable to hydrogen ions (protons).
  • protons On the one hand, hydrogen flows past catalysts (e.g. platinum catalysts) and becomes protons and Split electrons on the other air or pure oxygen.
  • the protons pass through the membrane and, together with the electrons acting as the useful current, combine with the oxygen to form water, which remains as the only waste material.
  • the hydrogen releases the electrons at one electrode, the oxygen at the other electrode.
  • Plastic membranes are currently mostly used in fuel cells.
  • the relevant materials are in particular polysulfones (DE-A-198 09 119), thermoplastic polyether ketones and polytetrafluoroethylene with sulfonic perfluorovinyl ether side chains (Nafion 117-DuPont).
  • the published patent application WO-A-01/28023 also presents an elastomer membrane in the form of a vulcanized rubber mixture based on a halogenated rubber, with a carrier material which is loaded with an inorganic acid (for example phosphoric acid) being added to the rubber mixture in order to increase the proton conductivity ,
  • an inorganic acid for example phosphoric acid
  • the object of the invention is to provide a proton-conducting membrane whose base material itself does not have to be proton-conducting, so that a wide range of materials is available to fuel cell technology.
  • a membrane comprising a matrix, into which a proton-conducting polymer substance (ion conductor) is mixed on an organic basis, a new material-related method is described, combined with a high efficiency of the proton conductivity with a technically simple and inexpensive production.
  • the polymer substance is of low molecular weight, specifically with an average molecular weight of at least 1000, in particular at least 1500.
  • the average molecular weight here is a maximum of 5000.
  • the polymer substance can also be of high molecular weight, specifically with an average molecular face greater than 5000.
  • the average molecular weight in this case is a maximum of 50,000, in particular a maximum of 20,000.
  • the polymer substance has functional groups, preferably carboxyl and / or sulfonic acid groups, in particular again from the point of view of salt formation (sodium salt). In contrast to the carrier materials loaded with acids, they are not washed out.
  • the proportion of the matrix as the base material, into which the proton-conducting polymer substance is mixed is 20 to 50% by weight, based on the membrane.
  • the proportion of the polymer substance or the adduct, formed from a carrier material and the polymer substance comprises 80 to 50% by weight. The adduct formation is discussed in more detail at another point.
  • the matrix of the membrane can be a polymer material, preferably a thermoplastic, an elastomer or thermoplastic elastomer.
  • thermoplastic is preferably based on a halogenated and / or sulfonated polyalkene, in particular in turn a halogenated and / or sulfonated polyethylene.
  • an elastomer based on a rubber with a non-polar or polar character can also be used, the following types of rubber being used in particular:
  • Natural rubber (short form: NR)
  • Butadiene rubber (short form: BR)
  • EPDM Ethylene-propylene-diene copolymer
  • Chloroprene rubber (2-chlorobutadiene-1,3; short form: CR)
  • Chlorobutyl rubber (short form: CIIR)
  • Nitrile rubber (short form: NBR), especially carboxylated NBR
  • Acrylic rubber (short form: ACM)
  • Polypropyl oxide rubber (short form: PPOR)
  • thermoplastic elastomers in particular in connection with the materials mentioned above, can also be used, the proportion of the thermoplastic component being ⁇ the proportion of the elastomer component.
  • the matrix is an elastomer or a thermoplastic elastomer, it still contains conventional mixing ingredients, in particular a crosslinking agent for the rubber. These ingredients are a subsystem of the matrix and are related to the total amount of the matrix.
  • the polymer matrix based on the above-mentioned material mostly forms a blend or a block copolymer with the proton-conducting polymer substance.
  • the matrix in particular the polymer matrix presented in more detail here, advantageously also contains a carrier material, for example a molecular sieve with or without water of crystallization.
  • This carrier material is now loaded with the polymer substance as an ion conductor, with the formation of a corresponding adduct.
  • the proportion of the polymer substance is 60 60% by weight, in particular ⁇ 50% by weight, based on the adduct.
  • the matrix of the membrane can also be a nonwoven fabric formed from fibers, the nonwoven fabric being impregnated or coated with the proton-conducting polymer substance.
  • Fig. 2 shows the electrochemical reaction sequence of a fuel cell.
  • the fuel cell 1 comprises a membrane 2 as an electrolyte, comprising a matrix into which an organic-based proton-conducting polymer substance is mixed.
  • the membrane 2 is covered on both sides by catalyst layers 3.
  • Gas-permeable electrodes in the form of an anode 4 and cathode 5 rest on the outwardly facing surface of the catalyst layers 3.
  • the electrically conductive plates 6 delimit the fuel cell on the bottom or cathode side, these plates forming a structural unit with the gas-permeable electrodes.
  • Air is usually sufficient as an oxygen supplier.
  • the membrane can be used for a low-temperature fuel cell at an operating temperature ⁇ 100 ° C.
  • the advantage of the novel membrane is that even material that has no or only a low proton conductivity, but has other advantageous material properties, for example natural rubber, can be activated in a proton-conducting manner by mixing in the ion conductor.
  • Fuel cell single cell proton-conducting membrane catalyst layer electrode (anode) electrode (cathode) electrically conductive plate (bipolar plate) external circuit of electrical consumers

Abstract

Die Erfindung betrifft eine Brennstoffzelle (1), umfassend wenigstens folgende Bauteile: eine protonenleitende Membran (2) als Elektrolyt; Katalysatorschichten (3), die beiderseits die Membran (2) überdecken; gasdurchlässige Elektroden in Form einer Anode (4) und Kathode (5), die an der nach aussen weisenden Oberfläche der Katalysatorschichten (3) anliegen; elektrisch leitfähige Platten (6), welche die Elektroden in dicht benachbarten Abständen elektrisch leitend berühren und gemeinsam mit den Elektroden gasführende Kanäle begrenzen; sowie Gasanschlüsse für die Zufuhr von Wasserstoff (H2) einerseits und Sauerstoff (O2) andererseits. Die erfindungsgemässe Brennstoffzelle (1) zeichnet sich dadurch aus, dass die Membran (2) eine Matrix umfasst, in die eine protonenleitende Polymersubstanz auf organischer Basis eingemischt ist.

Description

Brennstoffzelle
Beschreibung
Die Erfindung betrifft eine Brennstoffzelle, umfassend wenigstens folgende Bauteile:
- eine protonenleitende Membran als Elektrolyt;
Katalysatorschichten, die beiderseits die Membran überdecken;
- gasdurchlässige Elektroden in Form einer Anode und Kathode, die an der nach außen weisenden Oberfläche der Katalysatorschichten anliegen;
- elektrisch leitfähige Platten, welche die Elektroden in dicht benachbarten Abständen elektrisch leitend berühren und gemeinsam mit den Elektroden gasführende Kanäle begrenzen; sowie
- Gasanschlüsse für die Zufuhr von Wasserstoff einerseits und Sauerstoff andererseits.
Eine gattungsgemäße Brennstoffzelle wird beispielsweise in folgenden Druckschriften ausführlich beschrieben, nämlich DE-A-36 40 108, DE-A-195 44 323, WO-A-94/09519, WO-A-01/28023, US-A-5 292 600 und in „Spektrum der Wissenschaft" (Juli 1995), Seiten 92 bis 98.
Brennstoffzellen sind elektrochemische Energieumwandler und vergleichbar mit Batteriensystemen, die gespeicherte chemische Energie in Strom umwandeln. Im Gegensatz zu den heutigen konventionellen Stromerzeugern erfolgt die Stromerzeugung in einer Brennstoffzelle ohne den Umweg über die Wärmeerzeugung.
Herzstück der Brennstoffzelle ist die Membran, die nur für Wasserstoff-Ionen (Protonen) durchlässig sein darf. Auf der einen Seite strömt Wasserstoff an Katalysatoren (z.B. Platin-Katalysatoren) vorbei und wird dabei in Protonen und Elektronen gespalten, auf der anderen Luft oder reiner Sauerstoff. Die Protonen treten durch die Membran und vereinigen sich zusammen mit den als Nutzstrom fungierenden Elektronen mit dem Sauerstoff zu Wasser, das als einziger Abfallstoff übrigbleibt. Mit anderen Worten: Der Wasserstoff gibt die Elektronen an der einen Elektrode ab, der Sauerstoff übernimmt sie an der anderen Elektrode.
Derzeit werden zumeist Kunststoffmembranen in Brennstoffzellen eingesetzt. Die diesbezüglichen Werkstoffe sind insbesondere Polysulfone (DE-A-198 09 119), thermoplastische Polyetherketone und Polytetrafluorethylen mit sulfonischen Perfluorvinylether-Seitenketten (Nafion 117-DuPont).
In der Offenlegungsschrift WO-A-01/28023 wird ferner eine Elastomermembran in Form einer vulkanisierten Kautschukmischung auf der Basis eines halogenierten Kautschuks vorgestellt, wobei zwecks Erhöhung der Protonenleitfähigkeit der Kautschukmischung ein Trägermaterial beigefügt ist, das mit einer anorganischen Säure (z.B. Phoshorsäure) beladen ist.
Bislang war die Zielsetzung, Membranen herzustellen, deren das Membrangerüst bildende Basiswerkstoff protonenleitend ist, und zwar möglichst ohne Zusatzstoffe. Auf diese Weise war es möglich, Werkstoffe (z.B. Nafion) mit hoher protonenleitender Effizienz einzusetzen. Allerdings musste dann häufig in Kauf genommen werden, dass diese Werkstoffe hinsichtlich Strukturfestigkeit und anderer Anforderungen mechanischer, physikalischer und/oder chemischer Art ihre Grenzen hatten. Auch die Betriebstemperatur hatte einen nicht unerheblichen Einfluss auf die protonenleitende Leistungsfähigkeit dieser Werkstoffe.
Die zusätzliche Einmischung eines mit einer Säure beladenen Trägermaterials führte wiederum zumeist zu einer Auswaschung der Säure.
Die Aufgabe der Erfindung besteht nun darin, eine protonenleitende Membran bereitzustellen, dessen Basiswerkstoff selbst nicht protonenleitend sein muss, so dass der Brennstoffzellentechnik ein breites Werkstoffspektrum zur Verfügung steht. Mit der erfindungsgemäßen Brennstoffzelle unter Verwendung einer Membran, umfassend eine Matrix, in die eine protonenleitende Polymersubstanz (lonenleiter) auf organischer Basis eingemischt ist, wird ein neuer werkstoffmäßiger Weg beschriften, verbunden mit einer hohen Effizienz der Protonenleitfähigkeit bei gleichzeitig technisch einfacher und kostengünstiger Herstellung.
Die Polymersubstanz ist niedermolekular, und zwar bei einem mittleren Molekulargewicht von wenigstens 1000, insbesondere wenigstens 1500. Das mittlere Molekulargewicht beträgt hier maximal 5000.
Alternativ hierzu kann die Polymersubstanz auch hochmolekular sein, und zwar bei einem mittleren Molekulargesicht von größer 5000. Das mittlere Molekulargewicht beträgt in diesem Fall maximal 50000, insbesondere maximal 20000.
Die Polymersubstanz weist funktionelle Gruppen auf, vorzugsweise Carboxyl- und/oder Sulfonsäure-Gruppen, insbesondere wiederum unter dem Gesichtspunkt der Salzbildung (Natrium-Salz). Eine Herauswaschung findet im Gegensatz zu den mit Säuren beladenen Trägermaterialien nicht statt.
Der Anteil der Matrix als Basiswerkstoff, in die die protonenleitende Polymersubstanz eingemischt ist, beträgt 20 bis 50 Gew.-%, und zwar bezogen auf die Membran. Der Anteil der Polymersubstanz bzw. des Adduktes, gebildet aus einem Trägermaterial und der Polymersubstanz, umfasst 80 bis 50 Gew.-%. Auf die Adduktbildung wird an einer andern Stelle noch näher eingegangen.
Die Matrix der Membran kann ein Polymerwerkstoff sein, vorzugsweise ein thermoplastischer Kunststoff, ein Elastomer oder thermoplastisches Elastomer.
Die thermoplastische Kunststoff basiert vorzugsweise auf einem halogenierten und/oder sulfonierten Polyalken, insbesondere wiederum einem halogenierten und/oder sulfonierten Polyethylen. Alternativ hierzu kann auch ein Elastomer auf der Basis eines Kautschuks mit unpolarem oder polarem Charakter verwendet werden, wobei insbesondere folgende Kautschuktypen zum Einsatz kommen:
Naturkautschuk (Kurzform: NR)
Butadien-Kautschuk (Kurzform: BR)
Ethylen-Propylen-Dien-Mischpolymerisat (Kurzform: EPDM)
Fluorkautschuk (Kurzform: FKM)
Chloroprenkautschuk (2-Chlorbutadien-1,3; Kurzform: CR)
Chlorbutylkautschuk (Kurzform: CIIR)
Brombutylkautschuk (Kurzform: BIIR)
Nitrilkautschuk (Kurzform: NBR), insbesondere carboxylierter NBR
Acrylatkautschuk (Kurzform: ACM)
Polyoxidkautschuk (Kurzform: POR)
Polypropyloxidkautschuk (Kurzform: PPOR)
Auch thermoplastische Elastomere, insbesondere in Verbindung mit den oben genannten Werkstoffen, sind einsetzbar, wobei der Anteil der thermoplastischen Komponente ≥ dem Anteil der Elastomerkomponente ist.
Ist die Matrix ein Elastomer oder ein thermoplastisches Elastomer, so enthält diese noch übliche Mischungsingredienzien, insbesondere ein Vernetzungsmittel für den Kautschuk. Diese Ingredienzien sind ein Teilsystem der Matrix und stehen in Verbindung mit der Gesamtmengenangabe der Matrix.
Die Polymermatrix auf der oben genannten Werkstoffbasis bildet mit der protonenleitenden Polymersubstanz zumeist ein Blend oder ein Blockcopolymerisat.
Vorteilhafterweise enthält die Matrix, insbesondere die hier näher vorgestellte Polymermatrix, zusätzlich ein Trägermaterial, beispielsweise ein Molekularsieb mit oder ohne Kristallwasser. Dieses Trägermaterial wird nun mit der Polymersubstanz als lonenleiter beladen, und zwar unter Bildung eines entsprechenden Adduktes. Der Anteil der Polymersubstanz beträgt ≤ 60 Gew.-%, insbesondere ≤ 50 Gew.-%, und zwar bezogen auf das Addukt. Die Matrix der Membran kann auch ein aus Fasern gebildeter Vliesstoff sein, wobei der Vliesstoff mit der protonenleitenden Polymersubstanz getränkt oder bestrichen ist.
Die Erfindung wird nun anhand schematischer Darstellungen erläutert. Es zeigen:
Fig. 1 eine Brennstoffzelle;
Fig. 2 den elektrochemischen Reaktionsablauf einer Brennstoffzelle.
Nach Fig. 1 umfasst die Brennstoffzelle 1 eine Membran 2 als Elektrolyt, umfassend eine Matrix, in die eine protonenleitende Polymersubstanz auf organischer Basis eingemischt ist. Die Membran 2 wird dabei beiderseits von Katalysatorschichten 3 überdeckt. An der nach außen weisenden Oberfläche der Katalysatorschichten 3 liegen gasdurchlässige Elektroden in Form einer Anode 4 und Kathode 5 an. Die elektrisch leitfähigen Platten 6 begrenzen die Brennstoffzelle anöden- bzw. kathodenseitig, wobei diese Platten mit den gasdurchlässigen Elektroden eine bauliche Einheit bilden. Ferner sind Gasanschlüsse für den Wasserstoff (H2) und Sauerstoff (02) vorhanden.
Mehrere Einzelzellen 1 lassen sich nun zu Zellenstapeln verschalten, wobei die Membran bei einer Schichtstärke von zumeist 0,05 bis 1 mm, insbesondere 0,1 bis 0,2 mm, zu einem geringen Gesamtbauraum beiträgt.
Fig. 2 zeigt den elektrochemischen Reaktionsablauf einer Brennstoffzelle mit folgenden Teilabläufen:
- erste Einzelreaktion an der Anode 4 (H2 → 2H+ + 2e);
- Protonenwanderung durch die Membran 2;
- Elektronenfluss über einen äußeren Stromkreis 7, der mit einem elektrischen Verbraucher 8 in Verbindung steht; - zweite Einzelreaktion an der Kathode 5 (2H+ + 2e + 1/2O2 → H2O).
Da es zu teuer wäre, das vorhandene Tankstellennetz durch ein Wasserstoffnetz zu ersetzen, geht die Entwicklung dahin, den Wasserstoff direkt an Bord des Autos zu erzeugen, vorzugsweise aus Methanol, das sich leicht aus Erdgas oder auch aus nachwachsenden Rohstoffen gewinnen lässt und das wie Benzin getankt werden kann. Dazu ist ein Reformierungsreaktor als eine kleine Chemieanlage nötig. Ferner ist die Direkt-Methanol-Brennstoffzelle mit internem Reformer unter Verwendung einer Reformerschicht bekannt (DE-A-199 45 667).
Als Sauerstofflieferant genügt zumeist die Luft.
Die Membran kann für eine Niedrigtemperatur-Brennstoffzelle bei einer Betriebstemperatur < 100°C verwendet werden.
Der Vorteil der neuartigen Membran ist, dass selbst Werkstoff, die keine oder nur eine geringe Protonenleitfähigkeit aufweisen, jedoch andere vorteilhafte Werkstoffeigenschaften haben, beispielsweise Naturkautschuk, durch das Einmischen des lonenleiters protonenleitend aktiviert werden.
Bezugszeichenliste
Brennstoffzelle (Einzelzelle) protonenleitende Membran Katalysatorschicht Elektrode (Anode) Elektrode (Kathode) elektrisch leitfähige Platte (bipolare Platte) äußerer Stromkreis elektrischer Verbraucher

Claims

Patentansprüche
1. Brennstoffzelle (1), umfassend wenigstens folgende Bauteile:
- eine protonenleitende Membran (2) als Elektrolyt;
- Katalysatorschichten (3), die beiderseits die Membran (2) überdecken;
- gasdurchlässige Elektroden in Form einer Anode (4) und Kathode (5), die an der nach außen weisenden Oberfläche der Katalysatorschichten (3) anliegen;
- elektrisch leitfähige Platten (6), welche die Elektroden in dicht benachbarten Abständen elektrisch leitend berühren und gemeinsam mit den Elektroden gasführende Kanäle begrenzen; sowie
- Gasanschlüsse für die Zufuhr von Wasserstoff einerseits und Sauerstoff andererseits;
dadurch gekennzeichnet, dass
- die Membran (2) eine Matrix umfasst, in die eine protonenleitende Polymersubstanz auf organischer Basis eingemischt ist.
2. Brennstoffzelle nach Anspruch 1, dadurch gekennzeichnet, dass die Polymersubstanz niedermolekular ist, und zwar bei einem mittleren Molekulargewicht von wenigstens 1000, insbesondere wenigstens 1500.
3. Brennstoffzelle nach Anspruch 2, dadurch gekennzeichnet, dass das mittlere Molekulargewicht maximal 5000 beträgt.
4. Brennstoffzelle nach Anspruch 1 , dadurch gekennzeichnet, dass die Polymersubstanz hochmolekular ist, und zwar bei einem mittleren Molekulargewicht von größer 5000.
5. Brennstoffzelle nach Anspruch 4, dadurch gekennzeichnet, dass das mittlere Molekulargewicht maximal 50000, insbesondere maximal 20000, beträgt.
6. Brennstoffzelle nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Polymersubstanz funktionelle Gruppen, vorzugsweise Carboxyl- und/oder Sulfonsäure-Gruppen, aufweist.
7. Brennstoffzelle nach Anspruch 6, dadurch gekennzeichnet, dass die Polymersubstanz ein Salz der ersten oder zweiten Hauptgruppe des Periodensystems, vorzugsweise ein Natrium-Salz, bildet.
8. Brennstoffzelle nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Anteil der Matrix 20 bis 50 Gew.-% beträgt, und zwar bezogen auf die Membran (2).
9. Brennstoffzelle nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Matrix der Membran (2) ein Polymerwerkstoff, vorzugsweise ein thermoplastischer Kunststoff, ein Elastomer oder ein thermoplastisches Elastomer ist.
10. Brennstoffzelle nach Anspruch 9, dadurch gekennzeichnet, dass ein thermoplastischer Kunststoff auf der Basis eines halogenierten und/oder sulfonierten Polyalkens Verwendung findet.
11. Brennstoffzelle nach Anspruch 10, dadurch gekennzeichnet, dass ein halogeniertes und/oder sulfoniertes Polyethylen Verwendung findet.
12. Brennstoffzelle nach Anspruch 9, dadurch gekennzeichnet, dass ein Elastomer auf der Basis eines Kautschuks mit unpolarem Charakter Verwendung findet.
13. Brennstoffzelle nach Anspruch 12, dadurch gekennzeichnet, dass Naturkautschuk, Butadien-Kautschuk oder ein Ethylen-Propylen-Dien- Mischpolymerisat Verwendung findet.
14. Brennstoffzelle nach Anspruch 9, dadurch gekennzeichnet, dass ein Elastomer auf der Basis eines Kautschuks mit polarem Charakter Verwendung findet.
15. Brennstoffzelle nach Anspruch 14, dadurch gekennzeichnet, dass ein halogenierter Kautschuk auf der Basis Fluor, Chlor oder Brom Verwendung findet.
16. Brennstoffzelle nach Anspruch 15, dadurch gekennzeichnet, dass Fluorkautschuk, Chloroprenkautschuk, Chlorbutylkautschuk oder insbesondere Brombutylkautschuk Verwendung findet.
17. Brennstoffzelle nach Anspruch 14, dadurch gekennzeichnet, dass Nitrilkautschuk Verwendung findet.
18. Brennstoffzelle nach Anspruch 14, dadurch gekennzeichnet, dass Acrylatkautschuk Verwendung findet.
19. Brennstoffzelle nach Anspruch 14, dadurch gekennzeichnet, dass Polyoxidkautschuk, vorzugsweise Polypropyloxidkautschuk, Verwendung findet.
20. Brennstoffzelle nach Anspruch 14, dadurch gekennzeichnet, dass carboxylierter Kautschuk, vorzugsweise carboxylierter Nitrilkautschuk, Verwendung findet.
21. Brennstoffzelle nach Anspruch 9, dadurch gekennzeichnet, dass das thermoplastische Elastomer aus einer thermoplastischen Komponente gemäß Anspruch 10 oder 11 und einer Elastomerkomponente gemäß einem der Ansprüche 12 bis 20 gebildet ist.
22. Brennstoffzelle nach Anspruch 21, dadurch gekennzeichnet, dass der Anteil der thermoplastischen Komponente > dem Anteil der Elastomerkomponente ist.
23. Brennstoffzelle nach einem der Ansprüche 1 bis 22, insbesondere nach einem der Ansprüche 9 bis 22, dadurch gekennzeichnet, dass in die Matrix der Membran (2) zusätzlich ein Trägermaterial eingemischt ist.
24. Brennstoffzelle nach Anspruch 23, dadurch gekennzeichnet, dass das Trägermaterial mit der Polymersubstanz beladen ist, und zwar unter Bildung eines entsprechenden Adduktes.
25. Brennstoffzelle nach Anspruch 24, dadurch gekennzeichnet, dass der Anteil der Polymersubstanz ≤ 60 Gew.-%, insbesondere ≤ 50 Gew.-%, beträgt, und zwar bezogen auf das Addukt.
26. Brennstoffzelle nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Matrix der Membran (2) ein aus Fasern gebildeter Vliesstoff ist.
27. Brennstoffzelle nach Anspruch 26, dadurch gekennzeichnet, dass der Vliesstoff mit der Polymersubstanz getränkt ist.
28. Brennstoffzelle nach Anspruch 26, dadurch gekennzeichnet, dass der Vliesstoff mit der Polymersubstanz bestrichen ist.
PCT/DE2002/001518 2001-05-18 2002-04-25 Brennstoffzelle WO2002095856A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/476,046 US20040137296A1 (en) 2001-05-18 2002-04-25 Fuel cell
EP02732405A EP1405360A2 (de) 2001-05-18 2002-04-25 Brennstoffzelle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10124713.3 2001-05-18
DE10124713 2001-05-18

Publications (2)

Publication Number Publication Date
WO2002095856A2 true WO2002095856A2 (de) 2002-11-28
WO2002095856A3 WO2002095856A3 (de) 2003-02-20

Family

ID=7685580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/001518 WO2002095856A2 (de) 2001-05-18 2002-04-25 Brennstoffzelle

Country Status (4)

Country Link
US (1) US20040137296A1 (de)
EP (1) EP1405360A2 (de)
DE (1) DE10218371A1 (de)
WO (1) WO2002095856A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007103832A2 (en) * 2006-03-02 2007-09-13 Board Of Regents, The University Of Texas System Fuel-powered actuators and methods of using same
ES2310484B1 (es) * 2007-06-26 2010-01-08 Consejo Superior De Investigaciones Cientificas Membarana hibrida organico-inorganico de intercambio ionico, su preparacion y utilizacion en dispositivos electroquimicos.
US10266949B2 (en) * 2007-10-15 2019-04-23 Lawrence Livermore National Security, Llc Actuation via surface chemistry induced surface stress

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599614A (en) * 1995-03-15 1997-02-04 W. L. Gore & Associates, Inc. Integral composite membrane
US5679482A (en) * 1994-05-23 1997-10-21 Dais Corporation Fuel cell incorporating novel ion-conducting membrane
US6156451A (en) * 1994-11-10 2000-12-05 E. I. Du Pont De Nemours And Company Process for making composite ion exchange membranes
WO2000074827A2 (de) * 1999-04-30 2000-12-14 Univ Stuttgart Inst Fuer Chemi Komposite und kompositmembranen
WO2001028023A2 (de) * 1999-10-12 2001-04-19 Intech Thüringen Gmbh Brennstoffzelle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151390A (en) * 1986-06-13 1992-09-29 Toa Nenryo Kogyo Kabushiki Kaisha Silicon nitride-based fibers and composite material reinforced with fibers
US5292600A (en) * 1992-08-13 1994-03-08 H-Power Corp. Hydrogen power cell
FR2759743B1 (fr) * 1997-02-17 1999-04-02 Peugeot Membrane elastique impermeable aux gaz et accumulateur hydropneumatique equipe de cette membrane
US6381121B1 (en) * 1999-05-24 2002-04-30 Showa Denko Kabushiki Kaisha Solid electrolytic capacitor
JP4470271B2 (ja) * 2000-03-31 2010-06-02 株式会社エクォス・リサーチ 燃料電池および燃料電池装置
CA2353378C (en) * 2000-07-24 2008-09-23 Asahi Glass Company, Limited Anion exchange membrane, process for its production and solution treating apparatus
EP1220344B2 (de) * 2000-12-26 2012-08-01 Asahi Glass Company, Limited Festpolymer-Elektrolyt Membran Festpolymer Brennstoffzelle und Fluorpolymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679482A (en) * 1994-05-23 1997-10-21 Dais Corporation Fuel cell incorporating novel ion-conducting membrane
US6156451A (en) * 1994-11-10 2000-12-05 E. I. Du Pont De Nemours And Company Process for making composite ion exchange membranes
US5599614A (en) * 1995-03-15 1997-02-04 W. L. Gore & Associates, Inc. Integral composite membrane
WO2000074827A2 (de) * 1999-04-30 2000-12-14 Univ Stuttgart Inst Fuer Chemi Komposite und kompositmembranen
WO2001028023A2 (de) * 1999-10-12 2001-04-19 Intech Thüringen Gmbh Brennstoffzelle

Also Published As

Publication number Publication date
US20040137296A1 (en) 2004-07-15
DE10218371A1 (de) 2002-11-21
WO2002095856A3 (de) 2003-02-20
EP1405360A2 (de) 2004-04-07

Similar Documents

Publication Publication Date Title
DE102008015575B4 (de) Membranelektrodenanordnung für eine Brennstoffzelle und Verfahren zu deren Herstellung
EP0667983B1 (de) Elektrochemische zelle mit einem polymerelektrolyten und herstellungsverfahren für diesen polymerelektrolyten
DE102008046403B4 (de) Sauerstoffentwicklungsreaktionskatalysatoren enthaltende Elektroden
DE112007002574B4 (de) Brennstoffzelle und Dichtung für eine Brennstoffzelle
DE102012220628B4 (de) Brennstoffzellenmembran mit auf Nanofaser getragenen Katalysatoren, Brennstoffzelle und Verfahren zur Herstellung der Membran
DE69930347T2 (de) Verfahren zur Herstellung einer Suspension zur Bildung einer Katalysatorschicht für eine Brennstoffzelle mit Protonenaustauschmembran
DE102004052029A1 (de) Brennstoffzelle und Verfahren zu ihrer Herstellung
DE102011007378A1 (de) Brennstoffzellenstapel mit einer Wasserablaufanordnung
DE112008001766B4 (de) Elektrolytmembran und Brennstoffzelle unter Verwendung derselben
DE102008041421B4 (de) Polymergemisch-Elektrolytmembran zur Verwendung bei hoher Temperatur und Herstellungsverfahren sowie Verwendung derselben
DE102017116563A1 (de) Perfluorsulfonsäure-nanofasern
DE10325324A1 (de) Membran-Elektroden-Einheit für Direkt-Methanol-Brennstoffzellen und Verfahren zu ihrer Herstellung
DE102007009899A1 (de) Brennstoffzellen mit formbaren Dichtungselementen und Herstellverfahren
DE112004001685B4 (de) Vorrichtung mit einer Membranelektrodenanordnung und Verfahren zum Herstellen einer Membranelektrodenanordnung
DE102011014154B4 (de) Strömungsfeldplatte für Brennstoffzellenanwendungen
WO2002095856A2 (de) Brennstoffzelle
DE112006002510B4 (de) Brennstoffzelle
DE102012217434A1 (de) Polymethylmethacrylat-Zusatzmittel für eine Polyelektrolytmembran
EP1374324A2 (de) Hybridmembran-polymerelektrolyt-brennstoffzelle
EP1228548B1 (de) Brennstoffzelle
DE102012000870A1 (de) Direkt-Methanol-Brennstoffzelle und Verfahren zum Betreiben derselben
DE102020213449A1 (de) Membran-Elektrodeneinheit mit verbesserter Beständigkeit und Protonenleitfähigkeit und Verfahren zu deren Herstellung
DE102006041961A1 (de) Elektroden-Membran-Einheit und Brennstoffzelle
DE112012001206T5 (de) Brennstoffzellen-System
WO2002033772A1 (de) Pem-brennstoffzelle mit einen vulkanisierten kautschuk mit polaren seitengruppen enthaltender polymermembran

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU BR CA CN CZ HU IN JP KR MX PL RU SK UA US ZA

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AU BR CA CN CZ HU IN JP KR MX PL RU SK UA US ZA

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2002732405

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10476046

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002732405

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002732405

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP