WO2002098896A1 - Procede de production de methylcobalamine - Google Patents

Procede de production de methylcobalamine Download PDF

Info

Publication number
WO2002098896A1
WO2002098896A1 PCT/JP2002/005510 JP0205510W WO02098896A1 WO 2002098896 A1 WO2002098896 A1 WO 2002098896A1 JP 0205510 W JP0205510 W JP 0205510W WO 02098896 A1 WO02098896 A1 WO 02098896A1
Authority
WO
WIPO (PCT)
Prior art keywords
trimethylsulfonium
methylcobalamin
agent
water
chloride
Prior art date
Application number
PCT/JP2002/005510
Other languages
English (en)
French (fr)
Inventor
Yoshihiko Hisatake
Takuo Tanaka
Tomio Tsurugi
Hiroshi Kuroda
Original Assignee
Eisai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai Co., Ltd. filed Critical Eisai Co., Ltd.
Priority to US10/476,381 priority Critical patent/US7220855B2/en
Priority to EP02733293.1A priority patent/EP1394174B1/en
Priority to CA002449480A priority patent/CA2449480C/en
Priority to JP2003502016A priority patent/JP4358615B2/ja
Priority to ES02733293.1T priority patent/ES2558679T3/es
Priority to KR1020037014192A priority patent/KR100876447B1/ko
Publication of WO2002098896A1 publication Critical patent/WO2002098896A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H23/00Compounds containing boron, silicon, or a metal, e.g. chelates, vitamin B12

Definitions

  • the present invention relates to an industrially excellent method for producing methylcobalamin. Furthermore, a new environmentally friendly production method that does not generate odorous harmful substances and a method for preventing the generation of odorous harmful substances in the production process of methylcobalamin (V) are also considered.
  • Conventional technology is also considered.
  • Methylcopamine is a coenzyme vitamin B12 present in blood and cerebrospinal fluid. Compared to other B12 homologues, it has superior translocation to nervous tissue, and prevents, treats and improves peripheral neuropathy such as diabetic neuropathy and polyneuritis, especially numbness, pain and paralysis. It is used for megaloblastic anemia due to vitamin B12 deficiency.
  • methylcobalamin has been produced mainly by the following synthesis method.
  • monocarboxylic esters of dicarboxylic acid such as monomethyl oxalate used in the method (1) or (2) are not commercially available and must be prepared at the time of use, so that they cannot be used industrially.
  • zinc powder used as metal powder is a heavy metal, and measures to prevent its incorporation into products and environmental measures are indispensable, which is industrially undesirable.
  • methylmercury iodide used in (3) is a pollutant and can be used industrially. Absent. Furthermore, ammonium methylhexafluorate was not commercially available, so it had to be prepared at the time of use, and could not be used industrially.
  • the production method (4) is a very excellent method in terms of yield and product purity, but the boiling point of methyl iodide (41-43 ° C) is extremely low and handling is difficult, so that industrial production is difficult. The manufacturing method was not sufficient. Furthermore, from the viewpoint of protecting the working environment and the natural environment in recent years, the use of methyl iodide, which is specified as a specific chemical substance and has toxicity such as carcinogenicity, is not considered to be favorable for the occupational health of factory workers. hard.
  • an object of the present invention is to provide an environmentally friendly novel production method of methylcobalamin which does not require an industrially excellent production method of methylcobalamin, particularly purification by methyl iodide and column chromatography. Furthermore, the objective is to provide a new environmentally friendly production method that does not generate odorous harmful substances and a method for preventing the generation of odorous harmful substances in the process of producing methylcopparamin (V). It is. Disclosure of the invention
  • the present invention relates to a method for producing methylcobalamin (V), which is represented by the following chemical reaction scheme comprising a reduction Erich step and a subsequent methylation step.
  • the present invention provides a method for reducing cyanocobalamin (I) or hydroxocobalamin ( ⁇ ) represented by the following general formula in the presence of a reducing agent ( ⁇ ⁇ ), and after reduction, a water-soluble methylating agent (IV)
  • Methylcopalamin (V) The present invention also provides a method for reducing cyanocopalamine (I) or hydroxocobalamin (II) in an aqueous solution or an aqueous organic solvent in the presence of a reducing agent (III).
  • the present invention provides a method for reducing cyanocopalamine (I) or hydroxocobalamin (II) in an aqueous solution or a water-containing organic solvent in the presence of a reducing agent (III).
  • a method for producing methylcobalamin W characterized by adding and methylating, and then depositing the reaction product as crystals or precipitate.
  • the present invention also provides a method for reducing cyanocobalamin (I) or hydroxocobalamin (II) in an aqueous solution or a water-containing organic solvent in the presence of a cyanide trapping agent and a reducing agent (III).
  • the present invention further uses a trimethylsulfur derivative (VI) as a methylating agent.
  • a trimethylsulfur derivative (VI) as a methylating agent.
  • cyanocobalamin (I) or hydroxocobalamin (II) is reduced in the presence of a reducing agent (III), and after reduction, trimethylsulfoxonium iodide, trimethylsulfoxonium bromide
  • a method for preventing the generation of malodorous dimethyl sulfide characterized by adding methyl and / or trimethyl sulfoxonium chloride to perform methylation.
  • the addition of the reducing agent and the water-soluble methylating agent to the reaction system is performed in a divided manner. After conversion to the reduced form, a water-soluble methylating agent is added to produce methylcobalamin.
  • a water-soluble methylating agent is added to produce methylcobalamin.
  • the transfer of cyanocobalamin (I) or hydroxocobalamin ( ⁇ ) to the reduced form is due to the fact that cyanocobalamin (I) or hydroxocobalamin ( ⁇ ) is detected in the separation analysis using high performance liquid chromatography. It can be confirmed by disappearance of hydroxocobalamin (II).
  • the termination of the reduction step can be confirmed by stopping the generation of hydrogen by the reducing agent.
  • the cyanocobalamin (I), hydroxocoparamin (II) and methylcobalamin (V) according to the present invention are known compounds derived from nature.
  • Cyanocobalamin [Cyanocobalamin, CAS Registry Number: 68-19-9]
  • Methylcobalamin [Methylcobalamin, CAS Registry Number: 13422-55-4]
  • the water-soluble methylating agent (IV) in the present invention is not limited as long as its solubility in water at room temperature is 2% or more.
  • a trimethyl sulfur derivative (VI) represented by the following general formula: ).
  • X represents a halogen atom or a methoxysulfonyloxy group
  • n represents 0 or 1.
  • trimethylsulfur derivative (VI) examples include, but are not limited to, the following compounds.
  • Trimethylsulfoxonium iodide Trimethyl sul ioxonium iodide, CAS registration number: 1774-47-6]
  • Trimethylsulfonium iodide Trimethyl sulionium iodide, CAS registration number: 2181-42-2
  • Trimethylsulfonium bromide TrimethylsuHoxonium bromide, CAS registration number: 25596-24-1
  • Trimethylsulfoxonium iodide trimethylsulfonium iodide, trimethylsulfonium iodide, trimethylsulfoxodium chloride, trimethylsulfoxonium bromide and bromobenzene
  • Trimethylsulfonium is available at low cost as a reagent or industrial material.
  • Trimethylsulfonium chloride can be easily synthesized and obtained, for example, by the method described in Tetrahedron Lett., 27, 1233, (1986) (B. Byrne et. Al.).
  • trimethylsulfur derivatives (VI) particularly, trimethylsulfonium bromide, trimethylsulfonium bromide, trimethylsulfonium chloride and trimethylsulfonium chloride have high solubility in water, It has the property that methylcopalamin can be obtained in high purity and high yield by using a smaller amount.
  • the amount of the trimethylsulfur derivative (VI) used is not limited, but is usually 1.0 to 5 equivalents, preferably 1.1 to 4 equivalents to cyanocopalamine (I) or hydroxocopamine (II). Five equivalents are used, more preferably 1.2 to 4 equivalents.
  • the reducing agent ( ⁇ ) refers to cyanocobalamin (I) or hydroxoconola
  • the reducing agent is not particularly limited as long as it can be used in the synthesis of min ( ⁇ ).
  • Examples of the reducing agent include sodium borohydride, lithium borohydride, NaB3 ⁇ 4CN (sodium cyanohydride), Red-A1 (bis hydride (2 —Methoxyethoxy) aluminum sodium), and preferably sodium borohydride.
  • the amount of the reducing agent (III) to be used is not limited, it is usually 5 to 30 equivalents, preferably 8 to 25 equivalents, more preferably 10 to 20 equivalents to cyanocobalamin (I) or oxocopparamin ( ⁇ ⁇ ). Use the equivalent.
  • One of the features of the present invention is that in the production of methylcopamine (V) using cyanocopamine (I) or hydroxocopamine (II), a reduction step (usually in an aqueous solution or a water-containing organic solvent) is performed. , In the presence of a reducing agent (II)) and a subsequent methylation step (after reduction, methylation is performed by adding a water-soluble methylating agent (IV)). Then, if necessary, a reaction product that is hardly soluble in water is precipitated as a crystal or precipitate, and the product is separated and treated to obtain high-purity methylcobalamin equivalent to or higher than that of the column chromatography product. This is a point that can be obtained easily and with high yield.
  • the addition of the reducing agent and the water-soluble methylating agent to the reaction system is carried out in separate steps, and in the reduction step in which the reducing agent is added, cyanocobalamin (I) or hydroxocobalamin (II) is completely transferred to the reduced form. After that, a water-soluble methylating agent is added to produce methylcopamine.
  • Another major feature of the present invention is that, among water-soluble methylating agents, among trimethylsulfur derivatives, particularly trimethylsulfoxonium iodide, trimethylsulfoxonium bromide and / or trimethylsulfoxonium chloride are used.
  • a reduction step usually in an aqueous solution or a water-containing organic solvent in the presence of a reducing agent (III)
  • a methylation step is followed by a methylation step (after reduction, a water-soluble methylating agent (IV ) And methylation
  • a reduction step usually in an aqueous solution or a water-containing organic solvent in the presence of a reducing agent (III)
  • a methylation step after reduction, a water-soluble methylating agent (IV ) And methylation
  • Dimethyl sulfide is a harmful substance that has a bad smell and has an adverse effect on factory workers and the surrounding environment. You.
  • cyanocobalamin (I) or hydroxocobalamin (II) by the reducing agent is preferably used as a trimethylsulfur derivative, which is a water-soluble methyl chloroplast, Methylation by adding trimethylsulfoxonium, perhydromethylsulfoxonium and / or trimethylsulfoxonium chloride suppresses excessive reduction, and almost complete generation of dimethyl sulfide It is suppressed.
  • the reduction step (usually in an aqueous solution or an aqueous organic solvent) is performed. Reaction in the presence of a reducing agent (III)), followed by a methylation step (after reduction, methylation by adding a water-soluble methylating agent (IV)) in this order.
  • a reducing agent (III) a reducing agent
  • a methylation step after reduction, methylation by adding a water-soluble methylating agent (IV)
  • dimethyl sulfide is generated by performing the method in a specific manner, the amount of dimethyl sulfide generated is reduced as compared with the "method for producing methylcopamine in which the methylating agent and the reducing agent coexist in the reaction system".
  • dimethyl sulfide generated in the reaction process is often removed by 1) oxidizing agent such as hypochlorite aqueous solution or 2) organic solvent such as dimethylformamide aqueous solution.
  • the production method according to the present invention makes it possible to obtain the desired methylcobalamin with high purity and high yield without using metal ions or using only a very small amount as a trapping agent for cyanide. It has an extremely excellent effect in that no problems occur in removing metal ion products having poor filtration properties out of the system.
  • ferrous sulfate is often used in combination as a trapping agent for cyanide, and the ferrous sulfate is either cyanoparamine (I) or hydroxocopamine. At least 30% by weight or more based on (II) was required.
  • the methylation reaction proceeds even without using ferrous sulfate at all as a cyanide trapping agent, and high-purity methylcobalamin can be obtained in high yield.
  • examples of the cyanide trapping agent include ferrous sulfate, iron powder, Mohr salt, ferrous chloride, ferric chloride, and nickel chloride.
  • a metal or a metal salt such as zinc salt may be mentioned, and particularly preferred is ferrous sulfate and / or cobalt chloride. These metals or metal salts may be used alone or in combination.
  • the amount of the cyanide trapping agent used may be a small amount, usually 1 to 30% by weight, more preferably 1 to 10% by weight, based on cyanocopalamine (I) or hydroxocobalamin (II).
  • reaction solvent is not limited, but if used, cyanocobalamin (1), It is not limited as long as it is inactive against oral xocobalamin (II), trimethylsulfur derivative (VI) or methylcoparamin (V).
  • the reaction solvent is usually an aqueous solution or a hydrated organic solvent.
  • a water-soluble solvent is usually preferable.
  • lower alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, sec-butanol, and t-butanol, methyl formate, ethyl formate, and methyl acetate , Ethyl acetate, isopropyl acetate, etc., various esters, acetone, 2-butanone, 3-methyl-2-butane, etc., various ketones, THF, dioxane, etc., cyclic ether, or acetonitrile, DMF, DMS0, pyridine And the like, and a mixture of one or more of them.
  • the reaction temperature in the reduction step and the methylation step in the present invention is not particularly limited, but is usually 0 to 90 ° C, preferably 10 to 70 ° C, and more preferably 15 to 5 (T).
  • the reaction in the reduction step and the methylation step in the present invention is preferably performed in a stream of an inert gas such as nitrogen and / or in a dark place (under a red light), but is not limited thereto.
  • an industrially excellent method for producing methylcobalamin can be provided. Furthermore, a new environmentally friendly production method of methylcopalamin, which is industrially superior and produces no odorous substances having a bad odor, and prevention of the generation of odorous substances having a bad odor in the production process of methylcobalamin (V) A method can be provided. The example of the effect is shown below. Effect of Preventing Generation of Harmful Substances with Odor According to the Present Invention
  • the present invention is characterized in that the reactions of the reduction step and the subsequent methylation step are carried out stepwise in this order.
  • Examples 1 to 3 of the present invention (methylidazole: trimethylsulfoxonium bromide), immediately after the completion of the dropping of the aqueous solution of sodium borohydride, the concentration of dimethylsulfide in the reaction pot was changed every hour.
  • dimethyl sulfide is introduced from a reaction pot through a glass tube to a 50% aqueous DMF solution as an absorbing solution, gas is absorbed by gas-liquid publishing, and dimethyl sulfone in the collected absorbing solution is absorbed.
  • the capillary concentration was evaluated by capillary gas chromatography (measurement conditions for capillary gas chromatography: Agilent HP6890, DB-62 column, retention at 50 ° C for 10 minutes, and then up to 200 ° C at 15 / min.
  • the intake temperature was 100 ° C
  • the detection temperature was 215 ° C
  • the injection volume was 1 ul.
  • Table 1 shows the value of the concentration of the generated dimethyl sulfide for each example.
  • Examples 1 to 3 (methylating agent: dimethyltrimethylsulfoxodium), 1, 2, 3 and 5 hours after the dropping of sodium borohydride, all were measured by a sensory test. No odor was felt, and no dimethyl sulfide was detected by gas chromatography. On the other hand, in the control example in which the water-soluble methylating agent and the reducing agent coexisted, an unpleasant odor was sensed at least until after 3 hours, and a high concentration of dimethyl sulfide was detected.
  • This example was performed in a dark place (under red light).
  • Hydrochloric acid buffer pH 2.0: UV max was observed in 264-266, 303-307, 459-462 dishes.
  • UVmax reference value (Merck Index, 12th edition)
  • This example was performed in a dark place (under red light).
  • This example was performed in a dark place (under red light).
  • This example was performed at all locations (under red light).
  • This example was performed in a dark place (under red light).
  • This example was performed in a dark place (under red light).
  • This example was performed in a dark place (under red light).
  • This example was performed at all locations (under red light).
  • This example was performed in a dark place (under red light).

Description

明細書 メチルコパラミンの製造法 技術分野
本発明は、 メチルコバラミンの工業的に優れる製造法に関する。 さらには、 悪臭 を有する有害物質の発生がなく環境に優しい新規製造方法、 及び、 メチルコバラミ ン (V)の製造過程における悪臭を有する有害物質の発生の防止方法に閧する。 従来の技術
メチルコパラミンは、 血液 ·髄液中存在型の補酵素型ビタミン B 1 2である。 他 の B 1 2同族体と比較して神経組織への移行性に優れており、 糖尿病性神経障害、 多発神経炎などの末梢性神経障害、 特にしびれ、 痛み、 麻痺の予防 ·治療 ·改善や ビタミン B 1 2欠乏による巨赤芽球性貧血に用いられている。
メチルコバラミンは、 従来、 主に下記合成法により製造されてきた。
(1) ヒドロキソコバラミンを、 金属粉末の存在下に、 ジカルボン酸モノメチルエス テルと反応させる。 (特開昭 49- 47, 899号公報)
(2) シァノコパラミンを、 含水メタノール中金属粉末存在下に、 シユウ酸モノメチ ルと反応させる。 (特開昭 50-41, 900号公報)
(3) ヒドロキソコバラミンを、 ヨウ化メチル水銀あるいはメチルへキサフルォロケ ィ酸アンモニゥムと反応させる。 (特公昭 50- 38, 120号公報)
(4) シァノコバラミンを、 水素化ホウ素ナトリウムの存在下、 ヨウ化メチルと反応 させる。 (特公昭 45-38, 059号公報)
しかし、 (1)あるいは(2)の方法で用いる、 シユウ酸モノメチル等のジカルボン酸 モノメチルエステルは市販されていないため用時調製する必要があり、 工業的に利 用することはできなかった。 さらに金属粉末として利用する亜鉛末は重金属であり、 製品中への混入防止対策や環境対策が必須であり、 工業上好ましくなかった。
また、 (3)で用いるヨウ化メチル水銀は公害性物質であり、 工業的には使用でき ない。 さらに、 メチルへキサフルォロケィ酸アンモニゥムも市販されていないため 用時調製する必要があり、 工業的に利用することはできなかった。
一方、 (4)の製造法は、 収率 ·製品純度の点では非常に優れた方法であるが、 ョ ゥ化メチルの沸点 (41- 43°C)が極めて低く取り扱いが難しいため、 工業的製造法と しては十分とは言えなかった。 さらに近年の作業環境あるいは自然環境保護の観点 からは、 特定化学物質に指定され、 発ガン性の恐れなどの毒性を有するヨウ化メチ ルの使用は、 工場作業員の労働衛生上好ましいとは言い難い。 またヨウ化メチルを 用いる方法で高純度のメチルコバラミンを得るためには、 通常、 1種類若しくは 2 種類以上の力ラムクロマトグラフィーによる精製操作が必要であり、 これが操作上 および製造コスト上大きな問題となっていた。 さらに、 カラム精製に使用する有機 溶媒量が多く、 その廃液量も莫大な量になりがちであった。
メチルコパラミンの工業的に優れた製造方法は、 いまだに十分には確立されてい ないのが現状であり、 更なる優れた方法が求められている。
すなわち、 本発明は、 メチルコバラミンの工業的に優れた製造法、 特にヨウ化メ チル及びカラムクロマトグラフィーによる精製を必要とせず、 環境に優しい新規製 造方法の提供を目的とする。 さらには、 悪臭を有する有害物質の発生がなく環境に 優しい新規製造方法、 及び、 メチルコパラミン (V)の製造過程における悪臭を有す る有害物質の発生の防止方法の提供を目的とするものである。 発明の開示
本発明はメチルコバラミン (V)の製造法であり、 還元ィヒ工程とそれに引き続くメ チル化工程から成る下記化学反応式で表される。
還元化工程 Cobalamin-CN or Cob a lam in - OH→ Cobal amin
メチル化工程 Cobalamin→ Cobal amin- CH3
即ち、 本発明は、 下記一般式で示されるシァノコバラミン(I)またはヒドロキソ コバラミン(Π)を、 還元剤(Ι Π)の存在下で還元し、 還元後に、 水溶性メチル化剤 (IV)を添加してメチル化することを特徴とする、 メチルコバラミン (V)の製造法で ある。
R2=CN:.シァノコパラミン(I)
R2-0H:ヒドロキソコパラミン(Π)
メチルコパラミン(V) 本発明は、 また、 シァノコパラミン(I)またはヒドロキソコバラミン(Π)を水溶 液中または含水有機溶媒中、 還元剤(III)の存在下で還元し、 還元後に、 水溶性メ チル化剤(IV)を添加してメチル化することを特徴とする、 メチルコバラミン (V)の 製造法である。
さらに、 本発明は、 シァノコパラミン(I)またはヒドロキソコバラミン(II)を水 溶液中または含水有機溶媒中、 還元剤(III)の存在下で還元し、 還元後に、 水溶性 メチル化剤(IV)を添加してメチル化し、 次いで反応生成物を結晶または沈殿として 析出させることを特徴とする、 メチルコバラミン Wの製造法である。
また、 本発明は、 シァノコバラミン(I)またはヒドロキソコバラミン(II)を水溶 液中または含水有機溶媒中、 シアンイオンのトラップ剤及び還元剤(III)の存在下 で還元し、 還元後に、 水溶性メチル化剤を添加してメチル化し、 次いで反応生成物 を結晶または沈殿として析出させることを特徴とする、 メチルコパラミン (V)の製 造法である。
本発明は、 さらに、 トリメチルサルファー誘導体 (VI)をメチル化剤として用いる メチルコバラミン (V)の製造過程において、 シァノコバラミン(I)またはヒドロキソ コバラミン(II)を、 還元剤(III)の存在下で還元し、 還元後に、 ヨウ化トリメチル スルホキソニゥム、 臭化トリメチルスルホキソニゥム及び/又は塩化トリメチルス ルホキソニゥムを添加してメチル化することを特徴とする、 悪臭を有するジメチル スルフィドの発生の防止方法である。
尚、 本発明においては、 反応系への還元剤と水溶性メチル化剤の添加は、 分割し て行ない、 還元剤を添加した還元化工程でシァノコバラミン(I)またはヒドロキソ コパラミン(II)を還元体へ移行させた後に、 水溶性メチル化剤を添加してメチルコ バラミンを製造する。 通常、 上記の還元化工程で、 シァノコバラミン (I) または ヒドロキソコバラミン (Π) が還元体に移行したことは、 高速液体クロマトグラフ ィ一等を用いた分離分析においてシァノコバラミン (I) またはヒドロキソコバラ ミン (II) の消失により確認することが可能である。 また、 還元剤による水素の発 生が停止することにより、 還元化工程の終了を確認できる。
本発明にかかるシァノコバラミン(I)、 ヒドロキソコパラミン(II)およびメチル コバラミン (V)は天然由来の公知化合物である。
シァノコパラミン [Cyanocobalamin, CAS登録番号: 68 - 19- 9]
ヒドロキソコパラミン [Hydroxocobal amin, CAS登録番号: 13422-51-0]
メチルコパラミン [Methylcobalamin, CAS登録番号: 13422 - 55-4]
本発明における水溶性メチル化剤(IV)とは、 室温における水への溶解度が 2%以上 であれば限定されないが、 具体的には、 例えば下記一般式で表されるトリメチルサ ルファー誘導体 (VI)を挙げることができる。 (式中、 Xはハロゲン原子またはメト キシスルホニルォキシ基を、 nは 0または 1を、 それぞれ意味する。 )
トリメチルサルファー誘導体 (VI)は、 例えば以下の化合物を挙げることができる が、 もちろんこれらに限定はされない。 (1) ヨウ化トリメチルスルホキソニゥム [Trimethyl sul ioxonium iodide, CAS登録 番号: 1774-47-6]
(2) ヨウ化トリメチルスルホニゥム [Trimethyl sul ionium iodide, CAS登録番 号: 2181- 42-2]
(3) 塩化トリメチルスルホキソニゥム [Trimethylsul foxonium chloride, CAS登録 番号: 5034-06-0]
(4) 塩化トリメチルスルホニゥム [Trimethylsul fonium chloride, CAS登録番 号: 3086-29-1]
(5) 臭化トリメチルスルホキソニゥム [Trimethyl sul ioxonium bromide, CAS登録番 号: 3084-53-5]
(6) 臭化トリメチルスルホニゥム [TrimethylsuHoxonium bromide, CAS登録番 号: 25596-24-1]
(7) トリメチルスルホニゥム ·メチルサルフェイト [Trimethylsul ionium methyl sul fate, CAS登録番号: 2181-44-4]
これらの化合物はすべて公知物質であり、 特に、 ヨウ化トリメチルスルホキソニ ゥム,ヨウ化卜リメチルスルホニゥム、 塩化トリメチルスルホキソ二ゥム、 臭化ト リメチルスルホキソニゥム及び臭ィヒトリメチルスルホニゥムは、 試薬あるいは工業 原料として、 安価で入手可能である。 また、 塩化トリメチルスルホニゥムは、 例え ば、 Tetrahedron Let t. , 27, 1233, (1986) (B. Byrne et. al. )記載の方法により、 容易に合成し入手することができる。
トリメチルサルファー誘導体 (VI)の中でも、 特に、 臭化トリメチルスルホキソニ ゥム、 臭化トリメチルスルホニゥム、 塩化トリメチルスルホキソニゥム及び塩化ト リメチルスルホニゥムは、 水への溶解性が高く、 より少量の使用でメチルコパラミ ンを高純度 '高収率で得られるという特性を有している。
ここで、 トリメチルサルファー誘導体 (VI)の使用量は限定されないが、 通常はシ ァノコパラミン(I)またはヒドロキソコパラミン(II)に対し 1. 0〜5当量を、 好まし くは 1. 1~4 5当量を、 より好ましくは 1. 2〜4当量を使用する。
本発明にかかる還元剤(Π Ι)とは、 シァノコバラミン(I)またはヒドロキソコノ ラ ミン(Π)の合成にあたり使用可能な還元剤であれば特に限定されないが、 例えば、 水素化ホウ素ナトリウム、 水素化ホウ素リチウム、 NaB¾CN (ナトリウムシァノヒド リド) 、 Red- A1 (水素化ビス (2—メトキシェトキシ) アルミニウムナトリウム) が挙げられ、 好ましくは水素化ホウ素ナトリゥムを挙げることができる。
還元剤 (III)の使用量は限定されないが、 通常はシァノコバラミン(I)またはヒド 口キソコパラミン(Π)に対し 5〜30当量を、 好ましくは 8〜25当量を、 より好ましく は 10〜20当量を使用する。
本発明の特徴の一つは、 シァノコパラミン(I)またはヒドロキソコパラミン(II) を用いたメチルコパラミン (V) の製造において、 還元化工程 (通常は水溶液中ま たは含水有機溶媒中にて、 還元剤(I II)の存在下に還元する) と、 それに引き続く メチル化工程 (還元後に、 水溶性メチル化剤(IV)を添加してメチル化する) の反応 をこの順序で段階的に実施し、 次いで必要に応じて水に難溶性の反応生成物を結晶 または沈殿として析出させ、 これを分離'処理することにより、 カラムクロマトグ ラフィ一精製品と同等、 またはそれ以上の高純度メチルコバラミンを簡便かつ高収 率に得られる点である。
反応系への還元剤と水溶性メチル化剤の添加は、 分割して行ない、 還元剤を添加 した還元化工程でシァノコバラミン(I)またはヒドロキソコバラミン(II)を完全に 還元体へ移行させた後に、 水溶性メチル化剤を添加してメチルコパラミンを製造す る。
本発明のもう一つの大きな特徴は、 水溶性メチル化剤として、 トリメチルサルフ ァー誘導体の中でも、 特にヨウ化トリメチルスルホキソニゥム、 臭化トリメチルス ルホキソニゥム及び/又は塩化トリメチルスルホキソニゥムを用いた場合において、 還元化工程 (通常は水溶液中または含水有機溶媒中にて、 還元剤(III)の存在下に 還元する) と、 それに引き続くメチル化工程 (還元後に、 水溶性メチル化剤(IV)を 添加してメチル化する) の反応をこの順序で段階的に実施することにより、 ジメチ ルスルフィドの生成を抑制できることである。
ジメチルスルフィドは、 悪臭を有し、 工場作業者及び周辺環境に悪影響を及ぼす こと力 ^ら、 悪臭防止法でその排出濃度に厳しい制限が課せられている有害物質であ る。
水溶性メチル化剤であるトリメチルサルファー誘導体と還元剤を反応系中に共 存させた場合には、 トリメチルサルファー誘導体が還元を受け、 大気環境に負荷を 与えるジメチルスルフイドが発生する。 本発明においては、 還元剤によるシァノ コバラミン(I)またはヒドロキソコバラミン(I I)の還元が終了し、 還元体へ移行さ せた後に、 水溶性メチルイヒ剤であるトリメチルサルファー誘導体として、 特に、 ョ ゥ化トリメチルスルホキソニゥム、 臭ィヒトリメチルスルホキソニゥム及び/又は塩 化トリメチルスルホキソニゥムを添加してメチル化を実施することにより、 過剰な 還元が抑制され、 ジメチルスルフィドの発生がほぼ完全に抑制されるのである。 尚、 水溶性メチル化剤として、 ヨウ化トリメチルスルホニゥム、 臭化トリメチル スルホニゥム及び/又は塩化トリメチルスルホニゥムを用いた場合においては、 還 元化工程 (通常は水溶液中または含水有機溶媒中にて、 還元剤(I I I)の存在下に還 元する) と、 それに引き続くメチル化工程 (還元後に、 水溶性メチル化剤(IV)を添 加してメチル化する) の反応をこの順序で段階的に実施することにより、 ジメチル スルフィ ドは発生するものの、 「該メチル化剤と還元剤を反応系中に共存させたメ チルコパラミン製造法」と比較して、 ジメチルスルフィドの発生量は少なくなる。 これは、 通常、 該メチル化剤と還元剤を反応系中に共存させる場合には、'反応を安 定化させる為にメチル化剤を過剰に添加する必要があり過剰量のジメチルスルフ ィドが発生するのに対し、 本発明においては 「還元化工程とそれに引き続くメチル 化工程に分割する」 ことにより、 過剰量のメチル化剤に起因するジメチルスルフィ ドは発生せず、 それに伴って、 ジメチルスルフィドの発生量が減少する為である。 一般に、 反応過程で発生したジメチルスルフイドは、 1 ) 次亜塩素酸塩水溶液等 の酸化剤や、 2 ) ジメチルホルムアミド水溶液等の有機溶剤に捕捉して排除するこ とが多い。 しかしながら、 1 ) は、 酸化剤を用いた酸化反応である為、 排気中の水 素やシアン化水素等の他成分の混在する状態における複合作用の制御や、 排気トラ ップに必要な設備設置 ·管理がより複雑化するなど問題点が多い。 また、 2 ) では、 有機溶剤の廃液の増加、 その処理に派生する環境問題及びコスト高の問題がある。 これに対して、 本発明に係るメチルコバラミンの製造法及びジメチルスルフィド の発生防止方法は、 ジメチルスルフィ ドの発生そのものを制御 ·抑制することから, 付帯設備や処理方法の増設 ·追加が必要なく、 極めて利便性が高く有用な方法であ る。
本発明に係る製造法は、 金属イオンを使用せずに、 あるいは、 シアンイオンのト ラップ剤として極めて少量の使用のみで、 目的とするメチルコバラミンを高純度 · 高収率で得ることが可能であり、 濾過性の悪い金属イオン生成物の系外除去にあた り問題が生じない点において、 極めて優れた効果を有する。
通常、 メチル化剤としてヨウ化メチルを使用する際には、 シアンイオンのトラッ プ剤として硫酸第一鉄を併用する場合が多く、 その硫酸第一鉄は、 シァノコパラミ ン(I)またはヒドロキソコパラミン(I I)に対し少なくとも 30重量 %以上の量が必要 であった。
しかしながら、 本発明では、 シァンイオンのトラップ剤として、 硫酸第一鉄を全 く使用しなくともメチル化反応が進行し、 高純度メチルコバラミンを高収率で得る ことが可能である。
さらに、 シアンイオンのトラップ剤として、 硫酸第一鉄を少量使用した場合には、 反応速度がより一層速くなり、 硫酸第一鉄を全く使用しなかった場合と同じ後処理 操作で、 高純度メチルコバラミンを高収率で得ることができる。 また、 塩化コパル トを少量使用した場合にも、 同様に、 メチル化反応の選択性が高く不純物の生成が 抑制される為、 高純度メチルコバラミンを高収率で得ることが可能となる。
本発明においてシアンイオンのトラップ剤を使用する場合、 シアンイオンのトラ ップ剤として、 例えば、 硫酸第一鉄、 鉄粉、 モール (Mohr)塩、 塩化第一鉄、 塩化コ ノ レト、 塩化ニッケルあるいは塩ィヒ亜鉛等の金属または金属塩を挙げることができ、 特に望ましくは、 硫酸第一鉄及び/又は塩化コバルトである。 これらの金属または 金属塩は、 単独で使用しても良いし、 組み合わせて使用しても良い。
シアンイオンのトラップ剤の使用量は、少量でよく、通常はシァノコパラミン(I) またはヒドロキソコバラミン(I I)に対し 1〜 30重量 %であり、 より好ましくは 1〜 10 重量 %である。
反応溶媒の使用も限定されないが、 使用する場合、 シァノコバラミン(1)、 ヒド 口キソコバラミン(II)、 トリメチルサルファー誘導体 (VI)あるいはメチルコパラミ ン (V)に対して不活性なものであれば限定されない。 反応溶媒は、 通常、 水溶液ま たは含水有機溶媒である。 有機溶媒として通常は水溶性を有するものが好ましく、 例えばメタノール、 エタノール、 プロパノール、 イソプロパノール、 ブ夕ノール、 イソブ夕ノール、 sec -ブタノール、 t -プタノール等の低級アルコール、 ギ酸メチル、 ギ酸ェチル、 酢酸メチル、 酢酸エヂル、 酢酸イソプロピル等の各種エステル、 ァセ トン、 2-プタノン、 3-メチル -2-ブ夕ノン等の各種ケトン、 THF、 ジォキサン等の環 状エーテル、 あるいはァセトニトリル、 DMF、 DMS0、 ピリジン等、 さらにはそれら 一種以上の混合物を挙げることができる。 ' 本発明における還元化工程及びメチル化工程の反応温度は、 特に限定されないが、 通常は 0〜90°C、 好ましくは 10〜70°C、 より好ましくは 15〜5(T である。
本発明における還元化工程及びメチル化工程の反応は、 窒素等の不活性ガス気流 下および/または暗所 (赤色光線下)に行うことが、 望ましいが、 これに限定される 訳ではない。
本発明によると、 メチルコバラミンの工業的に優れる製造法を提供できる。 さら には、 メチルコパラミンの工業的に優れ、 且つ悪臭を有する有害物質の発生がなく 環境に優しい新規製造方法、 及び、 メチルコバラミン (V)の製造過程における悪臭 を有する有害物質の発生の防止方法を提供することができる。 以下にその効果例を 示す。 本発明に係る悪臭を有する有害物質の発生の防止効果
本発明は、 還元化工程と、 それに引き続くメチル化工程の反応をこの順序で段階 的に実施することを特徴としている。
本発明の実施例 1〜 3 (メチルイ匕剤:臭化トリメチルスルホキソニゥム) におい て、 水素化ホウ素ナトリウム水溶液の滴下終了直後から、 1時間毎に、 反応ポット 内のジメチルスルフイド濃度を、 以下の方法により測定した。 即ち、 反応ポットか ら、 ガラス管を通じて吸収液である 5 0 %DMF水溶液にジメチルスルフィドを導 いて、 気液パブリングによるガス吸収を行い、 捕集した吸収液中のジメチルスルフ ィド濃度をキヤビラリーガスクロマトグラフィーにより評価した (キヤピラリーガ スクロマトグラフィ一の測定条件: Agilent製 HP6890、 DB-62 カラム、 50°C で 10分間保持後、 200°Cまで 15で/分の速度で昇温させた。 吸気温度 100°C、 検出 温度 215°C、 注入量 l ul) 。 同時に、 臭気の官能試験を行った。
尚、 対照実験として、 以下に示した「水溶性メチル化剤である卜リメチルサルフ ァー誘導体と還元剤を反応系中に共存させたメチルコバラミン製造法」においても、 水素化ホウ素ナトリウム水溶液の滴下終了直後から、 1時間毎に、 同様の評価を行 つた。
(対照実験) イオン交換水 260mlにシァノコパラミン 20g、臭化トリメテルスルホ キソニゥム 7.66g、 塩化コバルト ·六水和物 1.4g、 2—ブ夕ノン 15mlを加えた。 系内を窒素で置換後、水浴中で加温し、 内温 40°Cで撹拌しながら水素化ホウ素ナ卜 リウム /水溶液 (8g/40ml) を 90分で滴下した。 そのまま 3h撹拌を続けた後、 更に 浴温 15 において一晩撹拌した。析出物を濾取 '乾燥して表題化合物の粗体を得た。 これに 50%アセトン水を加え、 35 で加温後、 濃塩酸で pH7.0に調整後、 ァセト ンを滴下し、 一晩撹拌した。 析出した結晶を濾取 ·乾燥させた。
発生したジメチルスルフイド濃度の値を、 実施例ごとに、 表 1に示した。
上段:ジメチルスルフイド濂度 下段:官能試験結果
実施例 1〜 3 (メチル化剤:臭ィヒトリメチルスルホキソ二ゥム) では、 水素化ホ ゥ素ナトリウムの滴下後の 1、 2、 3及び 5時間後において、 いずれも官能試験で 悪臭は感じられず、 また、 ガスクロマトグラフィ一においてもジメチルスルフイド は検出されなかった。 一方、 水溶性メチル化剤と還元剤を共存させた対照例では、 少なくとも 3時間後までは悪臭が感じられ、 また、 高濃度のジメチルスルフイドが 検出された。
本発明におけるメチルコパラミンの製造法、 特に 「シァノコパラミン (I)またはヒ ドロキソコバラミン (II)を、 還元剤 (III)の存在下で還元し、 還元後に、 ヨウィ匕トリメ チルスルホキソ二ゥム、臭化トリメチルスルホキソニゥム及び/又は塩化トリメチル スルホキソニゥムを添加してメチル化する」 製造法が悪臭を有する有害物質を発生 することなく、 また、 その発生の防止効果を有することは、 明らかである。 実施例
以下に実施例を掲げて本発明を説明するが、 本発明がこれらに限定されないこと は言うまでもない。
実施例 1 メコパラミンの合成
本実施例は、 すべて暗所 (赤色光線下)にて行った。
イオン交換水 65mlにシァノコバラミン 5g、 塩ィ匕コバルト '六水和物 0.35g、 2 —ブタノン 3.75mlを加えた。 系内を窒素で置換後、 水浴中で加温し、 浴温 38°Cで 撹拌しながら水素化ホウ素ナトリウム/水溶液 (2g/10ml) を 60分で滴下した。 そ のまま 30分間撹拌したのち、 引き続き臭ィ匕トリメチルスルホキソニゥム /水溶液
(l.9g/10ml) を 30分間かけて滴下しそのまま 3h撹拌を続けた。 更に浴温 15 に おいて一晚撹拌した。析出物を濾取 '乾燥して表題化合物の粗体を得た。これに 50% アセトン水を加え、 35°Cで加温後、 濃塩酸で pH7.0に調整後、 アセトンを滴下し、 一晩撹拌した。 析出した結晶を濾取 ·乾燥して、 表題化合物を得た (収率; 8 5 %) 得られたメコバラミンの物性値
塩酸緩衝液 (pH2. 0) : 264-266, 303-307, 459-462皿に UVmaxを認めた。
リン酸緩衝液 (PH7. 0) : 266-269, 341-344, 520- 524nmに Wmaxを認めた。
UVmax参考値 (Merck Index, 12版)
(0. 1N-HC1) : 264, 304, 462nra (pH7) : 266, 342, 522nm
実施例 2 メコバラミンの合成
本実施例は、 すべて暗所 (赤色光線下)にて行つた。
イオン交換水 260mlにシァノコバラミン 20g、 塩化コバルト ·六水和物 1.4g、 2 ープタノン 15mlを加えた。 系内を窒素で置換後、 水浴中で加温し、 内温 40°Cで撹 拌しながら水素化ホウ素ナトリウム^ K溶液 (8g/40ml) を 70分で滴下した。 その まま 30分間撹拌したのち、 引き続き臭化トリメチルスルホキソニゥム /水溶液
(7.66g/40ml) を 30分間かけて滴下しそのまま 3h撹拌を続けた。 更に浴温 15°C において一晩撹拌した。 析出物を濾取 ·乾燥して表題化合物の粗体を得た。 これに 50%アセトン水を加え、 35°Cで加温後、 濃塩酸で pH7.0に調整後、 アセトンを滴下 し、一晩撹拌した。析出した結晶を濾取 '乾燥して、表題化合物を得た (収率; 8 5 %)。 実施例 3 メコパラミンの合成
本実施例は、 すべて暗所 (赤色光線下)にて行った。
イオン交換水 390mlにシァノコパラミン 30g、 塩化コバルト '六水和物 2. lg、 2 ーブ夕ノン 22.5mlを加えた。 系内を窒素で置換後、 水浴中で加温し、 内温 40°Cで 撹拌しながら水素化ホウ素ナトリウム/水溶液 (12g/60ml) を 2時間で滴下した。 そのまま 30分間撹拌したのち、 引き続き臭ィ匕トリメチルスルホキソニゥム /水溶液 (ll.5g/60ml) を 30分間かけて滴下しそのまま 3h撹拌を続けた。 更に浴温 15°C において一晚撹拌した。 析出物を濾取 ·乾燥して表題化合物の粗体を得た。 これに 50%アセトン水を加え、 35 Cで加温後、濃塩酸で pH7.0に調整後、 アセトンを滴下 し、一晩撹拌した。析出した結晶を濾取 ·乾燥して、表題化合物を得た (収率; 8 8 %)。 実施例 4 メコバラミンの合成
本実施例は、 すべて喑所 (赤色光線下)にて行った。
ィォン交換水 390mlにシァノコバラミン 30g、塩化コバルト '六水和物 2. lg、 2 ーブタノン 22.5mlを加えた。 系内を窒素で置換後、 水浴中で加温し、 内温 40°Cで 撹拌しながら水素化ホウ素ナトリゥム /水溶液 (I2g/60ml) を 2時間で滴下した。 そのまま 30分間撹拌したのち、 引き続き臭化トリメチルスルホキソニゥム /水溶液 (ll.5g/60ml) を 30分間かけて滴下しそのまま 3h撹拌を続けた。 更に浴温 15°C において一晩撹拌した。 析出物を濾取 ·乾燥して表題化合物の粗体を得た。 これに
50%アセトン水を加え、 35°Cで加温後、 濃塩酸で pH7.0に調整後、 アセトンを滴下 し、一晩撹拌した。析出した結晶を濾取 ·乾燥して、表題化合物を得た (収率; 8 7 %)。 実施例 5 メコバラミンの合成
本実施例は、 すべて暗所 (赤色光線下)にて行った。
イオン交換水 390mlにシァノコバラミン 30g、 塩化コバルト ·六水和物 2.1g、 2 —ブ夕ノン 22.5mlを加えた。 系内を窒素で置換後、 水浴中で加温し、 内温 50°Cで 撹拌しながら水素化ホウ素ナトリゥム /水溶液 (I2g/60ml) を 2時間で滴下した。 そのまま 30分間撹拌したのち、 引き続き臭化トリメチルスルホキソニゥム /水溶液 (ll.5g/60ml) を 30分間かけて滴下しそのまま 3h撹拌を続けた。 更に浴温 15°C において一晩撹拌した。 析出物を濾取 ·乾燥して表題化合物の粗体を得た。 これに 50%アセトン水を加え、 35°Cで加温後、 濃塩酸で pH7.0に調整後、 アセトンを滴下 し、一晚撹拌した。析出した結晶を濾取 '乾燥して、表題化合物を得た (収率; 8 8 %)。 実施例 6 メコパラミンの合成
本実施例は、 すべて暗所 (赤色光線下)にて行った。
イオン交換水 390mlにシァノコバラミン 30g、塩化コパルト ·六水和物 2.1g、 2 ーブ夕ノン 22.5mlを加えた。 系内を窒素で置換後、 水浴中で加温し、 内温 50 で 撹拌しながら水素化ホウ素ナ卜リゥム /7K溶液 (I2g/60ml) を 2時間で滴下した。 そのまま 30分間撹拌したのち、 引き続き臭化トリメチルスルホキソニゥム冰溶液 (ll.5g/60ml) を 30分間かけて滴下しそのまま 3h撹拌を続けた。 更に浴温 15°C において一晩撹拌した。 析出物を濾取 ·乾燥して表題化合物の粗体を得た。 これに 50%ァセトン水を加え、 35°Cで加温後、 濃塩酸で pH7.0に調整後、 ァセトンを滴下 し、一晩撹拌した。析出した結晶を濾取 '乾燥して、表題化合物を得た (収率; 8 7 %)。 実施例 7 メコバラミンの合成
本実施例は、 すべて暗所 (赤色光線下)にて行った。
イオン交換水 390mlにシァノコパラミン 30g、 塩化コバルト ·六水和物 2.1g、 2 ーブ夕ノン 22.5mlを加えた。 系内を窒素で置換後、 水浴中で加温し、 内温 30°Cで 撹拌しながら水素化ホウ素ナトリウム/水溶液 (12g/60ml) を 2時間で滴下した。 そのまま 30分間撹拌したのち、 引き続き臭化トリメチルスルホキソニゥム /水溶液 (ll.5g/60ml) を 30分間かけて滴下しそのまま 3h撹拌を続けた。 更に浴温 15°C において一晩撹拌した。 析出物を濾取 ·乾燥して表題化合物の粗体を得た。 これに 50%アセトン水を加え、 35°Cで加温後、 濃塩酸で pH7.0に調整後、 アセトンを滴下 し、一晚撹拌した。析出した結晶を濾取 ·乾燥して、表題化合物を得た (収率; 8 5 %)。 実施例 8 メコバラミンの合成
本実施例は、 すべて喑所 (赤色光線下)にて行った。
イオン交換水 390mlにシァノコバラミン 30g、 塩化コパルト ·六水和物 2.1g、 2 ーブタノン 22.5mlを加えた。 系内に窒素を 15ml/min.の流量で流しながら、 水浴 中で加温し、 内温 30でで撹拌しながら水素化ホウ素ナトリウム/水溶液(12g/60nil) を 2時間で滴下した。 そのまま 30分間撹拌したのち、 引き続き臭化トリメチルス ルホキソニゥム /水溶液 (ll.5g/60ml) を 30分間かけて滴下しそのまま 3h撹拌を 続けた。更に浴温 15 において一晩撹拌した。 析出物を濾取 ·乾燥して表題化合物 の粗体を得た。 これに 50%アセトン水を加え、 35°Cで加温後、 濃塩酸で pH7.0に 調整後、 アセトンを滴下し、 一晚撹拌した。 析出した結晶を濾取 ·乾燥して、 表題 化合物を得た (収率; 8 6 %)。
実施例 9 メコバラミンの合成
本実施例は、 すべて暗所 (赤色光線下)にて行った。
イオン交換水 13Lにシァノコパラミン lKg、 塩化コバルト ·六水和物 70g、 2—ブ 夕ノン 750mlを加えた。 系内を窒素で置換後、 水浴中で加温し、 内温 35°C ±5tを 維持し撹拌しながら水素化ホウ素ナトリウム/水溶液 (400g/2L) を 120分で滴下し た。 引き続き臭化トリメチルスルホキソニゥム /水溶液 (383g/2L) を 30分間かけて 滴下しそのまま 3h撹拌を続けた。更に浴温 15°Cにおいて一晩撹拌した。析出物を濾 取 ·乾燥して表題化合物の粗体を得た。 これに 50%アセトン水を加え、 35°Cで加温 後、 濃塩酸で pH7.0に調整後、 アセトンを滴下し、 一晩撹拌した。 析出した結晶を 濾取 ·乾燥して、 表題化合物を得た (収率; 8 7 %)。

Claims

請求の範囲
1. 下記一般式で示されるシァノコバラミン(I)またはヒドロキソコバラミン (II)を、 還元剤(III)の存在下で還元し、 還元後に、 水溶性メチル化剤 (IV)を添加 してメチル化することを特徴とする、 メチルコバラミン (V)の製造法。
R2=CN:.シァノコパラミン(I)
R2-0H:ヒドロキソコパラミン(Π) R2=CH3:メチルコバラミン(V)
2. シァノコバラミン(I)またはヒドロキソコバラミン(II)を水溶液中または含 水有機溶媒中、 還元剤(III)の存在下で還元し、 還元後に、 水溶性メチル化剤(IV) を添加してメチル化することを特徴とする、 メチルコバラミン (V)の製造法。
3. シァノコバラミン(I)またはヒドロキソコバラミン(I I)を水溶液中または含 水有機溶媒中、 還元剤(III)の存在下で還元し、 還元後に、 水溶性メチル化剤(IV) を添加してメチル化し、 次いで反応生成物を結晶または沈殿として析出させること を特徴とする、 メチルコバラミン (V)の製造法。 '
4. シァノコバラミン(I)またはヒドロキソコバラミン(II)を水溶液中または含 水有機溶媒中、 シアンイオンのトラップ剤及び還元剤(ΠΙ)の存在下で還元し、 還 元後に、 水溶性メチル化剤を添加してメチル化し、 次いで反応生成物を結晶または 沈殿として析出させることを特徴とする、 メチルコパラミン (V)の製造法。
5. 水溶性メチル化剤(IV)が、 下記一般式で表されるトリメチルサルファー誘導 体 (VI)である、 請求項 1ないし 4のいずれか 1項に記載のメチルコバラミン (V)の
x - (VI)
式中、 Xはハロゲン原子またはメトキシスルホニルォキシ基を、 nは 0または 1をそれ ぞれ意味する。
6 . トリメチルサルファー綉導体 (VI)が、 ヨウ化トリメチルスルホキソニゥム、 3ゥ化トリメチルスルホニゥム、 臭化トリメチルスルホキソニゥ厶、 臭化トリメチ ルスルホニゥム、 塩化トリメチルスルホキソニゥム及び/又は塩化トリメチルスル ホニゥムである、 請求項 5記載のメチルコバラミン (V)の製造法。
7 . 還元剤(III)が、 水素化ホウ素ナトリウムである、 請求項 1ないし 4のいず れか 1項に記載のメチルコバラミン (V)の製造法。
8 . シアンイオンのトラップ剤が、 硫酸第一鉄及び/又は塩化コバルトである、 請求項 4記載のメチルコバラミン (V)の製造法。
9 . シアンイオンのトラップ剤の量が、 シァノコパラミン(I)またはヒドロキソ コバラミン(I I)に対し 1〜30重量 である、 請求項 4または 8記載のメチルコバラミ ン (V)の製造法。
1 0 . トリメチルサルファー誘導体 (VI)が、 ヨウ化トリメチルスルホキソニゥム、 ヨウ化トリメチルスルホニゥム、 臭化トリメチルスルホキソニゥム、 臭化トリメチ ルスルホニゥム、 塩化トリメチルスルホキソニゥム及び/又は塩化トリメチルスル ホニゥムであり、 還元剤(ΠΙ)が水素化ホウ素ナトリウムである、 請求項 1ないし
4のいずれか 1項に記載のメチルコバラミン (V)の製造法。
1 1 . トリメチルザルファ一誘導体 (VI)が、 ヨウ化トリメチルスルホキソニゥム、 ヨウ化トリメチルスルホニゥム、 臭化トリメチルスルホキソニゥム、 臭化トリメチ ルスルホニゥム、 塩化トリメチルスルホキソニゥム及び/又は塩化トリメチルスル ホニゥムであり、 還元剤(III)が水素化ホウ素ナトリウムであり、 シアンイオンの トラップ剤が硫酸第一鉄及び/又は塩化コバルトである、 請求項 4記載のメチルコ バラミン (V)の製造法。
1 2 . トリメチルサルファー誘導体 (VI)をメチリレ化剤として用いるメチルコパラ ミン (V)の製造過程において、 シァノコバラミン(I)またはヒドロキソコパラミン (I I)を、 還元剤(I II)の存在下で還元し、 還元後に、 ヨウ化トリメチルスルホキソ 二ゥム、 臭化トリメチルスルホキソニゥム及び/又は塩化トリメチルスルホキソニ ゥムを添加してメチル化することを特徴とする、 悪臭を有するジメチルスルフィ ド の発生の防止方法。
PCT/JP2002/005510 2001-06-05 2002-06-04 Procede de production de methylcobalamine WO2002098896A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/476,381 US7220855B2 (en) 2001-06-05 2002-06-04 Process for producing methylcobalamin
EP02733293.1A EP1394174B1 (en) 2001-06-05 2002-06-04 Process for producing methylcobalamin
CA002449480A CA2449480C (en) 2001-06-05 2002-06-04 Process for producing methylcobalamin
JP2003502016A JP4358615B2 (ja) 2001-06-05 2002-06-04 メチルコバラミンの製造法
ES02733293.1T ES2558679T3 (es) 2001-06-05 2002-06-04 Procedimiento para producir metilcobalamina
KR1020037014192A KR100876447B1 (ko) 2001-06-05 2002-06-04 메틸코발라민의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001169107 2001-06-05
JP2001-169107 2001-06-05

Publications (1)

Publication Number Publication Date
WO2002098896A1 true WO2002098896A1 (fr) 2002-12-12

Family

ID=19011222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005510 WO2002098896A1 (fr) 2001-06-05 2002-06-04 Procede de production de methylcobalamine

Country Status (8)

Country Link
US (1) US7220855B2 (ja)
EP (1) EP1394174B1 (ja)
JP (1) JP4358615B2 (ja)
KR (1) KR100876447B1 (ja)
CN (1) CN100352829C (ja)
CA (1) CA2449480C (ja)
ES (1) ES2558679T3 (ja)
WO (1) WO2002098896A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008534458A (ja) * 2005-03-23 2008-08-28 フエルレル インターナショナル,ソシエダッド アノニマ メチルコバラミンの製造方法
CN102391340A (zh) * 2011-10-31 2012-03-28 河北玉星生物工程有限公司 一种甲钴胺的制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105218608A (zh) * 2015-10-29 2016-01-06 无锡福祈制药有限公司 一种甲钴胺的制备方法
ES2952837T3 (es) * 2016-07-08 2023-11-06 Healthtech Bio Actives S L U Procedimiento para la purificación de metilcobalamina
CN106349313B (zh) * 2016-08-23 2019-05-14 宁夏泰瑞制药股份有限公司 一种利用氰钴胺合成甲钴胺粗品的方法
CN106770726B (zh) * 2016-11-29 2019-03-05 无锡福祈制药有限公司 一种甲钴胺残留有机溶剂的检测方法
CN107698642B (zh) * 2017-10-09 2020-11-13 广州普星药业有限公司 一种用于制备甲钴胺的方法
CN108948116A (zh) * 2018-08-30 2018-12-07 上海应用技术大学 一种甲钴胺的绿色合成工艺
CN112442095B (zh) * 2020-12-01 2022-07-22 上海科黛生物科技有限公司 一种维生素b12的精制方法及所得产品的应用
CN114874274A (zh) * 2022-04-21 2022-08-09 南京工业大学 一种改进的合成甲钴胺的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4538059B1 (ja) * 1967-07-27 1970-12-02
GB1355899A (en) * 1971-11-10 1974-06-05 Lopochimie Process for the preparation of methylcobalamine
WO2001042271A1 (fr) * 1999-12-09 2001-06-14 Eisai Co., Ltd. Procede de production de methylcobalamine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE759614A (fr) 1969-12-01 1971-06-01 Glaxo Lab Ltd Elimination d'ions cyanure de solutions de corrinoides
FR2108794B1 (ja) 1970-10-06 1974-04-12 Roussel Uclaf
US3928320A (en) * 1971-11-10 1975-12-23 Jean Boige Process for the preparation of methylcobalamine
JPS4947899A (ja) 1972-09-18 1974-05-09
NO742545L (ja) 1973-08-08 1975-03-10 Opochimie L
US4141920A (en) * 1977-09-09 1979-02-27 G. D. Searle & Co. Process for the preparation of trimethylsulfoxonium bromide
US5225607A (en) * 1985-08-09 1993-07-06 Imperial Chemical Industries Plc Insecticidal ethers
FR2668893A1 (fr) * 1990-11-13 1992-05-15 Rhone Poulenc Agrochimie Procede pour proteger les produits de multiplication des vegetaux a l'aide de triazolyl ou imidazolyl methyl allyl alcool et composes nouveaux pour mettre en óoeuvre le procede.
JPH07138234A (ja) * 1993-11-11 1995-05-30 Kureha Chem Ind Co Ltd アゾリルメチルシクロアルカノール誘導体の製造方法
JPH09143127A (ja) * 1995-11-27 1997-06-03 Sumitomo Pharmaceut Co Ltd ニトロトルエン誘導体およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4538059B1 (ja) * 1967-07-27 1970-12-02
GB1355899A (en) * 1971-11-10 1974-06-05 Lopochimie Process for the preparation of methylcobalamine
WO2001042271A1 (fr) * 1999-12-09 2001-06-14 Eisai Co., Ltd. Procede de production de methylcobalamine

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AMIJEE M. ET AL.: "Direct on-column derivatisation in gas chromatography II. Comparison of various on-column methylation reagents and the development of a new selective methylation reagent", JOURNAL OF CHROMATOGRPAHY, vol. 738, 1996, pages 43 - 55, XP004038973 *
BIOTECHNOL. APPL. BIOCHEM., vol. 9, no. 1, 1987, pages 39 - 52 *
BYRNE B. ET AL.: "The preparation of trimethylsulfonium chloride from methyl chloroformate and dimethyl sulfide", TETRAHEDRON LETTERS, vol. 27, no. 11, 1986, pages 1233 - 1236, XP002954481 *
DATABASE CAPLUS [online] MATOS J.R. ET AL.: "S-adenosylmethionine: studies on chemical and enzymic synthesis", XP002954480, accession no. STN Database accession no. 1987:210255 *
See also references of EP1394174A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008534458A (ja) * 2005-03-23 2008-08-28 フエルレル インターナショナル,ソシエダッド アノニマ メチルコバラミンの製造方法
CN102391340A (zh) * 2011-10-31 2012-03-28 河北玉星生物工程有限公司 一种甲钴胺的制备方法

Also Published As

Publication number Publication date
KR20040010631A (ko) 2004-01-31
CA2449480C (en) 2009-07-21
JP4358615B2 (ja) 2009-11-04
ES2558679T3 (es) 2016-02-08
CN1524086A (zh) 2004-08-25
JPWO2002098896A1 (ja) 2004-09-16
EP1394174A4 (en) 2007-08-22
EP1394174B1 (en) 2015-11-11
CA2449480A1 (en) 2002-12-12
US20040132687A1 (en) 2004-07-08
US7220855B2 (en) 2007-05-22
EP1394174A1 (en) 2004-03-03
CN100352829C (zh) 2007-12-05
KR100876447B1 (ko) 2008-12-29

Similar Documents

Publication Publication Date Title
WO2002098896A1 (fr) Procede de production de methylcobalamine
JP3948958B2 (ja) メチルコバラミンの製造法
JP5086616B2 (ja) トリチオカーボネート類の合成
US6515128B2 (en) Processes for preparing cilostazol
AU2003231169B2 (en) Process for synthesizing pharmaceutically active disulfide salts
KR101210934B1 (ko) 구리 및 시아나이드 이온의 선택적 검출이 가능한 형광센서, 그 제조방법 및 이를 이용한 구리 및 시아나이드 이온의 선택적 검출방법
WO2002014283A1 (en) Processes for preparing cilostazol
CN111116933B (zh) 一种超分子聚合物及其在汞离子检测中的应用
JP5289331B2 (ja) 4−アミノ−ピリミジンの合成
CN103204803A (zh) 用于合成依托考昔的方法
CN110981748B (zh) 一种增强型偶氮Salen席夫碱荧光探针、其合成及其应用
WO2001029004A1 (en) Oxidation process for the preparation of intermediates useful in the synthesis of diarylpyridines
EP1394161A1 (en) L−ASCORBIC ACID−2−O−MALEIC ACID−A−TOCOPHEROL DIESTER 1−PROPANOL ADDUCT AND PROCESS FOR PRODUCING THE SAME
JP4080155B2 (ja) 有機ホスフィンカルボン酸を配位子とする固体有機金属化合物
CN115028568B (zh) 一种可见光促进3-硒基吲哚类化合物的合成方法
CN112110820A (zh) 用于产生高价碘化合物的方法
CA2637950A1 (en) A process for preparing allylmercaptocaptopril (cpssa) and related asymmetrical disulfides
BRPI0618516A2 (pt) método para produzir 2-(4-metil-2-fenilpiperazinil-1-il)piriridina-3-metanol
PL187784B1 (pl) Sposób otrzymywania kwasu 2-amino-4-fluorobenzoesowego i/lub jego chlorowodorku
UA43783A (uk) Глутамілтриптофан металокомплекси, що проявляють імуностимулюючі властивості та спосіб їх одержання

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN IN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003502016

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1736/DELNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 10476381

Country of ref document: US

Ref document number: 1020037014192

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002733293

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2449480

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 028113519

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002733293

Country of ref document: EP