WO2003001612A1 - Semiconductor device and its fabriction method - Google Patents

Semiconductor device and its fabriction method Download PDF

Info

Publication number
WO2003001612A1
WO2003001612A1 PCT/JP2002/006176 JP0206176W WO03001612A1 WO 2003001612 A1 WO2003001612 A1 WO 2003001612A1 JP 0206176 W JP0206176 W JP 0206176W WO 03001612 A1 WO03001612 A1 WO 03001612A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
light
diffusing agent
sealing member
semiconductor
Prior art date
Application number
PCT/JP2002/006176
Other languages
French (fr)
Japanese (ja)
Inventor
Shigetsugu Kouda
Original Assignee
Nichia Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corporation filed Critical Nichia Corporation
Priority to JP2003507903A priority Critical patent/JP4010299B2/en
Publication of WO2003001612A1 publication Critical patent/WO2003001612A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/06102Disposition the bonding areas being at different heights
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1701Structure
    • H01L2224/1703Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to a semiconductor device used as a light source for illumination in a switch, a full-color display, a liquid crystal backlight, and the like, and particularly to a highly reliable light emitting device.
  • Such light emitting devices are used for light sources of optical printer heads, liquid crystal backlight sources, light sources of various meters, and various reading sensors, for example, by taking advantage of their features such as small size, low power consumption, and light weight.
  • Such a light emitting device has, for example, a package having a recess capable of accommodating a semiconductor element, and positive and negative lead electrodes inserted from the bottom of the recess such that one main surface is exposed and integrally formed.
  • An LED chip is die-bonded as a semiconductor element on the lead electrode exposed from the bottom surface of the recess, and each electrode of the LED chip is electrically connected to a lead electrode provided on the package by a gold wire or the like.
  • the LED chip and the gold wire are covered with a resin as a sealing member in the recess.
  • Such an LED chip can emit high-output light by dropping a large current, but also emits high-temperature heat when emitting light. This causes discoloration and degradation of the sealing resin disposed near the LED chip.
  • a translucent organic member having a heat-sensitive carbon-carbon double bond is used as a sealing member disposed near the ED chip, the bond is broken and yellowing is caused, and optical characteristics are impaired.
  • wire breakage and cracks occur in each member, As the elapsed time of use increases, the reliability tends to decrease rapidly.
  • a silicone resin that has excellent light resistance and heat resistance to light in the near-ultraviolet region and has plasticity against thermal stress is used. It is preferably used. Since the main skeleton of the silicone resin does not have a carbon-carbon double bond that causes photodegradation, it does not easily undergo electron transition absorption and hardly degrades even when irradiated for a long time. Further, since the semiconductor device has excellent flexibility, damage to the semiconductor device due to thermal stress can be prevented.
  • the cured product mainly composed of silicone resin is excellent in flexibility, the surface of the falling object has low mechanical strength and tackiness.
  • silicone resin has high stability to heat, and the shape of the cured product mainly composed of silicone does not shrink during the curing process and is determined at the time of filling before curing. Therefore, when a sealing member made of silicone resin is provided in a package having a concave portion as described above, the amount of silicone resin to be filled needs to be finely adjusted so that the surface does not contact the outside.
  • a semiconductor device according to the present invention is a semiconductor device comprising: a semiconductor element; a package having a recess in which the semiconductor element is housed; and a sealing member filled in the recess.
  • the curable composition comprising, as essential components, a light-transmitting polymer resin having a hydrophilic main chain and a hydrophobic side chain, and a diffusing agent capable of absorbing the polymer resin. Characterized by being a cured product of
  • the semiconductor device thus configured has excellent reliability and optical characteristics, and can be obtained with high yield.
  • the hardness of the sealing member is preferably 5 shore (A) to 80 shore (D), thereby enabling a large current drop and a high output. A semiconductor device is obtained.
  • the upper surface of the sealing member has a parabolic depression from the end to the center, so that the upper surface having tackiness is used when mounting or the like. Contact with the outside can be further suppressed. Further, when the sealing member is translucent, a light emitting device capable of uniformly emitting light on one surface is obtained.
  • the diffusing agent has a needle-like or columnar shape, thereby increasing the polymer resin absorption of the diffusing agent and reducing the amount of the diffusing agent.
  • a desired sealing member shape can be realized.
  • the diffusing agent is a hailstone type crystal, whereby a semiconductor device capable of diffusing light well and emitting light uniformly is obtained.
  • the diffusing agent has an average particle size of 0.1 ⁇ ! 5 ⁇ is preferable, whereby a semiconductor device capable of suppressing color unevenness and emitting light at a uniform and high luminous intensity is obtained.
  • a refractive index of the diffusing agent is lower than a refractive index of the light emitting element and higher than a refractive index of the light transmitting polymer resin, whereby light is emitted from the semiconductor element. Good external without sealing light inside High luminous intensity.
  • the sealing member includes, from the semiconductor element side, a first layer having a higher content of the diffusing agent and a second layer having a lower content of the diffusing agent than the first layer. It is preferable that the surface of the light emitting element is substantially covered with the first layer. As a result, the efficiency of extracting light emitted from the semiconductor element can be increased.
  • the sealing member may contain a fluorescent substance capable of absorbing at least a part of light emitted from a semiconductor element and emitting light having a different wavelength. Accordingly, a color conversion type semiconductor device capable of emitting light uniformly with little color variation between light emitting devices can be obtained.
  • the refractive index of the fluorescent substance is lower than the refractive index of the light emitting element and higher than the refractive index of the diffusing agent, thereby extracting light emitted from the semiconductor element. Efficiency can be improved.
  • a difference in refractive index between the fluorescent substance and the light-emitting element is substantially equal to a difference in refractive index between the fluorescent substance and the diffusing agent.
  • the sealing member formed by curing a curable composition containing a translucent polymer resin, a diffusing agent, and a fluorescent substance as essential components includes the semiconductor element and the first layer. It is preferable to have a color conversion layer containing the fluorescent substance between the two. That is, on the surface of the semiconductor element, a color conversion layer containing a fluorescent substance, a first layer containing a larger amount of a diffusing agent, and a second layer containing a smaller amount of a diffusing agent than the first layer. It is preferable that the light emitted from the semiconductor element and the light obtained by partially absorbing the light and being converted by the color conversion layer be sequentially stacked on the first layer. It is reflected and scattered and is mixed well.
  • the directivity of the mixed color light is improved by passing through the second layer.
  • This effect is remarkable when a fluorescent substance having a large particle diameter, particularly a fluorescent substance having a central particle diameter of 15 to 50 m, is used, and a light emitting device capable of emitting light with high luminance and uniformity. Is obtained.
  • the method for forming a semiconductor device according to the present invention includes: a semiconductor element; And a sealing member filled in the concave portion.
  • a curable composition liquid containing a translucent polymer resin having a hydrophilic main chain and a hydrophobic side chain and a diffusing agent capable of absorbing the translucent polymer resin as essential components is prepared.
  • FIG. 1 is a schematic plan view and a schematic sectional view showing a light emitting device of the present invention.
  • FIG. 2 is a schematic plan view and a schematic sectional view showing another light emitting device of the present invention.
  • FIG. 3 is a schematic plan view and a schematic sectional view showing another light emitting device of the present invention.
  • FIG. 1 is a schematic plan view and a schematic cross-sectional view of an SMD type light emitting diode according to an embodiment of the present invention.
  • a resin package 1 having a recess and exposing the front end surfaces of a pair of lead electrodes 2 and 3 from the bottom of the recess is used.
  • the light emitting element 4 is mounted on the bottom surface of the concave portion, and each electrode of the light emitting element 4 and the tip of each of the lead electrodes are electrically connected by a gold wire 6.
  • a diffusing agent capable of adjusting at least the degree of absorption of the polymer resin into a light-transmitting polymer resin having a hydrophilic main chain and a hydrophobic side chain is stirred. Cured product of the curable composition obtained by It is covered with.
  • the semiconductor element 4 is not particularly limited, but in the present embodiment, a light emitting element is used to form a light emitting device that emits light to the outside.
  • a light-emitting element having a light-emitting layer which emits light capable of efficiently exciting the fluorescent substance is preferable.
  • Z n S e and G a N such can be mentioned various semiconductor, phosphor efficiently excited may capable of emitting short-wavelength nitride semiconductor (I n x A 1 Y G ai _ x - Y N, 0 ⁇ X, 0 ⁇ Y, X + Y ⁇ 1) are preferably exemplified.
  • the nitride semiconductor may contain boron or phosphorus as desired.
  • the structure of the semiconductor layer include a homo structure having a MIS junction, a PIN junction and a pn junction, a heterostructure, and a double hetero structure.
  • the emission wavelength of such a semiconductor layer can be variously selected depending on the material and the degree of mixed crystal thereof.
  • a single quantum well structure or a multiple quantum well structure in which the semiconductor active layer is formed as a thin film in which a quantum effect occurs can be used.
  • a material such as sapphire, spinel, SiC, Si, ZnO, or GaN is suitably used for the semiconductor substrate.
  • a sapphire substrate In order to form a nitride semiconductor having good crystallinity with good mass productivity, it is preferable to use a sapphire substrate.
  • a nitride semiconductor can be formed on this sapphire substrate by using the MOCVD method or the like.
  • a buffer layer such as GaN, A1N, or GaN is formed on a sapphire substrate, and a nitride semiconductor having a pn junction is formed thereon to form a semiconductor element. After the semiconductor layer is stacked on the substrate, the substrate can be removed to obtain a semiconductor element having no substrate.
  • the active layer formed of indium nitride nitride, the second cladding layer formed of p-type aluminum nitride gallium, and the second contact layer formed of p-type gallium nitride have a double heterostructure. And so on.
  • Nitride semiconductors exhibit n-type conductivity without being doped with impurities.
  • n-type nitride semiconductor When a desired n-type nitride semiconductor is formed, for example, to improve luminous efficiency, it is preferable to appropriately introduce Si, Ge, Se, Te, C, or the like as an n-type dopant.
  • p-type dopants such as Zn, Mg, Be, Ca, Sr, and Ba are doped. Since it is difficult to make a nitride semiconductor p-type only by doping a p-type dopant, it is preferable to reduce the resistance by heating in a furnace, irradiating plasma, or the like after introducing the p-type dopant.
  • the semiconductor wafer can be cut into chips to form a semiconductor element made of a nitride semiconductor.
  • an insulating protective film made of Sio 2 or the like so that only the bonding portion of each electrode is exposed by patterning and covers the entire element, a miniaturized semiconductor device can be formed with high reliability. .
  • the emission wavelength of the semiconductor element when emitting white light, should be 400 nm or more in consideration of the complementary color relationship with the emission wavelength from the fluorescent substance and the deterioration of the light-transmitting resin. It is preferably at most 30 nm, more preferably at least 420 nm and at most 490 nm. In order to further improve the excitation efficiency of the semiconductor element and the luminous efficiency of the fluorescent substance, the emission wavelength of the semiconductor element is preferably 450 nm or more and 475 nm or less.
  • the resin used for the sealing member of the present invention is relatively hard to be deteriorated by ultraviolet rays, and a semiconductor element having a main emission wavelength in an ultraviolet region shorter than 400 nm or a short wavelength region of visible light is used. Is also possible.
  • a light-emitting element that emits light in the near ultraviolet region and a fluorescent substance that can absorb part of the wavelength and emit light of another wavelength, color unevenness is reduced.
  • a color conversion type light emitting device can be obtained. Since the color emitted from such a color conversion type light emitting device uses only light emitted from the fluorescent substance, color adjustment can be performed relatively easily.
  • a sealing member having a light-emitting surface on the surface is provided in a concave portion of the package in which the semiconductor element is arranged.
  • the sealing member comprises a cured product of a curable composition having: a light-transmitting polymer resin having a hydrophilic main chain and a hydrophobic side chain; and a diffusing agent capable of absorbing the polymer resin.
  • the upper surface of the sealing member is located below the outer upper surface of the package.
  • Such a sealing member is, for example, a liquid curable composition having the polymer resin and an oil-absorbing diffusing agent, for example, in a concave-type package in which a light-emitting element is disposed, and at the both end upper surfaces of the concave portion.
  • the volume of the cured product decreases compared to that before curing, and the height of the obtained cured product is the upper surface of both ends of the recess.
  • the volume of the composition can be reduced during the curing reaction by allowing the oil-absorbing dispersant to coexist with the composition mainly composed of a resin that does not originally cure and shrink by heat treatment.
  • the surface of the cured product can be made inside the outer contour of the package without finely adjusting the filling amount of the composition.
  • a highly reliable light emitting device can be obtained both inside and outside.
  • the sealing member of the present invention can be obtained by simply filling a curable composition liquid containing a translucent polymer resin and the above-mentioned diffusing agent as essential components in a line substantially flush with the upper surface of the outer surface of the concave package, and thermally curing the liquid. It can be easily obtained, and there is no need to fine-tune the filling amount by visual inspection. Further, the filling amount of the sealing member is determined by the volume of the package, and the volume shrinkage from before curing to after curing of the sealing member is determined by the degree and content of the surface treatment of the diffusing agent. The volume of the stop member can be constant. Thereby, mass productivity and yield are improved.
  • the diffusing agent used in the present invention can easily form a sealing member using a highly reliable resin to a desired thickness.
  • a highly reliable semiconductor device can be formed with good mass productivity by using a thermosetting composition containing a polymer resin having high thermal stability as an essential component.
  • the upper surface of the sealing member which becomes the light emitting surface of the semiconductor device, is smooth and has both ends. It is preferable that the shape be parabolically concave from the center to the center, whereby a semiconductor device having high reliability and excellent optical characteristics can be obtained. Further, it is preferable that the recess is substantially symmetrical in the major axis and the minor axis, whereby a light emitting device having good directivity characteristics can be obtained.
  • a light emitting surface is made of a composition having essential components of a polymer resin having a hydrophilic main chain and a hydrophobic main chain having high thermal stability and a diffusing agent whose oil absorption is adjustable. It can be easily obtained by reducing the volume of the polymer resin.
  • a small amount of a composition containing a polymer resin consisting of a hydrophilic main chain and a hydrophobic main chain having high heat stability as an essential component is injected into the concave portion of the package, and a sealing member is formed. If formed, it is difficult to make the injection amount of the polymer resin constant in each semiconductor device, and the thickness of the sealing member varies among the semiconductor devices. Further, when the sealing member is formed by curing a resin composition having a high viscosity, the upper surface of the sealing member tends to be uneven, which causes color unevenness and variation in directional characteristics. Further, when a fluorescent substance or the like is contained in the polymer resin, color variation occurs between the light emitting devices.
  • the curable composition containing the polymer resin and the diffusing agent as essential components is always injected so as to seal the entire volume of the package. It can be injected into the device. As a result, a semiconductor device having a small color variation and an excellent yield can be obtained even when a fluorescent substance or a pigment is contained.
  • a silicone resin having a viscosity of 700 mPa-S and a refractive index of 1.53 is used, and the average particle size of the silicone resin composition containing the silicone resin as a main component is determined.
  • a light calcium carbonate having a diameter of 1.0 ⁇ m and an oil absorption of 70 ml Z 100 g is stirred.
  • a resin include a siloxane-based silicone resin having a siloxane bond as a skeleton and an organic group directly bonded to the silicon element.
  • the organic group used in the siloxane-based silicone resin it is preferable to use a methyl group and a phenyl group from the viewpoint of heat resistance.
  • a nitride-based semiconductor element it is preferable to use a phenylmethylsiloxane-based silicone resin because light can be extracted well.
  • the viscosity of the translucent polymer resin is preferably from 2000 mPa ⁇ s to 20000 mPa ⁇ s, more preferably from 3000 mPa ⁇ s to 1,000 OmPa ⁇ s from the viewpoint of workability.
  • the diffusing agent When the diffusing agent is contained in the translucent polymer resin and stirred, heat is generated and the resin tends to be heated and become unstable, so that the temperature of the resin returns to a constant temperature before filling and stabilizes. It is preferable to leave for a certain period of time.
  • a resin having high thermal stability and a viscosity in the above-mentioned range it becomes possible to maintain a preferable state of dispersion of the diffusing agent in the resin even if the resin is left for a certain period of time after stirring. As a result, the reliability yield is improved.
  • the hardness after curing is preferably 5 shore (A) to 80 shore (D), and more preferably 5 shore (A) to 40 shore (D).
  • the hardness after curing is preferably 5 shore (A) to 80 shore (D), and more preferably 5 shore (A) to 40 shore (D).
  • the polymer resin preferably has a refractive index of 1.4 to 1.65.
  • a translucent polymer resin having a hydrophilic main chain and a hydrophobic main chain such as a silicone resin is used, but the polymer resin used is not particularly limited, and an epoxy resin, an acrylic resin, a urethane Resins, diaryl phthalate resins, fluorine resins, and the like can also be used.
  • Diffusing agent a translucent polymer resin having a hydrophilic main chain and a hydrophobic main chain such as a silicone resin.
  • an oil-absorbing diffusing agent is used as a diffusing agent capable of absorbing at least the polymer resin in the curable yarn mainly composed of the polymer resin.
  • the diffusing agent used in the present invention include light calcium carbonate, heavy calcium carbonate, talc, white carbon, magnesium carbonate, hydrous aluminum / magnesium silicate, and palladium sulfate.
  • the diffusing agent used in the present invention may have various structures such as a cubic shape such as a hexagonal shape, a spindle shape, a crushed shape, and a rod shape such as a needle shape or a column shape.
  • a diffusing agent having a rod shape such as a needle shape or a column shape.
  • the surface of the diffusing agent has a large surface area and a light emitting element. Settles in opposition.
  • the diffusing agent forms an agglomerate in which one end is aggregated at one location and the other is separated from each other due to the attraction between the particles.
  • Such agglomerates can shrink the sealing member satisfactorily in the thickness direction, and can provide a certain distance between each particle and each agglomerate, so that light extraction efficiency is not hindered. Light can be diffused.
  • the average particle diameter of the diffusing agent is 0.1 n! It is preferably in the range of from 5.0 to 5.0 ⁇ m, more preferably in the range of from 1.0 ⁇ to 2.5 ⁇ m.
  • the diffusing agent having such an average particle diameter value can efficiently absorb the polymer resin by a thermal action during curing.
  • the average particle diameter is a value measured by a sub-sheepsizer method based on an air permeation method as a basic principle.
  • the diffusing agent is a rod-shaped crystal such as a crushed, needle-like, or columnar-like crystal
  • the long side length measured by transmission electron microscopy is 1. ⁇ ⁇ ! ⁇ 3.0 m is preferred.
  • the diffusing agent preferably has a lower refractive index than the semiconductor element and a higher refractive index than the polymer resin, which preferably improves light extraction efficiency.
  • the diffusing agent consisting of calcium carbonate is of the hail type (aragonite type). It is preferable to use a crystal diffusing agent, whereby light can be favorably refracted by the diffusing agent.
  • the volume reduction rate of the translucent polymer resin can be adjusted by adjusting the content of the diffusing agent and by the degree of surface treatment applied to the diffusing agent.
  • Such surface treatment of the diffusing agent as possible out be applied using Al 2 0 3, F e 2 0 3, S i and the like.
  • the diffusing agent tends to have a smaller oil absorption as the degree of surface treatment increases.
  • the light-transmitting polymer resin in the present invention is preferably used with almost no surface treatment, whereby the volume of the light-transmitting polymer resin can be significantly reduced with a small content. That is, it is considered that the amount of absorption of the light-transmitting polymer resin and the amount of oil absorption of the light-transmitting polymer resin are in a mutual relationship.
  • the rate of volume decrease before and after curing becomes large.
  • the diffusing agent can be adjusted and used according to the desired volume reduction of the resin, and the present invention can be applied to a semiconductor device using a package of any volume size. '
  • the oil absorption of the diffusing agent is 30ml / l 00g ⁇ l without surface treatment
  • the oil absorption means a value measured by an oil absorption test method of Japanese Industrial Standards (JIS 5101).
  • the content of the diffusing agent in the sealing member is preferably 0.5% to 5%, thereby improving the luminous intensity, reliability, and workability of the light emitting device without reducing the light extraction efficiency of the light emitting element.
  • the volume of the curable composition can be reduced after the heat treatment.
  • the obtained curable composition liquid is left for a certain period of time to return the heat of the resin to a constant temperature, it is poured into a concave portion of the package in which the light-emitting means is arranged up to a line substantially flush with the upper surface of the end of the concave portion (the Second step), heat curing (third step).
  • the curable composition after filling is filled by some action of light calcium carbonate. Is reduced in volume.
  • the surface of the sealing member which is a cured product obtained in this manner, has a shape having a parabolic concave portion from the upper surface of the end to the center.
  • the turning part is substantially symmetrical about the major axis and the minor axis.
  • the volume of the sealing member after curing is smaller than that at the time of filling, and as a result, the surface of the sealing member that has been cured and shrunk has a parabolic shape from the upper surface of both ends of the package concave portion to the central portion and is longer when viewed from the light emitting surface.
  • the concave part is almost symmetrical left and right with respect to the axis and the short axis.
  • a semiconductor device having a good light emitting surface and excellent directional characteristics can be obtained.
  • the surface since the surface is formed below the upper surface of both ends of the package concave portion, the surface can be prevented from contacting the outside during the inspection and mounting, and a highly reliable semiconductor device can be obtained. .
  • the fluorescent material 8 may be contained in the sealing member.
  • the fluorescent substance used in the present invention will be described in detail.
  • various fluorescent substances such as an inorganic tendency substance and an organic fluorescent substance can be contained in each constituent member.
  • An example of such a fluorescent substance is a fluorescent substance containing a rare earth element which is an inorganic fluorescent substance.
  • the rare earth element-containing fluorescent substance specifically, at least one element selected from the group of Y, Lu, Sc, La, Gd, and Sm, and Al, Ga, and In And a garnet-type phosphor having at least one element selected from the group consisting of:
  • the fluorescent substance used in the semiconductor device of the present embodiment was activated by a cell that can emit light of different wavelengths by exciting light emitted from a semiconductor semiconductor element having a nitride-based semiconductor as a light emitting layer. It is based on a yttrium / aluminum oxide fluorescent material. Specific yttrium-aluminum oxide fluorescent material The, YA 10 3: C e, Y 3 A 1 5 O x 2: C e (YAG: C e) and Y 4 A 1 2 ⁇ 9: C e, more like a mixture thereof.
  • the yttrium-aluminum oxide-based fluorescent substance may contain at least one of Ba, Sr, Mg, Ca, Zn, and Pr. In addition, by containing Si, the crystal growth reaction can be suppressed and the particles of the fluorescent substance can be made uniform.
  • the yttrium-aluminum oxide-based phosphor activated by Ce is to be interpreted in a particularly broad sense, and part or all of yttrium is represented by Lu, Sc, La, Gd and Includes a phosphor that is substituted by at least one element selected from the group consisting of Sm, or that has a fluorescent action in which part or all of aluminum is substituted by any or both of Ba, Tl, Ga, and In Use in a broad sense.
  • a photoluminescent phosphor represented by the general formula (Y z G di z ) 3 A 15 2 : C e (where 0 and z ⁇ 1) or the general formula (R ei — a Sm a ) 3 R e ' 5 0 1 2: C e ( ⁇ , 0 ⁇ a ⁇ l, 0 ⁇ b ⁇ 1, Re is at least one selected from Y, Gd, La, Sc, R e' is A at least one selected from l, Ga, and 111.).
  • the photoluminescence phosphor can increase the excitation and emission efficiency in the long wavelength region of 460 nm or more by containing Gd (gadolinium) in the crystal.
  • the emission peak wavelength shifts to a longer wavelength, and the overall emission wavelength shifts to the longer wavelength side. That is, when a reddish emission color is required, it can be achieved by increasing the substitution amount of Gd.
  • the emission luminance of photoluminescence by blue light tends to decrease.
  • Tb, Cu, Ag, Au, Fe, Cr, Nd, Dy, Co, Ni, Ti, Eu, Pr, and the like can be contained in addition to Ce.
  • the emission wavelength can be shifted to a shorter wavelength side.
  • part of Y in the composition is replaced with Gd, the emission wavelength can be shifted to longer wavelengths.
  • the conversion is less than 10% and the content (substitution) of Ce is from 0.03 to 1.0. If the substitution with Gd is less than 20%, the green component is large and the red component is small. By increasing the content of ICe, the red component can be supplemented and the desired color tone can be obtained without lowering the luminance.
  • the temperature characteristics of the fluorescent substance itself are improved, and the reliability of the light emitting diode can be improved. Further, when a photoluminescent phosphor adjusted to have a large amount of red component is used, it is possible to emit an intermediate color such as a pink, and a semiconductor device having excellent color rendering properties can be formed.
  • Such a photoluminescent phosphor uses an oxide or a compound which easily becomes an oxide at a high temperature as a raw material for Y, Gd, Al, and Ce, and sufficiently uses them in a stoichiometric ratio. Mix to obtain the raw materials.
  • aluminum oxide is mixed with a coprecipitated oxide obtained by calcining a solution obtained by dissolving a rare earth element of Y, Gd, Ce in an acid at a stoichiometric ratio with oxalic acid, and calcination. Obtain a mixed raw material.
  • This is mixed with an appropriate amount of fluoride such as fluorinated ammonium fluoride or ammonium fluoride as a flux and packed in a crucible, and is placed in the air at a temperature of 135 ° C to 150 ° C for 2 to 5 hours. It can be obtained by firing to obtain a fired product, then ball-milling the fired product in water, washing, separating, drying, and finally passing through a sieve.
  • fluoride such as fluorinated ammonium fluoride or ammonium fluoride
  • such a photoluminescent phosphor may be a mixture of a yttrium-aluminum-garnet phosphor activated by two or more kinds of cells or another phosphor.
  • the emission spectrum emitted from the semiconductor element is a visible light (for example, 420 nm or less) having an extremely low luminous sensitivity in the ultraviolet region, at least a part of the emission spectrum is absorbed, and It is preferable that a fluorescent substance which emits a light emission spectrum having the above-mentioned light emission peak and which emits at least a part of the light is a fluorescent color complementary to each other. Since the fluorescent substance has two or more emission spectrum peaks including a complementary color region, the color shift of the fluorescent substance itself is extremely small, and absorbs the variation of the semiconductor element, thereby suppressing the color shift of the semiconductor device. can do.
  • the emission spectrum having two or more peaks above has a half-width of the emission peak on the short wavelength side that is larger than that. It is preferable that the width is smaller than the half-value width of the emission peak on the long wavelength side, whereby a long wavelength component can be extracted relatively easily and a semiconductor device having excellent color rendering properties can be obtained.
  • a semiconductor device capable of emitting white light and emitting a desired intermediate color with high luminance can be obtained.
  • Specific fluorescent substances include, for example, an element represented by M including at least one selected from Mg, Ca, Ba, Sr, and Zn; and at least Mn, Fe, Cr, and Sn
  • a semiconductor device capable of emitting light can be obtained.
  • an alkaline earth metal halogenapatite phosphor activated with Eu containing at least Mn and Z or C1 has excellent light resistance and environmental resistance. Further, the light emitting stadium emitted from the nitride semiconductor can be efficiently absorbed. Further, the white region can emit light, and the region can be adjusted by the composition.
  • an alkaline earth metal chloroapatite phosphor is included as an example of the alkaline earth metal halogen apatite phosphor.
  • B aMg 2 A1 1 6 0 2 7 Eu
  • B aMg 2 A l 1 6 ⁇ 2 7 Eu
  • Mn, Z n 2 G e 0 4 Mn
  • Y 2 0 2 S Eu
  • Gd 2 0 2 S the inclusion of at least one phosphor selected from E u, relatively with adjustable more detailed color White light with high color rendering properties can be obtained with a simple configuration.
  • the phosphor can be obtained by the following method. Amm chloride with various compounds which can be a such as oxides by phosphate oxide or thermal decomposition of the constituent elements - the ⁇ arm weighed in predetermined amounts, were mixed with a ball mill or the like, placed in a crucible, the New 2, H 2 reduction Kiri In an atmosphere, bake at a temperature of 800 ° C to 1200 ° C for 3 to 7 hours. The obtained sintered product is wet-milled, sieved, dehydrated and dried to obtain an alkaline earth metal halogenapatite phosphor.
  • the X value indicates the composition ratio of the first activator Eu element and is preferably 0.0001 ⁇ x 0.5. If X is less than 0.0001, the emission luminance decreases, and the X force exceeds SO. However, the emission luminance tends to decrease due to concentration quenching. More preferably, it is 0.005 ⁇ X ⁇ 0.4, and still more preferably, 0.01 ⁇ x ⁇ 0.2.
  • the y value indicates the composition ratio of at least one of Mn, Fe, Cr, and Sn, and is preferably 0.0001 ⁇ y 0.5, more preferably 0.005. ⁇ y ⁇ 0.4, more preferably 0.01 ⁇ y ⁇ 0.3. If y exceeds 0.5, the emission luminance tends to decrease due to concentration quenching.
  • This phosphor emits visible light by excitation of visible light of a relatively short wavelength from ultraviolet (for example, the main wavelength is 44 O nm or less).
  • White color which is the basic color of the name map), and red emission color.
  • the color tone of the phosphor can be variously changed from blue to white to red by adjusting the composition ratio to adjust the color tone. That is, when M is Sr, the emission color emits blue light by the emission of Eu 2+ having a peak near 450 nm, but when the value of y is increased by Mn of M ′, the emission of the phosphor is caused by the emission of Mn. The colors indicate blue to white to red emission colors.
  • the phosphor used in the present invention can be used for long wavelength ultraviolet light to relatively short wavelength visible light (for example, It is efficiently excited in the range from 300 nm to 400 nm to 425 nm), and the emission color is included in the white region of the basic color name in JISZ8110. In addition, since this phosphor is efficiently excited in the entire region of ultraviolet light, it can be expected that the phosphor can be effectively used for use in short-wavelength ultraviolet rays.
  • a semiconductor device using such a phosphor has two peaks, about 460 nm and about 580 nm, among the above-mentioned phosphors excited by UV LED or UV LD. It is possible to emit light from the light emitting spectrum. This emission spectrum has at least a spectrum component around 460 nm and a spectrum component around 580 nm, and emits fluorescent lights complementary to each other.
  • the above-mentioned phosphor may contain Tb, Cu, Ag, Au, Cr, Nd, Dy, Co, Ni, Ti, Pr and the like in addition to Eu, if desired.
  • the particle size of the fluorescent substance used in the present invention is preferably in the range of 1 ⁇ to 100 im, more preferably 1 ⁇ ! It is preferably in the range of ⁇ 50 im, more preferably 15 ⁇ ! ⁇ 30. Fluorescent substances having a particle size of less than 15 ⁇ m tend to form relatively agglomerates and become denser and sediment in the liquid resin, thereby reducing light transmission efficiency. In the present invention, by using such a fluorescent substance having no fluorescent substance, the concealment of light by the fluorescent substance is suppressed, and the output of the semiconductor device is improved.
  • the fluorescent substance having the particle size range of the present invention has high light absorption and conversion efficiency. And the width of the excitation wavelength is wide. As described above, by including a large particle size fluorescent substance having excellent optical characteristics, light around the main wavelength of a semiconductor element can be well converted and emitted, and mass production of semiconductor devices can be improved. Be improved.
  • the particle size of the fluorescent substance is a value obtained by a volume-based particle size distribution curve.
  • the volume-based particle size distribution curve is obtained by measuring the particle size distribution by a laser diffraction / scattering method. Specifically, the concentration is 0.05 in an environment at a temperature of 25 ° C and a humidity of 70%. % Of each substance was dispersed in an aqueous solution of sodium hexametaphosphate (%), which was measured by a laser diffraction type particle size distribution analyzer (SALD-2000A) in a particle size range of 03 111 to 700 ⁇ .
  • SALD-2000A laser diffraction type particle size distribution analyzer
  • the particle size when the integrated value is 50% in this volume-based particle size distribution curve is referred to as the center particle size
  • the center particle size of the fluorescent substance used in the present invention is 15111 to 50111. It is preferably within the range. Further, it is preferable that the fluorescent substance having the central particle diameter is contained frequently, and the frequency is preferably 20% to 50%. As described above, the use of a fluorescent substance with a small variation in the particle diameter suppresses color unevenness, and provides a semiconductor device having a good color tone.
  • the fluorescent substance preferably has a shape similar to that of the diffusing agent used in the present invention.
  • a surface mount (SMD) type semiconductor device as shown in FIG. 1 is formed.
  • LED chips I n 0 monochromatic emission peak of 475 nm Ru visible der as a light-emitting layer. 2 Ga 0.
  • MOCVD metalorganic vapor deposition
  • the element structure of the LED chip consists of an undoped nitride semiconductor, an n-type GaN layer, a GaN layer that forms an n-type contact layer with an Si-doped n-type electrode, and an undoped nitride semiconductor on a sapphire substrate.
  • the n-type GaN layer which is the next layer, the GaN layer that is the barrier layer that constitutes the light-emitting layer, the InGaN layer that constitutes the well layer, and the GaN layer that is the barrier layer are set as a set. It has a multiple quantum well structure consisting of five layers of InGaN layers sandwiched between N layers.
  • an A1GaN layer as a Mg-doped p-type cladding layer and a GaN layer as a Mg-doped p-type contact layer are sequentially laminated.
  • a GaN layer is formed on the sapphire substrate at a low temperature to serve as a buffer layer.
  • the p-type semiconductor is annealed at 400 ° C or higher after film formation.
  • each of the pn contact layers is exposed on the same side of the nitride semiconductor on the sapphire substrate by etching.
  • Positive and negative pedestal electrodes were formed on the respective contact layers using a sputtering method.
  • a metal thin film is formed as a light-transmitting electrode on the entire surface of the p-type nitride semiconductor, and then a pedestal electrode is formed on a part of the light-transmitting electrode. After a scribe line is drawn on the completed semiconductor wafer, it is divided by external force to form an LED chip (light refractive index 2.1) with a main emission wavelength of 460 nm.
  • the molded PPC resin melted from the gate on the lower surface side of the package is poured into a closed mold with a pair of positive and negative lead electrodes inserted and cured.
  • Form a package The package has a recess capable of accommodating a semiconductor element, and positive and negative lead electrodes are integrally formed so that one main surface is exposed from the bottom surface of the recess.
  • the grounded portions of the positive and negative lead electrodes are formed at both ends of the package joint surface along the joint surface. It is configured to be bent inward and to be soldered at the part bent inward.
  • the LED chip is die-bonded to the bottom surface of the concave portion of the package thus formed using epoxy resin.
  • the joining member used for die bonding is not particularly limited, and a resin or glass containing an Au—Sn alloy, a conductive material, or the like can be used.
  • the conductive material to be contained is preferably Ag. If an Ag paste having a content of 80% to 90% is used, a semiconductor device having excellent heat dissipation and low stress after bonding can be obtained.
  • each electrode of the die-bonded LED chip and each lead electrode exposed from the bottom of the package concave portion are electrically connected to each other by Au wires. In this embodiment, electrical connection is made by wires, but flip-chip mounting in which each electrode and the lead electrode are opposed to each other is also possible.
  • Such light calcium carbonate has little variation in particle diameter and can be dispersed almost uniformly in the composition. Further, the light calcium carbonate used in the present example has a columnar shape and has aragonite (aragonite) crystals. Such a diffusing agent has high resin absorption performance and light diffusion performance, and can form a light emitting device excellent in reliability and optical characteristics.
  • Light calcium carbonate is produced chemically by reacting calcined coal with carbon dioxide at high temperatures and calcining it. For this reason, amorphous limestone with low purity can be used as a raw material, and the cost can be reduced. In addition, the degree of freedom in design is large, and the shape and particle size can be controlled to obtain a diffusing agent in which each particle is uniform.
  • the curable composition thus obtained is filled into the package recess up to the same plane line as the upper surfaces of both ends of the recess. Finally, heat treatment is performed at 70 ° C. for 3 hours and at 150 ° C. for XI hours. Thereby, from the upper surface of both ends of the concave portion to the central portion, A light emitting surface having a substantially symmetrical parabolic recess is obtained.
  • the sealing member made of the cured product of the curable composition has a first layer having a large content of the diffusing agent and a content of the diffusing agent smaller or not contained than the first layer.
  • the LED chip is separated into two layers, a second layer, and the surface of the LED chip is covered with the first layer.
  • the first layer is preferably formed continuously from the bottom surface of the concave portion to the surface of the LED chip, whereby the shape of the light emitting surface can be a smooth concave portion.
  • the semiconductor device thus obtained has a luminous intensity of 500 mcd and an optical output of 4 mW, and further excellent directional characteristics can be obtained.
  • a semiconductor device is formed in the same manner as in Example 1 except that no diffusing agent is used.
  • the surface of the sealing member having tackiness and the upper surfaces of both ends of the concave portion are substantially the same plane line. For this reason, foreign matter adheres to the surface of the sealing member, which has an adverse effect on appearance and optical characteristics. Further, it is very difficult to mount the sealing member so as not to impair the reliability of the surface.
  • the luminous intensity and the optical output of the semiconductor device of this comparative example are measured, both the luminous intensity and the optical output are reduced by 5% as compared with the semiconductor device of the first embodiment.
  • Example 2 For comparison, a semiconductor device is formed in the same manner as in Example 1 except that the curable composition having no diffusing agent is filled in the package recesses less than in Example 1.
  • the thickness of the sealing member varies among the semiconductor devices. For this reason, the luminous intensity and the optical output vary among the semiconductor devices.
  • a semiconductor device was fabricated in the same manner as in Example 1 except that a fluorescent material was contained in the sealing member. Form.
  • a solution in which Y, Gd, and Ce rare earth elements are dissolved in an stoichiometric ratio in an acid is coprecipitated with oxalic acid, and a coprecipitated oxide obtained by firing this is mixed with aluminum oxide.
  • a mixed raw material is obtained.
  • parium fluoride as a flux the mixture is packed in a crucible and fired in air at a temperature of 1400 ° C. for 3 hours to obtain a fired product.
  • the fired product is ball in water, washed, separated, dried and finally through a sieve:.
  • the sealing member of the present embodiment includes a color conversion layer having the fluorescent substance, a first layer having a high content of the diffusing agent, and a lower content of the diffusing agent than the first layer. Or a second layer that does not contain the color conversion layer, and the surface of the LED chip is covered with two layers of the color conversion layer and the first layer. Thereby, a part of the light emitted from the LED chip is efficiently wavelength-converted by the color conversion layer, and the light emitted from the LED chip and the converted light are favorably converted by the first layer. Can be mixed and dispersed. As described above, by performing the color mixture dispersion at a place away from the light emitting surface, the uniformity of light is improved. In addition, the refractive index difference between the color conversion layer and the LED chip (0.
  • each layer 26 is similar to the refractive index difference (0.22) between the color conversion layer and the first layer, so that light can be efficiently extracted to the outside.
  • the color conversion layer and the first layer may be formed continuously from a bottom surface of the concave portion to a surface of the LED chip. Preferably, this allows the shape of the light emitting surface to be a smooth concave portion. Further, each layer preferably has a uniform film thickness.
  • the color conversion type semiconductor device thus obtained has a luminous intensity of 500 mcd and an optical output of 4 mW, and further excellent directivity can be obtained.
  • high-temperature storage test 100 ° C
  • high-temperature and high-humidity storage test 80 ° C, 85% RH
  • low-temperature storage test 140 ° C
  • 3 ⁇ of chromaticity in CIE chromaticity coordinates is 0.0099, and a semiconductor device with very small color variation can be obtained.
  • the fluorescent substance to absorb the wavelength of the light emitting element emits yellow-green Y 3 (A 1 o 8 G a o 2..) 5 0 12: and C e, emits red light by absorbing the wavelength of the light emitting element (S r 0 .
  • composition formula (Y.. 9 9 5 G d .... 5) 2. 7 5.
  • Y 2 9 6 5 A 1 5 mean particle size of about 4 ⁇ 1 5 O x 2:
  • the two kinds of fluorescent substances have different center particle diameter values, they can be dispersed preferably by their interaction, and the uniformity of emission color can be improved.
  • a YAG-based fluorescent substance having a small Gd substitution amount is used. Since light bodies have excellent temperature characteristics, they can emit light with high brightness even when used for a long time.
  • An LED chip dominant wavelength is 464 nm ', the median particle size of about 8 mu m as a fluorescent substance (Y 0. 9 5 G d ⁇ .. 5) 2. 8 5 o 1 5.
  • Contact Yopi CRI Daiodoka is
  • An LED chip dominant wavelength is 46 6 nm, the mean particle size of about 8 as a fluorescent substance (Y.. 9. G d. .!) 2. 8 5 0 A l 5., 5 O, z : C e 0 .
  • Heavy calcium carbonate (refractive index: 1.57) with an average particle size of 5 m and an oil absorption of 32 m1 / 100 g is used as a diffusing agent.
  • the content of heavy calcium carbonate was 3% with respect to 100 wt% (refractive index 1.53) of the phenylmethyl silicone resin composition. wt% is required, and the light extraction efficiency is slightly reduced as compared with Example 1.
  • Such heavy calcium carbonate is obtained by directly crushing and classifying mined limestone. For this reason, it is preferable to use high-purity crystalline limestone as a raw material.
  • porous carbonated calcium which is a reaction product of calcium carbonate and a phosphoric acid compound
  • porous carbonated calcium is used as a diffusing agent.
  • porous carbonated calcium which is a reaction product of calcium carbonate and a phosphoric acid compound
  • the desired light emitting diode can be obtained with a small content.
  • the porous calcium carbonate in the present embodiment is obtained by reacting a raw material calcium carbonate with a phosphoric acid compound to make it porous.
  • the calcium carbonate used as a raw material is not particularly limited, and various types such as heavy calcium carbonate and light calcium carbonate can be used.
  • the size, shape, dispersion state, crystal form, and degree of impurities in calcium carbonate of the particles are not particularly limited.
  • the phosphoric acid compound used preferably has good reactivity with the calcium carbonate used, and a soluble phosphoric acid compound is preferable.
  • Soluble phosphate compound for example H 3 P0 4, K 3 P0 4, KH 2 P0 4, Na 2 HP0 4 '12H 2 0, include (NH 4) ⁇ 0 3 ⁇ 3H 2 O or the like.
  • the phosphoric acid compound used is not limited to one kind, and two or more kinds may be used in combination.
  • Example 1 Except for using a dimethylsiloxane-based silicone resin composition as the resin composition, when a light emitting diode is formed in the same manner as in Example 1, the same effect as in Example 1 is obtained. The rate of volume reduction before and after curing of the stop member is low.
  • Example 1 is similar to Example 1 except that Au bumps are formed on each electrode of the LED chip and each lead electrode exposed from the bottom of the package recess is electrically connected to each other by ultrasonic bonding.
  • a light emitting diode is formed in the same manner, the same curing as in Example 3 can be obtained, and more uniform light emission can be obtained because there is no wire that blocks light on the light emitting surface side.
  • high reliability is maintained even when a large current is dropped because the LED chip and the lead electrode are connected only with metal without using materials such as epoxy resin that are weak in light resistance and heat resistance. You can do it. Possibility of industrial use
  • the semiconductor device of the present invention uses a polymer resin having a hydrophilic main chain and a hydrophobic main chain having high thermal stability, and, together with the light diffusing action, reduces the volume of the polymer resin in a thermosetting process.
  • a diffusing agent that can be reduced By forming, a semiconductor device having high reliability and good optical characteristics can be obtained with good mass productivity.
  • reliability can be maintained without deterioration even when a large current is dropped, and a semiconductor device which is highly reliable and can emit light at the same brightness as lighting can be provided.
  • the above utility value is extremely high.

Abstract

A semiconductor device comprising a semiconductor chip, a package having a recess where the semiconductor chip is contained, and a sealing member placed in the recess, characterized in that the sealing member is a cured composition containing, as essential components, a translucent polymer resin having a hydrophilic main chain and a hydrophobic side chain, and a diffusing agent capable of absorbing at least the polymer resin. Such a semiconductor device has an excellent inside reliability and has a shape immune to external influence. The semiconductor device can be fabricated with good yield by a fabrication method characterized by comprising a first step of preparing a curing composition liquid containing, as essential components, a translucent polymer resin having a hydrophilic main chain and a hydrophobic side chain and a diffusing agent capable of absorbing the translucent polymer resin, a second step of injecting the curing composition liquid into the recess of the package to the level flush with the upper face of the package, and a third step of curing the curing composition liquid by heat treatment.

Description

明 細 書  Specification
半導体装置とその形成方法 技術分野 Semiconductor device and method of forming the same
本発明は、 スィッチ内照明、 フルカラーディスプレイ、 液晶バックライト等の 光源として用いられる半導体装置に関し、 特に信頼性に優れた発光装置に関する ものである。 背景技術  The present invention relates to a semiconductor device used as a light source for illumination in a switch, a full-color display, a liquid crystal backlight, and the like, and particularly to a highly reliable light emitting device. Background art
今日、高輝度、高出力な半導体素子や小型且つ高感度な発光装置が開発され種々 の分野に利用されている。 このような発光装置は小型、 低消費電力や軽量などの 特徴を生かして、 例えば、 光プリンターヘッドの光源、 液晶バックライト光源、 各種メータの光源や各種読み取りセンサーなどに利用されている。  Today, high-brightness, high-power semiconductor elements and small and highly sensitive light-emitting devices have been developed and used in various fields. Such light emitting devices are used for light sources of optical printer heads, liquid crystal backlight sources, light sources of various meters, and various reading sensors, for example, by taking advantage of their features such as small size, low power consumption, and light weight.
このような発光装置は、 例えば、 半導体素子を収納可能な凹部を有し、 該凹部 底面から正及ぴ負のリ一ド電極が一方の主面が露出するように挿入され一体成形 されたパッケージを用い、 前記凹部底面から露出されたリード電極上に半導体素 子として L E Dチップがダイボンドされ、 L E Dチップの各電極とパッケージに 設けられたリード電極とが金線等により電気的に接続されている。 また凹部内に て L E Dチップ及び金線が封止部材である樹脂にて被覆されている。これにより、 パッケージ内部の構成部材は水分や外力などの外部環境から保護され、 極めて信 賴性の高い発光装置が得られる。  Such a light emitting device has, for example, a package having a recess capable of accommodating a semiconductor element, and positive and negative lead electrodes inserted from the bottom of the recess such that one main surface is exposed and integrally formed. An LED chip is die-bonded as a semiconductor element on the lead electrode exposed from the bottom surface of the recess, and each electrode of the LED chip is electrically connected to a lead electrode provided on the package by a gold wire or the like. . Further, the LED chip and the gold wire are covered with a resin as a sealing member in the recess. Thus, the components inside the package are protected from the external environment such as moisture and external force, and a highly reliable light emitting device can be obtained.
現在、 技術の飛躍的な進歩により、 L E Dチップの高出力化および短波長化が 実現されている。 このような L E Dチップは、 大電流を投下することにより髙出 力の光を放出することが可能な反面、 発光時に高温の発熱を伴う。 これに起因し て、 L E Dチップ近傍に配置される封止樹脂の変色劣化が生じる。 特に、 前記 E Dチップ近傍に配置される封止部材として、 熱に弱い炭素一炭素の二重結合を 有する透光性有機部材を用いると、 結合が切れて黄変し光学特性が損なわれる。 また、 各部材の熱膨張率の差により、 ワイヤ断線や各部材にクラックが発生し、 使用経過時間が増すにつれて急激に信頼性が低下する傾向にある。 At present, rapid advances in technology have realized higher output and shorter wavelength LED chips. Such an LED chip can emit high-output light by dropping a large current, but also emits high-temperature heat when emitting light. This causes discoloration and degradation of the sealing resin disposed near the LED chip. In particular, when a translucent organic member having a heat-sensitive carbon-carbon double bond is used as a sealing member disposed near the ED chip, the bond is broken and yellowing is caused, and optical characteristics are impaired. Also, due to the difference in the coefficient of thermal expansion of each member, wire breakage and cracks occur in each member, As the elapsed time of use increases, the reliability tends to decrease rapidly.
そこで、 近紫外領域の光を発光し高熱を発生する発光素子を使用する場合、 近 紫外領域の光に対する耐光性およぴ耐熱性に優れ、 熱応力に対して可塑性を有す るシリコーン樹脂が好適に用いられている。 シリコーン樹脂の主骨格は、 光劣化 の原因となる炭素一炭素間の 2重結合を有していないため、 電子遷移吸収がおこ りにくく、 長時間光が照射されてもほとんど劣化しない。 また、 柔軟性に優れて いるため、 熱応力による半導体装置の損傷を防止することができる。  Therefore, when using a light-emitting element that emits light in the near-ultraviolet region and generates high heat, a silicone resin that has excellent light resistance and heat resistance to light in the near-ultraviolet region and has plasticity against thermal stress is used. It is preferably used. Since the main skeleton of the silicone resin does not have a carbon-carbon double bond that causes photodegradation, it does not easily undergo electron transition absorption and hardly degrades even when irradiated for a long time. Further, since the semiconductor device has excellent flexibility, damage to the semiconductor device due to thermal stress can be prevented.
一方、 シリコーン樹脂を主体とする硬化物は、 柔軟性に優れている場合、 降下 物表面は機械的強度が弱くタック性を有している。 また、 シリコーン樹脂は熱に 対して高い安定性を有しており、 シリコーンを主体とする硬化物の形状は、 硬化 過程において熱収縮することはなく硬化前の充填時に決定する。 このため、 上述 の如く凹部を有するパッケージにシリコーン樹脂からなる封止部材を設ける場合、 シリコーン樹脂充填量は、表面が外部と接触しないように微調整する必要がある。 具体的には、 前記パッケージの端部外郭上面より一段下がった位置までシリコー ン樹脂を主体とする組成物を注入し熱硬化することで、 タック性を有する表面が 外部と接触することを抑制している。 これにより、 信頼性の高い発光装置が得ら れる。  On the other hand, when the cured product mainly composed of silicone resin is excellent in flexibility, the surface of the falling object has low mechanical strength and tackiness. In addition, silicone resin has high stability to heat, and the shape of the cured product mainly composed of silicone does not shrink during the curing process and is determined at the time of filling before curing. Therefore, when a sealing member made of silicone resin is provided in a package having a concave portion as described above, the amount of silicone resin to be filled needs to be finely adjusted so that the surface does not contact the outside. Specifically, by injecting and thermally curing a composition mainly composed of a silicone resin to a position one step lower than the upper surface of the outer peripheral edge of the package, the surface having tackiness is suppressed from coming into contact with the outside. ing. Thereby, a highly reliable light emitting device can be obtained.
しかしながら、 より小型化 ·薄型化の発光装置が望まれている現在において、 上記のように凹部を有するパッケージ内にシリコーン樹脂組成物を微調整して充 填することは、非常に困難であり、作業効率が悪く良好な歩留まりが得られない。 発明の開示  However, at the present time when a light-emitting device having a smaller size and a thinner shape is desired, it is very difficult to finely adjust and fill the silicone resin composition in the package having the concave portion as described above. Work efficiency is poor and good yield cannot be obtained. Disclosure of the invention
本発明は、 上述の問題を解決するために為されたものであり、 高い信頼性と良 好な光学特性を有する小型化半導体装置を歩留まり良く得ることを目的とする。 本発明者は種々の実験の結果、 優れた熱安定性を有し硬化前後において体積が 変化しない樹脂を主体とする熱硬化性組成物の硬化物材料に、 吸油量が調整可能 な拡散剤を添加して硬化すると、 前記熱硬化性組成物の体積を熱硬化過程におい て減少させることが可能であることを見いだし、 本発明を成すに至った。 本発明の半導体装置は、 半導体素子と、 該半導体素子が収納された凹部を有す るパッケージと、 前記凹部内に充填された封止部材と、 を有する半導体装置であ つて、 The present invention has been made to solve the above-described problem, and has as its object to obtain a miniaturized semiconductor device having high reliability and good optical characteristics with a high yield. As a result of various experiments, the present inventor has found that a diffusing agent with an adjustable oil absorption can be added to a cured material of a thermosetting composition mainly composed of a resin that has excellent thermal stability and does not change in volume before and after curing. It has been found that when added and cured, the volume of the thermosetting composition can be reduced in the thermosetting process, and the present invention has been accomplished. A semiconductor device according to the present invention is a semiconductor device comprising: a semiconductor element; a package having a recess in which the semiconductor element is housed; and a sealing member filled in the recess.
前記封止部材は、 親水性主鎖と疎水性側鎖とを有する透光性ポリマー樹脂と、 少なくとも前記ポリマー樹脂を吸収することが可能な拡散剤と、 を必須成分とす る硬化性組成物の硬化物であることを特徴とする。  The curable composition comprising, as essential components, a light-transmitting polymer resin having a hydrophilic main chain and a hydrophobic side chain, and a diffusing agent capable of absorbing the polymer resin. Characterized by being a cured product of
このように構成された半導体装置は、 優れた信頼性と光学特性とを有し、 歩留 まり良く得ることができる。  The semiconductor device thus configured has excellent reliability and optical characteristics, and can be obtained with high yield.
また、本発明の半導体装置において、前記封止部材の硬度は、 5 s h o r e (A) 〜8 0 s h o r e (D ) であることが好ましく、 これにより、 大電流の投下を可 能とし、 高出力の半導体装置が得られる。  Further, in the semiconductor device of the present invention, the hardness of the sealing member is preferably 5 shore (A) to 80 shore (D), thereby enabling a large current drop and a high output. A semiconductor device is obtained.
また、 本発明の半導体装置において、 前記封止部材の上面は、 端部から中央部 にかけて放物線状の凹みを有することが好ましく、 これにより、 タック性を有す る前記上面が、 実装時等に外部と接触することをさらに抑制することができる。 また、 前記封止部材が透光性である場合、 一面均一に発光することが可能な発光 装置が得られる。  Further, in the semiconductor device of the present invention, it is preferable that the upper surface of the sealing member has a parabolic depression from the end to the center, so that the upper surface having tackiness is used when mounting or the like. Contact with the outside can be further suppressed. Further, when the sealing member is translucent, a light emitting device capable of uniformly emitting light on one surface is obtained.
また、 本発明の半導体装置において、 前記拡散剤は、 針状もしくは柱状の形状 を有していることが好ましく、 これにより、 拡散剤のポリマー樹脂吸収率が高ま り、 少量の拡散剤量にて所望とする封止部材形状を実現することができる。  Further, in the semiconductor device of the present invention, it is preferable that the diffusing agent has a needle-like or columnar shape, thereby increasing the polymer resin absorption of the diffusing agent and reducing the amount of the diffusing agent. Thus, a desired sealing member shape can be realized.
また、 本発明の半導体装置において、 前記拡散剤はあられ石型結晶であること が好ましく、 これにより良好に光が拡散され、 均一に発光することが可能な半導 体装置が得られる。  Further, in the semiconductor device of the present invention, it is preferable that the diffusing agent is a hailstone type crystal, whereby a semiconductor device capable of diffusing light well and emitting light uniformly is obtained.
また、 本発明の半導体装置において、 前記拡散剤は、 平均粒子径値が 0 . 1 μ η!〜 5 . Ο μ πιであることが好ましく、 これにより、 色むらが抑制され均一で且 つ高い光度にて発光することが可能な半導体装置が得られる。  In the semiconductor device of the present invention, the diffusing agent has an average particle size of 0.1 μη! 5μπι is preferable, whereby a semiconductor device capable of suppressing color unevenness and emitting light at a uniform and high luminous intensity is obtained.
また、 本発明の半導体装置において、 前記拡散剤の屈折率は、 前記発光素子の 屈折率より低く且つ前記透光性ポリマー樹脂の屈折率より高いことが好ましく、 これにより、 半導体素子から発光される光を内部に密閉することなく良好に外部 へ取り出すことができ、 高い光度が得られる。 Further, in the semiconductor device of the present invention, it is preferable that a refractive index of the diffusing agent is lower than a refractive index of the light emitting element and higher than a refractive index of the light transmitting polymer resin, whereby light is emitted from the semiconductor element. Good external without sealing light inside High luminous intensity.
また、 本発明の半導体装置において、 前記封止部材は、 前記半導体素子側から 前記拡散剤の含有量の多い第一の層と前記第一の層より前記拡散剤の含有量の少 ない第二の層とを有し、 前記発光素子の表面は前記第一の層にてほぼ被覆されて いることが好ましい。 これにより、 半導体素子から発光される光の取り出し効率 を高くすることができる。  Further, in the semiconductor device of the present invention, the sealing member includes, from the semiconductor element side, a first layer having a higher content of the diffusing agent and a second layer having a lower content of the diffusing agent than the first layer. It is preferable that the surface of the light emitting element is substantially covered with the first layer. As a result, the efficiency of extracting light emitted from the semiconductor element can be increased.
また、 本発明の半導体装置において、 前記封止部材は、 半導体素子から発光さ れる光の少なくとも一部を吸収し異なる波長を有する光を発光することが可能な 蛍光物質を含有させることも可能であり、 これにより発光装置間の色バラツキが 少なく均一に発光することが可能な色変換型半導体装置が得られる。  In the semiconductor device of the present invention, the sealing member may contain a fluorescent substance capable of absorbing at least a part of light emitted from a semiconductor element and emitting light having a different wavelength. Accordingly, a color conversion type semiconductor device capable of emitting light uniformly with little color variation between light emitting devices can be obtained.
また、 本発明の半導体装置において、 前記蛍光物質の屈折率は、 前記発光素子 の屈折率より低く且つ前記拡散剤の屈折率より高いことが好ましく、これにより、 半導体素子から発光される光の取り出し効率を向上させることができる。  Further, in the semiconductor device of the present invention, it is preferable that the refractive index of the fluorescent substance is lower than the refractive index of the light emitting element and higher than the refractive index of the diffusing agent, thereby extracting light emitted from the semiconductor element. Efficiency can be improved.
また、 本発明の半導体装置において、 前記蛍光物質と前記発光素子との屈折率 差は、 前記蛍光物質と前記拡散剤との屈折率差とほぼ等しいことが好ましく、 こ れにより、 渴色性に優れた発光装置が得られる。  Further, in the semiconductor device of the present invention, it is preferable that a difference in refractive index between the fluorescent substance and the light-emitting element is substantially equal to a difference in refractive index between the fluorescent substance and the diffusing agent. An excellent light emitting device can be obtained.
また、 本発明の半導体装置において、 透光性ポリマー樹脂、 拡散剤、 および蛍 光物質を必須成分とする硬化性組成物を硬化させてなる封止部材は、 前記半導体 素子と前記第一の層との間に前記蛍光物質を含有する色変換層を有することが好 ましい。 つまり、 前記半導体素子の表面に、 蛍光物質を含有する色変換層、 拡散 剤の含有量の多い第一の層、 そして前記第一の層より拡散剤の含有量の少ない第 二の層、 が順次積層されていることが好ましく、 これにより、 半導体素子から発 光される光と、 前記色変換層にて前記光の一部が吸収され変換された光とが、 前 記第一の層にて反射散乱され良好に混色される。 次に第二の層を通過することに より混色光の指向性が改善される。 この効果は、 粒径が大きい蛍光物質、 とくに 中心粒径が 1 5 mから 5 0 mである蛍光物質を使用した際に顕著に現れ、 高 輝度で且つ均一に発光することが可能な発光装置が得られる。  Further, in the semiconductor device of the present invention, the sealing member formed by curing a curable composition containing a translucent polymer resin, a diffusing agent, and a fluorescent substance as essential components includes the semiconductor element and the first layer. It is preferable to have a color conversion layer containing the fluorescent substance between the two. That is, on the surface of the semiconductor element, a color conversion layer containing a fluorescent substance, a first layer containing a larger amount of a diffusing agent, and a second layer containing a smaller amount of a diffusing agent than the first layer. It is preferable that the light emitted from the semiconductor element and the light obtained by partially absorbing the light and being converted by the color conversion layer be sequentially stacked on the first layer. It is reflected and scattered and is mixed well. Next, the directivity of the mixed color light is improved by passing through the second layer. This effect is remarkable when a fluorescent substance having a large particle diameter, particularly a fluorescent substance having a central particle diameter of 15 to 50 m, is used, and a light emitting device capable of emitting light with high luminance and uniformity. Is obtained.
また、 本発明の半導体装置の形成方法は、 半導体素子と、 該半導体素子を収納 することが可能な凹部を有するパッケージと、 前記凹部内に充填された封止部材 と、 を有する発光装置の形成方法であって、 In addition, the method for forming a semiconductor device according to the present invention includes: a semiconductor element; And a sealing member filled in the concave portion.
親水性主鎖と疎水性側鎖とを有する透光性ポリマー樹脂と該透光性ポリマ一樹 脂を吸収することが可能な拡散剤とを必須成分とする硬化性組成物液を調整する 第一の工程と、  A curable composition liquid containing a translucent polymer resin having a hydrophilic main chain and a hydrophobic side chain and a diffusing agent capable of absorbing the translucent polymer resin as essential components is prepared. Process and
前記硬化性組成物液を前記パッケージの凹部内にパッケージ上面とほぼ同一平 面のラインまで注入する第二の工程と、  A second step of injecting the curable composition liquid into the concave portion of the package up to a line substantially flush with the package upper surface;
熱処理を施し前記硬化性組成物液を硬化させる第 3の工程と、  A third step of performing a heat treatment to cure the curable composition liquid,
を有することを特徴とする。 これにより、 信頼性及び光学特性の優れた半導体装 置を量産性良く得ることができる。 図面の簡単な説明 It is characterized by having. Thus, a semiconductor device having excellent reliability and optical characteristics can be obtained with good mass productivity. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の発光装置を示す模式的平面図及び模式的断面図である。  FIG. 1 is a schematic plan view and a schematic sectional view showing a light emitting device of the present invention.
図 2は本発明の他の発光装置を示す模式的平面図及び模式的断面図である。 図 3は本発明の他の発光装置を示す模式的平面図及ぴ模式的断面図である。 発明を実施するための最良の形態  FIG. 2 is a schematic plan view and a schematic sectional view showing another light emitting device of the present invention. FIG. 3 is a schematic plan view and a schematic sectional view showing another light emitting device of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照にしながら、 本発明に係る実施の形態について説明する。 図 1は、 本発明の形態である S MD型発光ダイォードの模式的平面図おょぴ模 式的断面図である。 凹部を有し、 該凹部底面から一対のリード電極 2, 3の各先 端部表面が露出された樹脂製パッケージ 1を用いている。 前記凹部底面に発光素 子 4が載置され、 該発光素子 4の各電極と前記各リ一ド電極先端部とがそれぞれ 金線ワイヤ 6にて電気的に接続されている。 前記発光素子 4は、 サファイア基板 上に窒化ガリウムであるバッファ層を介して窒化物半導体 (A l x G a Y I n z N、 0≤X≤ 1 , 0≤Y≤ 1 , 0≤Ζ≤ 1 , Χ + Υ + Ζ = 1 ) からなる ρ η接合 が形成されてなる。 このように設置された発光素子 4は、 親水性主鎖と疎水性側 鎖とを有する透光性ポリマー樹脂に少なくとも前記ポリマー樹脂を吸収する度合 いを調整することが可能な拡散剤が攪拌されて得られた硬化性組成物の硬化物 8 にて覆われている。 以下、本発明の実施の形態における各構成について詳述する。 (半導体素子 4 ) Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic plan view and a schematic cross-sectional view of an SMD type light emitting diode according to an embodiment of the present invention. A resin package 1 having a recess and exposing the front end surfaces of a pair of lead electrodes 2 and 3 from the bottom of the recess is used. The light emitting element 4 is mounted on the bottom surface of the concave portion, and each electrode of the light emitting element 4 and the tip of each of the lead electrodes are electrically connected by a gold wire 6. The light emitting element 4, the nitride semiconductor through the buffer layer is a gallium nitride on a sapphire substrate (A l x G a Y I n z N, 0≤X≤ 1, 0≤Y≤ 1, 0≤Ζ≤ 1, Χ + Υ + Ζ = 1). In the light-emitting element 4 installed in this manner, a diffusing agent capable of adjusting at least the degree of absorption of the polymer resin into a light-transmitting polymer resin having a hydrophilic main chain and a hydrophobic side chain is stirred. Cured product of the curable composition obtained by It is covered with. Hereinafter, each configuration in the embodiment of the present invention will be described in detail. (Semiconductor element 4)
本発明において半導体素子 4は、 特に限定されないが、 本実施の形態では発光 素子を用い、 外部へ光を放出する発光装置を形成している。 本実施の形態におい て、 蛍光物質を共に用いる場合、 該蛍光物質を効率よく励起することが可能な光 を発光する発光層を有する発光素子が好ましい。 このような発光素子として、 Z n S eや G a Nなど種々の半導体を挙げることができるが、 蛍光物質を効率良く 励起できる短波長を発光することが可能な窒化物半導体 (I n x A 1 Y G a i _ xY N、 0≤X , 0≤Y , X + Y≤ 1 ) が好適に挙げられる。 また、 前記窒化 物半導体に、 所望に応じてボロンやリンを含有させることもできる。 半導体層の 構造としては、 M I S接合、 P I N接合や p n接合などを有するホモ構造、 へテ 口構造あるいはダプルへテロ構成のものが挙げられる。 このような半導体層は、 材料やその混晶度によって発光波長を種々選択することができる。 また、 半導体 活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構 造とすることもできる。 In the present invention, the semiconductor element 4 is not particularly limited, but in the present embodiment, a light emitting element is used to form a light emitting device that emits light to the outside. In the case where a fluorescent substance is used in this embodiment, a light-emitting element having a light-emitting layer which emits light capable of efficiently exciting the fluorescent substance is preferable. As such a light-emitting element, Z n S e and G a N such can be mentioned various semiconductor, phosphor efficiently excited may capable of emitting short-wavelength nitride semiconductor (I n x A 1 Y G ai _ x - Y N, 0≤X, 0≤Y, X + Y≤ 1) are preferably exemplified. Further, the nitride semiconductor may contain boron or phosphorus as desired. Examples of the structure of the semiconductor layer include a homo structure having a MIS junction, a PIN junction and a pn junction, a heterostructure, and a double hetero structure. The emission wavelength of such a semiconductor layer can be variously selected depending on the material and the degree of mixed crystal thereof. In addition, a single quantum well structure or a multiple quantum well structure in which the semiconductor active layer is formed as a thin film in which a quantum effect occurs can be used.
窒化物半導体を使用した場合、 半導体用基板にはサファイア、 スピネル、 S i C、 S i、 Z n O、 G a N等の材料が好適に用いられる。 結晶性の良い窒化物半 導体を量産性よく形成させるためにはサファイア基板を用いることが好ましい。 このサファイア基板上に M O C V D法などを用いて窒化物半導体を形成させるこ とができる。 例えば、 サファイア基板上に G a N、 A 1 N、 G a A I N等のバッ ファ層を形成し、 その上に p n接合を有する窒化物半導体を形成させ、 半導体素 子とする。 また基板上に半導層を積層した後、 基板を取り除き、 基板を有しない 半導体素子とすることも可能である。  When a nitride semiconductor is used, a material such as sapphire, spinel, SiC, Si, ZnO, or GaN is suitably used for the semiconductor substrate. In order to form a nitride semiconductor having good crystallinity with good mass productivity, it is preferable to use a sapphire substrate. A nitride semiconductor can be formed on this sapphire substrate by using the MOCVD method or the like. For example, a buffer layer such as GaN, A1N, or GaN is formed on a sapphire substrate, and a nitride semiconductor having a pn junction is formed thereon to form a semiconductor element. After the semiconductor layer is stacked on the substrate, the substrate can be removed to obtain a semiconductor element having no substrate.
窒化物半導体を使用した p n接合を有する半導体素子例として、 バッファ層上 に、 n型窒化ガリウムで形成した第 1のコンタクト層、 n型窒ィ匕アルミニウム ' ガリゥムで形成させた第 1のクラッド層、 窒化インジウム ·ガリゥムで形成した 活性層、 p型窒化アルミニウム 'ガリウムで形成した第 2のクラッド層、 p型窒 化ガリゥムで形成した第 2のコンタクト層を順に積層させたダブルへテロ構成な どが挙げられる。 窒化物半導体は、 不純物をドープしない状態で n型導電性を示 す。 発光効率を向上させるなど所望の n型窒化物半導体を形成させる場合は、 n 型ドーパントとして S i、 G e、 S e、 T e、 C等を適宜導入することが好まし い。 一方、 p型窒化物半導体を形成させる場合は、 p型ドーパントである Z n、 M g、 B e、 C a、 S r、 B a等をドープさせる。 窒化物半導体は、 p型ドーパ ントをドープしただけでは p型化しにくいため、 p型ドーパント導入後に炉によ る加熱やプラズマ照射等により低抵抗化させることが好ましい。 電極形成後、 半 導体ウェハーからチップ状にカットさせることで窒化物半導体からなる半導体素 子を形成させることができる。 また、 パター-ングにより、 各電極のボンディン グ部のみを露出させ素子全体を覆うように S i o 2等からなる絶縁性保護膜を形成 すると、 小型化半導体装置を信頼性高く形成することができる。 As an example of a semiconductor device having a pn junction using a nitride semiconductor, a first contact layer formed of n-type gallium nitride and a first cladding layer formed of n-type nitride aluminum on a buffer layer The active layer formed of indium nitride nitride, the second cladding layer formed of p-type aluminum nitride gallium, and the second contact layer formed of p-type gallium nitride have a double heterostructure. And so on. Nitride semiconductors exhibit n-type conductivity without being doped with impurities. When a desired n-type nitride semiconductor is formed, for example, to improve luminous efficiency, it is preferable to appropriately introduce Si, Ge, Se, Te, C, or the like as an n-type dopant. On the other hand, when forming a p-type nitride semiconductor, p-type dopants such as Zn, Mg, Be, Ca, Sr, and Ba are doped. Since it is difficult to make a nitride semiconductor p-type only by doping a p-type dopant, it is preferable to reduce the resistance by heating in a furnace, irradiating plasma, or the like after introducing the p-type dopant. After the electrodes are formed, the semiconductor wafer can be cut into chips to form a semiconductor element made of a nitride semiconductor. In addition, by forming an insulating protective film made of Sio 2 or the like so that only the bonding portion of each electrode is exposed by patterning and covers the entire element, a miniaturized semiconductor device can be formed with high reliability. .
本発明の発光装置において、 白色系を発光させる場合は、 蛍光物質からの発光 波長との補色関係や透光性樹脂の劣化等を考慮して、 半導体素子の発光波長は 4 0 0 n m以上 5 3 0 n m以下が好ましく、 4 2 0 n m以上 4 9 0 n m以下がより 好ましい。 さらに半導体素子の励起効率および蛍光物質の発光効率を向上させる ためには、 半導体素子の発光波長は 4 5 0 n m以上 4 7 5 n m以下が好ましい。 また、 本発明の封止部材に用いられる榭脂は、 比較的紫外線により劣化されに くく、 4 0 0 n mより短い紫外線領域或いは可視光の短波長領域を主発光波長と する半導体素子を用いることも可能である。 また、 このような近紫外線領域の波 長を発光する発光素子と、 その波長の一部を吸収して他の波長を発光することが 可能な蛍光物質と、 を組み合わせることにより、 色ムラの少ない色変換型発光装 置を得ることができる。 このような色変換型発光装置の発光色は、 蛍光物質から 放出された光のみを利用するため、 比較的簡単に色調整を行うことができる。 特 に、 紫外領域の波長を発光する半導体素子を利用する場合、 可視光を発光する半 導体素子を用いた場合と比較して、 各半導体素子間の波長などのバラツキを吸収 し蛍光物質の発光色のみによって色度を決定できるため、 量産性を向上させるこ とができる。  In the light-emitting device of the present invention, when emitting white light, the emission wavelength of the semiconductor element should be 400 nm or more in consideration of the complementary color relationship with the emission wavelength from the fluorescent substance and the deterioration of the light-transmitting resin. It is preferably at most 30 nm, more preferably at least 420 nm and at most 490 nm. In order to further improve the excitation efficiency of the semiconductor element and the luminous efficiency of the fluorescent substance, the emission wavelength of the semiconductor element is preferably 450 nm or more and 475 nm or less. The resin used for the sealing member of the present invention is relatively hard to be deteriorated by ultraviolet rays, and a semiconductor element having a main emission wavelength in an ultraviolet region shorter than 400 nm or a short wavelength region of visible light is used. Is also possible. In addition, by combining such a light-emitting element that emits light in the near ultraviolet region and a fluorescent substance that can absorb part of the wavelength and emit light of another wavelength, color unevenness is reduced. A color conversion type light emitting device can be obtained. Since the color emitted from such a color conversion type light emitting device uses only light emitted from the fluorescent substance, color adjustment can be performed relatively easily. In particular, when a semiconductor device that emits light in the ultraviolet region is used, compared to the case where a semiconductor device that emits visible light is used, the variation in wavelength and the like between the semiconductor devices is absorbed, and the light emission of the fluorescent substance is performed. Since chromaticity can be determined only by color, mass productivity can be improved.
(封止部材 8 ) 本実施の形態において、 上記の半導体素子が配置されたパッケージの凹部内に 表面が発光面となる封止部材が設けられる。 前記封止部材は、 親水性主鎖と疎水 性側鎖からなる透光性ポリマー樹脂と、 該ポリマー樹脂を吸収することが可能な 拡散剤と、 を有する硬化性組成物の硬化物にて構成されており、 前記封止部材の 上面は前記パッケージの外郭上面より下方の内側に位置している。 (Sealing member 8) In this embodiment, a sealing member having a light-emitting surface on the surface is provided in a concave portion of the package in which the semiconductor element is arranged. The sealing member comprises a cured product of a curable composition having: a light-transmitting polymer resin having a hydrophilic main chain and a hydrophobic side chain; and a diffusing agent capable of absorbing the polymer resin. The upper surface of the sealing member is located below the outer upper surface of the package.
このような封止部材は、 例えば、 上記ポリマー樹脂と吸油可能な拡散剤とを有 する液状硬化性組成物を、 例えば発光素子が配置された凹部型パッケージ内の、 前記凹部の両端部上面と同一平面ライン又はそれ以上のラインまで充填させた後、 熱処理により硬化させると、 硬化物は硬化前と比較して体積が減少し、 得られた 硬化物の上面高さは前記凹部の両端部上面より下方となる。 このように、 本来、 熱処理により硬化収縮することのない樹脂を主体とする組成物に、 吸油可能な拡 散剤を共存させることにより、 前記組成物の体積を硬化反応中に減少させること ができる。 これにより、硬化物表面がタック性を有する組成物を使用した際にも、 前記組成物の充填量を微調整することなく、 前記表面をパッケージの外郭より内 側とすることができる。 これにより、 内部おょぴ外部双方において信頼性の高い 発光装置が得られる。  Such a sealing member is, for example, a liquid curable composition having the polymer resin and an oil-absorbing diffusing agent, for example, in a concave-type package in which a light-emitting element is disposed, and at the both end upper surfaces of the concave portion. After filling to the same plane line or more lines, when cured by heat treatment, the volume of the cured product decreases compared to that before curing, and the height of the obtained cured product is the upper surface of both ends of the recess. Below. As described above, the volume of the composition can be reduced during the curing reaction by allowing the oil-absorbing dispersant to coexist with the composition mainly composed of a resin that does not originally cure and shrink by heat treatment. Thus, even when a composition having a tacky surface is used, the surface of the cured product can be made inside the outer contour of the package without finely adjusting the filling amount of the composition. Thus, a highly reliable light emitting device can be obtained both inside and outside.
このように本発明の封止部材は、 透光性ポリマー樹脂と上記拡散剤を必須成分 とする硬化性組成物液を凹部パッケージの外郭上面とほぼ同一平面ラインに充填 させ、 熱硬化するだけで容易に得ることができ、 充填量を見た目により微調整す る必要がない。 またパッケージの容積により封止部材の充填量が定まり、 また拡 散剤の表面処理の度合いおよび含有量により前記封止部材の硬化前から硬化後へ の体積収縮率が定まるため、 各半導体装置における封止部材の体積を一定とする ことができる。 これにより量産性及び歩留まりが向上される。 このように本発明 に用いられる拡散剤は、 高い信頼性を有する樹脂を用いた封止部材を、 所望とす る厚さに容易に形成することができる。 特に本発明では、 熱安定性の高いポリマ 一樹脂を必須成分とする熱硬化性組成物を用いることにより、 信頼性の高い半導 体装置を量産性良く形成することができる。  As described above, the sealing member of the present invention can be obtained by simply filling a curable composition liquid containing a translucent polymer resin and the above-mentioned diffusing agent as essential components in a line substantially flush with the upper surface of the outer surface of the concave package, and thermally curing the liquid. It can be easily obtained, and there is no need to fine-tune the filling amount by visual inspection. Further, the filling amount of the sealing member is determined by the volume of the package, and the volume shrinkage from before curing to after curing of the sealing member is determined by the degree and content of the surface treatment of the diffusing agent. The volume of the stop member can be constant. Thereby, mass productivity and yield are improved. As described above, the diffusing agent used in the present invention can easily form a sealing member using a highly reliable resin to a desired thickness. In particular, in the present invention, a highly reliable semiconductor device can be formed with good mass productivity by using a thermosetting composition containing a polymer resin having high thermal stability as an essential component.
また、 半導体装置の発光面となる前記封止部材の上面は、 滑らかで且つ両端部 から中央部にかけて放物線状に凹んだ形状とすることが好ましく、 これにより、 信頼性が高く且つ光学特性の優れた半導体装置が得られる。 さらに前記凹みは、 長軸及ぴ短軸にてほぼ左右対称であることが好ましく、 これにより、 良好な指向 特性を有する発光装置が得られる。 このような発光面は、 熱安定性の高い親水性 主鎖と疎水性主鎖からなるポリマー樹脂と吸油量の調整可能な拡散剤とを必須成 分とする組成物を用い、 硬化過程において前記ポリマー樹脂の体積減少させるこ とにより容易に得ることができる。 Further, the upper surface of the sealing member, which becomes the light emitting surface of the semiconductor device, is smooth and has both ends. It is preferable that the shape be parabolically concave from the center to the center, whereby a semiconductor device having high reliability and excellent optical characteristics can be obtained. Further, it is preferable that the recess is substantially symmetrical in the major axis and the minor axis, whereby a light emitting device having good directivity characteristics can be obtained. Such a light emitting surface is made of a composition having essential components of a polymer resin having a hydrophilic main chain and a hydrophobic main chain having high thermal stability and a diffusing agent whose oil absorption is adjustable. It can be easily obtained by reducing the volume of the polymer resin.
一方、 前記拡散剤を用いず、 熱安定性の高い親水性主鎖と疎水性主鎖からなる ポリマー榭脂を必須成分とする組成物を前記パッケージ凹部内に少なめに注入し、 封止部材を形成すると、 各半導体装置において前記ポリマー樹脂の注入量を一定 にすることは困難であり、 各半導体装置間において封止部材の膜厚にバラツキが 生じる。 また、前記封止部材を粘度の高い樹脂組成物を硬化させて形成した場合、 前記封止部材の上面は凸凹になる傾向にあり、 色むらや指向特性のバラツキの原 因となる。 また、 前記ポリマー樹脂に蛍光物質等を含有させた場合、 各発光装置 間において色バラツキが生じる。  On the other hand, without using the diffusing agent, a small amount of a composition containing a polymer resin consisting of a hydrophilic main chain and a hydrophobic main chain having high heat stability as an essential component is injected into the concave portion of the package, and a sealing member is formed. If formed, it is difficult to make the injection amount of the polymer resin constant in each semiconductor device, and the thickness of the sealing member varies among the semiconductor devices. Further, when the sealing member is formed by curing a resin composition having a high viscosity, the upper surface of the sealing member tends to be uneven, which causes color unevenness and variation in directional characteristics. Further, when a fluorescent substance or the like is contained in the polymer resin, color variation occurs between the light emitting devices.
このように本発明では、 前記ポリマー樹脂と前記拡散剤を必須とする硬化性組 成物を、 常にパッケージの容積全体を封止するように注入させるため、 一定量の 硬化性組成物を各半導体装置に注入させることができる。 これにより、 蛍光物質 や顔料を含有させても色バラツキが少なく歩留まりの優れた半導体装置が得られ る。  As described above, according to the present invention, the curable composition containing the polymer resin and the diffusing agent as essential components is always injected so as to seal the entire volume of the package. It can be injected into the device. As a result, a semiconductor device having a small color variation and an excellent yield can be obtained even when a fluorescent substance or a pigment is contained.
ここで、 本実施の形態の半導体装置における封止部材の具体的形成方法を述べ る。  Here, a specific method for forming the sealing member in the semiconductor device of the present embodiment will be described.
1 . 第一の工程  1. First step
前記透光十生ポリマー樹脂として、粘度が 7 0 0 0 m P a - Sで且つ屈折率が 1 . 5 3であるシリコーン樹脂を用い、 前記シリコーン樹脂を主体とするシリコーン 樹脂組成物に平均粒子径が 1 . 0 μ mで且つ吸油量が 7 0 m l Z l 0 0 gである 軽質炭酸カルシウムを攪拌させる。  As the translucent polymer resin, a silicone resin having a viscosity of 700 mPa-S and a refractive index of 1.53 is used, and the average particle size of the silicone resin composition containing the silicone resin as a main component is determined. A light calcium carbonate having a diameter of 1.0 μm and an oil absorption of 70 ml Z 100 g is stirred.
(透光性ポリマー榭脂) 本発明でもちいられる、 親水性主鎖と疎水性側鎖からなる透光性ポリマー樹脂 を主体とする硬化性組成物の硬化物は、 前記親水性主鎖の性質により優れた耐光 性、 柔軟性、 および熱安定性を有している。 このような樹脂として、 例えば、 シ ロキサン結合を骨格としそのケィ素元素に有機基が直接結合したシロキサン系シ リコーン樹脂が挙げられる。シロキサン系シリコーン樹脂に用いられる有機基は、 耐熱性の観点からみてメチル基とフエ二ル基を用いることが好ましく、 ジメチル シロキサン系シリコーン樹脂、 フエニルシロキサン系シリコーン樹脂、 フエニル メチルシ口キサン系シリコーン樹脂を好適に用いることができ、 特に窒化物系半 導体素子を使用する場合、 フヱニルメチルシロキサン系シリコーン樹脂を用いる と、 良好に光を取り出すことができ好ましい。 (Transparent polymer resin) The cured product of the curable composition mainly composed of a light-transmitting polymer resin having a hydrophilic main chain and a hydrophobic side chain, which is used in the present invention, has excellent light resistance and flexibility due to the properties of the hydrophilic main chain. , And has thermal stability. Examples of such a resin include a siloxane-based silicone resin having a siloxane bond as a skeleton and an organic group directly bonded to the silicon element. As the organic group used in the siloxane-based silicone resin, it is preferable to use a methyl group and a phenyl group from the viewpoint of heat resistance. In particular, when a nitride-based semiconductor element is used, it is preferable to use a phenylmethylsiloxane-based silicone resin because light can be extracted well.
前記透光性ポリマー樹脂の粘度は、 作業性の観点からみて、 2000mP a · s〜20000mP a · sが好ましく、 より好ましくは 3000 mP a · s〜l 000 OmP a · sである。  The viscosity of the translucent polymer resin is preferably from 2000 mPa · s to 20000 mPa · s, more preferably from 3000 mPa · s to 1,000 OmPa · s from the viewpoint of workability.
前記透光性ポリマー樹脂中に前記拡散剤を含有し攪拌した際、 熱が生じ樹脂は 熱つせられ不安定な状態となりがちであるため、 樹脂は充填する前に温度が定温 に戻り安定するまで一定時間放置することが好ましい。 熱安定性が高く且つ前記 範囲の粘度を有する樹脂を用いることにより、 攪拌した後に一定時間放置しても 樹脂中での前記拡散剤の分散状態を好ましい状態で維持することが可能となる。 これにより、 信頼性おょぴ歩留まりが向上される。  When the diffusing agent is contained in the translucent polymer resin and stirred, heat is generated and the resin tends to be heated and become unstable, so that the temperature of the resin returns to a constant temperature before filling and stabilizes. It is preferable to leave for a certain period of time. By using a resin having high thermal stability and a viscosity in the above-mentioned range, it becomes possible to maintain a preferable state of dispersion of the diffusing agent in the resin even if the resin is left for a certain period of time after stirring. As a result, the reliability yield is improved.
また、 硬化後の硬度は、 5 s h o r e (A) 〜80 s h o r e (D)が好ましく、 より好ましくは 5 s h o r e (A) 〜40 s h o r e (D) である。 これにより 内部応力によるワイャ切れや各部材のクラックを防止することができる。 このよ うに熱安定性に優れ且つ柔軟性に優れた樹脂を用いることにより、 大電流の投下 を可能とし、 高輝度に発光することが可能な半導体装置が得られる。  In addition, the hardness after curing is preferably 5 shore (A) to 80 shore (D), and more preferably 5 shore (A) to 40 shore (D). Thereby, it is possible to prevent the disconnection of the wire and the crack of each member due to the internal stress. By using a resin having excellent thermal stability and flexibility as described above, a semiconductor device capable of emitting a large current and emitting light with high luminance can be obtained.
また、 上記半導体素子 (屈折率 2) と共に用いることを考慮し、 前記ポリマー 榭脂の屈折率は 1. 4〜1. 65であることが好ましい。 本発明では、 シリコー ン樹脂等の親水性主鎖と疎水性主鎖からなる透光性ポリマー樹脂を使用するが、 用いるポリマー樹脂は特に限定されず、 エポキシ樹脂、 アクリル樹脂、 ウレタン 樹脂、 ジァリルフタレート樹脂、 フッ素樹脂、 等を用いることも可能である。 (拡散剤) Further, in consideration of use with the semiconductor element (refractive index 2), the polymer resin preferably has a refractive index of 1.4 to 1.65. In the present invention, a translucent polymer resin having a hydrophilic main chain and a hydrophobic main chain such as a silicone resin is used, but the polymer resin used is not particularly limited, and an epoxy resin, an acrylic resin, a urethane Resins, diaryl phthalate resins, fluorine resins, and the like can also be used. (Diffusing agent)
本発明では、 上記ポリマー樹脂を主体とする硬化性糸且成物中に、 少なくとも前 記ポリマー樹脂を吸収することが可能な拡散剤として、 吸油可能な拡散剤を用い ている。 本発明で用いられる具体的拡散剤として、 軽質炭酸カルシウム、 重質炭 酸カルシウム、 タルク、 ホワイ トカーボン、 炭酸マグネシウム、 含水硅酸アルミ ニゥム ·マグネシウム、 硫酸パリゥム等があげられる。  In the present invention, an oil-absorbing diffusing agent is used as a diffusing agent capable of absorbing at least the polymer resin in the curable yarn mainly composed of the polymer resin. Specific examples of the diffusing agent used in the present invention include light calcium carbonate, heavy calcium carbonate, talc, white carbon, magnesium carbonate, hydrous aluminum / magnesium silicate, and palladium sulfate.
本発明で用いられる拡散剤の形状は、 六方晶形等の立方形、 紡錘形、 破碎形、 針状もしくは柱状等の棒状等、 種々の構造のものを用いることができる。 特に針 状もしくは柱状等の棒状を有する拡散剤を用いることが好ましく、 このような拡 散剤をポリマー樹脂中に分散しパッケージ凹部内に充填すると、 前記拡散剤は面 積の広い表面が発光素子と対向した状態で沈降する。 さらに小さい粒子を有する 拡散剤を用いた場合、 前記拡散剤はそれぞれの粒子間引力により一方の先端部が 一箇所において凝集し他方の先端部間はそれぞれ離間した凝集体となる。 このよ うな凝集体は、 封止部材を厚み方向において良好に収縮させることができる他、 各粒子間および各凝集体間に一定の距離を設けることができるため、 光取り出し 効率を妨げることなく良好に光を拡散することができる。  The diffusing agent used in the present invention may have various structures such as a cubic shape such as a hexagonal shape, a spindle shape, a crushed shape, and a rod shape such as a needle shape or a column shape. In particular, it is preferable to use a diffusing agent having a rod shape such as a needle shape or a column shape.When such a diffusing agent is dispersed in a polymer resin and filled in a package concave portion, the surface of the diffusing agent has a large surface area and a light emitting element. Settles in opposition. When a diffusing agent having smaller particles is used, the diffusing agent forms an agglomerate in which one end is aggregated at one location and the other is separated from each other due to the attraction between the particles. Such agglomerates can shrink the sealing member satisfactorily in the thickness direction, and can provide a certain distance between each particle and each agglomerate, so that light extraction efficiency is not hindered. Light can be diffused.
また、 拡散剤の粒径は、 平均粒子径が 0 . 1 n!〜 5 . 0 μ mの範囲であるこ とが好ましく、 より好ましくは 1 . 0 μ ιη〜2 . 5 μ mであることが好ましい。 このような平均粒子径値を有する拡散剤は、 硬化時の熱作用により前記ポリマー 樹脂を効率よく吸収することができる。  The average particle diameter of the diffusing agent is 0.1 n! It is preferably in the range of from 5.0 to 5.0 μm, more preferably in the range of from 1.0 μιη to 2.5 μm. The diffusing agent having such an average particle diameter value can efficiently absorb the polymer resin by a thermal action during curing.
ここで、 本明細書において平均粒子径とは、 空気透過法を基本原理としたサブ シープサイザ一法によって測定されたものである。 また、拡散剤が破碎形、針状、 もしくは柱状等の棒状結晶等の場合、 透過型電子顕微鏡法により測定される長辺 長は 1 . Ο μ η!〜 3 . 0 mが好ましい。  Here, in this specification, the average particle diameter is a value measured by a sub-sheepsizer method based on an air permeation method as a basic principle. When the diffusing agent is a rod-shaped crystal such as a crushed, needle-like, or columnar-like crystal, the long side length measured by transmission electron microscopy is 1.Ο μη! ~ 3.0 m is preferred.
また前記拡散剤は、 前記半導体素子の屈折率よりも低く前記ポリマー樹脂より も高い屈折率を有することが好ましく、 これにより光の取り出し効率が向上され 好ましい。 特に、 炭酸カルシウムからなる拡散剤は、 あられ型 (ァラゴナイト型) 結晶の拡散剤を用いることが好ましく、 これにより拡散剤にて光を良好に屈折さ せることができる。 In addition, the diffusing agent preferably has a lower refractive index than the semiconductor element and a higher refractive index than the polymer resin, which preferably improves light extraction efficiency. In particular, the diffusing agent consisting of calcium carbonate is of the hail type (aragonite type). It is preferable to use a crystal diffusing agent, whereby light can be favorably refracted by the diffusing agent.
前記透光性ポリマー樹脂の体積減少率は、 前記拡散剤の含有量を調整する他、 前記拡散剤に施す表面処理の程度によって調整することが可能である。 このよう な拡散剤の表面処理は、 Al 2 03 、 F e 2 03 、 S i等を用いて施すことがで きる。 拡散剤は、 表面処理を施す度合いが大きいほど吸油量が小さくなる傾向に ある。 また、 本発明における透光性ポリマー樹脂は、 表面処理を殆ど行わず用い ることが好ましく、 これにより少ない含有量にて前記透光性ポリマー樹脂の体積 を大幅に減少させることができる。 つまり、 拡散剤の上記透光性ポリマー樹脂の 吸収量と吸油量とは、 相互関係にあると考えら、 前記拡散剤の含有量を増すほど 前記透光性ポリマー樹脂を主体とする封止部材の硬化前後における体積減少率は 大きくなる。 このように、 樹脂の所望とする体積減少量に合わせて拡散剤を調整 して用いるとができ、 本発明はあらゆる容積サイズのパッケージを利用した半導 体装置に適応することが可能である。 ' The volume reduction rate of the translucent polymer resin can be adjusted by adjusting the content of the diffusing agent and by the degree of surface treatment applied to the diffusing agent. Such surface treatment of the diffusing agent as possible out be applied using Al 2 0 3, F e 2 0 3, S i and the like. The diffusing agent tends to have a smaller oil absorption as the degree of surface treatment increases. Further, the light-transmitting polymer resin in the present invention is preferably used with almost no surface treatment, whereby the volume of the light-transmitting polymer resin can be significantly reduced with a small content. That is, it is considered that the amount of absorption of the light-transmitting polymer resin and the amount of oil absorption of the light-transmitting polymer resin are in a mutual relationship. The rate of volume decrease before and after curing becomes large. As described above, the diffusing agent can be adjusted and used according to the desired volume reduction of the resin, and the present invention can be applied to a semiconductor device using a package of any volume size. '
拡散剤の吸油量は、 表面処理を施していない状態で、 30ml/l 00 g〜l The oil absorption of the diffusing agent is 30ml / l 00g ~ l without surface treatment
50m l/l 00 gであることが好ましく、 より好ましくは 50ml/100 g 〜150m l/100 gである。 これにより後に表面処理を行うことで幅広い吸 油量の設定が可能となる。本明細書において吸油量とは、日本工業規格( J I S K 5101) の吸油量試験法により測定された値とする。 It is preferably 50 ml / 100 g, more preferably 50 ml / 100 g to 150 ml / 100 g. This makes it possible to set a wide range of oil absorption by performing surface treatment later. In the present specification, the oil absorption means a value measured by an oil absorption test method of Japanese Industrial Standards (JIS 5101).
また拡散剤の封止部材中における含有量は、 0. 5 %〜 5%が好ましく、 これ により、 発光素子の光取り出し効率を低下させることなく発光装置の光度、 信頼 性、 および作業性を向上させつつ、 上記硬化性組成物の体積を熱処理後において 減少させることができる。  Further, the content of the diffusing agent in the sealing member is preferably 0.5% to 5%, thereby improving the luminous intensity, reliability, and workability of the light emitting device without reducing the light extraction efficiency of the light emitting element. The volume of the curable composition can be reduced after the heat treatment.
2. 第二および第 の工程  2. Second and second steps
得られた硬化性組成物液を一定時間放置して樹脂の熱を定温に戻した後、 発光 措置が配置されたパッケージ凹部内に前記凹部の端部上面とほぼ同一平面ライン まで注入し (第二の工程)、 加熱硬化させる (第三の工程)。 この加熱硬化過程に おいて、 軽質炭酸カルシウムの何らかの作用により、 充填後の前記硬化性組成物 の体積が減少される。 こうして得られた硬化物である封止部材の表面は、 端部上 面から中央部にかけて放物線状の凹部を有する形状となる。 前記回部は、 長軸及 ぴ短軸においてほぼ左右対称である。 After the obtained curable composition liquid is left for a certain period of time to return the heat of the resin to a constant temperature, it is poured into a concave portion of the package in which the light-emitting means is arranged up to a line substantially flush with the upper surface of the end of the concave portion (the Second step), heat curing (third step). In the heat-curing process, the curable composition after filling is filled by some action of light calcium carbonate. Is reduced in volume. The surface of the sealing member, which is a cured product obtained in this manner, has a shape having a parabolic concave portion from the upper surface of the end to the center. The turning part is substantially symmetrical about the major axis and the minor axis.
上記作用は、 おそらく、 軽質炭酸カルシウムの吸油量の割合が、 加熱硬化過程 において促進され、 前記シリコーン樹脂の一部が軽質炭酸カルシウムにより吸収 されていると思われる。 また、 軽質炭酸カルシウムの体積は、 前記樹脂を吸収し た後も増加することなく、 ほぼ一定であると考えられる。 もしくは、 軽質炭酸力 ルシゥムのシリコーン樹脂吸収による体積増加率よりも前記シリコーン樹脂の体 積減少率が高いと考えられる。 これにより、 硬化後の封止部材の体積は充填時よ りも減少し、 結果、 硬化収縮された封止部材表面はパッケージ凹部両端部の上面 から中央部にかけて放物線状で且つ発光面からみて長軸及ぴ短軸に対してほぼ左 右対称な凹部となる。 これにより、 良好な発光面が得られ優れた指向特性を有す る半導体装置が得られる。 また前記表面は、 前記パッケージ凹部両端部の上面よ り下方に形成されるため、 前記表面が検查ゃ実装中にて外部に接触することを抑 制でき、 信頼性の高い半導体装置が得られる。  This effect is probably due to the fact that the percentage of oil absorption of the light calcium carbonate is promoted in the heat curing process, and a part of the silicone resin is absorbed by the light calcium carbonate. Further, it is considered that the volume of the light calcium carbonate is substantially constant without increasing even after absorbing the resin. Alternatively, it is considered that the volume decrease rate of the silicone resin is higher than the volume increase rate due to absorption of the silicone resin by the light carbonic acid calcium. As a result, the volume of the sealing member after curing is smaller than that at the time of filling, and as a result, the surface of the sealing member that has been cured and shrunk has a parabolic shape from the upper surface of both ends of the package concave portion to the central portion and is longer when viewed from the light emitting surface. The concave part is almost symmetrical left and right with respect to the axis and the short axis. As a result, a semiconductor device having a good light emitting surface and excellent directional characteristics can be obtained. Further, since the surface is formed below the upper surface of both ends of the package concave portion, the surface can be prevented from contacting the outside during the inspection and mounting, and a highly reliable semiconductor device can be obtained. .
(蛍光物質 8 )  (Fluorescent substance 8)
本実施の形態の半導体装置は、 封止部材中に蛍光物質 8を含有させてもよい。 ここで、 本発明で用いられる蛍光物質について詳述する。 本発明では、 各構成部 材に無機傾向物質や有機蛍光物質等、種々の蛍光物質を含有させることが出来る。 ■ このような蛍光物質の一例として、 無機蛍光物質である希土類元素を含有する蛍 光物質がある。 希土類元素含有蛍光物質として、 具体的には、 Y、 L u , S c、 L a , G d、 および S mの群から選択される少なくとも 1つの元素と、 A l、 G a、 および I nの群から選択される少なくとも 1つの元素とを有するガーネット (ざくろ石) 型蛍光体が挙げられる。  In the semiconductor device of the present embodiment, the fluorescent material 8 may be contained in the sealing member. Here, the fluorescent substance used in the present invention will be described in detail. In the present invention, various fluorescent substances such as an inorganic tendency substance and an organic fluorescent substance can be contained in each constituent member. ■ An example of such a fluorescent substance is a fluorescent substance containing a rare earth element which is an inorganic fluorescent substance. As the rare earth element-containing fluorescent substance, specifically, at least one element selected from the group of Y, Lu, Sc, La, Gd, and Sm, and Al, Ga, and In And a garnet-type phosphor having at least one element selected from the group consisting of:
本実施の形態の半導体装置に用いた蛍光物質は、 窒化物系半導体からを発光層 とする半導体半導体素子から発光された光を、 励起させて異なる波長の光を発光 できるセリゥムで付活されたィットリウム ·アルミユウム酸化物系蛍光物質をべ ースとしたものである。 具体的なイツトリウム ·アルミニウム酸化物系蛍光物質 としては、 YA 103 : C e , Y3 A 15 Ox 2 : C e (YAG: C e) や Y4 A 129 : C e、 更にはこれらの混合物などが挙げられる。 イットリウム -ァ ルミニゥム酸化物系蛍光物質に B a、 S r、 Mg、 C a、 Z n、 P rの少なくと も一種が含有されていてもよい。 また、 S iを含有させることによって、 結晶成 長の反応を抑制し蛍光物質の粒子を揃えることができる。 The fluorescent substance used in the semiconductor device of the present embodiment was activated by a cell that can emit light of different wavelengths by exciting light emitted from a semiconductor semiconductor element having a nitride-based semiconductor as a light emitting layer. It is based on a yttrium / aluminum oxide fluorescent material. Specific yttrium-aluminum oxide fluorescent material The, YA 10 3: C e, Y 3 A 1 5 O x 2: C e (YAG: C e) and Y 4 A 1 29: C e, more like a mixture thereof. The yttrium-aluminum oxide-based fluorescent substance may contain at least one of Ba, Sr, Mg, Ca, Zn, and Pr. In addition, by containing Si, the crystal growth reaction can be suppressed and the particles of the fluorescent substance can be made uniform.
本明細書において、 C eで付活されたィットリウム ·アルミニウム酸化物系蛍 光物質は特に広義に解釈するものとし、 イットリウムの一部あるいは全体を、 L u、 S c、 L a、 G d及び Smからなる群から選ばれる少なくとも 1つの元素に 置換され、 あるいは、 アルミニウムの一部あるいは全体を B a、 T l、 Ga、 I nの何れが又は両方で置換され蛍光作用を有する蛍光体を含む広い意味に使用す る。  In the present specification, the yttrium-aluminum oxide-based phosphor activated by Ce is to be interpreted in a particularly broad sense, and part or all of yttrium is represented by Lu, Sc, La, Gd and Includes a phosphor that is substituted by at least one element selected from the group consisting of Sm, or that has a fluorescent action in which part or all of aluminum is substituted by any or both of Ba, Tl, Ga, and In Use in a broad sense.
更に詳しくは、 一般式 (Yz G d i z ) 3 A 15 2 : C e (但し、 0く z≤ 1) で示されるフォトルミネッセンス蛍光体や一般式 (Re ia Sma ) 3 R e ' 5 01 2 : C e (伹し、 0≤ a < l、 0≤ b≤ 1 , Reは、 Y、 Gd、 L a、 S cから選択される少なくとも一種、 R e ' は、 A l、 Ga、 1 11カ ら選 択される少なくとも一種である。)で示されるフォトルミネッセンス蛍光体である。 またフォ トルミネッセンス蛍光体は、 結晶中に Gd (ガドリニウム) を含有す ることにより、 460 nm以上の長波長域の励起発光効率を高くすることができ る。 Gdの含有量の増加により、 発光ピーク波長が長波長に移動し全体の発光波 長も長波長側にシフトする。 すなわち、 赤みの強い発光色が必要な場合、 Gdの 置換量を多くすることで達成できる。 一方、 Gdが増加すると共に、 青色光によ るフォ トルミネッセンスの発光輝度は低下する傾向にある。 さらに、 所望に応じ て C eに加え Tb、 Cu、 Ag、 Au、 F e、 C r、 Nd、 Dy、 C o、 N i、 T i、 Eu、 および P r等を含有させることもできる。 More specifically, a photoluminescent phosphor represented by the general formula (Y z G di z ) 3 A 15 2 : C e (where 0 and z ≤ 1) or the general formula (R eia Sm a ) 3 R e ' 5 0 1 2: C e (伹, 0 ≤ a <l, 0 ≤ b ≤ 1, Re is at least one selected from Y, Gd, La, Sc, R e' is A at least one selected from l, Ga, and 111.). In addition, the photoluminescence phosphor can increase the excitation and emission efficiency in the long wavelength region of 460 nm or more by containing Gd (gadolinium) in the crystal. As the Gd content increases, the emission peak wavelength shifts to a longer wavelength, and the overall emission wavelength shifts to the longer wavelength side. That is, when a reddish emission color is required, it can be achieved by increasing the substitution amount of Gd. On the other hand, as Gd increases, the emission luminance of photoluminescence by blue light tends to decrease. Further, if desired, Tb, Cu, Ag, Au, Fe, Cr, Nd, Dy, Co, Ni, Ti, Eu, Pr, and the like can be contained in addition to Ce.
また、 ガーネット構造を持つたイットリウム ·アルミニウム ·ガーネット系蛍 光体の組成のうち、 A 1の一部を G aで置換すると、 発光波長は短波長側にシフ トすることができる。 一方、 組成の Yの一部を Gdで置換すると、 発光波長が長 波長側にシフトすることができる。 Yの一部を G dで置換する場合、 Gdへの置 換を 1割未満にし、 且つ C eの含有 (置換) を 0 . 0 3から 1 . 0にすることが 好ましい。 G dへの置換が 2割未満では緑色成分が大きく赤色成分が少なくなる I C eの含有量を増やすことで赤色成分を補え、 輝度を低下させることなく所 望の色調を得ることができる。 このような組成にすると蛍光物質自体の温度特性 が良好となり発光ダイオードの信頼性を向上させることができる。 また、 赤色成 分を多く有するように調整されたフォトルミネッセンス蛍光体を使用すると、 ピ ンク等の中間色を発光することが可能となり、 演色性に優れた半導体装置を形成 することができる。 In addition, when part of A1 in the yttrium-aluminum-garnet-based phosphor having a garnet structure is replaced with Ga, the emission wavelength can be shifted to a shorter wavelength side. On the other hand, if part of Y in the composition is replaced with Gd, the emission wavelength can be shifted to longer wavelengths. When replacing part of Y with G d, It is preferable that the conversion is less than 10% and the content (substitution) of Ce is from 0.03 to 1.0. If the substitution with Gd is less than 20%, the green component is large and the red component is small. By increasing the content of ICe, the red component can be supplemented and the desired color tone can be obtained without lowering the luminance. With such a composition, the temperature characteristics of the fluorescent substance itself are improved, and the reliability of the light emitting diode can be improved. Further, when a photoluminescent phosphor adjusted to have a large amount of red component is used, it is possible to emit an intermediate color such as a pink, and a semiconductor device having excellent color rendering properties can be formed.
このようなフォトルミネッセンス蛍光体は、 Y、 G d、 A l、 及ぴ C eの原料 として酸化物、 又は高温で容易に酸化物になる化合物を使用し、 それらを化学量 論比で十分に混合して原料を得る。 又は、 Y、 G d、 C eの希土類元素を化学量 論比で酸に溶解した溶解液を蓚酸で共沈したものを焼成して得られる共沈酸化物 と、 酸化アルミエゥムとを混合して混合原料を得る。 これにフラックスとしてフ ッ化バリゥムゃフッ化アンモ-ゥム等のフッ化物を適量混合して坩堝に詰め、 空 気中 1 3 5 0〜 1 4 5 0 °Cの温度範囲で 2〜 5時間焼成して焼成品を得、 つぎに 焼成品を水中でボールミルして、 洗浄、 分離、 乾燥、 最後に篩を通すことで得る ことができる。  Such a photoluminescent phosphor uses an oxide or a compound which easily becomes an oxide at a high temperature as a raw material for Y, Gd, Al, and Ce, and sufficiently uses them in a stoichiometric ratio. Mix to obtain the raw materials. Alternatively, aluminum oxide is mixed with a coprecipitated oxide obtained by calcining a solution obtained by dissolving a rare earth element of Y, Gd, Ce in an acid at a stoichiometric ratio with oxalic acid, and calcination. Obtain a mixed raw material. This is mixed with an appropriate amount of fluoride such as fluorinated ammonium fluoride or ammonium fluoride as a flux and packed in a crucible, and is placed in the air at a temperature of 135 ° C to 150 ° C for 2 to 5 hours. It can be obtained by firing to obtain a fired product, then ball-milling the fired product in water, washing, separating, drying, and finally passing through a sieve.
本願発明の半導体装置において、 このようなフォトルミネッセンス蛍光体は、 2種類以上のセリゥムで付活されたィットリウム 'アルミェゥム ·ガーネット蛍 光体や他の蛍光体を混合させてもよい。  In the semiconductor device of the present invention, such a photoluminescent phosphor may be a mixture of a yttrium-aluminum-garnet phosphor activated by two or more kinds of cells or another phosphor.
—方、 半導体素子から放出される発光スぺクトルが紫外領域ゃ視感度が極めて 低い可視光 (例えば 4 2 0 n m以下) である場合、 前記発光スペク トルの少なく とも一部を吸収し、 2以上の発光ピークを持った発光スペク トルを発し、 前記発 光スぺクトルは少なくとも一部が互いに補色となる蛍光である蛍光物質を用いる ことが好ましい。 上記蛍光物質は、 補色領域を含む 2以上の発光スペクトルのピ ークを有しているため、 蛍光物質自体の色調ズレが極めて小さく半導体素子のパ ラツキを吸収し、 半導体装置の色調ズレを抑制することができる。 上記 2以上の ピークを持った発光スぺクトルは、 短波長側の発光ピークの半値幅がそれよりも 長波長側の発光ピークの半値幅よりも狭いことが好ましく、 これにより、 長波長 の成分を比較的容易に取り出すことができると共に演色性の優れた半導体装置と することができる。 また、 前記蛍光物質と共に、 上記 2以上の発光ピーク間に発 光ピークをもった別の蛍光物質を用いると、 白色を発光可能であると共に所望の 中間色が高輝度に発光可能な半導体装置が得られる。 更に、 組成によって少なく とも一部が補色となる 2以上の発光スぺクトルの強度比が調整されていると、 白 色領域は少しのずれでも人間の目が敏感に感ずることができるものの、 これによ つて、 微調整が可能となる。 On the other hand, when the emission spectrum emitted from the semiconductor element is a visible light (for example, 420 nm or less) having an extremely low luminous sensitivity in the ultraviolet region, at least a part of the emission spectrum is absorbed, and It is preferable that a fluorescent substance which emits a light emission spectrum having the above-mentioned light emission peak and which emits at least a part of the light is a fluorescent color complementary to each other. Since the fluorescent substance has two or more emission spectrum peaks including a complementary color region, the color shift of the fluorescent substance itself is extremely small, and absorbs the variation of the semiconductor element, thereby suppressing the color shift of the semiconductor device. can do. The emission spectrum having two or more peaks above has a half-width of the emission peak on the short wavelength side that is larger than that. It is preferable that the width is smaller than the half-value width of the emission peak on the long wavelength side, whereby a long wavelength component can be extracted relatively easily and a semiconductor device having excellent color rendering properties can be obtained. When another fluorescent substance having a light emission peak between the two or more light emission peaks is used together with the fluorescent substance, a semiconductor device capable of emitting white light and emitting a desired intermediate color with high luminance can be obtained. Can be Furthermore, if the intensity ratio of two or more light-emitting spectrums, at least a part of which is a complementary color, is adjusted depending on the composition, the human eye will be able to perceive even a slight shift in the white area, Thus, fine adjustment is possible.
具体的蛍光物質として、 例えば、 少なくとも Mg、 C a、 B a、 S r、 Z nか ら選択される 1種を含む Mで代表される元素と、 少なくとも Mn、 F e、 C r、 S n力 ら選択される 1種を含む M'で代表される元素とを有する Euで附活された アルカリ土類金属ハロゲンァパタイト蛍光体を用いることができ、 量産性良い白 色系が高輝度に発光可能な半導体装置が得られる。 特に、 少なくとも Mn及び Z 又は C 1を含む E uで附活されたアルカリ土類金属ハロゲンァパタイト蛍光体は、 耐光性や、 耐環境性に優れている。 また、 窒化物半導体から放出された発光スぺ タトルを効率よく吸収することができる。 さらに、 白色領域を発光可能であると 共に組成によってその領域を調整することができる。 また、 長波長の紫外領域を 吸収して黄色や赤色を高輝度に発光可能である。 そのため、 演色性に優れた半導 体装置とすることができる。 なお、 アルカリ土類金属ハロゲンアパタイト蛍光体 例としてアルカリ土類金属クロルァパタイト蛍光体が含まれることは言うまでも ない。  Specific fluorescent substances include, for example, an element represented by M including at least one selected from Mg, Ca, Ba, Sr, and Zn; and at least Mn, Fe, Cr, and Sn An alkaline earth metal halogen apatite phosphor activated by Eu and containing an element represented by M 'containing one selected from the group consisting of: Thus, a semiconductor device capable of emitting light can be obtained. In particular, an alkaline earth metal halogenapatite phosphor activated with Eu containing at least Mn and Z or C1 has excellent light resistance and environmental resistance. Further, the light emitting stadium emitted from the nitride semiconductor can be efficiently absorbed. Further, the white region can emit light, and the region can be adjusted by the composition. In addition, it can absorb yellow or red light with high brightness by absorbing the long wavelength ultraviolet region. Therefore, a semiconductor device having excellent color rendering properties can be obtained. Needless to say, an alkaline earth metal chloroapatite phosphor is included as an example of the alkaline earth metal halogen apatite phosphor.
前記アルカリ土類金属ハロゲンァパタイト蛍光体において、 一般式が (I ^一 xy Eux M'y ) 。 (P04 ) 6 Q2 などで表される場合 (ただし、 Mは M g、 Ca、 B a、 S r、 Z nから選択される少なくとも 1種、 M'は Mn、 F e、 C r、 S nから選択される少なくとも 1種、 Qはハロゲン元素の F、 C l、 B r、 および Iから選択される少なくとも 1種、 である。 0. 0001≤x≤0. 5、 0. 000 1≤y≤0. 5である。)、 量産性よく混色光が発光可能な半導体装置 が得られる。 また、 前記アルカリ土類金属ハロゲンアパタイト蛍光体に加えて、 B aMg2 A11 6 02 7 : Eu、 (S r, C a , B a) 5 (P04 ) 3 C 1 : Eu、 S r A 12 04 : Eu、 Zn S : Cu、 Z n 2 G e 04 : Mn、 B aMg2 A l 1 6 〇 2 7 : Eu, Mn、 Z n 2 G e 04 : Mn、 Y2 02 S : Eu、 L a 2 02 S : Eu、 Gd 2 02 S : E uから選択される少なくとも 1種の蛍光体を含有させる と、 より詳細な色調を調整可能であると共に比較的簡単な構成で演色性の高い白 色光を得ることができる。 In the alkaline earth metal halide § Pas tight phosphor, the general formula (I ^ one x - y Eu x M 'y ). (P0 4) 6 If Q 2 is expressed by the like (although, M is M g, Ca, B a, S r, at least one selected from Z n, M 'is Mn, F e, C r, At least one selected from Sn, and Q is at least one selected from halogen elements F, Cl, Br, and I. 0. 0001≤x≤0.5, 0.001 ≤y≤0.5), and a semiconductor device capable of emitting mixed-color light with high productivity can be obtained. In addition to the alkaline earth metal halide apatite phosphor, B aMg 2 A1 1 6 0 2 7: Eu, (S r, C a, B a) 5 (P0 4) 3 C 1: Eu, S r A 1 2 0 4: Eu, Zn S: Cu, Z n 2 G e 0 4: Mn, B aMg 2 A l 1 6 〇 2 7: Eu, Mn, Z n 2 G e 0 4: Mn, Y 2 0 2 S: Eu, L a 2 0 2 S: Eu, Gd 2 0 2 S: the inclusion of at least one phosphor selected from E u, relatively with adjustable more detailed color White light with high color rendering properties can be obtained with a simple configuration.
上記蛍光体は、 次に示す方法で得ることができる。 構成元素のリン酸塩酸化物 もしくは熱分解によって酸化物などになり得る各種化合物と塩化アンモ-ゥムを 所定量秤量し、 ボールミル等で混合した後、 坩堝に入れ、 Ν2 , H2 の還元雰囲 気において、 800°Cから 1 200°Cの温度で 3〜 7時間焼成する。 得られた焼 成品を湿式で粉碎、 篩後、 脱水、 乾燥してアルカリ土類金属ハロゲンアパタイト 蛍光体を得ることができる。 The phosphor can be obtained by the following method. Amm chloride with various compounds which can be a such as oxides by phosphate oxide or thermal decomposition of the constituent elements - the © arm weighed in predetermined amounts, were mixed with a ball mill or the like, placed in a crucible, the New 2, H 2 reduction Kiri In an atmosphere, bake at a temperature of 800 ° C to 1200 ° C for 3 to 7 hours. The obtained sintered product is wet-milled, sieved, dehydrated and dried to obtain an alkaline earth metal halogenapatite phosphor.
前記 X値は、第一附活材 Eu元素の組成比を示すもので 0. 0001≤x 0. 5が好ましく、 Xが 0. 0001未満では発光輝度が低下し、 X力 SO. 5を越え ても濃度消光によって発光輝度が低下する傾向にある。 より好ましくは、 0. 0 05≤ X≤ 0. 4、 さらに好ましくは、 0. 01 ^x^0. 2である。  The X value indicates the composition ratio of the first activator Eu element and is preferably 0.0001 ≤ x 0.5.If X is less than 0.0001, the emission luminance decreases, and the X force exceeds SO. However, the emission luminance tends to decrease due to concentration quenching. More preferably, it is 0.005≤X≤0.4, and still more preferably, 0.01 ± x ^ 0.2.
また、 前記 y値は、 Mn、 F e、 C r、 S nのうちの少なくとも 1種の元素の 組成比を示すもので、 0. 0001≤y 0. 5が好ましく、 より好ましくは 0. 005≤y≤ 0. 4であり、 さらに好ましくは 0. 01≤y≤0. 3である。 y が 0. 5を越えると濃度消光によつて発光輝度が低下する傾向にある。  The y value indicates the composition ratio of at least one of Mn, Fe, Cr, and Sn, and is preferably 0.0001≤y 0.5, more preferably 0.005. ≤y≤0.4, more preferably 0.01 ≤y≤0.3. If y exceeds 0.5, the emission luminance tends to decrease due to concentration quenching.
この蛍光体は紫外線から比較的短波長の可視光 (たとえば、 主波長が 44 O n m以下) の励起により可視光である青色から白色系 (たとえば、 J I S Z 81 10の慣用色における白色、 或いは系統色名図の基本色となる白色)、 および赤色 の発光色を示す。  This phosphor emits visible light by excitation of visible light of a relatively short wavelength from ultraviolet (for example, the main wavelength is 44 O nm or less). White color, which is the basic color of the name map), and red emission color.
特に、 365 nm程度の比較的長波長の紫外線によっても効率よく高輝度に発 光可能であると共に赤色成分をも十分含むことから、 平均演色性指数 Raが 80 以上の良好な演色性を得ることもできる。 また、 上記蛍光体は、 その組成比を変えることで、 青色系〜白色系〜赤色系に 種々変化させ色調を調整することができることが分かる。即ち、 Mが S rの場合、 450 nm付近にピークを持つ Eu2 +の発光により発光色は青色を発光するが、 M 'の Mnで yの値を大きくすると Mnの発光により蛍光体の発光色は青色〜白 色系〜赤色系の発光色を示す。 Mが C aの場合も Eu、 Mn量に同様な変化を示 すが、 Mが B aの場合は発光色の変化は少ない。 また、 本発明に用いられるこの 蛍光体は長波長紫外線から比較的短波長可視光 (例えば、
Figure imgf000020_0001
300 nmから 400 nm乃至 425 nm) で効率よく励起され、 発光色は J I S Z 81 10でいうところの基本色名白色の領域に含まれる。 なお、 この蛍光体は紫 外線全域で効率よく励起されることから、 短波長紫外線用途使用としても有効に 利用されうるものとして期待することができる。
In particular, it can efficiently emit high-intensity light even with ultraviolet rays with a relatively long wavelength of about 365 nm and sufficiently contains red components, so that it has good color rendering properties with an average color rendering index Ra of 80 or more. Can also. In addition, it can be seen that the color tone of the phosphor can be variously changed from blue to white to red by adjusting the composition ratio to adjust the color tone. That is, when M is Sr, the emission color emits blue light by the emission of Eu 2+ having a peak near 450 nm, but when the value of y is increased by Mn of M ′, the emission of the phosphor is caused by the emission of Mn. The colors indicate blue to white to red emission colors. When M is Ca, the changes in Eu and Mn are similar, but when M is Ba, the emission color changes little. In addition, the phosphor used in the present invention can be used for long wavelength ultraviolet light to relatively short wavelength visible light (for example,
Figure imgf000020_0001
It is efficiently excited in the range from 300 nm to 400 nm to 425 nm), and the emission color is included in the white region of the basic color name in JISZ8110. In addition, since this phosphor is efficiently excited in the entire region of ultraviolet light, it can be expected that the phosphor can be effectively used for use in short-wavelength ultraviolet rays.
このような蛍光体を用いた半導体装置からは紫外線 LEDや紫外線 L Dで励起 された上述の蛍光体のうち、 約 460 nm付近のピークと約 580 nm付近のピ ークの 2つのピークを持った発光スぺクトルを発光することが可能となる。 この 発光スぺク トルは少なくともほぼ 460 nm付近のスぺク トル成分と 580 nm 付近のスぺクトル成分を有し互いに補色となる蛍光を発している。 この少なくと も Mn及び Z又は C 1を含む Euで附活されたアルカリ土類金属ハロゲンァパタ ィト蛍光体に緑色を発光する蛍光体として S r A 1204 : Euを加えることによ つて更に演色性を高めることができる。 A semiconductor device using such a phosphor has two peaks, about 460 nm and about 580 nm, among the above-mentioned phosphors excited by UV LED or UV LD. It is possible to emit light from the light emitting spectrum. This emission spectrum has at least a spectrum component around 460 nm and a spectrum component around 580 nm, and emits fluorescent lights complementary to each other. S r A 1 2 0 4 as a phosphor for emitting green light in the least alkaline earth metal Harogenapata I DOO phosphors Fukatsu with Eu containing Mn and Z or C 1 also: by the addition of Eu connexion Further, the color rendering properties can be improved.
さらに、 上述の蛍光体は所望に応じて Euに加え Tb、 Cu、 Ag、 A u、 C r、 Nd、 Dy、 Co、 N i、 T i、 および P r等を含有させることもできる。 また、 本発明で用いられる蛍光物質の粒径は 1 μπι~100 imの範囲が好ま しく、 より好ましくは 1 Ο μπ!〜 50 imの範囲が好ましく、 さらに好ましくは 15 μπ!〜 30 である。 1 5 μ mより小さい粒径を有する蛍光物質は、 比較 的凝集体を形成しやすく、 液状樹脂中において密になって沈降されるため、 光の 透過効率を減少させてしまう。 本発明では、 このような蛍光物質を有しない蛍光 物質を用いることにより蛍光物質による光の隠蔽を抑制し半導体装置の出力を向 上させる。 また本発明の粒径範囲である蛍光物質は光の吸収率及び変換効率が高 く且つ励起波長の幅が広い。 このように、 光学的に優れた特徴を有する大粒径蛍 光物質を含有させることにより、 半導体素子の主波長周辺の光をも良好に変換し 発光することができ、 半導体装置の量産性が向上される。 Further, the above-mentioned phosphor may contain Tb, Cu, Ag, Au, Cr, Nd, Dy, Co, Ni, Ti, Pr and the like in addition to Eu, if desired. The particle size of the fluorescent substance used in the present invention is preferably in the range of 1 μπι to 100 im, more preferably 1 μππ! It is preferably in the range of ~ 50 im, more preferably 15 μπ! ~ 30. Fluorescent substances having a particle size of less than 15 μm tend to form relatively agglomerates and become denser and sediment in the liquid resin, thereby reducing light transmission efficiency. In the present invention, by using such a fluorescent substance having no fluorescent substance, the concealment of light by the fluorescent substance is suppressed, and the output of the semiconductor device is improved. Further, the fluorescent substance having the particle size range of the present invention has high light absorption and conversion efficiency. And the width of the excitation wavelength is wide. As described above, by including a large particle size fluorescent substance having excellent optical characteristics, light around the main wavelength of a semiconductor element can be well converted and emitted, and mass production of semiconductor devices can be improved. Be improved.
ここで本発明において、 蛍光物質の粒径は、 体積基準粒度分布曲線により得ら れる値である。 前記体積基準粒度分布曲線は、 レーザ回折 ·散乱法により粒度分 布を測定し得られるもので、 具体的には、 気温 25 °C、 湿度 70 %の環境下にお いて、 濃度が 0. 05%であるへキサメタリン酸ナトリウム水溶液に各物質を分 散させ、 レーザ回折式粒度分布測定装置 (SALD— 2000A) により、 粒径 範囲 03 111〜700 μιηにて測定し得られたものである。 本明細書におい て、 この体積基準粒度分布曲線において積算値が 50 %のときの粒径値を中心粒 径といい、 本発明で用いられる蛍光物質の中心粒径は 1 5 111〜50 111の範囲 であることが好ましい。 また、 この中心粒径値を有する蛍光物質が頻度高く含有 されていることが好ましく、 頻度値は 20%〜50%が好ましい。 このように粒 径のパラツキが小さレ、蛍光物質を用いることにより色ムラが抑制され良好な色調 を有する半導体装置が得られる。 また、 蛍光物質は、 本発明で用いられる拡散剤 と類似の形状を有することが好ましい。 本明細書において、 類似の形状とは、 各 粒径の真円との近似程度を表す円形度 (円形度 =粒子の投影面積に等しい真円の 周囲長さ/粒子の投影の周囲長さ) の値の差が 20%未満の場合をいう。 これに より、 拡散剤による光の拡散と励起された蛍光体からの光が、 理想的な状態で混 ざり合い、 より均一な発光が得られる。 実施例  Here, in the present invention, the particle size of the fluorescent substance is a value obtained by a volume-based particle size distribution curve. The volume-based particle size distribution curve is obtained by measuring the particle size distribution by a laser diffraction / scattering method. Specifically, the concentration is 0.05 in an environment at a temperature of 25 ° C and a humidity of 70%. % Of each substance was dispersed in an aqueous solution of sodium hexametaphosphate (%), which was measured by a laser diffraction type particle size distribution analyzer (SALD-2000A) in a particle size range of 03 111 to 700 μιη. In this specification, the particle size when the integrated value is 50% in this volume-based particle size distribution curve is referred to as the center particle size, and the center particle size of the fluorescent substance used in the present invention is 15111 to 50111. It is preferably within the range. Further, it is preferable that the fluorescent substance having the central particle diameter is contained frequently, and the frequency is preferably 20% to 50%. As described above, the use of a fluorescent substance with a small variation in the particle diameter suppresses color unevenness, and provides a semiconductor device having a good color tone. The fluorescent substance preferably has a shape similar to that of the diffusing agent used in the present invention. In the present specification, the similar shape is a circularity representing the degree of approximation of each particle size to a perfect circle (circularity = perimeter of a perfect circle equal to the projected area of the particle / perimeter of the projected particle). Is less than 20%. As a result, the diffusion of light by the diffusing agent and the light from the excited phosphor are mixed in an ideal state, and more uniform light emission can be obtained. Example
以下、 本発明の実施例について説明する。 なお、 本発明は以下に示す実施例の みに限定されるものではない。  Hereinafter, examples of the present invention will be described. Note that the present invention is not limited to only the examples described below.
実施例 1.  Example 1.
本発明の半導体装置として、 図 1に示すような表面実装 (SMD) 型の半導体 装置を形成する。 LEDチップは、 発光層として単色性発光ピークが可視光であ る 475 nmの I n0. 2Ga0. 8N半導体を有する窒化物半導体素子を用いる。 よ り具体的には LEDチップは、 洗浄させたサファイア基板上に TMG (トリメチ ルガリウム) ガス、 TMI (トリメチルインジゥム) ガス、 窒素ガス及びドーパ ントガスをキャリアガスと共に流し、 MOCVD法で窒化物半導体を成膜させる ことにより形成させることができる。 ドーパントガスとして S i H4と Cp 2Mg を切り替えることによって n型窒化物半導体や p型窒化物半導体となる層を形成 させる。 As the semiconductor device of the present invention, a surface mount (SMD) type semiconductor device as shown in FIG. 1 is formed. LED chips, I n 0 monochromatic emission peak of 475 nm Ru visible der as a light-emitting layer. 2 Ga 0. A nitride semiconductor device having an 8 N semiconductor. More specifically, the LED chip is placed on a cleaned sapphire (Lugium) gas, TMI (trimethylindium) gas, nitrogen gas and dopant gas are flowed together with a carrier gas, and the nitride semiconductor is formed by MOCVD. By switching between SiH 4 and Cp 2 Mg as the dopant gas, a layer to be an n-type nitride semiconductor or a p-type nitride semiconductor is formed.
LEDチップの素子構造としてはサファイア基板上に、 アンドープの窒化物半 導体である n型 Ga N層、 S i ドープの n型電極が形成され n型コンタクト層と なる GaN層、 アンドープの窒化物半導体である n型 G a N層、 次に発光層を構 成するパリア層となる G a N層、 井戸層を構成する I nGaN層、 バリア層とな る G a N層を 1セットとし G a N層に挟まれた I n G a N層を 5層積層させた多 重量子井戸構造としてある。 発光層上には M gがドープされた p型クラッド層と して A 1 G a N層、 Mgがドープされた p型コンタクト層である G a N層を順次 積層させた構成としてある。 (なお、 サファイア基板上には低温で GaN層を形成 させバッファ層とさせてある。 また、 p型半導体は、 成膜後 400°C以上でァニ ールさせてある。)  The element structure of the LED chip consists of an undoped nitride semiconductor, an n-type GaN layer, a GaN layer that forms an n-type contact layer with an Si-doped n-type electrode, and an undoped nitride semiconductor on a sapphire substrate. The n-type GaN layer, which is the next layer, the GaN layer that is the barrier layer that constitutes the light-emitting layer, the InGaN layer that constitutes the well layer, and the GaN layer that is the barrier layer are set as a set. It has a multiple quantum well structure consisting of five layers of InGaN layers sandwiched between N layers. On the light emitting layer, an A1GaN layer as a Mg-doped p-type cladding layer and a GaN layer as a Mg-doped p-type contact layer are sequentially laminated. (Note that a GaN layer is formed on the sapphire substrate at a low temperature to serve as a buffer layer. The p-type semiconductor is annealed at 400 ° C or higher after film formation.)
エッチングによりサファイア基板上の窒化物半導体に同一面側で、 p n各コン タクト層表面を露出させる。 各コンタクト層上に、 スパッタリング法を用いて正 負各台座電極をそれぞれ形成させた。 なお、 p型窒化物半導体上の全面には金属 薄膜を透光性電極として形成させた後に、 透光性電極の一部に台座電極を形成さ せてある。 出来上がった半導体ウェハ一にスクライブラインを引いた後、 外力に より分割させ、 発光主波長が 460 nmである LEDチップ (光屈折率 2. 1) を形成させる。  The surface of each of the pn contact layers is exposed on the same side of the nitride semiconductor on the sapphire substrate by etching. Positive and negative pedestal electrodes were formed on the respective contact layers using a sputtering method. A metal thin film is formed as a light-transmitting electrode on the entire surface of the p-type nitride semiconductor, and then a pedestal electrode is formed on a part of the light-transmitting electrode. After a scribe line is drawn on the completed semiconductor wafer, it is divided by external force to form an LED chip (light refractive index 2.1) with a main emission wavelength of 460 nm.
次に、 正及び負からなる一対のリ一ド電極がィンサートされて閉じられた金型 内に、 パッケ一ジ成形体の下面側にあるゲートから溶融された成形用 P P C樹脂 を流し込み硬化してパッケージを形成する。 前記パッケージは、 半導体素子を収 納可能な凹部を有し、 該凹部底面から正及び負のリ一ド電極が一方の主面が露出 されるように一体成形されている。 尚、 このパッケージにおいて、 正及ぴ負のリ 一ド電極のァウタリ一ド部は、 パッケージの接合面の両端部でその接合面に沿つ て内側に折り曲げられてなり、 その内側に折り曲げられた部分ではんだ付けされ るように構成されている。 Next, the molded PPC resin melted from the gate on the lower surface side of the package is poured into a closed mold with a pair of positive and negative lead electrodes inserted and cured. Form a package. The package has a recess capable of accommodating a semiconductor element, and positive and negative lead electrodes are integrally formed so that one main surface is exposed from the bottom surface of the recess. In this package, the grounded portions of the positive and negative lead electrodes are formed at both ends of the package joint surface along the joint surface. It is configured to be bent inward and to be soldered at the part bent inward.
このように形成されたパッケージの凹部底面に前記 L E Dチップをエポキシ樹 脂にて L E Dチップをダイボンドする。 ここでダイボンドに用いられる接合部材 は特に限定されず、 Au— Sn合金や導電性材料が含有された樹脂やガラス等を 用いることができる。 含有される導電性材料は A gが好ましく、 含有量が 80% 〜90%である Agペーストを用いると放熱性に優れて且つ接合後の応力が小さ い半導体装置が得られる。 次に、 ダイボンドされた LEDチップの各電極と、 パ ッケージ凹部底面から露出された各リ一ド電極とをそれぞれ A uワイヤにて電気 的導通を取る。 本実施例ではワイヤーにて電気的接続を取ったが、 各電極とリー ド電極とを対向させるフリップチップ実装をすることも可能である。  The LED chip is die-bonded to the bottom surface of the concave portion of the package thus formed using epoxy resin. Here, the joining member used for die bonding is not particularly limited, and a resin or glass containing an Au—Sn alloy, a conductive material, or the like can be used. The conductive material to be contained is preferably Ag. If an Ag paste having a content of 80% to 90% is used, a semiconductor device having excellent heat dissipation and low stress after bonding can be obtained. Next, each electrode of the die-bonded LED chip and each lead electrode exposed from the bottom of the package concave portion are electrically connected to each other by Au wires. In this embodiment, electrical connection is made by wires, but flip-chip mounting in which each electrode and the lead electrode are opposed to each other is also possible.
次に、 フェエルメチル系シリコーン樹脂組成物 100 w t % (屈折率 1. 53) に対して、 拡散剤として平均粒子径 1. 0 μ m、 吸油量 T OmlZl O O g で ある軽質炭酸カルシウム (屈折率 1. 62) を 3w t%含有させ、 自転公転ミキ サ一にて 5分間攪拌を行う。 次に攪拌処理により生じた熱を冷ますため、 30分 間放置し樹脂を定温に戻し安定化させる。  Next, with respect to 100 wt% (refractive index: 1.53) of the Fehlmethyl silicone resin composition, light calcium carbonate (refractive index: 1 μm) having an average particle diameter of 1.0 μm and an oil absorption T OmlZl OO g as a diffusing agent was used. 62) in 3wt%, and stir for 5 minutes with a rotation and revolution mixer. Next, in order to cool the heat generated by the stirring process, the resin is left for 30 minutes to return to a constant temperature and stabilize.
このような軽質炭酸カルシウムは、 粒子径のパラツキが少なく、 前記組成物中 においてほぼ均一に分散することができる。 また、 本実施例で用いられた軽質炭 酸カルシウムは、 柱状の形状を有し、 且つあられ石型 (ァラゴナイト型) 結晶を 有している。 このような拡散剤は、 高い樹脂吸収性能と光拡散性能とを有してお り、 信頼性および光学特性に優れた発光装置を形成することができる。  Such light calcium carbonate has little variation in particle diameter and can be dispersed almost uniformly in the composition. Further, the light calcium carbonate used in the present example has a columnar shape and has aragonite (aragonite) crystals. Such a diffusing agent has high resin absorption performance and light diffusion performance, and can form a light emitting device excellent in reliability and optical characteristics.
軽質炭酸カルシウムは、 消石炭を高温にて炭酸ガスと反応させ焼成し、 化学的 に製造される。 このため、 純度の低い非晶質石灰石を原料とすることが可能であ りコストを低くすることができる。 また、 設計の自由度が大きく、 形状及び粒度 をコントロールして、 各粒子が均質な拡散剤を得ることができる。  Light calcium carbonate is produced chemically by reacting calcined coal with carbon dioxide at high temperatures and calcining it. For this reason, amorphous limestone with low purity can be used as a raw material, and the cost can be reduced. In addition, the degree of freedom in design is large, and the shape and particle size can be controlled to obtain a diffusing agent in which each particle is uniform.
こうして得られた硬化性組成物を前記パッケージ凹部内に、 前記凹部の両端部 上面と同一平面ラインまで充填させる。 最後に、 70°CX 3時間、 及ぴ 1 50°C X I時間熱処理を施す。 これにより、 前記凹部の両端部上面から中央部にかけて ほぼ左右対称の放物線状に凹みを有する発光面が得られる。 The curable composition thus obtained is filled into the package recess up to the same plane line as the upper surfaces of both ends of the recess. Finally, heat treatment is performed at 70 ° C. for 3 hours and at 150 ° C. for XI hours. Thereby, from the upper surface of both ends of the concave portion to the central portion, A light emitting surface having a substantially symmetrical parabolic recess is obtained.
また、 前記硬化性組成物の硬化物からなる封止部材は、 前記拡散剤の含有量の 多い第一の層と、 前記第一の層より前記拡散剤の含有量の少ないもしくは含有し ていない第二の層との 2層に分離しており、 前記 L E Dチップの表面は前記第一 の層にて被覆されている。 これにより、 L E Dチップから発光される光を効率良 く外部へ取り出すことができると共に均一な発光が得られる。 前記第一の層は、 前記凹部の底面から前記 L E Dチップの表面にかけて連続して形成されているこ とが好ましく、 これにより、 発光面の形状を滑らかな凹部とすることができる。 このようにして得られた半導体装置は、 光度 5 0 0 m c d、 光出力 4 mWであ り、 更に良好な指向特性が得られる。 また、 高温保管試験 (1 0 0 °C)、 高温高湿 保管試験 (8 0 °C、 8 5 %R H)、 低温保管試験 (一 4 0 °C) において、 出力の低 下はほとんどみられず、 高!/、信頼性を有するといえる。  Further, the sealing member made of the cured product of the curable composition has a first layer having a large content of the diffusing agent and a content of the diffusing agent smaller or not contained than the first layer. The LED chip is separated into two layers, a second layer, and the surface of the LED chip is covered with the first layer. As a result, light emitted from the LED chip can be efficiently extracted to the outside and uniform light emission can be obtained. The first layer is preferably formed continuously from the bottom surface of the concave portion to the surface of the LED chip, whereby the shape of the light emitting surface can be a smooth concave portion. The semiconductor device thus obtained has a luminous intensity of 500 mcd and an optical output of 4 mW, and further excellent directional characteristics can be obtained. In the high-temperature storage test (100 ° C), high-temperature and high-humidity storage test (80 ° C, 85% RH), and low-temperature storage test (140 ° C), almost no decrease in output was observed. High! /, It can be said that it has high reliability.
比較例 1 .  Comparative Example 1.
比較のために、 拡散剤を用いない以外は実施例 1と同様にして半導体装置を形 成する。 このようにして得られた比較例 1の半導体装置は、 タック性を有する封 止部材表面と前記凹部の両端部上面とがほぼ同一平面ラインである。 このため、 封止部材の表面に異物が付着し、 外観上および光学特性上に悪影響が生じる。 ま た、 前記封止部材表面の信頼性を損なわないように実装することは非常に困難で ある。 また、 この比較例の半導体装置の光度及び光出力を測定すると、 実施例 1 の半導体装置と比較して光度および光出力はともに 5 %低下する。  For comparison, a semiconductor device is formed in the same manner as in Example 1 except that no diffusing agent is used. In the semiconductor device of Comparative Example 1 thus obtained, the surface of the sealing member having tackiness and the upper surfaces of both ends of the concave portion are substantially the same plane line. For this reason, foreign matter adheres to the surface of the sealing member, which has an adverse effect on appearance and optical characteristics. Further, it is very difficult to mount the sealing member so as not to impair the reliability of the surface. When the luminous intensity and the optical output of the semiconductor device of this comparative example are measured, both the luminous intensity and the optical output are reduced by 5% as compared with the semiconductor device of the first embodiment.
比較例 2 .  Comparative example 2.
比較のために、 拡散剤を有しない硬化性組成物を前記パッケージ凹部内に、 実 施例 1よりも少なく充填する以外は、 実施例 1と同様にして半導体装置を形成す る。 このようにして得られた比較例 2の半導体装置は、 各半導体装置間において 封止部材の膜厚にバラツキが生じる。 このため、 各半導体装置間において光度お よび光出力がさまざまとなる。  For comparison, a semiconductor device is formed in the same manner as in Example 1 except that the curable composition having no diffusing agent is filled in the package recesses less than in Example 1. In the semiconductor device of Comparative Example 2 thus obtained, the thickness of the sealing member varies among the semiconductor devices. For this reason, the luminous intensity and the optical output vary among the semiconductor devices.
実施例 2 .  Example 2.
封止部材に蛍光物質を含有させる以外は、 実施例 1と同様にして半導体装置を 形成する。 A semiconductor device was fabricated in the same manner as in Example 1 except that a fluorescent material was contained in the sealing member. Form.
蛍光物質は、 Y、 Gd、 C eの希土類元素を化学量論比で酸に溶解した溶解液 を蓚酸で共沈させ、 これを焼成して得られる共沈酸化物と、 酸化アルミニウムと を混合して混合原料を得る。 さらにフラックスとしてフッ化パリゥムを混合した 後坩堝に詰め、 空気中 1400 °Cの温度で 3時間焼成することにより焼成品が得 られる。 焼成品を水中でボールミルして、 洗浄、 分離、 乾燥、 最後に篩を通して: 中心粒径が 22 μπιである (Υ。 . 9 9 5 Gd。 . 。 。 5 ) 2. 7 5 。 A 15 O ! 2 : C e。 . 2 5 。蛍光物質を形成する。 For the fluorescent substance, a solution in which Y, Gd, and Ce rare earth elements are dissolved in an stoichiometric ratio in an acid is coprecipitated with oxalic acid, and a coprecipitated oxide obtained by firing this is mixed with aluminum oxide. To obtain a mixed raw material. Further, after mixing parium fluoride as a flux, the mixture is packed in a crucible and fired in air at a temperature of 1400 ° C. for 3 hours to obtain a fired product. The fired product is ball in water, washed, separated, dried and finally through a sieve:. Central particle diameter of 22 μπι (..... . Υ 9 9 5 Gd 5) 2 7 5. A 1 5 O! 2: C e. 2 5 . Form fluorescent material.
上記シリコーン樹脂組成物 (屈折率 1. 53) に、 上記蛍光物質 (屈折率 1. 84) 5. 5 w t%、 及び拡散剤として平均粒子径 2. 0 m、 吸油量 7 Om l /100 gである軽質炭酸カルシウム (屈折率 1. 62) を 3w t%含有させ、 自転公転ミキサーにて 5分間攪拌を行う。 次に攪拌処理により生じた熱を冷ます ため、 30分間放置し樹脂を定温に戻し安定ィヒさせる。 こうして得られた硬化性 糸且成物を前記パッケージ凹部内に、 前記凹部の両端部上面と同一平面ラインまで 充填させる。 最後に、 70°CX 2時間、 及ぴ 1 50°CX 1時間熱処理を施す。 こ れにより、 前記凹部の両端部上面から中央部にかけてほぼ左右対称の放物線状に 凹みを有する発光面が得られる。  5.5 wt% of the fluorescent substance (refractive index: 1.84) in the silicone resin composition (refractive index: 1.53), an average particle diameter of 2.0 m as a diffusing agent, and an oil absorption of 7 Oml / 100 g 3wt% of light calcium carbonate (refractive index: 1.62), and stir for 5 minutes with a rotation and revolution mixer. Next, in order to cool the heat generated by the stirring process, the resin is left for 30 minutes to return to a constant temperature and stabilize. The curable yarn composition thus obtained is filled in the package recess up to the same plane line as the upper surfaces of both ends of the recess. Finally, heat treatment is performed at 70 ° C. for 2 hours and at 150 ° C. for 1 hour. As a result, a light emitting surface having a parabolic depression substantially bilaterally symmetrical from the upper surface of both ends of the concave portion to the central portion can be obtained.
また、 本実施例の封止部材は、 前記蛍光物質を有する色変換層と、 前記拡散剤 の含有量の多い第一の層と、 前記第一の層より前記拡散剤の含有量の少ないもし くは含有していない第二の層との、 3層に分離しており、 前記 LEDチップの表 面は前記色変換層と第一の層の 2層にて被覆されている。 これにより、 LEDチ ップから発光される光の一部が色変換層にて効率よく波長変換され、 前記第一の 層にて前記 LEDチップから発光される光と変換後の光とを良好に混合分散する ことができる。 このように、 混色分散を発光面から離れた箇所にて行うことによ り、 光の均一性が向上される。 また、 色変換層と LEDチップとの屈折率差(0. Further, the sealing member of the present embodiment includes a color conversion layer having the fluorescent substance, a first layer having a high content of the diffusing agent, and a lower content of the diffusing agent than the first layer. Or a second layer that does not contain the color conversion layer, and the surface of the LED chip is covered with two layers of the color conversion layer and the first layer. Thereby, a part of the light emitted from the LED chip is efficiently wavelength-converted by the color conversion layer, and the light emitted from the LED chip and the converted light are favorably converted by the first layer. Can be mixed and dispersed. As described above, by performing the color mixture dispersion at a place away from the light emitting surface, the uniformity of light is improved. In addition, the refractive index difference between the color conversion layer and the LED chip (0.
26) は、 前記色変換層と第一の層との屈折率差 (0. 22) と近似のため、 光 を効率良く外部へ取り出すことができる。 前記色変換層および第一の層は、 前記 凹部の底面から前記 LEDチップの表面にかけて連続して形成されていることが 好ましく、 これにより、 発光面の形状を滑らかな凹部とすることができる。 また 各層は、 それぞれ均一な膜厚を有することが好ましい。 26) is similar to the refractive index difference (0.22) between the color conversion layer and the first layer, so that light can be efficiently extracted to the outside. The color conversion layer and the first layer may be formed continuously from a bottom surface of the concave portion to a surface of the LED chip. Preferably, this allows the shape of the light emitting surface to be a smooth concave portion. Further, each layer preferably has a uniform film thickness.
このようにして得られた色変換型半導体装置は、 光度 50 0mc d、 光出力 4 mWであり、 更に良好な指向特性が得られる。 また、 高温保管試験 (1 00°C)、 高温高湿保管試験 (80°C、 8 5%RH)、 低温保管試験 (一 40°C) において、 出力の低下はほとんどみられず、 高い信頼性を有するといえる。 また C I E色度 座標における色度の 3 σは 0. 00 9 9であり、 色バラツキが非常に少ない半導 体装置が得られる。 実施例 3  The color conversion type semiconductor device thus obtained has a luminous intensity of 500 mcd and an optical output of 4 mW, and further excellent directivity can be obtained. In the high-temperature storage test (100 ° C), high-temperature and high-humidity storage test (80 ° C, 85% RH), and low-temperature storage test (140 ° C), there was almost no decrease in output, indicating high reliability. It can be said that it has the property. In addition, 3σ of chromaticity in CIE chromaticity coordinates is 0.0099, and a semiconductor device with very small color variation can be obtained. Example 3
蛍光物質として、 発光素子の波長を吸収し黄緑色に発光する Y3 (A 1 o. 8G a o. 2) 5012 : C eと、 前記発光素子の波長を吸収し赤色に発光する (S r 0.As the fluorescent substance, to absorb the wavelength of the light emitting element emits yellow-green Y 3 (A 1 o 8 G a o 2..) 5 0 12: and C e, emits red light by absorbing the wavelength of the light emitting element (S r 0 .
679 C a 0. 291E u0. 。3) 2 S i 5N8とを使用する以外は、 実施例 2と同様に して発光ダイォードを形成すると、 さらに演色性に優れた発光ダイォードが得 られる。 679 C a 0. 291 E u 0 . 3) 2 except for using the S i 5 N 8, when forming a light-emitting Daiodo in the same manner as in Example 2, the light emitting Daiodo obtain further excellent color rendering properties.
実施例 4.  Example 4.
蛍光物質として、 組成式が (Y。 . 9 9 5 G d。 . 。 。 5 ) 2 . 7 5 。 A 1 5 As the fluorescent substance, composition formula (Y.. 9 9 5 G d .... 5) 2. 7 5. A 1 5
Οχ 2 : C e Q . 2 5 Q 蛍光物質を用いる以外は、 実施例 2と同様にして発光ダ ィォードを形成すると、 さらに演色性に優れた発光ダイォードが得られる。 Omicron chi 2:. But using C e Q 2 5 Q fluorescent material, when forming the light-emitting da Iodo in the same manner as in Example 2, the light emitting Daiodo obtain further excellent color rendering properties.
実施例 5  Example 5
蛍光物質として、 中心粒径が約 4 μΐηである Y 2 . 9 6 5 A 1 5 . 1 5 Ox 2.. As a fluorescent substance, Y 2 9 6 5 A 1 5 mean particle size of about 4 μΐη 1 5 O x 2:
C e。 . 0 3 5 と中心粒径が約 8 μπιである (Y。 . 9 8 G d。 . 。 2 ) 2 . 9 6 5 A 1 5 . 1 5 01 2 : C e。 . 1 5 とを 1 : 1に混合した混合蛍光体を用い る以外は、 実施例 2と同様にして発光ダイォードを形成するとさらに均一性およ び演色性に優れ輝度の高い発光ダイオードが得られる。 このように、 同じ励起光 により励起され同系色でありながら微妙に異なる波長の光を発光する 2種類の蛍 光物質を用いることにより、 発光色の調整幅を広げることができる。 また、 前記 2種類の蛍光物質は、 それぞれ異なる中心粒径値を有しているので、 これらの相 互作用により好ましく分散することができ、 発光色の均一性を高めることができ る。 また、 本実施例で用いた蛍光物質の如く、 G dの置換量の少ない Y AG系蛍 光体は、 温度特性に優れているため、 長時間の使用においても高輝度に発光する ことが可能である。 C e. . 0 3 5 and the center grain size of about 8 μπι (Y. 9 8 G d 2....) 2 9 6 5 A 1 5 1 5 0 1 2:.. C e. . 1 5 and 1: except that Ru with mixed mixed phosphor 1, are Examples 2 and Similarly high excellent brightness more uniform properties and color rendering properties when forming the light-emitting Daiodo light emitting diode is obtained . As described above, by using two kinds of fluorescent substances that emit light of slightly different wavelengths while being of the same color and excited by the same excitation light, the range of adjustment of the emitted color can be widened. Further, since the two kinds of fluorescent substances have different center particle diameter values, they can be dispersed preferably by their interaction, and the uniformity of emission color can be improved. In addition, like the fluorescent substance used in this example, a YAG-based fluorescent substance having a small Gd substitution amount is used. Since light bodies have excellent temperature characteristics, they can emit light with high brightness even when used for a long time.
実施例 6  Example 6
主波長が 464 nmである LEDチップを '用い、 蛍光物質として中心粒径が約 8 μ mである (Y0 . 9 5 G d ο . 。 5 ) 2 . 8 5 o 1 5 . x 5 Ox 2 : C e Q . ェ 5 を用いる以外は、 実施例 2と同様にして発光ダイオードを形成すると、 さらに均一性およぴ演色性に優れ輝度の高い発光ダイォードカ得られる。 An LED chip dominant wavelength is 464 nm ', the median particle size of about 8 mu m as a fluorescent substance (Y 0. 9 5 G d ο.. 5) 2. 8 5 o 1 5. X 5 O x 2:. but using C e Q e 5, to form a light-emitting diode in the same manner as in example 2, obtained more highly excellent luminance uniformity Contact Yopi CRI Daiodoka.
実施例 7  Example 7
主波長が 46 6 nmである LEDチップを用い、 蛍光物質として中心粒径が約 8 である (Y。 . 9 。 G d。 . ! ) 2 . 8 5 0 A l 5 . , 5 O, z : C e 0 .An LED chip dominant wavelength is 46 6 nm, the mean particle size of about 8 as a fluorescent substance (Y.. 9. G d. .!) 2. 8 5 0 A l 5., 5 O, z : C e 0 .
! 5 を用いる以外は、 実施例 2と同様にして発光ダイオードを形成すると、 さら に均一性およぴ演色性に優れ輝度の高い発光ダイォードカ得られる。 ! By forming a light-emitting diode in the same manner as in Example 2 except for using 5, a light-emitting diode having further excellent uniformity and color rendering and high luminance can be obtained.
実施例 8  Example 8
拡散剤として平均粒子径が 5 m、 吸油量 3 2m 1 /1 00 gである重質炭酸 カルシウム (屈折率 1. 5 7) を用いる。 実施例 1と同様の膜厚の封止部材を得 るためには、 重質炭酸カルシウムの含有量は、 フエニルメチル系シリコーン樹脂 組成物 1 00 w t % (屈折率 1. 5 3) に対して 3 w t %必要となり、 実施例 1 と比較すると若干光取り出し効率が低下する。  Heavy calcium carbonate (refractive index: 1.57) with an average particle size of 5 m and an oil absorption of 32 m1 / 100 g is used as a diffusing agent. In order to obtain a sealing member having the same film thickness as in Example 1, the content of heavy calcium carbonate was 3% with respect to 100 wt% (refractive index 1.53) of the phenylmethyl silicone resin composition. wt% is required, and the light extraction efficiency is slightly reduced as compared with Example 1.
このような重質炭酸カルシウムは、 採掘した石灰石をそのまま粉砕 ·分級した ものを用いる。 このため、 純度の高い結晶質石灰石を原料として用いることが好 ましい。  Such heavy calcium carbonate is obtained by directly crushing and classifying mined limestone. For this reason, it is preferable to use high-purity crystalline limestone as a raw material.
実施例 9.  Example 9.
拡散剤として、 炭酸カルシウムとリン酸系化合物の反応物である多孔質炭酸力 ルシゥムを用いる。 実施例 1と同様の膜厚を有する封止部材を形成するには、 フ ヱ-ルメチル系シリコーン樹脂組成物 1 0 Ow t % (屈折率 1. 5 3) に対して 対して 3 w t %となり、 少ない含有量で所望とする発光ダイォードが得られる。 本実施例における多孔質炭酸カルシウムは、 原料の炭酸カルシウムにリン酸系 化合物を反応させ、 多孔質化したものである。 原料として用いられる炭酸カルシウムは、 特に限定されず、 重質炭酸カルシゥ ム、 軽質炭酸カルシウム等、 種々のものを用いることができる。 また、 粒子の大 きさ、 形状、 分散状態、 結晶形、 炭酸カルシウム中の不純物の程度等も特に限定 されない。 As a diffusing agent, porous carbonated calcium, which is a reaction product of calcium carbonate and a phosphoric acid compound, is used. In order to form a sealing member having the same film thickness as in Example 1, it was 3 wt% with respect to the polymethyl silicone resin composition 10 Owt% (refractive index 1.53). The desired light emitting diode can be obtained with a small content. The porous calcium carbonate in the present embodiment is obtained by reacting a raw material calcium carbonate with a phosphoric acid compound to make it porous. The calcium carbonate used as a raw material is not particularly limited, and various types such as heavy calcium carbonate and light calcium carbonate can be used. In addition, the size, shape, dispersion state, crystal form, and degree of impurities in calcium carbonate of the particles are not particularly limited.
また、 使用するリン酸系化合物は、 用いる炭酸カルシウムとの反応性が良好で あることが好ましく、 可溶性リン酸系化合物が好ましい。 可溶性リン酸系化合物 としては、 例えば H3P04、 K3P04、 KH2P04、 Na2HP04 ' 12H20、 (NH4) Ρ03 · 3H2O等が挙げられる。 使用するリン酸系化合物は、 1種類 に限定されず、 2種以上を併用してもよい。 . 実施例 10. Further, the phosphoric acid compound used preferably has good reactivity with the calcium carbonate used, and a soluble phosphoric acid compound is preferable. Soluble phosphate compound, for example H 3 P0 4, K 3 P0 4, KH 2 P0 4, Na 2 HP0 4 '12H 2 0, include (NH 4) Ρ0 3 · 3H 2 O or the like. The phosphoric acid compound used is not limited to one kind, and two or more kinds may be used in combination. Example 10
樹脂組成物としてジメチルシロキサン系シリコーン樹脂組成物を使用する以外 は、 実施例 1と同様にして発光ダイォードを形成すると、 実施例 1と同様の効果 が得られるが、 実施例 1と比較して封止部材の硬化前と硬化後における体積減少 率は低くなる。  Except for using a dimethylsiloxane-based silicone resin composition as the resin composition, when a light emitting diode is formed in the same manner as in Example 1, the same effect as in Example 1 is obtained. The rate of volume reduction before and after curing of the stop member is low.
実施例 11  Example 11
LEDチップの各電極上に A uバンプを形成し、 超音波接合にてパッケージ凹 部底面から露出された各リード電極とそれぞれ電気的導通を取る、 フリップチッ プ実装を行う以外は、 実施例 1と同様にして発光ダイォードを形成すると、 実施 例 3と同様の硬化が得られる他、 発光面側に光を遮断するワイヤーが存在しない ため、 さらに均一な発光が得られる。 また、 LEDチップとリード電極との接合 にエポキシ樹脂等の耐光性および耐熱性に弱い部材を使用せず、 金属のみにて接 合するため、 大電流を投下した際においても高い信頼性を維持することができる る。 産業状の利用の可能性  Example 1 is similar to Example 1 except that Au bumps are formed on each electrode of the LED chip and each lead electrode exposed from the bottom of the package recess is electrically connected to each other by ultrasonic bonding. When a light emitting diode is formed in the same manner, the same curing as in Example 3 can be obtained, and more uniform light emission can be obtained because there is no wire that blocks light on the light emitting surface side. In addition, high reliability is maintained even when a large current is dropped because the LED chip and the lead electrode are connected only with metal without using materials such as epoxy resin that are weak in light resistance and heat resistance. You can do it. Possibility of industrial use
以上のように、 本発明の半導体装置は、 熱安定性の高い親水性主鎖と疎水性主 鎖からなるポリマー樹脂を用い、 これと共に光拡散作用と共に前記ポリマ一樹脂 の体積を熱硬化過程において減少させることが可能な拡散剤を用いて封止部材を 形成することにより、 高い信頼性を有し且つ良好な光学特性を有する半導体装置 を量産性良く得ることができる。 また、 大電流を投下しても劣化することなく信 頼性を維持することも可能であり、 信頼性が高く且つ照明と同等の明るさを発光 することが可能な半導体装置を提供でき、 産業上の利用価値は極めて高い。 As described above, the semiconductor device of the present invention uses a polymer resin having a hydrophilic main chain and a hydrophobic main chain having high thermal stability, and, together with the light diffusing action, reduces the volume of the polymer resin in a thermosetting process. Using a diffusing agent that can be reduced By forming, a semiconductor device having high reliability and good optical characteristics can be obtained with good mass productivity. In addition, reliability can be maintained without deterioration even when a large current is dropped, and a semiconductor device which is highly reliable and can emit light at the same brightness as lighting can be provided. The above utility value is extremely high.

Claims

1 . 半導体素子と、 該半導体素子が収納された凹部を有するパッケージと、 前 記凹部内に充填された封止部材と、 を有する半導体装置であって、 1. A semiconductor device comprising: a semiconductor element; a package having a recess in which the semiconductor element is housed; and a sealing member filled in the recess.
前記封止部材は、 親水性主鎖と疎水性側鎖とを有する透光性ポリマー樹脂と、 少なくとも前記ポリマー樹脂を吸収することが可能な拡散剤と、 を必須成分とす  The sealing member has, as essential components, a light-transmitting polymer resin having a hydrophilic main chain and a hydrophobic side chain, and a diffusing agent capable of absorbing at least the polymer resin.
一口  Bite
る硬化性組成物の硬化物であるこ胄とを特徴とする半導体装置。 A semiconductor device, comprising a cured product of a curable composition.
2 . 前記封止部材の硬度は、 5 s h o r e (A) 〜 8 0 s h o r e (D ) であ  2. The hardness of the sealing member is 5 shore (A) to 80 shore (D).
¾の  ¾
ることを特徴とする請求項 1記載の半導体装置。 The semiconductor device according to claim 1, wherein:
 Pal
3 . 前記封止部材の上面は、 端部から中央部にかけて放物線状の凹みを有する ことを特徴とする請求項 1乃至 2記載の半導体装囲置。 3. The semiconductor enclosure according to claim 1, wherein an upper surface of the sealing member has a parabolic recess from an end to a center.
4 . 前記拡散剤は、 針状もしくは柱状形状であることを特徴とする請求項 1乃 至 3記載の半導体装置。  4. The semiconductor device according to claim 1, wherein the diffusing agent has a needle shape or a column shape.
5 . 前記拡散剤は、 あられ石型結晶であることを特徴とする請求項 1乃至 4記 載の半導体装置。  5. The semiconductor device according to claim 1, wherein the diffusing agent is a aragonite crystal.
6 . 前記拡散剤は、 平均粒子径値が 0 . Ι μ π!〜 5 . であることを特徴 とする請求項 1乃至 5記載の半導体装置。  6. The diffusing agent has an average particle size of 0.1 μππ! The semiconductor device according to any one of claims 1 to 5, wherein
7 . 前記拡散剤の屈折率は、 前記発光素子の屈折率より低く且つ前記透光性ポ リマー樹脂の屈折率より高いことを特徴とする請求項 1乃至 6記載の半導体装置。  7. The semiconductor device according to claim 1, wherein a refractive index of the diffusing agent is lower than a refractive index of the light emitting element and higher than a refractive index of the translucent polymer resin.
8 . 前記封止部材は、 前記半導体素子側から前記拡散剤の含有量の多い第一の 層と前記第一の層より前記拡散剤の含有量の少ない第二の層とを有し、 前記発光 素子の表面は前記第一の層にてほぼ被覆されていることを特徴とする請求項 1乃 至 7記載の半導体装置。 8. The sealing member includes a first layer having a higher content of the diffusing agent from the semiconductor element side and a second layer having a lower content of the diffusing agent than the first layer, The semiconductor device according to claim 1, wherein a surface of the light emitting element is substantially covered with the first layer.
9 . 前記封止部材は、 発光素子から発光される光の少なくとも一部を吸収し異 なる波長を有する光を発光することが可能な蛍光物質を含有していることを特徴 とする請求項 1乃至 8記載の半導体装置。  9. The sealing member contains a fluorescent material capable of absorbing at least a part of light emitted from a light emitting element and emitting light having different wavelengths. 9. The semiconductor device according to any one of claims 8 to 8.
1 0 . 前記蛍光物質の屈折率は、 前記発光素子の屈折率より低く且つ前記拡散 剤の屈折率より高いことを特徴とする請求項 9記載の半導体装置。 10. The semiconductor device according to claim 9, wherein a refractive index of the fluorescent substance is lower than a refractive index of the light emitting element and higher than a refractive index of the diffusing agent.
1 1 . 前記蛍光物質と前記発光素子との屈折率差は、 前記蛍光物質と前記拡散 剤との屈折率差とほぼ等しいことを特徴とする請求項 9乃至 1 0記載の半導体装 11. The semiconductor device according to claim 9, wherein a refractive index difference between the fluorescent substance and the light emitting element is substantially equal to a refractive index difference between the fluorescent substance and the diffusing agent.
1 2 . 前記封止部材は、 前記発光素子と前記第一の層との間に前記蛍光物質を 含有する色変換層を有することを特徴とする 9乃至 1 1記載の半導体装置。 12. The semiconductor device according to any one of claims 9 to 11, wherein the sealing member has a color conversion layer containing the fluorescent substance between the light emitting element and the first layer.
1 3 . 半導体素子と、 該半導体素子を収納することが可能な凹部を有するパッ ケージと、 前記凹部内に充填された封止部材と、 を有する半導体装置の形成方法 であって、  13. A method for forming a semiconductor device, comprising: a semiconductor element; a package having a recess capable of accommodating the semiconductor element; and a sealing member filled in the recess.
親水性主鎖と疎水性側鎖とを有する透光性ポリマー樹脂と該透光性ポリマ一樹 脂を吸収することが可能な拡散剤とを必須成分とする硬化性組成物液を調整する 第一の工程と、  A curable composition liquid containing a translucent polymer resin having a hydrophilic main chain and a hydrophobic side chain and a diffusing agent capable of absorbing the translucent polymer resin as essential components is prepared. Process and
前記硬化性組成物液を前記パッケージの凹部内にパッケージ上面とほぼ同一平 面のラインまで注入する第二の工程と、  A second step of injecting the curable composition liquid into the concave portion of the package up to a line substantially flush with the package upper surface;
熱処理を施し前記硬化性組成物液を硬化させる第 3の工程と、 , を有することを特徴とする半導体装置の形成方法。  A third step of performing a heat treatment to cure the curable composition liquid, and
PCT/JP2002/006176 2001-06-20 2002-06-20 Semiconductor device and its fabriction method WO2003001612A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003507903A JP4010299B2 (en) 2001-06-20 2002-06-20 Semiconductor light emitting device and method for forming the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001187294 2001-06-20
JP2001-187294 2001-06-20
JP2002072142 2002-03-15
JP2002-72142 2002-03-15

Publications (1)

Publication Number Publication Date
WO2003001612A1 true WO2003001612A1 (en) 2003-01-03

Family

ID=26617304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006176 WO2003001612A1 (en) 2001-06-20 2002-06-20 Semiconductor device and its fabriction method

Country Status (2)

Country Link
JP (1) JP4010299B2 (en)
WO (1) WO2003001612A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327870A (en) * 2003-04-25 2004-11-18 Nichia Chem Ind Ltd Light emitting device
WO2005038935A1 (en) * 2003-10-15 2005-04-28 Nichia Corporation Light-emitting device
JP2005197476A (en) * 2004-01-07 2005-07-21 Koito Mfg Co Ltd Light emitting module and automotive lighting appliance
JP2005243795A (en) * 2004-02-25 2005-09-08 Matsushita Electric Ind Co Ltd Optical semiconductor device
JP2006019677A (en) * 2004-07-02 2006-01-19 Samsung Electro-Mechanics Co Ltd Rgb light emitting diode package having improved color mixing property
WO2006006544A1 (en) * 2004-07-09 2006-01-19 Matsushita Electric Industrial Co., Ltd. Light-emitting device
JP2006140362A (en) * 2004-11-15 2006-06-01 Nitto Denko Corp Optical semiconductor device sealing sheet and optical semiconductor device manufacturing method using the same
EP1693904A2 (en) * 2005-02-18 2006-08-23 Nichia Corporation Light emitting device provided with lens for controlling light distribution characteristic
EP1737050A1 (en) * 2004-03-24 2006-12-27 Toshiba Lighting & Technology Corporation Light-emitting device and illuminating device
JP2007201444A (en) * 2005-12-26 2007-08-09 Toshiba Lighting & Technology Corp Light emitting device
US7309881B2 (en) 2003-08-12 2007-12-18 Stanley Electric Co., Ltd. Wavelength-converting LED
JP2008270822A (en) * 2007-04-24 2008-11-06 Samsung Electro Mech Co Ltd Light emitting diode package
US8154044B2 (en) 2009-01-15 2012-04-10 Everlight Electronics Co., Ltd. Light emitting diode package structure and method for fabricating the same
JP2012083695A (en) * 2010-09-16 2012-04-26 Seiko Epson Corp Light source device and projector
JP2013185123A (en) * 2012-03-09 2013-09-19 Momentive Performance Materials Inc Silicone rubber composition
US8878219B2 (en) 2008-01-11 2014-11-04 Cree, Inc. Flip-chip phosphor coating method and devices fabricated utilizing method
US9024349B2 (en) 2007-01-22 2015-05-05 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9041285B2 (en) 2007-12-14 2015-05-26 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US9093616B2 (en) 2003-09-18 2015-07-28 Cree, Inc. Molded chip fabrication method and apparatus
US9159888B2 (en) 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
KR101784007B1 (en) 2011-04-13 2017-10-23 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
US10546846B2 (en) 2010-07-23 2020-01-28 Cree, Inc. Light transmission control for masking appearance of solid state light sources
WO2022096102A1 (en) 2020-11-05 2022-05-12 Hitachi Energy Switzerland Ag Power semiconductor device with super-hydrophobic protective layer and power module

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8835199B2 (en) * 2010-07-28 2014-09-16 GE Lighting Solutions, LLC Phosphor suspended in silicone, molded/formed and used in a remote phosphor configuration
JP5767552B2 (en) * 2011-10-07 2015-08-19 富士フイルム株式会社 Semiconductor light emitting device and manufacturing method thereof
KR101641744B1 (en) 2011-10-07 2016-07-21 엘지이노텍 주식회사 Light emitting device package and backlight unit having the same
KR101655505B1 (en) * 2013-06-13 2016-09-07 엘지이노텍 주식회사 Light emitting device
JP2016225374A (en) * 2015-05-27 2016-12-28 四国計測工業株式会社 LED light emitting device
CN108369985B (en) * 2016-01-15 2022-04-29 株式会社大赛璐 Antireflection material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529650A (en) * 1991-07-19 1993-02-05 Sharp Corp Optical device
WO1993025611A1 (en) * 1992-06-12 1993-12-23 Merck Patent Gmbh Inorganic fillers and organic matrix materials whose refractive index is adapted
JPH06111612A (en) * 1992-09-25 1994-04-22 Sumitomo Chem Co Ltd Resin plate body for illumination
JPH06345970A (en) * 1993-06-07 1994-12-20 Shin Etsu Chem Co Ltd Organopolysiloxane composition
JPH07176795A (en) * 1993-12-21 1995-07-14 Rohm Co Ltd Formation of chip led lens using potting resin
JPH1174561A (en) * 1997-08-29 1999-03-16 Nichia Chem Ind Ltd Photoelectric device and its forming method
JPH1174424A (en) * 1998-06-09 1999-03-16 Nitto Denko Corp Photosemiconductor device
JP2000150966A (en) * 1998-11-16 2000-05-30 Matsushita Electronics Industry Corp Semiconductor light emitting device and manufacture thereof
JP2000349347A (en) * 1999-06-08 2000-12-15 Sanken Electric Co Ltd Semiconductor light emitting element
JP2000349346A (en) * 1999-06-07 2000-12-15 Sanken Electric Co Ltd Semiconductor light emitting device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529650A (en) * 1991-07-19 1993-02-05 Sharp Corp Optical device
WO1993025611A1 (en) * 1992-06-12 1993-12-23 Merck Patent Gmbh Inorganic fillers and organic matrix materials whose refractive index is adapted
JPH06111612A (en) * 1992-09-25 1994-04-22 Sumitomo Chem Co Ltd Resin plate body for illumination
JPH06345970A (en) * 1993-06-07 1994-12-20 Shin Etsu Chem Co Ltd Organopolysiloxane composition
JPH07176795A (en) * 1993-12-21 1995-07-14 Rohm Co Ltd Formation of chip led lens using potting resin
JPH1174561A (en) * 1997-08-29 1999-03-16 Nichia Chem Ind Ltd Photoelectric device and its forming method
JPH1174424A (en) * 1998-06-09 1999-03-16 Nitto Denko Corp Photosemiconductor device
JP2000150966A (en) * 1998-11-16 2000-05-30 Matsushita Electronics Industry Corp Semiconductor light emitting device and manufacture thereof
JP2000349346A (en) * 1999-06-07 2000-12-15 Sanken Electric Co Ltd Semiconductor light emitting device
JP2000349347A (en) * 1999-06-08 2000-12-15 Sanken Electric Co Ltd Semiconductor light emitting element

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327870A (en) * 2003-04-25 2004-11-18 Nichia Chem Ind Ltd Light emitting device
JP4705701B2 (en) * 2003-04-25 2011-06-22 日亜化学工業株式会社 Light emitting device
US7309881B2 (en) 2003-08-12 2007-12-18 Stanley Electric Co., Ltd. Wavelength-converting LED
US9093616B2 (en) 2003-09-18 2015-07-28 Cree, Inc. Molded chip fabrication method and apparatus
US9105817B2 (en) 2003-09-18 2015-08-11 Cree, Inc. Molded chip fabrication method and apparatus
US10164158B2 (en) 2003-09-18 2018-12-25 Cree, Inc. Molded chip fabrication method and apparatus
US10546978B2 (en) 2003-09-18 2020-01-28 Cree, Inc. Molded chip fabrication method and apparatus
US7812365B2 (en) 2003-10-15 2010-10-12 Nichia Corporation Heat dissipation member, semiconductor apparatus and semiconductor light emitting apparatus
WO2005038935A1 (en) * 2003-10-15 2005-04-28 Nichia Corporation Light-emitting device
US7482636B2 (en) 2003-10-15 2009-01-27 Nichia Corporation Light emitting device
JP2005197476A (en) * 2004-01-07 2005-07-21 Koito Mfg Co Ltd Light emitting module and automotive lighting appliance
JP2005243795A (en) * 2004-02-25 2005-09-08 Matsushita Electric Ind Co Ltd Optical semiconductor device
EP1737050A4 (en) * 2004-03-24 2014-03-12 Toshiba Lighting & Technology Light-emitting device and illuminating device
EP1737050A1 (en) * 2004-03-24 2006-12-27 Toshiba Lighting & Technology Corporation Light-emitting device and illuminating device
JP2008124518A (en) * 2004-07-02 2008-05-29 Samsung Electro-Mechanics Co Ltd Rgb light-emitting diode package with improved color mixing properties
JP2006019677A (en) * 2004-07-02 2006-01-19 Samsung Electro-Mechanics Co Ltd Rgb light emitting diode package having improved color mixing property
WO2006006544A1 (en) * 2004-07-09 2006-01-19 Matsushita Electric Industrial Co., Ltd. Light-emitting device
JP2006140362A (en) * 2004-11-15 2006-06-01 Nitto Denko Corp Optical semiconductor device sealing sheet and optical semiconductor device manufacturing method using the same
US9093619B2 (en) 2005-02-18 2015-07-28 Nichia Corporation Light emitting device provided with lens for controlling light distribution characteristic
EP1693904A3 (en) * 2005-02-18 2010-05-05 Nichia Corporation Light emitting device provided with lens for controlling light distribution characteristic
US8558446B2 (en) 2005-02-18 2013-10-15 Nichia Corporation Light emitting device provided with lens for controlling light distribution characteristic
EP1693904A2 (en) * 2005-02-18 2006-08-23 Nichia Corporation Light emitting device provided with lens for controlling light distribution characteristic
US8836210B2 (en) 2005-02-18 2014-09-16 Nichia Corporation Light emitting device provided with lens for controlling light distribution characteristic
JP2007201444A (en) * 2005-12-26 2007-08-09 Toshiba Lighting & Technology Corp Light emitting device
US9159888B2 (en) 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9024349B2 (en) 2007-01-22 2015-05-05 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
JP2008270822A (en) * 2007-04-24 2008-11-06 Samsung Electro Mech Co Ltd Light emitting diode package
US9041285B2 (en) 2007-12-14 2015-05-26 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US8878219B2 (en) 2008-01-11 2014-11-04 Cree, Inc. Flip-chip phosphor coating method and devices fabricated utilizing method
US8154044B2 (en) 2009-01-15 2012-04-10 Everlight Electronics Co., Ltd. Light emitting diode package structure and method for fabricating the same
US10546846B2 (en) 2010-07-23 2020-01-28 Cree, Inc. Light transmission control for masking appearance of solid state light sources
JP2012083695A (en) * 2010-09-16 2012-04-26 Seiko Epson Corp Light source device and projector
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
KR101784007B1 (en) 2011-04-13 2017-10-23 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
JP2013185123A (en) * 2012-03-09 2013-09-19 Momentive Performance Materials Inc Silicone rubber composition
WO2022096102A1 (en) 2020-11-05 2022-05-12 Hitachi Energy Switzerland Ag Power semiconductor device with super-hydrophobic protective layer and power module
DE212020000839U1 (en) 2020-11-05 2023-07-21 Hitachi Energy Switzerland Ag Power semiconductor device and power module

Also Published As

Publication number Publication date
JPWO2003001612A1 (en) 2004-10-14
JP4010299B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
JP4010299B2 (en) Semiconductor light emitting device and method for forming the same
JP4222017B2 (en) Light emitting device
JP3809760B2 (en) Light emitting diode
JP4147755B2 (en) Light emitting device and manufacturing method thereof
JP4415548B2 (en) Light emitting device using oxynitride phosphor
JP4991026B2 (en) Light emitting device
JP3956972B2 (en) Light emitting device using fluorescent material
JP4529349B2 (en) Nitride-based phosphor and light emitting device
JP5066786B2 (en) Nitride phosphor and light emitting device using the same
JP5326182B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
JP2003321675A (en) Nitride fluorophor and method for producing the same
JP4222059B2 (en) Light emitting device
JP2008227523A (en) Nitride phosphor and method for manufacturing the same, and light emitting device using nitride phosphor
JP4892861B2 (en) Nitride phosphor and light emitting device using the same
JP2004221163A (en) Light emitting device, its forming method, planar light emitting device using the light emitting device
JP4214768B2 (en) Nitride phosphor and light emitting device using the same
JP4874510B2 (en) Light emitting device and manufacturing method thereof
JP2004161806A (en) Phosphor and light-emitting device
JP4218328B2 (en) Nitride phosphor and light emitting device using the same
JP5157029B2 (en) Light emitting device using phosphor
JP2002050800A (en) Light-emitting device and forming method therefor
JP4221950B2 (en) Phosphor
JP4009868B2 (en) Nitride phosphor and light emitting device using the same
JP4466446B2 (en) Light emitting device using oxynitride phosphor
JP4613546B2 (en) Light emitting device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003507903

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase