WO2002103431A1 - Catadioptric system and exposure system provided with the system - Google Patents

Catadioptric system and exposure system provided with the system Download PDF

Info

Publication number
WO2002103431A1
WO2002103431A1 PCT/JP2002/005259 JP0205259W WO02103431A1 WO 2002103431 A1 WO2002103431 A1 WO 2002103431A1 JP 0205259 W JP0205259 W JP 0205259W WO 02103431 A1 WO02103431 A1 WO 02103431A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
imaging optical
catadioptric
mask
reflecting mirror
Prior art date
Application number
PCT/JP2002/005259
Other languages
French (fr)
Japanese (ja)
Inventor
Tomowaki Takahashi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Publication of WO2002103431A1 publication Critical patent/WO2002103431A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0892Catadioptric systems specially adapted for the UV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0812Catadioptric systems using two curved mirrors off-axis or unobscured systems in which all of the mirrors share a common axis of rotational symmetry
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems

Definitions

  • the present invention relates to a catadioptric optical system and an exposure apparatus having the optical system, and particularly to a high-resolution anti-reflection refraction which is optimal for an exposure apparatus used for manufacturing a semiconductor device or the like by a photolithographic process.
  • Projection optical system a high-resolution anti-reflection refraction which is optimal for an exposure apparatus used for manufacturing a semiconductor device or the like by a photolithographic process.
  • the projection optical system is composed of only refractive optical members (lenses, parallel plane plates, etc.), it is impossible to correct chromatic aberration with the formed refractive optical system. In other words, it is very difficult to configure a projection optical system having the required resolution with only a refractive optical member.
  • the reflection type projection optical system to be formed becomes large and the reflection surface needs to be made aspherical. It is extremely difficult to make the reflecting surface aspherical with high precision in terms of manufacturing. Therefore, a combination of a refraction optical member made of optical glass that can withstand the use of short-wavelength light and a reflecting mirror is required.
  • Various catadioptric reduction optical systems have been proposed.
  • Japanese Patent Application Laid-Open No. Hei 4-237472 and U.S. Pat. No. 4,779,966 discloses that an intermediate image is formed only once using only one concave reflecting mirror.
  • a catadioptric optical system of the following type the reciprocating optical system including the concave reflecting mirror includes only a negative lens and does not include a refractive optical member having a positive power.
  • the diameter of the concave reflector tends to increase because the light beam enters the concave reflector in a spread state.
  • a reciprocating optical system including a concave reflecting mirror has a completely symmetric configuration.
  • the generation of aberrations in the reciprocating optical system is minimized, and the burden of correcting aberrations in the subsequent refractive optical system is reduced.
  • the adoption of a symmetrical reciprocating optical system made it difficult to ensure a sufficient working distance near the first surface, and had to use a half prism to split the optical path.
  • a concave reflecting mirror is used for a secondary image forming optical system disposed behind a position where an intermediate image is formed.
  • the light beam is incident on the concave reflecting mirror in a spread state.
  • the diameter of the concave reflecting mirror tends to be large, and it has been difficult to reduce its size.
  • a type of reflective refraction optical system that forms an intermediate image only once using a plurality of reflecting mirrors is also known.
  • this type of catadioptric optical system there is a possibility that the number of lenses in the refractive optical system can be reduced.
  • this type of catadioptric optical system has the following disadvantages.
  • the second surface (wafer) after being reflected by the reflector due to reduction magnification. Surface) must be long enough. And can not. For this reason, it was not possible to insert too many lenses into this optical path, and the brightness of the obtained optical system had to be limited. Further, even if an optical system having a high numerical aperture can be realized, since many refractive optical members are arranged in an optical path of a limited length, the second surface, the wafer surface, and the most The distance from the two lens surfaces, the so-called working distance WD, could not be secured long enough.
  • the conventional catadioptric system could not secure a position where an effective field stop and aperture stop should be installed. Further, as described above, the working distance cannot be ensured sufficiently long in the conventional catadioptric optical system. Further, as described above, in the conventional catadioptric system, the concave reflecting mirror is easily enlarged, and the optical system cannot be downsized.
  • the number of lenses tends to increase.
  • the optical system for F 2 excimer laser It is difficult to improve the performance of the antireflection film to be formed, and the amount of light used is likely to be attenuated.
  • the present invention has been made in view of the above problems, and has a simple configuration in which the distance between the object plane and the image plane is small and the number of lenses is small, for example, vacuum ultraviolet light having a wavelength of 180 nm or less. It is an object of the present invention to provide a catadioptric optical system capable of achieving a high resolution of 0.1 or less using light in a wavelength range.
  • the present invention can secure a position where an effective field stop and an aperture stop should be installed.
  • 0.1 z / m is used by using light in a vacuum ultraviolet wavelength region having a wavelength of 180 nm or less. It is an object of the present invention to provide a catadioptric optical system capable of achieving the following high resolution.
  • the present invention can ensure a sufficiently long working distance, for example, achieving a high resolution of 0.1 m or less using light in a vacuum ultraviolet wavelength range of 180 nm or less.
  • the purpose is to provide a catadioptric system that can.
  • the present invention can reduce the size of the optical system by suppressing the enlargement of the concave reflecting mirror.
  • the present invention uses a light in a vacuum ultraviolet wavelength range of 180 nm or less to achieve a diameter of 0.1 m or less.
  • An object of the present invention is to provide a catadioptric optical system capable of achieving high resolution.
  • a first invention of the present invention has at least one concave reflecting mirror and at least one flat reflecting mirror, and based on light from the first surface, (1) a first imaging optical system for forming an intermediate image, and
  • a second reflecting mirror having at least one concave reflecting mirror and at least one flat reflecting mirror for forming a second intermediate image of the first surface based on light passing through the first imaging optical system; Imaging optics,
  • a refraction-type third imaging optical system for forming a final image of the first surface on the second surface based on light passing through the second imaging optical system.
  • a catadioptric system is provided.
  • all optical members except the plane reflecting mirror of the first imaging optical system and all optical members except the plane reflecting mirror of the second imaging optical system are linear.
  • All the optical members of the third imaging optical system are linearly extended so as to be orthogonal to the first optical axis.
  • the light from the first surface is disposed along a second optical axis, and the light from the first surface passes through the one plane reflecting mirror and the one concave reflecting mirror in the first imaging optical system sequentially, and the first intermediate image And the light passing through the first imaging optical system forms the second intermediate image via one planar reflecting mirror and one concave reflecting mirror of the second imaging optical system in order. . '
  • the first imaging optical system has at least one negative lens component disposed immediately before the concave reflecting mirror.
  • the second imaging optical system has at least one negative lens component disposed immediately before the concave reflecting mirror.
  • the catadioptric system is preferably telecentric on at least one of the first surface side and the second surface side.
  • a field lens is disposed in an optical path between the second imaging optical system and the third imaging optical system.
  • a field lens is disposed in an optical path between the first imaging optical system and the second imaging optical system.
  • At least one of the field lenses disposed in the optical path between the first imaging optical system and the second imaging optical system is the first imaging optical system. It is preferable to have a partially cut-out shape in order to pass only the light reflected from the concave reflecting mirror without passing the light incident on the concave reflecting mirror of the system.
  • at least one of the field lenses disposed in an optical path between the first imaging optical system and the second imaging optical system includes the lens of the first imaging optical system. It is preferable that both the light incident on the concave reflecting mirror and the light reflected from the concave reflecting mirror are transmitted.
  • an illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask is formed on a photosensitive substrate set on the second surface.
  • An exposure apparatus comprising: the catadioptric optical system according to the first aspect of the present invention.
  • the mask and the photosensitive substrate are relatively moved with respect to the catadioptric system to scan and expose the pattern of the mask on the photosensitive substrate. preferable.
  • FIG. 1 is a diagram for explaining a basic configuration of a catadioptric optical system of the present invention.
  • FIG. 2 is a diagram schematically illustrating an overall configuration of an exposure apparatus including a catadioptric optical system according to each embodiment of the present invention as a projection optical system.
  • FIG. 3 is a diagram showing a positional relationship between a rectangular exposure area (ie, an effective exposure area) formed on a wafer and a reference optical axis.
  • FIG. 4 is a diagram of a catadioptric optical system (projection optical system PL) according to the first embodiment.
  • FIG. 4 is a diagram of a catadioptric optical system (projection optical system PL) according to the first embodiment.
  • FIG. 5 is a diagram illustrating the lateral aberration of the catadioptric optical system according to the first embodiment:
  • FIG. 6 is a diagram illustrating the lateral aberration of the catadioptric optical system according to the first embodiment (
  • FIG. 9 is a diagram showing a lens configuration of a catadioptric optical system (projection optical system PL) according to a second example.
  • Figure 8 is a diagram showing lateral aberration of such catadioptric optical system in the second embodiment
  • ⁇ 9 is a diagram showing lateral aberration of the catadioptric optical system according to the second embodiment (FIG. 1 0
  • This is a flowchart of a technique for obtaining a semiconductor device as a micro device.
  • FIG. 11 is a flowchart of a method for obtaining a liquid crystal display element as a micro device.
  • FIG. 1 is a diagram for explaining a basic configuration of a catadioptric optical system of the present invention.
  • the catadioptric optical system of the present invention is applied to a projection optical system of a scanning exposure type exposure apparatus.
  • the catadioptric system of the present invention includes a first imaging optical system G1 that forms a first intermediate image of a pattern of a reticle R as a projection master disposed on a first surface.
  • the first imaging optical system G1 has at least one concave reflecting mirror and at least one plane reflecting mirror, that is, a first plane reflecting mirror M1 and a second concave reflecting mirror CM2.
  • light from the reticle R forms a first intermediate image via the first plane reflecting mirror M1 and the second concave reflecting mirror CM2.
  • the light passing through the first imaging optical system G1 forms a second intermediate image of the pattern of the reticle R via the second imaging optical system G2.
  • the second imaging optical system G2 has at least one concave reflecting mirror and at least one plane reflecting mirror, that is, a third concave reflecting mirror CM3 and a fourth plane reflecting mirror M4. Therefore, in the second imaging optical system G2, the light passing through the first imaging optical system G1 is reflected by the third concave surface.
  • a second intermediate image is formed via the projection mirror CM3 and the fourth plane reflection mirror M4.
  • the light that has passed through the second imaging optical system G2 passes through a refraction-type third imaging optical system G3 having a plurality of refraction optical members without including a reflecting mirror to form the final image of the reticle-scale pattern. It is formed on a wafer W as a photosensitive substrate disposed on the second surface.
  • a rectangular illumination area IR and an effective exposure area ER are moved while moving a reticle R and a wafer W in a predetermined direction (scan direction). Is performed based on the scanning exposure.
  • all the optical members of the first imaging optical system G1 except for the first plane reflecting mirror M1 and all of the second imaging optical system G2 except for the fourth plane reflecting mirror M4 are arranged along a single first optical axis AX1 extending linearly.
  • All the optical members of the third imaging optical system G3 are arranged along a single second optical axis AX2 that extends linearly so as to be orthogonal to the first optical axis AX1.
  • the first plane reflecting mirror M 1 and the fourth plane reflecting mirror M 4 can be integrally formed as front and back mirrors. When the first plane reflecting mirror M1 and the fourth plane reflecting mirror M4 are integrally formed, the precision of the front and back surfaces is good and the manufacturing is easy.
  • first plane reflecting mirror Ml and the fourth plane reflecting mirror M4 are arranged at predetermined positions, an angle adjustment is required, but if they are integrally formed, the first plane reflecting mirror M4 Even if 1 is disposed with an error in the minus direction from the predetermined angle, the fourth plane reflecting mirror M 4 cancels the error in the plus direction from the predetermined angle, and the fourth plane reflecting mirror M 4 It can be incident at an angle.
  • the field lens FL is disposed in the optical path between the first imaging optical system G1 and the second imaging optical system G2.
  • the field lens FL has a function of matching and connecting the first imaging optical system G 1 and the second imaging optical system G 2 without actively contributing to the formation of the first intermediate image.
  • At least one of the field lenses FL Lens has a partially cut-out shape to allow only the reflected light from the second concave reflecting mirror to pass without passing the light incident on the second concave reflecting mirror of the first imaging optical system G1.
  • At least one of the field lenses FL is formed so as to transmit both the light incident on the second concave reflecting mirror of the first imaging optical system G1 and the reflected light from the second concave reflecting mirror. ing.
  • a field lens is arranged in the optical path between the second imaging optical system G2 and the third imaging optical system G3 as needed.
  • At least one negative lens component is arranged immediately before the second concave reflecting mirror CM2 of the first imaging optical system G1 and the third concave reflecting mirror CM3 of the second imaging optical system G2.
  • the refractive optical member (lens component) is formed of a single kind of optical material, it is possible to satisfactorily correct chromatic aberration. Further, it is possible to satisfactorily simultaneously correct the axial chromatic aberration and the chromatic difference of magnification.
  • a field stop FS defining an image area formed by the catadioptric optical system is provided near the field lens FL between the first imaging optical system G1 and the second imaging optical system G2, or the second stop. It can be arranged near the field lens between the imaging optical system G2 and the third imaging optical system G3. In this case, it is possible to adopt a configuration in which the illumination optical system does not need to have a field stop. Further, an aperture stop AS can be arranged in the optical path of the third imaging optical system G3. As described above, in the catadioptric optical system of the present invention, both the first imaging optical system G1 and the second imaging optical system G2 have at least one concave reflecting mirror and at least one flat reflecting mirror.
  • the third imaging optical system G3 constitutes a refraction type optical system. Therefore, according to a typical embodiment, the first imaging optical system G1 and the second imaging optical system G2 are arranged along the first optical axis AX1, and the third imaging optical system G3 is It is arranged along the second optical axis AX2 orthogonal to the first optical axis AX1.
  • the reticle R and the wafer W have the second optical axis AX 2 Will be arranged along.
  • the third imaging optical system G3 is disposed along the second optical axis AX2 on which the reticle R and the wafer W are disposed, and the first imaging optical system G1 and the second imaging optical system G2 are arranged along a first optical axis AX1 orthogonal to the second optical axis AX2. Therefore, in the present invention, the distance between the reticle R and the wafer W, that is, the distance between the object plane and the image plane can be set small, and a high-performance and high-precision optical system can be realized. In particular, by making the first optical axis AX1 orthogonal to the second optical axis AX2, the adjustment work between the optical axes becomes easy, and it is easy to realize a high-performance and high-precision optical system. Become.
  • the first imaging optical system G1 and the second imaging optical system G2 are catadioptric optical systems, good correction of chromatic aberration can be achieved even if the lens component is formed of a single type of optical material. It becomes possible. Further, at least one negative lens component is arranged immediately before the second concave reflecting mirror CM2 of the first imaging optical system G1 and immediately before the third concave reflecting mirror CM3 of the second imaging optical system G2. This makes it possible to satisfactorily correct axial chromatic aberration and magnification chromatic aberration at the same time.
  • the Petzval sum that tends to be positive because the refractive optical system portion of the third imaging optical system G3 has a positive refractive power (power) is converted to the first imaging optical system G1 and the second optical system.
  • the negative Petzval sum of the concave reflecting mirror portions (CM 2, CM 3) in the imaging optical system G 2 cancels out and the whole Petzval sum can be completely suppressed to zero.
  • F 2 be an excimer laser beam rather difficulty leads to attenuation of the use quantity, A decrease in throughput of the exposure apparatus can be avoided.
  • FIG. 2 shows a catadioptric optical system according to each embodiment of the present invention as a projection optical system.
  • FIG. 1 is a view schematically showing an overall configuration of an exposure apparatus provided with u .
  • the Z axis is parallel to the reference optical axis of the catadioptric system constituting the projection optical system PL, that is, the second optical axis AX 2, and the plane is perpendicular to the reference optical axis AX 2.
  • the Y axis is set parallel to the paper and the X axis is set perpendicular to the paper.
  • the light emitted from the light source 100 uniformly illuminates a reticle (mask) R on which a predetermined pattern is formed via an illumination optical system IL.
  • the optical path between the light source 100 and the illumination optical system IL is sealed by a casing (not shown), and the space from the light source 100 to the optical component closest to the reticle side in the illumination optical system IL. Is replaced by an inert gas such as helium gas or nitrogen, which is a gas having a low absorptance of exposure light, or is kept almost in a vacuum state.
  • the reticle R is held on a reticle stage RS via a reticle holder RH in parallel with the XY plane.
  • a pattern to be transferred is formed on the reticle R, and a rectangular pattern region having a long side along the X direction and a short side along the Y direction in the entire pattern region is illuminated.
  • the reticle stage RS can be moved two-dimensionally along the reticle plane (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are transmitted to the interferometer RIF using the reticle moving mirror RM. Thus, it is configured to be measured and controlled in position.
  • the wafer W is held in parallel with the XY plane on a wafer stage WS via a wafer table (wafer holder) WT. Then, the wafer W has a long side along the X direction and a short side along the Y direction so as to optically correspond to the rectangular illumination area on the reticle R. A pattern image is formed in the rectangular exposure area.
  • the wafer stage WS can be moved two-dimensionally along the wafer surface (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are measured by an interferometer WIF using a wafer moving mirror WM. In addition, the position is controlled.
  • FIG. 3 is a diagram showing a positional relationship between a rectangular exposure area (ie, an effective exposure area) formed on a wafer and a reference optical axis.
  • a rectangular exposure area ie, an effective exposure area
  • the reference optical axis AX2 is —
  • a rectangular effective exposure area ER having a desired size is set at a position eccentric in the Y direction.
  • the length in the X direction of the effective exposure area ER is LX
  • the length in the Y direction is LY.
  • a rectangular illumination area IR having a size and shape corresponding to the effective exposure area ER is formed at a position decentered in the + Y direction from the reference optical axis AX2. It will be.
  • a desired size is set at a position eccentric in the + Y direction from the reference optical axis AX2.
  • a rectangular illumination area IR is set.
  • the optical member (the first plane reflecting mirror Ml in each embodiment) arranged closest to the reticle side among the optical members constituting the projection optical system PL is arranged closest to the wafer side.
  • the projection optical system PL is configured so as to keep the interior of the projection optical system PL airtight between the optical member (the lens L312 in the first embodiment and the lens L311 in the second embodiment).
  • the gas inside is replaced by an inert gas such as helium gas or nitrogen, or is maintained in a substantially vacuum state.
  • a casing (not shown) that hermetically surrounds the reticle R and reticle stage RS is filled with an inert gas such as nitrogen or helium gas, or almost completely. It is kept in a vacuum state.
  • a casing (not shown) for enclosing and enclosing the wafer W and the wafer stage WS in which the wafer W and the wafer stage WS are arranged. Is filled with an inert gas such as nitrogen or helium gas, or is kept almost in a vacuum state. Thus, an atmosphere in which the exposure light is hardly absorbed is formed over the entire optical path from the light source 100 to the wafer W.
  • the illumination area on the reticle R defined by the projection optical system PL and the exposure area on the wafer W are rectangular with short sides along the Y direction. . Therefore, while controlling the positions of the reticle R and the wafer W using a drive system and interferometers (RIF, WIF), etc., along the short side direction of the rectangular exposure area and the illumination area, that is, along the Y direction.
  • a drive system and interferometers RIF, WIF
  • the long side of the exposure area on the wafer W is obtained.
  • the reticle pattern is scanned and exposed to a region having a width equal to the length of the wafer W and a length corresponding to the scanning amount (movement amount) of the wafer W.
  • the projection optical system PL including the catadioptric optical system of the present invention is a catadioptric first imaging optical system for forming a first intermediate image of the pattern of the reticle R disposed on the first surface.
  • a system G 1 a catadioptric second imaging optical system G 2 for forming a second intermediate image of the pattern of the reticle R based on light passing through the first imaging optical system G 1,
  • the member is arranged along the first optical axis AX1.
  • all the optical members constituting the third imaging optical system G3 are arranged along a second optical axis AX2 orthogonal to the first optical axis AX1.
  • a first field lens is disposed in an optical path between the first imaging optical system G 1 and the second imaging optical system G 2, and the second imaging optical system G 2 and the third imaging optical system G 2
  • a second field lens is arranged in the optical path between 3 and.
  • fluorite C a F 2 crystal
  • the oscillation center wavelength of F 2 laser beam as the exposure light is 1 5 7. 6 nm, 1 5 7. 6 refractive index of the C a F 2 in the vicinity nm is, + 1 ⁇ wavelength change per 2 .
  • 45 X 1 0- s varies at a rate of, - 1 pm per wavelength change + 2. changes at a rate of 4 5 X 1 0- 6.
  • the dispersion (dnZciA) of the refractive index of C a F 2 around 15.76 nm is 2.45 X 10 "pm.
  • the refractive index of the C a F 2 with respect to the center wavelength of 1 5 7. 6 nm is 1.5 6 0 0 0 0.
  • the height of the aspheric surface in the direction perpendicular to the optical axis is y
  • the aspheric surface extends along the optical axis from the tangent plane at the vertex of the aspheric surface to the position on the aspheric surface at the height y.
  • the distance (sag amount) is z
  • the vertex curvature radius is r
  • the circle When the cone coefficient is ⁇ and the ⁇ -order aspheric coefficient is C Gre, it is expressed by the following equation (a).
  • an asterisk (*) is attached to the right side of the surface number on the lens surface formed into an aspherical shape.
  • FIG. 4 is a diagram illustrating a lens configuration of a catadioptric optical system (projection optical system P L) according to the first example.
  • the first imaging optical system G 1 has a convex surface on the side of the first plane reflecting mirror M 1 and the first plane reflecting mirror M 1 along the traveling direction of light from the reticle side.
  • a positive meniscus lens L 11, a biconcave lens L 12, and a second concave reflector CM 2 having a concave surface facing the first plane reflector M l.
  • the positive meniscus lens L11, the biconcave lens L12, and the second concave reflecting mirror CM2 are arranged in order from the right side in the figure along the horizontal first optical axis AX1 in the figure.
  • the second imaging optical system G2 is a negative meniscus lens L2 having a concave surface facing the first imaging optical system G1 along the light traveling direction from the first imaging optical system G1.
  • a third concave reflecting mirror CM3 having a concave surface facing the first imaging optical system G1
  • a fourth flat reflecting mirror M4
  • the negative meniscus lens L 21 and the third concave reflecting mirror CM 3 are arranged in order from the left side in the figure along the first optical axis AX 1.
  • the third imaging optical system G 3 includes, in order from the reticle side, a positive meniscus lens L 31 having a convex surface facing the reticle side and a negative meniscus lens L 3 2 having an aspherical concave surface facing the reticle side.
  • the first image forming optical system G 1 and the second image forming optical system G 2 the first image forming optical system A first field composed of a positive meniscus lens L 41 having a concave surface facing the optical system G 1 side and a partial lens L 42 of a positive meniscus lens having a convex surface facing the first imaging optical system G 1 side.
  • a lens is located. That is, the positive meniscus lens L41 and the partial lens L42 of the positive meniscus lens are arranged in order from the left side in the figure along the first optical axis AX1.
  • the positive meniscus lens L 41 is the same lens as the positive meniscus lens LI 1, and passes both the incident light to the second concave reflecting mirror CM 2 and the reflected light from the second concave reflecting mirror CM 2 .
  • the partial lens L42 of the positive meniscus lens is a positive meniscus lens that passes only the light reflected from the second concave reflector CM2 without passing the light incident on the second concave reflector CM2. Has a partially cut-out shape.
  • a biconvex lens L 51 having an aspherical convex surface facing the reticle side is arranged in order from the reticle side.
  • a second field lens composed of a positive meniscus lens L 52 having a convex surface facing the reticle side and a positive meniscus lens L 53 having a non-spherical convex surface facing the wafer side is disposed.
  • the lenses L51 to L5'3 are arranged in order from the upper side (reticle side) in the figure along the second optical axis AX2.
  • the first embodiment after the light from the reticle R is reflected by the first plane reflecting mirror ⁇ 1, it passes through the positive meniscus lens LI1 and the biconcave lens L12, and then passes through the second concave reflecting mirror CM2. Incident on.
  • the light reflected by the second concave reflecting mirror CM2 forms a first intermediate image of a reticle pattern near the first field lens (L41, L42).
  • Light from the first intermediate image formed near the first field lens (L41, L42) enters the third concave reflecting mirror CM3 via the negative meniscus lens L21.
  • the light reflected by the third concave reflecting mirror CM3 is incident on the fourth plane reflecting mirror M4 via the negative meniscus lens L21.
  • the light reflected by the fourth plane mirror M4 forms a second intermediate image of the reticle pattern in the second field lens (L51 to L53).
  • the light from the second intermediate image formed in the second field lens (L51 to L53) passes through each lens L3 that constitutes the third imaging optical system G3:! Through the process, a final image of the reticle pattern is formed on the wafer W.
  • Table (1) shows the values of the specifications of the catadioptric optical system according to the first example.
  • is the center wavelength of the exposure light
  • jS is the projection magnification '(imaging magnification of the entire system)
  • NA is the numerical aperture on the image side (Jehachi side)
  • A is Is the radius of the image circle IF on the wafer W, that is, the maximum image height
  • B is the maximum object height corresponding to the maximum image height
  • LX is the dimension of the effective exposure area ER along the X direction (long side dimension)
  • LY represents the dimension (short side dimension) of the effective exposure area ER along the Y direction.
  • the surface number of the first column is the order of the surface along the light traveling direction from the reticle side
  • r of the second column is the radius of curvature (aspheric surface) of each surface.
  • the vertex curvature radius: mm indicates the on-axis spacing of each surface, that is, the surface spacing (mm)
  • n in the fourth column indicates the refractive index with respect to the center wavelength. Note that the sign of the surface distance d changes each time it is reflected.
  • the sign of the surface distance d is Negative in the optical path from the first concave reflecting mirror M1 to the second concave reflecting mirror CM2 and in the optical path from the third concave reflecting mirror CM3 to the fourth flat reflecting mirror M4, and positive in other optical paths.
  • the radius of curvature of the convex surface toward the left in the figure is positive, and the radius of curvature of the concave surface toward the left in the diagram is negative.
  • the radius of curvature of the convex surface toward the reticle side is positive, and the radius of curvature of the concave surface toward the reticle side is negative.
  • FIG. 5 and Fig. 6 are diagrams showing lateral aberrations of the catadioptric optical system according to Example 1.
  • Y represents the image height (mm).
  • the exposure light having a wavelength width of 157.6 nm ⁇ 0.4 pm, against the F 2 laser beam of half width 0. 7 pm this chromatic aberrations are satisfactorily corrected Togawakaru. Further, spherical aberration, coma, astigmatism, distortion (distortion aberration) is almost no aberration It has been confirmed that it is well corrected to a close state and has excellent imaging performance.
  • FIG. 7 is a diagram illustrating a lens configuration of a catadioptric optical system (projection optical system PL) according to the second example.
  • the first imaging optical system G 1 has a convex surface on the first plane reflecting mirror M 1 and the first plane reflecting mirror M 1 side along the light traveling direction from the reticle side.
  • a positive meniscus lens L 11, a biconcave lens L 12, and a second concave reflector CM 2 having a concave surface facing the first plane reflector M 1.
  • the positive meniscus lens L11, the biconcave lens L12, and the second concave reflecting mirror CM2 are arranged in order from the right side in the figure along the horizontal first optical axis AX1 in the figure.
  • the second imaging optical system G2 is a negative meniscus lens having a concave surface facing the first imaging optical system G1 along the light traveling direction from the first imaging optical system G1.
  • L 2 a third concave reflecting mirror CM 3 having a concave surface facing the first imaging optical system G 1, and a fourth flat reflecting mirror M 4.
  • the negative meniscus lens 21 and the third concave reflecting mirror CM 3 are arranged in order from the left side in the figure along the first optical axis AX 1.
  • the third imaging optical system G 3 includes, in order from the reticle side, a negative meniscus lens L 31 having a concave surface facing the reticle side, and a biconvex lens L 32 having an aspherical convex surface facing the reticle side.
  • It is composed of a biconvex lens L39, a positive meniscus lens L310 with an aspheric concave surface facing the wafer side, and a biconvex lens L311.
  • the lenses L31 to L311 are arranged in order from the upper side (reticle side) in the figure along the second optical axis AX2, which is vertical in the figure.
  • the first imaging optical system A first field composed of a positive meniscus lens L 41 having a concave surface facing the optical system G 1 side and a partial lens L 42 of a positive meniscus lens having a convex surface facing the first imaging optical system G 1 side.
  • a lens is located. That is, the positive meniscus lens L41 and the partial lens L42 of the positive meniscus lens are arranged along the first optical axis AX1 from the left side in the figure.
  • the positive meniscus lens L 41 is the same lens as the positive meniscus lens L 11, and passes both the light incident on the second concave reflecting mirror CM 2 and the reflected light from the second concave reflecting mirror CM 2 Let it.
  • the partial lens L42 of the positive meniscus lens passes only the light reflected from the second concave reflecting mirror CM2 without passing the light incident on the second concave reflecting mirror CM2.
  • the positive meniscus lens has a partially cut-out shape.
  • a biconvex lens L51 having an aspherical convex surface facing the reticle side in order from the reticle side.
  • a second field lens including a positive meniscus lens L52 having a convex surface facing the reticle side and a biconvex lens L53 having an aspherical convex surface facing the reticle side is arranged.
  • the lenses L51 to L53 are arranged in order from the upper side (reticle side) in the figure along the second optical axis AX2.
  • the light from the reticle R is reflected by the first plane reflecting mirror M1
  • the light is reflected by the positive meniscus lens L1 and the biconcave lens L12, and the second concave reflecting mirror CM It is incident on 2.
  • the light reflected by the second concave reflecting mirror CM2 forms a first intermediate image of a reticle pattern near the first field lens (L41, L42).
  • Light from the first intermediate image formed near the first field lens (L41, L42) enters the third concave reflecting mirror CM3 via the negative meniscus lens L21.
  • the light reflected by the third concave reflecting mirror CM3 is incident on the fourth plane reflecting mirror M4 via the negative meniscus lens L21.
  • the light reflected by the fourth plane reflecting mirror M4 forms a second intermediate image of a reticle pattern near the second field lens (L51 to L53).
  • Light from the second intermediate image formed in the vicinity of the second field lens (L51 to L53) passes through each lens L31 to L31 constituting the third imaging optical system G3. Through the process, a final image of the reticle pattern is formed on the wafer W.
  • Table 2 summarizes the data values of the catadioptric optical system according to the second example.
  • FIG. 4 is a view showing lateral aberration.
  • Y indicates the image height (mm).
  • the exposure light having a wavelength width of 15.7 nm ⁇ 0.4 pm, that is, the center wavelength is 15.7
  • the chromatic aberration is favorably corrected for the F 2 laser beam having a half width of 0.7 pm at 6 11111.
  • spherical aberration, coma, astigmatism, and distortion (distortion) are good up to almost no aberration. It has been confirmed that it is well corrected and has excellent imaging performance.
  • the center wavelength of 1 5 7.
  • the chromatic aberration on the wafer W It is possible to secure an image circle with a radius of 20 mm in which various aberrations such as are sufficiently corrected. Therefore, in each embodiment, it is possible to achieve a high resolution of 0.1 m or less while securing a sufficiently large rectangular effective exposure area of 22 mm ⁇ 5.5 mm. . Then, the pattern of the reticle R can be transferred with high precision to each exposure area having a size of, for example, 22 mm ⁇ 33 mm on the wafer W by scanning exposure.
  • the diameter of the two concave reflecting mirrors CM 1 and CM 3 is less than or equal to 335 mm, the effective diameter (diameter) of the two largest lenses is less than or equal to 335 mm, The effective diameter of most other lenses is less than 240 mm.
  • the diameters of the two concave reflecting mirrors CM1 and CM3 are equal to or less than 3400 mm, and the effective diameter (diameter) of the two largest lenses is equal to or less than 3400 mm.
  • the effective diameter of most other lenses is less than 230 mm.
  • the size of the optical system is reduced by suppressing an increase in the size of the concave reflecting mirror and the lens.
  • each of the above embodiments has a configuration in which the number of lenses is small and the loss of light quantity on the lens surface is suppressed.
  • the object plane (reticle plane), the image plane (wafer plane), Is about 1.5 m
  • the distance between the object plane and the image plane is about 1.3 m.
  • the distance between the object plane and the image plane is kept small, so that a high-performance and high-precision optical system can be realized, and the size of the apparatus can be further reduced. Can be.
  • the number of aspheric surfaces introduced is very small (eight in each embodiment).
  • the reticle is illuminated by the illumination optical system (illumination step), and the transfer pattern formed on the reticle is scanned and exposed on the photosensitive substrate using the projection optical system (exposure step).
  • micro devices semiconductor elements, imaging elements, liquid crystal display elements, thin-film magnetic heads, etc.
  • the flow chart of FIG. 10 shows an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the above-described exposure apparatus. It will be described with reference to FIG.
  • a metal film is deposited on one lot of wafers.
  • a photoresist is applied to the metal film on the one-lot wafer.
  • the pattern image on the reticle is sequentially exposed and transferred to each shot area on the one-lot wafer via the projection optical system using the above-described exposure apparatus.
  • the photo resist on the wafer of the one lot is developed, and then in step 305, etching is performed on the wafer of the one lot using the resist pattern as a mask.
  • a circuit pattern corresponding to the pattern on the reticle is formed in each shot area on each wafer.
  • devices such as semiconductor elements are manufactured by forming a circuit pattern of the upper layer. According to the above-described semiconductor device manufacturing method, a semiconductor device having an extremely fine circuit pattern can be obtained with good throughput. Can be.
  • a liquid crystal display element as a micro device can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate).
  • a predetermined pattern circuit pattern, electrode pattern, etc.
  • a plate glass substrate
  • an example of the technique at this time will be described with reference to the flowchart in FIG. In FIG. 11, in a pattern forming step 401, a so-called optical lithography step of transferring and exposing a reticle pattern to a photosensitive substrate (eg, a glass substrate coated with a resist) using the above-described exposure apparatus is performed. You. By this photolithography process, a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate.
  • the exposed substrate is subjected to various processes such as a developing process, an etching process, and a reticle peeling process, so that a predetermined pattern is formed on the substrate, and the process proceeds to the next color fill forming process 402. I do.
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or A color filter is formed in which a plurality of sets of three stripes of R, G, and B are arranged in a horizontal scanning line direction.
  • a cell assembling step 403 is executed after the color-fill-filling-illustration forming step 402.
  • the liquid crystal is formed by using the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402. Assemble the panel (liquid crystal cell).
  • liquid crystal is injected between the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402.
  • a liquid crystal display device having an extremely fine circuit pattern can be obtained with good throughput.
  • the present invention is applied to the projection optical system of the scanning exposure type exposure apparatus.
  • the present invention is not limited to this, and the present invention is applied to the projection optical system of the batch exposure type exposure apparatus.
  • the present invention can be applied to general imaging optical systems other than the projection optical system of the exposure apparatus.
  • the catadioptric optical system of the present invention has a simple configuration in which the distance between the object plane and the image plane is small and the number of lenses is small, so that a high-performance optical system in which the loss of light quantity on the lens plane is successfully suppressed
  • a high-precision optical system can be realized, for example, a high resolution of 0.1 xm or less can be achieved by using light in a vacuum ultraviolet wavelength region having a wavelength of 180 nm or less.
  • the catadioptric optical system of the present invention to a projection optical system of an exposure apparatus, for example, using exposure light having a wavelength of 180 nm or less, a high resolution of 0.1 ⁇ am or less can be obtained. Projection exposure can be performed. Further, by using an exposure apparatus equipped with the catadioptric optical system of the present invention as a projection optical system and performing good projection exposure at a high resolution of, for example, 0.1 / ⁇ m or less, a high-precision micro Devices can be manufactured.

Abstract

A catadioptric system comprising a first image forming optical system (G1) having a concave reflection mirror (CM2) and a plane reflection mirror (M1) and used to form the first intermediate image of a first plane (R) based on light from the first plane, a second image forming optical system (G2) having a concave reflection mirror (CM3) and a plane reflection mirror (M4) and used to form the second intermediate image of the first plane based on light via the first image forming optical system, and a third refractive type image forming optical system (G3) for forming the final image of the first plane on a second plane (W) based on light via the second image forming optical system.

Description

反射屈折光学系および該光学系を備えた露光装置 技術分野 FIELD OF THE INVENTION
本発明は反射屈折光学系および該光学系を備えた露光装置に関し、 特 に半導体素子などをフォ トリソグラフイエ程で製造する際に使用され る露光装置に最適な高解像の反明射屈折型の投影光学系に関する。  The present invention relates to a catadioptric optical system and an exposure apparatus having the optical system, and particularly to a high-resolution anti-reflection refraction which is optimal for an exposure apparatus used for manufacturing a semiconductor device or the like by a photolithographic process. Projection optical system.
 Rice field
背景技術 Background art
近年、 半導体素子の製造や半導体チップ実装基板の製造では、 微細化 がますます進んでおり、 パターンを焼き付ける露光装置ではより解像力 の高い投影光学系が要求されてきている。 この高解像の要求を満足する には、 露光光を短波長化し、 且つ N A (投影光学系の開口数) を大きく しなければならない。 しかしながら、 露光光の波長が短くなると、 光の 吸収のため実用に耐える光学ガラスの種類が限られてくる。 たとえば、 波長が 1 8 0 n m以下になると、 実用上使える硝材は蛍石だけとなる。  In recent years, in the manufacture of semiconductor elements and the manufacture of semiconductor chip mounting substrates, miniaturization has been further advanced, and a projection optical system with higher resolution has been required for an exposure apparatus for printing a pattern. To satisfy this demand for high resolution, the wavelength of the exposure light must be shortened and the NA (numerical aperture of the projection optical system) must be increased. However, as the wavelength of the exposure light becomes shorter, the types of optical glass that can withstand practical use are limited due to light absorption. For example, at wavelengths below 180 nm, the only viable glass material is fluorite.
この場合、 屈折光学部材 (レンズ、 平行平面板など) だけで投影光学 系を構成すると、 形成された屈折型の投影光学系では色収差の補正が全 く不可能となる。 換言すると、 要求される解像力を有する投影光学系を 屈折光学部材だけで構成することは非常に難しいものとなる。 これに対 して、 反射光学部材すなわち反射鏡のみで投影光学系を構成することも 試みられている。  In this case, if the projection optical system is composed of only refractive optical members (lenses, parallel plane plates, etc.), it is impossible to correct chromatic aberration with the formed refractive optical system. In other words, it is very difficult to configure a projection optical system having the required resolution with only a refractive optical member. On the other hand, attempts have been made to construct a projection optical system using only reflecting optical members, that is, reflecting mirrors.
しかしながら、 この場合、 形成される反射型の投影光学系は大型化し、 且つ反射面の非球面化が必要となる。 なお、 反射面を高精度に非球面化 することは、 製作の面で極めて困難である。 そこで、 短波長光の使用に 耐える光学ガラスからなる屈折光学部材と反射鏡とを組み合わせた、 い わゆる反射屈折型の縮小光学系が種々提案されている。 However, in this case, the reflection type projection optical system to be formed becomes large and the reflection surface needs to be made aspherical. It is extremely difficult to make the reflecting surface aspherical with high precision in terms of manufacturing. Therefore, a combination of a refraction optical member made of optical glass that can withstand the use of short-wavelength light and a reflecting mirror is required. Various catadioptric reduction optical systems have been proposed.
その中で、 特開平 4一 2 3 4 7 2 2号公報や米国特許第 4, 7 7 9 , 9 6 6号公報には、 凹面反射鏡を 1枚だけ用いて中間像を 1回だけ形成 するタイプの反射屈折光学系が知られている。 このタイプの反射屈折光 学系では、 凹面反射鏡を含む往復兼用光学系部分が負レンズだけを含み, 正のパワーを有する屈折光学部材を含んでいない。 その結果、 光束が広 がった状態で凹面反射鏡に入射するため、 凹面反射鏡の径が大きくなり がちであった。  Among them, Japanese Patent Application Laid-Open No. Hei 4-237472 and U.S. Pat. No. 4,779,966 discloses that an intermediate image is formed only once using only one concave reflecting mirror. There is known a catadioptric optical system of the following type. In this type of catadioptric system, the reciprocating optical system including the concave reflecting mirror includes only a negative lens and does not include a refractive optical member having a positive power. As a result, the diameter of the concave reflector tends to increase because the light beam enters the concave reflector in a spread state.
特に、 特開平 4一 2 3 4 7 2 2号公報に開示された光学系は、 凹面反 射鏡を含む往復兼用光学系部分が完全対称型の構成を有する。 この場合, この往復兼用光学系部分での収差の発生を極力抑えて後続の屈折光学 系部分の収差補正負担を軽くしている。 しかしながら、 対称型の往復兼 用光学系を採用しているため、 第 1面付近でのワーキングディスタンス を十分に確保しにくく、 また光路分岐のためにハーフプリズムを使用し なければならなかった。  In particular, in the optical system disclosed in Japanese Patent Application Laid-Open No. 4-2324272, a reciprocating optical system including a concave reflecting mirror has a completely symmetric configuration. In this case, the generation of aberrations in the reciprocating optical system is minimized, and the burden of correcting aberrations in the subsequent refractive optical system is reduced. However, the adoption of a symmetrical reciprocating optical system made it difficult to ensure a sufficient working distance near the first surface, and had to use a half prism to split the optical path.
また、米国特許第 4 , 7 7 9 , 9 6 6号公報に開示された光学系では、 中間像の形成位置よりも後方に配置される 2次結像光学系に凹面反射 鏡を使用している。 この場合、 光学系の必要な明るさを確保するために は、光束が広がった状態で凹面反射鏡に入射することになる。その結果、 凹面反射鏡の径が大きくなりがちであり、 その小型化が困難であった。 一方、 複数枚の反射鏡を用いて中間像を 1回だけ形成するタイプの反 射屈折光学系も知られている。 このタイプの反射屈折光学系では、 屈折 光学系部分のレンズ枚数を削減できる可能性がある。 しかしながら、 こ のタイプの反射屈折光学系では、 以下の不都合があった。  Further, in the optical system disclosed in U.S. Pat.No. 4,779,966, a concave reflecting mirror is used for a secondary image forming optical system disposed behind a position where an intermediate image is formed. I have. In this case, in order to secure the required brightness of the optical system, the light beam is incident on the concave reflecting mirror in a spread state. As a result, the diameter of the concave reflecting mirror tends to be large, and it has been difficult to reduce its size. On the other hand, a type of reflective refraction optical system that forms an intermediate image only once using a plurality of reflecting mirrors is also known. In this type of catadioptric optical system, there is a possibility that the number of lenses in the refractive optical system can be reduced. However, this type of catadioptric optical system has the following disadvantages.
上述のような構成の往復兼用光学系部分を縮小側である第 2面側に 配置するタイプの反射屈折光学系では、 縮小倍率の関係から、 反射鏡で 反射された後の第 2面 (ウェハ面) までの距離を十分に長く確保するこ とができない。 このため、 この光路中にあまり多くの枚数のレンズを挿 入することができず、 得られる光学系の明るさが限られた値にならざる を得なかった。 また、 高い開口数を有する光学系をたとえ実現すること ができたとしても、 限られた長さの光路中に多くの屈折光学部材が配置 されるため、 第 2面であるウェハ面と最も第 2面側のレンズ面との距離, いわゆるワーキングディスタンス W Dを十分に長く確保することがで きなかった。 In a catadioptric optical system of the type in which the reciprocating optical system having the above-described configuration is arranged on the second surface side, which is the reduction side, the second surface (wafer) after being reflected by the reflector due to reduction magnification. Surface) must be long enough. And can not. For this reason, it was not possible to insert too many lenses into this optical path, and the brightness of the obtained optical system had to be limited. Further, even if an optical system having a high numerical aperture can be realized, since many refractive optical members are arranged in an optical path of a limited length, the second surface, the wafer surface, and the most The distance from the two lens surfaces, the so-called working distance WD, could not be secured long enough.
従来の反射屈折光学系においては、 光路を折り曲げる必要があり、 必 然的に複数の光軸 (光学系を構成する屈折曲面または反射曲面の曲率中 心を連ねる直線のことをいう) を有することになる。 その結果、 光学系 を形成するために複数の鏡筒を要し、 光軸相互の調整作業が非常に困難 になり、 高精度の光学系を実現することができなかった。 なお、 中央に 開口部 (光透過部) を有する一対の反射鏡を用いることにより、 すべて の光学部材を単一の直線状光軸に沿って配置したタイプの反射屈折光 学系も可能である。 しかしながら、 このタイプの反射屈折光学系では、 反射鏡で反射されることなく光軸に沿って進行する不要光を遮るため に、 中心光束の遮蔽すなわち中心遮蔽が必要になる。 その結果、 中心遮 蔽に起因して特定の周波数のパターンでコントラス 卜の低下が起こる という不都合があった。  In conventional catadioptric systems, it is necessary to bend the optical path and inevitably have multiple optical axes (refer to straight lines that connect the centers of curvature of the refractive or reflective surfaces that make up the optical system). become. As a result, a plurality of lens barrels were required to form the optical system, and it became extremely difficult to adjust the optical axes with each other, and a high-precision optical system could not be realized. By using a pair of reflecting mirrors having an opening (light transmitting part) at the center, a catadioptric system of a type in which all optical members are arranged along a single linear optical axis is also possible. . However, in this type of catadioptric system, it is necessary to shield the central light beam, that is, the central shield, in order to block unnecessary light traveling along the optical axis without being reflected by the reflecting mirror. As a result, there is an inconvenience that the contrast is reduced in a specific frequency pattern due to the central shielding.
また、 従来の反射屈折光学系では、 有効な視野絞りおよび開口絞りを 設置すべき位置を確保することができなかった。 さらに、 上述したよう に、 従来の反射屈折光学系では、 ワーキングディスタンスを十分に長く 確保することができなかった。 また、 上述したように、 従来の反射屈折 光学系では、 凹面反射鏡が大型化し易く、 光学系の小型化を図ることが できなかった。  In addition, the conventional catadioptric system could not secure a position where an effective field stop and aperture stop should be installed. Further, as described above, the working distance cannot be ensured sufficiently long in the conventional catadioptric optical system. Further, as described above, in the conventional catadioptric system, the concave reflecting mirror is easily enlarged, and the optical system cannot be downsized.
さらに、 従来の反射屈折光学系では、 レンズ枚数が多くなりがちであ る。 この場合、 特に F 2エキシマレ一ザ用の光学系では、 レンズ表面に 形成すべき反射防止膜の高性能化が困難であり、 使用光量の減衰を招き 易い。 また、 高性能で高精度の光学系を実現するには物体面と像面との 距離を小さくする必要があるが、 従来の反射屈折光学系ではこの距離が 十分に小さくなつていない。 発明の開示 Further, in the conventional catadioptric optical system, the number of lenses tends to increase. In this case, especially in the optical system for F 2 excimer laser, It is difficult to improve the performance of the antireflection film to be formed, and the amount of light used is likely to be attenuated. Also, in order to realize a high-performance, high-precision optical system, it is necessary to reduce the distance between the object plane and the image plane. However, this distance is not sufficiently small in the conventional catadioptric optical system. Disclosure of the invention
本発明は、 前述の課題に鑑みてなされたものであり、 物体面と像面と の距離が小さく且つレンズ枚数の少ない簡素な構成を有し、 たとえば波 長が 1 8 0 n m以下の真空紫外線波長域の光を用いて 0 . 1 以下の 高解像を達成することのできる反射屈折光学系を提供することを目的 とする。  The present invention has been made in view of the above problems, and has a simple configuration in which the distance between the object plane and the image plane is small and the number of lenses is small, for example, vacuum ultraviolet light having a wavelength of 180 nm or less. It is an object of the present invention to provide a catadioptric optical system capable of achieving a high resolution of 0.1 or less using light in a wavelength range.
さらに、 本発明は、 有効な視野絞りおよび開口絞りを設置すべき位置 を確保することができ、 たとえば波長が 1 8 0 n m以下の真空紫外線波 長域の光を用いて 0 . 1 z/ m以下の高解像を達成することのできる反射 屈折光学系を提供することを目的とする。  Further, the present invention can secure a position where an effective field stop and an aperture stop should be installed. For example, 0.1 z / m is used by using light in a vacuum ultraviolet wavelength region having a wavelength of 180 nm or less. It is an object of the present invention to provide a catadioptric optical system capable of achieving the following high resolution.
また、 本発明は、 十分に長いワーキングディスタンスを確保すること ができ、 たとえば波長が 1 8 0 n m以下の真空紫外線波長域の光を用い て 0 . 1 m以下の高解像を達成することのできる反射屈折光学系を提 供することを目的とする。  In addition, the present invention can ensure a sufficiently long working distance, for example, achieving a high resolution of 0.1 m or less using light in a vacuum ultraviolet wavelength range of 180 nm or less. The purpose is to provide a catadioptric system that can.
また、 本発明は、 凹面反射鏡の大型化を抑えて光学系の小型化を図る ことができ、 たとえば波長が 1 8 0 n m以下の真空紫外線波長域の光を 用いて 0 . 1 m以下の高解像を達成することのできる反射屈折光学系 を提供することを目的とする。  In addition, the present invention can reduce the size of the optical system by suppressing the enlargement of the concave reflecting mirror. For example, the present invention uses a light in a vacuum ultraviolet wavelength range of 180 nm or less to achieve a diameter of 0.1 m or less. An object of the present invention is to provide a catadioptric optical system capable of achieving high resolution.
さらに、 本発明の反射屈折光学系を投影光学系として使用し、 たとえ ば波長が 1 8 0 n m以下の露光光を用いて、 0 . 1 m以下の高解像で 良好な投影露光を行うことのできる露光装置を提供することを目的と する。 前記課題を解決するために、 本発明の第 1発明では、 少なくとも 1つ の凹面反射鏡と少なくとも 1つの平面反射鏡とを有し、 第 1面からの光 に基づいて前記第 1面の第 1中間像を形成するための第 1結像光学系 と、 Further, the catadioptric optical system of the present invention is used as a projection optical system, for example, by using exposure light having a wavelength of 180 nm or less to perform good projection exposure with a high resolution of 0.1 m or less. It is an object of the present invention to provide an exposure apparatus capable of performing the following. In order to solve the above problem, a first invention of the present invention has at least one concave reflecting mirror and at least one flat reflecting mirror, and based on light from the first surface, (1) a first imaging optical system for forming an intermediate image, and
少なく とも 1つの凹面反射鏡と少なく とも 1つの平面反射鏡とを有 し、 前記第 1結像光学系を介した光に基づいて前記第 1面の第 2中間像 を形成するための第 2結像光学系と、  A second reflecting mirror having at least one concave reflecting mirror and at least one flat reflecting mirror for forming a second intermediate image of the first surface based on light passing through the first imaging optical system; Imaging optics,
前記第 2結像光学系を介した光に基づいて前記第 1面の最終像を第 2面上に形成するための屈折型の第 3結像光学系とを備えていること を特徴とする反射屈折光学系を提供する。  A refraction-type third imaging optical system for forming a final image of the first surface on the second surface based on light passing through the second imaging optical system. A catadioptric system is provided.
第 1発明の好ましい態様によれば、 前記第 1結像光学系の平面反射鏡 を除くすべての光学部材および前記第 2結像光学系の平面反射鏡を除 くすべての光学部材は、 直線状に延びた単一の第 1光軸に沿って配置さ れ、 前記第 3結像光学系のすべての光学部材は、 前記第 1光軸と直交す るように直線状に延びた単一の第 2光軸に沿って配置され、 前記第 1面 からの光は、 前記第 1結像光学系中の 1つの平面反射鏡および 1つの凹 面反射鏡を順次介して、 前記第 1中間像を形成し、 前記第 1結像光学系 を介した光は、 前記第 2結像光学系の 1つの平面反射鏡および 1つの凹 面反射鏡を順次介して、 前記第 2中間像を形成する。 '  According to a preferred aspect of the first invention, all optical members except the plane reflecting mirror of the first imaging optical system and all optical members except the plane reflecting mirror of the second imaging optical system are linear. All the optical members of the third imaging optical system are linearly extended so as to be orthogonal to the first optical axis. The light from the first surface is disposed along a second optical axis, and the light from the first surface passes through the one plane reflecting mirror and the one concave reflecting mirror in the first imaging optical system sequentially, and the first intermediate image And the light passing through the first imaging optical system forms the second intermediate image via one planar reflecting mirror and one concave reflecting mirror of the second imaging optical system in order. . '
また、 第 1発明の好ましい態様によれば、 前記第 1結像光学系は、 前 記凹面反射鏡の直前に配置された少なく とも 1つの負レンズ成分を有 することが好ましい。 また、 前記第 2結像光学系は、 前記凹面反射鏡の 直前に配置された少なく とも 1つの負レンズ成分を有することが好ま しい。 さらに、 前記反射屈折光学系は、 第 1面側および第 2面側の少な くとも一方の側にテレセントリックであることが好ましい。 また、 前記 第 2結像光学系と前記第 3結像光学系との間の光路中にはフィールド レンズが配置されていることが好ましい。 さらに、 第 1発明の好ましい態様によれば、 前記第 1結像光学系と前 記第 2結像光学系との間の光路中にはフィールドレンズが配置されて いる。 この場合、 前記第 1結像光学系と前記第 2結像光学系との間の光 路中に配置された前記フィ一ルドレンズのうちの少なく とも 1つのレ ンズは、 前記第 1結像光学系の前記凹面反射鏡への入射光を通過させる ことなく前記凹面反射鏡からの反射光だけを通過させるために部分的 に切り欠かれた形状を有することが好ましい。 また、 前記第 1結像光学 系と前記第 2結像光学系との間の光路中に配置された前記フィ一ルド レンズのうちの少なくとも 1つのレンズは、 前記第 1結像光学系の前記 凹面反射鏡への入射光および前記凹面反射鏡からの反射光をともに通 過させるように形成されていることが好ましい。 Further, according to a preferred aspect of the first invention, it is preferable that the first imaging optical system has at least one negative lens component disposed immediately before the concave reflecting mirror. Preferably, the second imaging optical system has at least one negative lens component disposed immediately before the concave reflecting mirror. Further, the catadioptric system is preferably telecentric on at least one of the first surface side and the second surface side. Further, it is preferable that a field lens is disposed in an optical path between the second imaging optical system and the third imaging optical system. Further, according to a preferred aspect of the first invention, a field lens is disposed in an optical path between the first imaging optical system and the second imaging optical system. In this case, at least one of the field lenses disposed in the optical path between the first imaging optical system and the second imaging optical system is the first imaging optical system. It is preferable to have a partially cut-out shape in order to pass only the light reflected from the concave reflecting mirror without passing the light incident on the concave reflecting mirror of the system. In addition, at least one of the field lenses disposed in an optical path between the first imaging optical system and the second imaging optical system includes the lens of the first imaging optical system. It is preferable that both the light incident on the concave reflecting mirror and the light reflected from the concave reflecting mirror are transmitted.
本発明の第 2発明では、 前記第 1面に設定されたマスクを照明するた めの照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設 定された感光性基板上に形成するための第 1発明の反射屈折光学系と を備えていることを特徴とする露光装置を提供する。 第 2発明の好まし い態様によれば、 前記反射屈折光学系に対して前記マスクおよび前記感 光性基板を相対移動させて、 前記マスクのパターンを前記感光性基板上 に走査露光することが好ましい。 図面の簡単な説明  According to a second aspect of the present invention, an illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask is formed on a photosensitive substrate set on the second surface. An exposure apparatus comprising: the catadioptric optical system according to the first aspect of the present invention. According to a preferred aspect of the second invention, the mask and the photosensitive substrate are relatively moved with respect to the catadioptric system to scan and expose the pattern of the mask on the photosensitive substrate. preferable. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の反射屈折光学系の基本的な構成を説明するための図 である。  FIG. 1 is a diagram for explaining a basic configuration of a catadioptric optical system of the present invention.
図 2は、 本発明の各実施例にかかる反射屈折光学系を投影光学系とし て備えた露光装置の全体構成を概略的に示す図である。  FIG. 2 is a diagram schematically illustrating an overall configuration of an exposure apparatus including a catadioptric optical system according to each embodiment of the present invention as a projection optical system.
図 3は、 ウェハ上に形成される矩形状の露光領域 (すなわち実効露光 領域) と基準光軸との位置関係を示す図である。  FIG. 3 is a diagram showing a positional relationship between a rectangular exposure area (ie, an effective exposure area) formed on a wafer and a reference optical axis.
図 4は、 第 1実施例にかかる反射屈折光学系 (投影光学系 P L ) のレ ンズ構成を示す図である。 FIG. 4 is a diagram of a catadioptric optical system (projection optical system PL) according to the first embodiment. FIG.
図 5は、 第 1実施例にかかる反射屈折光学系の横収差を示す図である: 図 6は、 第 1実施例にかかる反射屈折光学系の横収差を示す図である ( 図 7は、 第 2実施例にかかる反射屈折光学系 (投影光学系 P L ) のレ ンズ構成を示す図である。 FIG. 5 is a diagram illustrating the lateral aberration of the catadioptric optical system according to the first embodiment: FIG. 6 is a diagram illustrating the lateral aberration of the catadioptric optical system according to the first embodiment ( FIG. FIG. 9 is a diagram showing a lens configuration of a catadioptric optical system (projection optical system PL) according to a second example.
図 8は、 第 2実施例にかかる反射屈折光学系の横収差を示す図である < 図 9は、 第 2実施例にかかる反射屈折光学系の横収差を示す図である ( 図 1 0は、 マイクロデバイスとしての半導体デバイスを得る際の手法 のフ口一チヤ一トである。 Figure 8 is a diagram showing lateral aberration of such catadioptric optical system in the second embodiment <9 is a diagram showing lateral aberration of the catadioptric optical system according to the second embodiment (FIG. 1 0 This is a flowchart of a technique for obtaining a semiconductor device as a micro device.
図 1 1は、 マイクロデバイスとしての液晶表示素子を得る際の手法の フローチヤ一トである。 発明の実施の形態  FIG. 11 is a flowchart of a method for obtaining a liquid crystal display element as a micro device. Embodiment of the Invention
図 1は、 本発明の反射屈折光学系の基本的な構成を説明するための図 である。 図 1では、 本発明の反射屈折光学系が走査露光型の露光装置の 投影光学系に適用されている。 図 1に示すように、 本発明の反射屈折光 学系は、 第 1面に配置された投影原版としてのレチクル Rのパターンの 第 1中間像を形成する第 1結像光学系 G 1を備えている。 なお、 第 1結 像光学系 G 1は、 少なくとも 1つの凹面反射鏡と少なくとも 1つの平面 反射鏡、 すなわち第 1平面反射鏡 M 1および第 2凹面反射鏡 C M 2を有 する。 第 1結像光学系 G 1では、 レチクル Rからの光が第 1平面反射鏡 M 1および第 2凹面反射鏡 C M 2を介して第 1中間像を形成する。  FIG. 1 is a diagram for explaining a basic configuration of a catadioptric optical system of the present invention. In FIG. 1, the catadioptric optical system of the present invention is applied to a projection optical system of a scanning exposure type exposure apparatus. As shown in FIG. 1, the catadioptric system of the present invention includes a first imaging optical system G1 that forms a first intermediate image of a pattern of a reticle R as a projection master disposed on a first surface. ing. Note that the first imaging optical system G1 has at least one concave reflecting mirror and at least one plane reflecting mirror, that is, a first plane reflecting mirror M1 and a second concave reflecting mirror CM2. In the first imaging optical system G1, light from the reticle R forms a first intermediate image via the first plane reflecting mirror M1 and the second concave reflecting mirror CM2.
第 1結像光学系 G 1を介した光は、 第 2結像光学系 G 2を介して、 レ チクル Rのパターンの第 2中間像を形成する。 第 2結像光学系 G 2は、 少なくとも 1つの凹面反射鏡と少なくとも 1つの平面反射鏡、 すなわち 第 3凹面反射鏡 C M 3および第 4平面反射鏡 M 4を有する。 したがって. 第 2結像光学系 G 2では、 第 1結像光学系 G 1を介した光が第 3凹面反 射鏡 C M 3および第 4平面反射鏡 M 4を介して第 2中間像を形成する。 第 2結像光学系 G 2を介した光は、 反射鏡を含むことなく複数の屈折 光学部材を有する屈折型の第 3結像光学系 G 3を介して、 レチクル尺の パターンの最終像を第 2面に配置された感光性基板としてのウェハ W 上に形成する。 本発明の反射屈折光学系を投影光学系として搭載した露 光装置では、 レチクル Rおよびウェハ Wを所定の方向 (スキャン方向) に沿って移動させながら、 矩形状の照明領域 I Rおよび実効露光領域 E Rに基づく走査露光を行う。 The light passing through the first imaging optical system G1 forms a second intermediate image of the pattern of the reticle R via the second imaging optical system G2. The second imaging optical system G2 has at least one concave reflecting mirror and at least one plane reflecting mirror, that is, a third concave reflecting mirror CM3 and a fourth plane reflecting mirror M4. Therefore, in the second imaging optical system G2, the light passing through the first imaging optical system G1 is reflected by the third concave surface. A second intermediate image is formed via the projection mirror CM3 and the fourth plane reflection mirror M4. The light that has passed through the second imaging optical system G2 passes through a refraction-type third imaging optical system G3 having a plurality of refraction optical members without including a reflecting mirror to form the final image of the reticle-scale pattern. It is formed on a wafer W as a photosensitive substrate disposed on the second surface. In an exposure apparatus equipped with the catadioptric optical system of the present invention as a projection optical system, a rectangular illumination area IR and an effective exposure area ER are moved while moving a reticle R and a wafer W in a predetermined direction (scan direction). Is performed based on the scanning exposure.
具体的な態様によれば、 第 1結像光学系 G 1の第 1平面反射鏡 M 1を 除くすべての光学部材および第 2結像光学系 G 2の第 4平面反射鏡 M 4を除くすべての光学部材は、 直線状に延びた単一の第 1光軸 A X 1に 沿って配置されている。 また、 第 3結像光学系 G 3のすベての光学部材 は、 第 1光軸 A X 1 と直交するように直線状に延びた単一の第 2光軸 A X 2に沿って配置されている。 第 1平面反射鏡 M 1 と第 4平面反射鏡 M 4とを表裏面鏡として一体的に形成することもできる。 第 1平面反射鏡 M 1と第 4平面反射鏡 M 4とを一体に作成すると、 表裏面の精度が良く 製造しやすい。 また、 第 1平面反射鏡 M l と第 4平面反射鏡 M 4とを所 定位置に配置する際には角度調整が必要であるが、 一体に作成されてい ると、 第 1平面反射鏡 M 1が所定角度からマイナス方向に誤差を有して 配置されても第 4平面反射鏡 M 4が所定角度からプラス方向に誤差を 打ち消すことになり、 後述する第 3結像光学系 G 3に所定角度で入射さ せることができる。  According to a specific embodiment, all the optical members of the first imaging optical system G1 except for the first plane reflecting mirror M1 and all of the second imaging optical system G2 except for the fourth plane reflecting mirror M4 Are arranged along a single first optical axis AX1 extending linearly. All the optical members of the third imaging optical system G3 are arranged along a single second optical axis AX2 that extends linearly so as to be orthogonal to the first optical axis AX1. I have. The first plane reflecting mirror M 1 and the fourth plane reflecting mirror M 4 can be integrally formed as front and back mirrors. When the first plane reflecting mirror M1 and the fourth plane reflecting mirror M4 are integrally formed, the precision of the front and back surfaces is good and the manufacturing is easy. Further, when the first plane reflecting mirror Ml and the fourth plane reflecting mirror M4 are arranged at predetermined positions, an angle adjustment is required, but if they are integrally formed, the first plane reflecting mirror M4 Even if 1 is disposed with an error in the minus direction from the predetermined angle, the fourth plane reflecting mirror M 4 cancels the error in the plus direction from the predetermined angle, and the fourth plane reflecting mirror M 4 It can be incident at an angle.
さらに具体的な態様によれば、 第 1結像光学系 G 1 と第 2結像光学系 G 2との間の光路中に、 フィールドレンズ F Lが配置されている。 ここ で、 フィールドレンズ F Lは、 第 1中間像の形成に関して積極的に寄与 することなく、 第 1結像光学系 G 1 と第 2結像光学系 G 2とを整合接続 する機能を有する。 フィールドレンズ F Lのうちの少なくとも 1つのレ ンズは、 第 1結像光学系 G 1の第 2凹面反射鏡への入射光を通過させる ことなく第 2凹面反射鏡からの反射光だけを通過させるために部分的 に切り欠かれた形状を有する。 According to a more specific mode, the field lens FL is disposed in the optical path between the first imaging optical system G1 and the second imaging optical system G2. Here, the field lens FL has a function of matching and connecting the first imaging optical system G 1 and the second imaging optical system G 2 without actively contributing to the formation of the first intermediate image. At least one of the field lenses FL Lens has a partially cut-out shape to allow only the reflected light from the second concave reflecting mirror to pass without passing the light incident on the second concave reflecting mirror of the first imaging optical system G1. Have.
また、 フィールドレンズ F Lのうちの少なくとも 1つのレンズは、 第 1結像光学系 G 1の第 2凹面反射鏡への入射光および第 2凹面反射鏡 からの反射光をともに通過させるように形成されている。 なお、 第 2結 像光学系 G 2と第 3結像光学系 G 3との間の光路中にも、 必要に応じて, フィールドレンズが配置される。  At least one of the field lenses FL is formed so as to transmit both the light incident on the second concave reflecting mirror of the first imaging optical system G1 and the reflected light from the second concave reflecting mirror. ing. In addition, a field lens is arranged in the optical path between the second imaging optical system G2 and the third imaging optical system G3 as needed.
また、 具体的な態様によれば、 第 1結像光学系 G 1の第 2凹面反射鏡 C M 2および第 2結像光学系 G 2の第 3凹面反射鏡 C M 3.の直前には、 それぞれ少なくとも 1つの負レンズ成分が配置されている。 この構成に より、 屈折光学部材 (レンズ成分) を単一種の光学材料で形成しても、 色収差の良好な補正が可能となる。 さらに、 軸上の色収差と倍率の色収 差とを同時に良好に補正することができる。  Further, according to a specific embodiment, immediately before the second concave reflecting mirror CM2 of the first imaging optical system G1 and the third concave reflecting mirror CM3 of the second imaging optical system G2, At least one negative lens component is arranged. With this configuration, even if the refractive optical member (lens component) is formed of a single kind of optical material, it is possible to satisfactorily correct chromatic aberration. Further, it is possible to satisfactorily simultaneously correct the axial chromatic aberration and the chromatic difference of magnification.
また、 反射屈折光学系で形成される像領域を規定する視野絞り F Sを、 第 1結像光学系 G 1 と第 2結像光学系 G 2 との間のフィールドレンズ F Lの近傍、 または第 2結像光学系 G 2と第 3結像光学系 G 3との間の フィールドレンズの近傍に配置することができる。 この場合、 照明光学 系に視野絞りを設けなくてもよい構成とすることができる。 さらに、 第 3結像光学系 G 3の光路中に、 開口絞り A Sを配置することができる。 以上のように、 本発明の反射屈折光学系では、 第 1結像光学系 G 1お よび第 2結像光学系 G 2がともに少なくとも 1つの凹面反射鏡と少な くとも 1つの平面反射鏡とを有し、 第 3結像光学系 G 3が屈折型の光学 系を構成している。 したがって、 典型的な態様によれば、 第 1結像光学 系 G 1および第 2結像光学系 G 2は第 1光軸 A X 1に沿って配置され、 第 3結像光学系 G 3は第 1光軸 A X 1 と直交する第 2光軸 A X 2に沿 つて配置される。 また、 レチクル Rおよびウェハ Wは、 第 2光軸 A X 2 に沿って配置されることになる。 Further, a field stop FS defining an image area formed by the catadioptric optical system is provided near the field lens FL between the first imaging optical system G1 and the second imaging optical system G2, or the second stop. It can be arranged near the field lens between the imaging optical system G2 and the third imaging optical system G3. In this case, it is possible to adopt a configuration in which the illumination optical system does not need to have a field stop. Further, an aperture stop AS can be arranged in the optical path of the third imaging optical system G3. As described above, in the catadioptric optical system of the present invention, both the first imaging optical system G1 and the second imaging optical system G2 have at least one concave reflecting mirror and at least one flat reflecting mirror. And the third imaging optical system G3 constitutes a refraction type optical system. Therefore, according to a typical embodiment, the first imaging optical system G1 and the second imaging optical system G2 are arranged along the first optical axis AX1, and the third imaging optical system G3 is It is arranged along the second optical axis AX2 orthogonal to the first optical axis AX1. The reticle R and the wafer W have the second optical axis AX 2 Will be arranged along.
このように、 本発明では、 レチクル Rおよびウェハ Wが配置される第 2光軸 A X 2に沿って配置されるのは第 3結像光学系 G 3だけであつ て、 第 1結像光学系 G 1および第 2結像光学系 G 2は第 2光軸 A X 2と 直交する第 1光軸 A X 1に沿って配置される。 したがって、本発明では、 レチクル Rとウェハ Wとの間の距離すなわち物体面と像面との距離を 小さく設定することができ、 ひいては高性能で高精度な光学系を実現す ることができる。 特に、 第 1光軸 A X 1 と第 2光軸 A X 2とを直交させ ることにより、 光軸相互の調整作業が容易になり、 高性能で高精度な光 学系を実現することが容易になる。  Thus, in the present invention, only the third imaging optical system G3 is disposed along the second optical axis AX2 on which the reticle R and the wafer W are disposed, and the first imaging optical system G1 and the second imaging optical system G2 are arranged along a first optical axis AX1 orthogonal to the second optical axis AX2. Therefore, in the present invention, the distance between the reticle R and the wafer W, that is, the distance between the object plane and the image plane can be set small, and a high-performance and high-precision optical system can be realized. In particular, by making the first optical axis AX1 orthogonal to the second optical axis AX2, the adjustment work between the optical axes becomes easy, and it is easy to realize a high-performance and high-precision optical system. Become.
また、 第 1結像光学系 G 1および第 2結像光学系 G 2を反射屈折光学 系として構成することにより、 レンズ成分を単一種の光学材料で形成し ても、 色収差の良好な補正が可能となる。 さらに、 第 1結像光学系 G 1 の第 2凹面反射鏡 C M 2の直前および第 2結像光学系 G 2の第 3凹面 反射鏡 C M 3の直前にそれぞれ少なく とも 1つの負レンズ成分を配置 することにより、 軸上の色収差と倍率の色収差とを同時に良好に補正す ることができる。  Also, by configuring the first imaging optical system G1 and the second imaging optical system G2 as catadioptric optical systems, good correction of chromatic aberration can be achieved even if the lens component is formed of a single type of optical material. It becomes possible. Further, at least one negative lens component is arranged immediately before the second concave reflecting mirror CM2 of the first imaging optical system G1 and immediately before the third concave reflecting mirror CM3 of the second imaging optical system G2. This makes it possible to satisfactorily correct axial chromatic aberration and magnification chromatic aberration at the same time.
また、 本発明では、 第 3結像光学系 G 3の屈折光学系部分が正の屈折 力 (パワー) を有するために正になりがちなペッツバール和を、 第 1結 像光学系 G 1および第 2結像光学系 G 2における凹面反射鏡部分 (C M 2 , C M 3 ) の負のペッツバール和により相殺し、 全体のペッツバール 和を完全に 0に抑えることができる。 さらに、 本発明では、 後述の各実 施例に示すように、 レンズ枚数の少ない簡素な構成が可能になるので、 たとえば F 2エキシマレーザ光を用いても使用光量の減衰を招きにく く、 露光装置のスループッ 卜の低下を回避することができる。 Further, in the present invention, the Petzval sum that tends to be positive because the refractive optical system portion of the third imaging optical system G3 has a positive refractive power (power) is converted to the first imaging optical system G1 and the second optical system. (2) The negative Petzval sum of the concave reflecting mirror portions (CM 2, CM 3) in the imaging optical system G 2 cancels out and the whole Petzval sum can be completely suppressed to zero. Furthermore, in the present invention, as shown in each real施例described below, since little simple configuration of lenses is enabled, for example, F 2 be an excimer laser beam rather difficulty leads to attenuation of the use quantity, A decrease in throughput of the exposure apparatus can be avoided.
以下、 本発明の実施例を、 添付図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
図 2は、 本発明の各実施例にかかる反射屈折光学系を投影光学系とし u て備えた露光装置の全体構成を概略的に示す図である。 なお、 図 2にお いて、 投影光学系 P Lを構成する反射屈折光学系の基準光軸すなわち第 2光軸 A X 2に平行に Z軸を、 基準光軸 A X 2に垂直な面内において図 2の紙面に平行に Y軸を、 紙面に垂直に X軸を設定している。 FIG. 2 shows a catadioptric optical system according to each embodiment of the present invention as a projection optical system. FIG. 1 is a view schematically showing an overall configuration of an exposure apparatus provided with u . Note that in FIG. 2, the Z axis is parallel to the reference optical axis of the catadioptric system constituting the projection optical system PL, that is, the second optical axis AX 2, and the plane is perpendicular to the reference optical axis AX 2. The Y axis is set parallel to the paper and the X axis is set perpendicular to the paper.
図示の露光装置は、 紫外領域の照明光を供給するための光源 1 0 0と して、 F 2 レーザ光源 (発振中心波長 1 5 7 . 6 n m) を備えている。 光源 1 0 0から射出された光は、 照明光学系 I Lを介して、 所定のパ夕 ーンが形成されたレチクル (マスク) Rを均一に照明する。 なお、 光源 1 0 0と照明光学系 I Lとの間の光路はケーシング (不図示) で密封さ れており、 光源 1 0 0から照明光学系 I L中の最もレチクル側の光学部 材までの空間は、 露光光の吸収率が低い気体であるヘリゥムガスや窒素 などの不活性ガスで置換されているか、 あるいはほぼ真空状態に保持さ れている。 Exposing the illustrated apparatus, a light source 1 0 0 for supplying illumination light in the ultraviolet region, and a F 2 laser light source (oscillation center wavelength of 1 5 7. 6 nm). The light emitted from the light source 100 uniformly illuminates a reticle (mask) R on which a predetermined pattern is formed via an illumination optical system IL. The optical path between the light source 100 and the illumination optical system IL is sealed by a casing (not shown), and the space from the light source 100 to the optical component closest to the reticle side in the illumination optical system IL. Is replaced by an inert gas such as helium gas or nitrogen, which is a gas having a low absorptance of exposure light, or is kept almost in a vacuum state.
レチクル Rは、 レチクルホルダ R Hを介して、 レチクルステージ R S 上において X Y平面に平行に保持されている。 レチクル Rには転写すベ きパターンが形成されており、 パターン領域全体のうち X方向に沿って 長辺を有し且つ Y方向に沿って短辺を有する矩形状のパターン領域が 照明される。 レチクルステージ R Sは、 図示を省略した駆動系の作用に より、 レチクル面 (すなわち X Y平面) に沿って二次元的に移動可能で あり、 その位置座標はレチクル移動鏡 R Mを用いた干渉計 R I Fによつ て計測され且つ位置制御されるように構成されている。  The reticle R is held on a reticle stage RS via a reticle holder RH in parallel with the XY plane. A pattern to be transferred is formed on the reticle R, and a rectangular pattern region having a long side along the X direction and a short side along the Y direction in the entire pattern region is illuminated. The reticle stage RS can be moved two-dimensionally along the reticle plane (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are transmitted to the interferometer RIF using the reticle moving mirror RM. Thus, it is configured to be measured and controlled in position.
レチクル Rに形成されたパターンからの光は、 反射屈折型の投影光学 系 P Lを介して、 感光性基板であるウェハ W上にレチクルパターン像を 形成する。 ウェハ Wは、 ウェハテーブル(ウェハホルダ) W Tを介して、 ウェハステージ W S上において X Y平面に平行に保持されている。 そし て、 レチクル R上での矩形状の照明領域に光学的に対応するように、 ゥ ェハ W上では X方向に沿って長辺を有し且つ Y方向に沿って短辺を有 する矩形状の露光領域にパ夕一ン像が形成される。 ウェハステージ W S は、 図示を省略した駆動系の作用によりウェハ面 (すなわち X Y平面) に沿って二次元的に移動可能であり、 その位置座標はウェハ移動鏡 WM を用いた干渉計 W I Fによって計測され且つ位置制御されるように構 成されている。 Light from the pattern formed on the reticle R forms a reticle pattern image on the wafer W as a photosensitive substrate via the catadioptric projection optical system PL. The wafer W is held in parallel with the XY plane on a wafer stage WS via a wafer table (wafer holder) WT. Then, the wafer W has a long side along the X direction and a short side along the Y direction so as to optically correspond to the rectangular illumination area on the reticle R. A pattern image is formed in the rectangular exposure area. The wafer stage WS can be moved two-dimensionally along the wafer surface (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are measured by an interferometer WIF using a wafer moving mirror WM. In addition, the position is controlled.
図 3は、 ウェハ上に形成される矩形状の露光領域 (すなわち実効露光 領域) と基準光軸との位置関係を示す図である。 図 3に示すように、 各 実施例では、 基準光軸 A X 2を中心とした半径 A (最大像高に対応) を 有する円形状の領域 (イメージサークル) I F内において、 基準光軸 A X 2から— Y方向に偏心した位置に所望の大きさを有する矩形状の実 効露光領域 E Rが設定される。 ここで、 実効露光領域 E Rの X方向の長 さは L Xであり、 その Y方向の長さは L Yである。  FIG. 3 is a diagram showing a positional relationship between a rectangular exposure area (ie, an effective exposure area) formed on a wafer and a reference optical axis. As shown in FIG. 3, in each embodiment, in the circular area (image circle) IF having a radius A (corresponding to the maximum image height) centered on the reference optical axis AX2, the reference optical axis AX2 is — A rectangular effective exposure area ER having a desired size is set at a position eccentric in the Y direction. Here, the length in the X direction of the effective exposure area ER is LX, and the length in the Y direction is LY.
したがって、 図 1に示すように、 レチクル R上では、 基準光軸 A X 2 から + Y方向に偏心した位置に実効露光領域 E Rに対応した大きさお よび形状を有する矩形状の照明領域 I Rが形成されていることになる。 すなわち、 基準光軸 A X 2を中心とした半径 B (最大物体高に対応) を 有する円形状の領域内において、 基準光軸 A X 2から + Y方向に偏心し た位置に所望の大きさを有する矩形状の照明領域 I Rが設定されてい る。 '  Therefore, as shown in FIG. 1, on the reticle R, a rectangular illumination area IR having a size and shape corresponding to the effective exposure area ER is formed at a position decentered in the + Y direction from the reference optical axis AX2. It will be. In other words, within a circular area having a radius B (corresponding to the maximum object height) centered on the reference optical axis AX2, a desired size is set at a position eccentric in the + Y direction from the reference optical axis AX2. A rectangular illumination area IR is set. '
また、 図示の露光装置では、 投影光学系 P Lを構成する光学部材のう ち最もレチクル側に配置された光学部材 (各実施例では第 1平面反射鏡 M l ) と最もウェハ側に配置された光学部材 (第 1実施例ではレンズ L 3 1 2、 第 2実施例ではレンズ L 3 1 1 ) との間で投影光学系 P Lの内 部が気密状態を保つように構成され、 投影光学系 P Lの内部の気体はへ リゥムガスや窒素などの不活性ガスで置換されているか、 あるいはほぼ 真空状態に保持されている。  Further, in the exposure apparatus shown in the figure, the optical member (the first plane reflecting mirror Ml in each embodiment) arranged closest to the reticle side among the optical members constituting the projection optical system PL is arranged closest to the wafer side. The projection optical system PL is configured so as to keep the interior of the projection optical system PL airtight between the optical member (the lens L312 in the first embodiment and the lens L311 in the second embodiment). The gas inside is replaced by an inert gas such as helium gas or nitrogen, or is maintained in a substantially vacuum state.
さらに、 照明光学系 I Lと投影光学系 P Lとの間の狭い光路には、 レ 丄 Furthermore, the narrow optical path between the illumination optical system IL and the projection optical system PL 丄
'ージ R Sなどが配置されているが: レチク ル Rおよびレチクルステージ R Sなどを密封包囲するケーシング (不図 示) の内部に窒素やヘリウムガスなどの不活性ガスが充填されているか, あるいはほぼ真空状態に保持されている。 RS, etc. are placed: A casing (not shown) that hermetically surrounds the reticle R and reticle stage RS is filled with an inert gas such as nitrogen or helium gas, or almost completely. It is kept in a vacuum state.
また、 投影光学系 P Lとウェハ Wとの間の狭い光路には、 ウェハ Wお よびウェハステージ W Sなどが配置されている力 ゥェハ Wおよびゥェ ハステージ W Sなどを密封包囲するケーシング (不図示) の内部に窒素 やヘリゥムガスなどの不活性ガスが充填されているか、 あるいはほぼ真 空状態に保持されている。 このように、 光源 1 0 0からウェハ Wまでの 光路の全体に亘つて、 露光光がほとんど吸収されることのない雰囲気が 形成されている。  In a narrow optical path between the projection optical system PL and the wafer W, a casing (not shown) for enclosing and enclosing the wafer W and the wafer stage WS in which the wafer W and the wafer stage WS are arranged. Is filled with an inert gas such as nitrogen or helium gas, or is kept almost in a vacuum state. Thus, an atmosphere in which the exposure light is hardly absorbed is formed over the entire optical path from the light source 100 to the wafer W.
上述したように、 投影光学系 P Lによって規定されるレチクル R上の 照明領域およびゥェ八 W上の露光領域(すなわち実効露光領域 E R )は、 Y方向に沿って短辺を有する矩形状である。 したがって、 駆動系および 干渉計 (R I F、 W I F ) などを用いてレチクル Rおよびウェハ Wの位 置制御を行いながら、 矩形状の露光領域および照明領域の短辺方向すな わち Y方向に沿ってレチクルステージ R Sとウェハステージ W Sとを、 ひいてはレチクル Rとウェハ Wとを反対の方向へ (すなわち反対の向き へ) 同期的に移動 (走査) させることにより、 ウェハ W上には露光領域 の長辺に等しい幅を有し且つウェハ Wの走査量 (移動量) に応じた長さ を有する領域に対してレチクルパターンが走査露光される。  As described above, the illumination area on the reticle R defined by the projection optical system PL and the exposure area on the wafer W (ie, the effective exposure area ER) are rectangular with short sides along the Y direction. . Therefore, while controlling the positions of the reticle R and the wafer W using a drive system and interferometers (RIF, WIF), etc., along the short side direction of the rectangular exposure area and the illumination area, that is, along the Y direction. By moving (scanning) the reticle stage RS and the wafer stage WS and, consequently, the reticle R and the wafer W in opposite directions (ie, in opposite directions), the long side of the exposure area on the wafer W is obtained. The reticle pattern is scanned and exposed to a region having a width equal to the length of the wafer W and a length corresponding to the scanning amount (movement amount) of the wafer W.
各実施例において、 本発明の反射屈折光学系からなる投影光学系 P L は、 第 1面に配置されたレチクル Rのパターンの第 1中間像を形成する ための反射屈折型の第 1結像光学系 G 1 と、 第 1結像光学系 G 1を介し た光に基づいてレチクル Rのパターンの第 2中間像を形成するための 反射屈折型の第 2結像光学系 G 2と、 第 2結像光学系 G 2を介した光に 基づいて第 2面に配置されたウェハ W上にレチクルパターンの最終像 (レチクルパターンの縮小像) を形成するための屈折型の第 3結像光学 系 G 3とを備えている。 In each embodiment, the projection optical system PL including the catadioptric optical system of the present invention is a catadioptric first imaging optical system for forming a first intermediate image of the pattern of the reticle R disposed on the first surface. A system G 1, a catadioptric second imaging optical system G 2 for forming a second intermediate image of the pattern of the reticle R based on light passing through the first imaging optical system G 1, The final image of the reticle pattern on the wafer W placed on the second surface based on the light passing through the imaging optical system G2 (Refraction type third imaging optical system G3) for forming (reduced image of the reticle pattern).
なお、 各実施例において、 第 1結像光学系 G 1の第 1平面反射鏡 M 1 を除くすべての光学部材および第 2結像光学系 G 2の第 4平面反射鏡 M4を除くすべての光学部材は、 第 1光軸 AX 1に沿って配置されてい る。 また、 第 3結像光学系 G 3を構成するすべての光学部材は、 第 1光 軸 AX 1と直交する第 2光軸 AX 2に沿って配置されている。 さらに、 第 1結像光学系 G 1 と第 2結像光学系 G 2との間の光路中に第 1フィ ールドレンズが配置され、 第 2結像光学系 G 2と第 3結像光学系 G 3と の間の光路中に第 2フィ一ルドレンズが配置されている。  In each embodiment, all optical members of the first imaging optical system G1 except for the first plane reflecting mirror M1 and all optical members except for the fourth plane reflecting mirror M4 of the second imaging optical system G2. The member is arranged along the first optical axis AX1. Further, all the optical members constituting the third imaging optical system G3 are arranged along a second optical axis AX2 orthogonal to the first optical axis AX1. Further, a first field lens is disposed in an optical path between the first imaging optical system G 1 and the second imaging optical system G 2, and the second imaging optical system G 2 and the third imaging optical system G 2 A second field lens is arranged in the optical path between 3 and.
各実施例において、 投影光学系 P Lを構成するすべての屈折光学部材 (レンズ成分) には蛍石 (C a F2結晶) を使用している。 また、 露光 光である F2 レーザ光の発振中心波長は 1 5 7. 6 nmであり、 1 5 7. 6 nm付近において C a F2の屈折率は、 + 1 ρπιの波長変化あたり一 2. 45 X 1 0—sの割合で変化し、 — 1 pmの波長変化あたり + 2. 4 5 X 1 0— 6の割合で変化する。 換言すると、 1 5 7. 6 nm付近におい て、 C a F2の屈折率の分散 (d nZci A) は、 2. 45 X 1 0 " p m である。 In each embodiment, fluorite (C a F 2 crystal) is used for all refractive optical members (lens components) constituting the projection optical system PL. The oscillation center wavelength of F 2 laser beam as the exposure light is 1 5 7. 6 nm, 1 5 7. 6 refractive index of the C a F 2 in the vicinity nm is, + 1 ρπι wavelength change per 2 . 45 X 1 0- s varies at a rate of, - 1 pm per wavelength change + 2. changes at a rate of 4 5 X 1 0- 6. In other words, the dispersion (dnZciA) of the refractive index of C a F 2 around 15.76 nm is 2.45 X 10 "pm.
したがって、 各実施例において、 中心波長 1 5 7. 6 nmに対する C a F2の屈折率は 1. 5 6 0 0 0 0である。 そして、 1 5 7. 6 nm + 0. 4 pm= 1 5 7. 6 0 0 4 n mに対する C a F 2 の屈折率は 1. 5 5 9 9 9 9 0 2 = 1. 5 59 9 9 9であり、 1 5 7. 6 n m- 0. 4 p m= 1 5 7. 5 9 9 5 = nmに対する C a F2 の屈折率は 1. 5 6 0 0 00 98 = 1. 5 600 0 1である。 Thus, in each embodiment, the refractive index of the C a F 2 with respect to the center wavelength of 1 5 7. 6 nm is 1.5 6 0 0 0 0. And the refractive index of C a F 2 with respect to 15.7.6 nm + 0.4 pm = 15.7.604 nm is 1.55 999 9 0 2 = 1.559 9 9 9 And the refractive index of C a F 2 for 1 57.6 n m-0.4 pm = 1 5 7.59 9 5 = nm is 1.56 0 00 00 98 = 1.5 600 0 1 It is.
また、 各実施例において、 非球面は、 光軸に垂直な方向の高さを yと し、 非球面の頂点における接平面から高さ yにおける非球面上の位置ま での光軸に沿った距離 (サグ量) を z とし、 頂点曲率半径を rとし、 円 錐係数を κとし、 η次の非球面係数を C„ としたとき、 以下の数式 (a) で表される。 In each embodiment, the height of the aspheric surface in the direction perpendicular to the optical axis is y, and the aspheric surface extends along the optical axis from the tangent plane at the vertex of the aspheric surface to the position on the aspheric surface at the height y. The distance (sag amount) is z, the vertex curvature radius is r, and the circle When the cone coefficient is κ and the η-order aspheric coefficient is C „, it is expressed by the following equation (a).
z = (y r ) / 〔1 + { 1 - ( 1 + c ) · yV r 2} 1/2z = (yr) / [1 + {1 - (1 + c) · yV r 2} 1/2 ]
+ C4 · y4+C y6+C8 · y8+C10 - y'。 (a) + C 4 · y 4 + C y 6 + C 8 · y 8 + C 10 - y '. (A)
各実施例において、 非球面形状に形成されたレンズ面には面番号の右 側に *印を付している。  In each embodiment, an asterisk (*) is attached to the right side of the surface number on the lens surface formed into an aspherical shape.
〔第 1実施例〕 (First embodiment)
図 4は、 第 1実施例にかかる反射屈折光学系 (投影光学系 P L) のレ ンズ構成を示す図である。 図 4の反射屈折光学系において、 第 1結像光 学系 G 1は、 レチクル側から光の進行方向に沿って、 第 1平面反射鏡 M 1と、 第 1平面反射鏡 M 1側に凸面を向けた正メニスカスレンズ L 1 1 と、 両凹レンズ L 1 2と、 第 1平面反射鏡 M l側に凹面を向けた第 2凹 面反射鏡 CM 2とから構成されている。 ここで、 正メニスカスレンズ L 1 1、 両凹レンズ L 1 2、 および第 2凹面反射鏡 C M 2は、 図中水平な 第 1光軸 AX 1に沿って図中右側から順に配置されている。  FIG. 4 is a diagram illustrating a lens configuration of a catadioptric optical system (projection optical system P L) according to the first example. In the catadioptric optical system shown in FIG. 4, the first imaging optical system G 1 has a convex surface on the side of the first plane reflecting mirror M 1 and the first plane reflecting mirror M 1 along the traveling direction of light from the reticle side. , A positive meniscus lens L 11, a biconcave lens L 12, and a second concave reflector CM 2 having a concave surface facing the first plane reflector M l. Here, the positive meniscus lens L11, the biconcave lens L12, and the second concave reflecting mirror CM2 are arranged in order from the right side in the figure along the horizontal first optical axis AX1 in the figure.
また、 第 2結像光学系 G 2は、 第 1結像光学系 G 1側から光の進行方 向に沿って、 第 1結像光学系 G 1側に凹面を向けた負メニスカスレンズ L 2 1と、 第 1結像光学系 G 1側に凹面を向けた第 3凹面反射鏡 CM 3 と、 第 4平面反射鏡 M4とから構成されている。 ここで、 負メニスカス レンズ L 2 1および第 3凹面反射鏡 CM 3は、 第 1光軸 AX 1に沿って 図中左側から順に配置されている。  The second imaging optical system G2 is a negative meniscus lens L2 having a concave surface facing the first imaging optical system G1 along the light traveling direction from the first imaging optical system G1. 1, a third concave reflecting mirror CM3 having a concave surface facing the first imaging optical system G1, and a fourth flat reflecting mirror M4. Here, the negative meniscus lens L 21 and the third concave reflecting mirror CM 3 are arranged in order from the left side in the figure along the first optical axis AX 1.
さらに、 第 3結像光学系 G 3は、 レチクル側から順に、 レチクル側に 凸面を向けた正メニスカスレンズ L 3 1と、 レチクル側に非球面状の凹 面を向けた負メニスカスレンズ L 3 2と、 ウェハ側に非球面状の凹面を 向けた負メニスカスレンズ L 3 3と、 両凸レンズ L 34と、 レチクル側 に非球面状の凸面を向けた負メニスカスレンズ L 3 5と、 レチクル側に 1 lβb 凸面を向けた正メニスカスレンズ L 3 6と、 開口絞り A Sと、 レチクル 側に非球面状の凸面を向けた両凸レンズ L 3 7と、 レチクル側に凸面を 向けた正メニスカスレンズ L 3 8と、 ウェハ側に非球面状の凸面を向け た両凸レンズ L 3 9と、 両凸レンズ L 3 1 0と、 ウェハ側に非球面状の 凹面を向けた正メニスカスレンズ L 3 1 1 と、 両凸レンズ L 3 1 2とか ら構成されている。 ここで、 レンズ L 3 1〜L 3 1 2は、 図中鉛直な第 2光軸 A X 2に沿って図中上側(レチクル側)から順に配置されている。 なお、 第 1結像光学系 G 1 と第 2結像光学系 G 2との間の光路中には, 第 1結像光学系 G 1側から光の進行方向に沿って、 第 1結像光学系 G 1 側に凹面を向けた正メニスカスレンズ L 4 1と、 第 1結像光学系 G 1側 に凸面を向けた正メニスカスレンズの部分レンズ L 4 2 とから構成さ れた第 1 フィールドレンズが配置されている。 すなわち、 正メニスカス レンズ L 4 1および正メニスカスレンズの部分レンズ L 4 2は、 第 1光 軸 A X 1に沿って図中左側から順に配置されている。 Further, the third imaging optical system G 3 includes, in order from the reticle side, a positive meniscus lens L 31 having a convex surface facing the reticle side and a negative meniscus lens L 3 2 having an aspherical concave surface facing the reticle side. A negative meniscus lens L33 with an aspheric concave surface facing the wafer side, a biconvex lens L34, a negative meniscus lens L35 with an aspheric convex surface facing the reticle side, and a reticle side 1 l β b Positive meniscus lens L 36 with convex surface facing, aperture stop AS, biconvex lens L 37 with aspherical convex surface facing reticle side, positive meniscus lens L with convex surface facing reticle side 38, a biconvex lens L39 with an aspherical convex surface facing the wafer side, a biconvex lens L310, and a positive meniscus lens L311 with an aspherical concave surface facing the wafer side. It is composed of a biconvex lens L312. Here, the lenses L31 to L312 are arranged in order from the upper side (reticle side) in the figure along the second vertical optical axis AX2 in the figure. In the optical path between the first image forming optical system G 1 and the second image forming optical system G 2, the first image forming optical system A first field composed of a positive meniscus lens L 41 having a concave surface facing the optical system G 1 side and a partial lens L 42 of a positive meniscus lens having a convex surface facing the first imaging optical system G 1 side. A lens is located. That is, the positive meniscus lens L41 and the partial lens L42 of the positive meniscus lens are arranged in order from the left side in the figure along the first optical axis AX1.
ここで、 正メニスカスレンズ L 4 1は、 正メニスカスレンズ L I 1 と 同じレンズであって、 第 2凹面反射鏡 C M 2への入射光および第 2凹面 反射鏡 C M 2からの反射光をともに通過させる。 正メニスカスレンズの 部分レンズ L 4 2は、 第 2凹面反射鏡 C M 2への入射光を通過させるこ となく、 第 2凹面反射鏡 C M 2からの反射光だけを通過させるために、 正メニスカスレンズを部分的に切り欠いた形状を有する。  Here, the positive meniscus lens L 41 is the same lens as the positive meniscus lens LI 1, and passes both the incident light to the second concave reflecting mirror CM 2 and the reflected light from the second concave reflecting mirror CM 2 . The partial lens L42 of the positive meniscus lens is a positive meniscus lens that passes only the light reflected from the second concave reflector CM2 without passing the light incident on the second concave reflector CM2. Has a partially cut-out shape.
また、 第 2結像光学系 G 2と第 3結像光学系 G 3 との間の光路中には, レチクル側から順に、 レチクル側に非球面状の凸面を向けた両凸レンズ L 5 1 と、 レチクル側に凸面を向けた正メニスカスレンズ L 5 2と、 ゥ ェハ側に非球面状の凸面を向けた正メニスカスレンズ L 5 3 とから構 成された第 2フィールドレンズが配置されている。 ここで、 レンズ L 5 1〜L 5' 3は、 第 2光軸 A X 2に沿って図中上側 (レチクル側) から順 に配置されている。 χ? In the optical path between the second imaging optical system G 2 and the third imaging optical system G 3, a biconvex lens L 51 having an aspherical convex surface facing the reticle side is arranged in order from the reticle side. A second field lens composed of a positive meniscus lens L 52 having a convex surface facing the reticle side and a positive meniscus lens L 53 having a non-spherical convex surface facing the wafer side is disposed. . Here, the lenses L51 to L5'3 are arranged in order from the upper side (reticle side) in the figure along the second optical axis AX2. χ?
したがって、 第 1実施例では、 レチクル Rからの光が、 第 1平面反射 鏡 Μ 1で反射された後、 正メニスカスレンズ L I 1および両凹レンズ L 1 2を介して、 第 2凹面反射鏡 CM 2に入射する。 第 2凹面反射鏡 CM 2で反射された光は、 第 1フィ一ルドレンズ (L 4 1、 L 42 ) の近傍 にレチクルパターンの第 1中間像を形成する。 第 1フィールドレンズ (L 4 1、 L 42 ) の近傍に形成された第 1中間像からの光は、 負メニ スカスレンズ L 2 1を介して、 第 3凹面反射鏡 CM 3に入射する。 Therefore, in the first embodiment, after the light from the reticle R is reflected by the first plane reflecting mirror Μ1, it passes through the positive meniscus lens LI1 and the biconcave lens L12, and then passes through the second concave reflecting mirror CM2. Incident on. The light reflected by the second concave reflecting mirror CM2 forms a first intermediate image of a reticle pattern near the first field lens (L41, L42). Light from the first intermediate image formed near the first field lens (L41, L42) enters the third concave reflecting mirror CM3 via the negative meniscus lens L21.
第 3凹面反射鏡 CM 3で反射された光は、 負メニスカスレンズ L 2 1 を介して、 第 4平面反射鏡 M4に入射する。 第 4平面反射鏡 M4で反射 された光は、 第 2フィールドレンズ (L 5 1〜L 5 3 ) 中にレチクルパ ターンの第 2中間像を形成する。 第 2フィールドレンズ (L 5 1〜L 5 3) 中に形成された第 2中間像からの光は、 第 3結像光学系 G 3を構成 する各レンズ L 3 :!〜 L 3 1 2を介して、 ウェハ W上にレチクルパター ンの最終像を形成する。  The light reflected by the third concave reflecting mirror CM3 is incident on the fourth plane reflecting mirror M4 via the negative meniscus lens L21. The light reflected by the fourth plane mirror M4 forms a second intermediate image of the reticle pattern in the second field lens (L51 to L53). The light from the second intermediate image formed in the second field lens (L51 to L53) passes through each lens L3 that constitutes the third imaging optical system G3:! Through the process, a final image of the reticle pattern is formed on the wafer W.
次の表 ( 1 ) に、 第 1実施例にかかる反射屈折光学系の諸元の値を掲 げる。 表 ( 1 ) の主要諸元において、 λは露光光の中心波長を、 jSは投 影倍率 '(全系の結像倍率) を、 NAは像側 (ゥェ八側) 開口数を、 Aは ウェハ W上でのイメージサークル I Fの半径すなわち最大像高を、 Bは 最大像高 Aに対応する最大物体高を、 L Xは実効露光領域 ERの X方向 に沿った寸法 (長辺の寸法) を、 L Yは実効露光領域 E Rの Y方向に沿 つた寸法 (短辺の寸法) をそれぞれ表している。  The following Table (1) shows the values of the specifications of the catadioptric optical system according to the first example. In the main specifications in Table (1), λ is the center wavelength of the exposure light, jS is the projection magnification '(imaging magnification of the entire system), NA is the numerical aperture on the image side (Jehachi side), and A is Is the radius of the image circle IF on the wafer W, that is, the maximum image height, B is the maximum object height corresponding to the maximum image height A, LX is the dimension of the effective exposure area ER along the X direction (long side dimension) LY represents the dimension (short side dimension) of the effective exposure area ER along the Y direction.
また、 表 ( 1 ) の光学部材諸元において、 第 1カラムの面番号はレチ クル側から光の進行方向に沿った面の順序を、 第 2カラムの rは各面の 曲率半径 (非球面の場合には頂点曲率半径: mm) を、 第 3カラムの d は各面の軸上間隔すなわち面間隔 (mm) を、 第 4カラムの nは中心波 長に対する屈折率をそれぞれ示している。 なお、 面間隔 dは、 反射され る度にその符号を変えるものとする。 したがって、 面間隔 dの符号は、 第 1平面反射鏡 M 1から第 2凹面反射鏡 C M 2への光路中および第 3 凹面反射鏡 CM 3から第 4平面反射鏡 M 4への光路中では負とし、 その 他の光路中では正としている。 In the optical member specifications in Table (1), the surface number of the first column is the order of the surface along the light traveling direction from the reticle side, and r of the second column is the radius of curvature (aspheric surface) of each surface. In the case of, the vertex curvature radius: mm), d in the third column indicates the on-axis spacing of each surface, that is, the surface spacing (mm), and n in the fourth column indicates the refractive index with respect to the center wavelength. Note that the sign of the surface distance d changes each time it is reflected. Therefore, the sign of the surface distance d is Negative in the optical path from the first concave reflecting mirror M1 to the second concave reflecting mirror CM2 and in the optical path from the third concave reflecting mirror CM3 to the fourth flat reflecting mirror M4, and positive in other optical paths. And
また、 第 1光軸に沿って配置された光学面では、 図中左側に向かって 凸面の曲率半径を正とし、 図中左側に向かって凹面の曲率半径を負とし ている。 さらに、 第 2光軸に沿って配置された光学面では、 レチクル側 (図中上側) に向かって凸面の曲率半径を正とし、 レチクル側に向かつ て凹面の曲率半径を負としている。 以降の表 (2) においても、 上述の 表記は同様である。  On the optical surface arranged along the first optical axis, the radius of curvature of the convex surface toward the left in the figure is positive, and the radius of curvature of the concave surface toward the left in the diagram is negative. Further, on the optical surface disposed along the second optical axis, the radius of curvature of the convex surface toward the reticle side (upper side in the figure) is positive, and the radius of curvature of the concave surface toward the reticle side is negative. In the following table (2), the above notation is the same.
(表 1 ) (table 1 )
(主要諸元)  (Main specifications)
λ = 1 57. 6 nm λ = 15.7 nm
β = 1/5 β = 1/5
Ν Α= 0. 845 Ν Α = 0.845
A = 20 mm A = 20 mm
Β = 1 00 mm Β = 100 mm
L Χ= 2 2 mm L Χ = 2 2 mm
L Y = 5. 5 mm L Y = 5.5 mm
(光学部材諸元) (Optical component specifications)
面番号 r d n Surface number r d n
(レチクル面) 290.026586  (Reticle surface) 290.026586
1 oo (第 1平面反射鏡 M 1 ) 1 oo (first plane reflector M 1)
2 -375.61418 -69.999996 1.560000 (レンズ 1 1 )2 -375.61418 -69.999996 1.560000 (Lens 1 1)
3 -8384.72157 -577. 10812 3 -8384.72157 -577.10812
4 3695.39575 -15.430078 1.560000 (レンズ L 1 2 ) 5 -1011.27343 -20.000282 4 3695.39575 -15.430078 1.560000 (Lens L 1 2) 5 -1011.27343 -20.000282
6 488. .06850 20 • 000282 (第 2凹面反射鏡 CM 6 488. .06850 20 • 000282 (Second concave reflector CM
7 -1011. 27343 15. 430078 1.560000 (レンズ、 T 1 9 )7 -1011.27343 15.430078 1.560000 (Lens, T19)
8 3695. 39575 577. 410812 8 3695. 39575 577. 410812
9 -8384. 72155 69. 999996 (レンズ ' T 4 1 ) 9 -8384.72155 69.999996 (Lens' T4 1)
10 -375. 61418 1. 000000 10 -375. 61418 1.000 000
11 523. 29394 26. 651917 (レンズ L 4 2 ) 11 523. 29394 26. 651917 (Lens L 4 2)
12 7089. 68959 776. 202894 12 7089. 68959 776. 202894
13 -233. 13196 12. 344063 (レンズし 2 1 ) 13 -233. 13196 12.344063 (Lens 2 1)
14 -782. 75388 20. 000264 14 -782.75388 20.000264
15 -397 .38457 -20 .000264 CD (第 3凹面反射鏡 CM 15 -397 .38457 -20 .000264 CD (3rd concave reflector CM
16 -782. 75388 -12. 344063 (レンズ 2 1 )16 -782.75388 -12.344063 (Lens 2 1)
17. -233. 13196 -730. 717730 17.-233.13196-730.717730
18 oo 200. 000000 (第 4平面反射鏡 M 4 ) 18 oo 200. 000000 (4th plane reflector M 4)
19* 485. 08331 29. 459002 (レンズ L 5 1 )19 * 485.08331 29. 459002 (Lens L5 1)
20 -3575. 98802 1. 000000 20 -3575. 98802 1. 000000
21 233. 35657 29. 671010 (レンズ 5 2 ) 21 233. 35657 29. 671010 (Lens 5 2)
22 486. 59435 92. 567882 22 486.59435 92.567882
23 -2726. 09488 15. 000000 (レンズ 5 3 ) 23 -2726.09488 15.000000 (Lens 5 3)
24* -905. 37791 189. 879636 24 * -905.37791 189.879636
25 171. 44052 18. 057863 (レンズし 3 1 ) 25 171.44052 18.057863 (Lens 3 1)
26 230. 14097 81. 533597 26 230.14097 81.533597
27* -134. 73026 23. 510345 (レンズ L 3 2 ) 27 * -134.73026 23.510345 (Lens L32)
28 -3198. .32252 19. 739819 28 -3198. .32252 19.739819
29 200. .39557 15. 000000 (レンズし 3 3 ) 29 200. .39557 15.000000 (Lens 3 3)
30* 155. 44391 11. 006083 30 * 155. 44391 11.006083
31 214. .60791 43. 765233 (レンズ L 3 4) 32 -552.06075 4.884579 31 214. .60791 43.765233 (Lens L3 4) 32 -552.06075 4.884579
33* 273.28545 15.000000 1.560000 (レンズ 3 5 ) 34 169.26001 49.818640  33 * 273.28545 15.000000 1.560000 (Lens 3 5) 34 169.26001 49.818640
35 206.47284 28.337440 560000 (レンズ L 3 6 ) 35 206.47284 28.337440 560000 (Lens L 3 6)
36 512.08579 56.625033 36 512.08579 56.625033
37 oo 29.862740 (開口絞り AS) 37 oo 29.862740 (Aperture stop AS)
38* 307.92600 29.246184 1.560000 (レンズ L 3 7 )38 * 307.92600 29.246184 1.560000 (Lens L3 7)
39 -1614.99027 39 -1614.99027
40 339.56596 15.002529 1.560000 (レンズ L 3 8 ) 41 428.85314  40 339.56596 15.002529 1.560000 (Lens L 3 8) 41 428.85314
42 292.93034 55.380125 1.560000 (レンズし 3 9 ) 43* -365.29687 4.141093 42 292.93034 55.380125 1.560000 (Lens 3 9) 43 * -365.29687 4.141093
44 394.28173 53.678655 1.560000 (レンズし 3 1 0) 44 394.28173 53.678655 1.560000 (Lens 3 1 0)
45 -1442.13457 2.718799 45 -1442.13457 2.718799
46 112.27860 28.030508 1.560000 (レンズ L 3 1 1 ) 47* 314.25185 6.015629 46 112.27860 28.030508 1.560000 (Lens L 3 1 1) 47 * 314.25185 6.015629
48 666.58142 53.355715 1.560000 (レンズし 3 1 2) 48 666.58142 53.355715 1.560000 (Lens 3 1 2)
49 -1471.85947 6.000000 49 -1471.85947 6.000000
(ウェハ面)  (Wafer surface)
(非球面デ一夕) (Aspheric surface night)
1 9面  1 9 faces
κ = 0. 0 0 0 0 0 0 κ = 0. 0 0 0 0 0 0
C 4= - 0. 1 7 8 1 49 X 1 0- 8 C 6 = 0 4 0 5 0 49 X 1 0- 13 C 4 = - 0. 1 7 8 1 49 X 1 0- 8 C 6 = 0 4 0 5 0 49 X 1 0- 13
C 8= 0. 46 8 5 1 6 X 1 0 -'8 C10 = 0 8 8 5 9 2 3 X 1 0—24 C 8 = 0. 46 8 5 1 6 X 1 0 - '8 C 10 = 0 8 8 5 9 2 3 X 1 0- 24
24面 O T X S S T T ^ T · 0 - =9 3 8 - 0 T X 9 ε S 6 I ^ '0 =' o 24 faces OTXSSTT ^ T0-= 9 3 8-0 TX 9 ε S 6 I ^ '0 =' o
o o o o o o · 0 = ¾  o o o o o o · 0 = ¾
s ε  s ε
01 01
u-0 T X S 2 T 9 0 2 · 0 - D tl- 0 T X ^ T 0 8 9 8 •o -=s 0 u-0 TXS 2 T9 0 2 0-Dtl-0 TX ^ T 0 8 9 8o- = s 0
0 Τ X S 9 8 0 0 9 ■ 0 - 9 D i - 0 I X I Z ΐ s ε .0 D 0 Τ XS 9 8 0 0 9 ■ 0 - 9 D i - 0 IXIZ ΐ s ε .0 D
o o o o o o .0 =  o o o o o o .0 =
8 ε  8 ε
0?,- o I x ^ ΐ ε s ε T ' o :010 91- 0 I X 6 ^ 2 9 T 2 0 _ =s 0, - o I x ^ ΐ ε s ε T 'o:? 01 0 91 - 0 IX 6 ^ 2 9 T 2 0 _ = s
I,-0 T X 9 S Z T I - 0 :9 i-0 T X 6 9 9 Z 8 e 0 D I, -0 TX 9 SZTI-0: 9 i-0 TX 6 9 9 Z 8 e 0 D
O O O O O O 0 = y  O O O O O O 0 = y
91  91
u-0 T X Z 2 I ^ Z 9 '0 J,3 9.- 0 1 X 9 0 9 8 ^ ^ • 0 - =8 0 Z1—0 T X ■ 0 :9 i-0 I X 9 8 0 T 22 ' 0 - D u-0 TXZ 2 I ^ Z 9 '0 J, 3 9.- 0 1 X 9 0 9 8 ^ ^ • 0-= 8 0 Z1 --0 TX ■ 0: 9 i-0 IX 980 T 22' 0-D
O O O O O O .0 = ¾  O O O O O O .0 = ¾
鹿 o ε 01  Deer o ε 01
0 Τ Χ ΐ Ζ Τ ^ 2 8 - 0 :。'0 9i- 0 1 X 8 8 1 9 8 2 0 =8 O 0 I X 6 0 " [ '0 :9 D i-0 T X T 8 6 0 S T 0 = D 0 Τ Χ ΐ Ζ Τ ^ 2 8-0:. '0 9i- 0 1 X 8 8 1 9 8 2 0 = 8 O 0 IX 6 0 "[' 0: 9 D i-0 TXT 8 6 0 ST 0 = D
O O O O O O 0 = y O O O O O O 0 = y
Figure imgf000023_0001
u -0 Τ Χ 6 6 Τ 9 Τ ^ ' 0 - 01
Figure imgf000023_0001
u -0 Τ Χ 6 6 Τ 9 Τ ^ '0-01
0 S1-0 I X 6 - 0 =8 D ει-0 Τ Χ Τ 2 6 ΐ ε ^ ■ 0 =9 0 Α- 0 T X 6 6 0 8 T T - 0 =" 0 0 S1 -0 IX 6-0 = 8 D ει -0 Τ Χ Τ 26 ΐ ε ^ ■ 0 = 90 Α -0 TX 66 08 TT-0 = 0
O O O O O O " 0 = 5  O O O O O O "0 = 5
6SZS0/Z0df/X3d IZ c 0. 40 3 1 64 X 1 0 -17 c 0. 3 0 7 8 6 1 X 1 0 6SZS0 / Z0df / X3d IZ c 0.40 3 1 64 X 1 0 -17 c 0.3.07 8 6 1 X 10
47面 47 faces
K = 0. 0 0 0 0 0 0  K = 0. 0 0 0 0 0 0
C 4- 0. 3 6 6 9 3 2 X 1 0"7 C 6 0. 4 5 8 2 58 X 1 0 -|2 C a= - 0. 3 8 6 3 8 8 X 1 0 6 C 10 0. 2 74 1 50 X 1 0 -|9 図 5および図 6は、 第 1実施例にかかる反射屈折光学系の横収差を示 す図である。 収差図において、 Yは像高 (mm) を示している。 収差図 から明らかなように、 第 1実施例では、 波長幅が 1 5 7. 6 nm± 0. 4 pmの露光光に対して、 すなわち中心波長が 1 5 7. 6 nmで半値幅 0. 7 pmの F2 レーザ光に対して、 色収差が良好に補正されているこ とがわかる。 また、 球面収差、 コマ収差、 非点収差、 ディストーション (歪曲収差) がほぼ無収差に近い状態まで良好に補正され、 優れた結像 性能を有することを確認している。 C 4 - 0. 3 6 6 9 3 2 X 1 0 "7 C 6 0. 4 5 8 2 58 X 1 0 - | 2 C a = - 0. 3 8 6 3 8 8 X 1 0 6 C 10 0 2 74 1 50 X 10- | 9 Fig. 5 and Fig. 6 are diagrams showing lateral aberrations of the catadioptric optical system according to Example 1. In the aberration diagrams, Y represents the image height (mm). As can be seen from the aberration diagram, in the first embodiment, the exposure light having a wavelength width of 157.6 nm ± 0.4 pm, against the F 2 laser beam of half width 0. 7 pm, this chromatic aberrations are satisfactorily corrected Togawakaru. Further, spherical aberration, coma, astigmatism, distortion (distortion aberration) is almost no aberration It has been confirmed that it is well corrected to a close state and has excellent imaging performance.
〔第 2実施例〕 (Second embodiment)
図 7は、 第 2実施例にかかる反射屈折光学系 (投影光学系 P L) のレ ンズ構成を示す図である。 図 7の反射屈折光学系において、 第 1結像光 学系 G 1は、 レチクル側から光の進行方向に沿って、 第 1平面反射鏡 M 1と、 第 1平面反射鏡 M 1側に凸面を向けた正メニスカスレンズ L 1 1 と、 両凹レンズ L 1 2と、 第 1平面反射鏡 M 1側に凹面を向けた第 2凹 面反射鏡 CM 2とから構成されている。 ここで、 正メニスカスレンズ L 1 1、 両凹レンズ L 1 2、 および第 2凹面反射鏡 CM2は、 図中水平な 第 1光軸 AX 1に沿って図中右側から順に配置されている。  FIG. 7 is a diagram illustrating a lens configuration of a catadioptric optical system (projection optical system PL) according to the second example. In the catadioptric optical system of FIG. 7, the first imaging optical system G 1 has a convex surface on the first plane reflecting mirror M 1 and the first plane reflecting mirror M 1 side along the light traveling direction from the reticle side. , A positive meniscus lens L 11, a biconcave lens L 12, and a second concave reflector CM 2 having a concave surface facing the first plane reflector M 1. Here, the positive meniscus lens L11, the biconcave lens L12, and the second concave reflecting mirror CM2 are arranged in order from the right side in the figure along the horizontal first optical axis AX1 in the figure.
また、 第 2結像光学系 G 2は、 第 1結像光学系 G 1側から光の進行方 向に沿って、 第 1結像光学系 G 1側に凹面を向けた負メニスカスレンズ L 2 1と、 第 1結像光学系 G 1側に凹面を向けた第 3凹面反射鏡 C M 3 と、 第 4平面反射鏡 M 4とから構成されている。 ここで、 負メニスカス レンズし 2 1および第 3凹面反射鏡 C M 3は、 第 1光軸 A X 1に沿って 図中左側から順に配置されている。 The second imaging optical system G2 is a negative meniscus lens having a concave surface facing the first imaging optical system G1 along the light traveling direction from the first imaging optical system G1. L 2, a third concave reflecting mirror CM 3 having a concave surface facing the first imaging optical system G 1, and a fourth flat reflecting mirror M 4. Here, the negative meniscus lens 21 and the third concave reflecting mirror CM 3 are arranged in order from the left side in the figure along the first optical axis AX 1.
さらに、 第 3結像光学系 G 3は、 レチクル側から順に、 レチクル側に 凹面を向けた負メニスカスレンズ L 3 1 と、 レチクル側に非球面状の凸 面を向けた両凸レンズ L 3 2と、 ウェハ側に非球面状の凹面を向けた両 凹レンズ L 3 3と、 両凸レンズ L 3 4と、 レチクル側に非球面状の凸面 を向けた両凹レンズ L 3 5と、 レチクル側に凸面を向けた正メニスカス レンズ L 3 6と、 開口絞り A Sと、 レチクル側に非球面状の凸面を向け た両凸レンズ L 3 7と、 ウェハ側に非球面状の凸面を向けた両凸レンズ L 3 8と、 両凸レンズ L 3 9と、 ウェハ側に非球面状の凹面を向けた正 メニスカスレンズ L 3 1 0と、 両凸レンズ L 3 1 1 とから構成されてい る。 ここで、 レンズ L 3 1〜L 3 1 1は、 図中鉛直な第 2光軸 A X 2に 沿って図中上側 (レチクル側) から順に配置されている。  Further, the third imaging optical system G 3 includes, in order from the reticle side, a negative meniscus lens L 31 having a concave surface facing the reticle side, and a biconvex lens L 32 having an aspherical convex surface facing the reticle side. , A biconcave lens L33 with an aspheric concave surface facing the wafer side, a biconvex lens L34, a biconcave lens L35 with an aspheric convex surface facing the reticle side, and a convex surface facing the reticle side A positive meniscus lens L36, an aperture stop AS, a biconvex lens L37 with an aspheric convex surface facing the reticle side, and a biconvex lens L38 with an aspheric convex surface facing the wafer side. It is composed of a biconvex lens L39, a positive meniscus lens L310 with an aspheric concave surface facing the wafer side, and a biconvex lens L311. Here, the lenses L31 to L311 are arranged in order from the upper side (reticle side) in the figure along the second optical axis AX2, which is vertical in the figure.
なお、 第 1結像光学系 G 1 と第 2結像光学系 G 2との間の光路中には、 第 1結像光学系 G 1側から光の進行方向に沿って、 第 1結像光学系 G 1 側に凹面を向けた正メニスカスレンズ L 4 1と、 第 1結像光学系 G 1側 に凸面を向けた正メニスカスレンズの部分レンズ L 4 2 とから構成さ れた第 1 フィールドレンズが配置されている。 すなわち、 正メニスカス レンズ L 4 1および正メニスカスレンズの部分レンズ L 4 2は、 第 1光 軸 A X 1に沿って図中左側から順に配置されている。  In the optical path between the first imaging optical system G1 and the second imaging optical system G2, the first imaging optical system A first field composed of a positive meniscus lens L 41 having a concave surface facing the optical system G 1 side and a partial lens L 42 of a positive meniscus lens having a convex surface facing the first imaging optical system G 1 side. A lens is located. That is, the positive meniscus lens L41 and the partial lens L42 of the positive meniscus lens are arranged along the first optical axis AX1 from the left side in the figure.
ここで、 正メニスカスレンズ L 4 1は、 正メニスカスレンズ L 1 1 と 同じレンズであって、 第 2凹面反射鏡 C M 2への入射光および第 2凹面 反射鏡 C M 2からの反射光をともに通過させる。 正メニスカスレンズの 部分レンズ L 4 2は、 第 2凹面反射鏡 C M 2への入射光を通過させるこ となく、 第 2凹面反射鏡 C M 2からの反射光だけを通過させるために、 正メニスカスレンズを部分的に切り欠いた形状を有する。 Here, the positive meniscus lens L 41 is the same lens as the positive meniscus lens L 11, and passes both the light incident on the second concave reflecting mirror CM 2 and the reflected light from the second concave reflecting mirror CM 2 Let it. The partial lens L42 of the positive meniscus lens passes only the light reflected from the second concave reflecting mirror CM2 without passing the light incident on the second concave reflecting mirror CM2. The positive meniscus lens has a partially cut-out shape.
また、 第 2結像光学系 G 2と第 3結像光学系 G 3との間の光路中には, レチクル側から順に、 レチクル側に非球面状の凸面を向けた両凸レンズ L 5 1と、 レチクル側に凸面を向けた正メニスカスレンズ L 5 2と、 レ チクル側に非球面状の凸面を向けた両凸レンズ L 5 3とから構成され た第 2フィールドレンズが配置されている。 ここで、 レンズ L 5 1〜L 5 3は、 第 2光軸 AX 2に沿って図中上側 (レチクル側) から順に配置 されている。  In the optical path between the second imaging optical system G2 and the third imaging optical system G3, a biconvex lens L51 having an aspherical convex surface facing the reticle side in order from the reticle side. In addition, a second field lens including a positive meniscus lens L52 having a convex surface facing the reticle side and a biconvex lens L53 having an aspherical convex surface facing the reticle side is arranged. Here, the lenses L51 to L53 are arranged in order from the upper side (reticle side) in the figure along the second optical axis AX2.
したがって、 第 1実施例では、 レチクル Rからの光が、 第 1平面反射 鏡 M 1で反射された後、 正メニスカスレンズ L 1 1および両凹レンズ L 1 2を介して、 第 2凹面反射鏡 CM 2に入射する。 第 2凹面反射鏡 CM 2で反射された光は、 第 1フィールドレンズ (L 4 1、 L 42 ) の近傍 にレチクルパターンの第 1中間像を形成する。 第 1フィールドレンズ (L 4 1、 L 42) の近傍に形成された第 1中間像からの光は、 負メニ スカスレンズ L 2 1を介して、 第 3凹面反射鏡 CM 3に入射する。  Accordingly, in the first embodiment, after the light from the reticle R is reflected by the first plane reflecting mirror M1, the light is reflected by the positive meniscus lens L1 and the biconcave lens L12, and the second concave reflecting mirror CM It is incident on 2. The light reflected by the second concave reflecting mirror CM2 forms a first intermediate image of a reticle pattern near the first field lens (L41, L42). Light from the first intermediate image formed near the first field lens (L41, L42) enters the third concave reflecting mirror CM3 via the negative meniscus lens L21.
第 3凹面反射鏡 CM 3で反射された光は、 負メニスカスレンズ L 2 1 を介して、 第 4平面反射鏡 M4に入射する。 第 4平面反射鏡 M4で反射 された光は、 第 2フィールドレンズ (L 5 1〜L 5 3) の近傍にレチク ルパターンの第 2中間像を形成する。 第 2フィールドレンズ (L 5 1〜 L 5 3) の近傍に形成された第 2中間像からの光は、 第 3結像光学系 G 3を構成する各レンズ L 3 1〜L 3 1 1を介して、 ウェハ W上にレチク ルパターンの最終像を形成する。  The light reflected by the third concave reflecting mirror CM3 is incident on the fourth plane reflecting mirror M4 via the negative meniscus lens L21. The light reflected by the fourth plane reflecting mirror M4 forms a second intermediate image of a reticle pattern near the second field lens (L51 to L53). Light from the second intermediate image formed in the vicinity of the second field lens (L51 to L53) passes through each lens L31 to L31 constituting the third imaging optical system G3. Through the process, a final image of the reticle pattern is formed on the wafer W.
次の表 (2) に、 第 2実施例にかかる反射屈折光学系の諸元の値を掲 げる。  Table 2 below summarizes the data values of the catadioptric optical system according to the second example.
(表 2) (Table 2)
(主要諸元) λ = 1 5 7. 6 n m (Main specifications) λ = 1 57.6 nm
β = 1 Z 5 β = 1 Z 5
N A= 0. 84 5  N A = 0.884 5
A = 2 0 mm  A = 20 mm
B = 1 0 0 mm  B = 100 mm
L X= 2 2 mm  L X = 2 2 mm
L Y = 5. 5 mm  L Y = 5.5 mm
(光学部材諸元) (Optical component specifications)
面番号 r d n Surface number r d n
(レチクル面) 290.027792  (Reticle surface) 290.027792
1 oo - 10.000000 (第 1平面反射鏡 M l ) 1 oo-10.000000 (first plane reflector M l)
2 -375.77476 -70.000000 1.560000 (レンズ 1 1 )2 -375.77476 -70.000000 1.560000 (Lens 1 1)
3 -8471.57979 -571.612419 3 -8471.57979 -571.612419
4 880.34723 -20.000002 1.560000 (レンズし 1 2 )4 880.34723 -20.000002 1.560000 (Lens 1 2)
5 -1526.15631 - 20.000068 5 -1526.15631-20.000068
6 430.44124 20.000068 (第 2凹面反射鏡 CM2) 6 430.44124 20.000068 (2nd concave reflector CM2)
7 -1526.15631 20.000002 1.560000 (レンズし 1 2 )7 -1526.15631 20.000002 1.560000 (Lens 1 2)
8 880.34723 571.612419 8 880.34723 571.612419
9 -8471.57979 69.999999 1.560000 (レンズ 1 )9 -8471.57979 69.999999 1.560000 (Lens 1)
10 -375.77476 1.000002 10 -375.77476 1.000002
11 392.76058 40.629139 1.560000 (レンズし 42 ) 12 1108.55246 695.632956 11 392.76058 40.629139 1.560000 (Lens 42) 12 1108.55246 695.632956
13 -228.90899 1.560000 (レンズ 2 1 ) 14 -747.58067 20.000181  13 -228.90899 1.560000 (Lens 2 1) 14 -747.58067 20.000181
15 -395.97377 -20.000181 (第 3凹面反射鏡 CM 3 ) 15 -395.97377 -20.000181 (3rd concave reflector CM 3)
16 -747.58067 -20.000000 1.560000 (レンズし 2 1 ) 17 -228. , 90899 -664.125014 16 -747.58067 -20.000000 1.560000 (Lens 2 1) 17 -228., 90899 -664.125014
18 oo 200. 000000 (第 4平面反射鏡 M4) o 1丄 、ノ C:  18 oo 200. 000000 (4th plane mirror M4) o 1 丄, C:
D 乙 Λ) Π: Q o 丄 ノ 6 Q 乙 9 、) Q 6 Q ヽ )
Figure imgf000028_0001
o /! 、
D 乙 Π) Π: Q o ノ ノ no 6 Q 乙 9)) Q 6 Q ヽ)
Figure imgf000028_0001
o /!,
32 -208. .61721 43. 802275 32 -208. .61721 43.802275
33* -362. .74483 20. 000000
Figure imgf000028_0002
33 * -362. .74483 20. 000000
Figure imgf000028_0002
34 705. .62394 1. 145699  34 705. .62394 1.145699
35 210, .45845 20. 000001 ( ] 、 マ、、丁 ^ f ) 35 210, .45845 20.000001 (]
36 348. .14561 29. 558007 36 348. .14561 29.558007
37 oo 8. 302787 、 |用 ? リ oノ 37 oo 8. 302787, | for?
38* 348 .07912 36. 473270 (レンズ L 3 7 )38 * 348.07912 36.473270 (Lens L3 7)
39 -364 .89841 1. 000000 39 -364 .89841 1.000000
40 246. • 94105 53. 921552
Figure imgf000028_0003
(レンズ L 3 8 )
40 246. • 94105 53. 921552
Figure imgf000028_0003
(Lens L 3 8)
41* -323 .09677 5. 937773 41 * -323 .09677 5. 937773
42 778 - 36526 29. 012042 (レンズ L 3 9 ) 42 778-36526 29. 012042 (Lens L 3 9)
43 -451 .33562 1. 000000 44 187.68025 25.248610 1.560000 (レンズ L 3 1 0) 45* 221.00795 16.525885 43 -451 .33562 1.000 000 44 187.68025 25.248610 1.560000 (Lens L 3 0) 45 * 221.00795 16.525885
46 109.74451 70.000000 1.560000 (レンズ L 3 1 1) 47 -777.78439 6.000000 46 109.74451 70.000000 1.560000 (Lens L 3 1 1) 47 -777.78439 6.000000
(ゥェ八面)  (ゥ ゥ 八面)
(非球面データ) (Aspherical data)
1 9面 1 9 faces
κ = 0. 0 0 0 0 0 0 κ = 0. 0 0 0 0 0 0
C 4= - 0. 6 6 8 9 2 9 X 1 CT8 C 6: 0. 4 7 9 3 9 7 X 1 0- 13 C 4 =-0.6 6 8 9 2 9 X 1 CT 8 C 6 : 0.4 7 9 3 9 7 X 10-13
C s=— 0. 6 7 3 1 3 2 X 1 0 -18 c 10 0. 1 0 6 1 4 0 X 1 0— 22 C s = — 0.6 7 3 1 3 2 X 10 -18 c 10 0.1 0 6 1 4 0 X 1 0 22
2 3面 2 3 sides
κ = 0 0 0 0 0 0 0 κ = 0 0 0 0 0 0 0
C 4=一 0 1 3 2 9 84 X 1 0— 7 C - 0 - 1 7 7 7 8 9 X 1 0 -'3 C 4 = one 0 1 3 2 9 84 X 1 0- 7 C - 0 - 1 7 7 7 8 9 X 1 0 - '3
C 8= 0 3 3 7448 X 1 0 -17 c 10 — 0. 8 0 7 3 0 2 X 1 0 "22 C 8 = 0 3 3 7448 X 1 0 -17 c 10 — 0.8 0 7 3 0 2 X 1 0 " 22
2 7面 2 7
0 0 0 0 0 0 0  0 0 0 0 0 0 0
C 0. 8 0 3 3 3 6 X 1 0— 7 C 0. 1 46 0 6 1 X 1 0- 11 C 0. 8 0 3 3 3 6 X 1 0- 7 C 0. 1 46 0 6 1 X 1 0- 11
C 8 = 0. 1 1 4 8 2 0 X 1 0 10― 0. 3 4 9 7 7 9 X 1 0一20 C 8 = 0. 1 1 4 8 2 0 X 1 0 10-0. 3 4 9 7 7 9 X 10 20
3 0面 30 face
κ = 0 0 0 0 0 0 0 κ = 0 0 0 0 0 0 0
C 4 =一 0 1 8 3 8 4 1 X 1 0- 6 C 6: 0. 7 3 1 6 7 1 X 1 0 -"C 4 = one 0 1 8 3 8 4 1 X 1 0- 6 C 6: 0. 7 3 1 6 7 1 X 1 0 - "
C 8=— 0 4 9 5 1 8 9 X 1 0"15 Cl0: 0. 3 3 5 5 3 2 X 1 0— 19 3 3面 C 8 = — 0 4 9 5 1 8 9 X 1 0 ” 15 C l0 : 0.3 3 5 5 3 2 X 1 0— 19 3 3 sides
κ = 0 0 0 0 0 0 0 κ = 0 0 0 0 0 0 0
C 一 0 5 1 343 3 X 1 0- 7 C f- — 0. 3 6 9 5 4 3 X 1 0""C 1 0 5 1 343 3 X 1 0- 7 C f- — 0.3 6 9 5 4 3 X 1 0 ""
C R=- 0. 8 9 9 1 5 5 X 1 0 -16 C10 : — 0. 4 3 3 2 6 1 X 1 0—20 C R = - 0. 8 9 9 1 5 5 X 1 0 - 16 C 10: - 0. 4 3 3 2 6 1 X 1 0- 20
3 8面 3 8 faces
K = 0 0 0 0 0 0 0  K = 0 0 0 0 0 0 0
C 4=- 0 4 3 8 0 7 8 X 1 0-7 C 6: 0. 442 8 27 X 1 0 -12 C 4 = - 0 4 3 8 0 7 8 X 1 0- 7 C 6: 0. 442 8 27 X 1 0 - 12
C 8=- 0 5 6 2 6 4 7 X 1 0 -17 C10: 0. 4 9 9 7 6 1 X 1 0 -22 C 8 = - 0 5 6 2 6 4 7 X 1 0 - 17 C 10: 0. 4 9 9 7 6 1 X 1 0 - 22
4 1面 4 1 side
K = 0 0 0 0 0 0 0 K = 0 0 0 0 0 0 0
C 0. 2 642 2 5 X 1 0-7 C fi = 0. 2 2 4 9 6 5 X 1 0 -C 0. 2 642 2 5 X 1 0- 7 C fi = 0. 2 2 4 9 6 5 X 1 0 -
C s = 0. 2 1 1 4 7 8 X 1 0 "l6 C10: 0. 2 3 5 5 3 8 X 1 0 -2I C s = 0. 2 1 1 4 7 8 X 1 0 "l6 C 10: 0. 2 3 5 5 3 8 X 1 0 - 2I
4 5面 4 5
K = 0. 0 0 0 0 0 0  K = 0. 0 0 0 0 0 0
C 0 48 1 9 54 X 1 0- 7 C 6 0. 4 1 9 2 6 6 X 1 0-"C 0 48 1 9 54 X 1 0- 7 C 6 0. 4 1 9 2 6 6 X 1 0- "
C s= 0 1 2 1 1 5 2 X 1 0 -'5 C 10 0. 3 4 '4 8 1 1 X 1 0 -20 図 8および図 9は、 第 2実施例にかかる反射屈折光学系の横収差を示 す図である。 収差図において、 Yは像高 (mm) を示している。 収差図 から明らかなように、 第 2実施例においても第 1実施例と同様に、 波長 幅が 1 5 7. 6 nm± 0. 4 p mの露光光に対して、 すなわち中心波長 が 1 5 7. 6 11111で半値幅0. 7 pmの F2 レーザ光に対して、 色収差 が良好に補正されていることがわかる。 また、 球面収差、 コマ収差、 非 点収差、 ディストーション (歪曲収差) がほぼ無収差に近い状態まで良 好に補正され、 優れた結像性能を有することを確認している。 C s = 0 1 2 1 1 5 2 X 1 0 - '5 C 10 0. 3 4' 4 8 1 1 X 1 0 - 20 FIGS. 8 and 9, the catadioptric optical system according to the second embodiment FIG. 4 is a view showing lateral aberration. In the aberration diagram, Y indicates the image height (mm). As is clear from the aberration diagrams, in the second embodiment, similarly to the first embodiment, the exposure light having a wavelength width of 15.7 nm ± 0.4 pm, that is, the center wavelength is 15.7 It can be seen that the chromatic aberration is favorably corrected for the F 2 laser beam having a half width of 0.7 pm at 6 11111. In addition, spherical aberration, coma, astigmatism, and distortion (distortion) are good up to almost no aberration. It has been confirmed that it is well corrected and has excellent imaging performance.
以上のように、 上述の各実施例では、 中心波長が 1 5 7 . 6 n mの F 2レーザ光に対して、 0 . 8 4 5の大きな像側 N Aを確保するとともに、 ウェハ W上において色収差をはじめとする諸収差が十分に補正された 半径が 2 0 mmのイメージサークルを確保することができる。 したがつ て、 各実施例では、 2 2 mm X 5 . 5 mmの十分に大きな矩形状の実効 露光領域を確保した上で、 0 . 1 m以下の高解像を達成することがで きる。 そして、 ウェハ Wにおいて、 たとえば 2 2 mm x 3 3 mmの大き さを有する各露光領域に、 レチクル Rのパターンを走査露光により高精 度に転写することができる。 また、 上述の各実施例では、 約 6 mmの十 分に長いウェハ側ワーキングディスタンスを確保することができる。 また、 第 1実施例では、 2つの凹面反射鏡 C M 1および C M 3の直径 が 3 3 5 mm以下であり、 2枚の最大のレンズの有効径 (直径) が 3 3 5 mm以下であり、 その他の大部分のレンズの有効径は 2 4 0 mm以下 である。 一方、 第 2実施例では、 2つの凹面反射鏡 C M 1および C M 3 の直径が 3 4 0 mm以下であり、 2枚の最大のレンズの有効径 (直径) が 3 4 0 mm以下であり、 その他の大部分のレンズの有効径は 2 3 0 m m以下である。 このように、 各実施例において、 凹面反射鏡やレンズの 大型化を抑えて、 光学系の小型化が図られている。 As described above, in each embodiment described above, with respect to the center wavelength of 1 5 7. Of 6 nm F 2 laser light 0. 8 4 while securing a large image-side NA of 5, the chromatic aberration on the wafer W It is possible to secure an image circle with a radius of 20 mm in which various aberrations such as are sufficiently corrected. Therefore, in each embodiment, it is possible to achieve a high resolution of 0.1 m or less while securing a sufficiently large rectangular effective exposure area of 22 mm × 5.5 mm. . Then, the pattern of the reticle R can be transferred with high precision to each exposure area having a size of, for example, 22 mm × 33 mm on the wafer W by scanning exposure. Further, in each of the above-described embodiments, a sufficiently long working distance on the wafer side of about 6 mm can be ensured. Also, in the first embodiment, the diameter of the two concave reflecting mirrors CM 1 and CM 3 is less than or equal to 335 mm, the effective diameter (diameter) of the two largest lenses is less than or equal to 335 mm, The effective diameter of most other lenses is less than 240 mm. On the other hand, in the second embodiment, the diameters of the two concave reflecting mirrors CM1 and CM3 are equal to or less than 3400 mm, and the effective diameter (diameter) of the two largest lenses is equal to or less than 3400 mm. The effective diameter of most other lenses is less than 230 mm. As described above, in each of the embodiments, the size of the optical system is reduced by suppressing an increase in the size of the concave reflecting mirror and the lens.
さらに、 上述の各実施例では、 3回結像方式の光学系でありながら、 レンズ枚数が非常に少ない構成 (第 1実施例では 1 9枚であり、 第 2実 施例では 1 8枚) となっている。 F 2 レーザ光を用いる光学系では、 良 好な反射防止コー卜が得られないため、 レンズ枚数が多いとレンズ面に おいて光量損失を招きやすい。 この観点から、 上述の各実施例では、 レ ンズ枚数が少なく、 レンズ面における光量損失を抑える構成になってい る。 Furthermore, in each of the above embodiments, the number of lenses is very small (19 in the first embodiment, and 18 in the second embodiment), although the optical system is of the three-time imaging system. It has become. In the optical system using the F 2 laser beam, because good good antireflection code Bok can not be obtained, it tends to cause the Oite light loss and the lens surface number of lenses is large. From this point of view, each of the above-described embodiments has a configuration in which the number of lenses is small and the loss of light quantity on the lens surface is suppressed.
さらに、 第 1実施例では物体面 (レチクル面) と像面 (ウェハ面) と の距離は約 1 . 5 mであり、 第 2実施例では物体面と像'面との距離は約 1 . 3 mである。 このように、 各実施例において、 物体面と像面との距 離が小さく抑えられているので、 高性能で高精度な光学系を実現するこ とができ、 さらに装置の小型化を図ることができる。 また、 上述の各実 施例では、 導入された非球面の数も非常に少ない構成 (各実施例とも 8 枚) となっている。 Further, in the first embodiment, the object plane (reticle plane), the image plane (wafer plane), Is about 1.5 m, and in the second embodiment, the distance between the object plane and the image plane is about 1.3 m. Thus, in each embodiment, the distance between the object plane and the image plane is kept small, so that a high-performance and high-precision optical system can be realized, and the size of the apparatus can be further reduced. Can be. In each of the embodiments described above, the number of aspheric surfaces introduced is very small (eight in each embodiment).
上述の露光装置では、 照明光学系によってレチクル (マスク) を照明 し (照明工程)、 投影光学系を用いてレチクルに形成された転写用のパ ターンを感光性基板に走査露光する (露光工程) ことにより、 マイクロ デバイス (半導体素子、 撮像素子、 液晶表示素子、 薄膜磁気ヘッド等) を製造することができる。 以下、 上述の露光装置を用いて感光性基板と してのウェハ等に所定の回路パターンを形成することによって、 マイク ロデバイスとしての半導体デバイスを得る際の手法の一例につき図 1 0のフローチャートを参照して説明する。  In the above-described exposure apparatus, the reticle (mask) is illuminated by the illumination optical system (illumination step), and the transfer pattern formed on the reticle is scanned and exposed on the photosensitive substrate using the projection optical system (exposure step). Thereby, micro devices (semiconductor elements, imaging elements, liquid crystal display elements, thin-film magnetic heads, etc.) can be manufactured. The flow chart of FIG. 10 shows an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the above-described exposure apparatus. It will be described with reference to FIG.
先ず、 図 1 0のステップ 3 0 1において、 1 ロッ トのウェハ上に金属 膜が蒸着される。 次のステップ 3 0 2において、 その 1 ロッ トのウェハ 上の金属膜上にフォ トレジス卜が塗布される。 その後、 ステップ 3 0 3 において、 上述の露光装置を用いて、 レチクル上のパターンの像がその 投影光学系を介して、 その 1ロッ 卜のウェハ上の各ショッ ト領域に順次 露光転写される。 その後、 ステップ 3 0 4において、 その 1 ロッ トのゥ ェハ上のフォ トレジス卜の現像が行われた後、 ステップ 3 0 5において, その 1 ロッ 卜のウェハ上でレジス トパターンをマスクとしてエツチン グを行うことによって、 レチクル上のパターンに対応する回路パターン 力 各ウェハ上の各ショッ ト領域に形成される。 その後、 更に上のレイ ャの回路パターンの形成等を行うことによって、 半導体素子等のデバィ スが製造される。 上述の半導体デバイス製造方法によれば、 極めて微細 な回路パターンを有する半導体デバイスをスループッ ト良く得ること ができる。 First, in step 301 of FIG. 10, a metal film is deposited on one lot of wafers. In the next step 302, a photoresist is applied to the metal film on the one-lot wafer. Thereafter, in step 303, the pattern image on the reticle is sequentially exposed and transferred to each shot area on the one-lot wafer via the projection optical system using the above-described exposure apparatus. Thereafter, in step 304, the photo resist on the wafer of the one lot is developed, and then in step 305, etching is performed on the wafer of the one lot using the resist pattern as a mask. As a result, a circuit pattern corresponding to the pattern on the reticle is formed in each shot area on each wafer. Thereafter, devices such as semiconductor elements are manufactured by forming a circuit pattern of the upper layer. According to the above-described semiconductor device manufacturing method, a semiconductor device having an extremely fine circuit pattern can be obtained with good throughput. Can be.
また、 上述の露光装置では、 プレート (ガラス基板) 上に所定のパ夕 —ン (回路パターン、 電極パターン等) を形成することによって、 マイ クロデバイスとしての液晶表示素子を得ることもできる。 以下、 図 1 1 のフローチャートを参照して、 このときの手法の一例につき説明する。 図 1 1において、 パターン形成工程 4 0 1では、 上述の露光装置を用い てレチクルのパターンを感光性基板 (レジス卜が塗布されたガラス基板 等) に転写露光する、 所謂光リソグラフィー工程が実行される。 この光 リソグラフィー工程によって、 感光性基板上には多数の電極等を含む所 定パターンが形成される。 その後、 露光された基板は、 現像工程、 エツ チング工程、 レチクル剥離工程等の各工程を経ることによって、 基板上 に所定のパターンが形成され、 次のカラーフィル夕一形成工程 4 0 2へ 移行する。  In the above-described exposure apparatus, a liquid crystal display element as a micro device can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate). Hereinafter, an example of the technique at this time will be described with reference to the flowchart in FIG. In FIG. 11, in a pattern forming step 401, a so-called optical lithography step of transferring and exposing a reticle pattern to a photosensitive substrate (eg, a glass substrate coated with a resist) using the above-described exposure apparatus is performed. You. By this photolithography process, a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate. Thereafter, the exposed substrate is subjected to various processes such as a developing process, an etching process, and a reticle peeling process, so that a predetermined pattern is formed on the substrate, and the process proceeds to the next color fill forming process 402. I do.
次に、 カラ一フィルタ一形成工程 4 0 2では、 R (Red) , G (Green)、 B (B l ue) に対応した 3つのドッ トの組がマトリックス状に多数配列さ れたり、 または R、 G、 Bの 3本のストライプのフィル夕一の組を複数 水平走査線方向に配列したカラーフィルターを形成する。 そして、 カラ 一フィル夕一形成工程 4 0 2の後に、 セル組み立て工程 4 0 3が実行さ れる。 セル組み立て工程 4 0 3では、 パターン形成工程 4 0 1にて得ら れた所定パターンを有する基板、 およびカラ一フィルタ一形成工程 4 0 2にて得られたカラーフィル夕一等を用いて液晶パネル (液晶セル) を 組み立てる。 セル組み立て工程 4 0 3では、 例えば、 パターン形成工程 4 0 1にて得られた所定パターンを有する基板とカラーフィルター形 成工程 4 0 2にて得られたカラーフィルターとの間に液晶を注入して、 液晶パネル (液晶セル) を製造する。  Next, in the color filter forming process 402, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or A color filter is formed in which a plurality of sets of three stripes of R, G, and B are arranged in a horizontal scanning line direction. Then, a cell assembling step 403 is executed after the color-fill-filling-illustration forming step 402. In the cell assembling step 403, the liquid crystal is formed by using the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402. Assemble the panel (liquid crystal cell). In the cell assembling step 403, for example, liquid crystal is injected between the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402. To manufacture liquid crystal panels (liquid crystal cells).
その後、 モジュール組み立て工程 4 0 4にて、 組み立てられた液晶パ ネル (液晶セル) の表示動作を行わせる電気回路、 バックライ ト等の各 部品を取り付けて液晶表示素子として完成させる。 上述の液晶表示素子 の製造方法によれば、 極めて微細な回路パターンを有する液晶表示素子 をスループッ 卜良く得ることができる。 Then, in the module assembling step 404, each of the electric circuits and backlights, etc., that perform the display operation of the assembled liquid crystal panel (liquid crystal cell) Attach components to complete the liquid crystal display device. According to the above-described method for manufacturing a liquid crystal display device, a liquid crystal display device having an extremely fine circuit pattern can be obtained with good throughput.
なお、 上述の露光装置では、 波長が 1 5 7 . 6 11 111の光を供給する? 2 レーザを用いているが、 これに限定されることなく、 たとえば波長 2In the above-described exposure apparatus, light having a wavelength of 157.611111 is supplied? Although two lasers are used, the wavelength is not limited to this.
4 8 n mの光を供給する K r Fエキシマレーザや波長 1 9 3 n mの光 を供給する A r Fエキシマレーザや波長 1 2 6 n mの光を供給する A r 2レ一ザなどを用いることもできる。 4 8 nm of K r F excimer laser or a wavelength 1 9 3 nm of the supplied A r F excimer laser or a wavelength 1 2 6 nm in the use of such A r 2, single THE supplies optical light supplies light Can also.
また、 上述の露光装置では、 走査露光型の露光装置の投影光学系に本 発明を適用しているが、 これに限定されることなく、 一括露光型の露光 装置の投影光学系に本発明を適用したり、 露光装置の投影光学系以外の 一般的な結像光学系に本発明を適用したりすることもできる。  In the above exposure apparatus, the present invention is applied to the projection optical system of the scanning exposure type exposure apparatus. However, the present invention is not limited to this, and the present invention is applied to the projection optical system of the batch exposure type exposure apparatus. The present invention can be applied to general imaging optical systems other than the projection optical system of the exposure apparatus.
以上説明したように、 本発明の反射屈折光学系では、 物体面と像面と の距離が小さく且つレンズ枚数の少ない簡素な構成を有するので、 レン ズ面における光量損失を良好に抑えた高性能で高精度な光学系を実現 することができ、 たとえば波長が 1 8 0 n m以下の真空紫外線波長域の 光を用いて 0 . 1 x m以下の高解像を達成することができる。 また、 た とえば有効な開口絞りを設置すべき位置を確保すること、 十分に長いヮ 一キングディスタンスを確保すること、 および凹面反射鏡の大型化を抑 えて光学系の小型化を図ることができる。  As described above, the catadioptric optical system of the present invention has a simple configuration in which the distance between the object plane and the image plane is small and the number of lenses is small, so that a high-performance optical system in which the loss of light quantity on the lens plane is successfully suppressed A high-precision optical system can be realized, for example, a high resolution of 0.1 xm or less can be achieved by using light in a vacuum ultraviolet wavelength region having a wavelength of 180 nm or less. In addition, for example, it is necessary to secure a position where an effective aperture stop should be installed, to secure a sufficiently long single king distance, and to reduce the size of the concave reflecting mirror to reduce the size of the optical system. it can.
さらに、 本発明の反射屈折光学系を露光装置の投影光学系に適用する ことにより、 たとえば波長が 1 8 0 n m以下の露光光を用いて、 0 . 1 ^a m以下の高解像で良好な投影露光を行うことができる。 また、 本発明 の反射屈折光学系を投影光学系として搭載した露光装置を用いて、 たと えば 0 . 1 /^ m以下の高解像で良好な投影露光を行うことにより、 高精 度なマイクロデバイスを製造することができる。  Further, by applying the catadioptric optical system of the present invention to a projection optical system of an exposure apparatus, for example, using exposure light having a wavelength of 180 nm or less, a high resolution of 0.1 ^ am or less can be obtained. Projection exposure can be performed. Further, by using an exposure apparatus equipped with the catadioptric optical system of the present invention as a projection optical system and performing good projection exposure at a high resolution of, for example, 0.1 / ^ m or less, a high-precision micro Devices can be manufactured.

Claims

請 求 の 範 囲  The scope of the claims
1 - 少なくとも 1つの凹面反射鏡と少なくとも 1つの平面反射鏡と を有し、 第 1面からの光に基づいて前記第 1面の第 1中間像を形成する ための第 1結像光学系と、 1-a first imaging optical system having at least one concave reflecting mirror and at least one flat reflecting mirror, and forming a first intermediate image of the first surface based on light from the first surface; ,
少なく とも 1つの凹面反射鏡と少なく とも 1つの平面反射鏡とを有 し、 前記第 1結像光学系を介した光に基づいて前記第 1面の第 2中間像 を形成するための第 2結像光学系と、  A second reflecting mirror having at least one concave reflecting mirror and at least one flat reflecting mirror for forming a second intermediate image of the first surface based on light passing through the first imaging optical system; Imaging optics,
前記第 2結像光学系を介した光に基づいて前記第 1面の最終像を第 2面上に形成するための屈折型の第 3結像光学系とを備えていること を特徴とする反射屈折光学系。  A refraction-type third imaging optical system for forming a final image of the first surface on the second surface based on light passing through the second imaging optical system. Catadioptric optics.
2 . 前記第 1結像光学系の平面反射鏡を除くすべての光学部材およ び前記第 2結像光学系の平面反射鏡を除くすべての光学部材は、 直線状 に延びた単一の第 1光軸に沿って配置され、 2. All the optical members except the plane reflecting mirror of the first imaging optical system and all the optical members except the plane reflecting mirror of the second imaging optical system are a single linearly extending single second reflecting optical system. 1 placed along the optical axis,
前記第 3結像光学系のすべての光学部材は、 前記第 1光軸と直交する ように直線状に延びた単一の第 2光軸に沿って配置され、  All the optical members of the third imaging optical system are arranged along a single second optical axis linearly extending so as to be orthogonal to the first optical axis,
前記第 1面からの光は、 前記第 1結像光学系中の 1つの平面反射鏡お よび 1つの凹面反射鏡を順次介して、 前記第 1中間像を形成し、  The light from the first surface sequentially forms the first intermediate image through one plane reflecting mirror and one concave reflecting mirror in the first imaging optical system,
前記第 1結像光学系を介した光は、 前記第 2結像光学系の 1つの平面 反射鏡および 1つの凹面反射鏡を順次介して、 前記第 2中間像を形成す ることを特徴とする請求項 1に記載の反射屈折光学系。  The light passing through the first imaging optical system forms the second intermediate image through one planar reflecting mirror and one concave reflecting mirror of the second imaging optical system in order. 2. The catadioptric optical system according to claim 1, wherein:
3 . 前記第 1結像光学系は、 前記凹面反射鏡の直前に配置された少 なく とも 1つの負レンズ成分を有することを特徴とする請求項 2に記 載の反射屈折光学系。 3. The catadioptric optical system according to claim 2, wherein the first imaging optical system has at least one negative lens component disposed immediately before the concave reflecting mirror.
4 . 前記第 2結像光学系は、 前記凹面反射鏡の直前に配置された少 なく とも 1つの負レンズ成分を有することを特徴とする請求項 2また は 3に記載の反射屈折光学系。 4. The catadioptric optical system according to claim 2, wherein the second imaging optical system has at least one negative lens component disposed immediately before the concave reflecting mirror.
5 . 前記第 1結像光学系と前記第 2結像光学系との間の光路中には フィールドレンズが配置されていることを特徴とする請求項 1乃至 3 のいずれか 1項に記載の反射屈折光学系。 5. The field lens according to any one of claims 1 to 3, wherein a field lens is disposed in an optical path between the first imaging optical system and the second imaging optical system. Catadioptric optics.
6 . 前記第 1結像光学系と前記第 2結像光学系との間の光路中には フィールドレンズが配置されていることを特徴とする請求項 4に記載 の反射屈折光学系。 6. The catadioptric optical system according to claim 4, wherein a field lens is disposed in an optical path between the first imaging optical system and the second imaging optical system.
7 . 前記第 1結像光学系と前記第 2結像光学系との間の光路中に配 置された前記フィ一ルドレンズのうちの少なくとも 1つのレンズは、 前 記第 1結像光学系の前記凹面反射鏡への入射光を通過させることなく 前記凹面反射鏡からの反射光だけを通過させるために部分的に切り欠 かれた形状を有することを特徴とする請求項 5に記載の反射屈折光学 系。 8 · 前記第 1結像光学系と前記第 2結像光学系との間の光路中に配 置された前記フィールドレンズのうちの少なくとも 1つのレンズは、 前 記第 1結像光学系の前記凹面反射鏡への入射光を通過させることなく 前記凹面反射鏡からの反射光だけを通過させるために部分的に切り欠 かれた形状を有することを特徴とする請求項 6に記載の反射屈折光学 系。 7. At least one of the field lenses disposed in the optical path between the first imaging optical system and the second imaging optical system is a lens of the first imaging optical system. The catadioptric refraction according to claim 5, wherein the catadioptric refraction according to claim 5, characterized in that it has a partially cut-out shape so as to pass only the light reflected from the concave reflector without passing the light incident on the concave reflector. Optical system. 8At least one of the field lenses disposed in an optical path between the first imaging optical system and the second imaging optical system is a lens of the first imaging optical system. The catadioptric optical element according to claim 6, wherein the catadioptric optical element has a partially cut-out shape so as to allow only the reflected light from the concave reflecting mirror to pass without passing the incident light to the concave reflecting mirror. system.
9 · 前記第 1結像光学系と前記第 2結像光学系との間の光路中に配 置された前記フィールドレンズのうちの少なくとも 1つのレンズは、 前 記第 1結像光学系の前記凹面反射鏡への入射光および前記凹面反射鏡 からの反射光をともに通過させるように形成されていることを特徴と する請求項 5に記載の反射屈折光学系。 9 · An optical path between the first imaging optical system and the second imaging optical system At least one of the placed field lenses is formed so as to pass both light incident on the concave reflecting mirror of the first imaging optical system and reflected light from the concave reflecting mirror. 6. The catadioptric optical system according to claim 5, wherein:
1 0 . 前記第 1結像光学系と前記第 2結像光学系との間の光路中に 配置された前記フィールドレンズのうちの少なくとも 1つのレンズは、 前記第 1結像光学系の前記凹面反射鏡への入射光および前記凹面反射 鏡からの反射光をともに通過させるように形成されていることを特徴 とする請求項 6に記載の反射屈折光学系。 10. At least one of the field lenses disposed in the optical path between the first imaging optical system and the second imaging optical system is the concave surface of the first imaging optical system. 7. The catadioptric optical system according to claim 6, wherein the catadioptric optical system is formed so as to pass both light incident on a reflecting mirror and light reflected from the concave reflecting mirror.
1 1 . 前記第 1結像光学系と前記第 2結像光学系との間の光路中に 配置された前記フィ一ルドレンズのうちの少なくとも 1つのレンズは、 前記第 1結像光学系の前記凹面反射鏡への入射光および前記凹面反射 鏡からの反射光をともに通過させるように形成されていることを特徴 とする請求項 7に記載の反射屈折光学系。 11. At least one of the field lenses disposed in an optical path between the first imaging optical system and the second imaging optical system includes: 8. The catadioptric optical system according to claim 7, wherein the catadioptric optical system is formed so as to pass both the light incident on the concave reflecting mirror and the light reflected from the concave reflecting mirror.
1 2 . 前記第 1結像光学系と前記第 2結像光学系との間の光路中に 配置された前記フィ一ルドレンズのうちの少なくとも 1つのレンズは、 前記第 1結像光学系の前記凹面反射鏡への入射光および前記凹面反射 鏡からの反射光をともに通過させるように形成されていることを特徴 とする請求項 8に記載の反射屈折光学系。 12. At least one of the field lenses disposed in the optical path between the first imaging optical system and the second imaging optical system is the first imaging optical system. 9. The catadioptric optical system according to claim 8, wherein the catadioptric optical system is formed so as to pass both light incident on the concave reflecting mirror and light reflected from the concave reflecting mirror.
1 3 . 前記第 2結像光学系と前記第 3結像光学系との間の光路中に はフィールドレンズが配置されていることを特徴とする請求項 1乃至 3のいずれか 1項に記載の反射屈折光学系。 13. A field lens is disposed in an optical path between the second imaging optical system and the third imaging optical system, wherein the field lens is disposed. Catadioptric system.
1 4 . 前記第 2結像光学系と前記第 3結像光学系との間の光路中に はフィールドレンズが配置されていることを特徴とする請求項 4に記 載の反射屈折光学系。 1 5 . 前記第 2結像光学系と前記第 3結像光学系との間の光路中に はフィールドレンズが配置されていることを特徴とする請求項 5に記 載の反射屈折光学系。 14. The catadioptric optical system according to claim 4, wherein a field lens is disposed in an optical path between the second imaging optical system and the third imaging optical system. 15. The catadioptric optical system according to claim 5, wherein a field lens is disposed in an optical path between the second imaging optical system and the third imaging optical system.
1 6 . 前記第 2結像光学系と前記第 3結像光学系との間の光路中に はフィールドレンズが配置されていることを特徴とする請求項 6に記 載の反射屈折光学系。 16. The catadioptric optical system according to claim 6, wherein a field lens is disposed in an optical path between the second imaging optical system and the third imaging optical system.
1 7 . 前記第 2結像光学系と前記第 3結像光学系との間の光路中に はフィールドレンズが配置されていることを特徴とする請求項 7に記 載の反射屈折光学系。 17. The catadioptric optical system according to claim 7, wherein a field lens is disposed in an optical path between the second imaging optical system and the third imaging optical system.
1 8 . 前記第 2結像光学系と前記第 3結像光学系との間の光路中に はフィールドレンズが配置されていることを特徴とする請求項 8に記 載の反射屈折光学系。 18. The catadioptric optical system according to claim 8, wherein a field lens is disposed in an optical path between the second imaging optical system and the third imaging optical system.
1 9 . 前記第 2結像光学系と前記第 3結像光学系との間の光路中に はフィールドレンズが配置されていることを特徴とする請求項 9に記 載の反射屈折光学系。 2 0 . 前記第 2結像光学系と前記第 3結像光学系との間の光路中に はフィールドレンズが配置されていることを特徴とする請求項 1 0に 記載の反射屈折光学系。 19. The catadioptric optical system according to claim 9, wherein a field lens is disposed in an optical path between the second imaging optical system and the third imaging optical system. 20. The catadioptric optical system according to claim 10, wherein a field lens is disposed in an optical path between the second imaging optical system and the third imaging optical system.
2 1 . 前記第 2結像光学系と前記第 3結像光学系との間の光路中に はフィールドレンズが配置されていることを特徴とする請求項 1 1 に 記載の反射屈折光学系。 21. The catadioptric optical system according to claim 11, wherein a field lens is arranged in an optical path between the second imaging optical system and the third imaging optical system.
2 2 . 前記第 2結像光学系と前記第 3結像光学系との間の光路中に はフィールドレンズが配置されていることを特徴とする請求項 1 2に 記載の反射屈折光学系。 2 3 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 1乃至 3のいずれか 1項に記載の反 射屈折光学系とを備えていることを特徴とする露光装置。 2 4 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 4に記載の反射屈折光学系とを備え ていることを特徴とする露光装置。 2 5 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 5に記載の反射屈折光学系とを備え ていることを特徴とする露光装置。 2 6 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 6に記載の反射屈折光学系とを備え ていることを特徴とする露光装置。 22. The catadioptric optical system according to claim 12, wherein a field lens is disposed in an optical path between the second imaging optical system and the third imaging optical system. 23. An illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. An exposure apparatus comprising: the reflection refraction optical system according to any one of 1 to 3. 24. An illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. An exposure apparatus comprising: the catadioptric optical system according to 4. 25. An illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. An exposure apparatus comprising: the catadioptric optical system according to 5. 26. An illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. And the catadioptric optical system according to 6. An exposure apparatus, comprising:
2 7 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 7に記載の反射屈折光学系とを備え ていることを特徴とする露光装置。 27. An illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. An exposure apparatus comprising: the catadioptric optical system according to 7.
2 8 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 8に記載の反射屈折光学系とを備え ていることを特徴とする露光装置。 28. An illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. 9. An exposure apparatus, comprising: the catadioptric optical system according to 8.
2 9 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 9に記載の反射屈折光学系とを備え ていることを特徴とする露光装置。 29. An illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. An exposure apparatus comprising the catadioptric optical system according to claim 9.
3 0 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 1 0に記載の反射屈折光学系とを備 えていることを特徴とする露光装置。 30. An illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. An exposure apparatus, comprising: the catadioptric optical system according to 10.
3 1 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 1 1 に記載の反射屈折光学系とを備 えていることを特徴とする露光装置。 31. An illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. An exposure apparatus comprising the catadioptric optical system according to item 11.
3 2 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 1 2に記載の反射屈折光学系とを備 えていることを特徴とする露光装置。 32. An illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. An exposure apparatus comprising the catadioptric optical system according to item 12.
3 3 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 1 3に記載の反射屈折光学系とを備 えていることを特徴とする露光装置。 33. An illumination system for illuminating the mask set on the first surface, and for forming an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. An exposure apparatus comprising the catadioptric optical system according to item 13.
3 4 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 1 4に記載の反射屈折光学系とを備 えていることを特徴とする露光装置。 34. An illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. An exposure apparatus comprising the catadioptric optical system according to item 14.
3 5 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 1 5に記載の反射屈折光学系とを備 えていることを特徴とする露光装置。 35. An illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. An exposure apparatus comprising the catadioptric optical system according to item 15.
3 6 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 1 6に記載の反射屈折光学系とを備 えていることを特徴とする露光装置。 36. An illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. An exposure apparatus comprising the catadioptric optical system according to item 16.
3 7 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 1 7に記載の反射屈折光学系とを備 えていることを特徴とする露光装置。 37. An illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask is exposed to light on the second surface. An exposure apparatus comprising: the catadioptric optical system according to claim 17 for forming on a functional substrate.
3 8 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 1 8に記載の反射屈折光学系とを備 えていることを特徵とする露光装置。 38. An illumination system for illuminating the mask set on the first surface, and for forming an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. An exposure apparatus comprising the catadioptric optical system according to item 18.
3 9 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 1 9に記載の反射屈折光学系とを備 えていることを特徴とする露光装置。 39. An illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. An exposure apparatus comprising the catadioptric optical system according to item 19.
4 0 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 2 0に記載の反射屈折光学系とを備 えていることを特徴とする露光装置。 40. An illumination system for illuminating a mask set on the first surface, and an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. 20. An exposure apparatus comprising the catadioptric optical system according to 20.
4 1 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 2 1 に記載の反射屈折光学系とを備 えていることを特徴とする露光装置。 41. An illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. An exposure apparatus comprising the catadioptric optical system according to item 21.
4 2 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光 性基板上に形成するための請求項 2 2に記載の反射屈折光学系とを備 えていることを特徴とする露光装置。 42. An illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask on a photosensitive substrate set on the second surface. 22. An exposure apparatus comprising the catadioptric optical system described in 22 above.
PCT/JP2002/005259 2001-06-14 2002-05-30 Catadioptric system and exposure system provided with the system WO2002103431A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001179579A JP4780364B2 (en) 2001-06-14 2001-06-14 Catadioptric optical system and exposure apparatus provided with the optical system
JP2001-179579 2001-06-14

Publications (1)

Publication Number Publication Date
WO2002103431A1 true WO2002103431A1 (en) 2002-12-27

Family

ID=19020127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005259 WO2002103431A1 (en) 2001-06-14 2002-05-30 Catadioptric system and exposure system provided with the system

Country Status (2)

Country Link
JP (1) JP4780364B2 (en)
WO (1) WO2002103431A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1480065A3 (en) * 2003-05-23 2006-05-10 Canon Kabushiki Kaisha Projection optical system, exposure apparatus, and device manufacturing method
US7190527B2 (en) 2002-03-01 2007-03-13 Carl Zeiss Smt Ag Refractive projection objective
US7697198B2 (en) 2004-10-15 2010-04-13 Carl Zeiss Smt Ag Catadioptric projection objective
US8908269B2 (en) 2004-01-14 2014-12-09 Carl Zeiss Smt Gmbh Immersion catadioptric projection objective having two intermediate images
US8913316B2 (en) 2004-05-17 2014-12-16 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9239521B2 (en) 2007-01-17 2016-01-19 Carl Zeiss Smt Gmbh Projection optics for microlithography
US9772478B2 (en) 2004-01-14 2017-09-26 Carl Zeiss Smt Gmbh Catadioptric projection objective with parallel, offset optical axes

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995930B2 (en) 1999-12-29 2006-02-07 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
TW538256B (en) 2000-01-14 2003-06-21 Zeiss Stiftung Microlithographic reduction projection catadioptric objective
DE10127227A1 (en) 2001-05-22 2002-12-05 Zeiss Carl Catadioptric reduction lens
WO2005040890A2 (en) * 2003-10-17 2005-05-06 Carl Zeiss Smt Ag Catadioptric projection objective with real intermediate images
US7466489B2 (en) 2003-12-15 2008-12-16 Susanne Beder Projection objective having a high aperture and a planar end surface
WO2005059645A2 (en) 2003-12-19 2005-06-30 Carl Zeiss Smt Ag Microlithography projection objective with crystal elements
JP5420821B2 (en) * 2004-01-14 2014-02-19 カール・ツァイス・エスエムティー・ゲーエムベーハー Catadioptric projection objective
US7738188B2 (en) 2006-03-28 2010-06-15 Carl Zeiss Smt Ag Projection objective and projection exposure apparatus including the same
US7920338B2 (en) 2006-03-28 2011-04-05 Carl Zeiss Smt Gmbh Reduction projection objective and projection exposure apparatus including the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242379A (en) * 1992-12-24 1994-09-02 Nikon Corp Optical system for reflection/refraction/reduction/ projection
JPH06265789A (en) * 1993-03-12 1994-09-22 Nikon Corp Reflection/refraction/projection optical system
JPH06349699A (en) * 1993-06-08 1994-12-22 Nikon Corp Scanning cata-dioptric projection aligner
JPH0713070A (en) * 1993-06-29 1995-01-17 Nikon Corp Negative lens, optical system provided with the same, and manufacture of the same
JPH0772393A (en) * 1993-09-06 1995-03-17 Nikon Corp Reflection, reduction and projection optical system
JPH0821955A (en) * 1994-07-07 1996-01-23 Nikon Corp Catadioptric reduction projection optical system
JPH0862502A (en) * 1994-08-23 1996-03-08 Nikon Corp Catadioptric reduction projecting optical system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242379A (en) * 1992-12-24 1994-09-02 Nikon Corp Optical system for reflection/refraction/reduction/ projection
JPH06265789A (en) * 1993-03-12 1994-09-22 Nikon Corp Reflection/refraction/projection optical system
JPH06349699A (en) * 1993-06-08 1994-12-22 Nikon Corp Scanning cata-dioptric projection aligner
JPH0713070A (en) * 1993-06-29 1995-01-17 Nikon Corp Negative lens, optical system provided with the same, and manufacture of the same
JPH0772393A (en) * 1993-09-06 1995-03-17 Nikon Corp Reflection, reduction and projection optical system
JPH0821955A (en) * 1994-07-07 1996-01-23 Nikon Corp Catadioptric reduction projection optical system
JPH0862502A (en) * 1994-08-23 1996-03-08 Nikon Corp Catadioptric reduction projecting optical system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7190527B2 (en) 2002-03-01 2007-03-13 Carl Zeiss Smt Ag Refractive projection objective
US7382540B2 (en) 2002-03-01 2008-06-03 Carl Zeiss Smt Ag Refractive projection objective
EP1480065A3 (en) * 2003-05-23 2006-05-10 Canon Kabushiki Kaisha Projection optical system, exposure apparatus, and device manufacturing method
US8908269B2 (en) 2004-01-14 2014-12-09 Carl Zeiss Smt Gmbh Immersion catadioptric projection objective having two intermediate images
US9772478B2 (en) 2004-01-14 2017-09-26 Carl Zeiss Smt Gmbh Catadioptric projection objective with parallel, offset optical axes
US8913316B2 (en) 2004-05-17 2014-12-16 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9019596B2 (en) 2004-05-17 2015-04-28 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9134618B2 (en) 2004-05-17 2015-09-15 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9726979B2 (en) 2004-05-17 2017-08-08 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US7697198B2 (en) 2004-10-15 2010-04-13 Carl Zeiss Smt Ag Catadioptric projection objective
US9239521B2 (en) 2007-01-17 2016-01-19 Carl Zeiss Smt Gmbh Projection optics for microlithography

Also Published As

Publication number Publication date
JP4780364B2 (en) 2011-09-28
JP2002372668A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
JP4245286B2 (en) Catadioptric optical system and exposure apparatus provided with the optical system
JP4292497B2 (en) Projection optical system, exposure apparatus, and exposure method
JP4826695B2 (en) Catadioptric optical system and projection exposure apparatus provided with the optical system
WO2004107011A1 (en) Projection optical system, and exposure apparatus and exposure method
JP4333078B2 (en) Projection optical system, exposure apparatus including the projection optical system, exposure method using the projection optical system, and device manufacturing method
WO2002103431A1 (en) Catadioptric system and exposure system provided with the system
WO2000039623A1 (en) Reflection refraction image-forming optical system and projection exposure apparatus comprising the optical system
WO2001023934A1 (en) Projection exposure method and apparatus and projection optical system
WO1999052004A1 (en) Projection exposure apparatus and method, and reflection refraction optical system
JP2004205698A (en) Projection optical system, exposure device and exposing method
JP2004333761A (en) Catadioptric projection optical system, projection aligner, and exposure method
US5696631A (en) Unit magnification projection lens system
WO2004097911A1 (en) Projection optical system, exposure apparatus, and exposure method
WO2003003429A1 (en) Projection optical system, exposure system and method
JP2004317534A (en) Catadioptric image-formation optical system, exposure device, and exposure method
JP2006086141A (en) Projection optical system, aligner, and method of exposure
JP4706171B2 (en) Catadioptric projection optical system, exposure apparatus and exposure method
JP2002244035A (en) Projection optical system and exposure device provided with it
JP2002082285A (en) Catadioptric system and exposure device using the system
JP4239212B2 (en) Projection optical system, exposure apparatus, and exposure method
JP2006078631A (en) Projection optical system and exposure apparatus having same
JP2000195772A (en) Projection aligner
JP2004354555A (en) Reflection refraction type projection optical system, exposing device and exposing method
JP2005064310A (en) Optical system, aberration adjusting method therefor, aligner and exposure method
JP5786919B2 (en) Projection optical system, exposure apparatus and exposure method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase