WO2003001271A1 - Optical system and exposure system provided with the optical system - Google Patents

Optical system and exposure system provided with the optical system Download PDF

Info

Publication number
WO2003001271A1
WO2003001271A1 PCT/JP2002/006131 JP0206131W WO03001271A1 WO 2003001271 A1 WO2003001271 A1 WO 2003001271A1 JP 0206131 W JP0206131 W JP 0206131W WO 03001271 A1 WO03001271 A1 WO 03001271A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
element group
path length
optical path
axis
Prior art date
Application number
PCT/JP2002/006131
Other languages
French (fr)
Japanese (ja)
Inventor
Naomasa Shiraishi
Yasuhiro Omura
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2003507610A priority Critical patent/JPWO2003001271A1/en
Publication of WO2003001271A1 publication Critical patent/WO2003001271A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • G03F7/70966Birefringence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control

Definitions

  • the present invention relates to an optical system and an exposure apparatus having the optical system, and more particularly to a projection optical system suitable for an exposure apparatus used when a microdepth such as a semiconductor element or a liquid crystal display element is manufactured by a photolithography process. It is. Background art
  • the pattern of the photomask (also called a reticle) drawn by enlarging the pattern to be formed by about 4 to 5 times is projected.
  • a method of reducing and projecting on a photosensitive substrate (substrate to be exposed) such as a wafer using an exposure apparatus is used.
  • the exposure wavelength keeps shifting toward shorter wavelengths in order to cope with miniaturization of semiconductor integrated circuits.
  • the exposure wavelength of the KrF excimer laser is 248 nm, but the shorter wavelength of the ArF excimer laser is 193 nm.
  • the A r 2 laser having a wavelength of 1 5 7 nm of F 2 single The one or wavelength 1 2 6 nm, the projection exposure equipment that uses the light source for supplying light in a wavelength band so-called vacuum ultraviolet region Suggestions have been made.
  • high resolution can be achieved by increasing the numerical aperture (NA) of the projection optical system, not only development of a shorter exposure wavelength but also development of a projection optical system with a larger numerical aperture Has also been made.
  • Optical materials with good transmittance and uniformity for exposure light in the ultraviolet region having such a short wavelength are limited.
  • Synthetic silica glass can be used as a lens material in a projection optical system that uses an ArF excimer laser as a light source, but chromatic aberration cannot be sufficiently corrected with one type of lens material.
  • calcium fluoride crystals fluorite
  • the usable lens materials are effectively limited to calcium fluoride crystals (fluorite).
  • the present invention has been made in view of the above-described problems. For example, even when a birefringent crystal material such as fluorite is used, good optical performance is obtained without being substantially affected by birefringence. It is an object of the present invention to provide an optical system that can be secured and an exposure apparatus including the optical system.
  • the present invention provides a microphone port that can manufacture a high-performance micro device according to a high-resolution exposure technique using an exposure apparatus equipped with an optical system having good optical performance using a crystalline material. It is intended to provide a device manufacturing method.
  • an optical system including a plurality of optical elements formed of crystals belonging to a cubic system
  • a first element group including a plurality of optical elements set so that an optical axis of the optical system and a crystal axis [111] or a crystal axis optically equivalent to the crystal axis;
  • a second element group composed of a plurality of optical elements set so that the optical axis and the crystal axis [100] or the crystal axis and the optical axis equivalent to the crystal axis substantially coincide with each other;
  • the first element group includes a first A element group and a first B element group having a positional relationship relatively rotated by a first angle about the optical axis,
  • the second element group includes a second A element group and a second B element group having a positional relationship relatively rotated by a second angle about the optical axis,
  • optical path length L 1 A in the element is substantially equal to the optical path length L 1 B in the optical element in the first B element group
  • optical path length L 2 A in the optical element of the second A element group and the optical path length L 2 B of the optical element in the second B element group of the light beam forming the angle in the predetermined range with respect to the optical axis are different. Almost equal,
  • the optical path length L1 in the optical element in the first element group is set to about 1.5 times the optical path length L2 in the optical element in the second element group. I have.
  • the difference between 1.5 times the optical path length L2 in the optical element in the second element group and the optical path length L1 in the optical element in the first element group is the wavelength of the light beam as ⁇ ( when a nm), it is preferably set within the soil 1. 0 X 10_ 6 ⁇ ⁇ 3 (cm).
  • the difference between the optical path length L 1 A in the optical element in the first A element group and the optical path length L 1 B in the optical element in the first B element group is when the wavelength of the light beam and lambda (nm), is set to ⁇ 0. 5 ⁇ 1 0_ 6 ⁇ 3 (cm) within.
  • the difference between the optical path length L 2 A in the optical element in the second A element group and the optical path length L 2 B in the optical element in the second B element group is such that the wavelength of the light flux is ⁇ (nm). when a, ⁇ 0. it is preferably set within 5X 10- 6 ⁇ 3 (cm) .
  • the angle in the predetermined range is larger than an angle corresponding to 0.6 times the image side numerical aperture of the optical system and smaller than an angle corresponding to 0.9 times the image side numerical aperture. preferable.
  • the first A element group and the first B element group are arranged close to each other along the optical axis
  • the second A element group and the first The 2B element group is arranged close to each other along the optical axis.
  • the first element group and the second element group are arranged close to each other along the optical axis. Is preferred.
  • at least one of the first A element group, the first B element group, the second A element group, and the second B element group is close to each other along the optical axis. It is preferable that it is constituted by a plurality of optical elements arranged. Further, it is preferable that a plurality of sets of the first element group and the second element group are provided.
  • a third element group composed of a plurality of optical elements set so that the optical axis of the optical system and the crystal axis [110] or the crystal axis that is optically equivalent to the crystal axis substantially coincide with each other;
  • the third element group includes a third A element group and a third B element group having a positional relationship relatively rotated by a third angle about the optical axis,
  • the fourth element group includes a fourth A element group and a fourth B element group having a positional relationship relatively rotated by a fourth angle about the optical axis,
  • the third element group and the fourth element group have a positional relationship of being rotated by a fifth angle about the optical axis, and
  • optical path length L 3 A in the optical element of the third A element group and the optical path length L 3 B of the optical element in the third B element group of the light beam forming an angle within a predetermined range with respect to the optical axis are substantially equal to each other. Equal,
  • An optical path length L 4 A in the optical element of the fourth A element group and a light path length L 4 B of the optical element in the fourth B element group of the light beam forming the angle within the predetermined range with respect to the optical axis are different. Almost equal,
  • the optical path length 3 in the optical element in the third element group is set to be substantially equal to the optical path length L4 in the optical element in the fourth element group.
  • the difference between the optical path length L3 in the optical element in the third element group and the optical path length L4 in the optical element in the fourth element group is when the wavelength of the light beam is ⁇ ( ⁇ m). it is preferably set within ⁇ 1. 0 X 10- 6 ⁇ 3 (cm).
  • the difference between the optical path length L 3 A in the optical element in the third A element group and the optical path length L 3 B in the optical element in the third B element group is when the wavelength of the light beam with ⁇ (nm), ⁇ 0. is set within 5X 10- 6 ⁇ 3 (cm) .
  • the difference between the optical path length L 4 A in the optical element in the fourth A element group and the optical path length L 4 B in the optical element in the fourth B element group is such that the wavelength of the light flux is ⁇ (nm). when a, ⁇ 0. it is preferable to set within 5 X 10- 6 ⁇ 3 (cm ).
  • the optical device further includes a fifth element group including a plurality of optical elements set so that the optical axis and the crystal axis [100] substantially coincide with each other.
  • the five element group includes a fifth A element group and a fifth B element group having a positional relationship relatively rotated by a sixth angle about the optical axis, and the predetermined element is defined with respect to the optical axis.
  • the optical path length L5A in the optical element of the fifth A element group of the light flux forming the angle of the range is substantially equal to the optical path length L5B in the optical element of the fifth B element group, and
  • the total optical path length L34 in the optical element in the third element group and the fourth element group is set to be about four times the optical path length L5 in the optical element in the fifth element group. Is preferred. In this case, the difference between about four times the optical path length L5 in the optical element in the fifth element group and the total optical path length L34 in the optical element in the third element group and the fourth element group is different.
  • the wavelength of the light beam and lambda (nm) it is preferably set within the soil 2. 7 X 10- 6 ⁇ 3 ( cm).
  • the difference between the optical path length L5A in the optical element in the fifth A element group and the optical path length L5B in the optical element in the fifth B element group is such that the wavelength of the light flux is ⁇ (nm). when it is preferably set within ⁇ 0. 5 X 1 0 one 6 ⁇ ⁇ 3 (cm).
  • the angle in the predetermined range is larger than an angle corresponding to 0.6 times the image-side numerical aperture of the optical system and 0.9 times the image-side numerical aperture. Smaller than the angle corresponding to.
  • the third A element group and the third B element group are arranged close to each other along the optical axis
  • the fourth A element group and the fourth B element group are arranged along the optical axis. It is preferable that they are arranged close to each other. Further, it is preferable that the third element group and the fourth element group are arranged close to each other along the optical axis.
  • the optical element be composed of a plurality of optical elements. It is preferable that a plurality of sets of the third element group and the fourth element group are provided. Further, it is preferable that the fifth A element group and the fifth B element group are arranged close to each other along the optical axis.
  • a sixth element group composed of a plurality of optical elements each set so that the optical axis of the optical system and the crystal axis [110] or the crystal axis that is optically equivalent to the crystal axis are substantially the same.
  • the seventh element group has a positional relationship rotated by a seventh angle in a predetermined direction about the optical axis with respect to the sixth element group,
  • the eighth element group has a positional relationship rotated by the seventh angle in the predetermined direction about the optical axis with respect to the seventh element group,
  • the ninth element group has a positional relationship rotated by the seventh angle in the predetermined direction about the optical axis with respect to the eighth element group,
  • the optical path length L9 in the optical element in the ninth element group of the luminous flux forming the angle in the predetermined range is substantially equal to each other.
  • an optical path length L 6 in the optical element in the sixth element group, an optical path length L 7 in the optical element in the seventh element group, and an optical element in the eighth element group is ⁇ ( ⁇ m), , ⁇ 0.5 ⁇ 10_ 6 ⁇ 3 (cm).
  • the optical axis is constituted by a plurality of optical elements set so that the optical axis and the crystal axis [100] or the crystal axis which is optically equivalent to the crystal axis substantially coincide with each other.
  • the tenth element group further includes a 10A element group and a 10B element group having a positional relationship relatively rotated by an eighth angle about the optical axis.
  • the optical path length L 1 OA in the optical element of the first OA element group and the optical path length L 10 B of the optical element in the 10B element group of the light beam forming the angle in the predetermined range with respect to the optical axis.
  • the difference between the optical path length L 1 OA in the optical element in the 10th A element group and the optical path length L 10 B in the optical element in the 10B element group makes the wavelength of the light flux ⁇ (nm ) and the time, ⁇ 0. it is preferable to set within 5 X 10- 6 ⁇ 3 (cm ).
  • the total optical path length L69 in the optical elements in the sixth to ninth element groups is set to be about four times the optical path length L10 in the optical elements in the tenth element group. Is preferred.
  • the optical path length L10 in the optical element in the tenth element group is about four times as large as the sixth element group. Difference between the total Wako path length L 29 in the optical element in optimum the ninth element group, when the wavelength of the light beam with ⁇ (nm), ⁇ 2. 7 X 10- 6 ⁇ 3 (cm) set within It is preferable that it is done. Furthermore, it is preferable that at least one of the sixth to ninth element groups and the tenth element group has a plurality of sets.
  • a first element group including a plurality of optical elements set so that an optical axis of the optical system and a crystal axis [111] substantially coincide with each other. Further comprising: a first 1A element group and a 1 1B element group having a positional relationship rotated relative to each other by a ninth angle about the optical axis.
  • the optical path length L11A in the optical element of the first 1A element group and the optical path length L11 in the optical element of the 11B element group of the light beam forming the angle within the predetermined range with respect to the optical axis. B is almost equal.
  • the difference between the optical path length L11A in the optical element in the first 1A element group and the optical path length L11B in the optical element in the first 1B element group is the wavelength of the light beam.
  • e and (nm) it is preferably set to ⁇ 0. 5 X 10- 6 ⁇ 3 (cm) within. Further, it is preferable to have a plurality of sets of the first element group.
  • the total optical path length L 69 in the optical element in the sixth element group to the ninth element group is three times the optical path length in the optical element in the eleventh element group.
  • the total optical path length L 69 (cm) in the optical element in the sixth element group to the ninth element group the optical path length L 10 (cm) in the optical element in the tenth element group
  • the wavelength of the luminous flux is ⁇ (nm) between the optical path length L 11 (cm) in the optical element in the 1 element group
  • I 3 XL 69—12XL 10 + 8 XL 1 1 ⁇ it is preferred to 8. 0 X 10- 6 ⁇ ⁇ 3 conditions are satisfied.
  • the angle in the predetermined range is larger than an angle corresponding to 0.6 times the image-side numerical aperture of the optical system and smaller than an angle corresponding to 0.9 times the image-side numerical aperture.
  • the crystal is formed of calcium fluoride. It is a crystal.
  • the crystal is a barium fluoride crystal.
  • the optimally aberration correction with respect to A r F excimer one The one optimally or are aberration correction with respect to the oscillation wavelength, or F 2 lasing wavelengths.
  • an illumination system for illuminating a mask, and an optical system according to the first to third aspects for forming an image of a pattern formed on the mask on a photosensitive substrate.
  • An exposure apparatus is provided.
  • an exposure step of exposing the pattern of the mask to the photosensitive substrate using the exposure apparatus of the fourth invention, and a development step of developing the photosensitive substrate exposed in the exposure step The present invention provides a method for manufacturing a micro device characterized by including: BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a view schematically showing a configuration of an exposure apparatus having a projection optical system according to each embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a configuration of a projection optical system according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating the crystal axis orientation of fluorite.
  • FIG. 4A and FIG. 4B are diagrams illustrating an optical path in a fluorite lens in the projection optical system according to the first embodiment.
  • 5A and 5B are diagrams illustrating birefringence when the optical axis of the fluorite lens is aligned with the crystal axis [111].
  • 6A and 6B are diagrams illustrating birefringence when the optical axis of the fluorite lens is aligned with the crystal axis [100].
  • FIG. 7A and FIG. 7B are diagrams illustrating a configuration and an optical path of a first lens group and a second lens group in a projection optical system according to a modified example of the first embodiment.
  • FIG. 8 is a diagram schematically showing a configuration of a projection optical system according to a second embodiment of the present invention.
  • FIGS. 9A and 9B are diagrams illustrating an optical path in a fluorite lens in the projection optical system according to the second embodiment.
  • FIGS. 10A to 10D are diagrams illustrating birefringence when the optical axis of the fluorite lens is aligned with the crystal axis [110].
  • FIG. 11 is a diagram schematically showing a configuration of a projection optical system according to a fourth embodiment of the present invention.
  • FIG. 12A and FIG. 12B are diagrams illustrating an optical path in a fluorite lens in a projection optical system according to the fourth embodiment.
  • FIG. 13 is a flowchart of a method for obtaining a semiconductor device as a micro device.
  • FIG. 14 is a flow chart of a method for obtaining a liquid crystal display element as a micro device.
  • FIG. 1 is a view schematically showing a configuration of an exposure apparatus having a projection optical system according to each embodiment of the present invention.
  • the present invention is applied to a projection optical system mounted on an exposure apparatus.
  • an exposure apparatus includes a light source 1 such as an ArF excimer laser or two lasers.
  • the light beam supplied from the light source 1 is guided to the illumination optical system 3 via the light transmission system 2.
  • the illumination optical system 3 includes the bent mirrors 3a and 3b shown in the figure and an optical integrator (illustration equalizing element) not shown in the drawing, and illuminates the reticle (mask) 101 with almost uniform illuminance. .
  • Reticle 101 is held by reticle holder 4 by, for example, vacuum suction, and is configured to be movable by the action of reticle stage 5.
  • the light beam transmitted through the reticle 101 is condensed through the projection optical system 300 to form a projected image of the pattern on the reticle 101 on a photosensitive substrate such as a semiconductor wafer 102.
  • the wafer 102 is also held by the wafer holder 7 by, for example, vacuum suction, and It is configured to be movable by the action of page 8. In this way, by performing the batch exposure while moving the wafer 102 in steps, the pattern projection image of the reticle 101 can be sequentially transferred to each exposure area of the wafer 102.
  • the reticle 101 is placed on each exposure area of the wafer 102. Can be sequentially transferred.
  • An alignment microscope 10 for accurately detecting the position of the position detection mark on 102 is mounted.
  • the light path is purged with an inert gas such as, for example, nitrogen.
  • an F 2 laser or an Ar F excimer laser (or an Ar 2 laser with a wavelength of 126 ⁇ m)
  • the reticle 101, the reticle holder 4 and the reticle stage 5 are isolated from the outside atmosphere by the casing 6, and the internal space of the casing 6 is also inert gas.
  • the wafer 102, the wafer holder 7, and the wafer stage 8 are isolated from the outside atmosphere by a casing 9, and the internal space of the casing 9 is also purged with an inert gas.
  • FIG. 2 is a diagram schematically showing a configuration of a projection optical system according to the first embodiment of the present invention.
  • the present invention is applied to a refractive projection optical system in which aberration correction is optimized for an ArF laser having a wavelength ⁇ (nm) of 193 nm.
  • a light beam emitted from one point on the reticle 101 is moved along the optical axis AX100.
  • a lens 103-110 arranged in one direction, to a point on a semiconductor wafer 102 as a photosensitive substrate.
  • a projected image of the pattern drawn on the reticle 101 is formed on the wafer 102.
  • FIG. 3 is a diagram illustrating the crystal axis orientation of fluorite.
  • the crystal axis of fluorite is defined based on a cubic XYZ coordinate system. That is, a crystal axis [100] is defined along the + X axis, a crystal axis [010] is defined along the + Y axis, and a crystal axis [00 1] is defined along the + Z axis.
  • the crystal axis [101] is at 45 ° to the crystal axis [100] and the crystal axis [001], and is the direction at 45 ° to the crystal axis [100] and the crystal axis [010] in the XY plane.
  • the crystal axis [110] is defined in the YZ plane
  • the crystal axis [011] is defined in a direction at 45 ° to the crystal axis [010] and the crystal axis [001] in the YZ plane.
  • the crystal axis [1 1 1] is defined in a direction that forms an equal acute angle to the + X axis, the + Y axis, and the + Z axis.
  • FIG. 3 shows only the crystal axes in the space defined by the + X axis, the + Y axis, and the + Z axis, the crystal axes are similarly defined in other spaces.
  • the birefringence does not occur for the imaging light traveling parallel to the optical axis AX100. become. Conversely, the amount of birefringence is greatest for imaging light traveling along the crystal axis [01 1].
  • a plurality of crystal axes optically equivalent to the crystal axis [01 1] are represented by [01 1], [0- 1 1], [110], etc. are written (listed) by changing the code and array position.
  • the notation of the crystallographic axis [01 1] can be expressed as [01 1], [0—11], [1 1 0], etc.
  • a plurality of optically equivalent crystal axes are collectively expressed.
  • FIG. 4A and FIG. 4B are diagrams illustrating an optical path in a fluorite lens in the projection optical system according to the first embodiment.
  • a light beam incident on the wafer 102 at a maximum incident angle of 0100 (a light beam corresponding to the image-side NA).
  • the optical paths (1056, 106 e, 109 e, 110 e) of the fluorite lenses 105, 106, 109, 110 for 100 e are not parallel to the optical axis AX100.
  • the fluorite lens 105 for a light beam 100m whose incident angle on the wafer 102 is about 60% to 90% of the maximum incident angle 0100 (that is, a light flux corresponding to about 60% to 90% of the image side NA), the fluorite lens 105, The optical paths of 106, 109 and 110 (105m, 106m, 109m, 110m) are not parallel to the optical axis AX100. As a result, these luminous fluxes that are not parallel to the crystal axis [1 11] will cause wavefront aberrations (hereinafter referred to as “birefringence effects”) caused by the birefringence of the fluorite crystal. .
  • birefringence effects wavefront aberrations
  • FIG. 5A and 5B are diagrams illustrating birefringence when the optical axis of the fluorite lens is aligned with the crystal axis [111].
  • the optical axis of fluorite lens 109 (and thus optical axis AX 100) is set to coincide with the crystal axis [111].
  • the crystal axis [11 1] is directed upward (+ z direction) perpendicular to the plane of FIG. 5A, and each arrow indicates the direction of the other crystal axis.
  • the crystal axes [1-110] and [1-10] are arranged in opposite directions in a plane perpendicular to the optical axis AX100.
  • these crystal axes [01 1], [1 10], and [10 1] are the crystal axes at which the amount of birefringence becomes maximum for light in the traveling direction.
  • the refractive index of light having a plane of polarization along the radial direction of the circle around the optical axis AX100 (hereinafter referred to as “R-polarized light”) and the refractive index of the circle around the optical axis AX100
  • the birefringence value is defined as the difference from the refractive index of light having a plane of polarization along the circumferential direction (hereinafter referred to as “6> polarized light”).
  • the optical axis of the fluorite lens 110 (and thus the optical axis AX 100) is also set to coincide with the crystal axis [1 11].
  • the fluorite lens 109 in FIG. 5A and the fluorite lens 110 in FIG. 5B are both set so that the optical axis AX 100 and the crystal axis [11 1] coincide. It has a positional relationship that is relatively rotated by 60 ° about the optical axis AX100.
  • the rotational anisotropy of the birefringence value still has a period of 120 °, but the position of the maximum value and the minimum value is the optical axis AX100. Will rotate by 60 ° around the center.
  • the crystal lens has the same amount of birefringence (difference in refractive index between R-polarized light and zero-polarized light) at the azimuth centered on the optical axis because the rotational anisotropy of the 120 ° cycle of each crystal lens is canceled out. It has been clarified by the present inventors that a lens group is formed.
  • the crystal axis [111] is set as the optical axis and the other crystal axes (such as the crystal axis [-110] perpendicular to the optical axis AX111) are relatively 60 °. ° It has been found that the two rotating fluorite lenses of approximately equal thickness have a higher refractive index for R-polarized light (nR l 11) than a refractive index for 0-polarized light ( ⁇ 01 11 1). .
  • a pair of lenses (105, 106) whose optical axis is the crystal axis [100] is used.
  • 6A and 6B are diagrams illustrating birefringence when the optical axis of the fluorite lens is aligned with the crystal axis [100].
  • the optical axis of the fluorite lens 105 (and thus the optical axis AX 100) is set to coincide with the crystal axis [100].
  • the crystal axis [100] is oriented vertically upward (+ z direction) with respect to the plane of FIG. 6, and each arrow indicates the direction of the other crystal axis.
  • the crystal axes [001] and [00-1] are arranged in opposite directions in a plane perpendicular to the optical axis AX100. Also, the crystal axes [010] and [0_10] are also arranged in opposite directions so as to be orthogonal to the crystal axes [001] and [00-1].
  • the crystal axes [001] and [00-1] are arranged in opposite directions so as to be orthogonal to the crystal axes [001] and [00-1].
  • the side of the cone obtained by rotating a direction vector that forms an angle of about 45 ° with the optical axis AX 100 in the + z direction around the optical axis AX 100
  • the four crystal axes [1 10], [10 1], [1-10], and [10-1] are arranged at 90 ° angular intervals about the optical axis AX 100 as the center of rotation.
  • these crystal axes [110], [101], [1-10], [10-1] are the crystal axes at which the amount of birefringence becomes maximum for light in the traveling direction.
  • FIG. 6A in the fluorite lens 105 having the crystal axis [100] as the optical axis, four crystal axes [1 10], [101], [1- According to [10] and [10-1], rotational anisotropy occurs in which the birefringence value fluctuates in the circumferential direction (rotation direction) with a period of 90 °.
  • rotational anisotropy occurs in which the birefringence value fluctuates in the circumferential direction (rotation direction) with a period of 90 °.
  • the optical axis of fluorite lens 106 (and thus optical axis AX 100) is also set to coincide with the crystal axis [100].
  • the fluorite lens 105 in FIG. 6A and the fluorite lens 106 in FIG. 6B are both set so that the optical axis AX100 and the crystal axis [100] coincide, but the optical axis AX It has a relative position of 45 ° relative to 100.
  • the rotational anisotropy of the birefringence value still has a period of 90 °, but the position of the maximum value and the minimum value is the position of the optical axis AX 1 It will rotate 45 ° around 00.
  • the above configuration does not eliminate the influence of birefringence.
  • the difference in the refractive index between the R-polarized light and the 0-polarized light is only approximately uniform with respect to the azimuth around the optical axis, and the difference in the refractive index itself remains.
  • two sheets whose crystal axis [100] is the optical axis and other crystal axes are relatively rotated by 45 °. It was found that the refractive index (nRlOO) for R-polarized light was lower than that for ⁇ -polarized light (n01OO) for a fluorite lens with a thickness almost equal to the above.
  • the birefringence code of the lens pair (109, 1 10) with the crystal axis [1 1 1] as the optical axis and the lens pair (105, 106) with the crystal axis [100] as the optical axis is Reverse. Therefore, by combining a lens pair (109, 110) with the crystal axis [111] as the optical axis and a lens pair (105, 106) with the crystal axis [100] as the optical axis, birefringence is obtained. Can be removed to some extent.
  • the optical path length of the lens pair (105, 106) with the crystal axis [100] as the optical axis and the lens pair (109, 109) with the crystal axis [1 1 1] as the optical axis By setting the optical path length to 1), the effect of birefringence can be almost completely eliminated. Specifically, the crystal axis
  • the birefringence of the lens pair (105, 106) with [100] as the optical axis that is, (n R l O O- ⁇ ⁇ ⁇ ⁇ ⁇ ) is the lens pair with the crystal axis [1 1 1] as the optical axis (
  • the amount of birefringence at 109, 110), that is, (nR 1 1 1—n 6 1 1 1), is about 1.5 times larger. Therefore, the optical path length of the lens pair (109, 1 10) with the crystal axis [111] as the optical axis is approximately 1.1, which is about the optical path length of the lens pair (105, 106) with the crystal axis [100] as the optical axis. You can set it to 5 times. By doing so, it is possible to almost completely eliminate the effect of birefringence.
  • the above relationship is applied to the projection optical system 100 shown in FIG. That is, of the fluorite lenses 105, 106, 109, and 110, the thickness of the fluorite lenses 105 and 106 is set to be smaller than the thickness of the fluorite lenses 109 and 110. And the optical axes of the fluorite lenses 105 and 106 together
  • the optical axes of the fluorite lenses 109 and 110 are both aligned with the fluorite crystal axis [1 1 1].
  • the fluorite lenses 109 and 110 are set so that the crystal axis [-110] in the plane perpendicular to the optical axis has a positional relationship of being rotated by 60 ° relative to the optical axis as the center of rotation.
  • the fluorite lenses 105 and 106 are set such that the crystal axis [001] in a plane perpendicular to the optical axis has a positional relationship rotated by 45 ° relative to the optical axis as the center of rotation.
  • the luminous flux corresponding to 60 to 90% of the image side NA (maximum NA) (that is, the luminous flux forming an angle corresponding to 0.6 to 0.9 times the image side NA with respect to the optical axis AX100) 1 for 00m, set as the difference between the optical path length 106m of optical path length 105m and the fluorite lens 106 in the fluorite lens 105 is within ⁇ 0. 5X 106 ⁇ 3 ( cm) are doing.
  • the difference between the optical path length 1 10 m of the optical path length 109m and the fluorite lens 110 in the fluorite lens 109 is ⁇ 0. 5 ⁇ 10_ 6 ⁇ 3 (cm) is set up to be within.
  • 1.5 times the total optical path length (105m + 106m) of the second lens group (105, 106) with the crystal axis [100] as the optical axis, and the crystal axis [111] as the optical axis Sagado 1. is set to be 0 X 10 _ 6 ⁇ 3 ( cm) within the sum of the optical path length of the first lens unit (109, 110) (109m + 1 1 Om) to.
  • the first lens group (109, 110) having the crystal axis [111] as the optical axis and the second lens group (105, 106) having the crystal axis [100] as the optical axis are combined.
  • the birefringence that has been made uniform with respect to the azimuth around the optical axis AX100 is offset each other, and as a result, the influence of the birefringence can be almost completely eliminated.
  • the first lens group (109, 110) having the crystal axis [111] as the optical axis and the second lens group (105, 106) having the crystal axis [100] as the optical axis. ) are each composed of a pair of fluorite lenses.
  • at least one of the first lens group having the crystal axis [111] as the optical axis and the second lens group having the crystal axis [100] as the optical axis is composed of three or more fluorite lenses. Examples are also possible.
  • FIGS. 7A and 7B are diagrams illustrating the configuration and optical paths of a first lens group and a second lens group in a projection optical system according to a modification of the first embodiment.
  • a modified example of the first embodiment will be described with reference to FIGS. 7A and 7B.
  • a second lens group having the crystal axis [100] as an optical axis includes a second A lens group including a pair of fluorite lenses 105a and 105b and one fluorite lens 106. and a second B lens group consisting of a.
  • the fluorite lenses 105a and 105b are such that the orientation of the crystal axis [001] in the plane perpendicular to the optical axis is It is the same.
  • the direction of the crystal axis [001] in the plane perpendicular to the optical axis is rotated by 45 ° relative to the fluorite lenses 105a and 105b. .
  • the sum of the optical path lengths (105 am + 105 bm) in the second A lens group and the second B lens for 10 lm of the luminous flux corresponding to 60 to 90% of the image side NA by suppressing the difference between the optical path length in the group (106 am) within ⁇ 0. 5 X 106 ⁇ 3 ( cm), is substantially constant birefringence regardless of the azimuth angle from the optical axis AX 101 be able to.
  • the first lens group having the crystal axis [111] as the optical axis is composed of a first A lens group including a pair of fluorite lenses 109a and 109b, and one fluorescent lens.
  • a first B lens group consisting of a stone lens 110a.
  • the directions of the crystal axes [-110] of the fluorite lenses 109a and 109b in a plane perpendicular to the optical axis are the same.
  • the orientation of the crystal axis [110] in the plane perpendicular to the optical axis is rotated by 60 ° relative to the fluorite lenses 109a and 109b. ing.
  • each of the first B lens group and the second B lens group includes one fluorite lens.
  • the present invention is not limited to this.
  • each of the first B lens group and the second B lens group may include a plurality of fluorite lenses. it can. in this case, Needless to say, the sum of the optical path lengths in the first B lens group and the sum of the optical path lengths in the second B lens group are also the sum of the optical path lengths in the plurality of fluorite lenses.
  • a pair of fluorite lenses 105a and 105b are disposed relatively close to each other along the optical path of the image forming light beam.
  • a pair of fluorite lenses 109 a and 109 b are arranged close to each other along the optical path of the image forming light beam.
  • each of the first A lens group, the first B lens group, the second A lens group, and the second B lens group is limited to a configuration in which a plurality of fluorite lenses are arranged close to each other. It is not something to be done.
  • each lens group a quartz lens made of quartz glass or a crystal lens formed of a crystalline material but having the other crystal axis as the optical axis (hereinafter, these are not considered) Lens)
  • the effect of the present invention is exhibited.
  • each lens group (1 A, 1 B, 2 In A, 2B)
  • the angle between the exposure light beam and the optical axis greatly differs, and the effect of eliminating birefringence according to the present invention may be reduced.
  • a plurality of fluorite lenses are located close to each other along the optical path of the imaging light beam. It is desirable to be arranged.
  • the first A lens group and the first B lens group constitute a first lens group, and the birefringence is eliminated by the interaction between the first A lens group and the first B lens group. It is desirable that no lens having a large power be arranged. It is further desirable that the first A lens group and the first B lens group are arranged close to each other along the optical path of the image forming light beam. This is the same between the second A lens group and the second B lens group that constitute the second lens group.
  • the first lens It is desirable not to place a lens having a large power between the lens group and the second lens group. It is further desirable that the first lens group and the second lens group are arranged close to each other along the optical path of the image forming light beam.
  • the image forming light flux in each lens formed of a crystal such as fluorite is a light flux converging toward a photosensitive substrate (substrate to be exposed) 102 such as a wafer.
  • the crystal orientation of both lenses is set to the crystal axis [1 1 1] as the optical axis.
  • the luminous flux of a specific lens changes so as to diverge toward the photosensitive substrate 102 due to the presence of a lens having a large power between two or more lenses that form a pair.
  • the birefringence produced by this lens will have a different rotational anisotropy than the birefringence produced by other lenses.
  • the angle with respect to the optical axis is opposite to that of the convergent light beam.
  • the angle formed by the convergent light beam with the optical axis AX100 is positive, and when the light beam is incident on the optical axis AX in FIG. 5A from the right side, the divergent light beam becomes the optical axis AX100. The angle formed becomes negative, and the light enters from the left side with respect to the optical axis AX in FIG. 5A.
  • the birefringence effect of the divergent light beam is the same as the effect when the convergent light beam is incident on the lens rotated 60 degrees around the optical axis (crystal axis [1 1 1]) shown in Fig. 5B. become. Therefore, in the first lens group with the crystal axis [111] as the optical axis, the imaging light flux passing through the inside of the first lens group is converged on one side and diverged on the other side. It is not necessary to rotate them by degrees, and it is better for the same crystal axis to point in the same direction in a plane perpendicular to the optical axis.
  • both the convergent light beam and the divergent light beam are birefringent Since the effect of is the same, it is still better to rotate the lens pair 45 degrees around the optical axis for a lens pair in which the imaged light beam passing through it converges on the one hand and diverges on the other.
  • FIG. 8 is a diagram schematically showing a configuration of a projection optical system according to a second embodiment of the present invention. It is.
  • the present invention is applied to the wavelength lambda (nm) is 1 5 7 nm of F 2 with respect to laser aberration correction optimized catadioptric projection optical system.
  • the projection optical system 200 (corresponding to the projection optical system 300 in FIG. 1) of the second embodiment, one point on the reticle 201 (corresponding to the reticle 101 in FIG. 1) is emitted.
  • the reflected light is deflected by a reflecting prism 203 serving as an optical path changing means, and then passed through lenses 205 and 206 arranged along an optical axis AX200b to form a concave reflecting mirror 2.
  • the light beam reflected by the concave reflecting mirror 204 is deflected again by the reflecting prism 203 through the lenses 206 and 205.
  • the light beam deflected by the reflecting prism 203 is transferred to the wafer 202 (the wafer 102 in FIG. 1) through lenses 207 to 212 arranged along the optical axis AX200a. Focus on one point above. Thus, a projected image of the pattern drawn on the reticle 201 is formed on the wafer 202.
  • all the lenses 205 to 212 are formed of calcium fluoride crystals (fluorite).
  • the lens group that causes the birefringence of fluorite significantly has an optical axis AX 200 a or AX
  • This lens group forms a large angle with respect to 200 b.
  • the traveling direction of the imaging light flux forms a large angle with respect to the optical axis AX200a or AX200b. Since which lens causes the remarkable effect of birefringence fluctuates depending on the lens design, the lens that causes the remarkable effect of birefringence is not always the above-mentioned lens.
  • the imaging luminous flux is transmitted twice back and forth through the fluorite lenses 205 and 206 arranged near the concave reflecting mirror 204.
  • the effect of the birefringence of the fluorite lenses 205 and 206 will be doubled. Therefore, in the second embodiment, in the first lens group including the fluorite lenses 205 and 206, the crystal axis [111] is set to the optical axis AX200b (hence, the fluorite lens 2). 05 and 206 optical axes). And the fluorite lenses 205 and 206 The crystal axis [1-110] in the plane perpendicular to the optical axis is arranged to rotate relative to the optical axis by 60 °. Therefore, the fluorite lens 205 constitutes the first A lens group, and the fluorite lens 206 constitutes the first B lens group.
  • the crystal axis [100] coincides with the optical axis AX200a.
  • the thickest fluorite lens 210 constitutes the second A lens group
  • the other two fluorite lenses 211 and 212 constitute the second B lens group. Is composed. That is, the fluorite lens 210 and the fluorite lenses 211 and 212 are arranged such that the crystal axis [001] in a plane perpendicular to the optical axis rotates relatively 90 ° about the optical axis. Is placed.
  • FIGS. 9A and 9B are diagrams illustrating an optical path in a fluorite lens in the projection optical system according to the second embodiment.
  • a light beam (a light beam corresponding to the image-side NA) incident on the wafer 202 at the maximum incident angle 0200 (see FIG. 8) is indicated by reference numeral 200e.
  • the sum of the optical path lengths in the first A lens group (205 am + 205 bm) and the optical path lengths in the first B lens group for 200 m of light flux equivalent to 60% to 90% of the image side NA are described.
  • the sum (206 am + 206 bm) is set to be within Sagado 0. 5 X 10- 6 ⁇ 3 ( cm) of the.
  • all the lenses 205 to 212 are formed of fluorite. Therefore, birefringence also occurs in the fluorite lenses 207 to 209 other than the first lens group (205, 206) and the second lens group (210, 211, 212).
  • the fluorite lenses 207 to 209 form a relatively small angle with respect to the optical axis in the traveling direction of the imaging light beam. Therefore, by making the optical axis of the fluorite lenses 207 to 209 coincide with the crystal axis [111] or [100], the amount of birefringence generated in each of the fluorite lenses 207 to 209 can be reduced.
  • the influence of birefringence by the fluorite lenses 207 to 209 can be reduced.
  • the first lens group and the fluorite lenses 207 to 209 (actually, four or more lenses are required) are used. What is necessary is just to constitute the second lens group, and apply the present invention to the first lens group and the second lens group. That is, in the first lens group, the optical axis coincides with the crystal axis [111], and in the second lens group, the optical axis coincides with the crystal axis [100].
  • the first A lens group and the first B lens group that constitute the first lens group are set so that the crystal axis directions have a predetermined angular relationship around the optical axis, and the second lens group is formed.
  • the second A lens group and the second B lens group are set such that the crystal axis directions have a predetermined angular relationship about the optical axis. Furthermore, by setting the optical path length in each lens group (1A, IB, 2A, 2B) to satisfy a predetermined relationship for the luminous flux equivalent to 60 to 90% of the image side NA, the birefringence The effect can be corrected with higher accuracy.
  • the allowable value for the difference between the sum of the optical path lengths in the first A lens group and the sum of the optical path lengths in the first B lens group, and the second A lens group the allowable value for the difference between the sum of the optical path length of the sum of the optical path length and the second 2 B lens group of the inner is set to ⁇ 0. 5 X 10- 6 ⁇ 3 (cm).
  • a specific numerical value of this allowable value is ⁇ 3.6 (cm) in the case of an ArF laser light source having a wavelength ⁇ of 193 (nm), that is, in the case of the first embodiment.
  • the allowable value for the difference between the sum of the optical path length of 1. 5 times a first lens group of the sum of the optical path length in the second lens group the ⁇ 1. 0 ⁇ 10- 6 ⁇ 3 (cm) You have set.
  • a specific numerical value of the allowable value is ⁇ 7.2 (cm) in the case of an ArF laser light source having a wavelength ⁇ of 193 (nm), that is, in the case of the first embodiment.
  • the ⁇ 3. 8 (cm) in the case where the F 2 laser primary light source or second embodiment of the wavelength input is 157 (nm).
  • the factor of the cube of the wavelength ⁇ in the equation that expresses the allowable value of the optical path length difference is that in the case of birefringence that depends on the traveling direction of light in the crystal material, the amount of change in the refractive index, the amount of deviation of the wavefront of the imaging light beam (unit length) generated in proportion to the ⁇ _ 2, since this is the wavefront aberration (phase) is an amount which adversely affects the imaging properties in proportion to lambda-3 It is.
  • the optical path length refers to the optical path length (geometric length) in the crystal material itself, and is not a value multiplied by the refractive index or a value divided by the refractive index.
  • the light flux corresponding to 60 to 90% of the image side ⁇ (maximum ⁇ ), that is, 0.6 to 0.9 times the image side ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ with respect to the optical axis.
  • the difference in the total optical path length in the crystal lens in each lens group (1A, 1B, 2A, 2B) and the difference between the first and second lens groups is the difference of the total optical path length in the crystal lens in the above.
  • the aberration of the light beam closer to the image side NA may have a greater effect on the imaging characteristics. . Therefore, for the luminous flux whose coordination spreads slightly to the maximum NA side around 70% of the image side NA, that is, the luminous flux equivalent to 60 to 90% of the image side NA, the effect of eliminating birefringence should be maximized. It is desirable to set to Further, in the first and second embodiments, the description of the present invention is simplified. In order to obtain good imaging performance, the effective illumination area on reticle 101 (201) is focused on only the luminous flux emitted from one point on reticle 101 (201). It is needless to say that the above relationship of the present invention should be satisfied with respect to the image forming light flux reaching the effective exposure area on the wafer 102 (202) from all points in the above.
  • FIGS. 108 to 10D are views for explaining birefringence when the optical axis of the fluorite lens is matched with the crystal axis [1 10].
  • the optical axes of the fluorite lenses 105 and 106 are changed. Are set to coincide with the crystal axes [1 10].
  • the fluorite lenses 105 and 106 are arranged such that the crystal axis [001] existing in a plane perpendicular to the optical axis AX 102 rotates relatively 90 ° about the optical axis.
  • the fluorite lens 105 constitutes the third A lens group
  • the fluorite lens 106 constitutes the third B lens group
  • the fluorite lenses 105 and 106 constitute the third lens group.
  • the combination using the crystal axis [1 10] as the optical axis is more birefringent (R polarized light and R) than the combination using the crystal axis [1 1 1] as the optical axis or the combination using the crystal axis [100] as the optical axis. (Difference in refractive index from 0-polarized light) can be reduced.
  • the birefringence with respect to the azimuth centered on the optical axis is poor in uniformity, and nonuniformity of 90 ° cycle remains.
  • the optical axes of the fluorite lenses 109 and 110 are both set so as to coincide with the crystal axis [1 10]. Then, the fluorite lenses 109 and 110 are arranged such that the crystal axis [00 1] existing in a plane perpendicular to the optical axis AX 102 is relatively rotated by 90 ° about the optical axis. Furthermore, the relative positions of the fluorite lenses 105 and 106 and the fluorite lenses 109 and 110 are relatively rotated by 45 ° about the optical axis AX102. Set to have.
  • the fluorite lens 109 constitutes a fourth A lens group
  • the fluorite lens 110 constitutes a fourth B lens group
  • the fluorite lenses 109 and 110 constitute a fourth lens group.
  • a pair of lens pairs having a non-uniformity of 90 ° cycle that is, the third lens group and the fourth lens group are relatively rotated by 45 ° and arranged, so that 90 ° Periodic non-uniformities are almost completely canceled.
  • the 90 ° rotating pair since the residual birefringence of the lens pair arranged by rotating the crystal axis [1 10] relative to the optical axis by 90 ° is small, the 90 ° rotating pair must be further rotated by 45 °. Thereby, a sufficient effect of removing birefringence can be obtained.
  • the third lens group and the fourth lens group forming the 90 ° rotation pair are not limited to the configuration including two fluorite lenses, but include three or more fluorescent lenses. Each can also be constituted by a stone lens. Further, for the light flux corresponding to 60% ⁇ 90% of the image-side NA, a difference of ⁇ between the optical path length of the third optical path length of the A lens group and the third B lens group 0. 5 X 10- 6 ⁇ 3 (cm ) and sets within, it is desirable to set the difference between the optical path length of the fourth optical path length of the a lens group and the 4B lens group ⁇ 0. 5 X 10- 6 ⁇ 3 (cm) within.
  • the difference between the sum of the optical path lengths in the third lens group and the sum of the optical path lengths in the second lens group is expressed as Sat 1.0 X 10_ It is desirable to set within 6 ⁇ 3 (cm).
  • the crystal axes existing in the plane perpendicular to the optical axis [
  • the second lens has a positional relationship in which the second lens is rotated by 45 ° in a predetermined direction about the optical axis with respect to the first lens.
  • each of the fluorite lens 105, the fluorite lens 106, the fluorite lens 109, and the fluorite lens 110 may be composed of a plurality of fluorite lenses. This is the same as the other embodiments.
  • each of the at least four fluorite lenses is oriented in a predetermined direction in which the crystal axis [001] existing in a plane perpendicular to the optical axis is separated by 45 ° from the optical axis. It is classified into four matching lens groups, namely, any one of the sixth lens group, the seventh lens group, the eighth lens group, and the ninth lens group, and rotated by a predetermined angle about the optical axis. Be placed.
  • the sum L 6 of the optical path lengths in the sixth lens group, the sum L 7 of the optical path lengths in the seventh lens group, and the sum L 7 in the eighth lens group are set to be substantially equal to each other.
  • the sum L 6 of the optical path lengths in the sixth lens group, the sum L 7 of the optical path lengths in the seventh lens group, the sum L 7 of the optical path lengths in the eighth lens group, and the sum L 8 in the ninth lens group Difference between the sum of the optical path lengths arbitrarily selected and the sum of the optical path lengths L 9 There set ⁇ 0. 5 X 10- 6 X ⁇ 3 (cm) so that within.
  • the influence of birefringence can be reduced.
  • the crystal axis [11 1] is rotated relative to the optical axis by 60 °.
  • the effect of birefringence can be reduced to a lesser extent than with the [100] lens group in which the [111] lens group and the crystal axis [100] are rotated relative to each other by 45 ° about the optical axis.
  • the refractive index (nR 1 10) for the R-polarized light may be higher than the refractive index (n 0 1 10) for the S-polarized light.
  • the sign of the birefringence remaining in the [1 10] lens group is the same as the sign of the birefringence remaining in the [1 11] lens group, and the sign of the birefringence remaining in the [100] lens group is the opposite sign. . Therefore, by using the [1 10] lens group and the [100] lens group in combination, it is possible to offset the effects of birefringence. further,
  • Equation (2) indicates that the birefringence of the lens layer (105, 106) with the crystal axis [100] as the optical axis, that is, (nR 100—n 0 100) is the light intensity of the crystal axis [1 1 1].
  • optical elements formed of crystals belonging to the cubic system, for example, for a light beam equivalent to 60 to 90% of the image side NA
  • the lens groups [110] lens group, [100] lens group, and [1 11] lens group) each having the crystal axis as the optical axis have a desired rotation angle relationship and a desired optical path length. It is needless to say that the lens group has the following relationship.
  • the allowable value on the left-hand side of this equation (3) is also an allowable value on the premise of exposing a pattern having a fineness of about 0.15 to the kl factor, similar to the aforementioned allowable value. Therefore, when exposing a finer pattern, it is necessary to set a stricter tolerance, and when exposing a non-fine pattern, it is needless to say that a smaller tolerance is sufficient.
  • Equation (3) does not necessarily specify only the relationship between the optical path lengths when all the [1 10] lens groups, the [100] lens groups, and the [1 1 1] lens groups are included. .
  • the following method is used. The relationship shown in the following equation (4) should be established between the sum L 1 10 of the optical path lengths in the lens group and the sum 100 of the optical path lengths in the [100] lens group.
  • [1 1 1] The relationship shown in the following expression (5) may be established between the sum L 1 11 of the optical path lengths in the lens group and the sum L 100 of the optical path lengths in the [1 00] lens group.
  • Equation (5) is
  • Equation (6) can be transformed, and equation (6) can be transformed as shown in equation (7).
  • equation (4) can be transformed as shown in equation (8), and equation (8) can be further transformed as shown in equation (9).
  • equation (7) is expressed as “1.5 of the sum of the optical path lengths (105 m + 106 m) in the second lens group (105, 106) with the crystal axis [100] as the optical axis.
  • the difference between the magnification and the sum of the optical path lengths (109 m + 110 m) in the first lens group (109, 110) with the crystal axis [1 1 1] as the optical axis is ⁇ 1.0 X It is consistent with the description in the first embodiment to the effect that 1 0- 6 ⁇ 3 to (cm) set to be within ". Equation (9) is
  • the lens whose crystal axis [1 110] should be coincident with the optical axis is divided into the above four lens groups (the sixth to ninth lens groups), and the optical axis is set between the lens groups.
  • the lens whose crystal axis [1 10] should be coincident with the optical axis can be divided into eight lens groups. That is, two sets of the above four lens groups (sixth lens group to ninth lens group) are provided, and in each of the four lens groups, a crystal axis [001] existing in a plane perpendicular to the optical axis is set. Rotate each lens about the optical axis so that it is 45 ° apart from the optical axis. In this case, since the rotational anisotropy of the birefringence is minimized in each of the four lens groups, the distance between the first four lens groups and the second four lens groups is reduced. There is no particular restriction on the relationship between the crystal directions (the direction of the crystal axis [00 1] existing in a plane perpendicular to the optical axis).
  • each lens is arranged such that the crystal axis [001] existing in a plane perpendicular to the optical axis is separated by 45 ° about the optical axis. Rotate around the optical axis.
  • the sum of the optical path lengths in each lens group in which the crystal axis [001] points in the same direction may be set to be substantially equal to each other. Furthermore, since the sum L 110 of the optical path lengths in the plurality of [1 10] lens groups satisfies the above relational expressions (3), (4), and (5), the adverse effect of birefringence is substantially eliminated. .
  • FIG. 11 is a diagram schematically showing a configuration of a projection optical system according to a fourth embodiment of the present invention.
  • the wavelength lambda (nm) 157 'aberration correction for F 2 laser nm is the present invention is applied to an optimized catadioptric projection optical system ing.
  • a light beam emitted from one point on a reticle 301 (corresponding to the reticle 101 in FIG. 1) is deflected by a reflecting prism 303 serving as an optical path changing means, The light enters the concave reflecting mirror 304 via lenses 305 and 306 arranged along the axis AX 300b.
  • the light beam reflected by the concave reflecting mirror 304 is deflected again by the reflecting prism 303 via the lenses 306 and 305.
  • the light beam deflected by the reflection prism 303 is condensed at one point on the wafer 302 (corresponding to the wafer 102 in FIG. 1) via the lenses 307 to 314 arranged along the optical axis AX 300a. .
  • a projected image of the pattern drawn on the reticle 301 is formed on the wafer 302.
  • all lenses are formed of calcium fluoride crystals (fluorite).
  • the crystal axis [110] matches the optical axis AX 300b. Also, fluorite lens 31
  • the crystal axis [1 10] is aligned with the optical axis AX 300a. Further, in the fluorite lenses 313 and 314, the crystal axis [100] is aligned with the optical axis AX 300a. In other words, fluorite lens 305, 306, 31
  • the lens group is constituted.
  • FIG. 12A and FIG. 12B are diagrams illustrating an optical path in a fluorite lens in a projection optical system according to the fourth embodiment.
  • a light beam (a light beam corresponding to the image-side NA) incident on the upper surface 302 at the maximum incident angle 0300 (see FIG. 11) is indicated by reference numeral 300 e.
  • the luminous flux corresponding to 60 to 90% of the NA on the image side is indicated by reference numeral 300 m.
  • the imaging light beam passes through the lens twice in a reciprocating manner.
  • the optical path length in the fluorite lens 305 is (305 am + 305 bm), and the optical path length in the fluorite lens 306 is (306 am + 306 bm).
  • each of the optical path lengths (305 am + 305 bm, 306 am + 306 bm, 31 1 m, 312 m) in the fluorite lens 305, 306, 31 1, 3 12 having the crystal axis [1 10] as the optical axis ) is ⁇ 0. to be approximately equal in the range of 5 X 10- 6 ⁇ 3 (cm ), have set a thickness of each lens.
  • the fluorite lens 313 and 314 to the crystal axis [100] to the optical axis is also the respective optical path lengths (313m, 314m) is ⁇ 0. 5 X 10 - becomes substantially equal in the range of 6 ⁇ 3 (cm) In this way, the thickness of each lens is set. In other words, as the difference between the optical path length 314m in the optical path length 313m and fluorite lens 314 in the fluorite lens 313 is within the soil 0. 5 X 10- 6 ⁇ 3 ( cm), the thickness of each lens Is set. And with the fluorite lenses 3 13 and 314, the optical axis AX 300a The crystal axis [001] existing in the vertical plane is set to have a relative rotation of 45 °.
  • the [1 10] lens group composed of four lenses having the crystal axis [1 10] as the optical axis, and the two lenses having the crystal axis [100] as the optical axis. [100] The effect of birefringence is canceled between the lens group and the lens group, so that good imaging characteristics can be obtained.
  • the absolute value of (3 XL 1 10-12 XL 100) between [1 10] the sum of the optical path lengths in the lens group L 110 and the [100] the sum of the optical path lengths in the lens group L 100 There 8. 0 X 10- 6 ⁇ 3 ( cm) to be less than the value, or the absolute value of 2. 7 X 10- 6 ⁇ 3 ( cm) below the (L 1 1 0- 4 XL 100 )
  • the other fluorite lenses (lenses 307 to 310) can be further set to a combination that eliminates birefringence to further exert the effect of eliminating birefringence.
  • the [1 1 1] lens group whose optical axis is coincident with the crystal axis [11 1] is set at 60 ° around the optical axis between a plurality of lenses to eliminate birefringence. It is rotated and placed.
  • the lens rotation angle for eliminating birefringence is set to 45 ° around the optical axis.
  • calcium fluoride crystal (fluorite) is used as the birefringent optical material.
  • the present invention is not limited to this, and other uniaxial crystals, for example, barium fluoride may be used.
  • other crystal materials that are transparent to ultraviolet light can be used.
  • barium fluoride crystals have already been developed for large crystal materials exceeding 200 mm in diameter, and are promising as lens materials.
  • the crystal axis orientation of barium fluoride (BaF 2 ) is also determined according to the present invention.
  • the present invention is applied to the projection optical system.
  • the present invention is not limited to this, and may be applied to an illumination optical system that illuminates a reticle (mask). .
  • the reticle (mask) is illuminated by the illumination device (illumination step), and the transfer pattern formed on the mask is exposed on the photosensitive substrate using the projection optical system.
  • a micro device semiconductor element, imaging element, liquid crystal display element, thin film magnetic head, etc.
  • FIG. 13 shows an example of a technique for obtaining a semiconductor device as a microdevice by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of each embodiment. I will explain.
  • a metal film is deposited on one lot of wafers.
  • a photoresist is applied on the metal film on the wafer of the lot.
  • an image of the pattern on the mask is sequentially exposed and transferred to each shot area on the one lot of wafers via the projection optical system.
  • step 304 after developing the photoresist on the one lot of wafer,
  • step 305 a circuit pattern corresponding to the pattern on the mask is formed in each shot area on each wafer by performing etching on the one lot of wafers using the resist pattern as a mask.
  • a device such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer and the like.
  • a semiconductor device manufacturing method a semiconductor device having an extremely fine circuit pattern can be obtained with high throughput.
  • steps 301 to 305 a metal is vapor-deposited on the wafer, a resist is applied on the metal film, and the respective steps of exposure, development, and etching are performed.
  • a resist may be applied on the silicon oxide film, and each step of exposure, development, etching and the like may be performed.
  • a liquid crystal display element as a micro device can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate).
  • a predetermined pattern circuit pattern, electrode pattern, etc.
  • a plate glass substrate
  • a so-called optical liquider is used in which a mask pattern is transferred and exposed to a photosensitive substrate (a glass substrate coated with a resist, etc.) using the exposure apparatus of each embodiment.
  • the fuel process is performed.
  • a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate.
  • the exposed substrate is subjected to various steps such as an imaging step, an etching step, and a resist stripping step, so that a predetermined pattern is formed on the substrate, and the process proceeds to the next color filter forming step 402. .
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (BI ue) are arranged in a matrix form.
  • a cell assembling step 403 is performed.
  • the substrate having the predetermined pattern obtained in the pattern forming step 401, and A liquid crystal panel (liquid crystal cell) is assembled using the color filters obtained in step 402 and the color filter forming step 402.
  • a liquid crystal is interposed between the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402. To produce a liquid crystal panel (liquid crystal cell).
  • a module assembling step 404 components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element.
  • components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element.
  • the present invention is applied to the projection optical system mounted on the exposure apparatus.
  • the present invention is not limited to this.
  • the present invention can also be applied to other general optical systems including a system, for example, an optical system for measuring aberration.
  • a 1 9 3 nm F 2 laser primary light source for supplying wavelength light
  • a r F excimer laser light source or 1 5 7 nm supplying wavelength light limited to Instead, for example, an Ar laser light source that supplies light with a wavelength of 126 nm can be used.
  • the present invention realizes an optical system having good optical performance without being substantially affected by birefringence even when a birefringent crystal material such as fluorite is used. be able to. Therefore, by incorporating the optical system of the present invention into an exposure apparatus, it is possible to manufacture a good microphone port device by performing high-precision projection exposure through a high-resolution projection optical system.

Abstract

An optical system capable of ensuring a good optical performance without substantially being affected by double refraction even when a double-refractive crystal material such as fluorite is used. The system comprises a first lens group (105, 106) composed of a plurality of crystal lenses each having an optical axis (AX100) agreeing with a crystal axis [111], and a second lens group (109, 110) composed of a plurality of crystal lenses each having the optical axis agreeing with a crystal axis [100]. The first lens group has a first A lens group and a first B lens group that are in a positional relation in which one is relatively rotated from the other through a first angle, and the second lens group has a second A lens group and a second B lens group that are in a positional relation in which one is relatively rotated from the other through a second angle.

Description

明 細 書 光学系および該光学系を備えた露光装置  Description: Optical system and exposure apparatus provided with the optical system
技術分野 Technical field
本発明は、 光学系および該光学系を備えた露光装置に関し、 特に半導体素子や 液晶表示素子などのマイクロデパイスをフォトリソグラフィ工程で製造する際に 使用される露光装置に好適な投影光学系に関するものである。 背景技術  The present invention relates to an optical system and an exposure apparatus having the optical system, and more particularly to a projection optical system suitable for an exposure apparatus used when a microdepth such as a semiconductor element or a liquid crystal display element is manufactured by a photolithography process. It is. Background art
半導体集積回路や液晶ディスプレイ等の電子デバイス (マイクロデバイス) の 微細パターンの形成に際して、 形成すべきパターンを 4〜 5倍程度に比例拡大し て描画したフォトマスク (レチクルとも呼ぶ) のパターンを、 投影露光装置を用 いてウェハ等の感光性基板 (被露光基板) 上に縮小投影する方法が用いられてい る。 この種の投影露光装置では、 半導体集積回路の微細化に対応するために、 そ の露光波長が短波長側へシフトし続けている。  When forming micropatterns of electronic devices (microdevices) such as semiconductor integrated circuits and liquid crystal displays, the pattern of the photomask (also called a reticle) drawn by enlarging the pattern to be formed by about 4 to 5 times is projected. A method of reducing and projecting on a photosensitive substrate (substrate to be exposed) such as a wafer using an exposure apparatus is used. In this type of projection exposure apparatus, the exposure wavelength keeps shifting toward shorter wavelengths in order to cope with miniaturization of semiconductor integrated circuits.
現在、 露光波長は K r Fエキシマレーザ一の 2 4 8 n mが主流となっているが、 より短波長の A r Fエキシマレーザ一の 1 9 3 n mも実用化段階に入りつつある。 さらに、 波長 1 5 7 n mの F 2レ一ザ一や波長 1 2 6 n mの A r 2レーザー等の、 いわゆる真空紫外域と呼ばれる波長帯の光を供給する光源を使用する投影露光装 置の提案も行なわれている。 また、 投影光学系の大開口数 (NA) 化によっても 高解像度化が可能であるため、 露光波長の短波長化のための開発だけでなく、 よ り大きい開口数を有する投影光学系の開発もなされている。 At present, the exposure wavelength of the KrF excimer laser is 248 nm, but the shorter wavelength of the ArF excimer laser is 193 nm. Furthermore, the A r 2 laser having a wavelength of 1 5 7 nm of F 2, single The one or wavelength 1 2 6 nm, the projection exposure equipment that uses the light source for supplying light in a wavelength band so-called vacuum ultraviolet region Suggestions have been made. In addition, since high resolution can be achieved by increasing the numerical aperture (NA) of the projection optical system, not only development of a shorter exposure wavelength but also development of a projection optical system with a larger numerical aperture Has also been made.
このように波長の短い紫外域の露光光に対しては、 透過率や均一性の良好な光 学材料 (レンズ材料) は限定される。 A r Fエキシマレーザーを光源とする投影 光学系では、 レンズ材料として合成石英ガラスも使用可能であるが、 1種類のレ ンズ材料では色収差の補正を十分に行うことができないので、 一部のレンズにフ ッ化カルシウム結晶 (蛍石) が用いられる。 一方、 F 2レーザーを光源とする投 影光学系では、 使用可能なレンズ材料は事実上フッ化カルシウム結晶 (蛍石) に 限定される。 Optical materials (lens materials) with good transmittance and uniformity for exposure light in the ultraviolet region having such a short wavelength are limited. Synthetic silica glass can be used as a lens material in a projection optical system that uses an ArF excimer laser as a light source, but chromatic aberration cannot be sufficiently corrected with one type of lens material. For this purpose, calcium fluoride crystals (fluorite) are used. Meanwhile, projecting as a light source an F 2 laser In shadow optics, the usable lens materials are effectively limited to calcium fluoride crystals (fluorite).
最近、 このように波長の短い紫外線に対しては、 立方晶系であるフッ化カルシ ゥム結晶 (蛍石) においても、 複屈折が生じることが報告されている。 電子デバ イスの製造に用いられる投影光学系のような超高精度の光学系においては、 レン ズ材料の複屈折に伴って生じる収差は致命的であり、 複屈折の影響を実質的に回 避したレンズ構成およびレンズ設計の採用が不可欠である。 発明の開示  Recently, it has been reported that birefringence occurs even in such cubic calcium fluoride crystals (fluorite) for ultraviolet rays having such a short wavelength. In an ultra-high-precision optical system such as a projection optical system used in the manufacture of electronic devices, the aberration caused by the birefringence of the lens material is fatal, and the effect of the birefringence is substantially avoided. It is indispensable to adopt the lens configuration and lens design that have been adopted. Disclosure of the invention
本発明は、 前述の課題に鑑みてなされたものであり、 たとえば蛍石のような複 屈折性の結晶材料を用いても、 複屈折の影響を実質的に受けることなく良好な光 学性能を確保することのできる光学系および該光学系を備えた露光装置を提供す ることを目的とする。  The present invention has been made in view of the above-described problems. For example, even when a birefringent crystal material such as fluorite is used, good optical performance is obtained without being substantially affected by birefringence. It is an object of the present invention to provide an optical system that can be secured and an exposure apparatus including the optical system.
また、 本発明は、 結晶材料を用いて良好な光学性能を有する光学系が搭載され た露光装置を用いて、 高解像度の露光技術にしたがって高性能のマイクロデバイ スを製造することのできるマイク口デバイス製造方法を提供することを目的とす る。  In addition, the present invention provides a microphone port that can manufacture a high-performance micro device according to a high-resolution exposure technique using an exposure apparatus equipped with an optical system having good optical performance using a crystalline material. It is intended to provide a device manufacturing method.
前記課題を解決するために、 本発明の第 1発明では、 立方晶系に属する結晶で 形成された複数の光学素子を含む光学系において、  In order to solve the above problems, according to a first aspect of the present invention, an optical system including a plurality of optical elements formed of crystals belonging to a cubic system,
前記光学系の光軸と結晶軸 [ 1 1 1 ] または該結晶軸と光学的に等価な結晶軸 とがほぼ一致するように設定された複数の光学素子から構成された第 1素子群と、 前記光軸と結晶軸 [ 1 0 0 ] または該結晶軸と光学的に等価な結晶軸とがほぼ 一致するように設定された複数の光学素子から構成された第 2素子群とを備え、 前記第 1素子群は、 前記光軸を中心として第 1角度だけ相対的に回転した位置 関係を有する第 1 A素子群と第 1 B素子群とを有し、  A first element group including a plurality of optical elements set so that an optical axis of the optical system and a crystal axis [111] or a crystal axis optically equivalent to the crystal axis; A second element group composed of a plurality of optical elements set so that the optical axis and the crystal axis [100] or the crystal axis and the optical axis equivalent to the crystal axis substantially coincide with each other; The first element group includes a first A element group and a first B element group having a positional relationship relatively rotated by a first angle about the optical axis,
前記第 2素子群は、 前記光軸を中心として第 2角度だけ相対的に回転した位置 関係を有する第 2 A素子群と第 2 B素子群とを有し、  The second element group includes a second A element group and a second B element group having a positional relationship relatively rotated by a second angle about the optical axis,
前記光軸に対して所定範囲の角度をなす光束の前記第 1 A素子群における光学 素子中の光路長 L 1 Aと前記第 1 B素子群における光学素子中の光路長 L 1 Bと がほぼ等しく、 An optical axis of the light flux forming an angle within a predetermined range with respect to the optical axis in the first A element group; The optical path length L 1 A in the element is substantially equal to the optical path length L 1 B in the optical element in the first B element group,
前記光軸に対して前記所定範囲の角度をなす光束の前記第 2 A素子群における 光学素子中の光路長 L 2 Aと前記第 2 B素子群における光学素子中の光路長 L 2 Bとがほぼ等しく、  The optical path length L 2 A in the optical element of the second A element group and the optical path length L 2 B of the optical element in the second B element group of the light beam forming the angle in the predetermined range with respect to the optical axis are different. Almost equal,
前記光軸に対して前記所定範囲の角度をなす光束の前記第 1素子群における光 学素子中の光路長 L I (=L 1 A + L 1 B) と前記第 2素子群における光学素子 中の光路長 L 2 (=L 2 A + L 2 B) とが所定の倍率にしたがって設定されてい ることを特徴とする光学系を提供する。  The optical path length LI (= L1A + L1B) in the optical element in the first element group of the light beam forming the angle in the predetermined range with respect to the optical axis and the optical path in the optical element in the second element group An optical system is provided, wherein an optical path length L 2 (= L 2 A + L 2 B) is set according to a predetermined magnification.
第 1発明の好ましい態様によれば、 前記第 1素子群における光学素子中の光路 長 L 1は、 前記第 2素子群における光学素子中の光路長 L 2の約 1. 5倍に設定 されている。 この場合、 前記第 2素子群における光学素子中の光路長 L 2の 1. 5倍と前記第 1素子群における光学素子中の光路長 L 1との差が、 前記光束の波 長を λ (nm) としたとき、 土 1. 0 X 10_6Χ λ 3 (cm) 以内に設定されて いることが好ましい。 According to a preferred aspect of the first invention, the optical path length L1 in the optical element in the first element group is set to about 1.5 times the optical path length L2 in the optical element in the second element group. I have. In this case, the difference between 1.5 times the optical path length L2 in the optical element in the second element group and the optical path length L1 in the optical element in the first element group is the wavelength of the light beam as λ ( when a nm), it is preferably set within the soil 1. 0 X 10_ 6 Χ λ 3 (cm).
また、 第 1発明の好ましい態様によれば、 前記第 1 A素子群における光学素子 中の光路長 L 1 Aと前記第 1 B素子群における光学素子中の光路長 L 1 Bとの差 が、 前記光束の波長を λ (nm) としたとき、 ±0. 5 Χ 1 0_6Χλ 3 (cm) 以内に設定されている。 さらに、 前記第 2 A素子群における光学素子中の光路長 L 2 Aと前記第 2 B素子群における光学素子中の光路長 L 2 Bとの差が、 前記光 束の波長を λ (nm) としたとき、 ±0. 5X 10— 6 Χλ3 (cm) 以内に設定 されていることが好ましい。 また、 前記所定範囲の角度は、 前記光学系の像側開 口数の 0. 6倍に対応する角度よりも大きく且つ前記像側開口数の 0. 9倍に対 応する角度よりも小さいことが好ましい。 According to a preferred aspect of the first invention, the difference between the optical path length L 1 A in the optical element in the first A element group and the optical path length L 1 B in the optical element in the first B element group is when the wavelength of the light beam and lambda (nm), is set to ± 0. 5 Χ 1 0_ 6 Χλ 3 (cm) within. Further, the difference between the optical path length L 2 A in the optical element in the second A element group and the optical path length L 2 B in the optical element in the second B element group is such that the wavelength of the light flux is λ (nm). when a, ± 0. it is preferably set within 5X 10- 6 Χλ 3 (cm) . Further, the angle in the predetermined range is larger than an angle corresponding to 0.6 times the image side numerical aperture of the optical system and smaller than an angle corresponding to 0.9 times the image side numerical aperture. preferable.
さらに、 第 1発明の好ましい態様によれば、 前記第 1 A素子群と前記第 1 B素 子群とは前記光軸に沿って互いに近接して配置され、 前記第 2 A素子群と前記第 2 B素子群とは前記光軸に沿って互いに近接して配置されている。 また、 前記第 1素子群と前記第 2素子群とは前記光軸に沿つて互いに近接して配置されている ことが好ましい。 さらに、 前記第 1 A素子群、 前記第 1 B素子群、 前記第 2 A素 子群および前記第 2 B素子群のうちの少なくとも 1つの素子群は、 前記光軸に沿 つて互いに近接して配置された複数の光学素子から構成されていることが好まし い。 また、 前記第 1素子群と前記第 2素子群との組を複数備えていることが好ま しい。 Further, according to a preferred aspect of the first invention, the first A element group and the first B element group are arranged close to each other along the optical axis, and the second A element group and the first The 2B element group is arranged close to each other along the optical axis. Further, the first element group and the second element group are arranged close to each other along the optical axis. Is preferred. Further, at least one of the first A element group, the first B element group, the second A element group, and the second B element group is close to each other along the optical axis. It is preferable that it is constituted by a plurality of optical elements arranged. Further, it is preferable that a plurality of sets of the first element group and the second element group are provided.
本発明の第 2発明では、 立方晶系に属する結晶で形成された複数の光学素子を 含む光学系において、  According to a second aspect of the present invention, in an optical system including a plurality of optical elements formed of crystals belonging to a cubic system,
前記光学系の光軸と結晶軸 [ 1 1 0 ] または該結晶軸と光学的に等価な結晶軸 とがほぼ一致するように設定された複数の光学素子からそれぞれ構成された第 3 素子群と第 4素子群とを備え、  A third element group composed of a plurality of optical elements set so that the optical axis of the optical system and the crystal axis [110] or the crystal axis that is optically equivalent to the crystal axis substantially coincide with each other; With a fourth element group,
前記第 3素子群は、 前記光軸を中心として第 3角度だけ相対的に回転した位置 関係を有する第 3 A素子群と第 3 B素子群とを有し、  The third element group includes a third A element group and a third B element group having a positional relationship relatively rotated by a third angle about the optical axis,
前記第 4素子群は、 前記光軸を中心として第 4角度だけ相対的に回転した位置 関係を有する第 4 A素子群と第 4 B素子群とを有し、  The fourth element group includes a fourth A element group and a fourth B element group having a positional relationship relatively rotated by a fourth angle about the optical axis,
前記第 3素子群と前記第 4素子群とは、 前記光軸を中心として第 5角度だけ相 対的に回転した位置関係を有し、  The third element group and the fourth element group have a positional relationship of being rotated by a fifth angle about the optical axis, and
前記光軸に対して所定範囲の角度をなす光束の前記第 3 A素子群における光学 素子中の光路長 L 3 Aと前記第 3 B素子群における光学素子中の光路長 L 3 Bと がほぼ等しく、  The optical path length L 3 A in the optical element of the third A element group and the optical path length L 3 B of the optical element in the third B element group of the light beam forming an angle within a predetermined range with respect to the optical axis are substantially equal to each other. Equal,
前記光軸に対して前記所定範囲の角度をなす光束の前記第 4 A素子群における 光学素子中の光路長 L 4 Aと前記第 4 B素子群における光学素子中の光路長 L 4 Bとがほぼ等しく、  An optical path length L 4 A in the optical element of the fourth A element group and a light path length L 4 B of the optical element in the fourth B element group of the light beam forming the angle within the predetermined range with respect to the optical axis are different. Almost equal,
前記光軸に対して前記所定範囲の角度をなす光束の前記第 3素子群における光 学素子中の光路長 L 3 (= L 3 A + L 3 B ) と前記第 4素子群における光学素子 中の光路長 L 4 (= L 4 A + L 4 B ) とが所定の倍率にしたがって設定されてい ることを特徴とする光学系を提供する。  The optical path length L 3 (= L 3 A + L 3 B) in the optical element in the third element group of the light beam forming the angle in the predetermined range with respect to the optical axis and the optical element in the fourth element group An optical path length L 4 (= L 4 A + L 4 B) is set according to a predetermined magnification.
第 2発明の好ましい態様によれば、 前記第 3素子群における光学素子中の光路 長 3と前記第 4素子群における光学素子中の光路長 L 4とがほぼ等しく設定さ れている。 この場合、 前記第 3素子群における光学素子中の光路長 L 3と前記第 4素子群における光学素子中の光路長 L 4との差が、 前記光束の波長を λ (η m) としたとき、 ± 1. 0 X 10— 6Χλ3 (cm) 以内に設定されていることが 好ましい。 According to a preferred aspect of the second invention, the optical path length 3 in the optical element in the third element group is set to be substantially equal to the optical path length L4 in the optical element in the fourth element group. Have been. In this case, the difference between the optical path length L3 in the optical element in the third element group and the optical path length L4 in the optical element in the fourth element group is when the wavelength of the light beam is λ (ηm). it is preferably set within ± 1. 0 X 10- 6 Χλ 3 (cm).
また、 第 2発明の好ましい態様によれば、 前記第 3 A素子群における光学素子 中の光路長 L 3 Aと前記第 3 B素子群における光学素子中の光路長 L 3 Bとの差 が、 前記光束の波長を λ (nm) としたとき、 ±0. 5X 10— 6 Χλ3 (cm) 以内に設定されている。 さらに、 前記第 4 A素子群における光学素子中の光路長 L 4 Aと前記第 4 B素子群における光学素子中の光路長 L 4 Bとの差が、 前記光 束の波長を λ (nm) としたとき、 ±0. 5 X 10— 6Χλ 3 (cm) 以内に設定 されていることが好ましい。 According to a preferred aspect of the second invention, the difference between the optical path length L 3 A in the optical element in the third A element group and the optical path length L 3 B in the optical element in the third B element group is when the wavelength of the light beam with λ (nm), ± 0. is set within 5X 10- 6 Χλ 3 (cm) . Further, the difference between the optical path length L 4 A in the optical element in the fourth A element group and the optical path length L 4 B in the optical element in the fourth B element group is such that the wavelength of the light flux is λ (nm). when a, ± 0. it is preferable to set within 5 X 10- 6 Χλ 3 (cm ).
さらに、 第 2発明の好ましい態様によれば、 前記光軸と結晶軸 [100] とが ほぼ一致するように設定された複数の光学素子から構成された第 5素子群をさら に備え、 前記第 5素子群は、 前記光軸を中心として第 6角度だけ相対的に回転し た位置関係を有する第 5 A素子群と第 5 B素子群とを有し、 前記光軸に対して前 記所定範囲の角度をなす光束の前記第 5 A素子群における光学素子中の光路長 L 5 Aと前記第 5 B素子群における光学素子中の光路長 L 5 Bとがほぼ等しく、 前 記光軸に対して前記所定範囲の角度をなす光束の前記第 3素子群における光学素 子中の光路長 L 3 (=L 3 A + L 3 B) と前記第 4素子群における光学素子中の 光路長 L4 (=L4A + L4B) との総和光路長 L 34 (=L 3 +L 4) と、 前 記第 5素子群における光学素子中の光路長 L 5 (=L 5A + L 5B) とが所定の 倍率にしたがって設定されている。  Further, according to a preferred aspect of the second invention, the optical device further includes a fifth element group including a plurality of optical elements set so that the optical axis and the crystal axis [100] substantially coincide with each other. The five element group includes a fifth A element group and a fifth B element group having a positional relationship relatively rotated by a sixth angle about the optical axis, and the predetermined element is defined with respect to the optical axis. The optical path length L5A in the optical element of the fifth A element group of the light flux forming the angle of the range is substantially equal to the optical path length L5B in the optical element of the fifth B element group, and On the other hand, the optical path length L 3 (= L 3 A + L 3 B) in the optical element of the third element group and the optical path length L 4 of the optical element in the fourth element group of the light beam forming the predetermined range of angles (= L4A + L4B) and the total optical path length L 34 (= L 3 + L 4) and the optical path length L 5 (= L 5A + L 5B) in the optical element in the fifth element group are predetermined.It is set according to the magnification.
この場合、 前記第 3素子群および前記第 4素子群における光学素子中の総和光 路長 L 34は、 前記第 5素子群における光学素子中の光路長 L 5の約 4倍に設定 されていることが好ましい。 また、 この場合、 前記第 5素子群における光学素子 中の光路長 L 5の約 4倍と前記第 3素子群および前記第 4素子群における光学素 子中の総和光路長 L 34との差が、 前記光束の波長を λ (nm) としたとき、 土 2. 7 X 10— 6 Χλ3 (cm) 以内に設定されていることが好ましい。 さらに、 前記第 5 A素子群における光学素子中の光路長 L 5 Aと前記第 5 B素子群におけ る光学素子中の光路長 L 5 Bとの差が、 前記光束の波長を λ ( n m) としたとき、 ± 0 . 5 X 1 0一6 Χ λ 3 ( c m) 以内に設定されていることが好ましい。 In this case, the total optical path length L34 in the optical element in the third element group and the fourth element group is set to be about four times the optical path length L5 in the optical element in the fifth element group. Is preferred. In this case, the difference between about four times the optical path length L5 in the optical element in the fifth element group and the total optical path length L34 in the optical element in the third element group and the fourth element group is different. when the wavelength of the light beam and lambda (nm), it is preferably set within the soil 2. 7 X 10- 6 Χλ 3 ( cm). further, The difference between the optical path length L5A in the optical element in the fifth A element group and the optical path length L5B in the optical element in the fifth B element group is such that the wavelength of the light flux is λ (nm). when it is preferably set within ± 0. 5 X 1 0 one 6 Χ λ 3 (cm).
また、 第 2発明の好ましい態様によれば、 前記所定範囲の角度は、 前記光学系 の像側開口数の 0 . 6倍に対応する角度よりも大きく且つ前記像側開口数の 0 . 9倍に対応する角度よりも小さい。 さらに、 前記第 3 A素子群と前記第 3 B素子 群とは前記光軸に沿って互いに近接して配置され、 前記第 4 A素子群と前記第 4 B素子群とは前記光軸に沿って互いに近接して配置されていることが好ましい。 また、 前記第 3素子群と前記第 4素子群とは前記光軸に沿って互いに近接して配 置されていることが好ましい。 さらに、 前記第 3 A素子群、 前記第 3 B素子群、 前記第 4 A素子群および前記第 4 B素子群のうちの少なくとも 1つの素子群は、 前記光軸に沿って互いに近接して配置された複数の光学素子から構成されている ことが好ましい。 また、 前記第 3素子群と前記第 4素子群との組を複数備えてい ることが好ましい。 さらに、 前記第 5 A素子群と前記第 5 B素子群とは前記光軸 に沿って互いに近接して配置されていることが好ましい。  According to a preferred aspect of the second invention, the angle in the predetermined range is larger than an angle corresponding to 0.6 times the image-side numerical aperture of the optical system and 0.9 times the image-side numerical aperture. Smaller than the angle corresponding to. Further, the third A element group and the third B element group are arranged close to each other along the optical axis, and the fourth A element group and the fourth B element group are arranged along the optical axis. It is preferable that they are arranged close to each other. Further, it is preferable that the third element group and the fourth element group are arranged close to each other along the optical axis. Further, at least one of the third A element group, the third B element group, the fourth A element group, and the fourth B element group is arranged close to each other along the optical axis. It is preferable that the optical element be composed of a plurality of optical elements. It is preferable that a plurality of sets of the third element group and the fourth element group are provided. Further, it is preferable that the fifth A element group and the fifth B element group are arranged close to each other along the optical axis.
本発明の第 3発明では、 立方晶系に属する結晶で形成された複数の光学素子を 含む光学系において、  According to a third aspect of the present invention, in an optical system including a plurality of optical elements formed of crystals belonging to a cubic system,
前記光学系の光軸と結晶軸 [ 1 1 0 ] または該結晶軸と光学的に等価な結晶軸 とがほぼ一致するように設定された複数の光学素子からそれぞれ構成された第 6 素子群と第 7素子群と第 8素子群と第 9素子群とを備え、  A sixth element group composed of a plurality of optical elements each set so that the optical axis of the optical system and the crystal axis [110] or the crystal axis that is optically equivalent to the crystal axis are substantially the same. A seventh element group, an eighth element group, and a ninth element group,
前記第 7素子群は、 前記第 6素子群に対して前記光軸を中心として所定の向き に第 7角度だけ回転した位置関係を有し、  The seventh element group has a positional relationship rotated by a seventh angle in a predetermined direction about the optical axis with respect to the sixth element group,
前記第 8素子群は、 前記第 7素子群に対して前記光軸を中心として前記所定の 向きに前記第 7角度だけ回転した位置関係を有し、  The eighth element group has a positional relationship rotated by the seventh angle in the predetermined direction about the optical axis with respect to the seventh element group,
前記第 9素子群は、 前記第 8素子群に対して前記光軸を中心として前記所定の 向きに前記第 7角度だけ回転した位置関係を有し、  The ninth element group has a positional relationship rotated by the seventh angle in the predetermined direction about the optical axis with respect to the eighth element group,
前記光軸に対して所定範囲の角度をなす光束の前記第 6素子群における光学素 子中の光路長 L 6と、 前記光軸に対して前記所定範囲の角度をなす光束の前記第 7素子群における光学素子中の光路長 L 7と、 前記光軸に対して前記所定範囲の 角度をなす光束の前記第 8素子群における光学素子中の光路長 L 8と、 前記光軸 に対して前記所定範囲の角度をなす光束の前記第 9素子群における光学素子中の 光路長 L 9とが互いにほぼ等しいことを特徴とする光学系を提供する。 An optical path length L6 of an optical element in the sixth element group of a light beam that forms an angle within a predetermined range with respect to the optical axis; and a light path length L6 that forms an angle within the predetermined range with respect to the optical axis. An optical path length L 7 in the optical element in the seven element group, an optical path length L 8 in the optical element in the eighth element group of a light beam forming an angle in the predetermined range with respect to the optical axis, and The optical path length L9 in the optical element in the ninth element group of the luminous flux forming the angle in the predetermined range is substantially equal to each other.
第 3発明の好ましい態様によれば、 前記第 6素子群における光学素子中の光路 長 L 6と、 前記第 7素子群における光学素子中の光路長 L 7と、 前記第 8素子群 における光学素子中の光路長 L 8と、 前記第 9素子群における光学素子中の光路 長 L 9とから任意に選択された 2つの光路長の差が、 前記光束の波長を λ (η m) としたとき、 ±0. 5 Χ 10_6Χλ3 (cm) 以内に設定されている。 According to a preferred aspect of the third invention, an optical path length L 6 in the optical element in the sixth element group, an optical path length L 7 in the optical element in the seventh element group, and an optical element in the eighth element group When the difference between two optical path lengths arbitrarily selected from the medium optical path length L 8 and the optical path length L 9 in the optical element in the ninth element group is λ (η m), , ± 0.5 Χ 10_ 6 Χλ 3 (cm).
また、 第 3発明の好ましい態様によれば、 前記光軸と結晶軸 [100] または 該結晶軸と光学的に等価な結晶軸とがほぼ一致するように設定された複数の光学 素子から構成された第 10素子群をさらに備え、 前記第 10素子群は、 前記光軸 を中心として第 8角度だけ相対的に回転した位置関係を有する第 10 A素子群と 第 10 B素子群とを有し、 前記光軸に対して前記所定範囲の角度をなす光束の前 記第 1 OA素子群における光学素子中の光路長 L 1 OAと前記第 10B素子群に おける光学素子中の光路長 L 10 Bとがほぼ等しい。 この場合、 前記第 10 A素 子群における光学素子中の光路長 L 1 OAと前記第 10B素子群における光学素 子中の光路長 L 10 Bとの差が、 前記光束の波長を λ (nm) としたとき、 ±0. 5 X 10— 6 Χλ3 (cm) 以内に設定されていることが好ましい。 According to a preferred aspect of the third invention, the optical axis is constituted by a plurality of optical elements set so that the optical axis and the crystal axis [100] or the crystal axis which is optically equivalent to the crystal axis substantially coincide with each other. The tenth element group further includes a 10A element group and a 10B element group having a positional relationship relatively rotated by an eighth angle about the optical axis. The optical path length L 1 OA in the optical element of the first OA element group and the optical path length L 10 B of the optical element in the 10B element group of the light beam forming the angle in the predetermined range with respect to the optical axis. Is approximately equal to In this case, the difference between the optical path length L 1 OA in the optical element in the 10th A element group and the optical path length L 10 B in the optical element in the 10B element group makes the wavelength of the light flux λ (nm ) and the time, ± 0. it is preferable to set within 5 X 10- 6 Χλ 3 (cm ).
また、 第 3発明の好ましい態様によれば、 前記第 6素子群における光学素子中 の光路長 L 6と前記第 7素子群における光学素子中の光路長 L 7と前記第 8素子 群における光学素子中の光路長 L 8と前記第 9素子群における光学素子中の光路 長 L 9との総和光路長 L 69 (=L 6 +L 7 +L 8 +L 9) と、 前記第 10素子 群における光学素子中の光路長 L 10 (=L 10 A + L 10 B) とが所定の倍率 にしたがって設定されている。 この場合、 前記第 6素子群乃至前記第 9素子群に おける光学素子中の総和光路長 L 69は、 前記第 10素子群における光学素子中 の光路長 L 10の約 4倍に設定されていることが好ましい。 また、 この場合、 前 記第 10素子群における光学素子中の光路長 L 10の約 4倍と前記第 6素子群乃 至前記第 9素子群における光学素子中の総和光路長 L 29との差が、 前記光束の 波長を λ (nm) としたとき、 ±2. 7 X 10— 6Χλ3 (cm) 以内に設定され ていることが好ましい。 さらに、 前記第 6素子群乃至前記第 9素子群および前記 第 10素子群のうち少なくとも一方を複数組有することが好ましい。 Further, according to a preferred aspect of the third invention, the optical path length L 6 in the optical element in the sixth element group, the optical path length L 7 in the optical element in the seventh element group, and the optical element in the eighth element group The total optical path length L 69 (= L 6 + L 7 + L 8 + L 9) of the medium optical path length L 8 and the optical path length L 9 in the optical element in the ninth element group, and in the tenth element group The optical path length L 10 (= L 10 A + L 10 B) in the optical element is set according to a predetermined magnification. In this case, the total optical path length L69 in the optical elements in the sixth to ninth element groups is set to be about four times the optical path length L10 in the optical elements in the tenth element group. Is preferred. In this case, the optical path length L10 in the optical element in the tenth element group is about four times as large as the sixth element group. Difference between the total Wako path length L 29 in the optical element in optimum the ninth element group, when the wavelength of the light beam with λ (nm), ± 2. 7 X 10- 6 Χλ 3 (cm) set within It is preferable that it is done. Furthermore, it is preferable that at least one of the sixth to ninth element groups and the tenth element group has a plurality of sets.
さらに、 第 3発明の好ましい態様によれば、 前記光学系の光軸と結晶軸 [1 1 1] とがほぼ一致するように設定された複数の光学素子から構成された第 1 1素 子群をさらに備え、 前記第 1 1素子群は、 前記光軸を中心として第 9角度だけ相 対的に回転した位置関係を有する第 1 1 A素子群と第 1 1 B素子群とを有し、 前 記光軸に対して前記所定範囲の角度をなす光束の前記第 1 1 A素子群における光 学素子中の光路長 L 1 1Aと前記第 11 B素子群における光学素子中の光路長 L 11 Bとがほぼ等しい。 この場合、 前記第 1 1 A素子群における光学素子中の光 路長 L 1 1 Aと前記第 1 1 B素子群における光学素子中の光路長 L 11 Bとの差 が、 前記光束の波長をえ (nm) としたとき、 ±0. 5 X 10— 6Χλ3 (cm) 以内に設定されていることが好ましい。 また、 前記第 1 1素子群を複数組有する ことが好ましい。 Further, according to a preferred aspect of the third invention, a first element group including a plurality of optical elements set so that an optical axis of the optical system and a crystal axis [111] substantially coincide with each other. Further comprising: a first 1A element group and a 1 1B element group having a positional relationship rotated relative to each other by a ninth angle about the optical axis. The optical path length L11A in the optical element of the first 1A element group and the optical path length L11 in the optical element of the 11B element group of the light beam forming the angle within the predetermined range with respect to the optical axis. B is almost equal. In this case, the difference between the optical path length L11A in the optical element in the first 1A element group and the optical path length L11B in the optical element in the first 1B element group is the wavelength of the light beam. when e and (nm), it is preferably set to ± 0. 5 X 10- 6 Χλ 3 (cm) within. Further, it is preferable to have a plurality of sets of the first element group.
また、 第 3発明の好ましい態様によれば、 前記第 6素子群乃至前記第 9素子群 における光学素子中の総和光路長 L 69の 3倍と前記第 1 1素子群における光学 素子中の光路長 L 1 1の 8倍との総和 (=3 XL 69 + 8 XL 1 1) は、 前記第 10素子群における光学素子中の光路長 L 10の約 12倍に設定されている。 この場合、 前記第 6素子群乃至前記第 9素子群における光学素子中の総和光路 長 L 69 (cm) と、 前記第 10素子群における光学素子中の光路長 L 10 (c m) と、 前記第 1 1素子群における光学素子中の光路長 L 1 1 (cm) との間に は、 前記光束の波長を λ (nm) としたとき、 I 3 XL 69— 12XL 10 + 8 XL 1 1 \≤8. 0 X 10— 6 Χ λ 3の条件が成立していることが好ましい。 また、 前記所定範囲の角度は、 前記光学系の像側開口数の 0. 6倍に対応する角度より も大きく且つ前記像側開口数の 0. 9倍に対応する角度よりも小さいことが好ま しい。 Further, according to a preferred aspect of the third invention, the total optical path length L 69 in the optical element in the sixth element group to the ninth element group is three times the optical path length in the optical element in the eleventh element group. The sum of L11 and eight times (= 3XL69 + 8XL11) is set to be about 12 times the optical path length L10 in the optical element in the tenth element group. In this case, the total optical path length L 69 (cm) in the optical element in the sixth element group to the ninth element group, the optical path length L 10 (cm) in the optical element in the tenth element group, When the wavelength of the luminous flux is λ (nm) between the optical path length L 11 (cm) in the optical element in the 1 element group, I 3 XL 69—12XL 10 + 8 XL 1 1 ≤ it is preferred to 8. 0 X 10- 6 Χ λ 3 conditions are satisfied. Preferably, the angle in the predetermined range is larger than an angle corresponding to 0.6 times the image-side numerical aperture of the optical system and smaller than an angle corresponding to 0.9 times the image-side numerical aperture. New
第 1発明〜第 3発明の好ましい態様によれば、 前記結晶はフッ化カルシウム結 晶である。 また、 前記結晶はフッ化バリウム結晶であることが好ましい。 さらに、 少なくとも 1つの凹面反射鏡をさらに備えていることが好ましい。 また、 A r F エキシマレ一ザ一の発振波長に対して最適に収差補正されているか、 あるいは F 2レーザの発振波長に対して最適に収差補正されていることが好ましい。 According to a preferred embodiment of the first to third inventions, the crystal is formed of calcium fluoride. It is a crystal. Preferably, the crystal is a barium fluoride crystal. Further, it is preferable to further include at least one concave reflecting mirror. Further, it is preferable that the optimally aberration correction with respect to A r F excimer one The one optimally or are aberration correction with respect to the oscillation wavelength, or F 2 lasing wavelengths.
本発明の第 4発明では、 マスクを照明するための照明系と、 前記マスクに形成 されたパターンの像を感光性基板上に形成するための第 1発明〜第 3発明の光学 系とを備えていることを特徴とする露光装置を提供する。  According to a fourth aspect of the present invention, there is provided an illumination system for illuminating a mask, and an optical system according to the first to third aspects for forming an image of a pattern formed on the mask on a photosensitive substrate. An exposure apparatus is provided.
本発明の第 5発明では、 第 4発明の露光装置を用いて前記マスクのパターンを 前記感光性基板に露光する露光工程と、 前記露光工程により露光された前記感光 性基板を現像する現像工程とを含むことを特徴とするマイクロデバイスの製造方 法を提供する。 図面の簡単な説明  In the fifth invention of the present invention, an exposure step of exposing the pattern of the mask to the photosensitive substrate using the exposure apparatus of the fourth invention, and a development step of developing the photosensitive substrate exposed in the exposure step The present invention provides a method for manufacturing a micro device characterized by including: BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の各実施形態にかかる投影光学系を備えた露光装置の構成を 概略的に示す図である。  FIG. 1 is a view schematically showing a configuration of an exposure apparatus having a projection optical system according to each embodiment of the present invention.
第 2図は、 本発明の第 1実施形態にかかる投影光学系の構成を概略的に示す図 である。  FIG. 2 is a diagram schematically showing a configuration of a projection optical system according to the first embodiment of the present invention.
第 3図は、 蛍石の結晶軸方位について説明する図である。  FIG. 3 is a diagram illustrating the crystal axis orientation of fluorite.
第 4 A図および第 4 B図は、 第 1実施形態にかかる投影光学系中の蛍石レンズ における光路を説明する図である。  FIG. 4A and FIG. 4B are diagrams illustrating an optical path in a fluorite lens in the projection optical system according to the first embodiment.
第 5 A図および第 5 B図は、 蛍石レンズの光軸を結晶軸 [ 1 1 1 ] と一致させ た場合の複屈折について説明する図である。  5A and 5B are diagrams illustrating birefringence when the optical axis of the fluorite lens is aligned with the crystal axis [111].
第 6 A図および第 6 B図は、 蛍石レンズの光軸を結晶軸 [ 1 0 0 ] と一致させ た場合の複屈折について説明する図である。  6A and 6B are diagrams illustrating birefringence when the optical axis of the fluorite lens is aligned with the crystal axis [100].
第 7 A図および第 7 B図は、 第 1実施形態の変形例にかかる投影光学系中の第 1レンズ群および第 2レンズ群の構成および光路を説明する図である。  FIG. 7A and FIG. 7B are diagrams illustrating a configuration and an optical path of a first lens group and a second lens group in a projection optical system according to a modified example of the first embodiment.
第 8図は、 本発明の第 2実施形態にかかる投影光学系の構成を概略的に示す図 である。 第 9 A図および第 9 B図は、 第 2実施形態にかかる投影光学系中の蛍石レンズ における光路を説明する図である。 FIG. 8 is a diagram schematically showing a configuration of a projection optical system according to a second embodiment of the present invention. FIGS. 9A and 9B are diagrams illustrating an optical path in a fluorite lens in the projection optical system according to the second embodiment.
第 1 0 A図〜第 1 0 D図は、 蛍石レンズの光軸を結晶軸 [ 1 1 0 ] と一致させ た場合の複屈折について説明する図である。  FIGS. 10A to 10D are diagrams illustrating birefringence when the optical axis of the fluorite lens is aligned with the crystal axis [110].
第 1 1図は、 本発明の第 4実施形態にかかる投影光学系の構成を概略的に示す 図である。  FIG. 11 is a diagram schematically showing a configuration of a projection optical system according to a fourth embodiment of the present invention.
第 1 2 A図および第 1 2 B図は、 第 4実施形態にかかる投影光学系中の蛍石レ ンズにおける光路を説明する図である。  FIG. 12A and FIG. 12B are diagrams illustrating an optical path in a fluorite lens in a projection optical system according to the fourth embodiment.
第 1 3図は、 マイクロデバイスとしての半導体デバイスを得る際の手法のフロ 一チヤ一卜である。  FIG. 13 is a flowchart of a method for obtaining a semiconductor device as a micro device.
第 1 4図は、 マイクロデバイスとしての液晶表示素子を得る際の手法のフロー チャートである。 発明を実施するための最良の形態  FIG. 14 is a flow chart of a method for obtaining a liquid crystal display element as a micro device. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施形態を、 添付図面に基づいて説明する。  An embodiment of the present invention will be described with reference to the accompanying drawings.
第 1図は、 本発明の各実施形態にかかる投影光学系を備えた露光装置の構成を 概略的に示す図である。 本発明の各実施形態では、 露光装置に搭載される投影光 学系に本発明を適用している。 第 1図を参照すると、 各実施形態にかかる露光装 置は、 たとえば A r Fエキシマレーザーや 2レ一ザ一のような光源 1を備えて いる。 光源 1から供給された光束は、 送光系 2を経由して、 照明光学系 3に導か れる。 照明光学系 3は、 図示した折り曲げミラ一 3 aおよび 3 bや不図示のォプ ティカルインテグレー夕 (照度均一化素子) 等からなり、 レチクル (マスク) 1 0 1をほぼ均一な照度で照明する。 FIG. 1 is a view schematically showing a configuration of an exposure apparatus having a projection optical system according to each embodiment of the present invention. In each embodiment of the present invention, the present invention is applied to a projection optical system mounted on an exposure apparatus. Referring to FIG. 1, an exposure apparatus according to each embodiment includes a light source 1 such as an ArF excimer laser or two lasers. The light beam supplied from the light source 1 is guided to the illumination optical system 3 via the light transmission system 2. The illumination optical system 3 includes the bent mirrors 3a and 3b shown in the figure and an optical integrator (illustration equalizing element) not shown in the drawing, and illuminates the reticle (mask) 101 with almost uniform illuminance. .
レチクル 1 0 1は、 たとえば真空吸着によりレチクルホルダー 4に保持され、 レチクルステージ 5の作用によって移動可能に構成されている。 レチクル 1 0 1 を透過した光束は、 投影光学系 3 0 0を介して集光され、 半導体ウェハ 1 0 2の ような感光性基板上に、 レチクル 1 0 1上のパターンの投影像を形成する。 ゥェ ハ 1 0 2も、 たとえば真空吸着によりウェハホルダー 7に保持され、 ウェハステ ージ 8の作用によって移動可能に構成されている。 こうして、 ウェハ 1 0 2をス テツプ移動させつつ一括露光を行うことにより、 ウェハ 1 0 2の各露光領域にレ チクル 1 0 1のパターン投影像を順次転写することができる。 Reticle 101 is held by reticle holder 4 by, for example, vacuum suction, and is configured to be movable by the action of reticle stage 5. The light beam transmitted through the reticle 101 is condensed through the projection optical system 300 to form a projected image of the pattern on the reticle 101 on a photosensitive substrate such as a semiconductor wafer 102. . The wafer 102 is also held by the wafer holder 7 by, for example, vacuum suction, and It is configured to be movable by the action of page 8. In this way, by performing the batch exposure while moving the wafer 102 in steps, the pattern projection image of the reticle 101 can be sequentially transferred to each exposure area of the wafer 102.
また、 投影光学系 3 0 0に対してレチクル 1 0 1およびウェハ 1 0 2を相対移 動させつつ走査露光 (スキャン露光) を行うことにより、 ウェハ 1 0 2の各露光 領域にレチクル 1 0 1のパターン投影像を順次転写することも可能である。 なお、 実際の電子デバイスへの回路パターンの露光に際しては、 前の工程で形成された パターンの上に次の工程のパターンを正確に位置合わせして露光する必要がある ので、 露光装置にはウェハ 1 0 2上の位置検出マークの位置を正確に検出するた めのァライメント顕微鏡 1 0が搭載されている。  Further, by performing scanning exposure (scan exposure) while relatively moving the reticle 101 and the wafer 102 with respect to the projection optical system 300, the reticle 101 is placed on each exposure area of the wafer 102. Can be sequentially transferred. When exposing a circuit pattern to an actual electronic device, it is necessary to accurately align the pattern in the next step on the pattern formed in the previous step and expose it. An alignment microscope 10 for accurately detecting the position of the position detection mark on 102 is mounted.
光源 1として F 2レーザーや A r Fエキシマレーザー (あるいは波長 1 2 6 η mの A r 2レーザ一など) を用いる場合、 送光系 2、 照明光学系 3および投影光 学系 3 0 0の光路が、 たとえば窒素のような不活性ガスでパージされている。 特 に、 F 2レーザ一を用いる場合には、 レチクル 1 0 1、 レチクルホルダー 4およ びレチクルステージ 5がケーシング 6によって外部の雰囲気と隔離され、 このケ —シング 6の内部空間も不活性ガスでパージされている。 同様に、 ウェハ 1 0 2、 ウェハホルダー 7およびウェハステージ 8がケーシング 9によって外部の雰囲気 と隔離され、 このケーシング 9の内部空間も不活性ガスでパージされている。 第 2図は、 本発明の第 1実施形態にかかる投影光学系の構成を概略的に示す図 である。 第 1実施形態では、 波長 λ ( n m) が 1 9 3 n mの A r Fレ一ザ一に対 して収差補正が最適化された屈折型の投影光学系に本発明を適用している。 第 1 実施形態の投影光学系 1 0 0 (第 1図の投影光学系 3 0 0に対応) では、 レチク ル 1 0 1上の 1点を射出した光束が、 光軸 A X 1 0 0に沿って配置されたレンズ 1 0 3〜 1 1 0を介して、 感光性基板としての半導体ウェハ 1 0 2上の 1点に集 光する。 こうして、 ウェハ 1 0 2上には、 レチクル 1 0 1に描画されたパターン の投影像が形成される。 When an F 2 laser or an Ar F excimer laser (or an Ar 2 laser with a wavelength of 126 ηm) is used as the light source 1, the light transmission system 2, the illumination optical system 3, and the projection optical system 300 The light path is purged with an inert gas such as, for example, nitrogen. In particular, when an F 2 laser is used, the reticle 101, the reticle holder 4 and the reticle stage 5 are isolated from the outside atmosphere by the casing 6, and the internal space of the casing 6 is also inert gas. Has been purged. Similarly, the wafer 102, the wafer holder 7, and the wafer stage 8 are isolated from the outside atmosphere by a casing 9, and the internal space of the casing 9 is also purged with an inert gas. FIG. 2 is a diagram schematically showing a configuration of a projection optical system according to the first embodiment of the present invention. In the first embodiment, the present invention is applied to a refractive projection optical system in which aberration correction is optimized for an ArF laser having a wavelength λ (nm) of 193 nm. In the projection optical system 100 of the first embodiment (corresponding to the projection optical system 300 of FIG. 1), a light beam emitted from one point on the reticle 101 is moved along the optical axis AX100. Through a lens 103-110 arranged in one direction, to a point on a semiconductor wafer 102 as a photosensitive substrate. Thus, a projected image of the pattern drawn on the reticle 101 is formed on the wafer 102.
第 1実施形態では、 レンズ 1 0 3〜; 1 1 0のうち、 レンズ 1 0 5、 1 0 6、 1 0 9および 1 1 0はフッ化カルシウム結晶 (蛍石) で形成され、 その他のレンズ は合成石英ガラスで形成されている。 第 3図は、 蛍石の結晶軸方位を説明する図 である。 第 3図を参照すると、 蛍石の結晶軸は、 立方晶系の XYZ座標系に基づ いて規定される。 すなわち、 +X軸に沿って結晶軸 [100] が、 +Y軸に沿つ て結晶軸 [010] が、 +Z軸に沿って結晶軸 [00 1] がそれぞれ規定される。 また、 XZ平面において結晶軸 [100] および結晶軸 [001] と 45° を なす方向に結晶軸 [101] が、 XY平面において結晶軸 [100] および結晶 軸 [010] と 45° をなす方向に結晶軸 [1 10] が、 YZ平面において結晶 軸 [010] および結晶軸 [001] と 45 ° をなす方向に結晶軸 [011] が それぞれ規定される。 さらに、 +X軸、 +Y軸および +Z軸に対して等しい鋭角 をなす方向に結晶軸 [1 1 1] が規定される。 なお、 第 3図では、 +X軸、 +Y 軸および +Z軸で規定される空間における結晶軸のみを図示しているが、 他の空 間においても同様に結晶軸が規定される。 In the first embodiment, among the lenses 103 to 110, lenses 105, 106, 109 and 110 are formed of calcium fluoride crystals (fluorite), and the other lenses Is made of synthetic quartz glass. FIG. 3 is a diagram illustrating the crystal axis orientation of fluorite. Referring to FIG. 3, the crystal axis of fluorite is defined based on a cubic XYZ coordinate system. That is, a crystal axis [100] is defined along the + X axis, a crystal axis [010] is defined along the + Y axis, and a crystal axis [00 1] is defined along the + Z axis. In the XZ plane, the crystal axis [101] is at 45 ° to the crystal axis [100] and the crystal axis [001], and is the direction at 45 ° to the crystal axis [100] and the crystal axis [010] in the XY plane. The crystal axis [110] is defined in the YZ plane, and the crystal axis [011] is defined in a direction at 45 ° to the crystal axis [010] and the crystal axis [001] in the YZ plane. Furthermore, the crystal axis [1 1 1] is defined in a direction that forms an equal acute angle to the + X axis, the + Y axis, and the + Z axis. Although FIG. 3 shows only the crystal axes in the space defined by the + X axis, the + Y axis, and the + Z axis, the crystal axes are similarly defined in other spaces.
蛍石では、 第 3図中実線で示す結晶軸 [1 1 1]、 およびこれと等価な不図示 の結晶軸 [一 1 11 ], [1 - 1 1], [11 - 1] では、 複屈折が'ほぼ零 (最小) である。 同様に、 第 3図中実線で示す結晶軸 [100], [010], [001] に おいても、 複屈折がほぼ零 (最小) である。 一方、 第 3図中破線で示す結晶軸 In fluorite, the crystal axis [1 1 1] shown by the solid line in Fig. 3 and the equivalent crystal axes [1 1 1 1], [1-1 1], and [11-1] not shown in the figure are duplicated. Refraction is almost zero (minimum). Similarly, the birefringence is almost zero (minimum) at the crystal axes [100], [010], and [001] indicated by the solid lines in Fig. 3. On the other hand, the crystal axis indicated by the broken line in FIG.
[1 10], [101], [01 1], およびこれと等価な不図示の結晶軸 [― 1 1[1 10], [101], [01 1] and equivalent crystal axes not shown [― 11
0], [- 101], [0 1 - 1] では、 複屈折が最大である。 For [0], [-101], [0 1-1], the birefringence is the largest.
上述したように、 蛍石結晶の結晶軸 [100] および [11 1] の方向に進む 光については、 複屈折性 (直交する偏光面を有する 2つの光束間の屈折率差) は 生じない。 したがって、 蛍石レンズ (光学素子) の結晶軸 [1 11] または [1 As described above, birefringence (difference in refractive index between two light beams having orthogonal polarization planes) does not occur for light traveling in the directions of the crystal axes [100] and [11 1] of the fluorite crystal. Therefore, the crystal axis of the fluorite lens (optical element) [1 11] or [1 11
00] と投影光学系 100の光軸 AX100 (ひいては蛍石レンズの光軸) とが 一致するように設定すれば、 光軸 AX 100と平行に進む結像光に対して複屈折 は生じないことになる。 逆に、 結晶軸 [01 1] に沿って進む結像光に対しては、 複屈折量が最大となる。 00] and the optical axis AX100 of the projection optical system 100 (and, consequently, the optical axis of the fluorite lens), the birefringence does not occur for the imaging light traveling parallel to the optical axis AX100. become. Conversely, the amount of birefringence is greatest for imaging light traveling along the crystal axis [01 1].
本発明では、 相対的な結晶軸方位を厳密に定義する必要がある場合には、 たと えば結晶軸 [01 1] と光学的に等価な複数の結晶軸を、 [01 1], [0- 1 1], [110] などのように、 符号や配列位置を変えて表記 (列記) する。 しかしな がら、 相対的な結晶軸方位を厳密に定義する必要がない場合には、 結晶軸 [01 1] の表記をもって、 [01 1], [0— 1 1], [1 1 0] の様な複数の光学的に 等価な結晶軸を一括的に表わすものとする。 In the present invention, when it is necessary to strictly define the relative crystal axis orientation, for example, a plurality of crystal axes optically equivalent to the crystal axis [01 1] are represented by [01 1], [0- 1 1], [110], etc. are written (listed) by changing the code and array position. But However, if it is not necessary to define the relative crystallographic axis orientation strictly, the notation of the crystallographic axis [01 1] can be expressed as [01 1], [0—11], [1 1 0], etc. A plurality of optically equivalent crystal axes are collectively expressed.
ところで、 投影光学系 100の解像度を向上させるには、 ウェハ上 102への 光束の最大入射角 0100 (第 2図参照) の正弦である像側 NA (像側開口数) を例えば 0. 85程度に拡大する必要がある。 したがって、 投影光学系 100内 を通る光束の進行方向 (ひいては各レンズ 103〜1 10を通る光束の進行方 向) を、 すべて光軸 AX 100と平行に設定することは不可能である。 第 4A図 および第 4 B図は、 第 1実施形態にかかる投影光学系中の蛍石レンズにおける光 路を説明する図である。  By the way, to improve the resolution of the projection optical system 100, the image side NA (image side numerical aperture) which is the sine of the maximum incident angle 0100 (see FIG. 2) of the light beam on the wafer 102 is set to, for example, about 0.85. Need to be expanded. Therefore, it is impossible to set all the traveling directions of the light beams passing through the projection optical system 100 (and, consequently, the traveling directions of the light beams passing through the lenses 103 to 110) to be parallel to the optical axis AX100. FIG. 4A and FIG. 4B are diagrams illustrating an optical path in a fluorite lens in the projection optical system according to the first embodiment.
蛍石レンズ 105, 106, 109, 1 10に着目すると、 第 4 A図および第 4 B図に示すように、 ウェハ上 102に最大入射角 0100で入射する光束 (像 側 NAに相当する光束) 100 eに関する蛍石レンズ 105, 106, 109, 1 10の光路 (1056, 106 e, 109 e, 1 10 e ) は光軸 AX 100と 平行でない。 また、 ウェハ上 102への入射角が最大入射角 0100の 6割〜 9 割程度の光束 (すなわち像側 NAの 6割〜 9割程度に相当する光束) 100mに ついても、 蛍石レンズ 105, 106, 109, 1 10の光路 (105m, 10 6m, 109m, 110m) は光軸 AX 100と平行でない。 その結果、 結晶軸 [1 11] とは平行にならないこれらの光束に基づいて、 蛍石結晶の複屈折に起 因する波面収差 (以下、 「複屈折の影響」 と称する) が生じることになる。  Focusing on the fluorite lenses 105, 106, 109, and 110, as shown in FIGS. 4A and 4B, a light beam incident on the wafer 102 at a maximum incident angle of 0100 (a light beam corresponding to the image-side NA). The optical paths (1056, 106 e, 109 e, 110 e) of the fluorite lenses 105, 106, 109, 110 for 100 e are not parallel to the optical axis AX100. Also, for a light beam 100m whose incident angle on the wafer 102 is about 60% to 90% of the maximum incident angle 0100 (that is, a light flux corresponding to about 60% to 90% of the image side NA), the fluorite lens 105, The optical paths of 106, 109 and 110 (105m, 106m, 109m, 110m) are not parallel to the optical axis AX100. As a result, these luminous fluxes that are not parallel to the crystal axis [1 11] will cause wavefront aberrations (hereinafter referred to as “birefringence effects”) caused by the birefringence of the fluorite crystal. .
第 5 A図および第 5 B図は、 蛍石レンズの光軸を結晶軸 [1 1 1] と一致させ た場合の複屈折について説明する図である。 第 5 A図を参照すると、 蛍石レンズ 109の光軸 (ひいては光軸 A X 100) が、 結晶軸 [1 1 1] と一致するよう に設定されている。 ここで、 結晶軸 [11 1] は第 5 A図の紙面に対して垂直に 上方 (+z方向) に向いており、 各矢印は他の結晶軸の向きを示している。 この とき、 光軸 AX100に垂直な面内には、 結晶軸 [一 1 10] と [1— 10] と が反対向きに配置される。 一方、 +z方向において光軸 AX 100と約 35° を なす方向べクトルを光軸 AX 100を中心として回転させることにより得られる 円錐の側面上には、 [01 1], [1 10], [101] の 3本の結晶軸が光軸 AX 100を回転中心として 120° の角度間隔で並ぶ。 5A and 5B are diagrams illustrating birefringence when the optical axis of the fluorite lens is aligned with the crystal axis [111]. Referring to FIG. 5A, the optical axis of fluorite lens 109 (and thus optical axis AX 100) is set to coincide with the crystal axis [111]. Here, the crystal axis [11 1] is directed upward (+ z direction) perpendicular to the plane of FIG. 5A, and each arrow indicates the direction of the other crystal axis. At this time, the crystal axes [1-110] and [1-10] are arranged in opposite directions in a plane perpendicular to the optical axis AX100. On the other hand, it can be obtained by rotating the directional vector, which forms about 35 ° with the optical axis AX 100 in the + z direction, about the optical axis AX 100. On the side surface of the cone, three crystal axes [01 1], [1 10], and [101] are arranged at an angular interval of 120 ° about the optical axis AX100 as the center of rotation.
これらの結晶軸 [01 1], [1 10], [10 1] は、 上述したように、 その進 行方向への光について複屈折量が最大になる結晶軸である。 ここで、 光軸 AX 1 00を中心とした円の径方向に沿って偏光面を有する光 (以下、 「R偏光」 と称 する) の屈折率と、 光軸 AX 100を中心とした円の周方向に沿って偏光面を有 する光 (以下、 「6>偏光」 と称する) の屈折率との差として複屈折値を定義する。 第 5 A図を参照すると、 結晶軸 [1 1 1] を光軸とする蛍石レンズ 109では、 120° の角度間隔を隔てた 3つの結晶軸 [01 1], [1 10], [101] によ つて、 周方向 (回転方向) に 120° の周期で複屈折値が変動する回転異方性が 生じることになる。  As described above, these crystal axes [01 1], [1 10], and [10 1] are the crystal axes at which the amount of birefringence becomes maximum for light in the traveling direction. Here, the refractive index of light having a plane of polarization along the radial direction of the circle around the optical axis AX100 (hereinafter referred to as “R-polarized light”) and the refractive index of the circle around the optical axis AX100 The birefringence value is defined as the difference from the refractive index of light having a plane of polarization along the circumferential direction (hereinafter referred to as “6> polarized light”). Referring to FIG. 5A, in the fluorite lens 109 having the crystal axis [1 1 1] as the optical axis, three crystal axes [01 1], [1 10], [101] separated by an angle of 120 ° are provided. ], Rotational anisotropy occurs in which the birefringence value fluctuates at a period of 120 ° in the circumferential direction (rotational direction).
一方、 第 5 B図を参照すると、 蛍石レンズ 1 10の光軸 (ひいては光軸 AX 1 00) も、 結晶軸 [1 11] と一致するように設定されている。 しかしながら、 光軸 AX100に垂直な面内における結晶軸 [— 110] の向きが、 第 5 A図の 蛍石レンズ 109の場合に比して、 0106 = 60° だけ— z軸廻りに回転して いる。 換言すると、 第 5 A図の蛍石レンズ 109と第 5 B図の蛍石レンズ 1 10 とは、 ともに光軸 AX 100と結晶軸 [11 1] とが一致するように設定されて いるが、 光軸 AX100を中心として 60° だけ相対的に回転した位置関係を有 する。  On the other hand, referring to FIG. 5B, the optical axis of the fluorite lens 110 (and thus the optical axis AX 100) is also set to coincide with the crystal axis [1 11]. However, the orientation of the crystal axis [—110] in the plane perpendicular to the optical axis AX100 is rotated by 0106 = 60 ° about the z axis compared to the case of the fluorite lens 109 in FIG. 5A. I have. In other words, the fluorite lens 109 in FIG. 5A and the fluorite lens 110 in FIG. 5B are both set so that the optical axis AX 100 and the crystal axis [11 1] coincide. It has a positional relationship that is relatively rotated by 60 ° about the optical axis AX100.
第 5 B図を参照すると、 蛍石レンズ 1 10では、 複屈折値の回転異方性が 12 0° 周期であることに変わりはないが、 その最大値および最小値の位置が光軸 A X 100を中心として 60 ° だけ回転することになる。 このように、 共に結晶軸 [1 1 1] を光軸とし且つ光軸を中心にしてその結晶方位が相対的に 60° 回転 している厚さの等しい 2枚の蛍石レンズを組み合わせることにより、 各結晶レン ズが有する 120° 周期の回転異方性が相殺されて、 光軸を中心とする方位角に ついてほぼ同様な複屈折量 (R偏光と 0偏光との屈折率差) を有するレンズ群が 形成されることが、 本件発明者によって明らかになった。  Referring to FIG. 5B, in the fluorite lens 110, the rotational anisotropy of the birefringence value still has a period of 120 °, but the position of the maximum value and the minimum value is the optical axis AX100. Will rotate by 60 ° around the center. Thus, by combining two fluorite lenses of equal thickness, both of which have the crystal axis [1 1 1] as the optical axis and whose crystal orientation is relatively rotated by 60 ° about the optical axis, The crystal lens has the same amount of birefringence (difference in refractive index between R-polarized light and zero-polarized light) at the azimuth centered on the optical axis because the rotational anisotropy of the 120 ° cycle of each crystal lens is canceled out. It has been clarified by the present inventors that a lens group is formed.
ただし、 この構成によって複屈折の影響が解消される訳ではない。 上述の通り、 R偏光と S偏光との屈折率差は光軸を中心とした方位角に対してほぼ一様になる だけであって、 屈折率差自体は残存しているからである。 なお、 本件発明者の解 析によって、 結晶軸 [1 1 1] を光軸とし且つ他の結晶軸 (光軸 AX1 1 1に垂 直な結晶軸 [— 1 10] 等) が相対的に 60° 回転している 2枚のほぼ等しい厚 さの蛍石レンズでは、 R偏光に対する屈折率 (nR l 1 1) が 0偏光に対する屈 折率 (Π 01 1 1) よりも高くなることが判明した。 However, this configuration does not eliminate the influence of birefringence. As mentioned above, This is because the difference in the refractive index between the R-polarized light and the S-polarized light becomes almost uniform with respect to the azimuth around the optical axis, and the difference in the refractive index itself remains. According to the analysis of the present inventor, the crystal axis [111] is set as the optical axis and the other crystal axes (such as the crystal axis [-110] perpendicular to the optical axis AX111) are relatively 60 °. ° It has been found that the two rotating fluorite lenses of approximately equal thickness have a higher refractive index for R-polarized light (nR l 11) than a refractive index for 0-polarized light (Π 01 11 1). .
そこで、 第 1実施形態では、 光軸を中心とした方位角に対してほぼ一様な残存 複屈折の除去のために、 結晶軸 [111] を光軸とするレンズペア (109, 1 10) に加えて、 結晶軸 [100] を光軸とするレンズのペア (105, 1 0 6) を用いる。 第 6 A図および第 6 B図は、 蛍石レンズの光軸を結晶軸 [1 0 0] と一致させた場合の複屈折について説明する図である。 第 6 A図を参照する と、 蛍石レンズ 105の光軸 (ひいては光軸 AX 100) が、 結晶軸 [100] と一致するように設定されている。 ここで、 結晶軸 [100] は第 6図の紙面に 対して垂直に上方 (+z方向) に向いており、 各矢印は他の結晶軸の向きを示し ている。  Therefore, in the first embodiment, in order to remove the residual birefringence almost uniformly with respect to the azimuth centered on the optical axis, a lens pair having the crystal axis [111] as the optical axis (109, 110) In addition, a pair of lenses (105, 106) whose optical axis is the crystal axis [100] is used. 6A and 6B are diagrams illustrating birefringence when the optical axis of the fluorite lens is aligned with the crystal axis [100]. Referring to FIG. 6A, the optical axis of the fluorite lens 105 (and thus the optical axis AX 100) is set to coincide with the crystal axis [100]. Here, the crystal axis [100] is oriented vertically upward (+ z direction) with respect to the plane of FIG. 6, and each arrow indicates the direction of the other crystal axis.
このとき、 光軸 AX 1 00に垂直な面内には、 結晶軸 [001] と [00— 1] とが反対向きに配置される。 また、 結晶軸 [001] および [00— 1] に 直交するように、 結晶軸 [010] と [0_ 10] とがやはり反対向きに配置さ れる。 一方、 + z方向において光軸 AX 100と約 45 ° をなす方向ベクトルを 光軸 AX 100を中心として回転させることにより得られる円錐の側面上には、  At this time, the crystal axes [001] and [00-1] are arranged in opposite directions in a plane perpendicular to the optical axis AX100. Also, the crystal axes [010] and [0_10] are also arranged in opposite directions so as to be orthogonal to the crystal axes [001] and [00-1]. On the other hand, on the side of the cone obtained by rotating a direction vector that forms an angle of about 45 ° with the optical axis AX 100 in the + z direction around the optical axis AX 100,
[1 10], [10 1], [1 - 10], [10- 1] の 4本の結晶軸が光軸 AX 10 0を回転中心として 90° の角度間隔で並ぶ。  The four crystal axes [1 10], [10 1], [1-10], and [10-1] are arranged at 90 ° angular intervals about the optical axis AX 100 as the center of rotation.
これらの結晶軸 [110], [101], [1 - 10], [10- 1] は、 上述した ように、 その進行方向への光について複屈折量が最大になる結晶軸である。 第 6 A図を参照すると、 結晶軸 [1 00] を光軸とする蛍石レンズ 105では、 9 0° の角度間隔を隔てた 4つの結晶軸 [1 10], [101], [1 -10], [10 一 1] によって、 周方向 (回転方向) に 90° の周期で複屈折値が変動する回転 異方性が生じることになる。 一方、 第 6B図を参照すると、 蛍石レンズ 106の光軸 (ひいては光軸 AX 1 00) も、 結晶軸 [100] と一致するように設定されている。 しかしながら、 光軸 AX100に垂直な面内における結晶軸 [001] の向きが、 第 6 A図の蛍 石レンズ 105の場合に比して、 01 10 = 45° だけ一 z軸廻りに回転してい る。 換言すると、 第 6 A図の蛍石レンズ 105と第 6 B図の蛍石レンズ 106と は、 ともに光軸 AX100と結晶軸 [100] とが一致するように設定されてい るが、 光軸 AX 100を中心として 45° だけ相対的に回転した位置関係を有す る。 As described above, these crystal axes [110], [101], [1-10], [10-1] are the crystal axes at which the amount of birefringence becomes maximum for light in the traveling direction. Referring to FIG. 6A, in the fluorite lens 105 having the crystal axis [100] as the optical axis, four crystal axes [1 10], [101], [1- According to [10] and [10-1], rotational anisotropy occurs in which the birefringence value fluctuates in the circumferential direction (rotation direction) with a period of 90 °. On the other hand, referring to FIG. 6B, the optical axis of fluorite lens 106 (and thus optical axis AX 100) is also set to coincide with the crystal axis [100]. However, the orientation of the crystal axis [001] in the plane perpendicular to the optical axis AX100 is rotated around the z-axis by 01 10 = 45 ° compared to the case of the fluorite lens 105 in Fig. 6A. You. In other words, the fluorite lens 105 in FIG. 6A and the fluorite lens 106 in FIG. 6B are both set so that the optical axis AX100 and the crystal axis [100] coincide, but the optical axis AX It has a relative position of 45 ° relative to 100.
第 6 B図を参照すると、 蛍石レンズ 1 06では、 複屈折値の回転異方性が 9 0° 周期であることに変わりはないが、 その最大値および最小値の位置が光軸 A X 1 00を中心として 45 ° だけ回転することになる。 このように、 共に結晶軸 [100] を光軸とし且つ光軸を中心にしてその結晶方位が相対的に 45° 回転 している厚さの等しい 2枚の蛍石レンズを組み合わせることにより、 各結晶レン ズが有する 90° 周期の回転異方性が相殺されて、 光軸を中心とする方位角につ いてほぼ同様な複屈折量 (R偏光と 0偏光との屈折率差) を有するレンズ群が形 成されることが、 本件発明者によって明らかになった。  Referring to FIG. 6B, in the fluorite lens 106, the rotational anisotropy of the birefringence value still has a period of 90 °, but the position of the maximum value and the minimum value is the position of the optical axis AX 1 It will rotate 45 ° around 00. Thus, by combining two fluorite lenses of equal thickness, both of which have the crystal axis [100] as the optical axis and whose crystal orientation is relatively rotated by 45 ° about the optical axis, A lens that has approximately the same amount of birefringence (difference in refractive index between R-polarized light and zero-polarized light) at an azimuth around the optical axis because the 90 ° -period rotational anisotropy of the crystal lens is canceled out. It was revealed by the present inventors that groups were formed.
この場合にも、 上述の構成によって複屈折の影響が解消される訳ではない。 上 述の通り、 R偏光と 0偏光との屈折率差は光軸を中心とした方位角に対してほぼ 一様になるだけであって、 屈折率差自体は残存しているからである。 なお、 本件 発明者の解析によって、 結晶軸 [100] を光軸とし且つ他の結晶軸 (光軸 AX 100に垂直な結晶軸 [001] 等) が相対的に 45° 回転している 2枚のほぼ 等しい厚さの蛍石レンズでは、 R偏光に対する屈折率 (nR l O O) が Θ偏光に 対する屈折率 (n 01 O O) よりも低くなることが判明した。  Also in this case, the above configuration does not eliminate the influence of birefringence. As described above, the difference in the refractive index between the R-polarized light and the 0-polarized light is only approximately uniform with respect to the azimuth around the optical axis, and the difference in the refractive index itself remains. According to the analysis by the inventor of the present invention, two sheets whose crystal axis [100] is the optical axis and other crystal axes (such as the crystal axis [001] perpendicular to the optical axis AX100) are relatively rotated by 45 °. It was found that the refractive index (nRlOO) for R-polarized light was lower than that for に -polarized light (n01OO) for a fluorite lens with a thickness almost equal to the above.
すなわち、 結晶軸 [1 1 1] を光軸としたレンズペア (109, 1 10) と、 結晶軸 [100] を光軸としたレンズペア (105, 106) とで、 複屈折の符 号が逆になる。 したがって、 結晶軸 [1 1 1] を光軸としたレンズペア (109, 1 10) と結晶軸 [100] を光軸としたレンズペア (105, 106) とを組 み合わせることにより、 複屈折の影響をある程度除去することが可能である。 と ころで、 結晶軸 [100] を光軸としたレンズペア ( 105, 106) の複屈折 量すなわち (nR l 00 -η θ 100) と、 結晶軸 [11 1] を光軸としたレン ズペア (109, 1 10) での複屈折量すなわち (nR l l l— n S l l l) と では、 互いに複屈折量が異なる。 従って、 この複屈折量に基づいて、 結晶軸 [1 00] を光軸としたレンズペア ( 105, 106) の光路長と、 結晶軸 [1 1 1] を光軸としたレンズペア (109, 1 10) との光路長を設定することによ り、 複屈折の影響をほぼ完全に除去することが可能である。 具体的には、 結晶軸That is, the birefringence code of the lens pair (109, 1 10) with the crystal axis [1 1 1] as the optical axis and the lens pair (105, 106) with the crystal axis [100] as the optical axis is Reverse. Therefore, by combining a lens pair (109, 110) with the crystal axis [111] as the optical axis and a lens pair (105, 106) with the crystal axis [100] as the optical axis, birefringence is obtained. Can be removed to some extent. When At this time, the birefringence of the lens pair (105, 106) with the crystal axis [100] as the optical axis, that is, (nR100-ηθ100), and the lens pair (111) with the crystal axis [11 1] as the optical axis The birefringence in (109, 110), that is, (nR lll—n S lll), is different from each other. Therefore, based on this birefringence, the optical path length of the lens pair (105, 106) with the crystal axis [100] as the optical axis and the lens pair (109, 109) with the crystal axis [1 1 1] as the optical axis By setting the optical path length to 1), the effect of birefringence can be almost completely eliminated. Specifically, the crystal axis
[100] を光軸としたレンズペア (105, 106) の複屈折量すなわち (n R l O O-η θ Ι Ο Ο) は、 結晶軸 [1 1 1] を光軸としたレンズペア (109, 1 10) での複屈折量すなわち (nR 1 1 1— n 6· 1 1 1) の約一 1. 5倍にな る。 このため、 結晶軸 [111] を光軸としたレンズペア (109, 1 10) の 光路長を、 結晶軸 [100] を光軸としたレンズペア (105, 106) の光路 長の約 1. 5倍に設定すればよい。 そうすることによって、 複屈折の影響をほぼ 完全に除去することが可能である。 The birefringence of the lens pair (105, 106) with [100] as the optical axis, that is, (n R l O O-η θ Ι Ο Ο) is the lens pair with the crystal axis [1 1 1] as the optical axis ( The amount of birefringence at 109, 110), that is, (nR 1 1 1—n 6 1 1 1), is about 1.5 times larger. Therefore, the optical path length of the lens pair (109, 1 10) with the crystal axis [111] as the optical axis is approximately 1.1, which is about the optical path length of the lens pair (105, 106) with the crystal axis [100] as the optical axis. You can set it to 5 times. By doing so, it is possible to almost completely eliminate the effect of birefringence.
第 1実施形態では、 以上の関係を第 2図の投影光学系 100に適用している。 すなわち、 蛍石レンズ 105, 106, 109, 1 10のうち、 蛍石レンズ 10 5および 106の厚さを、 蛍石レンズ 109および 1 10の厚さに比べて薄く設 定している。 そして、 蛍石レンズ 105および 106の光軸を共に蛍石の結晶軸  In the first embodiment, the above relationship is applied to the projection optical system 100 shown in FIG. That is, of the fluorite lenses 105, 106, 109, and 110, the thickness of the fluorite lenses 105 and 106 is set to be smaller than the thickness of the fluorite lenses 109 and 110. And the optical axes of the fluorite lenses 105 and 106 together
[100] に一致させ、 蛍石レンズ 109および 1 10の光軸を共に蛍石の結晶 軸 [1 1 1] に一致させている。 なお、 蛍石レンズ 109と 1 10とは光軸に垂 直な面内にある結晶軸 [— 110] が光軸を回転中心として相対的に 60° 回転 した位置関係を有するように設定し、 蛍石レンズ 105と 106とは光軸に垂直 な面内にある結晶軸 [001] が光軸を回転中心として相対的に 45 ° 回転した 位置関係を有するように設定している。  The optical axes of the fluorite lenses 109 and 110 are both aligned with the fluorite crystal axis [1 1 1]. The fluorite lenses 109 and 110 are set so that the crystal axis [-110] in the plane perpendicular to the optical axis has a positional relationship of being rotated by 60 ° relative to the optical axis as the center of rotation. The fluorite lenses 105 and 106 are set such that the crystal axis [001] in a plane perpendicular to the optical axis has a positional relationship rotated by 45 ° relative to the optical axis as the center of rotation.
そして、 像側 NA (最大 NA) の 6割〜 9割に相当する光束 (すなわち光軸 A X 100に対して像側 NAの 0. 6倍〜 0. 9倍に対応する角度をなす光束) 1 00mについて、 蛍石レンズ 105内の光路長 105mと蛍石レンズ 106内の 光路長 106mとの差が ±0. 5X 10— 6Χλ 3 ( c m) 以内になるように設定 している。 同様に、 蛍石レンズ 109内の光路長 109mと蛍石レンズ 110内 の光路長 1 10mとの差が ±0. 5 Χ 10_6Χλ3 (cm) 以内になるように設 定している。 さらに、 結晶軸 [100] を光軸とする第 2レンズ群 (105, 1 06) での光路長の総和 ( 105m+ 106m) の 1. 5倍と、 結晶軸 [ 1 1 1] を光軸とする第 1レンズ群 (109, 110) での光路長の総和 (109m + 1 1 Om) との差が土 1. 0 X 10 _6Χλ3 (cm) 以内になるように設定し ている。 Then, the luminous flux corresponding to 60 to 90% of the image side NA (maximum NA) (that is, the luminous flux forming an angle corresponding to 0.6 to 0.9 times the image side NA with respect to the optical axis AX100) 1 for 00m, set as the difference between the optical path length 106m of optical path length 105m and the fluorite lens 106 in the fluorite lens 105 is within ± 0. 5X 106 Χλ 3 ( cm) are doing. Similarly, the difference between the optical path length 1 10 m of the optical path length 109m and the fluorite lens 110 in the fluorite lens 109 is ± 0. 5 Χ 10_ 6 Χλ 3 (cm) is set up to be within. Furthermore, 1.5 times the total optical path length (105m + 106m) of the second lens group (105, 106) with the crystal axis [100] as the optical axis, and the crystal axis [111] as the optical axis Sagado 1. is set to be 0 X 10 _ 6 Χλ 3 ( cm) within the sum of the optical path length of the first lens unit (109, 110) (109m + 1 1 Om) to.
これによつて、 結晶軸 [1 1 1] を光軸とする第 1レンズ群 (1 09, 1 1 0) 内および結晶軸 [100] を光軸とする第 2レンズ群 (105, 106) 内 において、 光軸 AX 100を中心とした方位角に対する複屈折の均一化がそれぞ れ図られる。 加えて、 結晶軸 [11 1] を光軸とする第 1レンズ群 (109, 1 10) と結晶軸 [100] を光軸とする第 2レンズ群 (105, 106) との組 み合わせにより、 光軸 AX100を中心とした方位角に対してそれぞれ均一化さ れた複屈折が互いに相殺され、 その結果として複屈折の影響をほぼ完全に消し去 ることが可能になる。  Thus, the first lens group (109, 110) having the crystal axis [111] as the optical axis and the second lens group (105, 106) having the crystal axis [100] as the optical axis. Among them, the birefringence is made uniform with respect to the azimuth around the optical axis AX100. In addition, the first lens group (109, 110) with the crystal axis [111] as the optical axis and the second lens group (105, 106) with the crystal axis [100] as the optical axis are combined. However, the birefringence that has been made uniform with respect to the azimuth around the optical axis AX100 is offset each other, and as a result, the influence of the birefringence can be almost completely eliminated.
なお、 上述の第 1実施形態では、 結晶軸 [1 1 1] を光軸とする第 1レンズ群 (109, 110) および結晶軸 [100] を光軸とする第 2レンズ群 (105, 106) は、 それぞれ一対の蛍石レンズから構成されている。 しかしながら、 結 晶軸 [111] を光軸とする第 1レンズ群および結晶軸 [100] を光軸とする 第 2レンズ群のうちの少なくとも一方が 3枚以上の蛍石レンズから構成される変 形例も可能である。 第 7 A図および第 7B図は、 第 1実施形態の変形例にかかる 投影光学系中の第 1レンズ群および第 2レンズ群の構成および光路を説明する図 である。 以下、 第 7 A図および第 7 B図を参照して、 第 1実施形態の変形例を説 明する。  In the first embodiment, the first lens group (109, 110) having the crystal axis [111] as the optical axis and the second lens group (105, 106) having the crystal axis [100] as the optical axis. ) Are each composed of a pair of fluorite lenses. However, at least one of the first lens group having the crystal axis [111] as the optical axis and the second lens group having the crystal axis [100] as the optical axis is composed of three or more fluorite lenses. Examples are also possible. FIGS. 7A and 7B are diagrams illustrating the configuration and optical paths of a first lens group and a second lens group in a projection optical system according to a modification of the first embodiment. Hereinafter, a modified example of the first embodiment will be described with reference to FIGS. 7A and 7B.
第 7 A図を参照すると、 結晶軸 [100] を光軸とする第 2レンズ群が、 一対 の蛍石レンズ 105 aおよび 105 bからなる第 2 Aレンズ群と、 1つの蛍石レ ンズ 106 aからなる第 2 Bレンズ群とから構成されている。 ここで、 蛍石レン ズ 105 aと 105 bとは、 光軸に垂直な面内での結晶軸 [001] の向きが互 いに同じである。 そして、 蛍石レンズ 1 06 aでは、 光軸に垂直な面内での結晶 軸 [001] の向きが、 蛍石レンズ 105 aおよび 105 bに比して相対的に 4 5° 回転している。 変形例の第 2レンズ群においては、 像側 NAの 6割〜 9割に 相当する光束 10 lmについて、 第 2 Aレンズ群中の光路長の総和 (105 am + 105 bm) と第 2 Bレンズ群中の光路長 (106 am) との差を ± 0. 5 X 10 -6 Χλ 3 (cm) 以内に抑えることにより、 光軸 AX 101からの方位角に 依らず複屈折をほぼ一定にすることができる。 Referring to FIG. 7A, a second lens group having the crystal axis [100] as an optical axis includes a second A lens group including a pair of fluorite lenses 105a and 105b and one fluorite lens 106. and a second B lens group consisting of a. Here, the fluorite lenses 105a and 105b are such that the orientation of the crystal axis [001] in the plane perpendicular to the optical axis is It is the same. In the fluorite lens 106a, the direction of the crystal axis [001] in the plane perpendicular to the optical axis is rotated by 45 ° relative to the fluorite lenses 105a and 105b. . In the second lens group of the modified example, the sum of the optical path lengths (105 am + 105 bm) in the second A lens group and the second B lens for 10 lm of the luminous flux corresponding to 60 to 90% of the image side NA by suppressing the difference between the optical path length in the group (106 am) within ± 0. 5 X 106 Χλ 3 ( cm), is substantially constant birefringence regardless of the azimuth angle from the optical axis AX 101 be able to.
一方、 第 7 B図を参照すると、 結晶軸 [1 1 1] を光軸とする第 1レンズ群が、 一対の蛍石レンズ 109 aおよび 109 bからなる第 1 Aレンズ群と、 1つの蛍 石レンズ 1 10 aからなる第 1 Bレンズ群とから構成されている。 ここで、 蛍石 レンズ 109 aと 109 bとは、 光軸に垂直な面内での結晶軸 [—1 10] の向 きが互いに同じである。 そして、 蛍石レンズ 1 10 aでは、 光軸に垂直な面内で の結晶軸 [一 1 10] の向きが、 蛍石レンズ 109 aおよび 109 bに比して相 対的に 60° 回転している。 変形例の第 1レンズ群においては、 像側 NAの 6割 〜9割に相当する光束 102mについて、 第 1 Aレンズ群中の光路長の総和 (1 09 am+ 109 bm) と第 1 Bレンズ群中の光路長 (1 10 am) との差を士 0. 5 X 10— 6Χλ3 (cm) 以内に抑えることにより、 光軸 AX10 1からの 方位角に依らず複屈折をほぼ一定にすることができる。 On the other hand, referring to FIG. 7B, the first lens group having the crystal axis [111] as the optical axis is composed of a first A lens group including a pair of fluorite lenses 109a and 109b, and one fluorescent lens. A first B lens group consisting of a stone lens 110a. Here, the directions of the crystal axes [-110] of the fluorite lenses 109a and 109b in a plane perpendicular to the optical axis are the same. In the fluorite lens 110a, the orientation of the crystal axis [110] in the plane perpendicular to the optical axis is rotated by 60 ° relative to the fluorite lenses 109a and 109b. ing. In the first lens group of the modified example, the sum of the optical path lengths in the first A lens group (1 09 am + 109 bm) and the first B lens group for 102 m of the luminous flux corresponding to 60% to 90% of the image side NA by suppressing the difference between the optical path length (1 10 am) within Judges 0. 5 X 10- 6 Χλ 3 ( cm) in, to a substantially constant birefringence regardless of the azimuth angle from the optical axis AX10 1 be able to.
さらに、 結晶軸 [100] を光軸とする第 2レンズ群での光路長の総和 (10 5 am+ 106 am+ 105 bm) の 1. 5倍と、 結晶軸 [1 1 1] を光軸とす る第 1レンズ群での光路長の総和 (109 am+ 109 bm+ 110 am) との 差を ± 1. 0 Χ 10-6Χλ3 (cm) 以内に設定することにより、 光軸 AX 10 1からの方位角に対してほぼ一定の複屈折を相殺し、 複屈折の影響をほぼ完全に 消し去ることが可能になる。 Furthermore, 1.5 times the total optical path length (10 5 am + 106 am + 105 bm) of the second lens group with the crystal axis [100] as the optical axis, and the crystal axis [1 1 1] as the optical axis that by setting the difference within ± 1. 0 Χ 10- 6 Χλ 3 (cm) of the sum of the optical path length (109 am + 109 bm + 110 am) in the first lens group, from the optical axis AX 10 1 Birefringence, which is almost constant with respect to azimuth, can be canceled out, and the effect of birefringence can be almost completely eliminated.
なお、 上述の変形例では、 第 1 Bレンズ群および第 2 Bレンズ群は、 それぞれ 1枚の蛍石レンズから構成されている。 しかしながら、 これに限定されることな く、 第 1 Aレンズ群および第 2 Aレンズ群と同様に、 第 1 Bレンズ群および第 2 Bレンズ群をそれぞれ複数枚の蛍石レンズで構成することもできる。 この場合、 第 1 Bレンズ群中の光路長の総和および第 2 Bレンズ群中の光路長の総和も、 そ れぞれ複数枚の蛍石レンズ中の光路長の総和になることはいうまでもない。 In the above-described modified example, each of the first B lens group and the second B lens group includes one fluorite lens. However, the present invention is not limited to this. Like the first A lens group and the second A lens group, each of the first B lens group and the second B lens group may include a plurality of fluorite lenses. it can. in this case, Needless to say, the sum of the optical path lengths in the first B lens group and the sum of the optical path lengths in the second B lens group are also the sum of the optical path lengths in the plurality of fluorite lenses.
また、 上述の変形例において、 第 2 Aレンズ群では、 結像光束の光路に沿って、 一対の蛍石レンズ 1 0 5 aと 1 0 5 bとが比較的近接して配置されている。 また、 第 1 Aレンズ群では、 結像光束の光路に沿って、 一対の蛍石レンズ 1 0 9 aと 1 0 9 bとが近接して配置されている。 しかしながら、 一般的に、 第 1 Aレンズ群、 第 1 Bレンズ群、 第 2 Aレンズ群および第 2 Bレンズ群の各レンズ群において、 複数の蛍石レンズが近接して配置される構成に限定されるものではない。  In the above-described modified example, in the second A lens group, a pair of fluorite lenses 105a and 105b are disposed relatively close to each other along the optical path of the image forming light beam. In the first A lens group, a pair of fluorite lenses 109 a and 109 b are arranged close to each other along the optical path of the image forming light beam. However, in general, each of the first A lens group, the first B lens group, the second A lens group, and the second B lens group is limited to a configuration in which a plurality of fluorite lenses are arranged close to each other. It is not something to be done.
たとえば、 各レンズ群中の蛍石レンズの間に、 石英ガラスからなる石英レンズ や結晶材料から形成されているが他の結晶軸を光軸とする結晶レンズ (以下、 こ れらを 「考慮外レンズ」 と総称する) が配置されていても、 本発明の効果は発揮 される。 ただし、 各レンズ群中に配置される考慮外レンズが比較的大きなパワー (屈折力) を有する場合には、 これらの考慮外レンズの屈折作用により、 各レン ズ群 (1 A, 1 B , 2 A, 2 B ) で露光光束の光軸となす角度が大きく異なって しまい、 本発明による複屈折の解消効果が薄らぐ恐れがある。 このため、 第 1 A レンズ群、 第 1 Bレンズ群、 第 2 Aレンズ群および第 2 Bレンズ群の各レンズ群 では、 結像光束の光路に沿って、 複数の蛍石レンズが近接して配置されることが 望ましい。  For example, between the fluorite lenses in each lens group, a quartz lens made of quartz glass or a crystal lens formed of a crystalline material but having the other crystal axis as the optical axis (hereinafter, these are not considered) Lens)), the effect of the present invention is exhibited. However, when the non-considered lenses arranged in each lens group have relatively large power (refractive power), each lens group (1 A, 1 B, 2 In A, 2B), the angle between the exposure light beam and the optical axis greatly differs, and the effect of eliminating birefringence according to the present invention may be reduced. For this reason, in each of the first A lens group, the first B lens group, the second A lens group, and the second B lens group, a plurality of fluorite lenses are located close to each other along the optical path of the imaging light beam. It is desirable to be arranged.
同様に、 第 1 Aレンズ群と第 1 Bレンズ群とは第 1レンズ群を構成し、 その相 互作用によって複屈折を解消するので、 第 1 Aレンズ群と第 1 Bレンズ群との間 にも大きなパワーを有するレンズが配置されないことが望ましい。 そして、 第 1 Aレンズ群と第 1 Bレンズ群とは結像光束の光路に沿って近接して配置されるこ とがさらに望ましい。 これは、 第 2レンズ群を構成する第 2 Aレンズ群と第 2 B レンズ群との間においても同様である。  Similarly, the first A lens group and the first B lens group constitute a first lens group, and the birefringence is eliminated by the interaction between the first A lens group and the first B lens group. It is desirable that no lens having a large power be arranged. It is further desirable that the first A lens group and the first B lens group are arranged close to each other along the optical path of the image forming light beam. This is the same between the second A lens group and the second B lens group that constitute the second lens group.
なお、 第 1実施形態にかかる投影光学系においては問題がないが、 投影光学系 の設計タイプによっては、 第 1レンズ群と第 2レンズ群との間に大きなパワーを 有するレンズを配置した場合に、 第 1レンズ群と第 2レンズ群との間の複屈折の 相殺効果が薄れてしまうこともある。 このような投影光学系においては、 第 1レ ンズ群と第 2レンズ群の間に大きなパワーを有するレンズを配置しないことが望 ましい。 そして、 第 1レンズ群と第 2レンズ群とは結像光束の光路に沿って近接 して配置されることがさらに望ましい。 なお、 以上の実施形態においては、 蛍石 等の結晶で形成された各レンズ内の結像光束は、 全てウェハ等の感光性基板 (被 露光基板) 102に向かって収束していく光束であるとしている。 この場合には、 蛍石結晶の結晶軸 [11 1] を光軸とするレンズペア (第 1レンズ群) において は、 両レンズの結晶方位を、 光軸である結晶軸 [1 1 1] を中心にして相互に 6 0度回転させると良いことは、 上記実施形態で述べた通りである。 ただし、 ペア となる 2枚のレンズあるいはそれ以上のレンズの間にパワーの大きなレンズが介 在する等の理由により、 特定のレンズにおける光束が感光性基板 102に向かつ て発散するように変化する場合には、 このレンズによって生じる複屈折は、 他の レンズで生じる複屈折とは回転異方性が異なつてくる。 Although there is no problem in the projection optical system according to the first embodiment, depending on the design type of the projection optical system, when a lens having a large power is disposed between the first lens group and the second lens group. However, the birefringence canceling effect between the first lens group and the second lens group may be weakened. In such a projection optical system, the first lens It is desirable not to place a lens having a large power between the lens group and the second lens group. It is further desirable that the first lens group and the second lens group are arranged close to each other along the optical path of the image forming light beam. In the above embodiment, the image forming light flux in each lens formed of a crystal such as fluorite is a light flux converging toward a photosensitive substrate (substrate to be exposed) 102 such as a wafer. And In this case, in a lens pair (first lens group) having the fluorite crystal axis [11 1] as the optical axis, the crystal orientation of both lenses is set to the crystal axis [1 1 1] as the optical axis. As described in the above embodiment, it is preferable to rotate the image by 60 degrees from the center. However, the luminous flux of a specific lens changes so as to diverge toward the photosensitive substrate 102 due to the presence of a lens having a large power between two or more lenses that form a pair. In some cases, the birefringence produced by this lens will have a different rotational anisotropy than the birefringence produced by other lenses.
すなわち、 発散光束の場合には、 光軸 (結晶軸 [1 11]) に対する角度が収 束光束とは逆になる。 第 5A図を参照すると、 収束光束の光軸 AX 100となす 角がプラスであり、 第 5 A図中の光軸 AXに対して右側から入射する場合に、 発 散光束は光軸 AX 100となす角がマイナスとなり、 第 5 A図中の光軸 AXに対 して左側から入射することになる。 このとき、 発散光束が受ける複屈折作用は、 第 5 B図に示した、 光軸 (結晶軸 [1 1 1]) を中心に 60度回転したレンズに 収束光束が入射した場合の作用と同じになる。 従って、 結晶軸 [111] を光軸 とする第 1レンズ群中で、 その内部を通る結像光束が、 一方で収束となり他方で 発散となっているレンズペアについては、 光軸を中心に 60度回転させる必要は なく、 同じ結晶軸が光軸に垂直な面内の同一方向を向いていた方が良い。 一方、 蛍石結晶の結晶軸 [100] を光軸とするレンズペア (第 2レンズ群) では、 第 6 A図および第 6 B図より、 収束光束および発散光束のいずれに対しても複屈折 の作用は同じなので、 その内部を通る結像光束が一方で収束になり他方で発散と なっているレンズペアについても、 光軸を中心に 45度回転させた方が良いこと に変わりはない。  In other words, in the case of a divergent light beam, the angle with respect to the optical axis (crystal axis [111]) is opposite to that of the convergent light beam. Referring to FIG. 5A, the angle formed by the convergent light beam with the optical axis AX100 is positive, and when the light beam is incident on the optical axis AX in FIG. 5A from the right side, the divergent light beam becomes the optical axis AX100. The angle formed becomes negative, and the light enters from the left side with respect to the optical axis AX in FIG. 5A. At this time, the birefringence effect of the divergent light beam is the same as the effect when the convergent light beam is incident on the lens rotated 60 degrees around the optical axis (crystal axis [1 1 1]) shown in Fig. 5B. become. Therefore, in the first lens group with the crystal axis [111] as the optical axis, the imaging light flux passing through the inside of the first lens group is converged on one side and diverged on the other side. It is not necessary to rotate them by degrees, and it is better for the same crystal axis to point in the same direction in a plane perpendicular to the optical axis. On the other hand, in the lens pair (the second lens group) with the crystal axis [100] of the fluorite crystal as the optical axis, as shown in FIGS. 6A and 6B, both the convergent light beam and the divergent light beam are birefringent Since the effect of is the same, it is still better to rotate the lens pair 45 degrees around the optical axis for a lens pair in which the imaged light beam passing through it converges on the one hand and diverges on the other.
第 8図は、 本発明の第 2実施形態にかかる投影光学系の構成を概略的に示す図 である。 第 2実施形態では、 波長 λ ( n m) が 1 5 7 n mの F 2レーザーに対し て収差補正が最適化された反射屈折型の投影光学系に本発明を適用している。 第 2実施形態の投影光学系 2 0 0 (第 1図の投影光学系 3 0 0に対応) では、 レチ クル 2 0 1 (第 1図のレチクル 1 0 1に対応) 上の 1点を射出した光束が、 光路 変更手段としての反射プリズム 2 0 3で偏向された後、 光軸 A X 2 0 0 bに沿つ て配置されたレンズ 2 0 5および 2 0 6を介して、 凹面反射鏡 2 0 4に入射する。 凹面反射鏡 2 0 4で反射された光束は、 レンズ 2 0 6および 2 0 5を介して、 反射プリズム 2 0 3で再び偏向される。 反射プリズム 2 0 3で偏向された光束は、 光軸 A X 2 0 0 aに沿って配置されたレンズ 2 0 7〜2 1 2を介して、 ウェハ 2 0 2 (第 1図のウェハ 1 0 2に対応) 上の 1点に集光する。 こうして、 ウェハ 2 0 2上には、 レチクル 2 0 1に描画されたパターンの投影像が形成される。 第 2 実施形態では、 すべてのレンズ 2 0 5〜2 1 2がフッ化カルシウム結晶 (蛍石) で形成されている。 FIG. 8 is a diagram schematically showing a configuration of a projection optical system according to a second embodiment of the present invention. It is. In the second embodiment, the present invention is applied to the wavelength lambda (nm) is 1 5 7 nm of F 2 with respect to laser aberration correction optimized catadioptric projection optical system. In the projection optical system 200 (corresponding to the projection optical system 300 in FIG. 1) of the second embodiment, one point on the reticle 201 (corresponding to the reticle 101 in FIG. 1) is emitted. The reflected light is deflected by a reflecting prism 203 serving as an optical path changing means, and then passed through lenses 205 and 206 arranged along an optical axis AX200b to form a concave reflecting mirror 2. It is incident on 04. The light beam reflected by the concave reflecting mirror 204 is deflected again by the reflecting prism 203 through the lenses 206 and 205. The light beam deflected by the reflecting prism 203 is transferred to the wafer 202 (the wafer 102 in FIG. 1) through lenses 207 to 212 arranged along the optical axis AX200a. Focus on one point above. Thus, a projected image of the pattern drawn on the reticle 201 is formed on the wafer 202. In the second embodiment, all the lenses 205 to 212 are formed of calcium fluoride crystals (fluorite).
第 2実施形態の投影光学系 2 0 0において、 蛍石の複屈折の影響を顕著に生じ させるレンズ群は、 その内部における結像光束の進行方向が光軸 A X 2 0 0 aま たは AX 2 0 0 bに対して大きな角度をなすようなレンズ群である。 第 8図を参 照すると、 凹面反射鏡 2 0 4の近傍に配置された蛍石レンズ 2 0 5および 2 0 6、 並びにウェハ 2 0 2の近傍に配置された蛍石レンズ 2 1 0, 2 1 1 , 2 1 2にお いて、 結像光束の進行方向が光軸 A X 2 0 0 aまたは A X 2 0 0 bに対して大き な角度をなしている。 なお、 どのレンズが複屈折の影響を顕著に生じさせるかは レンズ設計に依存して変動するので、 複屈折の影響を顕著に生じさせるレンズが 常に上述のようなレンズであるわけではない。  In the projection optical system 200 of the second embodiment, the lens group that causes the birefringence of fluorite significantly has an optical axis AX 200 a or AX This lens group forms a large angle with respect to 200 b. Referring to FIG. 8, it can be seen that the fluorite lenses 205 and 206 located near the concave reflecting mirror 204 and the fluorite lenses 210 and 2 located near the wafer 202. In 1 1 and 2 12, the traveling direction of the imaging light flux forms a large angle with respect to the optical axis AX200a or AX200b. Since which lens causes the remarkable effect of birefringence fluctuates depending on the lens design, the lens that causes the remarkable effect of birefringence is not always the above-mentioned lens.
特に、 反射屈折型の投影光学系 2 0 0では、 凹面反射鏡 2 0 4の近傍に配置さ れた蛍石レンズ 2 0 5および 2 0 6を結像光束が往復 2回透過するため、 これら の蛍石レンズ 2 0 5および 2 0 6の複屈折の影響は倍加されることになる。 そこ で、 第 2実施形態では、 蛍石レンズ 2 0 5および 2 0 6からなる第 1レンズ群に おいて、 結晶軸 [ 1 1 1 ] を光軸 A X 2 0 0 b (ひいては蛍石レンズ 2 0 5およ び 2 0 6の光軸) と一致させている。 そして、 蛍石レンズ 2 0 5と 2 0 6とは、 光軸に垂直な面内にある結晶軸 [一 1 10] が光軸を中心として相対的に 60° 回転するように配置されている。 したがって、 蛍石レンズ 205は第 1 Aレンズ 群を構成し、 蛍石レンズ 206は第 1 Bレンズ群を構成している。 In particular, in the catadioptric projection optical system 200, the imaging luminous flux is transmitted twice back and forth through the fluorite lenses 205 and 206 arranged near the concave reflecting mirror 204. The effect of the birefringence of the fluorite lenses 205 and 206 will be doubled. Therefore, in the second embodiment, in the first lens group including the fluorite lenses 205 and 206, the crystal axis [111] is set to the optical axis AX200b (hence, the fluorite lens 2). 05 and 206 optical axes). And the fluorite lenses 205 and 206 The crystal axis [1-110] in the plane perpendicular to the optical axis is arranged to rotate relative to the optical axis by 60 °. Therefore, the fluorite lens 205 constitutes the first A lens group, and the fluorite lens 206 constitutes the first B lens group.
一方、 蛍石レンズ 210, 211, 212からなる第 2レンズ群では、 結晶軸 [100] を光軸 AX 200 aと一致させている。 ここで、 3枚の蛍石レンズ 2 10〜212のうち、 最も厚い蛍石レンズ 210で第 2 Aレンズ群を構成し、 他 の 2枚の蛍石レンズ 21 1および 212で第 2 Bレンズ群を構成している。 すな わち、 蛍石レンズ 210と蛍石レンズ 21 1および 212とは、 光軸に垂直な面 内にある結晶軸 [001] が光軸を中心として相対的に 90° 回転するように配 置されている。  On the other hand, in the second lens group including the fluorite lenses 210, 211, and 212, the crystal axis [100] coincides with the optical axis AX200a. Here, of the three fluorite lenses 210 to 212, the thickest fluorite lens 210 constitutes the second A lens group, and the other two fluorite lenses 211 and 212 constitute the second B lens group. Is composed. That is, the fluorite lens 210 and the fluorite lenses 211 and 212 are arranged such that the crystal axis [001] in a plane perpendicular to the optical axis rotates relatively 90 ° about the optical axis. Is placed.
第 9 A図および第 9 B図は、 第 2実施形態にかかる投影光学系中の蛍石レンズ における光路を説明する図である。 第 9 A図および第 9 B図では、 ウェハ上 20 2に最大入射角 0200 (第 8図を参照) で入射する光束 (像側 N Aに相当する 光束) を参照符号 200 eで示している。 第 2実施形態では、 像側 NAの 6割〜 9割に相当する光束 200mについて、 第 1 Aレンズ群中の光路長の総和 (20 5 am+ 205 bm) と第 1 Bレンズ群中の光路長の総和 (206 am+ 206 bm) との差が土 0. 5 X 10— 6 Χλ3 (cm) 以内になるように設定している。 また、 像側 NAの 6割〜 9割に相当する光束 20 Omについて、 第 2 Aレンズ群 中の光路長 (210m) と第 2 Bレンズ群中の光路長の総和 ( 21 1 m+ 212 m) との差が ±0. 5 X 10 _6Χλ3 (cm) 以内になるように設定している。 そして、 像側 NAの 6割〜 9割に相当する光束 20 Omについて、 結晶軸 [1 1 1] を光軸とする第 1レンズ群中の光路長の総和 (205 am+ 205 bm + 206 am+ 206 bm) と、 結晶軸 [100] を光軸とする第 2レンズ群中の 光路長の総和 (21 Om+ 21 lm+ 212m) の 1. 5倍との差が ± 1. 0 X 10— 6Χλ3 (cm) 以内になるように設定している。 こうして、 第 2実施形態 においても第 1実施形態と同様に、 第 1レンズ群と第 2レンズ群との組み合わせ により、 複屈折の影響をほぼ完全に消し去ることが可能になる。 FIGS. 9A and 9B are diagrams illustrating an optical path in a fluorite lens in the projection optical system according to the second embodiment. 9A and 9B, a light beam (a light beam corresponding to the image-side NA) incident on the wafer 202 at the maximum incident angle 0200 (see FIG. 8) is indicated by reference numeral 200e. In the second embodiment, the sum of the optical path lengths in the first A lens group (205 am + 205 bm) and the optical path lengths in the first B lens group for 200 m of light flux equivalent to 60% to 90% of the image side NA are described. the sum (206 am + 206 bm) is set to be within Sagado 0. 5 X 10- 6 Χλ 3 ( cm) of the. The sum of the optical path length in the 2nd A lens group (210 m) and the optical path length in the 2nd B lens group (211 m + 212 m) for a light flux of 20 Om corresponding to 60% to 90% of the image side NA the difference is set ± 0. so within 5 X 10 _ 6 Χλ 3 ( cm) of the. Then, for a light flux of 20 Om corresponding to 60% to 90% of the NA on the image side, the sum of the optical path lengths in the first lens group with the crystal axis [1 1 1] as the optical axis (205 am + 205 bm + 206 am + 206 and bm), 1. ± difference between 5-fold 1. 0 X 10- 6 Χλ 3 of the sum of the optical path length of the second lens unit to the crystal axis [100] to the optical axis (21 Om + 21 lm + 212m ) (cm). Thus, in the second embodiment, as in the first embodiment, the effect of birefringence can be almost completely eliminated by the combination of the first lens group and the second lens group.
ところで、 上述の第 2実施形態では、 全てのレンズ 205〜212が蛍石で形 成されているため、 第 1レンズ群 (205, 206) および第 2レンズ群 (21 0, 21 1, 212) 以外の他の蛍石レンズ 207〜209においても複屈折が 生じている。 しかしながら、 蛍石レンズ 207〜209では、 結像光束の進行方 向の光軸に対してなす角度が比較的小さい。 したがって、 蛍石レンズ 207〜2 09の光軸を結晶軸 [1 1 1] または [100] と一致させることにより、 各蛍 石レンズ 207〜209で発生する複屈折量を小さく抑えることができ、 ひいて は蛍石レンズ 207〜209による複屈折の影響を小さく抑えることができる。 ただし、 これらの蛍石レンズ 207〜209による複屈折の影響を無視するこ とができない場合には、 蛍石レンズ 207〜209 (実際には 4つ以上のレンズ が必要) で第 1レンズ群および第 2レンズ群を構成し、 第 1レンズ群および第 2 レンズ群に対して本発明を適用すればよい。 すなわち、 第 1レンズ群では光軸を 結晶軸 [1 11] と一致させ、 第 2レンズ群では光軸を結晶軸 [100] と一致 させる。 そして、 第 1レンズ群を構成する第 1 Aレンズ群と第 1 Bレンズ群とを 光軸を中心として結晶軸方位が所定の角度関係となるように設定するとともに、 第 2レンズ群を構成する第 2 Aレンズ群と第 2 Bレンズ群とを光軸を中心として 結晶軸方位が所定の角度関係となるように設定する。 さらに、 像側 N Aの 6割〜 9割に相当する光束について各レンズ群 (1A, I B, 2 A, 2 B) 内の光路長 が所定の関係を満たすように設定することにより、 複屈折の影響をさらに高精度 に補正することが可能になる。 By the way, in the second embodiment described above, all the lenses 205 to 212 are formed of fluorite. Therefore, birefringence also occurs in the fluorite lenses 207 to 209 other than the first lens group (205, 206) and the second lens group (210, 211, 212). However, the fluorite lenses 207 to 209 form a relatively small angle with respect to the optical axis in the traveling direction of the imaging light beam. Therefore, by making the optical axis of the fluorite lenses 207 to 209 coincide with the crystal axis [111] or [100], the amount of birefringence generated in each of the fluorite lenses 207 to 209 can be reduced. As a result, the influence of birefringence by the fluorite lenses 207 to 209 can be reduced. However, if the effects of birefringence by the fluorite lenses 207 to 209 cannot be ignored, the first lens group and the fluorite lenses 207 to 209 (actually, four or more lenses are required) are used. What is necessary is just to constitute the second lens group, and apply the present invention to the first lens group and the second lens group. That is, in the first lens group, the optical axis coincides with the crystal axis [111], and in the second lens group, the optical axis coincides with the crystal axis [100]. Then, the first A lens group and the first B lens group that constitute the first lens group are set so that the crystal axis directions have a predetermined angular relationship around the optical axis, and the second lens group is formed. The second A lens group and the second B lens group are set such that the crystal axis directions have a predetermined angular relationship about the optical axis. Furthermore, by setting the optical path length in each lens group (1A, IB, 2A, 2B) to satisfy a predetermined relationship for the luminous flux equivalent to 60 to 90% of the image side NA, the birefringence The effect can be corrected with higher accuracy.
なお、 上述の第 1実施形態および第 2実施形態では、 第 1 Aレンズ群内の光路 長の総和と第 1 Bレンズ群内の光路長の総和との差に対する許容値および第 2 A レンズ群内の光路長の総和と第 2 Bレンズ群内の光路長の総和との差に対する許 容値を、 ±0. 5 X 10— 6 Χλ 3 (cm) に設定している。 この許容値の具体的 な数値は、 波長 λが 193 (nm) の A r Fレーザー光源の場合すなわち第 1実 施形態の場合には ±3. 6 (cm) となる。 また、 波長 λが 1 57 (nm) の F 2レーザー光源の場合すなわち第 2実施形態の場合には ± 1. 9 (cm) となる。 一方、 第 2レンズ群内の光路長の総和の 1. 5倍と第 1レンズ群内の光路長の 総和との差に対する許容値を、 ± 1. 0 Χ 10-6Χλ3 (cm) に設定している。 この許容値の具体的な数値は、 波長 λが 193 (nm) の A r Fレーザー光源の 場合すなわち第 1実施形態の場合には ±7. 2 (cm) となる。 また、 波長入が 157 (nm) の F 2レーザ一光源の場合すなわち第 2実施形態の場合には ± 3. 8 (cm) となる。 上記の様に、 光路長差の許容値を表す式において波長 λの 3 乗の係数が掛かるのは、 結晶材料中の光の進行方向に依存する複屈折の場合、 屈 折率の変動量すなわち結像光束の波面のずれ量 (単位は長さ) が λ_2に比例し て生じ、 これは波面収差 (位相) としては λ— 3に比例して結像特性に悪影響を 与える量であるためである。 In the first and second embodiments, the allowable value for the difference between the sum of the optical path lengths in the first A lens group and the sum of the optical path lengths in the first B lens group, and the second A lens group the allowable value for the difference between the sum of the optical path length of the sum of the optical path length and the second 2 B lens group of the inner, is set to ± 0. 5 X 10- 6 Χλ 3 (cm). A specific numerical value of this allowable value is ± 3.6 (cm) in the case of an ArF laser light source having a wavelength λ of 193 (nm), that is, in the case of the first embodiment. Moreover, the ± 1. 9 (cm) in the case where the F 2 laser light source or second embodiment of the wavelength λ is 1 57 (nm). On the other hand, the allowable value for the difference between the sum of the optical path length of 1. 5 times a first lens group of the sum of the optical path length in the second lens group, the ± 1. 0 Χ 10- 6 Χλ 3 (cm) You have set. A specific numerical value of the allowable value is ± 7.2 (cm) in the case of an ArF laser light source having a wavelength λ of 193 (nm), that is, in the case of the first embodiment. Moreover, the ± 3. 8 (cm) in the case where the F 2 laser primary light source or second embodiment of the wavelength input is 157 (nm). As described above, the factor of the cube of the wavelength λ in the equation that expresses the allowable value of the optical path length difference is that in the case of birefringence that depends on the traveling direction of light in the crystal material, the amount of change in the refractive index, the amount of deviation of the wavefront of the imaging light beam (unit length) generated in proportion to the λ_ 2, since this is the wavefront aberration (phase) is an amount which adversely affects the imaging properties in proportion to lambda-3 It is.
なお、 上記光路長差の規格は、 k 1ファクター =0. 35程度の微細度のパタ ーン (線幅 =k 1 Χλ/ΝΑ: λは露光波長) を想定した場合に、 結像特性に大 きな影響を与えないための許容値であり、 露光するパターンサイズがより小さい 場合にはさらに厳しい規格が必要であることはいうまでもない。 ここで、 光路長 とは、 結晶材料中の光路の長さ (幾何学的な長さ) そのものを指しており、 屈折 率を掛けた値や屈折率で割った値ではない。  The standard of the optical path length difference is that the imaging characteristic is assumed to be a pattern with a fineness of about k1 factor = 0.35 (line width = k1 幅 λ / ΝΑ: λ is the exposure wavelength). This is an allowable value that does not have a significant effect, and it goes without saying that a stricter standard is required when the pattern size to be exposed is smaller. Here, the optical path length refers to the optical path length (geometric length) in the crystal material itself, and is not a value multiplied by the refractive index or a value divided by the refractive index.
また、 上述の第 1実施形態および第 2実施形態では、 像側 ΝΑ (最大 ΝΑ) の 6割〜 9割に相当する光束すなわち光軸に対して像側 Ν Αの 0. 6倍〜 0. 9倍 に対応する角度をなす光束について、 各レンズ群 (1A, 1 B, 2A, 2 B) に おける結晶レンズ中の合計光路長の差や、 第 1レンズ群と第 2レンズ群との間に おける結晶レンズ中の合計光路長の差を問題にしている。 これは、 像側 NAの 7 割以内に相当する光束が結像光束全体の約 50 %に相当するため、 像側 NAの 7 割程度に相当する光束について複屈析の解消効果を最大に発揮させことにより、 結像光束全体で最もバランスよく複屈折の解消が可能になるためである。  In the first and second embodiments described above, the light flux corresponding to 60 to 90% of the image side ΝΑ (maximum ΝΑ), that is, 0.6 to 0.9 times the image side に 対 し て に 対 し て with respect to the optical axis. Regarding the luminous flux having an angle corresponding to 9 times, the difference in the total optical path length in the crystal lens in each lens group (1A, 1B, 2A, 2B) and the difference between the first and second lens groups The problem is the difference of the total optical path length in the crystal lens in the above. This is because the luminous flux within 70% of the image-side NA is equivalent to about 50% of the entire imaging luminous flux, so the effect of eliminating birefringence is maximized for the luminous flux equivalent to about 70% of the image-side NA. This is because birefringence can be eliminated with the best balance for the entire image forming light beam.
ただし、 複屈折によって生じる収差の種類や、 投影光学系が露光すべきパター ンの種類によっては、 像側 NAにより近い部分の光束の収差が結像特性に対して より大きな影響を与えることもある。 したがって、 像側 NAの 7割を中心として やや最大 N A側に配位の広がった光束、 すなわち像側 N Aの 6割〜 9割に相当す る光束について、 複屈折の解消効果を最大とするように設定することか望ましい。 さらに、 上述の第 1実施形態および第 2実施形態では、 本発明の説明を簡略化 するために、 レチクル 1 01 (201〉 上の 1点を発した結像光束についてのみ 着目している。 しかしながら、 良好な結像性能を得るためには、 レチクル 101 (201) 上の有効照明エリア内の全ての点からウェハ 102 (202) 上の有 効露光エリア内に達する結像光束について、 本発明の上記関係を満たすべきであ ることは言うまでもない。 However, depending on the type of aberration caused by birefringence and the type of pattern to be exposed by the projection optical system, the aberration of the light beam closer to the image side NA may have a greater effect on the imaging characteristics. . Therefore, for the luminous flux whose coordination spreads slightly to the maximum NA side around 70% of the image side NA, that is, the luminous flux equivalent to 60 to 90% of the image side NA, the effect of eliminating birefringence should be maximized. It is desirable to set to Further, in the first and second embodiments, the description of the present invention is simplified. In order to obtain good imaging performance, the effective illumination area on reticle 101 (201) is focused on only the luminous flux emitted from one point on reticle 101 (201). It is needless to say that the above relationship of the present invention should be satisfied with respect to the image forming light flux reaching the effective exposure area on the wafer 102 (202) from all points in the above.
なお、 本発明の第 3実施形態として、 結晶軸 [1 10] を光軸とするレンズ群 を組み合わせて複屈折の影響を解消する方法もある。 第 10八図〜第10D図は、 蛍石レンズの光軸を結晶軸 [1 10] と一致させた場合の複屈折について説明す る図である。 例えば、 第 2図に示す第 1実施形態の投影光学系に対して第 3実施 形態を適用すると、 第 1 OA図および第 10 B図に示すように、 蛍石レンズ 10 5および 106の光軸はともに結晶軸 [1 10] と一致するように設定される。 そして、 蛍石レンズ 1 05と 106とは、 光軸 AX 102に垂直な面内に存在 する結晶軸 [001] が光軸を中心として相対的に 90° 回転するように配置さ れる。 換言すると、 蛍石レンズ 106は、 結晶軸 [001] の向きが蛍石レンズ 105を基準として 0106 = 90° だけ一 z軸廻りに回転している。 こうして、 蛍石レンズ 105は第 3 Aレンズ群を構成し、 蛍石レンズ 106は第 3 Bレンズ 群を構成し、 蛍石レンズ 105と 106とは第 3レンズ群を構成する。  As a third embodiment of the present invention, there is a method of eliminating the influence of birefringence by combining lens groups having the crystal axis [110] as the optical axis. FIGS. 108 to 10D are views for explaining birefringence when the optical axis of the fluorite lens is matched with the crystal axis [1 10]. For example, when the third embodiment is applied to the projection optical system of the first embodiment shown in FIG. 2, as shown in FIGS. 1OA and 10B, the optical axes of the fluorite lenses 105 and 106 are changed. Are set to coincide with the crystal axes [1 10]. The fluorite lenses 105 and 106 are arranged such that the crystal axis [001] existing in a plane perpendicular to the optical axis AX 102 rotates relatively 90 ° about the optical axis. In other words, the direction of the crystal axis [001] of the fluorite lens 106 is rotated around the z axis by 0106 = 90 ° with respect to the fluorite lens 105. Thus, the fluorite lens 105 constitutes the third A lens group, the fluorite lens 106 constitutes the third B lens group, and the fluorite lenses 105 and 106 constitute the third lens group.
結晶軸 [1 10] を光軸とする組み合わせでは、 結晶軸 [1 1 1] を光軸とす る組み合わせや結晶軸 [100] を光軸とする組み合わせよりも、 複屈折 (R偏 光と 0偏光との間の屈折率差) を小さく抑えることが可能である。 ただし、 結晶 軸 [1 10] を光軸とする組み合わせでは、 光軸を中心とした方位角に対する複 屈折の均一性は悪く、 90° 周期の不均一性が残存してしまう。  The combination using the crystal axis [1 10] as the optical axis is more birefringent (R polarized light and R) than the combination using the crystal axis [1 1 1] as the optical axis or the combination using the crystal axis [100] as the optical axis. (Difference in refractive index from 0-polarized light) can be reduced. However, in the combination with the crystal axis [1 10] as the optical axis, the birefringence with respect to the azimuth centered on the optical axis is poor in uniformity, and nonuniformity of 90 ° cycle remains.
そこで、 第 3実施形態では、 第 10 C図および第 10D図に示すように、 蛍石 レンズ 109および 1 10の光軸もともに結晶軸 [1 10] と一致するように設 定する。 そして、 蛍石レンズ 109と 110とを、 光軸 AX 102に垂直な面内 に存在する結晶軸 [00 1] が光軸を中心として相対的に 90° 回転するように 配置する。 さらに、 蛍石レンズ 105および 106と蛍石レンズ 109および 1 10とが、 光軸 AX 102を中心として 45° だけ相対的に回転した位置関係を 有するように設定する。 Therefore, in the third embodiment, as shown in FIGS. 10C and 10D, the optical axes of the fluorite lenses 109 and 110 are both set so as to coincide with the crystal axis [1 10]. Then, the fluorite lenses 109 and 110 are arranged such that the crystal axis [00 1] existing in a plane perpendicular to the optical axis AX 102 is relatively rotated by 90 ° about the optical axis. Furthermore, the relative positions of the fluorite lenses 105 and 106 and the fluorite lenses 109 and 110 are relatively rotated by 45 ° about the optical axis AX102. Set to have.
すなわち、 蛍石レンズ 105を基準として、 蛍石レンズ 106は結晶軸 [00 1] の向きが 0106 = 90 ° だけ一 z軸廻りに回転し、 蛍石レンズ 109は結 晶軸 [001] の向きが 0109 = 45° だけ一 z軸廻りに回転し、 蛍石レンズ 1 10は結晶軸 [001] の向きが 0 1 10 = 135° だけ一 z軸廻りに回転し ている。 こうして、 蛍石レンズ 109は第 4Aレンズ群を構成し、 蛍石レンズ 1 10は第 4 Bレンズ群を構成し、 蛍石レンズ 109と 110とは第 4レンズ群を 構成する。  That is, based on the fluorite lens 105, the orientation of the crystal axis [00 1] of the fluorite lens 106 is rotated around the z-axis by 0106 = 90 °, and the orientation of the fluorite lens 109 is the orientation of the crystal axis [001]. Is rotated about 0109 = 45 ° around the one z-axis, and the direction of the crystal axis [001] of the fluorite lens 110 is rotated about one z axis by 0 1 10 = 135 °. Thus, the fluorite lens 109 constitutes a fourth A lens group, the fluorite lens 110 constitutes a fourth B lens group, and the fluorite lenses 109 and 110 constitute a fourth lens group.
以上のように、 第 3実施形態では、 90° 周期の不均一性を有する一対のレン ズペアすなわち第 3レンズ群と第 4レンズ群とを 45° だけ相対回転させて配置 することにより、 90° 周期の不均一性がほぼ完全に相殺される。 また、 前述の ように、 結晶軸 [1 10] を光軸として 90° だけ相対回転させて配置したレン ズペアによる残存複屈折は小さいので、 90° 回転ペアをさらに 45° 回転させ て配置することにより、 十分な複屈折の除去効果を得ることができる。  As described above, in the third embodiment, a pair of lens pairs having a non-uniformity of 90 ° cycle, that is, the third lens group and the fourth lens group are relatively rotated by 45 ° and arranged, so that 90 ° Periodic non-uniformities are almost completely canceled. In addition, as described above, since the residual birefringence of the lens pair arranged by rotating the crystal axis [1 10] relative to the optical axis by 90 ° is small, the 90 ° rotating pair must be further rotated by 45 °. Thereby, a sufficient effect of removing birefringence can be obtained.
なお、 第 3実施形態においても、 90° 回転ペアを構成する第 3レンズ群およ び第 4レンズ群は、 2枚の蛍石レンズからなる構成に限定されることなく、 3枚 以上の蛍石レンズによってそれぞれ構成することもできる。 また、 像側 NAの 6 割〜 9割に相当する光束について、 第 3 Aレンズ群の光路長と第 3 Bレンズ群の 光路長との差を ±0. 5 X 10— 6Χλ3 (cm) 以内に設定するとともに、 第 4 Aレンズ群の光路長と第 4Bレンズ群の光路長との差を ±0. 5 X 10— 6Χλ3 (cm) 以内に設定することが望ましい。 さらに、 像側 N Aの 6割〜 9割に相当 する光束について、 第 3レンズ群での光路長の総和と、 第 2レンズ群での光路長 の総和との差を、 土 1. 0 X 10_6Χλ 3 (cm) 以内に設定することが望まし い。 In the third embodiment, the third lens group and the fourth lens group forming the 90 ° rotation pair are not limited to the configuration including two fluorite lenses, but include three or more fluorescent lenses. Each can also be constituted by a stone lens. Further, for the light flux corresponding to 60% ~ 90% of the image-side NA, a difference of ± between the optical path length of the third optical path length of the A lens group and the third B lens group 0. 5 X 10- 6 Χλ 3 (cm ) and sets within, it is desirable to set the difference between the optical path length of the fourth optical path length of the a lens group and the 4B lens group ± 0. 5 X 10- 6 Χλ 3 (cm) within. Furthermore, for a beam equivalent to 60 to 90% of the NA on the image side, the difference between the sum of the optical path lengths in the third lens group and the sum of the optical path lengths in the second lens group is expressed as Sat 1.0 X 10_ It is desirable to set within 6 Χλ 3 (cm).
なお、 以上の第 3実施形態では、 結晶軸 [1 10] を光軸とするレンズのうち、 近接して配置される第 3レンズ群に属する 2枚の蛍石レンズ (レンズ 105およ びレンズ 106)、 および近接して配置される第 4レンズ群に属する 2枚の蛍石 レンズ (レンズ 109およびレンズ 1 10) では、 各レンズ群において、 光軸に 垂直な面内に存在する結晶軸 [ 0 0 1 ] が光軸を中心として 9 0 ° だけ回転する ようにそれぞれ配置するものとしている。 また、 第 3レンズ群と第 4レンズ群と は、 光軸を中心として相対的に 9 0 ° だけ回転するように配置するものとしてい る。 しかしながら、 結晶軸 [ 1 1 0 ] を光軸とするレンズ群すなわち [ 1 1 0 ] レンズ群において、 各レンズの光軸を中心とした回転角度の関係は、 これに限定 されるものではない。 In the third embodiment described above, two fluorite lenses (lens 105 and lens 105) belonging to the third lens group disposed close to each other among the lenses having the crystal axis [1 10] as the optical axis 106), and the two fluorite lenses (lens 109 and lens 110) belonging to the fourth lens group located close to each other, The crystal axes [001] existing in the vertical plane are arranged so as to rotate by 90 ° about the optical axis. Further, the third lens group and the fourth lens group are arranged so as to rotate relatively by 90 ° about the optical axis. However, in the lens group having the crystal axis [110] as the optical axis, that is, in the [110] lens group, the relationship between the rotation angles of the respective lenses around the optical axis is not limited to this.
すなわち、 蛍石レンズ 1 0 5, 蛍石レンズ 1 0 6 , 蛍石レンズ 1 0 9, 蛍石レ ンズ 1 1 0の 4枚のレンズについて、 光軸に垂直な面内に存在する結晶軸 [ 0 0 1 ] が光軸を中心として 4 5 ° ずつ離れて存在するように、 各レンズの回転角度 の関係を定めることにより、 第 3実施形態と同等の複屈折除去効果を得ることが できる。 この場合、 4枚の蛍石レンズのうち、 第 1のレンズに対して第 2のレン ズが光軸を中心として所定の向きに 4 5 ° だけ回転した位置関係を有し、 第 2の レンズが第 3のレンズに対して光軸を中心として同じ所定の向きに 4 5 ° だけ回 転した位置関係を有し、 第 3のレンズが第 4のレンズに対して光軸を中心として 同じ所定の向きに 4 5 ° だけ回転した位置関係を有する。  That is, for the four lenses of the fluorite lens 105, the fluorite lens 106, the fluorite lens 109, and the fluorite lens 110, the crystal axes existing in the plane perpendicular to the optical axis [ By determining the relationship between the rotation angles of the lenses so that [01] is separated by 45 ° about the optical axis, a birefringence removing effect equivalent to that of the third embodiment can be obtained. In this case, of the four fluorite lenses, the second lens has a positional relationship in which the second lens is rotated by 45 ° in a predetermined direction about the optical axis with respect to the first lens. Have a positional relationship rotated by 45 ° in the same predetermined direction about the optical axis with respect to the third lens, and the third lens is the same predetermined with respect to the fourth lens about the optical axis. Has a positional relationship rotated by 45 ° in the direction of.
また、 蛍石レンズ 1 0 5 , 蛍石レンズ 1 0 6 , 蛍石レンズ 1 0 9, 蛍石レンズ 1 1 0がそれぞれ複数枚の蛍石レンズから構成されていても良いことは、 上述し た他の実施形態と同様である。 この場合、 少なくとも 4枚の蛍石レンズのうちの 各レンズは、 光軸に垂直な面内に存在する結晶軸 [ 0 0 1 ] が光軸を中心として 4 5 ° ずつ離れた所定の方位に一致する 4つのレンズ群、 すなわち第 6レンズ群、 第 7レンズ群、 第 8レンズ群および第 9レンズ群のいずれか 1つのレンズ群に分 類され、 光軸を中心として所定角度だけ回転して配置される。  Further, as described above, each of the fluorite lens 105, the fluorite lens 106, the fluorite lens 109, and the fluorite lens 110 may be composed of a plurality of fluorite lenses. This is the same as the other embodiments. In this case, each of the at least four fluorite lenses is oriented in a predetermined direction in which the crystal axis [001] existing in a plane perpendicular to the optical axis is separated by 45 ° from the optical axis. It is classified into four matching lens groups, namely, any one of the sixth lens group, the seventh lens group, the eighth lens group, and the ninth lens group, and rotated by a predetermined angle about the optical axis. Be placed.
そして、 たとえば像側 NAの 6割〜 9割に相当する光束について、 第 6レンズ 群中の光路長の総和 L 6と第 7レンズ群中の光路長の総和 L 7と第 8レンズ群中 の光路長の総和 L 8と第 9レンズ群中の光路長の総和 L 9とが互いにほぼ等しく なるように設定される。 具体的には、 第 6レンズ群中の光路長の総和 L 6と第 7 レンズ群中の光路長の総和 L 7と第 8レンズ群中の光路長の総和 L 8と第 9レン ズ群中の光路長の総和 L 9とのうち、 任意に選択された 2つの光路長の総和の差 が ±0. 5 X 10— 6X λ 3 (cm) 以内になるように設定する。 こうして、 第 3 実施形態と同様に、 複屈折の影響を小さく抑えることができる。 Then, for example, for a light flux equivalent to 60 to 90% of the NA on the image side, the sum L 6 of the optical path lengths in the sixth lens group, the sum L 7 of the optical path lengths in the seventh lens group, and the sum L 7 in the eighth lens group The total sum L8 of the optical path lengths and the total sum L9 of the optical path lengths in the ninth lens group are set to be substantially equal to each other. Specifically, the sum L 6 of the optical path lengths in the sixth lens group, the sum L 7 of the optical path lengths in the seventh lens group, the sum L 7 of the optical path lengths in the eighth lens group, and the sum L 8 in the ninth lens group Difference between the sum of the optical path lengths arbitrarily selected and the sum of the optical path lengths L 9 There set ± 0. 5 X 10- 6 X λ 3 (cm) so that within. Thus, similarly to the third embodiment, the influence of birefringence can be reduced.
前述のように、 結晶軸 [1 10] を光軸とし光軸中心に相対回転させて配置し た [110] レンズ群では、 結晶軸 [11 1] を光軸として 60° だけ相対回転 させた [1 1 1] レンズ群や結晶軸 [100] を光軸として 45° だけ相対回転 させた [100] レンズ群よりも、 複屈折の影響を小さく抑えることが可能であ る。 また、 [1 10] レンズ群に残存する複屈折において、 前述の R偏光に対す る屈折率 (nR 1 10) が前述の S偏光に対する屈折率 (n 0 1 10) よりも高 くなることが、 本件発明者の解析により明らかとなった。  As described above, in the [110] lens group, which is arranged with the crystal axis [1 10] as the optical axis and relatively rotated about the optical axis, the crystal axis [11 1] is rotated relative to the optical axis by 60 °. The effect of birefringence can be reduced to a lesser extent than with the [100] lens group in which the [111] lens group and the crystal axis [100] are rotated relative to each other by 45 ° about the optical axis. [1 10] In the birefringence remaining in the lens group, the refractive index (nR 1 10) for the R-polarized light may be higher than the refractive index (n 0 1 10) for the S-polarized light. The analysis was made clear by the present inventor.
すなわち、 [1 10] レンズ群に残存する複屈折の符号は、 [1 11] レンズ群 に残存する複屈折と同符号であり、 [100] レンズ群に残存する複屈折と逆符 号である。 したがって、 [1 10] レンズ群と [100] レンズ群とを組み合わ せて使用することにより、 複屈折の影響を相殺することが可能になる。 さらに、 That is, the sign of the birefringence remaining in the [1 10] lens group is the same as the sign of the birefringence remaining in the [1 11] lens group, and the sign of the birefringence remaining in the [100] lens group is the opposite sign. . Therefore, by using the [1 10] lens group and the [100] lens group in combination, it is possible to offset the effects of birefringence. further,
[1 10] レンズ群と [100] レンズ群と [1 1 1] レンズ群とを組み合わせ て使用することにより、 複屈折の影響を相殺することが可能になる。 By using a combination of the [1 10] lens group and the [100] lens group and the [1 1 1] lens group, it becomes possible to cancel the effect of birefringence.
さらに詳細には、 [1 10] レンズ群における R偏光に対する屈折率 nR 1 1 0と 0偏光に対する屈折率 n 0 1 10との差と、 [1 00] レンズ群における R 偏光に対する屈折率 nR 1 00と 0偏光に対する屈折率 n 0 100との差と、  More specifically, [1 10] the difference between the refractive index nR 110 and the refractive index n 0 1 10 for the R polarized light in the lens group, and the refractive index nR 1 for the R polarized light in the [1 00] lens group The difference between the refractive index n 0 100 for 00 and 0 polarized light,
[1 11] レンズ群における R偏光に対する屈折率 nR 11 1と 偏光に対する 屈折率 n 01 11との差との間には、 次の式 (1) に示す関係が成立することが、 本件発明者の解析により明らかとなった。  [1 11] It is found that the relationship shown in the following expression (1) holds between the difference between the refractive index nR 11 1 for R polarized light and the refractive index n 01 11 for polarized light in the lens group. Analysis revealed that
(nRHO-n^ 110): (nR100-n ^ 100): (nRlll-n 0111) = 3 : - 12 : 8 (1) なお、 上述の式 (1) において、 屈折率 nR 100と屈折率 n 0100との差 と、 屈折率 nR 11 1と屈折率 n 011 1との差とに着目すると、 次の式 (2) に示す関係が得られる。 式 (2) は、 「結晶軸 [1 00] を光軸としたレンズべ ァ (105, 106) の複屈折量すなわち (nR 100— n 0 100) は、 結晶 軸 [1 1 1] を光軸としたレンズペア (109, 1 10) での複屈折量すなわち (nR 1 1 1 _n 01 1 1) の約一 1. 5倍になる」 という旨の第 1実施形態に おける記載と整合している。 (nRHO-n ^ 110): (nR100-n ^ 100): (nRlll-n 0111) = 3:-12: 8 (1) In the above formula (1), the refractive index nR 100 and the refractive index n Focusing on the difference between 0100 and the difference between the refractive index nR 111 and the refractive index n 0111, the following relationship (2) is obtained. Equation (2) indicates that the birefringence of the lens layer (105, 106) with the crystal axis [100] as the optical axis, that is, (nR 100—n 0 100) is the light intensity of the crystal axis [1 1 1]. The birefringence amount at the lens pair (109, 1 10) as the axis, that is, about 1.5 times the value of (nR 1 1 1 _n 01 1 1) ”. Consistent with the description in
(nRlOO-n0100): (nRlll-n0111) =- 12 : 8 (2)  (nRlOO-n0100): (nRlll-n0111) =-12: 8 (2)
したがって、 立方晶系に属する結晶で形成された複数のレンズ (光学素子) を 含む光学系において、 たとえば像側 NAの 6割〜 9割に相当する光束について、  Therefore, in an optical system including a plurality of lenses (optical elements) formed of crystals belonging to the cubic system, for example, for a light beam equivalent to 60 to 90% of the image side NA,
[1 10] レンズ群中の光路長の総和 L 1 10と、 [100] レンズ群中の光路 長の総和 L 100と、 [1 11] レンズ群中の光路長の総和 L 1 1 1との間に、 次め式 (3) に示す関係が成立するとき、 複屈折の影響を最小限に抑えることが できる。  [1 10] Sum of optical path lengths L 1 10 in lens group, [100] Sum of optical path lengths in lens group L 100, and [1 11] Sum of optical path lengths in lens group L 1 1 1 In the meantime, when the relationship shown in the following equation (3) holds, the effect of birefringence can be minimized.
3 XL 1 10- 12 XL 100 + 8XL 1 1 1=0 (3)  3 XL 1 10- 12 XL 100 + 8XL 1 1 1 = 0 (3)
ただし、 各結晶軸を光軸とするレンズ群 ([110] レンズ群、 [100] レン ズ群、 [1 11] レンズ群) が、 前述の通り、 所望の回転角度の関係および所望 の光路長の関係を有するレンズ群からなることは言うまでもない。 実際には、 式 (3) の左辺の値を厳密に 0に設定することは難しいが、 式 (3) の左辺の値が ±8. 0X 10— 6 Χλ3 (cm) 以内になるように設定することにより、 複屈折 の影響を実質的に回避することが可能になる。 この式 (3) の左辺の許容値も、 前述の許容値と同様に、 k lファクタ一 =0. 35程度の微細度のパターンの露 光を前提とした許容値である。 したがって、 より微細なパターンを露光する場合 には、 より厳しい許容値を設定する必要があり、 微細でないパターンを露光する 場合には、 これよりも緩い許容値で十分であることは、 言うまでもない。 However, as described above, the lens groups ([110] lens group, [100] lens group, and [1 11] lens group) each having the crystal axis as the optical axis have a desired rotation angle relationship and a desired optical path length. It is needless to say that the lens group has the following relationship. In practice, it is difficult to set strictly 0 the value of the left-hand side of equation (3), the left side value ± 8 of formula (3). 0X 10- 6 Χλ 3 (cm) to be within By setting, it becomes possible to substantially avoid the influence of birefringence. The allowable value on the left-hand side of this equation (3) is also an allowable value on the premise of exposing a pattern having a fineness of about 0.15 to the kl factor, similar to the aforementioned allowable value. Therefore, when exposing a finer pattern, it is necessary to set a stricter tolerance, and when exposing a non-fine pattern, it is needless to say that a smaller tolerance is sufficient.
なお、 式 (3) は、 必ずしも [1 10] レンズ群と [100] レンズ群と [1 1 1] レンズ群とをすベて含む場合の各光路長の関係だけを規定するものではな い。 例えば、 [1 1 1] レンズ群を含むことなく [ 1 1 0] レンズ群と [ 1 0 0] レンズ群とだけを含む光学系において複屈折の影響を低減するには、 [1 1 0] レンズ群中の光路長の総和 L 1 10と、 [100] レンズ群中の光路長の総 和し 100との間に、 次の式 (4) に示す関係が成立すれば良い。  Equation (3) does not necessarily specify only the relationship between the optical path lengths when all the [1 10] lens groups, the [100] lens groups, and the [1 1 1] lens groups are included. . For example, to reduce the effect of birefringence in an optical system that includes only the [1 1 0] lens group and the [1 100] lens group without including the [1 1 1] lens group, the following method is used. The relationship shown in the following equation (4) should be established between the sum L 1 10 of the optical path lengths in the lens group and the sum 100 of the optical path lengths in the [100] lens group.
3 XL 1 10- 12 XL 100 = 0 (4)  3 XL 1 10-12 XL 100 = 0 (4)
同様に、 [1 10] レンズ群を含むことなく [1 1 1] レンズ群と [100] レンズ群とだけを含む光学系において複屈折の影響を低減するには、 [1 1 1] レンズ群中の光路長の総和 L 1 1 1と、 [1 0 0] レンズ群中の光路長の総和 L 1 00との間に、 次の式 (5) に示す関係が成立すれば良い。 Similarly, to reduce the effects of birefringence in an optical system that includes only the [1 1 1] lens group and the [100] lens group without including the [1 10] lens group, [1 1 1] The relationship shown in the following expression (5) may be established between the sum L 1 11 of the optical path lengths in the lens group and the sum L 100 of the optical path lengths in the [1 00] lens group.
1 2 XL 1 00- 8 XL 1 1 1 = 0 (5)  1 2 XL 1 00-8 XL 1 1 1 = 0 (5)
これらの式 (4) および (5) においても、 その左辺の値を厳密に 0に設定す ることは難しいが、 式 (4) の左辺の値および式 (5) の左辺の値がともに ± 8. 0 X 10— 6Χλ3 (cm) 以内になるように設定することにより、 複屈折の影響 を実質的に回避することが可能になる。 この許容値に基づいて、 式 (5) を式Also in these equations (4) and (5), it is difficult to set the value on the left-hand side exactly to 0, but both the value on the left-hand side of equation (4) and the value on the left-hand side of equation (5) are ± 8. by setting 0 X 10- 6 Χλ 3 (cm ) to be within, it is possible to substantially avoid the influence of birefringence. Based on this tolerance, Equation (5) is
(6) に示すように変形し、 さらに式 (6) を式 (7) に示すように変形するこ とができる。 Equation (6) can be transformed, and equation (6) can be transformed as shown in equation (7).
I 12 XL 1 00-8 XL 1 1 1 I≤8. 0 X 1 0_6Χλ 3 (6) I 12 XL 1 00-8 XL 1 1 1 I≤8. 0 X 1 0 _6 Χλ 3 (6)
I 1. 5 XL 1 00 -L 1 1 1 I≤ 1. 0 X 1 0- 6Χλ3 (7) I 1. 5 XL 1 00 -L 1 1 1 I≤ 1. 0 X 1 0- 6 Χλ 3 (7)
同様に、 この許容値に基づいて、 式 (4) を式 (8) に示すように変形し、 さ らに式 (8) を式 (9) に示すように変形することができる。  Similarly, based on this allowable value, equation (4) can be transformed as shown in equation (8), and equation (8) can be further transformed as shown in equation (9).
I 3 XL 1 1 0 - 1 2 XL 1 00 | ≤ 8. 0 X 1 0一6 X λ 3 (8) I 3 XL 1 1 0-1 2 XL 1 00 | ≤ 8.0 X 10 0 16 X λ 3 (8)
| L 1 1 0 -4XL 1 00 | ≤2. 7 X 1 0- 6Χ λ 3 (9) | L 1 1 0 -4XL 1 00 |. ≤2 7 X 1 0- 6 Χ λ 3 (9)
ここで、 式 (7) は、 「結晶軸 [1 00] を光軸とする第 2レンズ群 (1 0 5, 1 06) での光路長の総和 (1 0 5m+ 1 06m) の 1. 5倍と、 結晶軸 [1 1 1] を光軸とする第 1レンズ群 (1 09, 1 1 0) での光路長の総和 (1 0 9m + 1 10m) との差が ± 1. 0 X 1 0— 6Χλ 3 ( c m) 以内になるように設定」 するという旨の第 1実施形態における記載と整合している。 また、 式 (9) は、 Here, equation (7) is expressed as “1.5 of the sum of the optical path lengths (105 m + 106 m) in the second lens group (105, 106) with the crystal axis [100] as the optical axis. The difference between the magnification and the sum of the optical path lengths (109 m + 110 m) in the first lens group (109, 110) with the crystal axis [1 1 1] as the optical axis is ± 1.0 X It is consistent with the description in the first embodiment to the effect that 1 0- 6 Χλ 3 to (cm) set to be within ". Equation (9) is
[1 1 0] レンズ群中の光路長の総和 L 1 1 0と、 [1 00] レンズ群中の光路 長の総和 L 1 00の 4倍との差が、 ±2. 7 X 10— 6 Χλ3 (cm) 以内であれ ば、 良好な結像特性を得ることができることを意味している。 [1 1 0] sum L 1 1 0 of the optical path length in the lens group, the difference between four times the [1 00] the sum of the optical path length in the lens group L 1 00, ± 2. 7 X 10- 6 If it is within Χλ 3 (cm), it means that good imaging characteristics can be obtained.
なお、 光学系の設計によっては、 結晶軸 [1 1 0] を光軸と一致させるべきレ ンズが多数存在する可能性がある。 その場合には、 結晶軸 [1 1 0] を光軸と一 致させるべきレンズを、 上記 4つのレンズ群 (第 6レンズ群〜第 9レンズ群) に 分け、 各レンズ群間で光軸に垂直な面内に存在する結晶軸 [00 1] が光軸を中 心として 45° ずつ離れて存在するように、 各レンズを光軸中心に回転させれば よい。 Note that, depending on the design of the optical system, there may be many lenses whose crystal axis [1 110] should be coincident with the optical axis. In that case, the lens whose crystal axis [1 110] should be coincident with the optical axis is divided into the above four lens groups (the sixth to ninth lens groups), and the optical axis is set between the lens groups. By rotating each lens around the optical axis so that the crystal axes [00 1] existing in the vertical plane are separated by 45 ° about the optical axis, Good.
あるいは、 結晶軸 [1 10] を光軸と一致させるべきレンズを、 8個のレンズ 群に分けることもできる。 すなわち、 上記 4つのレンズ群 (第 6レンズ群〜第 9 レンズ群) の組を 2つ設け、 各組の 4つのレンズ群において、 光軸に垂直な面内 に存在する結晶軸 [001] が光軸を中心として 45° ずつ離れて存在するよう に、 各レンズを光軸中心に回転させる。 この場合、 各組の 4つのレンズ群におい て、 複屈折の回転異方性がそれぞれ最小に抑えられているので、 第 1組の 4つの レンズ群と第 2組の 4つのレンズ群との間で、 結晶方向 (光軸に垂直な面内に存 在する結晶軸 [00 1] の方向) の関係についての制約は特にない。  Alternatively, the lens whose crystal axis [1 10] should be coincident with the optical axis can be divided into eight lens groups. That is, two sets of the above four lens groups (sixth lens group to ninth lens group) are provided, and in each of the four lens groups, a crystal axis [001] existing in a plane perpendicular to the optical axis is set. Rotate each lens about the optical axis so that it is 45 ° apart from the optical axis. In this case, since the rotational anisotropy of the birefringence is minimized in each of the four lens groups, the distance between the first four lens groups and the second four lens groups is reduced. There is no particular restriction on the relationship between the crystal directions (the direction of the crystal axis [00 1] existing in a plane perpendicular to the optical axis).
このようなレンズ群への分割は、 上記の 4群または 8群に限定されるものでは なく、 [1 10] レンズ群を形成する 4つのレンズ群を任意の組数だけ設ける分 割、 すなわち 4の整数倍 (4, 8, 12 · · · ) のレンズ群への分割であれば良 い。 この場合、 各組の [1 10] レンズ群内では、 光軸に垂直な面内に存在する 結晶軸 [001] が光軸を中心として 45° ずつ離れて存在するように、 各レン ズを光軸中心に回転させる。 そして、 たとえば像側 NAの 6割〜 9割に相当する 光束について、 結晶軸 [001] が同一方向を向く各レンズ群内での光路長の和 が互いにほぼ等しくなるように設定すればよい。 さらに、 複数組の [1 10] レ ンズ群内の光路長の総和 L 1 10が上記関係式 (3), (4), (5) を満たすこと により、 複屈折の悪影響は実質的に無くなる。  The division into such lens groups is not limited to the above-described four or eight groups, and [1 10] a division in which four lens groups forming a lens group are provided in an arbitrary number of sets, ie, four Any division into lens groups of integer multiples of (4, 8, 12, ···) is sufficient. In this case, in each set of [1 10] lens groups, each lens is arranged such that the crystal axis [001] existing in a plane perpendicular to the optical axis is separated by 45 ° about the optical axis. Rotate around the optical axis. Then, for example, for a light flux corresponding to 60% to 90% of the image side NA, the sum of the optical path lengths in each lens group in which the crystal axis [001] points in the same direction may be set to be substantially equal to each other. Furthermore, since the sum L 110 of the optical path lengths in the plurality of [1 10] lens groups satisfies the above relational expressions (3), (4), and (5), the adverse effect of birefringence is substantially eliminated. .
また、 結晶軸 [100] を光軸と一致させるべきレンズが多数存在する可能性 もあり、 その場合には、 [1 00] レンズ群を複数組だけ形成することも可能で ある。 このときも、 各組の [100] レンズ群内では、 各レンズにおける結晶軸 方向の回転関係は 45° に設定されるが、 異なる組の [100] レンズ群の間で は、 結晶軸方向の関係についての制約は特にない。 そして、 複数組の [100] レンズ群内の光路長の総和 L 100が上記関係式 (3), (4), (5) を満たすこ とにより、 複屈折の悪影響は実質的に無くなる。  In addition, there is a possibility that there are a large number of lenses whose crystal axis [100] should be coincident with the optical axis. In this case, it is possible to form only a plurality of [100] lens groups. Again, within each set of [100] lens groups, the rotational relationship in the crystal axis direction for each lens is set to 45 °, but between different sets of [100] lens groups, There are no particular restrictions on the relationship. When the sum L100 of the optical path lengths in the plurality of [100] lens groups satisfies the above relational expressions (3), (4), and (5), the adverse effect of birefringence is substantially eliminated.
さらに、 結晶軸 [1 1 1] を光軸と一致させるべきレンズが多数存在する場合 にも同様に、 [1 1 1] レンズ群を複数組だけ形成することができる。 この場合 も、 各組の [111] レンズ群内では、 各レンズにおける結晶軸方向の回転関係 は 60° に設定されるが、 異なる組の [1 11] レンズ群の間では、 結晶軸方向 の関係についての制約は特にない。 そして、 複数組の [11 1] レンズ群内の光 路長の総和 L 11 1が上記関係式 (3), (4), (5) を満たすことにより、 複屈 折の悪影響は実質的に無くなる。 Furthermore, even when there are a large number of lenses whose crystal axes [1 1 1] should be coincident with the optical axis, similarly, a plurality of [1 1 1] lens groups can be formed. in this case Also, within each set of [111] lens groups, the rotation relationship in the crystal axis direction for each lens is set to 60 °, but between different sets of [1 11] lens groups, the relationship in the crystal axis direction is There are no particular restrictions. When the sum L 111 of the optical path lengths in the plural [11 1] lens groups satisfies the above relational expressions (3), (4) and (5), the adverse effect of birefringence is substantially reduced. Disappears.
第 11図は、 本発明の第 4実施形態にかかる投影光学系の構成を概略的に示す 図である。 第 4実施形態では、 第 2実施形態と同様に、 波長 λ (nm) が 157' nmの F2レーザーに対して収差補正が最適化された反射屈折型の投影光学系に 本発明を適用している。 第 4実施形態の投影光学系 300では、 レチクル 301 (第 1図のレチクル 101に対応) 上の 1点を射出した光束が、 光路変更手段と しての反射プリズム 303で偏向された後、 光軸 AX 300 bに沿って配置され たレンズ 305および 306を介して、 凹面反射鏡 304に入射する。 FIG. 11 is a diagram schematically showing a configuration of a projection optical system according to a fourth embodiment of the present invention. In the fourth embodiment, like the second embodiment, the wavelength lambda (nm) 157 'aberration correction for F 2 laser nm is the present invention is applied to an optimized catadioptric projection optical system ing. In the projection optical system 300 according to the fourth embodiment, a light beam emitted from one point on a reticle 301 (corresponding to the reticle 101 in FIG. 1) is deflected by a reflecting prism 303 serving as an optical path changing means, The light enters the concave reflecting mirror 304 via lenses 305 and 306 arranged along the axis AX 300b.
凹面反射鏡 304で反射された光束は、 レンズ 306および 305を介して、 反射プリズム 303で再び偏向される。 反射プリズム 303で偏向された光束は、 光軸 AX 300 aに沿って配置されたレンズ 307〜314を介して、 ウェハ 3 02 (第 1図のウェハ 102に対応) 上の 1点に集光する。 こうして、 ウェハ 3 02上には、 レチクル 301に描画されたパターンの投影像が形成される。 第 4 実施形態では、 すべてのレンズがフッ化カルシウム結晶 (蛍石) で形成されてい る。  The light beam reflected by the concave reflecting mirror 304 is deflected again by the reflecting prism 303 via the lenses 306 and 305. The light beam deflected by the reflection prism 303 is condensed at one point on the wafer 302 (corresponding to the wafer 102 in FIG. 1) via the lenses 307 to 314 arranged along the optical axis AX 300a. . Thus, a projected image of the pattern drawn on the reticle 301 is formed on the wafer 302. In the fourth embodiment, all lenses are formed of calcium fluoride crystals (fluorite).
さらに詳細には、 第 4実施形態では、 蛍石レンズ 305および 306において、 結晶軸 [1 10] を光軸 AX 300 bと一致させている。 また、 蛍石レンズ 31 More specifically, in the fourth embodiment, in the fluorite lenses 305 and 306, the crystal axis [110] matches the optical axis AX 300b. Also, fluorite lens 31
1および 312において、 結晶軸 [1 10] を光軸 AX 300 aと一致させてい る。 さらに、 蛍石レンズ 313および 314において、 結晶軸 [100] を光軸 AX 300 aと一致させている。 換言すれば、 蛍石レンズ 305, 306, 31In 1 and 312, the crystal axis [1 10] is aligned with the optical axis AX 300a. Further, in the fluorite lenses 313 and 314, the crystal axis [100] is aligned with the optical axis AX 300a. In other words, fluorite lens 305, 306, 31
1, 3 12は [1 1 0] レンズ群を構成し、 蛍石レンズ 3 1 3および 3 14は1 and 3 12 constitute the [1 1 0] lens group, and the fluorite lenses 3 13 and 3 14
[100] レンズ群を構成している。 [100] The lens group is constituted.
第 12 A図および第 12B図は、 第 4実施形態にかかる投影光学系中の蛍石レ ンズにおける光路を説明する図である。 第 12 A図および第 12 B図では、 ゥェ ハ上 302に最大入射角 0300 (第 11図を参照) で入射する光束 (像側 N A に相当する光束) を参照符号 300 eで示している。 また、 像側 NAの 6割〜 9 割に相当する光束を参照符号 300 mで示している。 第 12 A図を参照すると、 蛍石レンズ 305および 306では、 結像光束が往復で 2回レンズ内を通過する。 したがって、 像側 NAの 6割〜 9割に相当する光束 30 Omについて、 蛍石レン ズ 305内の光路長は (305 am+ 305 bm) であり、 蛍石レンズ 306内 の光路長は (306 am+ 306 bm) である。 FIG. 12A and FIG. 12B are diagrams illustrating an optical path in a fluorite lens in a projection optical system according to the fourth embodiment. In Figures 12A and 12B, A light beam (a light beam corresponding to the image-side NA) incident on the upper surface 302 at the maximum incident angle 0300 (see FIG. 11) is indicated by reference numeral 300 e. The luminous flux corresponding to 60 to 90% of the NA on the image side is indicated by reference numeral 300 m. Referring to FIG. 12A, in the fluorite lenses 305 and 306, the imaging light beam passes through the lens twice in a reciprocating manner. Therefore, for a beam flux of 30 Om corresponding to 60% to 90% of the NA on the image side, the optical path length in the fluorite lens 305 is (305 am + 305 bm), and the optical path length in the fluorite lens 306 is (306 am + 306 bm).
一方、 第 12B図を参照すると、 像側 NAの 6割〜 9割に相当する光束 300 mについて、 蛍石レンズ 31 1内の光路長は 31 lmであり、 蛍石レンズ 312 内の光路長は 312 mであり、 蛍石レンズ 313内の光路長は 313 mであり、 蛍石レンズ 314内の光路長は 314mである。 第 4実施形態では、 結晶軸 [1 1 0] を光軸とする蛍石レンズ 305, 306, 31 1, 3 12内の各光路長 (305 am+ 305 bm, 306 am+ 306 bm, 31 1m, 312m) が ±0. 5 X 10— 6 Χλ3 (cm) の範囲でほぼ等しくなるように、 各レンズの厚 さ等を設定している。 On the other hand, referring to FIG. 12B, for a light flux of 300 m corresponding to 60% to 90% of the NA on the image side, the optical path length in the fluorite lens 311 is 31 lm, and the optical path length in the fluorite lens 312 is 312 m, the optical path length in the fluorite lens 313 is 313 m, and the optical path length in the fluorite lens 314 is 314 m. In the fourth embodiment, each of the optical path lengths (305 am + 305 bm, 306 am + 306 bm, 31 1 m, 312 m) in the fluorite lens 305, 306, 31 1, 3 12 having the crystal axis [1 10] as the optical axis ) is ± 0. to be approximately equal in the range of 5 X 10- 6 Χλ 3 (cm ), have set a thickness of each lens.
換言すれば、 蛍石レンズ 305, 306, 31 1, 312内の各光路長 (30 5 am+ 305 bm, 306 am+ 306 bm, 31 1m, 312m) のうち任 意に選択された 2つの光路長の差が ± 0. 5 X 10— 6 Χλ 3 (cm) 以内になる ように、 各レンズの厚さ等を設定している。 そして、 蛍石レンズ 305, 306, 31 1, 312においては、 各光軸 (AX 300 a, AX 300 b) に垂直な面 内に存在する結晶軸 [100] が光軸を中心として 45° ずつ離れて存在するよ うに、 各レンズの回転角度の関係を設定している。 In other words, of the two optical path lengths arbitrarily selected from the respective optical path lengths (305 am + 305 bm, 306 am + 306 bm, 31 1m, 312m) in the fluorite lenses 305, 306, 311, 312 difference so that within ± 0. 5 X 10- 6 Χλ 3 (cm), have set a thickness of each lens. In the fluorite lenses 305, 306, 311, and 312, the crystal axis [100] existing in a plane perpendicular to each optical axis (AX 300a, AX 300b) is 45 ° centered on the optical axis. The relationship between the rotation angles of the lenses is set so that they are separated.
また、 結晶軸 [100] を光軸とする蛍石レンズ 313および 314について も、 その各光路長 (313m, 314m) が ± 0. 5 X 10 -6 Χλ 3 (cm) の 範囲でほぼ等しくなるように、 各レンズの厚さ等を設定している。 換言すれば、 蛍石レンズ 313内の光路長 313mと蛍石レンズ 314内の光路長 314mと の差が土 0. 5 X 10— 6Χλ 3 (cm) 以内になるように、 各レンズの厚さ等を 設定している。 そして、 蛍石レンズ 3 13と 314とでは、 光軸 AX 300 aに 垂直な面内に存在する結晶軸 [001] が 45° だけ相対的に回転した位置関係 を有するように設定されている。 Further, the fluorite lens 313 and 314 to the crystal axis [100] to the optical axis is also the respective optical path lengths (313m, 314m) is ± 0. 5 X 10 - becomes substantially equal in the range of 6 Χλ 3 (cm) In this way, the thickness of each lens is set. In other words, as the difference between the optical path length 314m in the optical path length 313m and fluorite lens 314 in the fluorite lens 313 is within the soil 0. 5 X 10- 6 Χλ 3 ( cm), the thickness of each lens Is set. And with the fluorite lenses 3 13 and 314, the optical axis AX 300a The crystal axis [001] existing in the vertical plane is set to have a relative rotation of 45 °.
こうして、 第 4実施形態では、 結晶軸 [1 10] を光軸とする 4枚のレンズか らなる [1 10] レンズ群と、 結晶軸 [100] を光軸とする 2枚のレンズから なる [100] レンズ群との間で、 複屈折の影響の相殺が生じ、 良好な結像特性 を得ることが可能になる。 さらに、 [1 10] レンズ群内の各蛍石レンズ 30 5, 306, 31 1, 312の光路長の総和 (305 am+ 305 bm+ 306 am + 306 bm+ 3 1 lm+ 312m=L 1 10) と、 [100] レンズ群内の各 蛍石レンズ 313, 314の光路長の総和 (313m+314m=L 100) と が上記関係式 (8) または (9) を満足するように設定することにより、 上記相 殺効果を最大限に発揮させることができ、 複屈折の影響を極小にすることができ る。  Thus, in the fourth embodiment, the [1 10] lens group composed of four lenses having the crystal axis [1 10] as the optical axis, and the two lenses having the crystal axis [100] as the optical axis. [100] The effect of birefringence is canceled between the lens group and the lens group, so that good imaging characteristics can be obtained. [1 10] The sum of the optical path lengths of the fluorite lenses 305, 306, 311, and 312 in the lens group (305 am + 305 bm + 306 am + 306 bm + 3 1 lm + 312 m = L 1 10) 100] By setting the sum of the optical path lengths (313m + 314m = L100) of each of the fluorite lenses 313 and 314 in the lens group to satisfy the above relational expression (8) or (9), The killing effect can be maximized, and the effect of birefringence can be minimized.
すなわち、 [1 10] レンズ群内の光路長の総和 L 110と、 [100] レンズ 群内の光路長の総和 L 100との間で、 (3 XL 1 10 - 12 XL 100) の絶 対値が 8. 0 X 10— 6 Χλ3 (cm) 以下の値になるように、 あるいは (L 1 1 0— 4 XL 100) の絶対値が 2. 7 X 10— 6Χλ 3 (cm) 以下の値になるよ うに設定することにより、 上記相殺効果を最大限に発揮させることができ、 複屈 折の影響を極小にすることができる。 なお、 第 4実施形態においても、 その他の 蛍石レンズ (レンズ 307〜310) を、 更に複屈折を解消する組み合わせに設 定して、 複屈折解消効果を一層発揮させることも可能である。 In other words, the absolute value of (3 XL 1 10-12 XL 100) between [1 10] the sum of the optical path lengths in the lens group L 110 and the [100] the sum of the optical path lengths in the lens group L 100 There 8. 0 X 10- 6 Χλ 3 ( cm) to be less than the value, or the absolute value of 2. 7 X 10- 6 Χλ 3 ( cm) below the (L 1 1 0- 4 XL 100 ) By setting such a value, the above-described offset effect can be maximized, and the influence of birefringence can be minimized. In the fourth embodiment as well, the other fluorite lenses (lenses 307 to 310) can be further set to a combination that eliminates birefringence to further exert the effect of eliminating birefringence.
なお、 以上の各実施形態において、 光軸を結晶軸 [11 1] と一致させる [1 1 1] レンズ群については、 複屈折の解消のために複数のレンズ間で光軸を中心 として 60° 回転して配置している。 しかしながら、 [1 1 1] レンズ群におい ては、 その結晶方位が光軸を中心として 3回回転対称 (周期 120° の回転対 称) になるので、 上記 60 ° の回転が、 60 + 120 = 180° や、 60 + 24 0 = 300 ° の回転であっても良いことは、 言うまでもない。  In each of the above embodiments, the [1 1 1] lens group whose optical axis is coincident with the crystal axis [11 1] is set at 60 ° around the optical axis between a plurality of lenses to eliminate birefringence. It is rotated and placed. However, in the [1 1 1] lens group, the crystal orientation is rotationally symmetric about the optical axis three times (symmetrical with a period of 120 °), so that the above 60 ° rotation is 60 + 120 = It goes without saying that a rotation of 180 ° or 60 + 240 = 300 ° may be used.
同様に、 光軸を結晶軸 [100] と一致させる [100] レンズ群では、 複屈 折の解消のためのレンズ回転角を、 光軸を中心として 45° としている。 しかし ながら、 [100] レンズ群においては、 その結晶方位が光軸を中心として 4回 回転対称 (周期 90° の回転対称) になるので、 上記 45° の回転が、 45 + 9 0= 135° や、 45 + 180 = 225。 や、 45 + 270 = 315° の回転で あっても良いことは、 言うまでもない。 Similarly, in the [100] lens group whose optical axis coincides with the crystal axis [100], the lens rotation angle for eliminating birefringence is set to 45 ° around the optical axis. However However, in the [100] lens group, the crystal orientation is rotationally symmetric about the optical axis four times (rotational symmetry with a period of 90 °), so the 45 ° rotation is 45 + 90 = 135 ° , 45 + 180 = 225. Needless to say, a rotation of 45 + 270 = 315 ° is also acceptable.
なお、 上述の各実施形態では、 複屈折性の光学材料としてフッ化カルシウム結 晶 (蛍石) を用いているが、 これに限定されることなく、 他の一軸性結晶、 たと えばフッ化バリウム結晶 (B aF2)、 フッ化リチウム結晶 (L i F)、 フッ化ナ トリウム結晶 (NaF)、 フッ化ストロンチウム結晶 (S r F2)、 フッ化べリリ ゥム結晶 (B e F2) など、 紫外線に対して透明な他の結晶材料を用いることも できる。 このうち、 フッ化バリウム結晶は、 すでに直径 200mmを越す大型の 結晶材料も開発されており、 レンズ材料として有望である。 この場合、 フッ化バ リウム (B aF2 ) などの結晶軸方位も本発明に従って決定されることが好まし い。 また、 上述の各実施形態では、 投影光学系に本発明を適用しているが、 これ に限定されることなく、 レチクル (マスク) を照明する照明光学系に本発明を適 用することもできる。 In each of the above embodiments, calcium fluoride crystal (fluorite) is used as the birefringent optical material. However, the present invention is not limited to this, and other uniaxial crystals, for example, barium fluoride may be used. crystal (B aF 2), lithium fluoride crystals (L i F), fluoride kana thorium crystals (NaF), strontium fluoride crystal (S r F 2), fluoride base Lili © beam crystals (B e F 2) For example, other crystal materials that are transparent to ultraviolet light can be used. Of these, barium fluoride crystals have already been developed for large crystal materials exceeding 200 mm in diameter, and are promising as lens materials. In this case, it is preferable that the crystal axis orientation of barium fluoride (BaF 2 ) is also determined according to the present invention. Further, in each of the above-described embodiments, the present invention is applied to the projection optical system. However, the present invention is not limited to this, and may be applied to an illumination optical system that illuminates a reticle (mask). .
上述の各実施形態の露光装置では、 照明装置によってレチクル (マスク) を照 明し (照明工程)、 投影光学系を用いてマスクに形成された転写用のパターンを 感光性基板に露光する (露光工程) ことにより、 マイクロデバイス (半導体素子、 撮像素子、 液晶表示素子、 薄膜磁気ヘッド等) を製造することができる。 以下、 各実施形態の露光装置を用いて感光性基板としてのウェハ等に所定の回路パター ンを形成することによって、 マイクロデバィスとしての半導体デバイスを得る際 の手法の一例にっき第 13図のフローチャートを参照して説明する。  In the exposure apparatus of each of the above-described embodiments, the reticle (mask) is illuminated by the illumination device (illumination step), and the transfer pattern formed on the mask is exposed on the photosensitive substrate using the projection optical system. By doing so, a micro device (semiconductor element, imaging element, liquid crystal display element, thin film magnetic head, etc.) can be manufactured. Hereinafter, a flowchart of FIG. 13 shows an example of a technique for obtaining a semiconductor device as a microdevice by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of each embodiment. I will explain.
先ず、 第 13図のステップ 30 1において、 1ロットのウェハ上に金属膜が蒸 着される。 次のステップ 302において、 その 1ロットのウェハ上の金属膜上に フォトレジストが塗布される。 その後、 ステップ 303において、 各実施形態の 露光装置を用いて、 マスク上のパターンの像がその投影光学系を介して、 その 1 ロットのウェハ上の各ショット領域に順次露光転写される。 その後、 ステップ 3 04において、 その 1ロッ卜のウェハ上のフォトレジストの現像が行われた後、 ステップ 3 0 5において、 その 1ロットのウェハ上でレジストパターンをマスク としてエッチングを行うことによって、 マスク上のパターンに対応する回路パタ ーンが、 各ウェハ上の各ショット領域に形成される。 First, in step 301 of FIG. 13, a metal film is deposited on one lot of wafers. In the next step 302, a photoresist is applied on the metal film on the wafer of the lot. Then, in step 303, using the exposure apparatus of each embodiment, an image of the pattern on the mask is sequentially exposed and transferred to each shot area on the one lot of wafers via the projection optical system. Then, in step 304, after developing the photoresist on the one lot of wafer, In step 305, a circuit pattern corresponding to the pattern on the mask is formed in each shot area on each wafer by performing etching on the one lot of wafers using the resist pattern as a mask.
その後、 更に上のレイヤの回路パターンの形成等を行うことによって、 半導体 素子等のデバイスが製造される。 上述の半導体デバイス製造方法によれば、 極め て微細な回路パターンを有する半導体デバイスをスループット良く得ることがで きる。 なお、 ステップ 3 0 1〜ステップ 3 0 5では、 ウェハ上に金属を蒸着し、 その金属膜上にレジストを塗布、 そして露光、 現像、 エッチングの各工程を行つ ているが、 これらの工程に先立って、 ウェハ上にシリコンの酸化膜を形成後、 そ のシリコンの酸化膜上にレジストを塗布、 そして露光、 現像、 エッチング等の各 工程を行っても良いことはいうまでもない。  Thereafter, a device such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer and the like. According to the above-described semiconductor device manufacturing method, a semiconductor device having an extremely fine circuit pattern can be obtained with high throughput. In steps 301 to 305, a metal is vapor-deposited on the wafer, a resist is applied on the metal film, and the respective steps of exposure, development, and etching are performed. Prior to forming a silicon oxide film on the wafer in advance, it is needless to say that a resist may be applied on the silicon oxide film, and each step of exposure, development, etching and the like may be performed.
また、 各実施形態の露光装置では、 プレート (ガラス基板) 上に所定のパタ一 ン (回路パターン、 電極パターン等) を形成することによって、 マイクロデバイ スとしての液晶表示素子を得ることもできる。 以下、 第 1 4図のフローチャート を参照して、 このときの手法の一例につき説明する。 第 1 4図において、 パタ一 ン形成工程 4 0 1では、 各実施形態の露光装置を用いてマスクのパターンを感光 性基板 (レジストが塗布されたガラス基板等) に転写露光する、 所謂光リソダラ フイエ程が実行される。 この光リソグラフィー工程によって、 感光性基板上には 多数の電極等を含む所定パ夕一ンが形成される。 その後、 露光された基板は、 現 像工程、 エッチング工程、 レジスト剥離工程等の各工程を経ることによって、 基 板上に所定のパターンが形成され、 次のカラーフィルター形成工程 4 0 2へ移行 する。  Further, in the exposure apparatus of each embodiment, a liquid crystal display element as a micro device can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate). Hereinafter, an example of the technique at this time will be described with reference to the flowchart of FIG. In FIG. 14, in a pattern forming step 401, a so-called optical liquider is used in which a mask pattern is transferred and exposed to a photosensitive substrate (a glass substrate coated with a resist, etc.) using the exposure apparatus of each embodiment. The fuel process is performed. By this photolithography process, a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate. Thereafter, the exposed substrate is subjected to various steps such as an imaging step, an etching step, and a resist stripping step, so that a predetermined pattern is formed on the substrate, and the process proceeds to the next color filter forming step 402. .
次に、 カラ一フィルタ一形成工程 4 0 2では、 R (Red) . G (Green) , B (B I ue) に対応した 3つのドットの組がマ卜リックス状に多数配列されたり、 ま たは R、 G、 Bの 3本のストライプのフィルタ一の組を複数水平走査線方向に配 列されたりしたカラーフィルターを形成する。 そして、 カラーフィルター形成ェ 程 4 0 2の後に、 セル組み立て工程 4 0 3が実行される。 セル組み立て工程 4 0 3では、 パターン形成工程 4 0 1にて得られた所定パターンを有する基板、 およ びカラーフィルタ一形成工程 4 0 2にて得られたカラーフィルタ一等を用いて液 晶パネル (液晶セル) を組み立てる。 セル組み立て工程 4 0 3では、 例えば、 パ ターン形成工程 4 0 1にて得られた所定パターンを有する基板とカラ一フィル夕 一形成工程 4 0 2にて得られたカラーフィルターとの間に液晶を注入して、 液晶 パネル (液晶セル) を製造する。 Next, in the color filter-forming step 402, a large number of sets of three dots corresponding to R (Red), G (Green), and B (BI ue) are arranged in a matrix form. Forms a color filter in which a set of three stripe filters of R, G, and B are arranged in a plurality of horizontal scanning line directions. Then, after the color filter forming step 402, a cell assembling step 403 is performed. In the cell assembling step 403, the substrate having the predetermined pattern obtained in the pattern forming step 401, and A liquid crystal panel (liquid crystal cell) is assembled using the color filters obtained in step 402 and the color filter forming step 402. In the cell assembling step 403, for example, a liquid crystal is interposed between the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402. To produce a liquid crystal panel (liquid crystal cell).
その後、 モジュール組み立て工程 4 0 4にて、 組み立てられた液晶パネル (液 晶セル) の表示動作を行わせる電気回路、 バックライト等の各部品を取り付けて 液晶表示素子として完成させる。 上述の液晶表示素子の製造方法によれば、 極め て微細な回路パターンを有する液晶表示素子をスループット良く得ることができ る。  Then, in a module assembling step 404, components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element. According to the above-described method for manufacturing a liquid crystal display element, a liquid crystal display element having an extremely fine circuit pattern can be obtained with high throughput.
なお、 上述の各実施形態では、 露光装置に搭載される投影光学系に対して本発 明を適用しているが、 これに限定されることなく、 この投影光学系を検査するた めの光学系、 例えば収差計測用光学系などを含む他の一般的な光学系に対して本 発明を適用することもできる。 また、 上述の各実施形態では、 1 9 3 n mの波長 光を供給する A r Fエキシマレーザー光源や 1 5 7 n mの波長光を供給する F 2 レーザ一光源を用いているが、 これに限定されることなく、 たとえば 1 2 6 n m の波長光を供給する A r レーザー光源などを用いることもできる。 産業上の利用の可能性 In each of the above-described embodiments, the present invention is applied to the projection optical system mounted on the exposure apparatus. However, the present invention is not limited to this. The present invention can also be applied to other general optical systems including a system, for example, an optical system for measuring aberration. Further, in the embodiments described above, but using a 1 9 3 nm F 2 laser primary light source for supplying wavelength light A r F excimer laser light source or 1 5 7 nm supplying wavelength light, limited to Instead, for example, an Ar laser light source that supplies light with a wavelength of 126 nm can be used. Industrial applicability
以上説明したように、 本発明では、 たとえば蛍石のような複屈折性の結晶材料 を用いても、 複屈折の影響を実質的に受けることなく良好な光学性能を有する光 学系を実現することができる。 したがって、 本発明の光学系を露光装置に組み込 むことにより、 高解像な投影光学系を介した高精度な投影露光により、 良好なマ イク口デバイスを製造することができる。  As described above, the present invention realizes an optical system having good optical performance without being substantially affected by birefringence even when a birefringent crystal material such as fluorite is used. be able to. Therefore, by incorporating the optical system of the present invention into an exposure apparatus, it is possible to manufacture a good microphone port device by performing high-precision projection exposure through a high-resolution projection optical system.

Claims

請 求 の 範 囲 The scope of the claims
1 . 立方晶系に属する結晶で形成された複数の光学素子を含む光学系において、 前記光学系の光軸と結晶軸 [ 1 1 1 ] または該結晶軸と光学的に等価な結晶軸 とがほぼ一致するように設定された複数の光学素子から構成された第 1素子群と、 前記光軸と結晶軸 [ 1 0 0 ] または該結晶軸と光学的に等価な結晶軸とがほぼ 一致するように設定された複数の光学素子から構成された第 2素子群とを備え、 前記第 1素子群は、 前記光軸を中心として第 1角度だけ相対的に回転した位置 関係を有する第 1 A素子群と第 1 B素子群とを有し、 1. In an optical system including a plurality of optical elements formed of crystals belonging to the cubic system, the optical axis of the optical system and the crystal axis [111] or a crystal axis optically equivalent to the crystal axis are A first element group composed of a plurality of optical elements set so as to substantially coincide with each other, and the optical axis and the crystal axis [100] or a crystal axis optically equivalent to the crystal axis substantially coincide with each other. A second element group composed of a plurality of optical elements set as described above, wherein the first element group has a positional relationship relatively rotated by a first angle about the optical axis. An element group and a first B element group,
前記第 2素子群は、 前記光軸を中心として第 2角度だけ相対的に回転した位置 関係を有する第 2 A素子群と第 2 B素子群とを有し、  The second element group includes a second A element group and a second B element group having a positional relationship relatively rotated by a second angle about the optical axis,
前記光軸に対して所定範囲の角度をなす光束の前記第 1 A素子群における光学 素子中の光路長と前記第 1 B素子群における光学素子中の光路長とがほぼ等しく、 前記光軸に対して前記所定範囲の角度をなす光束の前記第 2 A素子群における 光学素子中の光路長と前記第 2 B素子群における光学素子中の光路長とがほぼ等 しく、  The optical path length in the optical element of the first A element group of the light beam forming an angle within a predetermined range with respect to the optical axis is substantially equal to the optical path length in the optical element of the first B element group. On the other hand, the optical path length in the optical element of the second A element group of the light beam forming the angle in the predetermined range is substantially equal to the optical path length in the optical element of the second B element group.
前記光軸に対して前記所定範囲の角度をなす光束の前記第 1素子群における光 学素子中の光路長と前記第 2素子群における光学素子中の光路長とが所定の倍率 にしたがつて設定されていることを特徴とする光学系。  According to a predetermined magnification, an optical path length in the optical element of the first element group and an optical path length in the optical element of the second element group of the light beam forming the angle within the predetermined range with respect to the optical axis are set. An optical system characterized by being set.
2 . 請求の範囲第 1項に記載の光学系において、 2. In the optical system according to claim 1,
前記第 1素子群における光学素子中の光路長は、 前記第 2素子群における光学 素子中の光路長の約 1 . 5倍に設定されていることを特徴とする光学系。  An optical system, wherein an optical path length in an optical element in the first element group is set to about 1.5 times an optical path length in an optical element in the second element group.
3 . 請求の範囲第 2項に記載の光学系において、 3. In the optical system according to claim 2,
前記第 2素子群における光学素子中の光路長の 1 . 5倍と前記第 1素子群にお ける光学素子中の光路長との差が、 前記光束の波長を λ ( n m) としたとき、 土 1 . 0 X 1 0— 6 Χ λ 3 ( c m) 以内に設定されていることを特徴とする光学系。 When the difference between 1.5 times the optical path length in the optical element in the second element group and the optical path length in the optical element in the first element group is that the wavelength of the light flux is λ (nm), Sat 1.0 X 10—An optical system characterized by being set within 6 Χ λ 3 (cm).
4. 請求の範囲第 1項乃至第 3項のいずれか 1項に記載の光学系において、 前記第 1 A素子群における光学素子中の光路長と前記第 1 B素子群における光 学素子中の光路長との差が、 前記光束の波長を λ (nm) としたとき、 ±0. 5 X 10— 6Χλ3 (cm) 以内に設定されていることを特徴とする光学系。 4. The optical system according to any one of claims 1 to 3, wherein the optical path length in the optical element in the first A element group and the optical path length in the optical element in the first B element group are different. the difference between the optical path length, when the wavelength of the light beam with λ (nm), ± 0. 5 X 10- 6 Χλ 3 (cm) optical system, characterized in that it is set within.
5. 請求の範囲第 1項乃至第 4項のいずれか 1項に記載の光学系において、 前記第 2 A素子群における光学素子中の光路長と前記第 2 B素子群における光 学素子中の光路長との差が、 前記光束の波長を λ (nm) としたとき、 ±0. 5 X 10- 6Χλ3 (cm) 以内に設定されていることを特徴とする光学系。 5. The optical system according to claim 1, wherein the optical path length in the optical element in the second A element group and the optical path length in the optical element in the second B element group are different from each other. the difference between the optical path length, when the wavelength of the light beam with λ (nm), ± 0. 5 X 10- 6 Χλ 3 (cm) optical system, characterized in that it is set within.
6. 請求の範囲第 1項乃至第 5項のいずれか 1項に記載の光学系において、 前記所定範囲の角度は、 前記光学系の像側開口数の 0. 6倍に対応する角度よ りも大きく且つ前記像側開口数の 0. 9倍に対応する角度よりも小さいことを特 徴とする光学系。 6. The optical system according to any one of claims 1 to 5, wherein the angle in the predetermined range is greater than an angle corresponding to 0.6 times an image-side numerical aperture of the optical system. An optical system characterized in that the angle is large and smaller than an angle corresponding to 0.9 times the image-side numerical aperture.
7. 請求の範囲第 1項乃至第 6項のいずれか 1項に記載の光学系において、 前記第 1 A素子群、 前記第 1 B素子群、 前記第 2 A素子群、 および前記第 2 B 素子群のそれぞれは、 少なくとも 1つの光学素子を有することを特徴とする光学 系。 7. In the optical system according to any one of claims 1 to 6, the first A element group, the first B element group, the second A element group, and the second B element group. An optical system, wherein each of the element groups has at least one optical element.
8. 立方晶系に属する結晶で形成された複数の光学素子を含む光学系において、 前記光学系の光軸と結晶軸 [1 10〗 または該結晶軸と光学的に等価な結晶軸 とがほぼ一致するように設定された複数の光学素子からそれぞれ構成された第 3 素子群と第 4素子群とを備え、 8. In an optical system including a plurality of optical elements formed of crystals belonging to the cubic system, the optical axis of the optical system and the crystal axis [110 ° or a crystal axis optically equivalent to the crystal axis are substantially equal to each other. A third element group and a fourth element group each composed of a plurality of optical elements set to match,
前記第 3素子群は、 前記光軸を中心として第 3角度だけ相対的に回転した位置 関係を有する第 3 A素子群と第 3 B素子群とを有し、  The third element group includes a third A element group and a third B element group having a positional relationship relatively rotated by a third angle about the optical axis,
前記第 4素子群は、 前記光軸を中心として第 4角度だけ相対的に回転した位置 関係を有する第 4 A素子群と第 4 B素子群とを有し、 . The fourth element group is a position relatively rotated by a fourth angle about the optical axis. A fourth A element group and a fourth B element group having a relationship,
前記第 3素子群と前記第 4素子群とは、 前記光軸を中心として第 5角度だけ相 対的に回転した位置関係を有し、  The third element group and the fourth element group have a positional relationship of being rotated by a fifth angle about the optical axis, and
前記光軸に対して所定範囲の角度をなす光束の前記第 3 A素子群における光学 素子中の光路長と前記第 3 B素子群における光学素子中の光路長とがほぼ等しく、 前記光軸に対して前記所定範囲の角度をなす光束の前記第 4 A素子群における 光学素子中の光路長と前記第 4 B素子群における光学素子中の光路長とがほぼ等 しく、  The optical path length in the optical element in the third A element group of the light beam forming an angle within a predetermined range with respect to the optical axis is substantially equal to the optical path length in the optical element in the third B element group, and is equal to the optical axis. On the other hand, the optical path length in the optical element of the fourth A element group of the light flux forming the angle in the predetermined range is substantially equal to the optical path length in the optical element of the fourth B element group.
前記光軸に対して前記所定範囲の角度をなす光束の前記第 3素子群における光 学素子中の光路長と前記第 4素子群における光学素子中の光路長とが所定の倍率 にしたがって設定されていることを特徴とする光学系。  An optical path length in the optical element of the third element group and an optical path length in the optical element of the fourth element group of a light beam forming the angle within the predetermined range with respect to the optical axis are set according to a predetermined magnification. An optical system characterized by:
9. 請求の範囲第 8項に記載の光学系において、 9. In the optical system according to claim 8,
前記第 3素子群における光学素子中の光路長と前記第 4素子群における光学素 子中の光路長とがほぼ等しく設定されていることを特徴とする光学系。  An optical system, wherein an optical path length in an optical element in the third element group is set substantially equal to an optical path length in an optical element in the fourth element group.
10. 請求の範囲第 9項に記載の光学系において、 10. The optical system according to claim 9, wherein
前記第 3素子群における光学素子中の光路長と前記第 4素子群における光学素 子中の光路長との差が、 前記光束の波長を λ (nm) としたとき、 ± 1. 0 X 1 0一6 Χλ3 (cm) 以内に設定されていることを特徴とする光学系。 The difference between the optical path length in the optical element in the third element group and the optical path length in the optical element in the fourth element group is ± 1.0 X 1 when the wavelength of the light beam is λ (nm). An optical system characterized by being set within a range of 0 to 16 Χλ 3 (cm).
1 1. 請求の範囲第 8項乃至第 10項のいずれか 1項に記載の光学系において、 前記第 3 A素子群における光学素子中の光路長と前記第 3 B素子群における光 学素子中の光路長との差が、 前記光束の波長を λ (nm) としたとき、 ±0. 5 Χ 10_6Χλ3 (cm) 以内に設定されていることを特徴とする光学系。 1 1. The optical system according to any one of claims 8 to 10, wherein the optical path length in the optical element in the third A element group and the optical path length in the optical element in the third B element group are different. the difference between the optical path length of, when the wavelength of the light beam with λ (nm), ± 0. 5 Χ 10_ 6 Χλ 3 optical system characterized in that it is set within (cm).
1 2. 請求の範囲第 8項乃至第 1 1項のいずれか 1項に記載の光学系において、 前記第 4 A素子群における光学素子中の光路長と前記第 4 B素子群における光 学素子中の光路長との差が、 前記光束の波長を λ (nra) としたとき、 ±0. 5 X 10— 6Χλ3 (cm) 以内に設定されていることを特徴とする光学系。 1 2. The optical system according to any one of claims 8 to 11, wherein the optical path length in the optical element in the fourth A element group and the light path in the fourth B element group are different. The difference between the optical path length in the academic elements, when the wavelength of the light beam with λ (nra), ± 0. 5 X 10- 6 Χλ 3 optical system characterized in that it is set within (cm) .
13. 請求の範囲第 8項乃至第 12項のいずれか 1項に記載の光学系において、 前記光軸と結晶軸 [100] または該結晶軸と光学的に等価な結晶軸とがほぼ 一致するように設定された複数の光学素子から構成された第 5素子群をさらに備 え、 13. The optical system according to any one of claims 8 to 12, wherein the optical axis substantially coincides with a crystal axis [100] or a crystal axis optically equivalent to the crystal axis. A fifth element group composed of a plurality of optical elements set as follows,
前記第 5素子群は、 前記光軸を中心として第 6角度だけ相対的に回転した位置 関係を有する第 5 A素子群と第 5 B素子群とを有し、  The fifth element group includes a fifth A element group and a fifth B element group having a positional relationship relatively rotated by a sixth angle about the optical axis,
前記光軸に対して前記所定範囲の角度をなす光束の前記第 5 A素子群における 光学素子中の光路長と前記第 5B素子群における光学素子中の光路長とがほぼ等 しく、  An optical path length in the optical element of the fifth A element group of a light beam forming an angle within the predetermined range with respect to the optical axis is substantially equal to an optical path length in the optical element of the fifth B element group;
前記光軸に対して前記所定範囲の角度をなす光束の前記第 3素子群における光 学素子中の光路長と前記第 4素子群における光学素子中の光路長との和と、 前記 第 5素子群における光学素子中の光路長とが所定の倍率にしたがって設定されて いることを特徴とする光学系。  A sum of an optical path length of an optical element in the third element group and an optical path length of an optical element in the fourth element group of a light beam forming the angle within the predetermined range with respect to the optical axis; An optical system, wherein an optical path length in an optical element in a group is set according to a predetermined magnification.
14. 請求の範囲第 13項に記載の光学系において、 14. In the optical system according to claim 13,
前記第 3素子群および前記第 4素子群における光学素子中の光路長の和は、 前 記第 5素子群における光学素子中の光路長の約 4倍に設定されていることを特徴 とする光学系。  The sum of the optical path lengths in the optical elements in the third element group and the fourth element group is set to be about four times the optical path length in the optical elements in the fifth element group. system.
15. 請求の範囲第 14項に記載の光学系において、 15. The optical system according to claim 14, wherein
前記第 5素子群における光学素子中の光路長の約 4倍と前記第 3素子群および 前記第 4素子群における光学素子中の光路長の和との差が、 前記光束の波長を λ (nm) としたとき、 ±2. 7 X 10一6 X λ 3 (cm) 以内に設定されているこ とを特徴とする光学系。 The difference between about four times the optical path length in the optical element in the fifth element group and the sum of the optical path lengths in the optical elements in the third element group and the fourth element group indicates that the wavelength of the light flux is λ (nm ) and the time, ± 2. 7 X 10 one 6 X λ 3 (cm) optical system, characterized in that you have set within.
16. 請求の範囲第 13項乃至第 15項のいずれか 1項に記載の光学系におい て、 16. In the optical system according to any one of claims 13 to 15,
前記第 5 A素子群における光学素子中の光路長と前記第 5 B素子群における光 学素子中の光路長との差が、 前記光束の波長を λ (nm) としたとき、 ±0. 5 X 10— 6Χλ3 (cm) 以内に設定されていることを特徴とする光学系。 The difference between the optical path length in the optical element in the fifth A element group and the optical path length in the optical element in the fifth B element group is ± 0.5 when the wavelength of the light beam is λ (nm). X 10 — An optical system characterized by being set within 63 (cm).
17. 請求の範囲第 13項乃至第 16項のいずれか 1項に記載の光学系におい て、 17. In the optical system according to any one of claims 13 to 16,
前記第 3 A素子群、 前記第 3 B素子群、 前記第 4 A素子群、 前記第 4 B素子群、 前記第 5A素子群、 および前記第 5 B素子群のそれぞれは、 少なくとも 1つの光 学素子を有することを特徴とする光学系。  Each of the third A element group, the third B element group, the fourth A element group, the fourth B element group, the fifth A element group, and the fifth B element group has at least one optical element. An optical system comprising an element.
18. 請求の範囲第 8項乃至第 17項のいずれか 1項に記載の光学系において、 前記所定範囲の角度は、 前記光学系の像側開口数の 0. 6倍に対応する角度よ りも大きく且つ前記像側開口数の 0. 9倍に対応する角度よりも小さいことを特 徴とする光学系。 18. The optical system according to any one of claims 8 to 17, wherein the angle in the predetermined range is greater than an angle corresponding to 0.6 times the image-side numerical aperture of the optical system. An optical system characterized in that the angle is large and smaller than an angle corresponding to 0.9 times the image-side numerical aperture.
19. 請求の範囲第 13項乃至第 18項のいずれか 1項に記載の光学系におい て、 19. In the optical system according to any one of claims 13 to 18,
前記第 5 A素子群と前記第 5 B素子群とは前記光軸に沿つて互いに近接して配 置されていることを特徴とする光学系。  An optical system, wherein the fifth A element group and the fifth B element group are arranged close to each other along the optical axis.
20. 立方晶系に属する結晶で形成された複数の光学素子を含む光学系におい て、 20. In an optical system including a plurality of optical elements formed of crystals belonging to the cubic system,
前記光学系の光軸と結晶軸 [1 10] または該結晶軸と光学的に等価な結晶軸 とがほぼ一致するように設定された複数の光学素子からそれぞれ構成された第 6 素子群と第 7素子群と第 8素子群と第 9素子群とを備え、  A sixth element group and a sixth element group each composed of a plurality of optical elements set such that the optical axis of the optical system and the crystal axis [1 10] or the crystal axis optically equivalent to the crystal axis substantially coincide with each other. 7 element group, 8 element group and 9 element group,
前記第 7素子群は、 前記第 6素子群に対して前記光軸を中心として所定の向き に第 7角度だけ回転した位置関係を有し、 The seventh element group has a predetermined direction around the optical axis with respect to the sixth element group. Has a positional relationship rotated by the seventh angle,
前記第 8素子群は、 前記第 Ί素子群に対して前記光軸を中心として前記所定の 向きに前記第 7角度だけ回転した位置関係を有し、  The eighth element group has a positional relationship rotated by the seventh angle in the predetermined direction about the optical axis with respect to the #th element group,
前記第 9素子群は、 前記第 8素子群に対して前記光軸を中心として前記所定の 向きに前記第 7角度だけ回転した位置関係を有し、  The ninth element group has a positional relationship rotated by the seventh angle in the predetermined direction about the optical axis with respect to the eighth element group,
前記光軸に対して所定範囲の角度をなす光束の前記第 6素子群における光学素 子中の光路長と、 前記光軸に対して前記所定範囲の角度をなす光束の前記第 7素 子群における光学素子中の光路長と、 前記光軸に対して前記所定範囲の角度をな す光束の前記第 8素子群における光学素子中の光路長と、 前記光軸に対して前記 所定範囲の角度をなす光束の前記第 9素子群における光学素子中の光路長とが互 いにほぼ等しいことを特徴とする光学系。  An optical path length in the optical element of the sixth element group of a light beam forming an angle within a predetermined range with respect to the optical axis; and a seventh element group of the light beam forming an angle of the predetermined range with respect to the optical axis. An optical path length in the optical element in the optical element, an optical path length in the optical element in the eighth element group of a light beam forming an angle in the predetermined range with respect to the optical axis, and an angle in the predetermined range with respect to the optical axis. An optical system, wherein the optical path lengths of the light beams in the ninth element group in the optical elements are substantially equal to each other.
2 1 . 請求の範囲第 2 0項に記載の光学系において、 21. In the optical system according to claim 20,
前記第 6素子群における光学素子中の光路長と、 前記第 7素子群における光学 素子中の光路長と、 前記第 8素子群における光学素子中の光路長と、 前記第 9素 子群における光学素子中の光路長とから任意に選択された 2つの光路長の差が、 前記光束の波長をえ ( n m) としたとき、 ± 0 . 5 X 1 0— 6 Χ λ 3 ( c m) 以内 に設定されていることを特徴とする光学系。 The optical path length in the optical element in the sixth element group, the optical path length in the optical element in the seventh element group, the optical path length in the optical element in the eighth element group, and the optical path length in the ninth element group the difference between the two optical path lengths which are selected arbitrarily from the optical path length in the device is, when the example the wavelength of the light beam (nm), ± 0. 5 X 1 0- 6 Χ λ 3 (cm) within An optical system characterized by being set.
2 2 . 請求の範囲第 2 0項または第 2 1項に記載の光学系において、 22. In the optical system according to claim 20 or 21,
前記光軸と結晶軸 [ 1 0 0 ] または該結晶軸と光学的に等価な結晶軸とがほぼ 一致するように設定された複数の光学素子から構成された第 1 0素子群をさらに 備え、  A first element group including a plurality of optical elements set such that the optical axis and the crystal axis [100] or the crystal axis and the optical axis which is optically equivalent to each other substantially coincide with each other;
前記第 1 0素子群は、 前記光軸を中心として第 8角度だけ相対的に回転した位 置関係を有する第 1 O A素子群と第 1 0 B素子群とを有し、  The first element group includes a first OA element group and a first element group having a positional relationship relatively rotated by an eighth angle about the optical axis, and
前記光軸に対して前記所定範囲の角度をなす光束の前記第 1 0 A素子群におけ る光学素子中の光路長と前記第 1 0 B素子群における光学素子中の光路長とがほ ぼ等しいことを特徵とする光学系。 The optical path length in the optical element of the first 10A element group and the optical path length in the optical element of the first 10B element group of the light beam forming the angle within the predetermined range with respect to the optical axis are substantially the same. An optical system characterized by being equal.
23. 請求の範囲第 22項に記載の光学系において、 23. The optical system according to claim 22, wherein
前記第 1 OA素子群における光学素子中の光路長と前記第 10 B素子群におけ る光学素子中の光路長との差が、 前記光束の波長を λ (nm) としたとき、 ±0. 5 X 10— 6Χλ3 (cm) 以内に設定されていることを特徴とする光学系。 The difference between the optical path length in the optical element in the first OA element group and the optical path length in the optical element in the 10B element group is ± 0 when the wavelength of the light beam is λ (nm). 5 X 10- 6 Χλ 3 optical system characterized in that it is set within (cm).
24. 請求の範囲第 22項または第 23項に記載の光学系において、 24. The optical system according to claim 22 or 23,
前記第 6素子群における光学素子中の光路長と前記第 7素子群における光学素 子中の光路長と前記第 8素子群における光学素子中の光路長と前記第 9素子群に おける光学素子中の光路長との和と、 前記第 10素子群における光学素子中の光 路長とが所定の倍率にしたがって設定されていることを特徵とする光学系。  The optical path length in the optical element in the sixth element group, the optical path length in the optical element in the seventh element group, the optical path length in the optical element in the eighth element group, and the optical path length in the ninth element group An optical system characterized in that the sum of the optical path length of the optical element and the optical path length in the optical element in the tenth element group is set according to a predetermined magnification.
25. 請求の範囲第 24項に記載の光学系において、 25. The optical system according to claim 24,
前記第 6素子群乃至前記第 9素子群における光学素子中の光路長の和は、 前記 第 10素子群における光学素子中の光路長の約 4倍に設定されていることを特徴 とする光学系。  An optical system wherein the sum of the optical path lengths in the optical elements in the sixth to ninth element groups is set to be about four times the optical path length in the optical elements in the tenth element group. .
26. 請求の範囲第 25項に記載の光学系において、 26. The optical system according to claim 25, wherein
前記第 10素子群における光学素子中の光路長の約 4倍と前記第 6素子群乃至 前記第 9素子群における光学素子中の光路長の和との差が、 前記光束の波長を λ (nm) としたとさ、 ±2. 7 X 10— 6Χλ3 (cm) 以内に設定されているこ とを特徴とする光学系。 The difference between about four times the optical path length in the optical element in the tenth element group and the sum of the optical path lengths in the optical elements in the sixth to ninth element groups indicates that the wavelength of the light flux is λ (nm ) is and the, ± 2. 7 X 10- 6 Χλ 3 (cm) optical system, characterized in that you have set within.
27. 請求の範囲第 20項乃至第 26項のいずれか 1項に記載の光学系におい て、 27. In the optical system according to any one of claims 20 to 26,
前記光学系の光軸と結晶軸 [1 11] または該結晶軸と光学的に等価な結晶軸 とがほぼ一致するように設定された複数の光学素子から構成された第 1 1素子群 をさらに備え、 前記第 1 1素子群は、 前記光軸を中心として第 9角度だけ相対的に回転した位 置関係を有する第 11 A素子群と第 1 1 B素子群とを有し、 A first element group composed of a plurality of optical elements set so that the optical axis of the optical system and the crystal axis [111] or the crystal axis that is optically equivalent to the crystal axis substantially coincide with each other. Prepared, The eleventh element group includes an eleventh element group and an eleventh element group having a positional relationship relatively rotated by a ninth angle about the optical axis,
前記光軸に対して前記所定範囲の角度をなす光束の前記第 1 1 A素子群におけ る光学素子中の光路長と前記第 11 B素子群における光学素子中の光路長とがほ ぼ等しいことを特徴とする光学系。  The optical path length of the light beam forming the angle within the predetermined range with respect to the optical axis in the optical element in the first 11A element group is substantially equal to the optical path length in the optical element in the 11B element group. An optical system characterized by the above.
28. 請求の範囲第 27項に記載の光学系において、 28. The optical system according to claim 27, wherein
前記第 1 1 A素子群における光学素子中の光路長と前記第 1 1 B素子群におけ る光学素子中の光路長との差が、 前記光束の波長を λ (nm) としたとき、 ±0. 5 X 10— 6 Χλ3 (cm) 以内に設定されていることを特徴とする光学系。 The difference between the optical path length in the optical element in the first 1A element group and the optical path length in the optical element in the first 1B element group is: ±, where λ (nm) is the wavelength of the light flux. optical system characterized in that it is set within 0. 5 X 10- 6 Χλ 3 ( cm).
29. 請求の範囲第 27項または第 28項に記載の光学系において、 29. The optical system according to claim 27 or 28,
前記第 6素子群乃至前記第 9素子群における光学素子中の光路長の和の 3倍と 前記第 1 1素子群における光学素子中の光路長の 8倍との総和は、 前記第 10素 子群における光学素子中の光路長の約 12倍に設定されていることを特徴とする 光学系。  The total sum of three times the sum of the optical path lengths in the optical elements in the sixth to ninth element groups and eight times the optical path length in the optical elements in the eleventh element group is the tenth element group. An optical system, wherein the optical path length is set to about 12 times the optical path length in the optical element in the group.
30. 請求の範囲第 29項に記載の光学系において、 30. The optical system according to claim 29,
前記第 6素子群乃至前記第 9素子群における光学素子中の光路長の和を L 69 (cm) とし、 前記第 10素子群における光学素子中の光路長を L 10 (cm) とし、 前記第 11素子群における光学素子中の光路長を L 1 1 (cm) とし、 前 記光束の波長を λ (nm) としたとき、  The sum of the optical path lengths in the optical elements in the sixth to ninth element groups is L 69 (cm), and the optical path length in the optical elements in the tenth element group is L 10 (cm). When the optical path length in the optical element in the 11 element group is L 11 (cm) and the wavelength of the light beam is λ (nm),
I 3 XL 69- 12 XL 10 + 8 XL 1 1 |≤ 8. 0X 10 -6 Χλ3 I 3 XL 69- 12 XL 10 + 8 XL 1 1 | ≤ 8. 0X 10 - 6 Χλ 3
の条件を満足することを特徴とする光学系。  An optical system characterized by satisfying the following conditions:
31. 請求の範囲第 20項乃至第 30項のいずれか 1項に記載の光学系におい て、 31. The optical system according to any one of claims 20 to 30,
前記所定範囲の角度は、 前記光学系の像側開口数の 0. 6倍に対応する角度よ りも大きく且つ前記像側開口数の 0 . 9倍に対応する角度よりも小さいことを特 徴とする光学系。 The angle in the predetermined range is an angle corresponding to 0.6 times the image-side numerical aperture of the optical system. An optical system characterized in that the angle is larger than an angle corresponding to 0.9 times the image-side numerical aperture.
3 2 . 請求の範囲第 2 0項乃至第 3 1項のいずれか 1項に記載の光学系におい て、 32. In the optical system according to any one of claims 20 to 31,
前記第 6素子群乃至前記第 1 0素子群のそれぞれは、 少なくとも 1つの光学素 子を有することを特徴とする光学系。  An optical system, wherein each of the sixth to tenth element groups has at least one optical element.
3 3 . 請求の範囲第 1項乃至第 3 2項のいずれか 1項に記載の光学系において、 前記結晶はフッ化カルシウム結晶またはフッ化バリウム結晶であることを特徴 とする光学系。 33. The optical system according to any one of claims 1 to 32, wherein the crystal is a calcium fluoride crystal or a barium fluoride crystal.
3 4 . マスクを照明するための照明系と、 3 4. An illumination system for illuminating the mask,
前記マスクに形成されたパターンの像を感光性基板上に形成するための請求の 範囲第 1項乃至第 3 3項のいずれか 1項に記載の光学系とを備えていることを特 徵とする露光装置。  The optical system according to any one of claims 1 to 33 for forming an image of a pattern formed on the mask on a photosensitive substrate. Exposure equipment.
3 5 . 請求の範囲第 3 4項に記載の露光装置を用いて前記マスクのパターンを 前記感光性基板に露光する露光工程と、 35. An exposure step of exposing the pattern of the mask to the photosensitive substrate using the exposure apparatus according to claim 34,
前記露光工程により露光された前記感光性基板を現像する現像工程とを含むこ とを特徴とするマイクロデバイスの製造方法。  A developing step of developing the photosensitive substrate exposed in the exposing step.
PCT/JP2002/006131 2001-06-20 2002-06-19 Optical system and exposure system provided with the optical system WO2003001271A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003507610A JPWO2003001271A1 (en) 2001-06-20 2002-06-19 Optical system and exposure apparatus having the optical system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-185825 2001-06-20
JP2001185825 2001-06-20
JP2001-206935 2001-07-06
JP2001206935 2001-07-06

Publications (1)

Publication Number Publication Date
WO2003001271A1 true WO2003001271A1 (en) 2003-01-03

Family

ID=26617242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006131 WO2003001271A1 (en) 2001-06-20 2002-06-19 Optical system and exposure system provided with the optical system

Country Status (3)

Country Link
JP (1) JPWO2003001271A1 (en)
TW (1) TW558749B (en)
WO (1) WO2003001271A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683710B2 (en) 2001-06-01 2004-01-27 Optical Research Associates Correction of birefringence in cubic crystalline optical systems
US6844972B2 (en) 2001-10-30 2005-01-18 Mcguire, Jr. James P. Reducing aberration in optical systems comprising cubic crystalline optical elements
US6958864B2 (en) 2002-08-22 2005-10-25 Asml Netherlands B.V. Structures and methods for reducing polarization aberration in integrated circuit fabrication systems
US6970232B2 (en) 2001-10-30 2005-11-29 Asml Netherlands B.V. Structures and methods for reducing aberration in integrated circuit fabrication systems
US6995908B2 (en) 2001-10-30 2006-02-07 Asml Netherlands B.V. Methods for reducing aberration in optical systems
JP2008532273A (en) * 2005-02-25 2008-08-14 カール ツァイス エスエムテー アクチエンゲゼルシャフト Optical system for microlithographic projection exposure apparatus
US7453641B2 (en) 2001-10-30 2008-11-18 Asml Netherlands B.V. Structures and methods for reducing aberration in optical systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107060A (en) * 1994-10-06 1996-04-23 Nikon Corp Optical member and projection optical system for photolithography
JPH1154411A (en) * 1997-07-29 1999-02-26 Canon Inc Projection optical system and projection aligner using the same
WO2000041226A1 (en) * 1999-01-06 2000-07-13 Nikon Corporation Projection optical system, method for producing the same, and projection exposure apparatus using the same
WO2000064826A1 (en) * 1999-04-21 2000-11-02 Nikon Corporation Quartz glass member, production method therefor, and projection aligner using it
JP2000331927A (en) * 1999-03-12 2000-11-30 Canon Inc Projection optical system and projection aligner using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107060A (en) * 1994-10-06 1996-04-23 Nikon Corp Optical member and projection optical system for photolithography
JPH1154411A (en) * 1997-07-29 1999-02-26 Canon Inc Projection optical system and projection aligner using the same
WO2000041226A1 (en) * 1999-01-06 2000-07-13 Nikon Corporation Projection optical system, method for producing the same, and projection exposure apparatus using the same
JP2000331927A (en) * 1999-03-12 2000-11-30 Canon Inc Projection optical system and projection aligner using the same
WO2000064826A1 (en) * 1999-04-21 2000-11-02 Nikon Corporation Quartz glass member, production method therefor, and projection aligner using it

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7009769B2 (en) 2001-06-01 2006-03-07 Asml Netherlands B.V. Correction of birefringence in cubic crystalline optical systems
US6885488B2 (en) 2001-06-01 2005-04-26 Optical Research Associates Semiconductor device and method for forming the same using cubic crystalline optical system with reduced birefringence
US6683710B2 (en) 2001-06-01 2004-01-27 Optical Research Associates Correction of birefringence in cubic crystalline optical systems
US7075696B2 (en) 2001-06-01 2006-07-11 Asml Netherlands B.V. Correction of birefringence in cubic crystalline optical systems
US6947192B2 (en) 2001-06-01 2005-09-20 Asml Netherlands B.V. Correction of birefringence in cubic crystalline optical systems
JP2009169431A (en) * 2001-06-01 2009-07-30 Asml Netherlands Bv Correction of birefringence in cubic crystalline optical system
US6917458B2 (en) 2001-06-01 2005-07-12 Asml Netherlands B.V. Correction of birefringence in cubic crystalline optical systems
US7453641B2 (en) 2001-10-30 2008-11-18 Asml Netherlands B.V. Structures and methods for reducing aberration in optical systems
US7738172B2 (en) 2001-10-30 2010-06-15 Asml Netherlands B.V. Structures and methods for reducing aberration in optical systems
US6995908B2 (en) 2001-10-30 2006-02-07 Asml Netherlands B.V. Methods for reducing aberration in optical systems
US6970232B2 (en) 2001-10-30 2005-11-29 Asml Netherlands B.V. Structures and methods for reducing aberration in integrated circuit fabrication systems
US6844972B2 (en) 2001-10-30 2005-01-18 Mcguire, Jr. James P. Reducing aberration in optical systems comprising cubic crystalline optical elements
US7075720B2 (en) 2002-08-22 2006-07-11 Asml Netherlands B.V. Structures and methods for reducing polarization aberration in optical systems
US7511885B2 (en) 2002-08-22 2009-03-31 Asml Netherlands B.V. Methods for reducing polarization aberration in optical systems
US6958864B2 (en) 2002-08-22 2005-10-25 Asml Netherlands B.V. Structures and methods for reducing polarization aberration in integrated circuit fabrication systems
US7072102B2 (en) 2002-08-22 2006-07-04 Asml Netherlands B.V. Methods for reducing polarization aberration in optical systems
JP2008532273A (en) * 2005-02-25 2008-08-14 カール ツァイス エスエムテー アクチエンゲゼルシャフト Optical system for microlithographic projection exposure apparatus
JP2009086692A (en) * 2005-02-25 2009-04-23 Carl Zeiss Smt Ag Optical system for microlithographic projection exposure apparatus

Also Published As

Publication number Publication date
TW558749B (en) 2003-10-21
JPWO2003001271A1 (en) 2004-10-14

Similar Documents

Publication Publication Date Title
US20030011893A1 (en) Optical system and exposure apparatus equipped with the optical system
US6775063B2 (en) Optical system and exposure apparatus having the optical system
KR100687035B1 (en) Projection exposure method and apparatus and projection optical system
JP4333078B2 (en) Projection optical system, exposure apparatus including the projection optical system, exposure method using the projection optical system, and device manufacturing method
KR20030082452A (en) Projective optical system, exposure apparatus and exposure method
WO2003088330A1 (en) Projection optical system, exposure system and exposure method
JP2003161882A (en) Projection optical system, exposure apparatus and exposing method
KR20020076159A (en) Projection optical system, projection exposure apparatus having the projection optical system, and projection exposure method
JP2004205698A (en) Projection optical system, exposure device and exposing method
JPWO2003036361A1 (en) Projection optical system and exposure apparatus provided with the projection optical system
JPWO2003003429A1 (en) Projection optical system, exposure apparatus and method
WO2002097508A1 (en) Optical system and exposure system provided with the optical system
JP2004317534A (en) Catadioptric image-formation optical system, exposure device, and exposure method
JP4706171B2 (en) Catadioptric projection optical system, exposure apparatus and exposure method
WO2003001271A1 (en) Optical system and exposure system provided with the optical system
JP2003043223A (en) Beam splitter and wave plate made of crystal material, and optical device, exposure device and inspection device equipped with the crystal optical parts
JPWO2003007046A1 (en) Optical system and exposure apparatus having the optical system
JPWO2003040785A1 (en) Optical element, method for manufacturing the same, optical system, exposure apparatus, and method for manufacturing micro device
JP4547714B2 (en) Projection optical system, exposure apparatus, and exposure method
JP2005195713A (en) Projection optical system, exposure device, and exposure method
WO2005001544A1 (en) Optical unit, image-forming optical system, method for adjusting aberration of image-forming optical system, projection optical system, method for producing projection optical system, exposure apparatus, and exposure method
JP4239212B2 (en) Projection optical system, exposure apparatus, and exposure method
JPWO2003023481A1 (en) Optical system, projection optical system, exposure apparatus equipped with this projection optical system, and method for manufacturing microdevice using this exposure apparatus
JP5786919B2 (en) Projection optical system, exposure apparatus and exposure method
JP2004354555A (en) Reflection refraction type projection optical system, exposing device and exposing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003507610

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase