WO2003007045A1 - Projection optical system production method - Google Patents

Projection optical system production method Download PDF

Info

Publication number
WO2003007045A1
WO2003007045A1 PCT/JP2002/007017 JP0207017W WO03007045A1 WO 2003007045 A1 WO2003007045 A1 WO 2003007045A1 JP 0207017 W JP0207017 W JP 0207017W WO 03007045 A1 WO03007045 A1 WO 03007045A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
projection
projection optical
light
crystal
Prior art date
Application number
PCT/JP2002/007017
Other languages
French (fr)
Japanese (ja)
Inventor
Youhei Fujishima
Hironori Ikezawa
Toshihiko Ozawa
Yasuhiro Omura
Takeshi Suzuki
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2003512755A priority Critical patent/JPWO2003007045A1/en
Publication of WO2003007045A1 publication Critical patent/WO2003007045A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • G03F7/70966Birefringence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70975Assembly, maintenance, transport or storage of apparatus

Definitions

  • the present invention relates to a projection optical system, a method for manufacturing the projection optical system, and an exposure apparatus provided with the projection optical system, and is particularly used for manufacturing a micro device such as a semiconductor device or a liquid crystal display device by a photolithographic process.
  • the present invention relates to a projection optical system suitable for an exposure apparatus to be used.
  • the pattern of the photomask (also called a reticle) drawn by enlarging the pattern to be formed by about 4 to 5 times is projected.
  • a method of reducing exposure transfer onto a photosensitive substrate (substrate to be exposed) such as a wafer using an exposure apparatus is used.
  • the exposure wavelength keeps shifting to the shorter wavelength side in order to cope with miniaturization of semiconductor integrated circuits.
  • the exposure wavelength of KrF excimer laser is 248 nm, but the shorter wavelength of ArF excimer laser is 193 nm.
  • it supplies light in a wavelength band called the vacuum ultraviolet region, such as an F 2 laser with a wavelength of 157 nm, a Kr 2 laser with a wavelength of 14.6 nm, and a 1 " 2 laser with a wavelength of 1 2 6 11 111.
  • Projection exposure systems that use light sources are also being proposed, and high resolution can be achieved by increasing the numerical aperture (NA) of the projection optical system. Instead, a projection optical system having a larger numerical aperture has been developed.
  • Optical materials with good transmittance and uniformity for exposure light in the ultraviolet region having such a short wavelength are limited.
  • synthetic quartz glass can be used as a lens material.However, since one type of lens material cannot sufficiently correct chromatic aberration, some Float the lens Calcium iodide crystals (fluorite) are used.
  • the lens material available is limited to substantially calcium fluoride crystal (fluorite).
  • the present invention has been made in view of the above-described problems. For example, even when a crystalline material exhibiting intrinsic birefringence such as fluorite is used, good optical performance is obtained without being substantially affected by birefringence.
  • the purpose is to secure.
  • an invention according to claim 1 of the present invention is directed to a projection optical system that forms an image on a first surface on a second surface based on light having a predetermined wavelength.
  • This is a method for producing a projection optical system including a refraction member made of at least one equiaxed crystal material having transparency to the light. Then, while evaluating the light of the first polarized light component and the light of the second polarized light component different from the first polarized light component, the crystal axis of the refraction member made of the at least one equiaxed crystal material is determined.
  • a design step of obtaining predetermined design data including an auxiliary step of determining an orientation; a crystal material preparing step of preparing the equiaxed crystal material; and a crystal for measuring a crystal axis of the equiaxed crystal material.
  • the crystal axis of the refraction member made of the equiaxed crystal material is evaluated. Since it is possible to determine the angle of incorporation so that the effect of birefringence is minimized, good optical performance can be ensured.
  • an invention according to claim 16 of the present invention is a projection optical system that forms an image of a first surface on a second surface based on light of a predetermined wavelength.
  • An equiaxed refraction member made of at least one equiaxed crystal material having transparency to the light of the predetermined wavelength; and an optical performance due to intrinsic birefringence of the equiaxed refraction member.
  • a non-crystalline refraction member made of a non-crystalline material for compensating the deterioration.
  • deterioration of optical performance due to intrinsic birefringence of an equiaxed refraction member made of an equiaxed crystal material can be compensated for by a non-crystal refraction member. Optical performance can be ensured.
  • a projection optical system that forms an image of a first surface on a second surface based on light of a predetermined wavelength, A twin refraction member made of a twin having transparency to the light.
  • a twin is one in which two crystals of the same phase that are in contact with each other are oriented 180 degrees around a given common low-index crystal axis, or that are in contact with each other. Two crystals are in a mirror image relationship with respect to a predetermined crystal plane.
  • the first group of light transmitting members and the second group of light transmitting members have a positional relationship of being relatively rotated about 45 ° about the optical axis.
  • Predetermined crystal axes for example, crystal axes [0110], [001], [011]) oriented in a direction different from the optical axis of the first group of light transmitting members and the second group of light transmitting members. — 1] or [0 1 1]) means that the relative angle between the optical axes is about 45 °.
  • the rotational asymmetry due to the effect of birefringence about the optical axis appears at a period of 90 °, so that it is only about 45 ° about the optical axis.
  • Having a relatively rotated positional relationship is equivalent to having a relatively rotated positional relationship of approximately 45 ° + (n X 90 °) about the optical axis (where n is an integer is there).
  • the third group of light transmitting members and the fourth group of light transmitting members have a positional relationship relatively rotated by about 60 ° about the optical axis.
  • a predetermined crystal axis for example, a crystal axis [—111], [111-1], or a crystal axis
  • [1-1] means that the relative angle between the optical axes is about 60 °.
  • the fifth group of light transmitting members and the sixth group of light transmitting members have a positional relationship relatively rotated by about 90 ° about the optical axis.
  • Predetermined crystal axes eg, crystal axes [00 1], [-111], [-1]
  • crystal axes [00 1], [-111], [-1] oriented in directions different from the optical axes of the fifth group of light transmitting members and the sixth group of light transmitting members. 1 0], or
  • FIG. 1 is a flowchart schematically showing a method for manufacturing a projection optical system according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart schematically showing the design process S1 in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of evaluation points of the optical performance of the projection optical system according to the first embodiment of the present invention.
  • FIG. 4 is a flow chart for explaining details of step S12 in the first embodiment of the present invention.
  • FIG. 5 is a view for explaining the crystal axis orientation of the equiaxed crystal material in the first embodiment of the present invention.
  • FIG. 6 is a flowchart showing details of the crystal material preparing step S2 in the first embodiment of the present invention.
  • FIG. 7 is a diagram schematically showing a ray camera.
  • FIG. 8 is a diagram showing a schematic configuration of a birefringence measuring instrument.
  • FIG. 9 is a diagram showing a schematic configuration of an interferometer apparatus for measuring an error of a lens surface shape.
  • FIG. 10 is a flowchart showing an outline of a method for manufacturing a projection optical system according to the second embodiment of the present invention.
  • FIG. 11A, FIG. 11B, and FIG. 11C are diagrams illustrating an example of a method of reducing intrinsic birefringence by combining a plurality of equiaxed crystal materials.
  • FIG. 12 is a diagram schematically showing an interferometer device for measuring the absolute value of the refractive index and the refractive index distribution.
  • FIG. 13 is a flowchart showing details of the assembling step S5 of the method for manufacturing a projection optical system according to the second embodiment of the present invention.
  • FIG. 14 is a diagram schematically showing an aberration measuring apparatus using the principle of the phase retrieval method.
  • FIG. 15 is a diagram schematically showing an external adjustment mechanism of the projection optical system according to the second embodiment of the present invention.
  • FIG. 16A, FIG. 16B, and FIG. 16C are views for explaining an optical member having an aspheric surface and an optical member having a changed Z or birefringence distribution.
  • FIG. 17 is a view schematically showing an exposure apparatus including a projection optical system manufactured according to the first embodiment or the second embodiment.
  • FIGS. 18A, 18B, and 18C schematically show the projection optical system of the fourth embodiment as an example of a method of reducing the intrinsic birefringence by combining a plurality of equiaxed crystal materials.
  • FIG. 5 is a diagram schematically showing a crystal direction of members 5 la and 51 b.
  • FIG. 19 is a diagram schematically showing a projection optical system according to a fifth embodiment as an example of a technique for reducing intrinsic birefringence by combining a plurality of equiaxed crystal materials.
  • FIG. 20 is a diagram schematically showing a projection optical system according to an eighth embodiment as an example of a method of reducing intrinsic birefringence by combining a plurality of equiaxed crystal materials.
  • FIG. 21 is a diagram showing a lens configuration of a projection optical system according to a first embodiment as a numerical embodiment according to the present invention.
  • FIGS. 22A, 22B and 22C show the point image intensity distribution of the projection optical system in the first embodiment.
  • FIGS. 23A and 23B show the point image intensity distribution of the projection optical system in the first embodiment.
  • FIG. 24 is a diagram showing a lens configuration of a projection optical system according to a second embodiment as a numerical embodiment according to the present invention.
  • FIGS. 25A, 25B, 25C, and 25D show the point image intensity distribution of the projection optical system in the second example.
  • FIGS. 26A and 26B show the point image intensity distribution of the projection optical system in the second embodiment.
  • Figure 27 is a flowchart of the method for obtaining a semiconductor device as a microdevice.
  • Figure 28 is a flowchart of the method used to obtain a liquid crystal display element as a microdevice. It is.
  • FIG. 1 is a flowchart schematically illustrating a method for manufacturing a projection optical system according to a first embodiment of the present invention.
  • the method for manufacturing a projection optical system includes a design step S1, a crystal material preparation step S2, a crystal axis measurement step S3, a refraction member forming step S4, and an assembly step S1.
  • a design step S1 a design step S1
  • a crystal material preparation step S2 a crystal axis measurement step S3, a refraction member forming step S4, and an assembly step S1.
  • the ray tracing of the projection optical system is performed using the rays of the plural polarization components, and the ray tracing is performed under each polarization component.
  • the aberration preferably the wavefront aberration for each polarization component is calculated.
  • a plurality of optical members resistive members, By optimizing the parameters of the reflection member, diffraction member, etc., the design data consisting of these parameters is obtained.
  • the crystal axis orientation is used as the parameter.
  • an equiaxed crystal system having a light transmission property with respect to the wavelength used by the projection optical system (the unit length of the crystal axes is equal to each other, and each crystal axis at the intersection of each crystal axis is used) Prepare a crystalline material whose crystallographic angle is 90 °.
  • the crystal axis measurement step S3 the crystal axis of the crystal material prepared in the crystal material preparation step is measured.
  • Method to determine the crystal axis orientation from the determined birefringence. can be.
  • the order of the crystal axis measurement step S3 and the refraction member forming step S4 may be any order.
  • the shape of the refraction member It is only necessary to measure the crystal axis of the crystal material that has been processed in advance, and if the crystal axis measurement step S3 is performed first, the refraction member or the relevant What is necessary is just to give the information of the crystal axis direction to the holding member holding the refraction member.
  • the processed refraction member is incorporated in the lens barrel of the projection optical system according to the design data obtained in the design step.
  • the crystal axis of the refraction member made of an equiaxed crystal material is positioned so as to be the crystal axis orientation in the design data obtained in the design process.
  • FIG. 2 is a flowchart schematically showing the design process S1.
  • a step S11 of inputting initial values of design parameters, based on the design parameters evaluates the optical performance of the projection optical system under a plurality of polarization components.
  • Step S14 for changing is provided.
  • the design parameters include the surface shape, the surface interval, the amount of eccentricity, the inclination with respect to the optical axis, and the azimuth centered on the optical axis of the optical members (lens, reflecting surface, etc.) constituting the projection optical system , Refractive index, birefringence distribution, reflectance, transmittance, transmittance distribution, effective diameter, tolerance, etc., the structure of the thin film formed on the surface of these optical members, that is, the number of thin films, the thickness of each layer , Material of each layer (if necessary, absorption coefficient of each layer), etc. Can be.
  • FIG. 3 is a diagram showing an example of evaluation points of the optical performance of the projection optical system
  • FIG. 4 is a flowchart for explaining details of step S12.
  • the evaluation point W i) is used as the evaluation point.
  • the number of evaluation points W i of arbitrary image heights on the image plane W is not limited to one, and a plurality of evaluation points of arbitrary image heights may be used.
  • the imaging light beam incident on the evaluation point W0 corresponds to the light beam from the point R0 on the optical axis Ax on the object plane R as the first surface of the projection optical system, and is incident on the evaluation point Wi.
  • the formed image light beam corresponds to a light beam from a point Ri at an arbitrary object height on the object plane R.
  • the plurality of polarization components in step S12 include, for example, an X polarization component that vibrates in a predetermined X direction in a plane normal to the optical axis of the projection optical system, and a direction orthogonal to the X direction in the plane.
  • ⁇ -polarized light component that vibrates in the ⁇ -direction can be used.
  • the plurality of polarization components have an R polarization component that vibrates in a direction including the optical axis (radiation direction R) in a plane normal to the optical axis, and a vibration direction orthogonal to the R polarization component.
  • a zero polarization component (a polarization component having a vibration direction in the tangential direction ⁇ ) and may be used, and both the XY polarization component and the R ⁇ polarization component (that is, four polarization components) may be used.
  • a phase distribution WO ( ⁇ , ⁇ ) (W i (, ⁇ )) at the exit pupil PS of the projection optical system PL is obtained for each of a plurality of polarization components.
  • is a normalized pupil radius obtained by normalizing the radius of the exit pupil plane P S to 1
  • 0 is the center of the exit pupil plane P S, typically, the radial angle in polar coordinates with the optical axis as the origin.
  • Step S 1 2 In step S 1 21, the projection optical system ⁇ L design parameters are input. If this step S121 is executed immediately after step S11 in FIG. 2, this design parameter becomes the initial value of the design parameter input in step S11. If it is executed after step S14 in step 2, the design parameters will be those changed in step S14.
  • Step S122 the computer performs ray tracing, and the first polarization direction of the imaging light flux incident on an arbitrary evaluation target image point Xi (for example, the highest peripheral image height) as shown in FIG.
  • the phase distribution WH i (, 0) and the second polarization direction phase distribution WV i ( ⁇ , ⁇ ), and the first polarization direction phase distribution WH 0 (p , ⁇ ) and the second polarization direction phase distribution WVO ( ⁇ , ⁇ ) are calculated.
  • first polarization direction and the “second polarization direction” are two polarization directions orthogonal to each other on the exit pupil plane PS.
  • the XY polarization direction, the polarization direction, or XY and R directions ⁇ Both polarization directions can be applied.
  • the complex amplitudes to be calculated when calculating these phase distributions are not only for the end of the exit pupil plane PS of the projection optical system PL but also for the entire area of the exit pupil plane PS.
  • the ray tracing of the imaging light beam incident on the evaluation target image point Xi is performed by changing the exit pupil of the light beam Lfi emitted from the conjugate point Ri on Xi at different exit angles. This is performed for each ray that passes through different positions on the surface PS (the maximum exit angle of the ray to be traced depends on the image-side numerical aperture of the projection optical system PL).
  • ray tracing is performed on an optical member made of an equiaxed crystal material having intrinsic birefringence, but the distribution of birefringence with respect to the crystal axis in such an optical member is described below.
  • 157 ⁇ litho opened on May 15, 2001 At the 2nd International Symposium on 157nm Lithography
  • the complex amplitude distribution of the first polarization direction and the complex amplitude distribution of the second polarization direction in S are obtained, and the first polarization direction phase distribution and the second side polarization direction phase distribution are obtained from these distributions, respectively.
  • the distribution represented by the polar coordinates (p, ⁇ ) on the exit pupil plane PS is represented by the first polarization direction phase distribution WH i (p, 0) of the imaging light flux incident on the evaluation target image point X i, respectively. ⁇ Phase distribution in the second polarization direction WV i ( ⁇ , ⁇ ).
  • is a normalized pupil radius obtained by standardizing the radius of the exit pupil plane PS to 1, and ⁇ is a radial angle in polar coordinates with the origin at the center of the exit pupil plane PS.
  • the ray tracing of the imaging light beam incident on the central image height ⁇ 0 is also performed by the conjugate point of ⁇
  • the two-way phase distribution is WV0 ( ⁇ , ⁇ ).
  • Step S 1 2 3 the computer calculates the average phase distribution WA i ( ⁇ , ⁇ ) of the evaluation target image point X i and the average phase distribution WA 0 ( ⁇ , ⁇ ) of the central image height X 0. Is calculated by the following equations (1) and (2).
  • WAO (p, ⁇ ) (WV 0 (p, ⁇ ) + WH0 (p, ⁇ )) / 2 That is, the average phase distribution WA i (p, ⁇ ) is equal to WV i (p, ⁇ ).
  • WAVO (p, p, p, p, p, ⁇ ) (WV 0 (p, ⁇ ) + WH0 (p, ⁇ )) / 2 That is, the average phase distribution WA i (p, ⁇ ) is equal to WV i (p, ⁇ ).
  • Step S124 The computer refers to WVip, ⁇ ), WHi ( ⁇ , ⁇ ), WVO ( ⁇ , ⁇ ), WHO ( ⁇ , ⁇ ) obtained in step S122.
  • the retardation distribution ⁇ W i ( ⁇ , ⁇ ) of the image point X i to be evaluated and the retardation distribution ⁇ WO (p, ⁇ ) of the evaluation image point ⁇ ⁇ on the optical axis are expressed by the following equation (3) ) And (4).
  • the retardation distribution SW i ( ⁇ , ⁇ ) is a distribution of differences obtained by matching the coordinates of WVi (p, ⁇ ) and WVi (p, ⁇ )
  • the retardation distribution SWO ( ⁇ , ⁇ ) is the distribution of differences obtained by matching the coordinates of WVO, ⁇ ) and WVO ( ⁇ , ⁇ ).
  • the contrast of the pattern image decreases.
  • the RMS value of the retardation distribution ⁇ W i ( ⁇ , ⁇ ) and the RMS value of the retardation distribution SWO (p, 0) are evaluated. It shows the contrast of the image at the target image point and the poor contrast of the image at the evaluation image point on the optical axis.
  • Step S125 The computer refers to the retardation distribution SWO obtained in step S124, calculates its RMS value Sw0, and its average value A [ ⁇ WO] in the exit pupil plane, and The PSF value is obtained by the equation (5).
  • This PSF value is approximately the maximum value of the point spread distribution caused by retardation. Corresponding to the value of The smaller the PSF value, the more the point image intensity distribution is degraded.
  • evaluation indices such as the following (a), (b), (c), and (d) may be obtained.
  • step S13 Based on the optical performance calculated in step S12 (for example, average phase distribution, retardation distribution, their RMS value, PSF value, etc.), in step S13, the calculated optical performance is set to a predetermined value. Judge whether it is within the standard. Here, if it is within the standard, the design data (design parameter) is output, and the design process S 1 is completed. If the calculated optical manufacturing is not within the predetermined standard, the process proceeds to step S14.
  • the design data design parameter
  • step S14 at least a part of the design parameters of the projection optical system is changed, and the process proceeds to step S12. In this embodiment, this loop is repeated until the calculated optical performance falls within a predetermined standard.
  • the surface shape, spacing, eccentricity, inclination with respect to the optical axis, and refraction of the optical members (lenses, reflection surfaces, etc.) that constitute the projection optical system Only the parameters of the optical system made of an amorphous material, such as the ratio, effective diameter, and tolerance, are changed to correct the scalar component aberration in the optical performance of the projection optical system, and then the thin film structure and optical members
  • the parameters such as the birefringence distribution and the azimuth around the optical axis may be changed to correct the aberration of one scalar component and polarization component.
  • this fluorite has a crystal axis [111] or the crystal axis [111].
  • a refraction member having a crystal axis equivalent to that of the optical axis is formed, so that the accumulation of know-how in forming the refraction member compared to the case of using another crystal axis as the optical axis is known.
  • the product is large. Therefore, as shown in Fig. 5, for example, when designing the projection optical system, the optical member made of fluorite in the projection optical system is designed in such a manner that the optical axis coincides with the crystal axis [111]. and, as a design parameter of the optical member formed of the fluorite, adopting the azimuth angle theta Z around the optical axis can be considered as an example.
  • the design data of the projection optical system having the optical performance within the predetermined standard in calculation (design parameters: the surface of the optical member (lens, reflecting surface, etc.) constituting the projection optical system) Shape, spacing, eccentricity, inclination to the optical axis, azimuth around the optical axis, refractive index, birefringence distribution, reflectance, transmittance, transmittance distribution, effective diameter, tolerance, etc. It is possible to obtain the structure of the thin film formed on the surface of the optical member, that is, the number of thin films, the thickness of each layer, and the material of each layer (absorption coefficient of each layer if necessary).
  • FIG. 6 is a flowchart showing the details of the crystal material preparing step S2 for preparing an equiaxed crystal material having optical transparency with respect to the wavelength used by the projection optical system.
  • fluorite calcium fluoride, CaF 2
  • barium fluoride BaF 2
  • step S21 a pretreatment for causing a deoxygenation reaction of the powder raw material is performed.
  • fluorite single crystals used in the ultraviolet region or vacuum ultraviolet region are grown by the Bridgeman method, it is common to use high-purity raw materials of artificial synthesis. Furthermore, when only the raw material is melted and crystallized, it tends to become cloudy and devitrified. Therefore, measures have been taken to prevent cloudiness by adding a heating force and heating.
  • Typical scavengers for use in the pretreatment or growth of fluorite single crystal, and lead fluoride (P b F 2) is.
  • an additive substance that chemically reacts with impurities contained in the raw material and acts to remove it is generally called a steam venter.
  • a scavenger is added to a high-purity powder raw material and mixed well. Then, the deoxygenation reaction is advanced by heating to a temperature above the melting point of the scavenger and below the melting point of fluorite.
  • the temperature may be lowered to room temperature to form a sintered body, or the temperature may be further raised to once melt the raw material, and then lowered to room temperature to obtain a polycrystalline body.
  • the sintered body or polycrystalline body deoxygenated as described above is referred to as a pre-treated product.
  • Step S22 Next, in step S22, a single crystal ingot is obtained by further growing a crystal using this pre-processed product.
  • crystal growth methods can be broadly classified into solidification of a melt, precipitation from a solution, deposition from a gas, and growth of solid particles. Let it grow.
  • the preprocessed product is stored in a container and placed at a predetermined position in a vertical Bridgman apparatus (crystal growth furnace). Then, the pre-processed product stored in the container is heated and melted. After reaching the melting point of the pretreated product, crystallization is started after a predetermined time has elapsed. When all of the melt crystallizes, slowly cool to room temperature and remove it as an ingot.
  • a vertical Bridgman apparatus crystal growth furnace
  • step S23 the ingot is cut to obtain a disk material having the same size and shape as the optical member to be obtained in a bending member forming step S4 described later.
  • the optical member to be obtained in the refractive member forming step S4 is a lens.
  • the shape of the disk material be a thin cylindrical shape. The diameter and thickness of the cylindrical disk material are determined according to the effective diameter (outer diameter) of the lens and the thickness in the optical axis direction. It is desirable that
  • Step S24 an annealing process is performed on the disk material cut out from the fluorite single crystal ingot. By performing these steps S21 to S24, a crystal material composed of a fluorite single crystal is obtained.
  • the crystal axis measuring step S3 will be described.
  • the crystal axis of the crystal material prepared in the crystal material preparation step S2 is measured.
  • a first measurement technique for directly measuring the orientation of the crystal axis and a second measurement technique for indirectly determining the crystal axis orientation by measuring the birefringence of the crystal material can be considered.
  • a first measurement technique for directly measuring the orientation of the crystal axis will be described.
  • the first measurement technique uses the technique of X-ray crystallography to directly measure the crystal structure of a crystalline material and, consequently, the crystal axis.
  • a measuring method for example, the Laue method is known.
  • the Laue method is applied as the first measurement technique will be briefly described with reference to FIG.
  • FIG. 7 is a diagram schematically showing a Laue camera.
  • the Laue force melody for realizing the crystal axis measurement by the Laue method is composed of an X-ray source 100 and an X-ray 101 from the X-ray source 100 as a crystal material as a sample.
  • a collimator 102 for guiding to 103 is provided, and a photosensitive member 105 exposed to X-ray diffraction 104 diffracted from the crystal material 103.
  • a pair of opposing slits are provided inside the collimator 102 penetrating the X-ray photosensitive member 105.
  • the crystal material 103 prepared in the crystal material preparation step S2 is irradiated with X-rays 101, and the crystal material 103 is subjected to diffraction X-rays 104. Generates. Then, the X-ray photosensitive member 105 such as an X-ray film or an imaging plate disposed on the X-ray incident side of the crystal material 103 is exposed by the diffracted X-ray 104, A visible image (diffraction image) of a pattern corresponding to the crystal structure is formed on the X-ray photosensitive member 105. This diffraction image (Rae pattern) is spot-like when the crystalline material is a single crystal, and these spots are called Ray-points.
  • the crystal material used in the present embodiment is fluorite, and its crystal structure is known. Therefore, by analyzing the Laue spots, the crystal orientation of the crystal can be determined.
  • the first measurement method for directly measuring the crystal axis is not limited to the Laue method, but may be a rotation method or a vibration method of irradiating an X-ray while rotating or vibrating a crystal, a Weissenberg method, a precession method, or the like.
  • Other X-ray crystallography techniques, methods using the cleavage properties of crystalline materials, Observation of compression images (or impressions) with specific shapes that appear on the surface of crystalline materials by giving plastic deformation of the crystalline materials A mechanical method such as a method may be used.
  • the crystal axis direction of the crystal material is associated with the amount of birefringence in that direction.
  • the crystal axis orientation of the sample of the crystal material is measured using the first measurement method described above.
  • the birefringence is measured for each of a plurality of crystal axes of the crystal material sample.
  • FIG. 8 is a diagram showing a schematic configuration of a birefringence measuring instrument.
  • light from a light source 110 is converted by a polarizer 111 into linearly polarized light having a vibrating plane inclined by ⁇ / 4 from the horizontal direction (X direction).
  • the linearly polarized light is subjected to phase modulation by the photoelastic modulator 112, and is applied to the crystal material sample 113.
  • the linearly polarized light of which phase changes is incident on the crystalline material sample 113.
  • the light transmitted through the crystal material sample 113 is guided to the analyzer 114, and only polarized light having a vibration plane in the horizontal direction (X direction) passes through the analyzer 114 and the photodetector 111 Is detected by By measuring how much light is detected by the photodetector 115 at a predetermined phase delay generated by the photoelastic modulator 112, the phase delay is measured by changing the amount of phase delay.
  • the direction of the axis and its refractive index, and the refractive index in the fast axis can be determined. it can.
  • phase of two linearly polarized lights whose vibration planes (polarization planes) passing through the sample are orthogonal to each other changes due to a difference in the refractive index.
  • the phase of one polarized light leads or lags the other, but the polarization direction in which the phase advances is called the fast axis, and the polarization direction in which the phase lags is called the slow axis.
  • birefringence measurement was performed for each crystal axis of a crystal material sample whose crystal axis direction was known by the first measurement method, and the crystal axis direction of the crystal material and the amount of birefringence in that direction were measured. Is associated with.
  • the intermediate crystal axis between the measured crystal axes may be interpolated using a predetermined interpolation operation expression.
  • the crystal axis orientation of the crystal material prepared in the crystal material preparation step S2 is measured using the birefringence measurement device shown in FIG. Then, since the correspondence between the crystal axis orientation and the birefringence is determined in advance, the crystal axis orientation is calculated from the measured birefringence using this correspondence.
  • the crystal axis orientation of the crystal material can be obtained without directly measuring the crystal axis orientation.
  • the bending member forming step S4 will be described.
  • the crystal material prepared in the crystal material preparation step S2 is processed to form an optical member (a lens or the like) having a predetermined shape.
  • the order of the crystal axis measurement step S3 and the refraction member formation step S4 may be any order, for example, a first member formation method of performing the refraction member formation step S4 after the crystal axis measurement step S3, A second member forming method of performing a crystal axis measurement step after the refraction member forming step S4, and a third member forming method of simultaneously performing the crystal axis measurement step S3 and the crystal axis measurement step S4 can be considered.
  • the first member forming method will be described.
  • the disk material prepared in the crystal material preparation step S2 is ground so that the optical member becomes the design data including the parameters related to the crystal axis orientation obtained in the design step S1. Processing such as polishing.
  • a predetermined mark or the like is provided on the processed optical member so that the crystal axis direction of the optical member can be recognized.
  • the refraction forming the projection optical system is performed using a material that is ground as necessary from a crystal material (typically a disk material) whose crystal axis orientation has been measured in the crystal material preparation step S2.
  • a crystal material typically a disk material
  • the surface of each lens is polished in accordance with a well-known polishing process with the target of the surface shape and the surface interval in the design data, and a refraction member having a lens surface of a predetermined shape is manufactured.
  • polishing is repeated while measuring the error in the surface shape of each lens with an interferometer, and the surface shape of each lens is brought close to the target surface shape (best fit spherical shape).
  • the surface shape error of each lens falls within a predetermined range, the error of the surface shape of each lens is measured using, for example, a precise interferometer device shown in FIG.
  • the interferometer device shown in FIG. 9 is suitable for measuring the surface shape of a spherical lens having a spherical design value.
  • light emitted from the interferometer unit 122 controlled by the control system 122 enters the Fizeau lens 123 supported on the Fizeau stage 123a.
  • the light reflected by the reference surface (Fizeau surface) of the Fizeau lens 1 23 becomes the reference light, and returns to the interferometer unit 1 22.
  • FIG. 9 shows the Fizeau lens 123 with a single lens, an actual Fizeau lens is composed of a plurality of lenses (lens groups).
  • the light transmitted through the Fizeau lens 123 becomes measurement light, and is incident on the optical surface of the lens 124 to be measured.
  • the measurement light reflected by the test optical surface of the test lens 1 2 4 returns to the interferometer unit 1 2 2 via the Fizeau lens 1 2 3.
  • the wavefront aberration of the test optical surface of the test lens 124 with respect to the reference surface and, consequently, the test lens 1 2 4 Error in surface shape (design The deviation from the best fit spherical surface is measured.
  • the surface shape error of the spherical lens by the interferometer refer to, for example, Japanese Patent Application Laid-Open Nos. 7-123535, 7-113609, and 10-154657. Can be.
  • An aspherical wave forming member for converting light transmitted through the reference member into an aspherical wave having a predetermined shape is provided on the Fizeau stage 113a.
  • the aspherical wave forming member is configured by a lens, a zone plate, or a combination thereof, and converts the plane wave from the reference member into an aspherical wave corresponding to the surface shape of the optical surface to be measured, which is a measurement target. It is something to convert.
  • JP-A-10-260020, JP-A-10-260024, and JP-A-11-11784 can be referred to.
  • a plurality of ridges are provided on the periphery of the lens to hold the lens. It has been proposed that a plurality of ridges be kinematically held by a member (lens sensor) (see Japanese Patent Application Laid-Open No. 2001-74991).
  • the crystal axis orientation of the processed optical member can also be indicated by processing such a plurality of raised portions to have the crystal axis orientation of the optical member.
  • the holding member holding method since the relationship between the holding member and the position / posture of the optical member is constant, information (a mark or the like) indicating the crystal axis direction of the optical member is provided on this holding member. May be provided.
  • the disc material prepared in the crystal material preparing step S2 is subjected to processing such as polishing and polishing.
  • processing such as polishing and polishing.
  • the surface shape, Processing is performed using parameters such as (outer diameter) (without using parameters related to crystal axis orientation).
  • the measurement and polishing are repeated until the surface shape falls within a predetermined range, as in the first member forming method.
  • the crystal axis direction of the processed optical member is measured using the above-described first measurement method, and information on the measured crystal axis direction is provided on the optical member processed with, for example, a mark.
  • the crystal axis orientation can be determined even after being processed into a lens or the like.
  • the crystal axis direction was measured after forming the refraction member from the crystalline material.
  • the measurement of the crystal axis direction may be performed during the formation of the refraction member. Good (3rd member formation method).
  • the space in the optical axis direction, the position in the vertical direction of the optical axis, and the rotation angle (azimuth angle) around the optical axis of each processed optical member were obtained in the design step S1.
  • the influence of birefringence caused by an equiaxed crystal material such as fluorite or barium fluoride is affected for a plurality of polarization components. While evaluating, it is possible to determine the angle of incorporation of the crystal axis of the refraction member made of this equiaxed crystal material so that the influence of birefringence is minimized, so that good optical performance ⁇ is obtained. Can be secured.
  • the method of manufacturing the projection optical system of the second embodiment includes a design process S1, a crystal material preparation process S2, a crystal axis measurement process S3, which the manufacturing method of the first embodiment has.
  • the method includes an amorphous material preparing step S6, a birefringence amount measuring step S7, and a second refraction member forming step S8.
  • the first bending member forming step S4 is the same process as the bending member forming step S4 of the first embodiment. In the present embodiment, the bending is performed to avoid confusion with the second bending member forming step S8. It is referred to as a first bending member forming step S4 instead of the member forming step S4.
  • the birefringence of an amorphous material such as quartz doped with quartz and fluorine is used. Used.
  • a projection optical system includes a plurality of refraction members 11 and 12 made of an equiaxed crystal material and an amorphous material such as quartz or fluorine-doped quartz.
  • the crystal axis [1 1 1] is made to coincide with the optical axis Ax. It is arranged, and the second refraction member 12 is rotated 60 ° about the optical axis Ax in the XY plane with respect to the first refraction member 11. At this time, the effect of birefringence by the first refraction member 11 is shown in (b) of FIG. 11B, and the effect of birefringence by the second refraction member 12 is shown in (a) of FIG. 11B. Show.
  • FIG. 11B and Fig. 11C show the distribution of the birefringence index with respect to the incident angle of the light beam, and six concentric circles indicated by broken lines in the figure indicate one scale of 10 °.
  • the innermost circle represents a region having an incident angle of 10 ° with respect to the optical axis
  • the outermost circle represents a region having an incident angle of 60 ° with respect to the optical axis.
  • a black circle indicates a region having a relatively large refractive index and no birefringence
  • a white circle indicates a region having a relatively small refractive index and no birefringence.
  • the thick circle and the thick double arrow indicate the direction of the relatively large refractive index (the direction of the slow axis) in the birefringent area
  • the thin circle and the thin double arrow indicate the relatively small refractive index in the birefringent area. Represents the direction (fast axis).
  • the crystal axis [1] is a region having a relatively small refractive index and no birefringence.
  • the regions corresponding to the crystal axes [100], [010], and [001] are regions having a relatively large refractive index and no birefringence.
  • the regions corresponding to the crystal axes [1 1 0], [1 0 1], and [0 1 1] have a relatively small refractive index for circumferentially polarized light and a relatively large refractive index for radially polarized light. It becomes a refraction area.
  • (C) of FIG. 11B combines the effects of birefringence by the first and second refraction members 11 and 12 exhibiting a relative rotation angle of 60 ° about the optical axis.
  • the crystal axes [1 110], [101], [100] where the birefringence is the maximum 0 1 1] is reduced.
  • the region at 3.5.26 ° from the optical axis that is, the region relatively close to the optical axis, there remains a birefringent region in which the refractive index for circumferentially polarized light is smaller than that for radially polarized light. .
  • the effect of birefringence may be affected to some extent depending on the angle of the crystal axis, and a sufficiently good imaging performance ( Optical performance) may be difficult.
  • the birefringence of the refraction members 11 and 12 is applied to the refraction members 13 and 11 made of an amorphous material different from the refraction members 11 and 12 made of an equiaxed crystal material.
  • FIG. 11E shows the birefringence distribution of the refraction member 13. A method of giving a desired birefringence distribution to a refraction member made of an amorphous material will be described in a non-crystalline material preparation step S6 described later.
  • the birefringence distribution of the refraction member made of such an amorphous material is calculated. Specifically, the parameters of the birefringence distribution of the refraction member are added to the design parameters (design data) in the design process S1 of the first embodiment, and the steps S11 to S11 are performed as in the first embodiment. Perform 1 to 4.
  • parameters other than the parameters of the birefringence distribution of the refraction member made of an amorphous material are optimized, and the parameters are calculated based on the optimized parameters. It is also possible to use a method of correcting the residual amount of aberration by optimizing the parameters of the birefringence distribution of the refractive member made of an amorphous material.
  • the parameters of the optical system made of an amorphous material such as the difference
  • the aberration of one component of the scalar in the optical performance of the projection optical system is corrected, and then the structure of the thin film and the birefringence of the optical member
  • the aberration of the scalar single component and the polarization component may be corrected by changing parameters such as the distribution and the azimuth around the optical axis.
  • an aspherical surface for correcting this scalar aberration may be formed on the optical surfaces (lens surfaces, reflection surfaces) of some optical members.
  • the aspherical surface may be used also as an aspherical surface for correcting residual aberration (typically a shape rotationally asymmetrical with respect to the optical axis) calculated in step S526 in the assembling process S5 described later. , May be provided separately.
  • the aspherical shape (shape rotationally symmetric or rotationally asymmetrical with respect to the optical axis) is set as a design parameter in the design step S1.
  • the amorphous material preparing step S6 will be described.
  • quartz or fluorine-doped quartz hereinafter referred to as modified quartz
  • Such quartz or modified quartz is in an ideal state unlike an optical crystal. Does not produce birefringence.
  • a desired birefringence distribution is generated in quartz or modified quartz by adjusting the amount and type of impurities mixed in the ingot or the thermal history.
  • the impurities include ⁇ H, Cl, metal impurities, and dissolved gas.
  • OH containing several hundred ppm or more and then OH containing several tens ppm. Is considered to be dominant from the amount of contamination.
  • this impurity is mixed into the ingot, the coefficient of thermal expansion of the material changes.For example, when cooling after annealing, the part where the impurity is mixed shrinks greatly, and the difference in the shrinkage causes Stress occurs and stress birefringence occurs.
  • the thermal history exists regardless of the production method such as the direct method, the vapor axial deposition (VAD) method, the sol-gel method (sol-gel) method, and the plasma burner method.
  • VAD vapor axial deposition
  • sol-gel sol-gel
  • plasma burner method plasma burner method
  • a Si compound gas (a carrier gas such as 02 or H2 is used to send out the Si compound gas) as a raw material for quartz, and a combustion gas (O 2 gas and H 2 gas) for heating are used.
  • quartz is synthesized using a flame hydrolysis method in which quartz is deposited in the flame to obtain an ingot. Thereafter, the ingot is cut out to obtain a disc material, and the disc material is annealed (or gradually cooled).
  • the synthesis conditions at the time of synthesis of quartz and the thermal history conditions at the time of annealing are set so that the birefringence distribution of the refractive member made of quartz becomes the birefringence distribution calculated in the design step S1. And have adjusted. At this time, the bar of the synthesis condition And the swinging pattern of the target. Note that such a synthesis condition / anneal condition may be obtained by trial and error or may be determined using empirical rules.
  • the axis of symmetry of the birefringence distribution of an amorphous material made of, for example, quartz or modified quartz substantially coincides with the optical axis of a refractive member formed of the amorphous material.
  • the ingot is synthesized while rotating the ingot during the synthesis of quartz, and the impurity concentration and the physical property distribution in the ingot are made centrally symmetric. Since the center position of the ingot (substantially coincides with the rotation center at the time of synthesis) becomes the center of the stress distribution, in the second refraction member forming step described later, the center position and the optical axis are matched based on this center position. It is preferable to form a refraction member.
  • the raw material cut from the ingot is made into a cylindrical disk material and heated in the center of a furnace having a symmetrical temperature distribution. At this time, it is preferable to perform annealing while rotating the disk material.
  • the birefringence amount measuring step S7 will be described.
  • the birefringence measuring step S7 the birefringence distribution of the amorphous material made of quartz or modified quartz obtained in the amorphous material preparing step S6 is measured.
  • a birefringence measuring instrument shown in FIG. 8 can be used, and the method of measuring the birefringence distribution is also as described above, and therefore the description is omitted here. It is preferable that information on the position of the axis of symmetry of the birefringence distribution obtained by this measurement be provided in the amorphous material by, for example, a method of marking a disc material.
  • FIG. 12 is a diagram schematically showing an interferometer device for measuring the absolute value of the refractive index and the refractive index distribution.
  • a predetermined position in the sample case 13 2 filled with oil 13 1 The non-crystalline material 1 3 3 which is the object to be tested is set in the apparatus.
  • the light emitted from the interferometer unit 135 controlled by the control system 134 is incident on a Fizeau flat (Fizeau plane) 135 supported on a Fizeau stage 135a.
  • Fizeau flat Fizeau plane
  • the light reflected by the Fizeau flat 1336 becomes the reference light, and returns to the interferometer unit 135.
  • the light transmitted through the Fizeau flat 13 36 becomes measurement light, and is incident on the test object 13 3 in the sample case 13 2.
  • the light transmitted through the test object 133 is reflected by the reflection plane 133 and returns to the interferometer cut 135 via the test object 133 and the Fizeau flat 136.
  • the wavefront aberration due to the refractive index distribution of the amorphous optical member 133 is measured based on the phase shift between the reference light and the measurement light returned to the interferometer unit 135.
  • Japanese Patent Application Laid-Open No. 8-55505 can be referred to.
  • a material obtained by grinding an amorphous material typically a disc material whose birefringence distribution or refractive index distribution was measured in the birefringence amount measurement step S7 as necessary.
  • a material obtained by grinding an amorphous material typically a disc material whose birefringence distribution or refractive index distribution was measured in the birefringence amount measurement step S7 as necessary.
  • the surface of each lens is polished in accordance with a well-known polishing process with the target of the surface shape and the surface interval in the design data, and a refraction member having a lens surface of a predetermined shape is manufactured.
  • this second refraction member forming step similarly to the first refraction member formation step (the refraction member formation step S4 of the first embodiment), polishing is repeated while measuring the surface shape error of each lens with an interferometer. Then, bring the surface shape of each lens close to the target surface shape (best fit spherical shape).
  • the error of the surface shape of each lens is reduced in the same manner as in the first refraction member forming step (the refraction member forming step S4 of the first embodiment).
  • the measurement is performed using the precise interferometer shown in FIG. Also in the second refraction member forming step S8, the measured surface shape falls within a predetermined range. Repeat the measurement and polishing.
  • FIG. 13 is a flowchart showing details of the assembling step S5 of the method for manufacturing a projection optical system according to the second example.
  • the judgment process is generally illustrated by a diamond, but in FIG. 13, the judgment process (for example, S5 14, S5 17, S5 22, S 5 2 3, S 5 3 2) are represented by hexagons as shown.
  • Step S510 information on the crystal axis of the refraction member made of the crystalline material measured in the crystal axis measurement step S3 and the information measured in the first refraction member formation step S4 Information on the surface shape and surface spacing of the processed refraction member, information on the refractive index and distribution of the refraction member made of an amorphous material measured in the birefringence amount measurement step S7, and information on the birefringence amount and distribution.
  • Refraction member forming step These parameters (surface shape, surface interval, refractive index, refractive index distribution, crystal The optical performance when assembling the projection optical system using the optical members having the axial orientation, the amount of birefringence, the birefringence distribution, etc., is predicted by simulation using a computer.
  • the optical performance of the projection optical system by adding the above information to each optical member Is calculated.
  • the evaluation value of the optical performance of the projection optical system the average phase distribution, the retardation distribution, the RMS value, the PSF value, and the like described above can be used.
  • Step S 511 the distance between the optical members virtually assembled in the simulation, the amount of eccentricity with respect to the optical axis, and the azimuth (incorporation angle) around the optical axis are changed.
  • the optical performance of the projection optical system PL is calculated by simulation.
  • the optical member manufactured through the above-described steps S2 to S4 and S6 to S8 has a non-uniform refractive index distribution / birefringence distribution, a surface shape, a plane interval, and a crystal axis orientation. Because of the fabrication error, the characteristics of the projection optical system PL change even when only the azimuth (embedded angle) around the optical axis of the optical member is changed.
  • the interval and the amount of eccentricity of each optical member and the mounting angle are optimized so as to obtain the best optical characteristics.
  • step S512 the optimized distance between optical members, the amount of eccentricity, and the amount of installation are determined based on the distance and the amount of eccentricity of the optical members optimized by simulation and the angle of installation. Incorporate the optical member into the lens barrel that holds each optical member according to the angle.
  • step S 5 13 the wavefront aberration is measured using the aberration measuring and measuring apparatus shown in FIG.
  • the aberration measuring device shown in FIG. 14 uses the principle of the phase recovery method.
  • the pattern forming surface of the pattern plate 141 is positioned on the object plane of the projection optical system PL, and the front side of the objective optical system 144 is positioned at the imaging position (image plane) of the projection optical system PL. Position the focal point.
  • the illumination light emitted from the illumination light source 140 illuminates the pinhole 142 formed on the pattern plate 141 to generate an ideal spherical wave.
  • this ideal spherical wave passes through the projection optical system PL, the ideal spherical wavefront shape changes under the influence of the aberration remaining in the projection optical system PL.
  • the light that has passed through the projection optical system PL is condensed by the object optical system 144, and the image is captured by the imaging element 144.
  • the intensity distribution changes. Therefore, the residual aberration of the projection optical system PL can be obtained by performing a predetermined operation based on the phase recovery method on the image signal including the information on the residual aberration aberration of the projection optical system PL.
  • the phase recovery method described above see US Pat. No. 4,309,602.
  • the pinhorn 14 formed on the pattern plate 14 1 is arranged on the optical axis AX of the projection optical system PL.
  • the pinhole 1 4 2 is set in the plane orthogonal to the optical axis AX. Is moved to the measurement point and the wavefront aberration is measured.
  • a plurality of pinholes are formed in the pattern plate 141, a member for defining an illumination area is provided in the illumination light source 140, and one pin at a time is provided.
  • the wavefront aberration may be measured by illuminating the hole.
  • Step S 5 14 it is determined whether or not the wavefront aberration can be measured at all the measurement points on the image plane of the projection optical system.
  • the aberration measuring device shown in FIG. 14 performs a predetermined operation based on the phase recovery method on an image signal obtained by imaging with the image sensor 144 to reduce the residual aberration of the projection optical system PL.
  • the phase recovery method cannot restore the wavefront if the residual aberration of the projection optical system PL is too large. Therefore, in step S514, it is determined whether the wavefront aberration can be measured at all the measurement points. If it is determined that there is at least one measurement point at which aberration cannot be measured (determination result is “NG”), the process proceeds to step S515.
  • step S 515 the adjustment of the interval of each optical member in the optical axis direction, the adjustment of the position of each optical member in the plane orthogonal to the optical axis (the eccentricity adjustment), and the light of each optical member
  • the eccentricity adjustment the adjustment of the position of each optical member in the plane orthogonal to the optical axis
  • the light of each optical member By performing at least one of the adjustments of the azimuth around the axis, the optical performance of the projection optical system is adjusted, and the flow proceeds to step S513.
  • step S513 to S515 are repeated until it is determined in step S515 that aberration measurement is possible at all measurement points.
  • step S5 14 when it is determined in step S5 14 that aberration measurement is possible at all measurement points (when the determination result is “OK”), the process proceeds to step S5 16.
  • step S 516 the wavefront aberration at all measurement points is measured using the above-described aberration measuring device.
  • Step S5 17 it is determined whether or not the wavefront aberration measured in step S5 16 is within a predetermined standard.
  • This step S 517 is a step of judging whether or not the optical performance of the projection optical system has been adjusted to the extent that highly accurate aberration measurement described later can be performed. If the result of this determination is "NG”, step S5 The process proceeds to 18, and if the determination result is “OK”, the process proceeds to step S 5 19.
  • Step S 5128 In step S 518, the adjustment of the interval of each optical member in the optical axis direction, the adjustment of the position of each optical member in the plane orthogonal to the optical axis (eccentricity adjustment), and the light By performing at least one of the adjustments of the azimuth around the axis, the optical performance of the projection optical system is adjusted, and the flow proceeds to step S 516.
  • Step S5 19 By repeatedly executing the above steps S5 16 to S5 18, the optical performance of the projection optical system is adjusted to such an extent that highly accurate aberration measurement can be performed. Then, the flow shifts to step S 5 19.
  • step S 519 for example, a Fizeau interferometer-type wavefront aberration measuring device disclosed in Japanese Patent Application Laid-Open No. H10-38957 and a method disclosed in Japanese Patent Application Laid-Open No. 2000-97616 are disclosed.
  • PDI Phase Diffraction Interferometer
  • the wavefront aberration is measured for each of a plurality of polarization components with respect to the projection optical system.
  • the XY polarization component, the R0 polarization component, and the like described above can be used.
  • measurement using a non-polarization component is performed. May be.
  • Step S520 the expansion coefficient of each term is obtained by fitting the measured wavefront aberration to the Zell-Eke cylindrical function system ⁇ ( ⁇ , ⁇ ), and the wavefront aberration is calculated. Is calculated (and, if necessary, each component of wavefront aberration for each polarization). '
  • the polar coordinates on the exit surface are determined, and the wavefront aberration is expressed as W ( ⁇ , ⁇ ).
  • is a normalized pupil radius obtained by standardizing the exit pupil radius to 1
  • 0 is a radial angle in polar coordinates.
  • W ( ⁇ , ⁇ ) is converted into the Zernike cylindrical function system ⁇ ⁇ ( ⁇ , Using ⁇ ), expand as shown in the following equation (6).
  • the projection optical system according to the present embodiment is provided with an external adjustment mechanism for adjusting optical performance (magnification, aberration, etc.) even after the projection optical system is mounted on the exposure apparatus main body.
  • an external adjustment mechanism a mechanism for controlling or manually adjusting the position and orientation of an optical member constituting the projection optical system, or a mechanism for manually adjusting the position and orientation, and the first surface among the optical members constituting the projection optical system
  • the projection optical system of the present embodiment has a configuration in which a plurality of optical members 21 to 27 are arranged along the optical axis direction ( ⁇ direction).
  • the two optical members 22 on the W side are interchangeable with the main body of the projection optical system PL.
  • the five lenses 23 to 27 of the plurality of optical members are respectively rotated by the actuators 28 to 32 in the direction of the optical axis () direction) and the direction perpendicular to the optical axis ( ⁇ direction). (S x, 0 y direction) can be adjusted.
  • the holding member 33 that holds the optical member 22 closest to the second surface W is configured to be detachable from a part 34 of the lens barrel that forms the projection optical system PL.
  • five lenses can be adjusted in the Z direction, the ⁇ X direction, and the 0 y direction, respectively, five rotationally symmetric aberrations (magnification, low-order distortion, low-order Aberration, low-order field curvature and low-order spherical aberration) and five eccentric aberrations (two types of eccentric distortion, eccentric coma, eccentric ass, and eccentric spherical aberration) can be corrected.
  • five lenses can be adjusted.
  • the number of lenses whose position can be adjusted is not limited to five.
  • At least one of the optical member closest to the first surface R and the optical member closest to the second surface W has a birefringence amount and a birefringence distribution different from those of the optical member. It can be replaced with an optical member.
  • an equiaxed crystal material manufactured by the same manufacturing method as the above-described crystal material preparing step S2, crystal axis measuring step S3, and first refraction member forming step S4 is used as the optical member.
  • an equiaxed crystal material manufactured by the same manufacturing method as the above-described crystal material preparing step S2, crystal axis measuring step S3, and first refraction member forming step S4 is used as the optical member.
  • an equiaxed crystal material manufactured by the same manufacturing method as the above-described crystal material preparing step S2, crystal axis measuring step S3, and first refraction member forming step S4 is used as the optical member.
  • the optical member closest to the first surface R and the optical member closest to the second surface W are positioned relative to the projection optical system PL in the XY plane and in the 0x and 0y directions. It is preferable that the tilt and the position in the Z direction can be adjusted. According to this configuration, for example, when rotationally asymmetric polarization aberration is generated in the projection optical system PL, the position and orientation of the optical member 21 or 22 having a predetermined birefringence distribution is adjusted, and the rotation is adjusted. Asymmetric polarization aberration can be corrected.
  • the optical member closest to the second surface W is a plane-parallel plate, decentering coma can be corrected by adjusting the inclination in the ⁇ , and ⁇ y directions.
  • the refractive power of the optical member closest to the second surface W is adjusted (by replacing the optical member with a different refractive power), the Pebbles sum of the projection optical system PL can be adjusted. .
  • an optical surface (a refractive surface, a reflective surface, or the like) having a toric surface shape is provided on a part of the optical member constituting the projection optical system PL, and the optical axis AX of the optical member is provided.
  • Step S 5 21 when the projection optical system has the value of each component of the wavefront aberration calculated in step S 5 20, Simulate the wavefront aberration (or each component of the wavefront aberration) after adjustment using the external adjustment mechanism. Predict with a ration. Specifically, the values of the calculated components of the wavefront aberration are used as a starting point, and the parameters of the external adjustment mechanism (the movement amount of the lenses 23 to 27, the surface shape of the optical members 21 and Z or 22, (Thickness, refractive index, refractive index distribution, birefringence, birefringence distribution) are optimized, and the aberration of the projection optical system in the simulation after optimization is determined. In the case where optical members having different birefringence amounts and distributions are not replaced in the external adjustment mechanism, the predicted wavefront aberration may be a scalar component only.
  • Step S522 it is determined whether or not the aberration predicted by the simulation is within a predetermined standard. If the result of the determination in step S522 is "NG”, the flow shifts to step S522. If the result of the determination in step S522 is "OK:”, the flow shifts to step S529.
  • Step S 5 2 3 the aberration predicted in step S 5 22 is adjusted by adjusting the interval of each optical member in the optical axis direction, and by adjusting the position of each optical member in the plane orthogonal to the optical axis. Adjustment (eccentricity adjustment) and adjustment of the azimuth of each optical member around the optical axis are performed to determine whether or not the correction can be performed.
  • the process proceeds to step S 5 24, and if the result of the determination is “NG”, the process proceeds to step S 5 25. Transition.
  • step S 524 the adjustment of the interval of each optical member in the optical axis direction, the adjustment of the position of each optical member in the plane orthogonal to the optical axis (the eccentricity adjustment), and the light of each optical member
  • the eccentricity adjustment the adjustment of the position of each optical member in the plane orthogonal to the optical axis
  • the light of each optical member By adjusting at least one of the adjustments of the azimuth around the axis, the aberration of the projection optical system is corrected, and the process proceeds to the wavefront aberration measurement in step S516.
  • steps S 516 to S 524 can improve the optical performance of the projection optical system without forming an aspherical surface on the optical member of the projection optical system or replacing the optical member with a different birefringence distribution. This is the process to find out if you can drive.
  • step S523 If it is determined in step S523 that the correction of the aberration that is determined to be out of the standard cannot be performed only by adjusting the spacing, the eccentricity, and the azimuth of the optical members, the following is performed. Move on to step S525. (Step S 525) In step S 525, the adjustment of the interval of each optical member in the optical axis direction, the adjustment of the position of each optical member in the plane orthogonal to the optical axis (the eccentricity adjustment), and the light of each optical member After adjustment of the azimuth around the axis, the wavefront aberration (or each component of the wavefront aberration, and if necessary, each component of the wavefront aberration for each polarization) is predicted by simulation.
  • the value of each component of the calculated wavefront aberration is set as an output point, and the distance adjustment amount, the eccentricity adjustment amount, and the azimuth angle adjustment amount of each optical member are optimized as parameters, and after optimization. Of the projection optical system is obtained.
  • Step S 526) In step S 526, an aspherical shape and Z or birefringence that can correct the residual aberration (residual component of aberration) of the projection optical system predicted in step S 525 Calculate the distribution.
  • an optical member that forms an aspheric surface and an optical member that changes Z or birefringence distribution are selected according to the aberration to be corrected.
  • FIG. 16A, FIG. 16B, and FIG. 16C are diagrams for explaining an optical member having an aspheric surface and / or an optical member having a changed birefringence distribution.
  • the projection optical system PL shown in FIG. 16A is simplified in illustration, and has an optical member e 1 having a negative refractive power and an optical member e having a positive refractive power in order from the first surface R side. 2. It has an optical member e3 having a negative refractive power, an aperture stop AS, and an optical member e4 having a positive refractive power.
  • reference numeral L1 denotes an optical path of a light beam emitted from the object point Q1
  • reference numeral L2 denotes an optical path of a light beam emitted from the object point Q2.
  • the light from the object point Q1 located at the intersection of the optical axis Ax of the projection optical system PL and the first surface R is diverged or converged each time it passes through the optical members e1 to e4, and the optical axis A An image is formed at the intersection of x and the second surface W.
  • the effective diameters of the optical members e1 to e4 are ⁇ 1 to ⁇ 4.
  • the light beam diameter of the light beam L1 when passing through each optical member el to e4 is ⁇ Ll1 to ⁇ L14
  • the light beam diameter of the light beam L2 when passing through each optical member el to e5 is ⁇ L21 to ⁇ L24.
  • the optical member Considering the optical path when the light beams LI and L2 pass through the optical member e1, the optical member The ratio of the luminous flux diameter ⁇ 1 to the effective diameter ⁇ 1 of e1 and the luminous flux diameter of the optical member e1 to the effective diameter ⁇ 1 (the ratio of i> L21 is about 0.25, and the luminous flux L1 Is different from the position where the light beam L 2 passes through the optical member e 1 and the position where the light beam L 2 passes through the optical member e 1.
  • the ratio of i> L21 is about 0.25
  • the luminous flux L1 Is different from the position where the light beam L 2 passes through the optical member e 1 and the position where the light beam L 2 passes through the optical member e 1.
  • the ratio of the luminous flux diameter ⁇ i> L15 to the effective diameter ⁇ 4 of the optical member e4 and the ratio of the luminous flux diameter 0L24 to the effective diameter ⁇ 4 of the optical member e4 are almost equal to 1.
  • the position where the light beam L1 passes through the optical member e4 is substantially the same as the position where the light beam L2 passes through the optical member e4.
  • the object point Q 1 when correcting for high image plane coordinate dependency and correcting aberrations (scalar aberrations such as distortion and field curvature, and polarization aberrations (influence of birefringence) that varies depending on the image plane coordinates), the object point Q 1
  • An aspherical surface is provided on the optical surface (lens surface, reflection surface, etc.) of the optical member e1 that passes through the position where the light beam L1 and the light beam L2 from the object point Q2 are separated, or the optical member e1 is duplicated.
  • the correction is performed from the object point Q1.
  • an aspherical surface is provided on the optical surface of the optical member e4 through which the light beam L1 of the optical member L1 and the light beam L2 from the object point Q2 pass almost over the entire surface, or the birefringence distribution of the optical member e4 is changed, the pupil coordinates Highly dependent aberrations can be effectively corrected.
  • the degree of superposition of the light flux L1 from the object point Q1 and the light flux L2 from the object point Q2 is small.
  • An aspherical surface is provided on the optical surface of the intermediate optical member (for example, optical member e2, etc.), or the degree of superposition of the light flux L1 from the object point Q1 and the light flux L2 from the object point Q2 is intermediate.
  • step S526 an aspherical shape is calculated for the optical surfaces of at least three of the plurality of optical members e1 to e4 in the projection optical system PL in order to correct scalar aberration.
  • the projection optical system PL It is preferable to calculate the amount of birefringence and the distribution of at least one of the plurality of optical members e1 to e4.
  • the effective diameter of the optical member is ⁇ c
  • a light beam emitted from a predetermined point on the first surface R is an optical member.
  • the optical member having the predetermined birefringence distribution is arranged at a position that satisfies the following.
  • the polarization aberration (influence of birefringence) caused by the refraction member made of an equiaxed crystal material can be reduced. It can be corrected effectively.
  • an optical member made of an amorphous material having a birefringence amount and distribution for correcting polarization aberration (influence of birefringence) having high pupil coordinate dependency (low image plane coordinate dependency) includes a projection optical system. It is preferable to be arranged at a position within 15 O mm from the pupil position.
  • the light flux L 1 from the object point Q 1 and the light flux L from the object point Q 2 Since it is desirable to calculate the aspherical shape related to the optical surfaces of the two optical members where the degree of superposition of 2 is intermediate, in step S526, the plurality of optical members e1 to e in the projection optical system PL are calculated. e is aspherical with respect to the optical surface of at least four of the optical members More preferably, the shape is calculated.
  • the aspherical surfaces formed on the optical members e1 to e4 may be symmetric or asymmetric with respect to the optical axis Ax. Further, an aspherical surface may be formed irregularly (randomly) according to the generated aberration.
  • the birefringence distribution provided in the optical members el to e4 may be either symmetric or asymmetric with respect to the optical axis Ax, and may be irregular (random) birefringence depending on the generated aberration. It may have a distribution.
  • the aspherical surface, the amount of birefringence, and the distribution calculated in step S526 are not necessarily intended to correct all the wavefront aberrations remaining in the projection optical system PL.
  • the purpose may be to correct only the residual aberration.
  • the wavefront aberration that can be corrected by the external adjustment mechanism described later may be corrected by the external adjustment mechanism without being intentionally corrected in step S526.
  • those that can be ignored in view of the imaging performance need not be corrected by forming an aspheric surface or adding a birefringent distribution.
  • Step S 5 2 the optical surface (lens surface, reflection surface, etc.) of the optical member selected in step S 5 26 is replaced with step S 5 2
  • Processing is performed to obtain the aspherical shape calculated in 6.
  • an optical material having the birefringence amount and distribution calculated in step S526 is prepared, and this optical material is prepared. Process materials.
  • Step S528 an optical member having a predetermined aspherical surface and an optical member having a predetermined birefringence and distribution are assembled into a projection optical system. At this time, an assembling error may occur.However, the assembling error generated here is considered to be not so large as to be impossible to measure with the aberration measuring device shown in FIG. In the example, the process shifts to step S 5 16.
  • Step S 5 2 By the way, in Step S 5 2 2, when the aberration predicted by the simulation is within a predetermined standard (when the judgment result is “OK”) In this case, since the optical characteristics of the projection optical system PL have been adjusted to such an extent that they can be finely adjusted by an external adjustment mechanism, the external adjustment mechanism is attached and its initial adjustment is performed.
  • the initial adjustment of the external adjustment mechanism processing for adjusting the response amount to the control signals of the actuators 28 to 32 shown in FIG. 15 is performed. Specifically, for example, when a control signal for extending 1 ⁇ is output to the actuators 28 to 32 from a control system (not shown), the actuators 28 to 32 output 1 / zm according to the control signal.
  • the response amount of the actuators 28 to 32 to the control amount by the control system is adjusted.
  • the control signal output from the control system is a signal that varies the optical performance of the projection optical system PL
  • this initial adjustment is performed by adjusting the amount of adjustment by the external adjustment mechanism and the performance of the projection optical system PL. This is a process for obtaining a correlation with the quantity.
  • the actuators 28 to 32 are attached, only adjustment using the external adjustment mechanism is performed.
  • Step S530 When the above step S529 is completed, the wavefront aberration is measured using the wavefront measuring device used in step S516 described above. At this time, similarly to the above-described step S520, the Zernike cylindrical function system Znp, ⁇ ⁇ ⁇ ⁇ ) is fitted to the wavefront aberration measurement result to obtain an expansion coefficient Cn (Zernike coefficient) for each term. Processing for calculating the component of the wavefront aberration may be performed.
  • Step S 531 When the above step S 531 is completed, it is determined whether or not the projection optical system is within a predetermined tolerance. If the result of the determination in step S 531 is “NG”, the flow proceeds to step S 5 32. If the result of the determination in step S 531 is “OK”, the manufacture of the projection optical system PL is completed.
  • Step S 5 32 In step S 5 32, adjustment using the above-described external adjustment mechanism is performed, and the flow advances to step S 5 29.
  • steps S529 to S532 are repeated until the determination result of step S530 becomes "OKj".
  • the adjustment is performed using the wavefront aberration of a plurality of polarization components, but the wavefront aberration may be measured using only the non-polarization component.
  • the parameter of the optical member that affects the polarization component of the wavefront aberration is correlated with the change in the scalar component of the wavefront aberration. Based on this, the parameters of the optical member may be changed in each step.
  • the influence of birefringence caused by an equiaxed crystal material such as fluorite or barium fluoride is applied to a plurality of polarization components.
  • the incorporation angle of the crystal axis of the refraction member made of this equiaxed crystal material was determined so that the effect of birefringence (polarization aberration) was minimized, and only the optimization of the crystal axis direction was performed. Since the effect of birefringence (polarization aberration) that cannot be completely corrected can be compensated by the amorphous refraction member, good optical performance can be secured.
  • FIG. 17 is a diagram schematically showing an exposure apparatus according to the third embodiment.
  • a pulse light from a light source 40 composed of an ArF excimer laser that supplies a pulse light having a wavelength of 193 nm travels along the X direction and is deflected by an optical path bending prism 41.
  • a diffractive optical element (DOE) provided on the DOE turret 42 is provided.
  • the DOE turret 42 is provided with a plurality of diffractive optical elements of different types. These diffractive optical elements have a predetermined cross-sectional shape in a far field region of the diffractive optical element, for example, a circular cross section, an annular cross section, a multipole cross section (a plurality of eccentric sections with respect to the reference optical axis).
  • the incident light beam is converted so that the light beam has the following pole.
  • the divergent light beam from the diffractive optical element is condensed by the condenser lens group 43, and forms a far-field area of the diffractive optical element near the position of the micro fly's eye lens 44.
  • the micro fly's eye lens 4 is formed by integrally forming a plurality of lens surfaces arranged in a two-dimensional matrix on one or a plurality of substrates. Things.
  • a fly's eye lens having a plurality of lens elements integrated in a two-dimensional matrix may be used.
  • a condenser lens group disposed between the diffractive optical element and the micro fly's eye lens 44 includes a zoom optical system capable of continuously changing the focal length by moving the lens in the optical axis direction, It is preferable to use a variable power optical system such as a multifocal length optical system that can change the focal length discontinuously by exchanging lenses.
  • a secondary light source (surface light source) composed of a plurality of light source images is formed on the exit surface side of the micro fly's eye lens 44. Note that virtual images of a plurality of light sources may be formed at the position of the incident surface of the micro fly's eye lens 44 (or fly's eye lens).
  • the light from the secondary light source is condensed by the condenser optical system 45 and illuminates the variable field stop 46 in a superimposed manner. Then, the light from the variable field stop 46 is used as a blind imaging optical system 47 a through which the aperture of the variable field stop 46 and the reticle R as a projection original plate arranged on the first surface are almost shared. Reticle R is reached via 4 7 c.
  • two optical path bending mirrors 48a and 48b are arranged in the blind imaging optical systems 47a to 47c to deflect the optical path by approximately 180 °. ing.
  • a slit-shaped illumination field is formed in a part of the pattern formation area on the reticle R by the light from the blind imaging optical systems 47a to 47c.
  • the light from this illuminated field passes through the projection optical system PL obtained by the manufacturing method of the first or second embodiment described above and passes through a work piece (photosensitive substrate) arranged on the second surface of the projection optical system. Then, the wafer W is formed, and an image of the pattern in the slit-shaped illumination field is formed on the wafer W.
  • the reticle stage RS supporting the reticle R on the first surface and the wafer stage supporting the wafer W on the second surface are movable in the Y direction, and the magnification of the projection optical system is changed.
  • a slit-shaped imaging region is swept in the Y direction on the wafer WS.
  • a rectangular A pattern image of the reticle R in the pattern formation region is formed in the region.
  • the wafer stage WS is driven to perform scanning exposure on another shot area, and a plurality of shot areas are formed on almost the entire surface of the wafer W.
  • the projection optical system manufactured by the manufacturing method of the first and second embodiments is applied to a scanning exposure apparatus.
  • the manufactured projection optical system can be applied to a batch exposure type projection exposure apparatus.
  • the illumination optical system 41 to 47 c for illuminating the reticle R as the projection original plate arranged on the first surface based on the light from the light source In particular, an optical member made of an equiaxed crystal material (for example, fluorite) is used in a portion where light energy is increased.
  • an optical member made of an equiaxed crystal material for example, fluorite
  • the required optical performance is lower than that of the projection optical system. Therefore, in this embodiment, the crystal axis orientation of the equiaxial crystal material in the illumination optical system is optimized. We did not reduce the effect of birefringence (polarization aberration).
  • the crystal axis orientation of the equiaxed crystal material is optimized or the non-crystal
  • the influence of birefringence (polarization aberration) caused by the equiaxial crystal material may be corrected by an optical member made of a material.
  • the wavelength 1 9 3 nm of pulsed light is applied to A r F excimer laser for supplying the light source as the light source, for example, F 2 laser which supplies the path light of wavelength 1 5 7 nm , it can also be applied K r 2 laser supplying light of wavelength 1 4 7 nm, the a r 2 laser supplying light of wavelength 1 2 6 n ln.
  • a light transmitting member in the illumination optical system 4 1 to 4 7 c equiaxed fluorite or the like fluoride Bariumu Crystalline crystalline materials and fluorine-doped quartz (modified quartz) can be used.
  • modified quartz fluoride Bariumu Crystalline crystalline materials and fluorine-doped quartz
  • FIG. 18 is a diagram schematically showing the projection optical system of the fourth embodiment.
  • the projection optical system of the fourth embodiment described below is also applicable as the projection optical system of the projection exposure apparatus of the third embodiment.
  • FIG. 18A shows a schematic configuration of a projection optical system including a refraction member 51 made of a twin crystal and a refraction member 52 made of an amorphous material
  • FIG. 18B shows a crystal 5 in the refraction member 51
  • FIG. 18C shows the crystal axis of crystal 51 b in refraction member 51.
  • the coordinate systems in FIGS. 18A, 18B and 18C are common as shown.
  • the twin refraction member 51 is composed of two crystals 5 1a of the same phase that are in contact with each other with a twin plane or twin boundary 50S as a boundary.
  • 5 1b are oriented 180 ° rotated around a predetermined common low-index crystal axis (in this embodiment, crystal axis [1 1 1]), or are in contact with each other
  • the two crystals of the phase are mirror images of a given crystal plane (the ⁇ 111 ⁇ plane in this example).
  • the crystal axes [1 1 1] of the two crystals 5 la and 5 1 coincide with the optical axis Ax
  • the crystal 5 1b corresponds to the crystal 5 1a. Is rotated 180 ° around the optical axis Ax in the XY plane. This is because the crystal axes [1 1 1] of the two crystals 51a and 51b coincide with the optical axis Ax, and the crystal 51b is positioned on the XY plane with respect to the crystal 51a.
  • the effect of birefringence polarization aberration
  • the influence of the birefringence (polarization aberration) that cannot be completely canceled by the crystals 51a and 51b can be corrected by the optical member 52 made of an amorphous material as in the above-described embodiment. It is.
  • the deterioration of optical performance due to intrinsic birefringence in the entire crystal refraction member is exploited by utilizing the fact that the influence of birefringence is opposite to each other before and after a twin plane or a twin boundary. It is possible to reduce. This makes it possible to ensure the optical performance of the projection optical system.
  • the crystal axis to be matched with the optical axis is not limited to the crystal axis [1 1 1] and a crystal axis equivalent to the crystal axis [1 1 1]. .
  • a predetermined first group of optical axes is optically defined as the crystal axis [100] or the crystal axis [100].
  • the optical axis of the predetermined second group which is different from the first group, is substantially coincident with the crystal axis [100] or a crystal axis optically equivalent to the crystal axis [100].
  • FIG. 19 is a diagram for explaining the method of the fifth embodiment, and shows the distribution of birefringence with respect to the incident angle of a light ray, similarly to FIGS. 11B and 11C described above.
  • the distribution of birefringence in the first group of refraction members is as shown in FIG. 19 (a)
  • the distribution of birefringence in the second group of refraction members is shown in FIG. 19 (b). It becomes as shown in.
  • FIG. 19 (c) the distribution of birefringence in the whole of the first group of refraction members and the second group of refraction members is as shown in FIG. 19 (c).
  • the region corresponding to the crystal axis [100] coincident with the optical axis is relatively large. This is a region having a refractive index and no birefringence.
  • the regions corresponding to the crystal axes [1 1 1], [1-1 1], [1 1 1-1], [1 1-1] are the regions with relatively small refractive index and no birefringence. Become. Furthermore, the regions corresponding to the crystal axes [1 0 1], [1 0-1], [1 10], [1-10] have relatively large refractive indices for polarized light in the circumferential direction (0 polarized light).
  • the birefringence region has a relatively small refractive index for radially polarized light (R-polarized light).
  • R-polarized light radially polarized light
  • the lens elements of each group are maximally affected by birefringence in the region of 45 ° from the optical axis (the angle between the crystal axis [100] and the crystal axis [101]).
  • the first group of refraction members and the second group of refraction members are relatively rotated about the optical axis by 45 ° to thereby obtain the first group of refraction portions.
  • the effect of the birefringence of the crystal axes [101], [101-1], [110] and [1-110] is substantially reduced.
  • Good imaging performance can be ensured without receiving.
  • the first group of refraction members and the second group of refraction members each have one or more refraction members.
  • the plurality of bending members are not necessarily limited to adjacent bending members.
  • the concept of the group of refracting members in the present embodiment is the same for the refracting members of the third to sixth groups described later.
  • it is preferable that the total thickness of the first group of bending members along the optical axis is substantially equal to the total thickness of the second group of bending members along the optical axis.
  • the birefringence direction in the region of 3.5.26 ° from the optical axis in the method of FIG. The direction of birefringence in a region 45 ° from the optical axis in the method of the embodiment is opposite. Therefore, by adopting a method that combines the method of the fifth embodiment with the method described in FIGS. 11A, 11B and 11C, it is possible to obtain a good A high imaging performance can be ensured.
  • the optical axis of a predetermined first group of refraction members among a plurality of refraction members made of an equiaxed crystal material is set to the crystal axis [100] (or the crystal axis [1 00] and the optical axis of the second group of refraction members different from the first group is optically aligned with the crystal axis [100] (or the crystal axis [100]).
  • the first group of refracting members and the second group of refracting members are rotated relative to each other by 45 ° about the optical axis.
  • the optical axis of the predetermined third group of refraction members is set to the crystal axis [1 1 1]
  • the optical axis of the fourth group of refraction members different from the third group is set to the crystal axis [111] (or the crystal axis).
  • the third group of refraction members and the fourth group of refraction members are rotated relative to each other by 60 ° about the optical axis.
  • the crystal axes optically equivalent to the crystal axis [1 1 1] are the crystal axes [—1 1 1], [1 1 1 1], and [1 1 1].
  • the total thickness of the first group of refracting members along the optical axis is substantially equal to the total thickness of the second group of refracting members along the optical axis; It is preferable that the total thickness of the refraction members along the optical axis be substantially equal to the total thickness of the fourth group of refraction members along the optical axis.
  • the optical axis and the crystal axis [100] (or the crystal axis [100]) of at least one of the plurality of refraction members made of an equiaxed crystal material are used.
  • a crystal axis that is optically equivalent to the above) will be described.
  • the crystal axis having the maximum birefringence [ The areas corresponding to [1 1 0], [1 0 1], and [0 1 1] exist at a pitch of 1 20 °, and the effect of birefringence having a distribution of 30 in the pupil plane, ie, the image plane (wafer) It is considered that an effect such as the occurrence of coma aberration appears on the surface.
  • the vertical and horizontal patterns are dominant in the pattern to be projected on the wafer, if the distribution is 4 mm, the vertical and horizontal patterns are not affected by astigmatism. The collapse of the image does not become noticeable. Therefore, among a plurality of refraction members made of an equiaxed crystal material, the optical axis and the crystal axis [100] of at least one refraction member (or optically equivalent to the crystal axis [100]) By adopting the method of the seventh embodiment that matches the crystal axis, good imaging performance can be secured without being substantially affected by birefringence.
  • the optical axis of a predetermined fifth group is defined as a crystal axis [110] or the crystal axis [110].
  • the optical axis of the predetermined sixth group which is different from the fifth group, is made substantially coincident with the optically equivalent crystal axis, and the optical axis of the crystal axis [110] or the crystal axis [110] is optically equivalent.
  • An example will be described in which the fifth group and the sixth group are relatively rotated by 90 ° about the optical axis so that they substantially coincide with the crystal axis.
  • FIG. 20 is a diagram for explaining the method of the eighth embodiment of the present invention, and shows the distribution of birefringence with respect to the incident angle of a light ray, similarly to FIGS. 11B and 11 to 19 described above. .
  • the distribution of birefringence in the fifth group of refraction members is as shown in FIG. 20 (a)
  • the distribution of birefringence in the sixth group of refraction members is shown in FIG. It becomes as shown in.
  • FIG. 20 (c) the distribution of birefringence in the whole of the fifth group of refraction members and the sixth group of refraction members is as shown in FIG. 20 (c).
  • the region corresponding to the crystal axis [1 10] coinciding with the optical axis is located in one direction.
  • the birefringence region has a relatively large refractive index for polarized light and a relatively small refractive index for polarized light in the other direction (a direction orthogonal to one direction).
  • the region corresponding to the crystal axes [100] and [010] is a region having a relatively large refractive index and no birefringence.
  • the region corresponding to the crystal axes [111] and [111] is a region having a relatively small refractive index and no birefringence.
  • the refractive index of the fifth group and the refractive group of the sixth group are 90 around the optical axis.
  • the entire refracting member of the fifth group and the refracting member of the sixth group have almost no influence on the crystal axis [110] where the birefringence is maximum, and the optical axis does not.
  • the vicinity is a region having an intermediate refractive index and no birefringence. That is, when the method of the eighth embodiment is adopted, good imaging performance can be secured without being substantially affected by birefringence.
  • the total thickness of the fifth group of refraction members along the optical axis is substantially equal to the total thickness of the sixth group of refraction members along the optical axis.
  • the birefringent region is located at the center (the optical axis and its vicinity), it is more preferable to apply the method to a thin negative lens at the center.
  • one method appropriately selected from the four methods described above may be employed, or a plurality of methods selected from the four methods may be employed in combination.
  • a refraction member made of an equiaxed crystal material when the maximum angle of a light beam passing through the refraction member with respect to the optical axis exceeds 20 °, birefringence is performed regardless of the arrangement position. Susceptible to. Therefore, for a refraction member made of an equiaxed crystal material in which the maximum angle of the passing light beam with respect to the optical axis exceeds 20 °, FIG. 11A, FIG. 11B and FIG. It is preferable to apply the method described in (1) or the method described in the fifth to eighth examples alone or in combination. With this configuration, the influence of birefringence can be further reduced, and good optical performance can be secured.
  • the pupil position (the pupil position closest to the image side (second surface side in the case of a multiple-imaging optical system having an intermediate imaging point)) is closer to the second surface.
  • the maximum angle of the passing light beam with respect to the optical axis tends to be large. Therefore, for the refraction member formed of an equiaxed crystal material among the refraction members arranged between the pupil position closest to the second surface and the second surface, the method shown in FIG. number 5 It is preferable to apply the methods shown in the eighth to eighth embodiments individually or in combination. With this configuration, the influence of birefringence can be further reduced, and good optical performance can be ensured.
  • a seventh group of light transmitting members formed so that a predetermined crystal axis and an optical axis substantially coincide with each other;
  • the eighth group of light transmitting members formed so that their axes substantially coincide with each other is defined as the glass path length when the light beam corresponding to the maximum numerical aperture of the projection optical system passes through the seventh group of light transmitting members.
  • L7 be a path length when a ray corresponding to the maximum numerical aperture of the projection optical system passes through the eighth group of light transmitting members, and let L be a predetermined wavelength; It is preferable to satisfy the following conditional expression: IL 7 ⁇ L 8 ⁇ / ⁇ ⁇ 3 X 10 + 5 According to this configuration, even in a projection optical system having a large image-side numerical aperture, the effects of birefringence can be reduced by the light transmitting members of the seventh and eighth units. In order to further reduce the influence of birefringence, it is preferable to set the upper limit of Expression (9) to 2.6 ⁇ 10 + 5 .
  • Expression (9) 2.6 ⁇ 10 + 5
  • FIG. 21 is a diagram showing a lens configuration of a projection optical system according to Example 1 of the present invention.
  • the projection optical system of this embodiment uses quartz SiO 2 and fluorite C a F 2 as optical materials, and an image of the reticle R arranged on the first surface is arranged on the second surface. Project on W.
  • the projection optical system includes, in order from the reticle R side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power.
  • the first lens group G1 includes a lens LP11 formed of fluorite and having a positive refractive power.
  • the third lens group G3 includes lenses LP12, LP13, LP14, and LP15 formed of fluorite.
  • the aperture stop AS is arranged in the third lens group G3.
  • the reference wavelength of the projection optical system of the first embodiment is 193.3 nm (ArF excimer laser), and is an optical system that is telecentric on both sides.
  • the first lens group G1 having a positive refractive power is The telecentric luminous flux emitted from the second lens group G2 is relayed to the second lens group G2, and a positive distortion is generated in advance, whereby the negative distortion generated by the second and third lens groups G2 and G3 is reduced.
  • the second lens group G2 having a negative refractive power mainly contributes to the correction of the Bebbar sum and realizes the flatness of the image plane.
  • the third lens group G3 having a positive refractive power is based on the luminous flux relayed from the second lens group G2, and telecentrically forms an image on the second surface while suppressing the generation of spherical aberration as much as possible. It plays the role of forming an image under a luminous flux.
  • the quartz glass material causes irradiation fluctuation such as absorption and compaction with respect to the ArF laser.
  • fluorite glass material for the first lens group having a positive refractive power it becomes possible to suppress the deterioration of the irradiation fluctuation caused by the quartz glass material.
  • the luminous flux (partial diameter) passing through the center of the optical axis and the luminous flux passing through the periphery are relatively far from each other on the lens surface. In the area, the difference between the center and the periphery becomes noticeable, and the aberration fluctuation increases. Therefore, by using fluorite for the first lens group G1, it is possible to efficiently suppress aberration degradation due to irradiation fluctuation.
  • the lens components formed of fluorite in the first lens group G1 has a positive refractive power.
  • the influence of aberration degradation due to irradiation variation such as coma caused by the first lens group G1 and the difference between the center and the periphery of the projection area is greater than that caused by other lens groups.
  • the optical path length passing through the glass material is longer in the light beam passing through the center of the optical axis than in the peripheral light beam, and is therefore more susceptible to fluctuations in the irradiation of the glass material.
  • the fluorite glass for a lens having a positive refractive power from the viewpoint of efficiently controlling aberration fluctuation due to irradiation fluctuation. Also, from the viewpoint of achromatism due to the difference in refractive index from quartz, it is desirable to use fluorite glass for lenses having a positive refractive power.
  • the third lens group G3 includes a lens component formed of at least one fluorite. It is preferred to have a minute.
  • the luminous flux diverged by the second lens group G2 is converged by the third lens group G3, so that the irradiation energy density of each lens of the third lens group G3 is high. Become. This causes compaction, a type of irradiation variation. If fluorite glass material is used for the third lens group, the effect of reducing the effect of this compaction can be obtained. Furthermore, if fluorite glass is used for thick glass near the surface where the irradiation energy density is concentrated, compaction can be corrected more efficiently.
  • Table 1 below shows the specification values of the projection optical system according to the first example.
  • 3 indicates the projection magnification (lateral magnification)
  • NA indicates the numerical aperture on the image side (second surface side)
  • B indicates the diameter of the image circle on the image plane.
  • the surface numbers indicate the order from the reticle side along the direction in which light rays travel from the reticle surface, which is the object surface (first surface), to the wafer surface, which is the image surface (second surface).
  • R indicates the radius of curvature of each surface (vertical radius of curvature in the case of an aspheric surface)
  • d indicates the surface interval of each surface on the optical axis.
  • Table 2 shows the aspheric coefficient for each aspheric surface.
  • y be the height in the direction perpendicular to the optical axis
  • Z be the distance (sag amount) along the optical axis from the tangent plane at the vertex of the aspheric surface to a position on the aspheric surface at height y.
  • r is the radius of curvature at the apex
  • K is the conic coefficient
  • a to F are the n-th order aspherical coefficients, the following equation (10) is obtained.
  • Em described in the column of each aspheric coefficient in 2 represents 10 m.
  • mm can be used as an example of the unit of the radius of curvature and the surface interval in the specification values of the present embodiment.
  • the refractive index of each glass material at a wavelength of 193.3 nm is shown below. Si0 2 1.5 6 0 326 1
  • the azimuth angles (rotation angles around the optical axis) of the lens components LP11 to LP15 made of fluorite in the optical members constituting the projection optical system are adjusted. This corrects the adverse effect (polarization aberration) due to birefringence.
  • FIG. 22A shows the points of the lens components LP11 to LP15 made of fluorite on the optical axis when the crystal axis [1 1 1] of fluorite matches the optical axis and their azimuths are aligned in the same direction. 4 shows an image intensity distribution.
  • the maximum value of PSF is 90.72.
  • Fig. 22B shows that the azimuth of the lens component LP14 of the fluorite lens components LP11 to LP15 is rotated by 180 ° around the optical axis with respect to the other fluorite lens components LP11 to LP13 and LP15.
  • 7 shows a point image intensity distribution on the optical axis in the case of the above.
  • the maximum value of PSF is 96.41.
  • the scalar aberration 30 component is large and the PSF value is as low as 90.6, whereas the azimuth of the lens component LP14 Horn, other stone lens components; LP11 ⁇ ! Rotated 180 ° around the optical axis with respect to ⁇ 13,1 ⁇ 15 (When the relative azimuth between lens component LP14 and fluorite lens components LP11-LP13, LP15 is 60 ° In the case of Fig. 22B), the 3 ⁇ component of the scalar aberration becomes smaller, 3 value also up to about 96.4 To
  • the optical performance of the projection optical system can be improved.
  • Fig. 22C shows the state of Fig. 22B (in which the azimuth of the lens component LP14 is rotated by 180 ° relative to the other fluorite lens components LP11 to LP13 and LP15 around the optical axis).
  • the lens components LS1 to LS17 made of quartz in the projection optical system, the lens components LS12 and LS14 near the pupil are given a birefringence distribution for correcting the aberration shown in Fig. 22B. .
  • the maximum value of the PSF value becomes 99.86, and the optical performance of the projection optical system can be further improved.
  • Fig. 23A shows a lens component LP11 to LP15 made of fluorite, as in Fig. 22A, when the crystal axis [1 1 1] of fluorite matches the optical axis, and the azimuths are aligned in the same direction.
  • 5 shows a point image intensity distribution on the optical axis at.
  • FIG. 23B shows that, among the fluorite lens components LP11-LP15, the optical axes of the lens components LP11, LP12 and LP13 coincide with the crystal axis [100] of the fluorite, and the optical axes of the lens components LP14 and LP15.
  • the azimuths of the lens components LP11 and LP13 around the optical axis are aligned, and the azimuth of the lens component LP12 is changed to the lens component LP11. And it is rotated around the optical axis by 45 ° with respect to LP13.
  • the azimuth of one lens component is set to be 90 ° around the optical axis with respect to the azimuth of one lens component. Rotating.
  • the maximum value of the PSF value is 99.4, and it can be seen that the optical system has good optical performance.
  • the lens components LS1 to LS17 made of quartz is given a predetermined birefringence distribution to further improve the optical performance.
  • FIG. 24 is a diagram showing a lens configuration of a projection optical system according to Example 2 of the present invention.
  • the projection optical system of this embodiment uses quartz SiO 2 and fluorite C a F 2 as optical materials, and an image of the reticle R arranged on the first surface is arranged on the second surface. Project on W.
  • the projection optical system of the second embodiment includes lenses LP11 to LP16 formed of fluorite and having a positive refractive power, and lenses LS1 to LS16 formed of quartz.
  • the reference wavelength of the projection optical system of the second embodiment is 193.3 nm (ArF excimer laser), which is a double-sided telecentric optical system.
  • Table 3 shows the specification values of the projection optical system according to the second example.
  • the meanings of the symbols in Table 3 are the same as those in Table 1, and the description is omitted here.
  • Table 4 shows the aspheric coefficient for each aspheric surface.
  • the aspherical shape is represented by the above-described equation (10).
  • Era described in the column of each aspheric coefficient represents ⁇ .
  • mm can be used as an example of the unit of the radius of curvature and the surface interval in the specification values of the present embodiment.
  • the refractive index of each glass material at the wavelength of 193.3 nm is as shown in the first embodiment.
  • FIG. 25A shows the point image intensity distribution on the optical axis when the influence of the intrinsic birefringence of fluorite is neglected for comparison.
  • the maximum value of PSF is 99.97.
  • Fig. 25B shows a point image of the lens components LP11 to LP16 made of fluorite on the optical axis when the crystal axis [111] of the fluorite matches the optical axis and their azimuths are aligned in the same direction. 3 shows an intensity distribution.
  • the maximum value of PSF is 94.57.
  • Fig.25C shows the azimuth of the lens component LP11 of the fluorite lens components LP11 to LP16, which is rotated by 60 ° around the optical axis relative to the other fluorite lens components LP12 to LP14 and LP16.
  • the point image intensity distribution on the optical axis when the azimuth of the lens component LP15 is rotated by 60 ° relative to the other fluorites: LP12 to LP14 and LP16 around the optical axis is shown.
  • the maximum number of PSF is 95.86.
  • Fig. 25D shows the state of Fig. 25C (in which the azimuths of lens components LP11 and LP15 are rotated by 60 ° around the optical axis relative to the other fluorite lens components LP12 to LP14 and LP16).
  • the lens component LSI4 near the pupil is provided with a birefringence distribution for correcting the aberration shown in FIG. 25C.
  • the maximum value of the PSF value becomes 99.82.
  • the maximum value of PSF in Fig. 25A is 99.92
  • the maximum value of PSF is improved to almost the same value.
  • the optical performance of the projection optical system can be further improved.
  • the method in which the crystal axis [1 1 1] of the fluorite lens component in the projection optical system is made to coincide with the optical axis is used. Similar to the embodiment, another crystal axis may be coincident with the optical axis.
  • Figure 26A shows the lens component of the fluorite lens components LP11 to LP16 in the projection optical system.
  • the optical axes of LP11 and LP12 are aligned with the crystal axis of fluorite [1 10], the optical axes of lens components LP 13 and LP14 are aligned with the crystal axis of fluorite [100], and the lens components LP15 and LP16 are aligned.
  • Fig. 3 shows a point image intensity distribution when the optical axis is matched with the crystal axis [1 1 1] of fluorite.
  • the azimuth of one lens component is shifted by 90 ° with respect to the azimuth of one lens component. Rotating around.
  • the azimuth of one lens component is rotated around the optical axis by 45 ° with respect to the azimuth of one lens component.
  • the azimuth of one lens component is rotated around the optical axis by 60 ° with respect to the azimuth of the other lens component.
  • FIG. 26B shows, in addition to the state of FIG. 26A, a lens component LS I ⁇ made of quartz in the projection optical system.
  • This is a point image intensity distribution on the optical axis when a birefringence distribution for correcting the difference represented by is given.
  • the maximum value of the PSF value is 99.776.
  • the maximum value of PSF in Fig. 25A is 99.92, while in Fig. 25D, the maximum value of PSF is almost equal. It is clear that the optical performance of the projection optical system has been further improved.
  • the reticle (mask) is illuminated by the illumination device (illumination step), and the transfer pattern formed on the mask is exposed on the photosensitive substrate using the projection optical system (exposure step).
  • microdevices semiconductor elements, imaging elements, liquid crystal display elements, thin-film magnetic heads, etc.
  • FIG. 27 shows an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of each embodiment. It will be described with reference to FIG.
  • step 301 of FIG. 27 a metal film is deposited on one lot of wafers.
  • step 302 a photoresist is applied on the metal film on the wafer of the lot.
  • step 303 the image of the pattern on the mask is sequentially exposed and transferred to each shot area on the one-lot wafer via the projection optical system using the exposure apparatus of each embodiment.
  • step 304 the photoresist on the one lot of wafers is developed, and then in step 304, etching is performed on the one lot of wafers using the resist pattern as a mask.
  • a circuit pattern force S corresponding to the pattern on the mask is formed in each shot area on each wafer.
  • a semiconductor device having an extremely fine circuit pattern can be obtained with high throughput.
  • steps 301 to 305 a metal is vapor-deposited on the wafer, a resist is applied on the metal film, and the respective steps of exposure, development, and etching are performed. It is needless to say that a silicon oxide film may be formed on the wafer, a resist may be applied on the silicon oxide film, and each process such as exposure, development, and etching may be performed.
  • a liquid crystal display element as a micro device can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate).
  • a predetermined pattern circuit pattern, electrode pattern, etc.
  • a photosensitive substrate a glass substrate coated with a resist or the like
  • the process is executed.
  • a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate.
  • the exposed substrate undergoes each of a developing process, an etching process, a reticle peeling process, and the like, whereby a predetermined pattern is formed on the substrate, and the process proceeds to a next color filter forming process 402.
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or R, G, B
  • a color filter in which a set of three stripe filters is arranged in a plurality of horizontal scanning line directions is formed.
  • a cell assembling step 403 is performed.
  • a liquid crystal panel liquid crystal cell
  • the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter forming layer are formed. Liquid crystal is injected between the color filter obtained in step 402 and the liquid crystal panel (liquid crystal cell).
  • a module assembling step 404 components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element.
  • components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element.

Abstract

A method for producing a projection optical system for focusing a light of a predetermined wavelength to form on a second plane a second image of a first image formed on a first plane. The optical system includes a refractive member made of at least one crystalline material of isometric system and having a transmittance to a light with a predetermined wavelength. The method comprises a designing step of acquiring predetermined design data, the designing step including a substep of determining the orientation of the crystallographic axis of a refractive member made of at least one crystalline material of isometric system while carrying out evaluation about a light having a first polarized component and a second polarized component different from the first one, a crystalline material preparing step for preparing the crystalline material, a crystal axis determining step of determining the crystal axis of the crystalline material, a refractive member forming step of forming the refractive member of predetermined shape from the crystalline material, and an assembling step of disposing the refractive member depending on the orientation of the crystallographic axis of the refractive member determined at the designing step.

Description

糸田  Itoda
投影光学系の製造方法  Manufacturing method of projection optical system
技術分野 Technical field
本発明は、 投影光学系、 当該投影光学系の製造方法、 及び当該投影光学系を備 えた露光装置に関し、 特に半導体素子や液晶表示素子などのマイクロデバイスを フォトリソグラフイエ程で製造する際に使用される露光装置に好適な投影光学系 に関するものである。  The present invention relates to a projection optical system, a method for manufacturing the projection optical system, and an exposure apparatus provided with the projection optical system, and is particularly used for manufacturing a micro device such as a semiconductor device or a liquid crystal display device by a photolithographic process. The present invention relates to a projection optical system suitable for an exposure apparatus to be used.
背景技術 Background art
半導体集積回路や液晶ディスプレイ等の電子デバイス (マイクロデバイス) の 微細パターンの形成に際して、 形成すべきパターンを 4〜 5倍程度に比例拡大し て描画したフォ トマスク (レチクルとも呼ぶ) のパターンを、 投影露光装置を用 いてウェハ等の感光性基板 (被露光基板) 上に縮小露光転写する方法が用いられ ている。この種の投影露光装置では、半導体集積回路の微細化に対応するために、 その露光波長が短波長側へシフトし続けている。  When forming micropatterns for electronic devices (microdevices) such as semiconductor integrated circuits and liquid crystal displays, the pattern of the photomask (also called a reticle) drawn by enlarging the pattern to be formed by about 4 to 5 times is projected. A method of reducing exposure transfer onto a photosensitive substrate (substrate to be exposed) such as a wafer using an exposure apparatus is used. In this type of projection exposure apparatus, the exposure wavelength keeps shifting to the shorter wavelength side in order to cope with miniaturization of semiconductor integrated circuits.
現在、 露光波長は K r Fエキシマレーザの 2 4 8 n mが主流となっているが、 より短波長の A r Fエキシマレーザの 1 9 3 n mも実用化段階に入りつつある。 さらに、 波長 1 5 7 n mの F 2 レーザや波長 1 4 6 n mの K r 2 レーザ、 波長 1 2 6 11 111の 1" 2 レーザ等の、 いわゆる真空紫外域と呼ばれる波長帯の光を供給 する光源を使用する投影露光装置の提案も行なわれている。 また、 投影光学系の 大開口数 (N A) 化によっても高解像度化が可能であるため、 露光波長の短波長 化のための開発だけでなく、 より大きい開口数を有する投影光学系の開発もなさ れている。 At present, the exposure wavelength of KrF excimer laser is 248 nm, but the shorter wavelength of ArF excimer laser is 193 nm. In addition, it supplies light in a wavelength band called the vacuum ultraviolet region, such as an F 2 laser with a wavelength of 157 nm, a Kr 2 laser with a wavelength of 14.6 nm, and a 1 " 2 laser with a wavelength of 1 2 6 11 111. Projection exposure systems that use light sources are also being proposed, and high resolution can be achieved by increasing the numerical aperture (NA) of the projection optical system. Instead, a projection optical system having a larger numerical aperture has been developed.
このように波長の短い紫外域の露光光に対しては、 透過率や均一性の良好な光 学材料 (レンズ材料) は限定される。 A r Fエキシマレーザを光源とする投影光 学系では、 レンズ材料として合成石英ガラスも使用可能であるが、 1種類のレン ズ材料では色収差の補正を十分に行うことができないので、 一部のレンズにフッ 化カルシウム結晶 (蛍石) が用いられる。 一方、 F 2 レーザを光源とする投影光 学系では、 使用可能なレンズ材料は実質上フッ化カルシウム結晶 (蛍石) に限定 される。 Optical materials (lens materials) with good transmittance and uniformity for exposure light in the ultraviolet region having such a short wavelength are limited. In a projection optical system using an ArF excimer laser as a light source, synthetic quartz glass can be used as a lens material.However, since one type of lens material cannot sufficiently correct chromatic aberration, some Float the lens Calcium iodide crystals (fluorite) are used. On the other hand, in the projection optical science system to a light source F 2 laser, the lens material available is limited to substantially calcium fluoride crystal (fluorite).
発明の開示 Disclosure of the invention
最近、 このように波長の短い紫外線に対しては、 立方晶系であるフッ化カルシ ゥム結晶 (蛍石) においても、 固有複屈折が存在することが報告されている。 電 子デバイスの製造に用いられる投影光学系のような超高精度の光学系においては、 レンズ材料の複屈折に伴って生じる収差は致命的であり、 複屈折の影響を実質的 に回避したレンズ構成およびレンズ設計の採用が不可欠である。  Recently, it has been reported that such birefringence exists even in cubic calcium fluoride crystals (fluorite) for ultraviolet rays having such a short wavelength. In an ultra-high-precision optical system such as a projection optical system used in the manufacture of electronic devices, the aberration caused by the birefringence of the lens material is fatal, and a lens that substantially avoids the effects of birefringence Adoption of configuration and lens design is essential.
本発明は、 前述の課題に鑑みてなされたものであり、 例えば蛍石のような固有 複屈折を示す結晶材料を用いても、 複屈折の影響を実質的に受けることなく良好 な光学性能を確保することを目的とする。  The present invention has been made in view of the above-described problems. For example, even when a crystalline material exhibiting intrinsic birefringence such as fluorite is used, good optical performance is obtained without being substantially affected by birefringence. The purpose is to secure.
上述の目的を達成するために、 本発明の請求項 1に係る発明は、 所定波長の光 に基づいて第 1面の像を第 2面上に結像する投影光学系であって前記所定波長の 光に対して透過性を有する少なくとも 1つの等軸晶系の結晶材料からなる屈折部 材を含む投影光学系の製造方法である。 そして、 第 1の偏光成分及び該第 1の偏 光成分とは異なる第 2の偏光成分の光に関する評価を行いつつ、 前記少なくとも 1つの等軸晶系の結晶材料からなる屈折部材の結晶軸の方位を定める補助工程を 含み、 所定の設計データを得る設計工程と ;前記等軸晶系の結晶材料を準備する 結晶材料準備工程と ;前記等軸晶系の結晶材料の結晶軸を測定する結晶軸測定ェ 程と ;前記設計工程での前記設計データに基づいて、 前記等軸晶系の結晶材料か ら所定形状の屈折部材を形成する屈折部材形成工程と ;前記設計工程で得られた 前記屈折部材の結晶軸方位に基づいて、 前記屈折部材を配置する組上工程と ;を 含むことを特徴とする。  In order to achieve the above object, an invention according to claim 1 of the present invention is directed to a projection optical system that forms an image on a first surface on a second surface based on light having a predetermined wavelength. This is a method for producing a projection optical system including a refraction member made of at least one equiaxed crystal material having transparency to the light. Then, while evaluating the light of the first polarized light component and the light of the second polarized light component different from the first polarized light component, the crystal axis of the refraction member made of the at least one equiaxed crystal material is determined. A design step of obtaining predetermined design data, including an auxiliary step of determining an orientation; a crystal material preparing step of preparing the equiaxed crystal material; and a crystal for measuring a crystal axis of the equiaxed crystal material. An axis measurement step; a refraction member forming step of forming a refraction member having a predetermined shape from the equiaxed crystal material based on the design data in the design step; Assembling the refraction member based on the crystal axis orientation of the refraction member.
この発明によれば、 等軸晶系の結晶材料に起因する複屈折の影響を複数の偏光 成分に関して評価しつつ、 この等軸晶系の結晶材料からなる屈折部材の結晶軸の 組み込み角度を複屈折の影響が極小となるように定めることが可能であるため、 良好な光学性能を確保できる。 According to the present invention, while evaluating the influence of birefringence due to the equiaxed crystal material with respect to a plurality of polarization components, the crystal axis of the refraction member made of the equiaxed crystal material is evaluated. Since it is possible to determine the angle of incorporation so that the effect of birefringence is minimized, good optical performance can be ensured.
更に、 上述の目的を達成するために、 本発明の請求項 1 6に係る発明は、 所定 波長の光に基づいて第 1面の像を第 2面上に結像する投影光学系であって、 前記 所定波長の光に対して透過性を有する少なくとも 1つの等軸晶系の結晶材料から なる等軸晶系屈折部材と ;該等軸晶系屈折部材が有する固有複屈折による光学性 能の悪化を補償するための非結晶材料からなる非結晶屈折部材と ;を備えること を特徴とする。  Furthermore, in order to achieve the above object, an invention according to claim 16 of the present invention is a projection optical system that forms an image of a first surface on a second surface based on light of a predetermined wavelength. An equiaxed refraction member made of at least one equiaxed crystal material having transparency to the light of the predetermined wavelength; and an optical performance due to intrinsic birefringence of the equiaxed refraction member. And a non-crystalline refraction member made of a non-crystalline material for compensating the deterioration.
この発明によれば、 等軸晶系の結晶材料からなる等軸晶系屈折部材が有する固 有複屈折による光学性能の悪化を、 非結晶屈折部材により補償することが可能で あるため、 良好な光学性能を確保することが可能である。  According to the present invention, deterioration of optical performance due to intrinsic birefringence of an equiaxed refraction member made of an equiaxed crystal material can be compensated for by a non-crystal refraction member. Optical performance can be ensured.
また、 上述の目的を達成するために、 更に本発明に係る発明は、 所定波長の光 に基づいて第 1面の像を第 2面上に結像する投影光学系であって、 前記所定波長 の光に対して透過性を有する双晶からなる双晶屈折部材を備えていることを特徴 とする。  According to another aspect of the present invention, there is provided a projection optical system that forms an image of a first surface on a second surface based on light of a predetermined wavelength, A twin refraction member made of a twin having transparency to the light.
.双晶は、 互いに接している同一相の 2つの結晶が所定の共通の低指数の結晶軸 のまわりに 1 8 0 ° 回転した方位関係となっているもの、 或いは互いに接してい る同一相の 2つの結晶が所定の結晶面に関して鏡像関係となっているものである。 この双晶を投影光学系中の結晶屈折部材として用いることで、 複屈折の影響が双 晶面又は双晶境界の前後で互いに逆向きとなるため、 結晶屈折部材全体では固有 複屈折による光学性能の悪化を低減することが可能である。 これにより、 投影光 学系の光学性能を確保することが可能となる。  A twin is one in which two crystals of the same phase that are in contact with each other are oriented 180 degrees around a given common low-index crystal axis, or that are in contact with each other. Two crystals are in a mirror image relationship with respect to a predetermined crystal plane. By using this twin as a crystal refraction member in the projection optical system, the effects of birefringence are opposite to each other before and after the twin plane or twin boundary. Can be reduced. This makes it possible to ensure the optical performance of the projection optical system.
なお、 本発明の請求の範囲中、 第 1群の光透過部材と第 2群の光透過部材とが 光軸を中心としてほぼ 4 5 ° だけ相対的に回転した位置関係を有するとは、 第 1 群の光透過部材ぉよび第 2群の光透過部材における光軸とは異なる方向に向けら れた所定の結晶軸(たとえば結晶軸 [ 0 1 0 ]、 [ 0 0 1 ]、 [ 0 1— 1 ]、または[ 0 1 1])同士の光軸を中心とした相対的な角度がほぼ 45° であることを意味する。 なお、 結晶軸 [1 00] を光軸とする場合には、 光軸を中心とした複屈折の影響 の回転非対称性が 90° の周期で現れるため、 光軸を中心としてほぼ 4 5° だけ 相対的に回転した位置関係を有することは、 光軸を中心としてほぼ 4 5° + (n X 9 0° ) だけ相対的に回転した位置関係を有することと同じ意味である (nは 整数である)。 It should be noted that, in the claims of the present invention, the first group of light transmitting members and the second group of light transmitting members have a positional relationship of being relatively rotated about 45 ° about the optical axis. Predetermined crystal axes (for example, crystal axes [0110], [001], [011]) oriented in a direction different from the optical axis of the first group of light transmitting members and the second group of light transmitting members. — 1] or [0 1 1]) means that the relative angle between the optical axes is about 45 °. When the crystal axis [100] is used as the optical axis, the rotational asymmetry due to the effect of birefringence about the optical axis appears at a period of 90 °, so that it is only about 45 ° about the optical axis. Having a relatively rotated positional relationship is equivalent to having a relatively rotated positional relationship of approximately 45 ° + (n X 90 °) about the optical axis (where n is an integer is there).
また、 本発明の請求の範囲中、 第 3群の光透過部材と第 4群の光透過部材とが 光軸を中心としてほぼ 6 0° だけ相対的に回転した位置関係を有するとは、 第 3 群の光透過部材ぉよび第 4群の光透過部材における光軸とは異なる方向に向けら れた所定の結晶軸(たとえば結晶軸 [— 1 1 1]、 [1 1ー 1]、または[1ー 1 1]) 同士の光軸を中心とした相対的な角度がほぼ 60° であることを意味する。なお、 結晶軸 [1 1 1] を光軸とする場合には、 光軸を中心とした複屈折の影響の回転 非対称性が 1 20° の周期で現れるため、 光軸を中心としてほぼ 60° だけ相対 的に回転した位置関係を有することは、 光軸を中心としてほぼ 60° + (n X l 20° ) だけ相対的に回転した位置関係を有することと同じ意味である (nは整 数である)。  Further, in the claims of the present invention, it is defined that the third group of light transmitting members and the fourth group of light transmitting members have a positional relationship relatively rotated by about 60 ° about the optical axis. A predetermined crystal axis (for example, a crystal axis [—111], [111-1], or a crystal axis) oriented in a direction different from the optical axis of the third group of light transmitting members and the fourth group of light transmitting members. [1-1] means that the relative angle between the optical axes is about 60 °. When the crystal axis [1 1 1] is used as the optical axis, the rotational asymmetry due to the effect of birefringence around the optical axis appears at a period of 120 °, so it is almost 60 ° around the optical axis. Having a positional relationship rotated relative to the optical axis is equivalent to having a positional relationship rotated relative to the optical axis by about 60 ° + (n X l 20 °) (where n is an integer). Is).
また、 本発明の請求の範囲中、 第 5群の光透過部材と第 6群の光透過部材とが 光軸を中心としてほぼ 9 0° だけ相対的に回転した位置関係を有するとは、 第 5 群の光透過部材ぉよび第 6群の光透過部材における光軸とは異なる方向に向けら れた所定の結晶軸 (たとえば結晶軸 [00 1]、 [- 1 1 1]、 [- 1 1 0]、 または  Further, in the claims of the present invention, the fifth group of light transmitting members and the sixth group of light transmitting members have a positional relationship relatively rotated by about 90 ° about the optical axis. Predetermined crystal axes (eg, crystal axes [00 1], [-111], [-1]) oriented in directions different from the optical axes of the fifth group of light transmitting members and the sixth group of light transmitting members. 1 0], or
[1 - 1 1])同士の光軸を中心とした相対的な角度がほぼ 90° であることを意 味する。 なお、 結晶軸 [1 1 0] を光軸とする場合には、 光軸を中心とした複屈 折の影響の回転非対称性が 1 8 0° の周期で現れるため、 光軸を中心としてほぼ 90° だけ相対的に回転した位置関係を有することは、 光軸を中心としてほぼ 9 0° + (n X 1 8 0° ) だけ相対的に回転した位置関係を有することと同じ意味 である (nは整数である)。 図面の簡単な説明 [1-1 1]) means that the relative angle between the optical axes is about 90 °. When the crystal axis [1 110] is used as the optical axis, the rotational asymmetry of the effect of birefringence around the optical axis appears at a period of 180 °, so that it is almost Having a positional relationship relatively rotated by 90 ° has the same meaning as having a positional relationship rotated relatively by approximately 90 ° + (n X 180 °) about the optical axis ( n is an integer). BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の第 1実施例による投影光学系の製造方法の概略を示すフローチ ヤートである。  FIG. 1 is a flowchart schematically showing a method for manufacturing a projection optical system according to a first embodiment of the present invention.
図 2は本発明の第 1実施例における設計工程 S 1を概略的に示すフローチヤ一 トである。  FIG. 2 is a flowchart schematically showing the design process S1 in the first embodiment of the present invention.
図 3は本発明の第 1実施例における投影光学系の光学性能の評価点の一例を示 す図である。  FIG. 3 is a diagram showing an example of evaluation points of the optical performance of the projection optical system according to the first embodiment of the present invention.
図 4は本発明の第 1実施例におけるステップ S 1 2の詳細を説明するためのフ ローチャートである。 図 5は本発明の第 1実施例における等軸晶系の結晶材料の結晶軸方位を説明す るための図である。  FIG. 4 is a flow chart for explaining details of step S12 in the first embodiment of the present invention. FIG. 5 is a view for explaining the crystal axis orientation of the equiaxed crystal material in the first embodiment of the present invention.
図 6は本発明の第 1実施例における結晶材料準備工程 S 2の詳細を示すフロー チャートである。  FIG. 6 is a flowchart showing details of the crystal material preparing step S2 in the first embodiment of the present invention.
図 7はラゥェカメラを概略的に示す図である。  FIG. 7 is a diagram schematically showing a ray camera.
図 8は複屈折測定機の概略的な構成を示す図である。  FIG. 8 is a diagram showing a schematic configuration of a birefringence measuring instrument.
図 9はレンズの面形状の誤差測定するための干渉計装置の概略的な構成を示す 図である。  FIG. 9 is a diagram showing a schematic configuration of an interferometer apparatus for measuring an error of a lens surface shape.
図 1 0は本発明の第 2実施例による投影光学系の製造方法の概略を示すフロー チャートである。  FIG. 10 is a flowchart showing an outline of a method for manufacturing a projection optical system according to the second embodiment of the present invention.
図 1 1 A、図 1 1 B及び図 1 1 Cは複数の等軸晶系の結晶材料の組み合わせによ つて固有複屈折を低減させる手法の一例を示す図である。  FIG. 11A, FIG. 11B, and FIG. 11C are diagrams illustrating an example of a method of reducing intrinsic birefringence by combining a plurality of equiaxed crystal materials.
図 1 2は屈折率の絶対値及ぴ屈折率分布を測定するための干渉計装置を概略的 に示す図である。  FIG. 12 is a diagram schematically showing an interferometer device for measuring the absolute value of the refractive index and the refractive index distribution.
図 1 3は本発明の第 2実施例に係る投影光学系の製造方法の組上工程 S 5の詳 細を示すフローチャートである。  FIG. 13 is a flowchart showing details of the assembling step S5 of the method for manufacturing a projection optical system according to the second embodiment of the present invention.
図 1 4は位相回復法の原理を用いる収差測定装置を概略的に示す図である。 図 1 5は本発明の第 2実施例に係る投影光学系の外部調整機構を概略的に示す 図である。 FIG. 14 is a diagram schematically showing an aberration measuring apparatus using the principle of the phase retrieval method. FIG. 15 is a diagram schematically showing an external adjustment mechanism of the projection optical system according to the second embodiment of the present invention.
図 1 6 A、図 1 6 B及び図 1 6 Cは非球面が形成される光学部材及び Z又は複屈 折分布が変更される光学部材を説明するための図である。  FIG. 16A, FIG. 16B, and FIG. 16C are views for explaining an optical member having an aspheric surface and an optical member having a changed Z or birefringence distribution.
図 1 7は第 1実施例又は第 2実施例に従って製造された投影光学系を備えた露 光装置を概略的に示す図である。  FIG. 17 is a view schematically showing an exposure apparatus including a projection optical system manufactured according to the first embodiment or the second embodiment.
図 1 8 A、図 1 8 B及び図 1 8 Cは複数の等軸晶系の結晶材料の組み合わせによ つて固有複屈折を低減させる手法の一例としての第 4実施例の投影光学系を模式 的に示す図及び部材 5 l a及び 5 1 bの結晶方向を示す図である。  FIGS. 18A, 18B, and 18C schematically show the projection optical system of the fourth embodiment as an example of a method of reducing the intrinsic birefringence by combining a plurality of equiaxed crystal materials. FIG. 5 is a diagram schematically showing a crystal direction of members 5 la and 51 b.
図 1 9は複数の等軸晶系の結晶材料の組み合わせによって固有複屈折を低減さ せる手法の一例としての第 5実施例の投影光学系を模式的に示す図である。  FIG. 19 is a diagram schematically showing a projection optical system according to a fifth embodiment as an example of a technique for reducing intrinsic birefringence by combining a plurality of equiaxed crystal materials.
図 2 0は複数の等軸晶系の結晶材料の組み合わせによって固有複屈折を低減さ せる手法の一例としての第 8実施例の投影光学系を模式的に示す図である。  FIG. 20 is a diagram schematically showing a projection optical system according to an eighth embodiment as an example of a method of reducing intrinsic birefringence by combining a plurality of equiaxed crystal materials.
図 2 1は本発明に係る数値実施例としての第 1実施例にかかる投影光学系のレ ンズ構成を示す図である。  FIG. 21 is a diagram showing a lens configuration of a projection optical system according to a first embodiment as a numerical embodiment according to the present invention.
図 2 2 A、図 2 2 B及び図 2 2 Cは第 1実施例における投影光学系の点像強度分 布を示す。  FIGS. 22A, 22B and 22C show the point image intensity distribution of the projection optical system in the first embodiment.
図 2 3 A及び図 2 3 Bは第 1実施例における投影光学系の点像強度分布を示す。 図 2 4は本発明に係る数値実施例としての第 2実施例にかかる投影光学系のレ ンズ構成を示す図である。  FIGS. 23A and 23B show the point image intensity distribution of the projection optical system in the first embodiment. FIG. 24 is a diagram showing a lens configuration of a projection optical system according to a second embodiment as a numerical embodiment according to the present invention.
図 2 5 A、 図 2 5 B、 図 2 5 C及び図 2 5 Dは第 2実施例における投影光学系の 点像強度分布を示す。  FIGS. 25A, 25B, 25C, and 25D show the point image intensity distribution of the projection optical system in the second example.
図 2 6 A及ぴ図 2 6 Bは第 2実施例における投影光学系の点像強度分布を示す。 図 2 7はマイクロデバイスとしての半導体デバイスを得る際の手法のフローチ ヤートである。  FIGS. 26A and 26B show the point image intensity distribution of the projection optical system in the second embodiment. Figure 27 is a flowchart of the method for obtaining a semiconductor device as a microdevice.
図 2 8はマイクロデバイスとしての液晶表示素子を得る際の手法のフローチヤ ートである。 Figure 28 is a flowchart of the method used to obtain a liquid crystal display element as a microdevice. It is.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して、 本発明の第 1実施例による投影光学系の製造方法につ いて説明する。 本実施例による投影光学系の製造方法の詳細を説明する前に、 理 解を容易とするために、 その概略について図 1を参照して簡単に説明する。 図 1 は、 本発明の第 1実施例による投影光学系の製造方法の概略を示すフローチヤ一 トである。  Hereinafter, a method for manufacturing a projection optical system according to the first embodiment of the present invention will be described with reference to the drawings. Before describing the details of the method of manufacturing the projection optical system according to the present embodiment, an outline thereof will be briefly described with reference to FIG. 1 to facilitate understanding. FIG. 1 is a flowchart schematically illustrating a method for manufacturing a projection optical system according to a first embodiment of the present invention.
図 1に示すように、 本実施例の投影光学系の製造方法は、 設計工程 S l、 結晶 材料準備工程 S 2、 結晶軸測定工程 S 3、 屈折部材形成工程 S 4、 及び組上工程 S 5を有する。  As shown in FIG. 1, the method for manufacturing a projection optical system according to the present embodiment includes a design step S1, a crystal material preparation step S2, a crystal axis measurement step S3, a refraction member forming step S4, and an assembly step S1. With 5.
設計工程 S 1では、 光線追跡ソフトを用いて投影光学系の設計を行う際に、 複 数の偏光成分の光線を用いて投影光学系の光線追跡を行い、 それぞれの偏光成分 のもとでの収差、 好ましくは偏光成分毎の波面収差を算出する。 そして複数の偏 光成分毎の収差及び複数の偏光成分収差の合成のスカラ一成分であるスカラー収 差に関して投影光学系の評価を行いつつ、 投影光学系を構成する複数の光学部材 (屈折部材、 反射部材、 回折部材等々) のパラメータを最適化して、 これらのパ ラメータからなる設計データを得る。 このパラメータとしては、 光学部材の面形 状、 光学部材の面間隔、 光学部材の屈折率等の従来のパラメータに加えて、 光学 部材が結晶材料である場合にはその結晶軸方位をパラメータとして用いる。  In the design process S1, when designing the projection optical system using the ray tracing software, the ray tracing of the projection optical system is performed using the rays of the plural polarization components, and the ray tracing is performed under each polarization component. The aberration, preferably the wavefront aberration for each polarization component is calculated. Then, while evaluating the projection optical system with respect to the aberration for each polarization component and the scalar difference which is a scalar component of the combination of the polarization component aberrations, a plurality of optical members (refractive members, By optimizing the parameters of the reflection member, diffraction member, etc., the design data consisting of these parameters is obtained. As this parameter, in addition to the conventional parameters such as the surface shape of the optical member, the spacing between the optical members, the refractive index of the optical member, and the like, when the optical member is a crystalline material, the crystal axis orientation is used as the parameter. .
結晶材料準備工程 S 2では、 投影光学系が使用される波長に対して光透過性を 有する等軸晶系 (結晶軸の単位長さが互いに等しく、 それぞれの結晶軸の交点に おける各結晶軸がなす角度が全て 9 0 ° である晶系) の結晶材料を準備する。 結晶軸測定工程 S 3では、 結晶材料準備工程で準備された結晶材料の結晶軸の 測定を行う。 このとき、 例えばラウエ(Laue )測定を行い結晶軸の方位を直接的 に測定する手法か、 結晶材料の複屈折を測定し、 既知の結晶軸方位と複屈折量と の関係に基づいて、 測定された複屈折から結晶軸方位を定める手法を適用するこ とができる。 In the crystal material preparation step S2, an equiaxed crystal system having a light transmission property with respect to the wavelength used by the projection optical system (the unit length of the crystal axes is equal to each other, and each crystal axis at the intersection of each crystal axis is used) Prepare a crystalline material whose crystallographic angle is 90 °. In the crystal axis measurement step S3, the crystal axis of the crystal material prepared in the crystal material preparation step is measured. At this time, for example, a method of directly measuring the crystal axis direction by performing Laue measurement, or measuring the birefringence of the crystal material, and measuring based on the relationship between the known crystal axis direction and the amount of birefringence. Method to determine the crystal axis orientation from the determined birefringence. Can be.
屈折部材形成工程 S 4では、 屈折部材が設計工程で得られたパラメータ (設計 データ) を有するように、 結晶準備工程で準備された結晶材料の加工 (研磨) を 行う。 なお、 本実施例では、 結晶軸測定工程 S 3と屈折部材形成工程 S 4との順 番はどちらが先でも良く、例えば屈折部材形成工程 S 4を先に実施する場合には、 屈折部材の形状に加工された結晶材料の結晶軸を測定すれば良く、 結晶軸測定ェ 程 S 3を先に実施する場合には、 屈折部材形成後に測定された結晶軸がわかるよ うに、 屈折部材、 或いは当該屈折部材を保持する保持部材に結晶軸方位の情報を 持たせれば良い。  In the bending member forming step S4, processing (polishing) of the crystal material prepared in the crystal preparation step is performed so that the bending member has the parameters (design data) obtained in the designing step. In the present embodiment, the order of the crystal axis measurement step S3 and the refraction member forming step S4 may be any order. For example, when the refraction member formation step S4 is performed first, the shape of the refraction member It is only necessary to measure the crystal axis of the crystal material that has been processed in advance, and if the crystal axis measurement step S3 is performed first, the refraction member or the relevant What is necessary is just to give the information of the crystal axis direction to the holding member holding the refraction member.
組上工程 S 5では、 加工された屈折部材を、 設計工程で得られた設計データに 従って、 投影光学系の鏡筒内に組み込む。 このとき、 等軸晶系の結晶材料からな る屈折部材の結晶軸を、 設計工程で得られた設計データ中の結晶軸方位となるよ うに位置決めする。  In the assembling step S5, the processed refraction member is incorporated in the lens barrel of the projection optical system according to the design data obtained in the design step. At this time, the crystal axis of the refraction member made of an equiaxed crystal material is positioned so as to be the crystal axis orientation in the design data obtained in the design process.
以上、 本発明の一実施例による投影光学系の製造方法の概略について説明した 力 次にその詳細な手順について図 2〜図 8を参照して説明する。  The outline of the method of manufacturing a projection optical system according to an embodiment of the present invention has been described above. Next, the detailed procedure will be described with reference to FIGS.
図 2は、 設計工程 S 1を概略的に示すフローチャートである。 図 2に示すよう に、 設計工程 S 1は、 設計パラメータの初期値を入力するステップ S 1 1、 設計 パラメータに基づいて、 複数の偏光成分のもとでの投影光学系の光学性能を評価 するステップ S 1 2、 当該ステップ S 1 2で算出された光学性能が所定規格内で あるか否かを判断するステップ S 1 3、 及び当該ステップ S 1 3で所定規格内で ない場合に設計パラメータを変更するステップ S 1 4を備えている。  FIG. 2 is a flowchart schematically showing the design process S1. As shown in FIG. 2, in a design process S1, a step S11 of inputting initial values of design parameters, based on the design parameters, evaluates the optical performance of the projection optical system under a plurality of polarization components. Step S12, step S13 for judging whether the optical performance calculated in step S12 is within a predetermined standard, and design parameters in step S13 if the optical performance is not in a predetermined standard. Step S14 for changing is provided.
本実施例において、 設計パラメータとしては、 投影光学系を構成する光学部材 (レンズ、 反射面等) の面形状、 面間隔、 偏芯量、 光軸に対する傾き、 光軸を中 心とした方位角、屈折率、複屈折率分布、反射率、透過率、透過率分布、有効径、 公差等や、 これらの光学部材の表面に形成される薄膜の構造、 すなわち薄膜の層 数、 各層の厚さ、 各層の材料 (必要であれば各層の吸収計数) などを用いること ができる。 In this embodiment, the design parameters include the surface shape, the surface interval, the amount of eccentricity, the inclination with respect to the optical axis, and the azimuth centered on the optical axis of the optical members (lens, reflecting surface, etc.) constituting the projection optical system , Refractive index, birefringence distribution, reflectance, transmittance, transmittance distribution, effective diameter, tolerance, etc., the structure of the thin film formed on the surface of these optical members, that is, the number of thin films, the thickness of each layer , Material of each layer (if necessary, absorption coefficient of each layer), etc. Can be.
次に、 図 3及び図 4を参照して、 複数の偏光成分のもとでの投影光学系の光学 性能を評価するステップ S 1 2の詳細を説明する。 ここで、 図 3は投影光学系の 光学性能の評価点の一例を示す図であり、 図 4はステップ S 1 2の詳細を説明す るためのフローチャートである。  Next, with reference to FIGS. 3 and 4, details of step S12 for evaluating the optical performance of the projection optical system under a plurality of polarization components will be described. Here, FIG. 3 is a diagram showing an example of evaluation points of the optical performance of the projection optical system, and FIG. 4 is a flowchart for explaining details of step S12.
図 3に示す通り、 本実施例では、 投影光学系 P Lの第 2面としての像面 Wのけ る光軸 Ax上の評価点 W0と、 像面 Wにおける任意像高 (例えば最周辺像高) の 評価点 W iとを評価点とする。 なお、 像面 Wにおける任意像高の評価点 W iの数 は 1つには限定されず、 複数の任意像高の評価点を用いても良い。 なお、 評価点 W0に入射する結像光束は、 投影光学系の第 1面としての物体面 R上の光軸 Ax 上の点 R 0からの光束に対応しており、 評価点 W iに入射する結像光束は物体面 R上の任意物体高の点 R iからの光束に対応している。  As shown in FIG. 3, in the present embodiment, the evaluation point W0 on the optical axis Ax of the image plane W as the second plane of the projection optical system PL, the arbitrary image height on the image plane W (for example, the outermost image height) The evaluation point W i) is used as the evaluation point. Note that the number of evaluation points W i of arbitrary image heights on the image plane W is not limited to one, and a plurality of evaluation points of arbitrary image heights may be used. The imaging light beam incident on the evaluation point W0 corresponds to the light beam from the point R0 on the optical axis Ax on the object plane R as the first surface of the projection optical system, and is incident on the evaluation point Wi. The formed image light beam corresponds to a light beam from a point Ri at an arbitrary object height on the object plane R.
また、 ステップ S 1 2,における複数の偏光成分としては、 例えば投影光学系の 光軸を法線とする面内において所定の X方向に振動する X偏光成分と、 上記面内 において X方向と直交する γ方向に振動する γ偏光成分とを用いることができる。 また、 複数の偏光成分としては、 上記光軸を法線とする面内において光軸を含む 方向 (放射方向 R) に振動する R偏光成分と、 当該 R偏光成分と直交した振動方 向を持つ 0偏光成分 (タンジェンシャル方向 Θに振動方向を有する偏光成分) と を用いても良く、 上記 XY偏光成分及び R Θ偏光成分の双方 (つまり 4つの偏光 成分) を用いても良い。  Further, the plurality of polarization components in step S12 include, for example, an X polarization component that vibrates in a predetermined X direction in a plane normal to the optical axis of the projection optical system, and a direction orthogonal to the X direction in the plane. Γ-polarized light component that vibrates in the γ-direction can be used. Further, the plurality of polarization components have an R polarization component that vibrates in a direction including the optical axis (radiation direction R) in a plane normal to the optical axis, and a vibration direction orthogonal to the R polarization component. A zero polarization component (a polarization component having a vibration direction in the tangential direction Θ) and may be used, and both the XY polarization component and the RΘ polarization component (that is, four polarization components) may be used.
そして、 本実施例では、 複数の偏光成分毎に、 投影光学系 P Lの射出瞳 P Sに おける位相分布 WO ( ρ , Θ ) (W i ( , θ )) を求めるが、 この分布は、 位相 分布を射出瞳 P S上で極座標 (ρ , Θ ) で表したものである。 ここで、 ρは射出 瞳面 P Sの半径を 1に規格化した規格化瞳半径、 0は射出瞳面 P Sの中心、 典型 的には光軸を原点とした極座標の動径角である。  In this embodiment, a phase distribution WO (ρ, Θ) (W i (, θ)) at the exit pupil PS of the projection optical system PL is obtained for each of a plurality of polarization components. On the exit pupil PS in polar coordinates (ρ, Θ). Here, ρ is a normalized pupil radius obtained by normalizing the radius of the exit pupil plane P S to 1, and 0 is the center of the exit pupil plane P S, typically, the radial angle in polar coordinates with the optical axis as the origin.
(ステップ S 1 2 1) ステップ S 1 2 1では、 コンピュータに、 投影光学系 Ρ Lの設計パラメータが入力される。 この設計パラメータは、 当該ステップ S 12 1が図 2のステップ S 1 1の直後に実行される場合は、 ステップ S 1 1で入力さ れた設計パラメータの初期値となり、 当該ステップ S 12 1が図 2のステップ S 14の後に実行される場合には、 ステップ S 14で変更された後の設計パラメ一 タとなる。 (Step S 1 2 1) In step S 1 21, the projection optical system Ρ L design parameters are input. If this step S121 is executed immediately after step S11 in FIG. 2, this design parameter becomes the initial value of the design parameter input in step S11. If it is executed after step S14 in step 2, the design parameters will be those changed in step S14.
なお、 上記設計パラメータは、 投影光学系 PLの物体側 (レチクル面 R側) か ら入れた各光線について光線追跡を行つてそれら各光線の物体面 (ウェハ面 W) における複素振幅を求める上で必要な情報である。  Note that the above design parameters are used to calculate the complex amplitude of each ray entered from the object side (reticle plane R side) of the projection optical system PL and tracing the ray on the object plane (wafer plane W). It is necessary information.
(ステップ S 1 22) 次に、 コンピュータは、 光線追跡を行い、 図 2に示すよ うな任意の評価対象像点 X i (例えば最周辺像高) に入射する結像光束の第 1偏 光方向位相分布 WH i ( , 0)及び第 2偏光方向位相分布 WV i (ρ, Θ) と、 光軸上の評価像点 X iに入射する結像光束の第 1偏光方向位相分布 WH 0 (p, Θ) 及ぴ第 2偏光方向位相分布 WVO (ρ, Θ) とを算出する。  (Step S122) Next, the computer performs ray tracing, and the first polarization direction of the imaging light flux incident on an arbitrary evaluation target image point Xi (for example, the highest peripheral image height) as shown in FIG. The phase distribution WH i (, 0) and the second polarization direction phase distribution WV i (ρ, Θ), and the first polarization direction phase distribution WH 0 (p , Θ) and the second polarization direction phase distribution WVO (ρ, Θ) are calculated.
なお、 ここでいう 「第 1偏光方向」 及び 「第 2偏光方向」 は、 射出瞳面 P S上 で互いに直交する 2つの偏光方向であって、 例えば上記 XY偏光方向、 偏光 方向、 または XY及び R Θ偏光方向の双方を適用できる。  Note that the “first polarization direction” and the “second polarization direction” here are two polarization directions orthogonal to each other on the exit pupil plane PS. For example, the XY polarization direction, the polarization direction, or XY and R directions双方 Both polarization directions can be applied.
本実施例において、 これらの位相分布を算出する際に求めるべき複素振幅は、 投影光学系 P Lの射出瞳面 P Sの端部についてだけでなく、 射出瞳面 P Sの全域 についてであるので、 図 3に示すように、 評価対象像点 X iに入射する結像光束 の光線追跡は、 X i上の共役点 R iから射出する光束 L f iのうち、 互いに異な る射出角度で射出して射出瞳面 P Sの互いに異なる位置を通過するような各光線 についてそれぞれ行われる (なお、 光線追跡すべき光線の最大射出角度は、 投影 光学系 P Lの像側開口数に応じたものとなる。)。  In the present embodiment, the complex amplitudes to be calculated when calculating these phase distributions are not only for the end of the exit pupil plane PS of the projection optical system PL but also for the entire area of the exit pupil plane PS. As shown in Fig. 7, the ray tracing of the imaging light beam incident on the evaluation target image point Xi is performed by changing the exit pupil of the light beam Lfi emitted from the conjugate point Ri on Xi at different exit angles. This is performed for each ray that passes through different positions on the surface PS (the maximum exit angle of the ray to be traced depends on the image-side numerical aperture of the projection optical system PL).
なお、 本実施例においては、 固有複屈折を有する等軸晶系の結晶材料からなる 光学部材に対して光線追跡を行っているが、 このような光学部材における結晶軸 に対する複屈折の分布については、 2001年 5月 1 5日に開かれた 157ηιαリソ グラフィに関する第 2国際シンポジウム(2nd International Symposium on 157nm Lithography)での米国 N 1 ST (National Institute of In this embodiment, ray tracing is performed on an optical member made of an equiaxed crystal material having intrinsic birefringence, but the distribution of birefringence with respect to the crystal axis in such an optical member is described below. , 157ηια litho opened on May 15, 2001 At the 2nd International Symposium on 157nm Lithography
Standards and Technology)のジョン · H ·ノ ーネッ卜ら ( John H . Burnett et al. )によって発表されている。 Standards and Technology) published by John H. Burnett et al.
そして、 このような光線追跡により光束 L f iの投影光学系 P Lの射出瞳面 P Then, by such ray tracing, the exit pupil plane P of the projection optical system P L of the light beam L f i
Sにおける第 1偏光方向の複素振幅分布、 及び第 2偏光方向の複素振幅分布が取 得され、 それら分布からそれぞれ第 1偏光方向位相分布、 及び第 2辺偏光方向位 相分布が求められ、 それら分布を射出瞳面 P S上の極座標 (p , Θ) で表したも のを、 それぞれ評価対象像点 X iに入射する結像光束の第 1偏光方向位相分布 W H i (p, 0)、 及ぴ第 2偏光方向方向位相分布 WV i (ρ , Θ) とおく。 なお、The complex amplitude distribution of the first polarization direction and the complex amplitude distribution of the second polarization direction in S are obtained, and the first polarization direction phase distribution and the second side polarization direction phase distribution are obtained from these distributions, respectively. The distribution represented by the polar coordinates (p, Θ) on the exit pupil plane PS is represented by the first polarization direction phase distribution WH i (p, 0) of the imaging light flux incident on the evaluation target image point X i, respectively.位相 Phase distribution in the second polarization direction WV i (ρ, Θ). In addition,
Ρは射出瞳面 P Sの半径を 1に規格化した規格化瞳半径、 Θは射出瞳面 P Sの中 心を原点とした極座標の動径角である。 Ρ is a normalized pupil radius obtained by standardizing the radius of the exit pupil plane PS to 1, and Θ is a radial angle in polar coordinates with the origin at the center of the exit pupil plane PS.
また、 中心像高 Χ0に入射する結像光束の光線追跡も、 同様に、 χ οの共役点 Similarly, the ray tracing of the imaging light beam incident on the central image height Χ0 is also performed by the conjugate point of χο
R 0から射出する光束 L f 0のうち、 互いに異なる射出角度で射出して射出瞳面 P Sの互いに異なる位置を通過する各光線についてそれぞれ行われる。 そして、 光束 L f iの第 1偏光方向の複素振幅分布、 及び第 2方向の複素振幅分布が求め られ、 それら分布を射出瞳面 P S上の極座標 (Ρ, Θ) で表したものを、 それぞ れ中心像高 X 0に入射する結像光束の第 1方向位相分布 WHO (p, 0)、及び第This is performed for each light ray of the light beam Lf0 emitted from R0, which is emitted at different emission angles and passes through different positions on the exit pupil plane PS. Then, a complex amplitude distribution in the first polarization direction and a complex amplitude distribution in the second direction of the light flux L fi are obtained, and these distributions are represented by polar coordinates ( Ρ , Θ) on the exit pupil plane PS. And the first direction phase distribution WHO (p, 0) of the imaging light flux incident on the
2方向位相分布 WV0 (ρ , Θ) とおく。 The two-way phase distribution is WV0 (ρ, Θ).
(ステップ S 1 2 3) 次に、 コンピュータは、 評価対象像点 X iの平均位相分 布 WA i (ρ, θ ) と、 中心像高 X 0の平均位相分布 WA 0 (ρ, Θ ) とを、 次 式 (1), (2) により求める。  (Step S 1 2 3) Next, the computer calculates the average phase distribution WA i (ρ, θ) of the evaluation target image point X i and the average phase distribution WA 0 (ρ, Θ) of the central image height X 0. Is calculated by the following equations (1) and (2).
(1) WA i (ρ, θ) = (WV i (p , Θ ) +WH i , Θ)) /2 (1) WA i (ρ, θ) = (WV i (p, Θ) + WH i, Θ)) / 2
(2) WAO (p, Θ ) = (WV 0 (p , Θ ) +WH0 (p , Θ )) /2 すなわち、 平均位相分布 WA i (p , Θ ) は、 WV i (p , Θ ) と WVO (p,(2) WAO (p, Θ) = (WV 0 (p, Θ) + WH0 (p, Θ)) / 2 That is, the average phase distribution WA i (p, Θ) is equal to WV i (p, Θ). WVO (p,
Θ ) との座標を一致させて得た中間値の分布である。 そして、 求めた平均位相分布 W A i (p , Θ), WA0 (ρ , θ) それぞれの R MS値 w a i, w a Oを求める。 これらの RMS値は、 投影光学系 P Lの波面収 差に相当する。 This is the distribution of intermediate values obtained by matching the coordinates with Θ). Then, the RMS values wai and waO of the obtained average phase distributions WA i (p, Θ) and WA0 (ρ, θ) are obtained. These RMS values correspond to the wavefront difference of the projection optical system PL.
(ステップ S 1 24) また、 コンピュータは、 ステップ S 1 22において求め た WV i p , Θ), WH i (ρ, Θ), WVO (ρ , θ), WHO (ρ , θ ) を参 照して、 評価対象像点 X iのリタ一ディション分布 δ W i (ρ , Θ) と、 光軸上 の評価像点 Χ Οのリタ一ディション分布 δ WO (p , θ) とを、 次式 (3)、 (4) により求める。  (Step S124) The computer refers to WVip, Θ), WHi (ρ, Θ), WVO (ρ, θ), WHO (ρ, θ) obtained in step S122. The retardation distribution δ W i (ρ, Θ) of the image point X i to be evaluated and the retardation distribution δ WO (p, θ) of the evaluation image point Χ 光 on the optical axis are expressed by the following equation (3) ) And (4).
(3) δ W i ( , θ ) =WV i (ρ , θ ) -WH ί (ρ , θ)  (3) δ W i (, θ) = WV i (ρ, θ) -WH ί (ρ, θ)
(4) δ WO (ρ , θ ) =WVO (ρ , θ ) -WHO (ρ, θ)  (4) δ WO (ρ, θ) = WVO (ρ, θ) -WHO (ρ, θ)
すなわち、 リタ一ディション分布 SW i (ρ, θ ) は、 WV i (p , Θ ) と WV i (p, Θ) との座標を一致させて得た差分の分布であり、 リターディション分 布 SWO (ρ , Θ ) は、 WVO , Θ) と WVO (ρ , Θ ) との座標を一致さ せて得た差分の分布である。 That is, the retardation distribution SW i (ρ, θ) is a distribution of differences obtained by matching the coordinates of WVi (p, Θ) and WVi (p, Θ), and the retardation distribution SWO (ρ, Θ) is the distribution of differences obtained by matching the coordinates of WVO, Θ) and WVO (ρ, Θ).
さらに、 求めたリタ一ディション分布 δ W i (ρ , θ), β WO (ρ , θ ) それ ぞれの RMS値 S w i , S wOを求める。  Further, the RMS values S w i and S wO of the obtained retardation distributions δ W i (ρ, θ) and β WO (ρ, θ) are obtained.
一般にリタ一ディションが大きいとバターン像のコントラストが低下するので、 上記リタ一ディション分布 δ W i (ρ , θ ) の RM S値及びリターディション分 布 SWO (p , 0) の RMS値は、 評価対象像点における像のコントラス ト及び 光軸上の評価像点における像のコントラストの悪さを示している。  In general, when the retardation is large, the contrast of the pattern image decreases.Therefore, the RMS value of the retardation distribution δW i (ρ, θ) and the RMS value of the retardation distribution SWO (p, 0) are evaluated. It shows the contrast of the image at the target image point and the poor contrast of the image at the evaluation image point on the optical axis.
(ステップ S 1 2 5) コンピュータは、 ステップ S 1 24において求めたリタ 一ディション分布 SWOを参照して、 その RMS値 S wO, 及びその射出瞳面内 平均値 A [δ WO] を求め、 次式 (5) により、 P S F値を求める。  (Step S125) The computer refers to the retardation distribution SWO obtained in step S124, calculates its RMS value Sw0, and its average value A [δWO] in the exit pupil plane, and The PSF value is obtained by the equation (5).
1 4JT2 X SwO2 + 2π2 x A[dW0f 1 4JT 2 X SwO 2 + 2π 2 x A [dW0f
(5) PSF = 1 ―  (5) PSF = 1 ―
2 この P S F値は、 リターディションによって生じる点像強度分布の最大値の概ね の値に相当する。 この P S F値が小さいほど点像強度分布が劣化していることを 示す。 2 This PSF value is approximately the maximum value of the point spread distribution caused by retardation. Corresponding to the value of The smaller the PSF value, the more the point image intensity distribution is degraded.
なお、 本実施例では、 以上取得した w a i , w a 0のそれぞれに加えて、 次の ( a ) , (b), (c)、 ( d) のような評価指標を取得してもよい。  In the present embodiment, in addition to each of w ai and w a0 obtained above, evaluation indices such as the following (a), (b), (c), and (d) may be obtained.
( a ) WA i ( p , 0 ) をツェルニケ展開してできる各項の RMS値、 又は Z 及びそのツエル-ケ展開して得られた複数の項をグループ化して得られる各項の RMS値。  (a) The RMS value of each term obtained by subjecting WA i (p, 0) to Zernike expansion, or the RMS value of each term obtained by grouping Z and a plurality of terms obtained by subjecting it to a Zuelke expansion.
(b) WA O ( ρ , Θ ) をツェルニケ展開してできる各項の RMS値、 又は/ 及びそのツエルニケ展開して得られた複数の項をグループィヒして得られる各項の RMS値。  (b) The RMS value of each term obtained by subjecting WA O (ρ, Θ) to Zernike expansion, and / or the RMS value of each term obtained by grouping a plurality of terms obtained by subjecting the Zernike expansion to WAO (ρ, Θ).
( c ) 光軸上の評価像点 X 0を基準とした評価対象像点 X iの平均位相分布 Δ WA i ( ρ , 0 ) 又は Z及びこの平均位相分布 S WA iの RMS値。  (c) The average phase distribution ΔWA i (ρ, 0) or Z of the evaluation target image point X i based on the evaluation image point X 0 on the optical axis and the RMS value of the average phase distribution S WA i.
( d) AWA i ( p , Θ ) をツェルニケ展開してできる各項の RMS値、 又は Z及びツェル-ケ展開して得られた複数の項をグループ化して得られる各項の R MS値。  (d) RMS value of each term obtained by Zernike expansion of AWA i (p, Θ), or RMS value of each term obtained by grouping a plurality of terms obtained by Z and Zerke expansion.
このようにステップ S 1 2で算出された光学性能 (例えば平均位相分布、 リタ 一ディション分布、 これらの RMS値、 P S F値等々) に基づいて、 ステップ S 1 3では算出された光学性能が所定の規格内であるか否かを判断する。 ここで、 規格内である場合には、 設計データ (設計パラメータ) を出力し、 設計工程 S 1 が完了する。 また、 算出された光学製造が所定の規格内でない場合には、 ステツ プ S 1 4へ移行する。  Based on the optical performance calculated in step S12 (for example, average phase distribution, retardation distribution, their RMS value, PSF value, etc.), in step S13, the calculated optical performance is set to a predetermined value. Judge whether it is within the standard. Here, if it is within the standard, the design data (design parameter) is output, and the design process S 1 is completed. If the calculated optical manufacturing is not within the predetermined standard, the process proceeds to step S14.
ステップ S 1 4では、 投影光学系の設計パラメータの少なくとも一部を変更し てステップ S 1 2へ移行する。 本実施例では、 算出される光学性能が所定の規格 内となるまで、 このループを繰り返す。  In step S14, at least a part of the design parameters of the projection optical system is changed, and the process proceeds to step S12. In this embodiment, this loop is repeated until the calculated optical performance falls within a predetermined standard.
なお、 設計パラメータの変更を行う際に、 最初は、 投影光学系を構成する光学 部材 (レンズ、 反射面等) の面形状、 面間隔、 偏芯量、 光軸に対する傾き、 屈折 率、 有効径、 公差等といった非結晶材料からなる光学系が有するパラメータのみ を変更して、 投影光学系の光学性能のうちのスカラー成分の収差を補正し、 その 後、 薄膜の構造、 光学部材の複屈折率分布、 光軸を中心とした方位角等のパラメ ータを変更して、 スカラ一成分及び偏光成分の収差を補正しても良い。 When changing design parameters, first of all, the surface shape, spacing, eccentricity, inclination with respect to the optical axis, and refraction of the optical members (lenses, reflection surfaces, etc.) that constitute the projection optical system Only the parameters of the optical system made of an amorphous material, such as the ratio, effective diameter, and tolerance, are changed to correct the scalar component aberration in the optical performance of the projection optical system, and then the thin film structure and optical members The parameters such as the birefringence distribution and the azimuth around the optical axis may be changed to correct the aberration of one scalar component and polarization component.
例えば、 等軸晶系の結晶材料として蛍石 (フッ化カルシウム、 C a F 2 ) を用 いる場合を考えると、 この蛍石では、 結晶軸 [ 1 1 1 ] 又は該結晶軸 [ 1 1 1 ] と等価な結晶軸を光軸とした屈折部材を形成することが従来から行われていたた め、 他の結晶軸を光軸にする場合に比べて屈折部材を形成する際のノゥハウの蓄 積が大きい。 従って、 例えば図 5に示すように、 投影光学系の設計を行う際に、 投影光学系中の蛍石からなる光学部材の光軸を結晶軸 [ 1 1 1 ] と一致させた状 態で設計し、 この蛍石からなる光学部材の設計パラメータとして、 光軸を中心と した方位角 θ Zを採用することが一例として考えられる。 For example, considering the case where fluorite (calcium fluoride, CaF 2 ) is used as an equiaxed crystal material, this fluorite has a crystal axis [111] or the crystal axis [111]. Conventionally, a refraction member having a crystal axis equivalent to that of the optical axis is formed, so that the accumulation of know-how in forming the refraction member compared to the case of using another crystal axis as the optical axis is known. The product is large. Therefore, as shown in Fig. 5, for example, when designing the projection optical system, the optical member made of fluorite in the projection optical system is designed in such a manner that the optical axis coincides with the crystal axis [111]. and, as a design parameter of the optical member formed of the fluorite, adopting the azimuth angle theta Z around the optical axis can be considered as an example.
以上の通り、 設計工程 S 1では、 計算上において所定の規格内となる光学性能 を有する投影光学系の設計データ (設計パラメータ :投影光学系を構成する光学 部材 (レンズ、 反射面等) の面形状、 面間隔、 偏芯量、 光軸に対する傾き、 光軸 を中心とした方位角、 屈折率、 複屈折率分布、 反射率、 透過率、 透過率分布、 有 効径、 公差等や、 これらの光学部材の表面に形成される薄膜の構造、 すなわち薄 膜の層数、 各層の厚さ、 各層の材料 (必要であれば各層の吸収計数) など) を得 ることができる。  As described above, in the design process S1, the design data of the projection optical system having the optical performance within the predetermined standard in calculation (design parameters: the surface of the optical member (lens, reflecting surface, etc.) constituting the projection optical system) Shape, spacing, eccentricity, inclination to the optical axis, azimuth around the optical axis, refractive index, birefringence distribution, reflectance, transmittance, transmittance distribution, effective diameter, tolerance, etc. It is possible to obtain the structure of the thin film formed on the surface of the optical member, that is, the number of thin films, the thickness of each layer, and the material of each layer (absorption coefficient of each layer if necessary).
次に、 結晶材料準備工程 S 2についての説明を図 6のフローチャートを参照し て行う。 図 6は、 投影光学系が使用される波長に対して光透過性を有する等軸晶 系の結晶材料を準備する結晶材料準備工程 S 2の詳細を示すフローチャートであ る。 なお、 このような等軸晶系の結晶材料としては、 蛍石 (フッ化カルシウム、 C a F 2 ) やフッ化バリウム ( B a F 2 ) が挙げられる。 Next, the crystal material preparing step S2 will be described with reference to the flowchart in FIG. FIG. 6 is a flowchart showing the details of the crystal material preparing step S2 for preparing an equiaxed crystal material having optical transparency with respect to the wavelength used by the projection optical system. In addition, as such an equiaxed crystal material, fluorite (calcium fluoride, CaF 2 ) and barium fluoride (BaF 2 ) are exemplified.
以下の説明では、 等軸晶系の結晶材料として蛍石を適用した場合を例にとって 説明する。 (ステップ S 2 1 ) ステップ S 2 1では、 粉末原料を脱酸素化反応させる前 処理を行う。 紫外域または真空紫外域で使用される蛍石単結晶をプリッジマン法 により育成する場合には、人工合成の高純度原料を使用することが一般的である。 さらに、 原料のみを融解して結晶化すると白濁して失透する傾向を示すため、 ス 力ベンジャーを添加して加熱することにより、白濁を防止する処置を施している。 蛍石単結晶の前処理や育成において使用される代表的なスカベンジャーとしては、 フッ化鉛 (P b F 2 ) が挙げられる。 なお、 原料中に含有される不純物と化学反 応し、これを取り除く作用をする添加物質のことを一般にス力ベンジャーという。 本実施例における前処理では、 まず、 高純度な粉末原料にスカベンジャーを添加 して良く混合させる。 その後、 スカベンジャーの融点以上で、 蛍石の融点未満の 温度まで加熱昇温させることにより脱酸素化反応を進める。 In the following description, a case where fluorite is applied as an equiaxed crystal material will be described as an example. (Step S21) In step S21, a pretreatment for causing a deoxygenation reaction of the powder raw material is performed. When fluorite single crystals used in the ultraviolet region or vacuum ultraviolet region are grown by the Bridgeman method, it is common to use high-purity raw materials of artificial synthesis. Furthermore, when only the raw material is melted and crystallized, it tends to become cloudy and devitrified. Therefore, measures have been taken to prevent cloudiness by adding a heating force and heating. Typical scavengers for use in the pretreatment or growth of fluorite single crystal, and lead fluoride (P b F 2) is. In addition, an additive substance that chemically reacts with impurities contained in the raw material and acts to remove it is generally called a steam venter. In the pretreatment in this example, first, a scavenger is added to a high-purity powder raw material and mixed well. Then, the deoxygenation reaction is advanced by heating to a temperature above the melting point of the scavenger and below the melting point of fluorite.
その後、 そのまま室温まで降温して焼結体としても良いし、 或いはさらに温度 を上昇させて一旦原料を融解させた後、室温まで降温して多結晶体としても良い。 以上のようにして脱酸素化がなされた焼結体や多結晶体を前処理品という。  Thereafter, the temperature may be lowered to room temperature to form a sintered body, or the temperature may be further raised to once melt the raw material, and then lowered to room temperature to obtain a polycrystalline body. The sintered body or polycrystalline body deoxygenated as described above is referred to as a pre-treated product.
(ステップ S 2 2 ) 次に、 ステップ S 2 2では、 この前処理品を用いてさらに 結晶成長させることにより単結晶ィンゴットを得る。  (Step S22) Next, in step S22, a single crystal ingot is obtained by further growing a crystal using this pre-processed product.
結晶成長の方法には、 融液の固化、 溶液からの析出、 気体からの析出、 固体粒 子の成長に大別できることが広く知られているが、 本実施例においては垂直プリ ッジマン法により結晶成長させる。  It is widely known that crystal growth methods can be broadly classified into solidification of a melt, precipitation from a solution, deposition from a gas, and growth of solid particles. Let it grow.
まず、 前処理品を容器に収納し、 垂直ブリッジマン装置 (結晶成長炉) の所定 位置に設置する。 その後、 容器内に収納された前処理品を加熱して融解させる。 前処理品の融点に到達した後は、 所定時間を経過させた後に結晶化を開始する。 融液のすべてが結晶化したら、 室温まで徐冷してインゴットとして取り出す。  First, the preprocessed product is stored in a container and placed at a predetermined position in a vertical Bridgman apparatus (crystal growth furnace). Then, the pre-processed product stored in the container is heated and melted. After reaching the melting point of the pretreated product, crystallization is started after a predetermined time has elapsed. When all of the melt crystallizes, slowly cool to room temperature and remove it as an ingot.
(ステップ S 2 3 ) ステップ S 2 3では、 ィンゴットを切断して、 後述の屈折 部材形成工程 S 4で得ようとする光学部材の大きさ ·形状と同程度なディスク材 を得る。 ここで、 屈折部材形成工程 S 4で得ようとする光学部材がレンズである 場合には、 ディスク材の形状を薄い円柱形状とすることが好ましく、 円柱形状の ディスク材の口径と厚さとは、 レンズの有効径 (外径) 及び光軸方向の厚さに合 わせて定められることが望ましい。 (Step S23) In step S23, the ingot is cut to obtain a disk material having the same size and shape as the optical member to be obtained in a bending member forming step S4 described later. Here, the optical member to be obtained in the refractive member forming step S4 is a lens. In such a case, it is preferable that the shape of the disk material be a thin cylindrical shape. The diameter and thickness of the cylindrical disk material are determined according to the effective diameter (outer diameter) of the lens and the thickness in the optical axis direction. It is desirable that
(ステップ S 2 4 ) ステップ S 2 4では、 蛍石単結晶インゴットより切り出さ れたディスク材に対してァニール処理を行う。 これらのステップ S 2 1 〜 S 2 4 を実行することにより、 蛍石単結晶からなる結晶材料が得られる。  (Step S24) In step S24, an annealing process is performed on the disk material cut out from the fluorite single crystal ingot. By performing these steps S21 to S24, a crystal material composed of a fluorite single crystal is obtained.
次に、 結晶軸測定工程 S 3について説明する。 結晶軸測定工程 S 3では、 結晶 材料準備工程 S 2で準備された結晶材料の結晶軸の測定を行う。 このとき、 結晶 軸の方位を直接的に測定する第 1の測定手法と、 結晶材料の複屈折を測定して間 接的に結晶軸方位を定める第 2の測定手法とが考えられる。 まず、 結晶軸の方位 を直接的に測定する第 1の測定手法について説明する。  Next, the crystal axis measuring step S3 will be described. In the crystal axis measurement step S3, the crystal axis of the crystal material prepared in the crystal material preparation step S2 is measured. At this time, a first measurement technique for directly measuring the orientation of the crystal axis and a second measurement technique for indirectly determining the crystal axis orientation by measuring the birefringence of the crystal material can be considered. First, a first measurement technique for directly measuring the orientation of the crystal axis will be described.
第 1の測定手法は、 X線結晶解析の手法を用いて、 結晶材料の結晶構造、 ひい ては結晶軸を直接的に測定する。 このような測定手法としては、 例えばラゥェ (Laue )法が知られている。 以下、 第 1の測定手法としてラウエ法を適用した場 合について図 7を参照して簡単に説明する。 図 7は、 ラウエカメラを概略的に示 す図である。  The first measurement technique uses the technique of X-ray crystallography to directly measure the crystal structure of a crystalline material and, consequently, the crystal axis. As such a measuring method, for example, the Laue method is known. Hereinafter, the case where the Laue method is applied as the first measurement technique will be briefly described with reference to FIG. FIG. 7 is a diagram schematically showing a Laue camera.
図 7に示す通り、ラウエ法による結晶軸測定を実現するためのラウエ力メラは、 X線源 1 0 0と、 この X線源 1 0 0からの X線 1 0 1を試料としての結晶材料 1 0 3 へ導くためのコリメータ 1 0 2と、 結晶材料 1 0 3から回折される回折 X線 1 0 4により露光される Χϋ感光部材 1 0 5とを備えている。 ここで、 図 7では 不図示ではあるが、 X線感光部材 1 0 5を貫通しているコリメータ 1 0 2の内部 には、 対向する一対のスリットが設けられている。  As shown in FIG. 7, the Laue force melody for realizing the crystal axis measurement by the Laue method is composed of an X-ray source 100 and an X-ray 101 from the X-ray source 100 as a crystal material as a sample. A collimator 102 for guiding to 103 is provided, and a photosensitive member 105 exposed to X-ray diffraction 104 diffracted from the crystal material 103. Here, although not shown in FIG. 7, a pair of opposing slits are provided inside the collimator 102 penetrating the X-ray photosensitive member 105.
第 1の測定手法においては、 まず、 結晶材料準備工程 S 2で準備された結晶材 料 1 0 3に X線 1 0 1を照射して、 この結晶材料 1 0 3から回折 X線 1 0 4を発 生させる。 そして、 この回折 X線 1 0 4で、 結晶材料 1 0 3の X線入射側に配置 された X線フィルムやイメージングプレート等の X線感光部材 1 0 5を露光し、 この X線感光部材 1 0 5上に結晶構造に対応した模様の可視像 (回折像) を形成 する。 この回折像(ラゥェ図形)は、結晶材料が単結晶のときには斑点状となり、 この斑点はラゥェ斑点と呼ばれる。 本実施例で用いている結晶材料は蛍石であり この結晶構造は既知であるため、 このラウエ斑点を解析することにより、 結晶結 晶軸方位が明らかになる。 In the first measurement method, first, the crystal material 103 prepared in the crystal material preparation step S2 is irradiated with X-rays 101, and the crystal material 103 is subjected to diffraction X-rays 104. Generates. Then, the X-ray photosensitive member 105 such as an X-ray film or an imaging plate disposed on the X-ray incident side of the crystal material 103 is exposed by the diffracted X-ray 104, A visible image (diffraction image) of a pattern corresponding to the crystal structure is formed on the X-ray photosensitive member 105. This diffraction image (Rae pattern) is spot-like when the crystalline material is a single crystal, and these spots are called Ray-points. The crystal material used in the present embodiment is fluorite, and its crystal structure is known. Therefore, by analyzing the Laue spots, the crystal orientation of the crystal can be determined.
なお、結晶軸を直接測定する第 1の測定手法としては、ラウエ法に限定されず、 結晶を回転又は振動させながら X線を照射する回転法又は振動法、 ワイセンベル グ法、 プリセッション法などの他の X線結晶解析の手法や、 結晶材料の劈開性を 利用した方法、 結晶材料の塑性変形を与えることにより結晶材料表面に現れる特 有の形状を持つ圧像 (或いは打像) を観察する方法等の機械的な手法などを用い ても良い。  Note that the first measurement method for directly measuring the crystal axis is not limited to the Laue method, but may be a rotation method or a vibration method of irradiating an X-ray while rotating or vibrating a crystal, a Weissenberg method, a precession method, or the like. Other X-ray crystallography techniques, methods using the cleavage properties of crystalline materials, Observation of compression images (or impressions) with specific shapes that appear on the surface of crystalline materials by giving plastic deformation of the crystalline materials A mechanical method such as a method may be used.
次に、 結晶材料の複屈折を測定して間接的に結晶軸方位を定める第 2の測定手 法について簡単に説明する。 第 2の測定手法では、 まず結晶材料の結晶軸方位と その方位における複屈折量との対応づけを行う。 このとき、 上述の第 1の測定手 法を用いて結晶材料のサンプルの結晶軸方位を測定する。 そして、 結晶材料サン プルの複数の結晶軸毎に複屈折の測定を行う。  Next, a brief description will be given of a second measurement method for indirectly determining the crystal axis orientation by measuring the birefringence of a crystal material. In the second measurement method, first, the crystal axis direction of the crystal material is associated with the amount of birefringence in that direction. At this time, the crystal axis orientation of the sample of the crystal material is measured using the first measurement method described above. Then, the birefringence is measured for each of a plurality of crystal axes of the crystal material sample.
図 8は、 複屈折測定機の概略的な構成を示す図である。 図 8において、 光源 1 1 0からの光は、 偏光子 1 1 1により水平方向 (X方向) から π / 4だけ傾い.た 振動面を有する直線偏光に変換される。 そして、 この直線偏光は、 光弾性変調器 1 1 2により位相変調を受けて、 結晶材料サンプル 1 1 3に照射される。 すなわ ち、 位相の変化する直線偏光が結晶材料サンプル 1 1 3に入射する。 結晶材料サ ンプル 1 1 3を透過した光は検光子 1 1 4に導かれ、 水平方向 (X方向) に振動 面を有する偏光のみが検光子 1 1 4を透過して光検出器 1 1 5で検出される。 光弾性変調器 1 1 2により発生する所定の位相遅れのときに、 どれだけの光量 が光検出器 1 1 5で検出されるのかを、 位相遅れの量を変えながら測定すること により、 遅相軸の方向とその屈折率、 及ぴ進相軸における屈折率を求めることが できる。 FIG. 8 is a diagram showing a schematic configuration of a birefringence measuring instrument. In FIG. 8, light from a light source 110 is converted by a polarizer 111 into linearly polarized light having a vibrating plane inclined by π / 4 from the horizontal direction (X direction). Then, the linearly polarized light is subjected to phase modulation by the photoelastic modulator 112, and is applied to the crystal material sample 113. In other words, the linearly polarized light of which phase changes is incident on the crystalline material sample 113. The light transmitted through the crystal material sample 113 is guided to the analyzer 114, and only polarized light having a vibration plane in the horizontal direction (X direction) passes through the analyzer 114 and the photodetector 111 Is detected by By measuring how much light is detected by the photodetector 115 at a predetermined phase delay generated by the photoelastic modulator 112, the phase delay is measured by changing the amount of phase delay. The direction of the axis and its refractive index, and the refractive index in the fast axis can be determined. it can.
なお、 試料に複屈折が存在する場合、 屈折率の差により当該試料を通過する振 動面 (偏光面) が直交した 2つの直線偏光の光の位相が変化する。 すなわち一方 の偏光に対して他方の偏光の位相が進んだり遅れたりすることになるが、 位相が 進む方の偏光方向を進相軸と呼び、 位相が遅れる方の偏光方向を遅相軸と呼ぶ。 本実施例では、 上記第 1の測定手法により結晶軸方位が既知となった結晶材料サ ンプルの結晶軸毎の複屈折測定を行い、 結晶材料の結晶軸方位とその方位におけ る複屈折量との対応づけを行う。このとき、測定する結晶材料の結晶軸として [1 00], [1 10]及び「1 1 1」 という代表的な結晶軸の他に、 [1 1 2], [21 0] 及び [21 1] などの結晶軸を用いても良い (なお、 結晶軸 [010], [0 When birefringence is present in a sample, the phase of two linearly polarized lights whose vibration planes (polarization planes) passing through the sample are orthogonal to each other changes due to a difference in the refractive index. In other words, the phase of one polarized light leads or lags the other, but the polarization direction in which the phase advances is called the fast axis, and the polarization direction in which the phase lags is called the slow axis. . In this example, birefringence measurement was performed for each crystal axis of a crystal material sample whose crystal axis direction was known by the first measurement method, and the crystal axis direction of the crystal material and the amount of birefringence in that direction were measured. Is associated with. At this time, in addition to typical crystal axes of [100], [1 10] and “1 1 1” as crystal axes of the crystal material to be measured, [1 1 2], [2 1 0] and [2 1 1] ], Etc. (Note that the crystal axes [010], [0
01] は上記結晶軸 [100] と等価な結晶軸であり、 結晶軸 [01 1], [10 1] は上記結晶軸 [1 10] と等価な結晶軸である)。 また、 測定された結晶軸の 中間の結晶軸に関しては、 所定の補間演算式を用いて補間しても良い。 01] is a crystal axis equivalent to the crystal axis [100], and the crystal axes [01 1] and [10 1] are crystal axes equivalent to the crystal axis [1 10]. In addition, the intermediate crystal axis between the measured crystal axes may be interpolated using a predetermined interpolation operation expression.
第 2の手法が適用された結晶軸測定工程 S 3では、 図 8に示した複屈折測定機 を用いて、 結晶材料準備工程 S 2で準備された結晶材料の複屈折の測定を行う。 そして、 結晶軸方位と複屈折との対応関係が予め求められているため、 この対応 関係を用いて、 測定された複屈折から結晶軸方位を算出する。  In the crystal axis measurement step S3 to which the second method is applied, the birefringence of the crystal material prepared in the crystal material preparation step S2 is measured using the birefringence measurement device shown in FIG. Then, since the correspondence between the crystal axis orientation and the birefringence is determined in advance, the crystal axis orientation is calculated from the measured birefringence using this correspondence.
このように、 第 2の手法によれば、 直接的に結晶軸方位を測定しなくとも結晶 材料の結晶軸方位を求めることができる。  Thus, according to the second technique, the crystal axis orientation of the crystal material can be obtained without directly measuring the crystal axis orientation.
次に、 屈折部材形成工程 S 4について説明する。 屈折部材形成工程 S 4では、 結晶材料準備工程 S 2で準備された結晶材料を加工して所定形状の光学部材 (レ ンズ等) を形成する。 このとき、 結晶軸測定工程 S 3と屈折部材形成工程 S 4と の順番はどちらが先でも良く、 例えば、 結晶軸測定工程 S 3の後に屈折部材形成 工程 S 4を行う第 1の部材形成手法、 屈折部材形成工程 S 4の後に結晶軸測定ェ 程を行う第 2の部材形成手法、 及び結晶軸測定工程 S 3と結晶軸測定工程 S 4と を同時に行う第 3の部材形成手法が考えられる。 まず、 第 1の部材形成手法について説明する。 第 1の部材形成手法では、 光学 部材が設計工程 S 1で得られた結晶軸方位に関するパラメータを含む設計データ となるように、 結晶材料準備工程 S 2で準備されたディスク材に対して、 研削、 研磨等の加工を行う。 このとき、 加工された光学部材にその光学部材の結晶軸方 位がわかるように所定のマーク等を設ける。 Next, the bending member forming step S4 will be described. In the refraction member forming step S4, the crystal material prepared in the crystal material preparation step S2 is processed to form an optical member (a lens or the like) having a predetermined shape. At this time, the order of the crystal axis measurement step S3 and the refraction member formation step S4 may be any order, for example, a first member formation method of performing the refraction member formation step S4 after the crystal axis measurement step S3, A second member forming method of performing a crystal axis measurement step after the refraction member forming step S4, and a third member forming method of simultaneously performing the crystal axis measurement step S3 and the crystal axis measurement step S4 can be considered. First, the first member forming method will be described. In the first member formation method, the disk material prepared in the crystal material preparation step S2 is ground so that the optical member becomes the design data including the parameters related to the crystal axis orientation obtained in the design step S1. Processing such as polishing. At this time, a predetermined mark or the like is provided on the processed optical member so that the crystal axis direction of the optical member can be recognized.
具体的には、 結晶材料準備工程 S 2において結晶軸方位が測定された結晶材料 (典型的にはディスク材) 力 ら必要に応じて研削された材料を用いて、 投影光学 系を構成する屈折部材を製造する。 すなわち、 周知の研磨工程にしたがって、 設 計データ中の面形状、 面間隔を目標として各レンズの表面を研磨加工して、 所定 形状のレンズ面を有する屈折部材を製造する。 このとき、 各レンズの面形状の誤 差を干渉計で計測しながら研磨を繰り返し、 各レンズの面形状を目標面形状 (ベ ス トフイツ ト球面形状) に近づける。 こう して、 各レンズの面形状誤差が所定の 範囲に入ると、 各レンズの面形状の誤差を、 例えば図 9に示す精密な干渉計装置 を用いて計測する。  Specifically, the refraction forming the projection optical system is performed using a material that is ground as necessary from a crystal material (typically a disk material) whose crystal axis orientation has been measured in the crystal material preparation step S2. Manufacture components. That is, the surface of each lens is polished in accordance with a well-known polishing process with the target of the surface shape and the surface interval in the design data, and a refraction member having a lens surface of a predetermined shape is manufactured. At this time, polishing is repeated while measuring the error in the surface shape of each lens with an interferometer, and the surface shape of each lens is brought close to the target surface shape (best fit spherical shape). Thus, when the surface shape error of each lens falls within a predetermined range, the error of the surface shape of each lens is measured using, for example, a precise interferometer device shown in FIG.
図 9に示す干渉計装置は、 設計値が球面である球面レンズの面形状計測に好適 なものである。 図 9では、 制御系 1 2 1に制御された干渉計ュニット 1 2 2から の射出光が、 フィゾーステージ 1 2 3 a上に支持されたフィゾーレンズ 1 2 3に 入射する。 ここで、 フィゾーレンズ 1 2 3の参照面 (フィゾー面) で反射された 光は参照光となり、 干渉計ュニット 1 2 2へ戻る。 なお、 図 9では、 フィゾーレ ンズ 1 2 3を単レンズで示しているが、実際のフィゾーレンズは複数のレンズ(レ ンズ群) で構成されている。 一方、 フィゾーレンズ 1 2 3を透過した光は測定光 となり、 被検レンズ 1 2 4の被検光学面に入射する。  The interferometer device shown in FIG. 9 is suitable for measuring the surface shape of a spherical lens having a spherical design value. In FIG. 9, light emitted from the interferometer unit 122 controlled by the control system 122 enters the Fizeau lens 123 supported on the Fizeau stage 123a. Here, the light reflected by the reference surface (Fizeau surface) of the Fizeau lens 1 23 becomes the reference light, and returns to the interferometer unit 1 22. Although FIG. 9 shows the Fizeau lens 123 with a single lens, an actual Fizeau lens is composed of a plurality of lenses (lens groups). On the other hand, the light transmitted through the Fizeau lens 123 becomes measurement light, and is incident on the optical surface of the lens 124 to be measured.
被検レンズ 1 2 4の被検光学面で反射された測定光は、 フィゾーレンズ 1 2 3 を介して干渉計ュニット 1 2 2 へ戻る。 こうして、 干渉計ュニット 1 2 2 へ戻つ た参照光と測定光との位相ずれに基づいて、 被検レンズ 1 2 4の被検光学面の基 準面に対する波面収差が、 ひいては被検レンズ 1 2 4の面形状の誤差 (設計上の ベストフイツト球面からのずれ) が計測される。 なお、 球面レンズの面形状誤差 の干渉計による計測に関する詳細については、たとえば特開平 7— 1 2535号、 特開平 7— 1 1 3609号、 特開平 10— 1 54657号公報などを参照するこ とができる。 また、 非球面レンズの面形状誤差を干渉計を用いて計測する場合に は、 図 9の干渉計装置において、 フィゾーレンズ 1 1 3に代えて、 平面形状の参 照面を有する参照部材と、 該参照部材を透過する光を所定形状の非球面波に変換 する非球面波形成部材とをフィゾーステージ 1 13 a上に設ける。 ここで、 非球 面波形成部材は、 レンズ、 ゾーンプレート、 或いはそれらの組み合わせで構成さ れ、 参照部材からの平面波を、 測定対象である被検光学面の面形状に対応した非 球面波に変換するものである。 なお、 このような非球面レンズの計測方法に関し ては、 たとえば特開平 10— 260020号、 特開平 10— 260024号、 特 開平 1 1一 6784号を参照することができる。 The measurement light reflected by the test optical surface of the test lens 1 2 4 returns to the interferometer unit 1 2 2 via the Fizeau lens 1 2 3. In this way, based on the phase shift between the reference light and the measurement light returned to the interferometer unit 122, the wavefront aberration of the test optical surface of the test lens 124 with respect to the reference surface and, consequently, the test lens 1 2 4 Error in surface shape (design The deviation from the best fit spherical surface is measured. For details of the measurement of the surface shape error of the spherical lens by the interferometer, refer to, for example, Japanese Patent Application Laid-Open Nos. 7-123535, 7-113609, and 10-154657. Can be. When the surface shape error of the aspherical lens is measured using an interferometer, a reference member having a planar reference surface in place of the Fizeau lens 113 in the interferometer device of FIG. An aspherical wave forming member for converting light transmitted through the reference member into an aspherical wave having a predetermined shape is provided on the Fizeau stage 113a. Here, the aspherical wave forming member is configured by a lens, a zone plate, or a combination thereof, and converts the plane wave from the reference member into an aspherical wave corresponding to the surface shape of the optical surface to be measured, which is a measurement target. It is something to convert. Regarding such a method of measuring an aspherical lens, for example, JP-A-10-260020, JP-A-10-260024, and JP-A-11-11784 can be referred to.
屈折部材形成工程 S 4における第 1の部材形成手法においては、 計測された面 形状が所定の範囲内になるまで、 計測■研磨を繰り返す。  In the first member forming method in the bending member forming step S4, measurement and polishing are repeated until the measured surface shape falls within a predetermined range.
なお、 近年では、 レンズ等の光学部材を保持する際に、 レンズにかかる応力を 最小限にするために、 レンズの周縁部に複数の隆起部 (リッジ) を設けて、 当該 レンズを保持する保持部材 (レンズセノレ) でこれら複数のリッジ部をキネマティ ックに保持することが提案されている (特開 2001 -74991号公報参照)。 ここで、 このような複数の隆起部が光学部材の結晶軸方位となるように加工する ことによつても、 加工後の光学部材の結晶軸方位を示すことができる。 また、 上 記の光学部材保持手法によれば、 保持部材と光学部材の位置■姿勢との関係が一 定となるため、 この保持部材に光学部材の結晶軸方位を示す情報 (マーク等) を 設けても良い。  In recent years, in order to minimize the stress applied to a lens when holding an optical member such as a lens, a plurality of ridges (ridges) are provided on the periphery of the lens to hold the lens. It has been proposed that a plurality of ridges be kinematically held by a member (lens sensor) (see Japanese Patent Application Laid-Open No. 2001-74991). Here, the crystal axis orientation of the processed optical member can also be indicated by processing such a plurality of raised portions to have the crystal axis orientation of the optical member. Further, according to the above-described optical member holding method, since the relationship between the holding member and the position / posture of the optical member is constant, information (a mark or the like) indicating the crystal axis direction of the optical member is provided on this holding member. May be provided.
次に、 第 2の部材形成手法について説明する。 第 2の部材形成手法では、 結晶 材料準備工程 S 2で準備されたディスク材に対して、研肖 lj、研磨等の加工を行う。 このとき、 設計工程 S 1で得られた設計データのうち、 面形状、 面間隔、 有効径 (外径)等のパラメータを用いて(結晶軸方位に関するパラメータは用いないで) 加工を行う。 なお、 第 2の部材形成手法においても、 第 1の部材形成手法と同様 に、 面形状が所定の範囲内となるまで、 測定 '研磨を繰り返す。 そして、 加工さ れた光学部材の結晶軸方位を上述の第 1の測定手法を用いて計測し、 測定された 結晶軸方位に関する情報を、 例えばマーク等で加工された光学部材に設ける。 このように、 本実施例では、 レンズ等に加工された後においても結晶軸方位を 定めることができる。 Next, a second member forming method will be described. In the second member forming method, the disc material prepared in the crystal material preparing step S2 is subjected to processing such as polishing and polishing. At this time, of the design data obtained in the design process S1, the surface shape, Processing is performed using parameters such as (outer diameter) (without using parameters related to crystal axis orientation). Note that, in the second member forming method as well, the measurement and polishing are repeated until the surface shape falls within a predetermined range, as in the first member forming method. Then, the crystal axis direction of the processed optical member is measured using the above-described first measurement method, and information on the measured crystal axis direction is provided on the optical member processed with, for example, a mark. As described above, in the present embodiment, the crystal axis orientation can be determined even after being processed into a lens or the like.
なお、 第 2の部材形成手法では、 結晶材料から屈折部材を形成した後に結晶軸 方位の測定を行ったが、 この結晶軸方位の測定を屈折部材の形成を行っている途 中に行っても良い (第 3の部材形成手法)。  In the second member forming method, the crystal axis direction was measured after forming the refraction member from the crystalline material. However, the measurement of the crystal axis direction may be performed during the formation of the refraction member. Good (3rd member formation method).
そして、 組上工程 S 5では、 加工された各光学部材の光軸方向の間隔、 光軸垂 直方向の位置、 及び光軸周りの回転角 (方位角) が設計工程 S 1で得られた設計 パラメータ通りとなるように、 各光学部材を位置決めし、 投影光学系を組み上げ る。  Then, in the assembling step S5, the space in the optical axis direction, the position in the vertical direction of the optical axis, and the rotation angle (azimuth angle) around the optical axis of each processed optical member were obtained in the design step S1. Position each optical member so as to meet the design parameters, and assemble the projection optical system.
以上の通り、 第 1実施例に係る投影光学系の製造方法によれば、 例えば蛍石や フッ化バリウム等の等軸晶系の結晶材料に起因する複屈折の影響を複数の偏光成 分に関して評価しつつ、 この等軸晶系の結晶材料からなる屈折部材の結晶軸の組 み込み角度を複屈折の影響が極小となるように定めることが可能であるため、 良 好な光学性能^を確保できる。  As described above, according to the method for manufacturing a projection optical system according to the first embodiment, the influence of birefringence caused by an equiaxed crystal material such as fluorite or barium fluoride is affected for a plurality of polarization components. While evaluating, it is possible to determine the angle of incorporation of the crystal axis of the refraction member made of this equiaxed crystal material so that the influence of birefringence is minimized, so that good optical performance ^ is obtained. Can be secured.
上述の第 1の実施例では、 等軸晶系の結晶材料からなる屈折部材の結晶軸方位 を最適化して、投影光学系の収差を低減させた力 S、結晶軸方位の最適化のみでは、 要求される光学性能を満足しない場合があり得る。 次に、 第 2実施例として、 等 軸晶系の結晶材料からなる等軸晶系屈折部材が有する固有複屈折による光学性倉 の悪化を、 非結晶屈折部材により補償する投影光学系の製造方法について説明す る。 本実施例による投影光学系の製造方法の詳細を説明する前に、 理解を容易と するために、 その概略について図 1 0を参照して簡単に説明する。 図 1 0は、 本 発明の第 2実施例による投影光学系の製造方法の概略を示すフローチャートであ る。 In the first embodiment described above, by optimizing the crystal axis orientation of the refraction member made of an equiaxed crystal material, the force S for reducing the aberration of the projection optical system, and optimizing the crystal axis orientation only, The required optical performance may not be satisfied. Next, as a second embodiment, a method of manufacturing a projection optical system for compensating for the deterioration of optical properties due to intrinsic birefringence of an equiaxed refraction member made of an equiaxed crystal material by using an amorphous refraction member Is explained. Before describing the details of the method of manufacturing the projection optical system according to the present embodiment, an outline thereof will be briefly described with reference to FIG. 10 to facilitate understanding. Figure 10 shows the book 6 is a flowchart schematically illustrating a method of manufacturing a projection optical system according to a second embodiment of the present invention.
図 1 0に示すように、 第 2実施例の投影光学系の製造方法は、 第 1実施例の製 造方法が有する設計工程 S 1、 結晶材料準備工程 S 2、 結晶軸測定工程 S 3、 第 1屈折部材形成工程 S 4、及び組上工程 S 5に加えて、非結晶材料準備工程 S 6、 複屈折量測定工程 S 7、 及び第 2屈折部材形成工程 S 8を有する。 なお、 第 1屈 折部材形成工程 S 4は、第 1実施例の屈折部材形成工程 S 4と同じ工程である力 本実施例では第 2屈折部材形成工程 S 8との混同を避けるため、 屈折部材形成ェ 程 S 4ではなく、 第 1屈折部材形成工程 S 4と称する。  As shown in FIG. 10, the method of manufacturing the projection optical system of the second embodiment includes a design process S1, a crystal material preparation process S2, a crystal axis measurement process S3, which the manufacturing method of the first embodiment has. In addition to the first refraction member forming step S4 and the assembling step S5, the method includes an amorphous material preparing step S6, a birefringence amount measuring step S7, and a second refraction member forming step S8. Note that the first bending member forming step S4 is the same process as the bending member forming step S4 of the first embodiment. In the present embodiment, the bending is performed to avoid confusion with the second bending member forming step S8. It is referred to as a first bending member forming step S4 instead of the member forming step S4.
以下、 第 1実施例に係る製造方法との相違点について説明する。  Hereinafter, differences from the manufacturing method according to the first embodiment will be described.
まず、 設計工程 S 1では、 最適化される投影光学系のパラメータとして、 第 1 実施例における設計パラメータに加えて、 例えば石英ゃフッ素がドープされた石 英等の非結晶材料の複屈折量を用いる。  First, in the design step S1, as the parameters of the projection optical system to be optimized, in addition to the design parameters in the first embodiment, for example, the birefringence of an amorphous material such as quartz doped with quartz and fluorine is used. Used.
例えば、 図 1 1 Aに示すように、 投影光学系としで、 等軸晶系の結晶材料から なる複数の屈折部材 1 1, 1 2と、 石英やフッ素がドープされた石英等の非結晶 材料からなる屈折部材 1 3とを備えた光学系を考える。  For example, as shown in FIG. 11A, a projection optical system includes a plurality of refraction members 11 and 12 made of an equiaxed crystal material and an amorphous material such as quartz or fluorine-doped quartz. An optical system including a refraction member 13 made of
ここで、 等軸晶系の結晶材料、 例えば蛍石からなる第 1の屈折部材 1 1及び第 2の屈折部材 1 2において、 その結晶軸 [ 1 1 1 ] を光軸 A xと一致させて配置 し、 第 1の屈折部材 1 1に対して第 2の屈折部材 1 2を光軸 A xを中心として X Y平面内で 6 0 ° 回転させる。 このとき、 第 1の屈折部材 1 1による複屈折の影 響を図 1 1 Bの ( b ) に示し、第 2の屈折部材 1 2による複屈折の影響を図 1 1 B の (a ) に示す。  Here, in the first refraction member 11 and the second refraction member 12 made of an equiaxed crystal material, for example, fluorite, the crystal axis [1 1 1] is made to coincide with the optical axis Ax. It is arranged, and the second refraction member 12 is rotated 60 ° about the optical axis Ax in the XY plane with respect to the first refraction member 11. At this time, the effect of birefringence by the first refraction member 11 is shown in (b) of FIG. 11B, and the effect of birefringence by the second refraction member 12 is shown in (a) of FIG. 11B. Show.
図 1 1 Bの (a)から (c)及び図 1 1 Cは、 光線の入射角に対する複屈折率の分 布を示しており、 図中破線で示す 6つの同心円が 1目盛り 1 0 ° を表している。 従って、 最も内側の円が光軸に対して入射角 1 0 ° の領域を、 最も外側の円が光 軸に対して入射角 6 0 ° の領域を表している。 また、 黒丸は比較的大きな屈折率を有する複屈折のない領域を、 白丸は比較的 小さな屈折率を有する複屈折のない領域をを表している。 一方、 太い円および太 ぃ両矢印は複屈折のある領域における比較的大きな屈折率の方向(遅相軸の方向) を、 細い円および細い両矢印は複屈折のある領域における比較的小さな屈折率の 方向 (進相軸) を表している。 (A) to (c) in Fig. 11B and Fig. 11C show the distribution of the birefringence index with respect to the incident angle of the light beam, and six concentric circles indicated by broken lines in the figure indicate one scale of 10 °. Represents. Accordingly, the innermost circle represents a region having an incident angle of 10 ° with respect to the optical axis, and the outermost circle represents a region having an incident angle of 60 ° with respect to the optical axis. A black circle indicates a region having a relatively large refractive index and no birefringence, and a white circle indicates a region having a relatively small refractive index and no birefringence. On the other hand, the thick circle and the thick double arrow indicate the direction of the relatively large refractive index (the direction of the slow axis) in the birefringent area, and the thin circle and the thin double arrow indicate the relatively small refractive index in the birefringent area. Represents the direction (fast axis).
図 1 1 Bの ( b ) 及び図 1 1 Bの ( c ) に示すように、 第 1及び第 2の屈折部 材 1 1, 1 2において、 光軸 Axと一致している結晶軸 [1 1 1] に対応する領 域は、 比較的小さな屈折率を有する複屈折のない領域となる。 また、 結晶軸 [1 00], [0 1 0], [00 1] に対応する領域は、 比較的大きな屈折率を有する複 屈折のない領域となる。 さらに、 結晶軸 [1 1 0], [1 0 1], [0 1 1] に対応 する領域は、 周方向の偏光に対する屈折率が比較的小さく径方向の偏光に対する 屈折率が比較的大きい複屈折領域となる。 このように、 各々の屈折部材 1 1, 1 2では、 光軸 Axから 3 5. 2 6° (結晶軸 [1 1 1] と結晶軸 [1 1 0] との なす角度) の領域において、 複屈折の影響を最大に受けることがわかる。  As shown in (b) of FIG. 11B and (c) of FIG. 11B, in the first and second refraction members 11 and 12, the crystal axis [1] The region corresponding to [1 1] is a region having a relatively small refractive index and no birefringence. The regions corresponding to the crystal axes [100], [010], and [001] are regions having a relatively large refractive index and no birefringence. Further, the regions corresponding to the crystal axes [1 1 0], [1 0 1], and [0 1 1] have a relatively small refractive index for circumferentially polarized light and a relatively large refractive index for radially polarized light. It becomes a refraction area. Thus, in each of the refraction members 11 and 12, in the region of 35.26 ° (the angle between the crystal axis [1 1 1] and the crystal axis [1 1 0]) from the optical axis Ax, It can be seen that the influence of birefringence is greatest.
図 1 1Bの (c) は、 光軸を中心とした相対回転角 60° を示す第 1及び第 2 の屈折部材 1 1, 1 2による複屈折の影響を合成したものである。図 1 1Bの(c) から明らかな通り、 これら第 1及び第 2の屈折部材 1 1, 1 2全体では、 複屈折 が最大である結晶軸 [1 1 0], [1 0 1], [0 1 1] の影響が薄められることが わかる。 しかしながら、 光軸から 3 5. 2 6° の領域すなわち光軸から比較的近 い領域において、 径方向の偏光に対する屈折率よりも周方向の偏光に対する屈折 率が小さい複屈折領域が残ることになる。 すなわち、 等軸晶系の結晶材料からな る屈折部材の結晶軸の角度を調整する手法では、 結晶軸の角度によっては複屈折 の影響をある程度受ける場合もあり、 十分に良好な結像性能 (光学性能) を確保 することが困難となる恐れがある。  (C) of FIG. 11B combines the effects of birefringence by the first and second refraction members 11 and 12 exhibiting a relative rotation angle of 60 ° about the optical axis. As is clear from (c) of FIG. 11B, in the first and second refraction members 11 and 12 as a whole, the crystal axes [1 110], [101], [100] where the birefringence is the maximum 0 1 1] is reduced. However, in the region at 3.5.26 ° from the optical axis, that is, the region relatively close to the optical axis, there remains a birefringent region in which the refractive index for circumferentially polarized light is smaller than that for radially polarized light. . In other words, in the method of adjusting the angle of the crystal axis of the refraction member made of an equiaxed crystal material, the effect of birefringence may be affected to some extent depending on the angle of the crystal axis, and a sufficiently good imaging performance ( Optical performance) may be difficult.
そこで、 本実施例では、 等軸晶系の結晶材料からなる屈折部材 1 1, 1 2とは 異なる非結晶材料からなる屈折部材 1 3に、 屈折部材 1 1, 1 2による複屈折を >複屈折分布を与える。 この屈折部材 1 3の複屈折分布を図 1 1 ( e ) に示す。 なお、 非結晶材料からなる屈折部材に所望の複屈折分布を与える 手法については、 後述の非結晶材料準備工程 S 6において説明する。 Therefore, in this embodiment, the birefringence of the refraction members 11 and 12 is applied to the refraction members 13 and 11 made of an amorphous material different from the refraction members 11 and 12 made of an equiaxed crystal material. > Give birefringence distribution. FIG. 11E shows the birefringence distribution of the refraction member 13. A method of giving a desired birefringence distribution to a refraction member made of an amorphous material will be described in a non-crystalline material preparation step S6 described later.
当該設計工程 S 1では、 このような非結晶材料からなる屈折部材の複屈折分布 を算出する。具体的には、第 1実施例の設計工程 S 1における設計パラメータ(設 計データ) に、 屈折部材の複屈折分布のパラメータを追加し、 第 1実施例のよう に、 ステップ S 1 1 ~ S 1 4を実行する。  In the design step S1, the birefringence distribution of the refraction member made of such an amorphous material is calculated. Specifically, the parameters of the birefringence distribution of the refraction member are added to the design parameters (design data) in the design process S1 of the first embodiment, and the steps S11 to S11 are performed as in the first embodiment. Perform 1 to 4.
なお、 本実施例においては、 非結晶材料からなる屈折部材の複屈折分布のパラ メータ以外のパラメータ (第 1実施例のパラメータと同じパラメータ) を最適化 し、 この最適化されたパラメータにより算出される収差の残渣分を、 非結晶材料 からなる屈折部材の複屈折分布のパラメータの最適化を行うことにより補正する 手法を用いることもできる。  In the present embodiment, parameters other than the parameters of the birefringence distribution of the refraction member made of an amorphous material (the same parameters as the parameters of the first embodiment) are optimized, and the parameters are calculated based on the optimized parameters. It is also possible to use a method of correcting the residual amount of aberration by optimizing the parameters of the birefringence distribution of the refractive member made of an amorphous material.
また、 第 1実施例と同様に、 最初に投影光学系を構成する光学部材 (レンズ、 反射面等) の面形状、 面間隔、 偏芯量、 光軸に対する傾き、 屈折率、 有効径、 公 差等といった非結晶材料からなる光学系が有するパラメータのみを変更して、 投 影光学系の光学性能のうちのスカラ一成分の収差を補正し、その後、薄膜の構造、 光学部材の複屈折率分布、 光軸を中心とした方位角等のパラメータを変更して、 スカラ一成分及び偏光成分の収差を補正しても良い。  Similarly to the first embodiment, first, the surface shape, the surface interval, the amount of eccentricity, the inclination with respect to the optical axis, the refractive index, the effective diameter, and the By changing only the parameters of the optical system made of an amorphous material such as the difference, the aberration of one component of the scalar in the optical performance of the projection optical system is corrected, and then the structure of the thin film and the birefringence of the optical member The aberration of the scalar single component and the polarization component may be corrected by changing parameters such as the distribution and the azimuth around the optical axis.
なお、 等軸晶系の結晶材料からなる屈折部材の結晶軸方位を最適化した結果、 偏光収差だけではなく、 スカラー収差も残存する場合には、 投影光学系を構成す る光学部材のうちの一部の光学部材の光学面 (レンズ面、 反射面) に、 このスカ ラー収差を補正するための非球面を形成しても良い。 この非球面としては、 後述 の組上工程 S 5におけるステップ S 5 2 6で算出される残存収差補正用の非球面 (典型的には光軸に関して回転非対称な形状) と兼用させても良いし、 別に設け ても良い。 別に設ける場合には、 当該設計工程 S 1においてその非球面形状 (光 軸に関して回転対称又は回転非対称な形状) を設計パラメータとしておく。 次に、 非結晶材料準備工程 S 6について説明する。 本実施例では、 非結晶材料 として石英又はフッ素がドープされた石英 (以下、 改質石英と称する) を用いる 力、 このような石英又は改質石英は、 光学結晶とは異なり、 理想的な状態では複 屈折性が発生しない。 When the crystal axis orientation of the refraction member made of an equiaxed crystal material is optimized, not only polarization aberration but also scalar aberration remains. An aspherical surface for correcting this scalar aberration may be formed on the optical surfaces (lens surfaces, reflection surfaces) of some optical members. The aspherical surface may be used also as an aspherical surface for correcting residual aberration (typically a shape rotationally asymmetrical with respect to the optical axis) calculated in step S526 in the assembling process S5 described later. , May be provided separately. If provided separately, the aspherical shape (shape rotationally symmetric or rotationally asymmetrical with respect to the optical axis) is set as a design parameter in the design step S1. Next, the amorphous material preparing step S6 will be described. In this embodiment, quartz or fluorine-doped quartz (hereinafter referred to as modified quartz) is used as the amorphous material. Such quartz or modified quartz is in an ideal state unlike an optical crystal. Does not produce birefringence.
しかしながら、 石英又は改質石英では、 不純物が混入した場合や、 高温で形成 された石英を冷却する際に温度分布が生じた場合には、 内部応力による複屈折性 が現れる。 そこで、 本実施例では、 インゴットに混入させる不純物の量や種類、 または熱履歴を調整することにより、 石英又は改質石英に所望の複屈折分布を発 生させる。  However, in the case of quartz or modified quartz, birefringence due to internal stress appears when impurities are mixed in or when a temperature distribution occurs when cooling quartz formed at a high temperature. Therefore, in the present embodiment, a desired birefringence distribution is generated in quartz or modified quartz by adjusting the amount and type of impurities mixed in the ingot or the thermal history.
なお、 不純物としては、 〇H、 C l、 金属不純物、 溶存ガスが挙げられ、 ダイ レクト法(Direct Method)の場合は、 数百 p p m以上含有される O H、 次いで 数十 p p m含有される C 1が混入量から支配的であると考えられる。 この不純物 がインゴットに混入した場合には材料の熱膨張率が変化するので、 例えばァニー ル後に冷却する場合には、 不純物が混入した部分の縮み方が大きくなり、 この縮 み方の差による内部応力が発生し、 応力複屈折が生じる。  The impurities include 〇H, Cl, metal impurities, and dissolved gas. In the case of the direct method, OH containing several hundred ppm or more, and then OH containing several tens ppm. Is considered to be dominant from the amount of contamination. When this impurity is mixed into the ingot, the coefficient of thermal expansion of the material changes.For example, when cooling after annealing, the part where the impurity is mixed shrinks greatly, and the difference in the shrinkage causes Stress occurs and stress birefringence occurs.
また、 熱履歴に関しては、 上記ダイレクト法、 VAD (vapor axial depos ition )法、 ゾノレゲノレ( sol— gel )法、 プラズマノ ーナ(plasma burner ) 法などの製造方法によらずに存在する。  The thermal history exists regardless of the production method such as the direct method, the vapor axial deposition (VAD) method, the sol-gel method (sol-gel) method, and the plasma burner method.
本実施例では、 石英の原料となる S i化合物ガス ( S i化合物ガスを送り出す ために 02、 H2等のキャリアガスが用いられる) と、 加熱のための燃焼ガス (O 2ガスと H2ガス) とをバーナーから流出し、 火炎内で石英を堆積させる火炎加 水分解法を用いて石英の合成を行いインゴットを得る。 その後、 インゴットを切 り出してディスク材を得て、このディスク材のァニール(又は徐冷)を行う。 そ して、 本実施例では、 石英からなる屈折部材の複屈折分布が設計工程 S 1により 算出された複屈折分布となるように、 石英の合成時の合成条件と、 ァニール時の 熱履歴条件とを調整している。 このとき、 合成条件のパラメータとしては、 バー ナー構造、 ガス流量、 排気流量、 ターゲットの揺動パターン等が挙げられる。 な お、 このような合成条件ゃァニール条件は、 試行錯誤的に求めても良いし、 経験 則を用いて決定しても良い。 In the present embodiment, a Si compound gas (a carrier gas such as 02 or H2 is used to send out the Si compound gas) as a raw material for quartz, and a combustion gas (O 2 gas and H 2 gas) for heating are used. Are discharged from the burner, and quartz is synthesized using a flame hydrolysis method in which quartz is deposited in the flame to obtain an ingot. Thereafter, the ingot is cut out to obtain a disc material, and the disc material is annealed (or gradually cooled). Then, in the present embodiment, the synthesis conditions at the time of synthesis of quartz and the thermal history conditions at the time of annealing are set so that the birefringence distribution of the refractive member made of quartz becomes the birefringence distribution calculated in the design step S1. And have adjusted. At this time, the bar of the synthesis condition And the swinging pattern of the target. Note that such a synthesis condition / anneal condition may be obtained by trial and error or may be determined using empirical rules.
なお、 本実施例では、 例えば石英又は改質石英からなる非結晶材料の複屈折分 布の対称軸と、 当該非結晶材料から形成される屈折部材の光軸とをほぼ一致させ ている。 このために、 石英の合成時においてインゴットを回転させながら合成し てインゴット中の不純物濃度および物性分布を中心対称とする。 このインゴット の中心位置 (合成時の回転中心とほぼ一致) が応力分布の中心となるため、 後述 の第 2の屈折部材形成工程では、 この中心位置を基準として (中心位置と光軸と を一致させて) 屈折部材を形成することが好ましい。 このため、 インゴットから 切り出した素材には、 その中心位置をマーキングしておくことが望ましい。 そして、 ァニール時には、 ィンゴットから切り出した素材形状を円筒形のディ スク材とし、 中心対称な温度分布を有する炉の中央で加熱している。 このとき、 ディスク材を回転させつつァニールを行うことが好ましい。  In the present embodiment, the axis of symmetry of the birefringence distribution of an amorphous material made of, for example, quartz or modified quartz substantially coincides with the optical axis of a refractive member formed of the amorphous material. For this purpose, the ingot is synthesized while rotating the ingot during the synthesis of quartz, and the impurity concentration and the physical property distribution in the ingot are made centrally symmetric. Since the center position of the ingot (substantially coincides with the rotation center at the time of synthesis) becomes the center of the stress distribution, in the second refraction member forming step described later, the center position and the optical axis are matched based on this center position. It is preferable to form a refraction member. For this reason, it is desirable to mark the center position of the material cut out from the ingot. At the time of annealing, the raw material cut from the ingot is made into a cylindrical disk material and heated in the center of a furnace having a symmetrical temperature distribution. At this time, it is preferable to perform annealing while rotating the disk material.
次に、 複屈折量測定工程 S 7について説明する。 この複屈折量測定工程 S 7で は、 非結晶材料準備工程 S 6により得られた石英又は改質石英からなる非結晶材 料の複屈折分布の測定を行う。 この複屈折分布の測定においては、 図 8に示した 複屈折測定機を用レ、ることができ、 複屈折分布の測定方法も前述した通りである ため、 ここでは説明を省略する。 なお、 この測定によって得られる複屈折分布の 対称軸の位置に関する情報を、 例えばディスク材にマーキングする等の手法によ つて、 非結晶材料に持たせておくことが好ましい。  Next, the birefringence amount measuring step S7 will be described. In this birefringence measuring step S7, the birefringence distribution of the amorphous material made of quartz or modified quartz obtained in the amorphous material preparing step S6 is measured. In the measurement of the birefringence distribution, a birefringence measuring instrument shown in FIG. 8 can be used, and the method of measuring the birefringence distribution is also as described above, and therefore the description is omitted here. It is preferable that information on the position of the axis of symmetry of the birefringence distribution obtained by this measurement be provided in the amorphous material by, for example, a method of marking a disc material.
また、 この複屈折量測定工程において、 非結晶材料の屈折率分布も測定してお くことが好ましい。 以下、 図 1 2を参照して、 非結晶材料の屈折率の絶対値及び 屈折率分布を測定する手法について説明する。 図 1 2は、 屈折率の絶対値及び屈 折率分布を測定するための干渉計装置を概略的に示す図である。  In the birefringence measurement step, it is preferable to measure the refractive index distribution of the amorphous material. Hereinafter, a method for measuring the absolute value of the refractive index and the refractive index distribution of the amorphous material will be described with reference to FIGS. FIG. 12 is a diagram schematically showing an interferometer device for measuring the absolute value of the refractive index and the refractive index distribution.
図 1 2において、 オイル 1 3 1が充填された試料ケース 1 3 2の中の所定位置 に被検物体である非結晶材料 1 3 3を設置する。 そして、 制御系 1 3 4に制御さ れた干渉計ュニット 1 3 5からの射出光が、 フィゾーステージ 1 3 6 a上に支持 されたフィゾーフラット (フィゾー平面) 1 3 6に入射する。 In Fig. 12, a predetermined position in the sample case 13 2 filled with oil 13 1 The non-crystalline material 1 3 3 which is the object to be tested is set in the apparatus. The light emitted from the interferometer unit 135 controlled by the control system 134 is incident on a Fizeau flat (Fizeau plane) 135 supported on a Fizeau stage 135a.
ここで、 フィゾーフラット 1 3 6で反射された光は参照光となり、 干渉計ュニ ット 1 3 5へ戻る。一方、フィゾーフラット 1 3 6を透過した光は測定光となり、 試料ケース 1 3 2内の被検物体 1 3 3に入射する。 被検物体 1 3 3を透過した光 は、 反射平面 1 3 7によって反射され、 被検物体 1 3 3及びフィゾーフラット 1 3 6を介して干渉計ュ-ット 1 3 5へ戻る。 こうして、 干渉計ュニット 1 3 5へ 戻った参照光と測定光との位相ずれに基づいて、 非結晶光学部材 1 3 3の屈折率 分布による波面収差が計測される。 なお、 屈折率均質性の干渉計による計測に関 する詳細については、 例えば特開平 8— 5 5 0 5号公報などを参照することがで きる。  Here, the light reflected by the Fizeau flat 1336 becomes the reference light, and returns to the interferometer unit 135. On the other hand, the light transmitted through the Fizeau flat 13 36 becomes measurement light, and is incident on the test object 13 3 in the sample case 13 2. The light transmitted through the test object 133 is reflected by the reflection plane 133 and returns to the interferometer cut 135 via the test object 133 and the Fizeau flat 136. Thus, the wavefront aberration due to the refractive index distribution of the amorphous optical member 133 is measured based on the phase shift between the reference light and the measurement light returned to the interferometer unit 135. For details of the measurement of the refractive index homogeneity by the interferometer, for example, Japanese Patent Application Laid-Open No. 8-55505 can be referred to.
次に、 非結晶材料から屈折部材を形成する第 2屈折部材形成工程 S 8について 説明する。  Next, the second bending member forming step S8 of forming a bending member from an amorphous material will be described.
第 2屈折部材形成工程 S 8では、 複屈折量計測工程 S 7において複屈折分布や 屈折率分布等が計測された非結晶材料 (典型的にはディスク材) から必要に応じ て研削された材料を用いて、 投影光学系を構成すべき各レンズを製造する。 すな わち、 周知の研磨工程にしたがって、 設計データ中の面形状、 面間隔を目標とし て各レンズの表面を研磨加工して、 所定形状のレンズ面を有する屈折部材を製造 する。 この第 2屈折部材形成工程においても、 第 1屈折部材形成工程 (第 1実施 例の屈折部材形成工程 S 4 ) と同様に、 各レンズの面形状の誤差を干渉計で計測 しながら研磨を繰り返し、 各レンズの面形状を目標面形状 (べストフイツト球面 形状) に近づける。 こう して、 各レンズの面形状誤差が所定の範囲に入ると、 各 レンズの面形状の誤差を、 第 1屈折部材形成工程 (第 1実施例の屈折部材形成ェ 程 S 4 ) と同様に、 例えば図 9に示した精密な干渉計装置を用いて計測する。 第 2屈折部材形成工程 S 8においても、 計測された面形状が所定の範囲内になるま で、 計測 ·研磨を繰り返す。 In the second refraction member forming step S8, a material obtained by grinding an amorphous material (typically a disc material) whose birefringence distribution or refractive index distribution was measured in the birefringence amount measurement step S7 as necessary. Is used to manufacture each lens that constitutes the projection optical system. In other words, the surface of each lens is polished in accordance with a well-known polishing process with the target of the surface shape and the surface interval in the design data, and a refraction member having a lens surface of a predetermined shape is manufactured. In this second refraction member forming step, similarly to the first refraction member formation step (the refraction member formation step S4 of the first embodiment), polishing is repeated while measuring the surface shape error of each lens with an interferometer. Then, bring the surface shape of each lens close to the target surface shape (best fit spherical shape). Thus, when the surface shape error of each lens falls within a predetermined range, the error of the surface shape of each lens is reduced in the same manner as in the first refraction member forming step (the refraction member forming step S4 of the first embodiment). For example, the measurement is performed using the precise interferometer shown in FIG. Also in the second refraction member forming step S8, the measured surface shape falls within a predetermined range. Repeat the measurement and polishing.
次に、図 1 3を参照して、第 2実施例における組上工程 S 5について説明する。 図 1 3は、 第 2実施例に係る投影光学系の製造方法の組上工程 S 5の詳細を示す フローチャートである。 なお、 フローチャートでは判断工程をひし形で図示する のが一般的ではあるが、 図 1 3においては、 図示の都合上、 判断工程 (たとえば 図 1 3の S 5 1 4、 S 5 1 7、 S 5 2 2、 S 5 2 3、 S 5 3 2 ) を図示のごとく 六角形で表している。  Next, the assembling step S5 in the second embodiment will be described with reference to FIG. FIG. 13 is a flowchart showing details of the assembling step S5 of the method for manufacturing a projection optical system according to the second example. In the flowchart, the judgment process is generally illustrated by a diamond, but in FIG. 13, the judgment process (for example, S5 14, S5 17, S5 22, S 5 2 3, S 5 3 2) are represented by hexagons as shown.
(ステップ S 5 1 0 ) ステップ S 5 1 0では、 結晶軸測定工程 S 3で測定さ れた結晶材料からなる屈折部材の結晶軸に関する情報と、 第 1屈折部材形成工程 S 4で測定された加工後の屈折部材の面形状及び面間隔に関する情報と、 複屈折 量測定工程 S 7で測定された非結晶材料からなる屈折部材の屈折率及び分布並び に複屈折量及び分布に関する情報と、 第 2屈折部材形成工程 S 8で測定された加 ェ後の屈折部材の面形状及び面間隔に関する情報とに基づいて、 これらのパラメ ータ (面形状、 面間隔、 屈折率、 屈折率分布、 結晶軸方位、 複屈折量、 複屈折分 布等) を有する光学部材を用いて投影光学系を組み立てた際の光学性能を、 コン ピュータを用いたシミュレーシヨンによって予測する。  (Step S510) In step S510, information on the crystal axis of the refraction member made of the crystalline material measured in the crystal axis measurement step S3 and the information measured in the first refraction member formation step S4 Information on the surface shape and surface spacing of the processed refraction member, information on the refractive index and distribution of the refraction member made of an amorphous material measured in the birefringence amount measurement step S7, and information on the birefringence amount and distribution. (2) Refraction member forming step These parameters (surface shape, surface interval, refractive index, refractive index distribution, crystal The optical performance when assembling the projection optical system using the optical members having the axial orientation, the amount of birefringence, the birefringence distribution, etc., is predicted by simulation using a computer.
具体的には、 まず、 設計工程 S 1で得られた設計データ通りに投影光学系の各 光学部材のパラメータを設定した上で、 上記情報を各光学部材に加味した投影光 学系の光学性能を算出する。 こ.こで、 投影光学系の光学性能の評価値としては、 前述の平均位相分布、 リタ一ディション分布、 これらの R M S値、 P S F値等を 用いることができる。  Specifically, first, after setting the parameters of each optical member of the projection optical system according to the design data obtained in the design process S1, the optical performance of the projection optical system by adding the above information to each optical member Is calculated. Here, as the evaluation value of the optical performance of the projection optical system, the average phase distribution, the retardation distribution, the RMS value, the PSF value, and the like described above can be used.
(ステップ S 5 1 1 ) ステップ S 5 1 1では、 シミュレーションにて仮想的に 組み立てられた各光学部材の間隔、 光軸に対する偏心量、 光軸周りの方位角 (組 み込み角度) を変化させたときの投影光学系 P Lの光学性能をシミュレーシヨン で求める。 上述の工程 S 2 ~ S 4、 及び S 6〜S 8を経て製造された光学部材に は屈折率分布ゃ複屈折分布の不均質や、 面形状、 面間隔、 及び結晶軸方位等の製 造誤差が生じているため、 光学部材の光軸周りの方位角 (組み込み角度) のみを 変えた場合でも投影光学系 P Lの特性は変化する。 ここでは、 最も光学特性が良 くなるよう各光学部材の間隔及び偏心量と組み込み角度とを最適化する。 (Step S 5 11 1) In step S 511, the distance between the optical members virtually assembled in the simulation, the amount of eccentricity with respect to the optical axis, and the azimuth (incorporation angle) around the optical axis are changed. The optical performance of the projection optical system PL is calculated by simulation. The optical member manufactured through the above-described steps S2 to S4 and S6 to S8 has a non-uniform refractive index distribution / birefringence distribution, a surface shape, a plane interval, and a crystal axis orientation. Because of the fabrication error, the characteristics of the projection optical system PL change even when only the azimuth (embedded angle) around the optical axis of the optical member is changed. Here, the interval and the amount of eccentricity of each optical member and the mounting angle are optimized so as to obtain the best optical characteristics.
(ステップ S 5 1 2 ) ステップ S 5 1 2では、 シミュレーションにより最適化 された光学部材の間隔及び偏心量と組み込み角度とに基づいて、 最適化された光 学部材の間隔、 偏心量、 及び組み込み角度通りに光学部材を、 各光学部材を保持 する鏡筒に組み込む。 (ステップ S 5 1 3 ) ステップ S 5 1 3では、図 1 4に示 した収差測定測定装置を用いて波面収差を計測する。 図 1 4に示した収差測定装 置は、 位相回復法の原理を用いるものである。 図 1 4において、 投影光学系 P L の物体面にパターン板 1 4 1のパターン形成面を位置決めするとともに、 投影光 学系 P Lの結像位置 (像面) に対物光学系系 1 4 3の前側焦点位置を位置決めす る。 その後、 照明光源 1 4 0から射出される照明光によりパターン板 1 4 1に形 成されたピンホール 1 4 2を照明して理想的な球面波を発生させる。 この理想的 な球面波が投影光学系 P Lを通過すると、 投影光学系 P Lに残存する収差の影響 を受けて理¾1的な球面の波面形状が変化する。 投影光学系 P Lを通過した光を対 物光学系 1 4 3で集光し、 その像を撮像素子 1 4 4で撮像して得られた撮像信号 は、 投影光学系 P Lの残存収差に応じて強度分布が変化する。 よって、 投影光学 系 P Lの残存収差収差に関する情報を含む画像信号を、 位相回復法に基づく所定 の演算を行うことにより、投影光学系 P Lの残存収差を求めることができる。尚、 上述した位相回復法の詳細な内容については、 米国特許第 4, 3 0 9, 6 0 2号 明細書等を参照されたい。  (Step S512) In step S512, the optimized distance between optical members, the amount of eccentricity, and the amount of installation are determined based on the distance and the amount of eccentricity of the optical members optimized by simulation and the angle of installation. Incorporate the optical member into the lens barrel that holds each optical member according to the angle. (Step S 5 13) In step S 5 13, the wavefront aberration is measured using the aberration measuring and measuring apparatus shown in FIG. The aberration measuring device shown in FIG. 14 uses the principle of the phase recovery method. In Fig. 14, the pattern forming surface of the pattern plate 141 is positioned on the object plane of the projection optical system PL, and the front side of the objective optical system 144 is positioned at the imaging position (image plane) of the projection optical system PL. Position the focal point. After that, the illumination light emitted from the illumination light source 140 illuminates the pinhole 142 formed on the pattern plate 141 to generate an ideal spherical wave. When this ideal spherical wave passes through the projection optical system PL, the ideal spherical wavefront shape changes under the influence of the aberration remaining in the projection optical system PL. The light that has passed through the projection optical system PL is condensed by the object optical system 144, and the image is captured by the imaging element 144. The intensity distribution changes. Therefore, the residual aberration of the projection optical system PL can be obtained by performing a predetermined operation based on the phase recovery method on the image signal including the information on the residual aberration aberration of the projection optical system PL. For details of the phase recovery method described above, see US Pat. No. 4,309,602.
なお、投影光学系 P Lの残存収差を計測するためには、図 1 4に示したように、 パターン板 1 4 1に形成されたピンホーノレ 1 4 2が投影光学系 P Lの光軸 A X上 に配置している場合のみならず、 光軸 A Xに直交する面内の複数の計測点 (例え ば、 数十点) にピンホール 1 4 2を配置した状態で波面収差を測定する必要があ る。 そこで、 この工程では、 光軸 A Xに直交する面内においてピンホール 1 4 2 の位置を計測点に移動させつつ波面収差を測定する。 尚、 パターン板 1 4 1を移 動させるのではなく、 パターン板 1 4 1に複数のピンホールを形成し、 照明光源 1 4 0内に照明領域を規定する部材を設け、 一度に 1つのピンホールを照明する ことにより波面収差を計測するようにしても良い。 In order to measure the residual aberration of the projection optical system PL, as shown in FIG. 14, the pinhorn 14 formed on the pattern plate 14 1 is arranged on the optical axis AX of the projection optical system PL. In addition to the above, it is necessary to measure the wavefront aberration in a state where the pinholes 142 are arranged at a plurality of measurement points (for example, several tens) in a plane orthogonal to the optical axis AX. Therefore, in this step, the pinhole 1 4 2 is set in the plane orthogonal to the optical axis AX. Is moved to the measurement point and the wavefront aberration is measured. Instead of moving the pattern plate 141, a plurality of pinholes are formed in the pattern plate 141, a member for defining an illumination area is provided in the illumination light source 140, and one pin at a time is provided. The wavefront aberration may be measured by illuminating the hole.
(ステップ S 5 1 4 ) ステップ S 5 1 4では、 投影光学系の像面上の全ての測 定点において波面収差が測定可能か否かを判断する。 図 1 4に示した収差測定装 置は、 撮像素子 1 4 4で撮像して得られた撮像信号に対して位相回復法に基づく 所定の演算を行うことにより、 投影光学系 P Lの残存収差を求めているが、 位相 回復法では投影光学系 P Lの残存収差が大きすぎると波面を復元することができ ない。 よって、 当該ステップ S 5 1 4において、 全ての測定点において波面収差 が測定可能か否かが判断される。 収差測定が不可能な計測点が 1つでもあると判 断された場合 (判断結果が 「N G」) の場合には、 ステップ S 5 1 5へ移行する。  (Step S 5 14) In step S 5 14, it is determined whether or not the wavefront aberration can be measured at all the measurement points on the image plane of the projection optical system. The aberration measuring device shown in FIG. 14 performs a predetermined operation based on the phase recovery method on an image signal obtained by imaging with the image sensor 144 to reduce the residual aberration of the projection optical system PL. However, the phase recovery method cannot restore the wavefront if the residual aberration of the projection optical system PL is too large. Therefore, in step S514, it is determined whether the wavefront aberration can be measured at all the measurement points. If it is determined that there is at least one measurement point at which aberration cannot be measured (determination result is “NG”), the process proceeds to step S515.
(ステップ S 5 1 5 ) ステップ S 5 1 5では、 各光学部材の光軸方向の間隔の 調整、各光学部材の光軸直交面内の位置の調整(偏心調整)、及び各光学部材の光 軸周りの方位角の調整のうちの少なくとも 1つを実行することにより、 投影光学 系の光学性能を調整を行い、 ステップ S 5 1 3へ移行する。  (Step S 515) In step S 515, the adjustment of the interval of each optical member in the optical axis direction, the adjustment of the position of each optical member in the plane orthogonal to the optical axis (the eccentricity adjustment), and the light of each optical member By performing at least one of the adjustments of the azimuth around the axis, the optical performance of the projection optical system is adjusted, and the flow proceeds to step S513.
ステップ S 5 1 4において全ての計測点で収差測定が可能であると判断される まで、 これらのステップ S 5 1 3〜S 5 1 5を繰り返し実行する。 ここで、 ステ ップ S 5 1 4において全ての計測点で収差測定が可能であると判断された場合 (判断結果が 「O K」 の場合) には、 ステップ S 5 1 6へ移行する。  These steps S513 to S515 are repeated until it is determined in step S515 that aberration measurement is possible at all measurement points. Here, when it is determined in step S5 14 that aberration measurement is possible at all measurement points (when the determination result is “OK”), the process proceeds to step S5 16.
(ステップ S 5 1 6 ) ステップ S 5 1 6では、 上記収差測定装置を用いて全計 測点における波面収差を計測する。  (Step S 516) In step S 516, the wavefront aberration at all measurement points is measured using the above-described aberration measuring device.
(ステップ S 5 1 7 ) ステップ S 5 1 7では、 ステップ S 5 1 6で計測された 波面収差が所定の規格内であるか否かを判断する。 このステップ S 5 1 7は、 後 述の高精度な収差測定ができる程度に投影光学系の光学性能が調整されているか 否かを判断する工程である。 この判断結果が 「N G」 の場合には、 ステップ S 5 1 8へ移行し、 判断結果が 「OK」 の場合には、 ステップ S 5 1 9へ移行する。 (ステップ S 5 1 8) ステップ S 5 1 8では、 各光学部材の光軸方向の間隔の 調整、各光学部材の光軸直交面内の位置の調整(偏心調整)、及び各光学部材の光 軸周りの方位角の調整のうちの少なくとも 1つを実行することにより、 投影光学 系の光学性能を調整を行い、 ステップ S 5 1 6へ移行する。 (Step S5 17) In step S5 17, it is determined whether or not the wavefront aberration measured in step S5 16 is within a predetermined standard. This step S 517 is a step of judging whether or not the optical performance of the projection optical system has been adjusted to the extent that highly accurate aberration measurement described later can be performed. If the result of this determination is "NG", step S5 The process proceeds to 18, and if the determination result is “OK”, the process proceeds to step S 5 19. (Step S 518) In step S 518, the adjustment of the interval of each optical member in the optical axis direction, the adjustment of the position of each optical member in the plane orthogonal to the optical axis (eccentricity adjustment), and the light By performing at least one of the adjustments of the azimuth around the axis, the optical performance of the projection optical system is adjusted, and the flow proceeds to step S 516.
(ステップ S 5 1 9) 上述のステップ S 5 1 6〜S 5 1 8を繰り返し実行する ことにより、 投影光学系の光学性能が、 高精度な収差測定を行うことができる程 度にまで調整されると、 当該ステップ S 5 1 9へ移行する。  (Step S5 19) By repeatedly executing the above steps S5 16 to S5 18, the optical performance of the projection optical system is adjusted to such an extent that highly accurate aberration measurement can be performed. Then, the flow shifts to step S 5 19.
このステップ S 5 1 9では、 例えば特開平 1 0— 3 8 7 5 7号公報に開示され たフィゾー干渉計方式の波面収差測定機や、 特開 20 0 0— 9 76 1 6号公報に 開示された P D I (Phase Diffraction Interferometer:位相回折干渉計) 方式の波面収差測定機を用いて、 高精度な波面収差計測を行う。  In step S 519, for example, a Fizeau interferometer-type wavefront aberration measuring device disclosed in Japanese Patent Application Laid-Open No. H10-38957 and a method disclosed in Japanese Patent Application Laid-Open No. 2000-97616 are disclosed. High-precision wavefront aberration measurement using a PDI (Phase Diffraction Interferometer) type wavefront aberration measurement device.
このとき、 本実施例では、 投影光学系に対して複数の偏光成分毎に波面収差の 測定を行う、 具体的には、 上述の XY偏光成分や R 0偏光成分等を用いることが できる。 なお、 本実施例では、 複数の偏光成分毎の波面収差の測定に代えて、 或 いは加えて、 非偏光成分 (例えば上記 XY偏光成分、 偏光成分を同時に用い る) を用いた測定を行っても良い。  At this time, in the present embodiment, the wavefront aberration is measured for each of a plurality of polarization components with respect to the projection optical system. Specifically, the XY polarization component, the R0 polarization component, and the like described above can be used. In the present embodiment, instead of or instead of measuring the wavefront aberration for each of a plurality of polarization components, measurement using a non-polarization component (for example, using the XY polarization component and the polarization component simultaneously) is performed. May be.
(ステップ S 5 2 0) ステップ S 5 2 0では、 測定された波面収差に対してッ エルエケの円筒関数系 Ζ η ( ρ , Θ ) をフィッティングして各項毎の展開係数を 求め、 波面収差の各成分を (必要であれば偏光毎の波面収差の各成分も) 算出す る。 '  (Step S520) In Step S520, the expansion coefficient of each term is obtained by fitting the measured wavefront aberration to the Zell-Eke cylindrical function system Ζη (ρ, Θ), and the wavefront aberration is calculated. Is calculated (and, if necessary, each component of wavefront aberration for each polarization). '
ここで、 ツェルニケの円筒関数系 Ζ η ( ρ , Θ ) を用いた波面収差のフイツテ ィングについて簡単に説明する。  Here, the fitting of the wavefront aberration using the Zernike cylindrical function system Ζ η (ρ, Θ) will be briefly described.
まず、 射出面上の極座標を定め、 波面収差を、 W (ρ , Θ ) として表す。 ここ で、 ρは射出瞳半径を 1に規格化した規格化瞳半径であり、 0は極座標の動径角 である。 次いで、 波面収差 W ( ρ , Θ ) を、 ツェルニケの円筒関数系 Ζ η ( ρ , Θ) を用いて、 次の (6) 式に示すように展開する。 First, the polar coordinates on the exit surface are determined, and the wavefront aberration is expressed as W (ρ, Θ). Here, ρ is a normalized pupil radius obtained by standardizing the exit pupil radius to 1, and 0 is a radial angle in polar coordinates. Next, the wavefront aberration W (ρ, Θ) is converted into the Zernike cylindrical function system Ζ η (ρ, Using Θ), expand as shown in the following equation (6).
(6) W ( , Θ) =∑CnZn ( , Θ) =C 1 (6) W (, Θ) = ∑CnZn (, Θ) = C 1
Z l (p, Θ) +C 2 Z 2 ( , Θ) + ■ - - · . ·Z l (p, Θ) + C 2 Z 2 (, Θ) + ■--.
+ CnZn (p, Θ) なお、 ツェルュケの円筒関数系 Z n {ρ, θ ) の各項に 係る円筒関数系については周知であるので、 詳細な説明は省略する。 + CnZn (p, Θ) Since the cylindrical function system relating to each term of the Zelke's cylindrical function system Z n {ρ, θ) is well known, detailed description is omitted.
さて、 本実施例にかかる投影光学系には、 投影光学系を露光装置本体に搭載し た後でも光学性能 (倍率、 収差等) を調整するための外部調整機構が設けられて いる。このような外部調整機構としては、投影光学系を構成する光学部材の位置 - 姿勢をァクチユエータで制御する、 或いは手動で調整する機構や、 投影光学系を 構成する光学部材のうち、 最も第 1面側及び Ζ又は第 2面側に位置する光学部材 を、 当該光学部材とは異なる光学特性を有する光学部材と交換する機構などがあ る。  The projection optical system according to the present embodiment is provided with an external adjustment mechanism for adjusting optical performance (magnification, aberration, etc.) even after the projection optical system is mounted on the exposure apparatus main body. As such an external adjustment mechanism, a mechanism for controlling or manually adjusting the position and orientation of an optical member constituting the projection optical system, or a mechanism for manually adjusting the position and orientation, and the first surface among the optical members constituting the projection optical system There is a mechanism for exchanging an optical member located on the side and / or the second surface side with an optical member having optical characteristics different from the optical member.
以下、 図 1 5を参照して、 外部調整機構について簡単に説明する。 本実施例の 投影光学系は、 複数の光学部材 21〜27を光軸方向 (Ζ方向) に沿って配置し た構成となっているが、 最も第 1面 R側の光学部材 21と最も第 2面 W側の光学 部材 22とが投影光学系 P Lの本体に対して交換可能となっている。 また、 複数 の光学部材のうちの 5つのレンズ 23〜 27は、 それぞれァクチユエータ 28— 32によって、 光軸方向 (Ζ方向)、 及び当該光軸と直交する方向 (ΧΥ方向) を 軸とした回転方向 (S x, 0 y方向) に沿った位置が調整可能となっている。 こ こで、 最も第 2面 W側の光学部材 22を保持する保持部材 33は、 投影光学系 P Lを構成する鏡筒の一部 34に対し脱着可能に構成されている。  Hereinafter, the external adjustment mechanism will be briefly described with reference to FIG. The projection optical system of the present embodiment has a configuration in which a plurality of optical members 21 to 27 are arranged along the optical axis direction (Ζ direction). The two optical members 22 on the W side are interchangeable with the main body of the projection optical system PL. The five lenses 23 to 27 of the plurality of optical members are respectively rotated by the actuators 28 to 32 in the direction of the optical axis () direction) and the direction perpendicular to the optical axis (ΧΥ direction). (S x, 0 y direction) can be adjusted. Here, the holding member 33 that holds the optical member 22 closest to the second surface W is configured to be detachable from a part 34 of the lens barrel that forms the projection optical system PL.
本実施例では、 5つのレンズがそれぞれ Z方向、 θ X方向、 及び 0 y方向に位 置調整可能となっているため、 5つの回転対称収差 (倍率、 低次のディストーシ ヨン、 低次のコマ収差、 低次の像面湾曲及び低次の球面収差) 及び 5つの偏心収 差 (2種類の偏心ディストーション、 偏心コマ収差、 偏心ァス、 及び偏心球面収 差) を補正することができる。 なお、 本実施例では 5つのレンズを位置調整可能 としたが、 位置調整可能なレンズの数は 5つには限定されない。 In this embodiment, since five lenses can be adjusted in the Z direction, the θ X direction, and the 0 y direction, respectively, five rotationally symmetric aberrations (magnification, low-order distortion, low-order Aberration, low-order field curvature and low-order spherical aberration) and five eccentric aberrations (two types of eccentric distortion, eccentric coma, eccentric ass, and eccentric spherical aberration) can be corrected. In this embodiment, five lenses can be adjusted. However, the number of lenses whose position can be adjusted is not limited to five.
また、 本実施例では、 最も第 1面 R側の光学部材及ぴ最も第 2面 W側の光学部 材のうちの少なくとも一方を、 当該光学部材とは異なる複屈折量及ぴ複屈折分布 を有する光学部材と交換可能としている。 ここで、 当該光学部材としては、 上述 の結晶材料準備工程 S 2、 結晶軸測定工程 S 3及ぴ第 1屈折部材形成工程 S 4と 同様の製造方法により製造される等軸晶系の結晶材料 (例えば蛍石、 フッ化バリ ゥム) や、 上述の非結晶材料準備工程 S 6、 複屈折量測定工程 S 7及び第 2屈折 部材形成工程 S 8と同様の製造方法により製造される非結晶材料 (石英、 改質石 英) を適用することができる。  In this embodiment, at least one of the optical member closest to the first surface R and the optical member closest to the second surface W has a birefringence amount and a birefringence distribution different from those of the optical member. It can be replaced with an optical member. Here, as the optical member, an equiaxed crystal material manufactured by the same manufacturing method as the above-described crystal material preparing step S2, crystal axis measuring step S3, and first refraction member forming step S4 is used. (For example, fluorite or barium fluoride) or an amorphous material manufactured by the same manufacturing method as the above-described amorphous material preparation step S6, birefringence amount measuring step S7, and second refractive member forming step S8. Materials (quartz, modified stones) can be applied.
また、 最も第 1面 R側の光学部材及ぴノ又は最も第 2面 W側の光学部材に関し ては、投影光学系 P Lに対して、その X Y平面内の位置、 0 x, 0 y方向の傾き、 Z方向の位置が調整可能となるようにすることが好ましい。 この構成によれば、 例えば回転非対称な偏光収差が投影光学系 P Lに発生している場合には、 所定の 複屈折分布を有する光学部材 2 1または 2 2の位置 ·姿勢を調整して、 回転非対 称な偏光収差を補正できる。 ここで、 最も第 2面 W側の光学部材が平行平面板で ある場合には、 この θ χ , Θ y方向の傾きを調整することにより偏心コマ収差を 補正できる。 また、 最も第 2面 W側の光学部材の屈折力を変更するように調整す れば(屈折力が異なる光学部材と交換すれば)、投影光学系 P Lのぺッッバール和 を調整することができる。  Further, the optical member closest to the first surface R and the optical member closest to the second surface W are positioned relative to the projection optical system PL in the XY plane and in the 0x and 0y directions. It is preferable that the tilt and the position in the Z direction can be adjusted. According to this configuration, for example, when rotationally asymmetric polarization aberration is generated in the projection optical system PL, the position and orientation of the optical member 21 or 22 having a predetermined birefringence distribution is adjusted, and the rotation is adjusted. Asymmetric polarization aberration can be corrected. Here, when the optical member closest to the second surface W is a plane-parallel plate, decentering coma can be corrected by adjusting the inclination in the θ, and Θy directions. In addition, if the refractive power of the optical member closest to the second surface W is adjusted (by replacing the optical member with a different refractive power), the Pebbles sum of the projection optical system PL can be adjusted. .
また、 図 1 5には示していないが、 投影光学系 P Lを構成する光学部材の一部 にトーリック面形状の光学面 (屈折面、 反射面等) を設けて、 当該光学部材の光 軸 A X周りの方位角を調整することにより、 光軸上非点隔差を補正することが可 能である。  Although not shown in FIG. 15, an optical surface (a refractive surface, a reflective surface, or the like) having a toric surface shape is provided on a part of the optical member constituting the projection optical system PL, and the optical axis AX of the optical member is provided. By adjusting the surrounding azimuth, it is possible to correct the astigmatic difference on the optical axis.
(ステップ S 5 2 1 ) 図 1 3に戻って、 ステップ S 5 2 1では、 投影光学系が ステップ S 5 2 0で算出された波面収差の各成分の値を有している場合に、 上記 外部調整機構を用いて調整した後の波面収差 (又は波面収差の各成分) をシミュ レーシヨンで予測する。 具体的には、 算出された波面収差の各成分の値を出発点 とし、 外部調整機構のパラメータ (レンズ 2 3〜2 7の移動量、 光学部材 2 1及 び Z又は 2 2の面形状、 厚み、 屈折率、 屈折率分布、 複屈折量、 複屈折分布) を 最適化し、最適化された後のシミュレーション上での投影光学系の収差を求める。 なお、 外部調整機構において、 複屈折量及び分布の異なる光学部材を交換しな い場合には、 予測する波面収差はスカラー成分のみとして良い。 (Step S 5 21) Returning to FIG. 13, in step S 5 21, when the projection optical system has the value of each component of the wavefront aberration calculated in step S 5 20, Simulate the wavefront aberration (or each component of the wavefront aberration) after adjustment using the external adjustment mechanism. Predict with a ration. Specifically, the values of the calculated components of the wavefront aberration are used as a starting point, and the parameters of the external adjustment mechanism (the movement amount of the lenses 23 to 27, the surface shape of the optical members 21 and Z or 22, (Thickness, refractive index, refractive index distribution, birefringence, birefringence distribution) are optimized, and the aberration of the projection optical system in the simulation after optimization is determined. In the case where optical members having different birefringence amounts and distributions are not replaced in the external adjustment mechanism, the predicted wavefront aberration may be a scalar component only.
(ステップ S 5 2 2 ) ステップ S 5 2 2では、 シミュレーションにより予測さ れた収差が所定の規格内であるか否かを判断する。 このステップ S 5 2 2の判断 結果が 「N G」 の場合には、 ステップ S 5 2 3へ移行する。 また、 このステップ S 5 2 2の判断結果が 「O K:」 の場合には、 ステップ S 5 2 9へ移行する。  (Step S522) In step S522, it is determined whether or not the aberration predicted by the simulation is within a predetermined standard. If the result of the determination in step S522 is "NG", the flow shifts to step S522. If the result of the determination in step S522 is "OK:", the flow shifts to step S529.
(ステップ S 5 2 3 ) ステップ S 5 2 3では、 ステップ S 5 2 2において予測 された収差を、 各光学部材の光軸方向の間隔の調整、 各光学部材の光軸直交面内 の位置の調整(偏心調整)、及び各光学部材の光軸周りの方位角の調整を行うこと によって捕正できるか否かを判断する。 ここで、 当該ステップ S 5 2 3の判断結 果が 「Ο Κ」 の場合には、 ステップ S 5 2 4へ移行し、 判断結果が 「N G」 の場 合には、 ステップ S 5 2 5へ移行する。  (Step S 5 2 3) In step S 5 2 3, the aberration predicted in step S 5 22 is adjusted by adjusting the interval of each optical member in the optical axis direction, and by adjusting the position of each optical member in the plane orthogonal to the optical axis. Adjustment (eccentricity adjustment) and adjustment of the azimuth of each optical member around the optical axis are performed to determine whether or not the correction can be performed. Here, if the result of the determination in step S 5 23 is “Ο Κ”, the process proceeds to step S 5 24, and if the result of the determination is “NG”, the process proceeds to step S 5 25. Transition.
(ステップ S 5 2 4 ) ステップ S 5 2 4では、 各光学部材の光軸方向の間隔の 調整、各光学部材の光軸直交面内の位置の調整(偏心調整)、及び各光学部材の光 軸周りの方位角の調整のうちの少なくとも 1つを調整して、 投影光学系の収差を 修正し、 ステップ S 5 1 6の波面収差計測へ移行する。  (Step S 524) In step S 524, the adjustment of the interval of each optical member in the optical axis direction, the adjustment of the position of each optical member in the plane orthogonal to the optical axis (the eccentricity adjustment), and the light of each optical member By adjusting at least one of the adjustments of the azimuth around the axis, the aberration of the projection optical system is corrected, and the process proceeds to the wavefront aberration measurement in step S516.
これらのステップ S 5 1 6〜S 5 2 4は、 投影光学系の光学部材に非球面を形 成したり、 異なる複屈折分布の光学部材に交換することなく、 どこまで投影光学 系の光学性能を追い込めるかを求める工程である。  These steps S 516 to S 524 can improve the optical performance of the projection optical system without forming an aspherical surface on the optical member of the projection optical system or replacing the optical member with a different birefringence distribution. This is the process to find out if you can drive.
なお、 上記ステップ S 5 2 3において、 光学部材の間隔調整、 偏心調整及び方 位角調整のみでは、 規格外と判断された収差の修正が不可能であると判断された 場合には、 以下のステップ S 5 2 5へ移行する。 (ステップ S 5 2 5 ) ステップ S 5 2 5では、 各光学部材の光軸方向の間隔の 調整、各光学部材の光軸直交面内の位置の調整(偏心調整)、及び各光学部材の光 軸周りの方位角の調整を行った後の波面収差 (又は波面収差の各成分、 必要であ れば偏光毎の波面収差の各成分) をシミュレーシヨンで予測する。 If it is determined in step S523 that the correction of the aberration that is determined to be out of the standard cannot be performed only by adjusting the spacing, the eccentricity, and the azimuth of the optical members, the following is performed. Move on to step S525. (Step S 525) In step S 525, the adjustment of the interval of each optical member in the optical axis direction, the adjustment of the position of each optical member in the plane orthogonal to the optical axis (the eccentricity adjustment), and the light of each optical member After adjustment of the azimuth around the axis, the wavefront aberration (or each component of the wavefront aberration, and if necessary, each component of the wavefront aberration for each polarization) is predicted by simulation.
具体的には、 算出された波面収差の各成分の値を出棻点とし、 各光学部材の間 隔調整量、 偏心調整量、 及び方位角調整量をパラメータとして最適化し、 最適化 された後の投影光学系の収差を求める。  Specifically, the value of each component of the calculated wavefront aberration is set as an output point, and the distance adjustment amount, the eccentricity adjustment amount, and the azimuth angle adjustment amount of each optical member are optimized as parameters, and after optimization. Of the projection optical system is obtained.
(ステップ S 5 2 6 ) ステップ S 5 2 6では、 ステップ S 5 2 5で予測された 投影光学系の残留収差 (収差の残渣成分) を補正することができる非球面形状及 び Z又は複屈折分布を算出する。 この工程 S 5 2 6では、 補正する収差に応じて 非球面を形成する光学部材及び Z又は複屈折分布を変更する光学部材が選択され る。  (Step S 526) In step S 526, an aspherical shape and Z or birefringence that can correct the residual aberration (residual component of aberration) of the projection optical system predicted in step S 525 Calculate the distribution. In this step S526, an optical member that forms an aspheric surface and an optical member that changes Z or birefringence distribution are selected according to the aberration to be corrected.
図 1 6 A、 図 1 6 B及び図 1 6 Cは、非球面が形成される光学部材及び/又は複 屈折分布が変更される光学部材を説明するための図である。 図 1 6 Aに示した投 影光学系 P Lは、 図示を簡略化しており、 第 1面 R側から順に、 負の屈折力を有 する光学部材 e 1、 正の屈折力を有する光学部材 e 2、 負の屈折力を有する光学 部材 e 3、 開口絞り A S、 及び正の屈折力を有する光学部材 e 4を有している。 第 1面 R上の 2つの異なる物点 Q 1, Q 2からの光が投影光学系 P Lを通過す る際の光路について考える。 図中符号 L 1は物点 Q 1から射出される光束の光路 であり、 符号 L 2は物点 Q 2から射出される光束の光路である。 投影光学系 P L の光軸 A xと第 1面 Rとの交点に位置する物点 Q 1からの光は、 光学部材 e 1〜 e 4を通過する度に発散又は集束されて、 光軸 A xと第 2面 Wとの交点に結像す る。 ここで、 光学部材 e l〜e 4の有効径を ψ 1〜φ 4とする。 また、 各光学部 材 e l〜e 4を通過する際の光束 L 1の光束径を φ Ll l〜 φ L14とし、 各光学部 材 e l〜e 5を通過する際の光束 L 2の光束径を φ L21〜 φ L24とする。  FIG. 16A, FIG. 16B, and FIG. 16C are diagrams for explaining an optical member having an aspheric surface and / or an optical member having a changed birefringence distribution. The projection optical system PL shown in FIG. 16A is simplified in illustration, and has an optical member e 1 having a negative refractive power and an optical member e having a positive refractive power in order from the first surface R side. 2. It has an optical member e3 having a negative refractive power, an aperture stop AS, and an optical member e4 having a positive refractive power. Consider an optical path when light from two different object points Q 1 and Q 2 on the first surface R passes through the projection optical system PL. In the figure, reference numeral L1 denotes an optical path of a light beam emitted from the object point Q1, and reference numeral L2 denotes an optical path of a light beam emitted from the object point Q2. The light from the object point Q1 located at the intersection of the optical axis Ax of the projection optical system PL and the first surface R is diverged or converged each time it passes through the optical members e1 to e4, and the optical axis A An image is formed at the intersection of x and the second surface W. Here, the effective diameters of the optical members e1 to e4 are ψ1 to φ4. Further, the light beam diameter of the light beam L1 when passing through each optical member el to e4 is φLl1 to φL14, and the light beam diameter of the light beam L2 when passing through each optical member el to e5 is φL21 to φL24.
光束 L I , L 2が光学部材 e 1を通過する際の光路を考えてみると、 光学部材 e 1の有効径 φ 1に対する光束径 φ L11の比及び光学部材 e 1の有効径 φ 1に対 する光束径 (i> L21の比は約 0 . 2 5程度であり、 しかも、 光束 L 1が光学部材 e 1を通過する位置と光束 L 2が光学部材 e 1を通過する位置とは異なる。 次に、 光束 L l, L 2が光学部材 e 4を通過する際の光路を考えてみると、 光学部材 e 4の有効径 φ 4に対する光束径 <i> L15の比及び光学部材 e 4の有効径 φ 4に対す る光束径 0 L24の比は、 ほぼ 1に近い値となる。 しかも、 光束 L 1が光学部材 e 4を通過する位置と光束 L 2が光学部材 e 4を通過する位置とはほぼ同一である。 よって、 ステップ S 5 2 6において投影光学系 P L内の光学部材の非球面を算出 する際、及び投影光学系 P L内の光学部材の複屈折量及び分布を算出する際には、 図 1 6 Aを用いて説明した光束の通過経路を考慮して有効に収差を補正すること ができる光学部材を選択する必要がある。 Considering the optical path when the light beams LI and L2 pass through the optical member e1, the optical member The ratio of the luminous flux diameter φ1 to the effective diameter φ1 of e1 and the luminous flux diameter of the optical member e1 to the effective diameter φ1 (the ratio of i> L21 is about 0.25, and the luminous flux L1 Is different from the position where the light beam L 2 passes through the optical member e 1 and the position where the light beam L 2 passes through the optical member e 1. Next, consider the optical path when the light beams L l and L 2 pass through the optical member e 4. The ratio of the luminous flux diameter <i> L15 to the effective diameter φ4 of the optical member e4 and the ratio of the luminous flux diameter 0L24 to the effective diameter φ4 of the optical member e4 are almost equal to 1. The position where the light beam L1 passes through the optical member e4 is substantially the same as the position where the light beam L2 passes through the optical member e4. When calculating the aspherical surface and calculating the birefringence amount and distribution of the optical members in the projection optical system PL, consider the light path described with reference to Fig. 16A. It is necessary to select the optical member can be corrected effectively aberration Te.
例えば像面座標依存性の高 、収差 (ディストーション、 像面湾曲等のスカラー 収差、 像面座標に応じて異なる偏光収差 (複屈折の影響)) を補正する場合には、 物点 Q 1からの光束 L 1と物点 Q 2からの光束 L 2とが分離した位置を通過する 光学部材 e 1の光学面 (レンズ面、 反射面等) に非球面を設ける、 或いは光学部 材 e 1の複屈折分布を変更すると、 像面座標依存性の高い収差を効果的に補正す ることができる。  For example, when correcting for high image plane coordinate dependency and correcting aberrations (scalar aberrations such as distortion and field curvature, and polarization aberrations (influence of birefringence) that varies depending on the image plane coordinates), the object point Q 1 An aspherical surface is provided on the optical surface (lens surface, reflection surface, etc.) of the optical member e1 that passes through the position where the light beam L1 and the light beam L2 from the object point Q2 are separated, or the optical member e1 is duplicated. By changing the refractive index distribution, aberrations highly dependent on image plane coordinates can be effectively corrected.
また、 瞳座標依存性の高い収差 (例えば球面収差、 偏心コマ収差等のスカラー 収差、 像面座標依存性の少ない偏光収差 (複屈折の影響)) を補正する場合には、 物点 Q 1からの光束 L 1及び物点 Q 2からの光束 L 2がほぼ全面を通過する光学 部材 e 4の光学面に非球面を設ける、 或いは光学部材 e 4の複屈折分布を変更す ると、 瞳座標依存性の高い収差を効果的に補正することができる。  When correcting aberrations highly dependent on pupil coordinates (for example, scalar aberrations such as spherical aberration and decentered coma, and polarization aberrations (effect of birefringence) with little dependence on image plane coordinates), the correction is performed from the object point Q1. When an aspherical surface is provided on the optical surface of the optical member e4 through which the light beam L1 of the optical member L1 and the light beam L2 from the object point Q2 pass almost over the entire surface, or the birefringence distribution of the optical member e4 is changed, the pupil coordinates Highly dependent aberrations can be effectively corrected.
なお、像面座標依存性及び瞳座標依存性が同等に近い収差(例えばコマ収差等) に関しては、 物点 Q 1からの光束 L 1及び物点 Q 2からの光束 L 2の重畳の程度 が中間的となる光学部材 (例えば光学部材 e 2等) の光学面に非球面を設ける、 或いは物点 Q 1からの光束 L 1及ぴ物点 Q 2からの光束 L 2の重畳の程度が中間 的となる光学部材 (例えば光学部材 e 2等) の複屈折分布を変更すれば、 像面座 標依存性及び瞳座標依存性が同等に近い収差を効果的に補正することができる。 従って、 ステップ S 5 2 6では、 スカラー収差を補正するために、 投影光学系 P L中の複数の光学部材 e 1〜 e 4のうちの少なくとも 3つの光学部材の光学面 に関して非球面形状を算出することが好ましい。 なお、偏光収差(複屈折の影響) の補正に関しては、 瞳座標依存性の高い (像面座標依存性の低い) 偏光収差 (複 屈折の影響) が発生することが多いため、 投影光学系 P L中の複数の光学部材 e 1〜 e 4のうちの少なくとも 1つの光学部材に関して複屈折量及び分布を算出す ることが好ましい。 For aberrations (for example, coma aberration) whose image plane coordinate dependency and pupil coordinate dependency are almost equal, the degree of superposition of the light flux L1 from the object point Q1 and the light flux L2 from the object point Q2 is small. An aspherical surface is provided on the optical surface of the intermediate optical member (for example, optical member e2, etc.), or the degree of superposition of the light flux L1 from the object point Q1 and the light flux L2 from the object point Q2 is intermediate. By changing the birefringence distribution of a target optical member (for example, the optical member e2, etc.), it is possible to effectively correct aberrations whose image plane dependence and pupil coordinate dependence are almost equal. Therefore, in step S526, an aspherical shape is calculated for the optical surfaces of at least three of the plurality of optical members e1 to e4 in the projection optical system PL in order to correct scalar aberration. Is preferred. As for the correction of the polarization aberration (the effect of birefringence), since the polarization aberration (the effect of the birefringence) with high pupil coordinate dependency (low image plane coordinate dependency) often occurs, the projection optical system PL It is preferable to calculate the amount of birefringence and the distribution of at least one of the plurality of optical members e1 to e4.
ここで、このような複屈折量及び分布を有する非結晶材料からなる光学部材は、 当該光学部材の有効径を Φ cとし、 第 1面 R上の所定の 1点から発する光束が当 該光学部材を通過するときの光束径を Φ Pとするとき、  Here, in an optical member made of an amorphous material having such a birefringence amount and distribution, the effective diameter of the optical member is Φc, and a light beam emitted from a predetermined point on the first surface R is an optical member. When the luminous flux diameter when passing through the member is ΦP,
( 7 ) 0 . 6 < φ ρ / φ ο≤ 1  (7) 0.6 <φ ρ / φ ο≤ 1
を満足するような位置に配置されることが好ましい。 このように所定の複屈折分 布を有する光学部材を式 ( 7 ) を満足する位置に配置することにより、 等軸晶系 結晶材料からなる屈折部材に起因する偏光収差 (複屈折の影響) を効果的に補正 することが可能である。 なお、 さらに良好に偏光収差 (複屈折の影響) を補正す るためには、 上記式 (7 ) の下限を 0 . 7とすることが好ましい。 Is preferably arranged at a position that satisfies the following. By arranging the optical member having the predetermined birefringence distribution at a position satisfying the expression (7), the polarization aberration (influence of birefringence) caused by the refraction member made of an equiaxed crystal material can be reduced. It can be corrected effectively. In order to more properly correct the polarization aberration (the effect of birefringence), it is preferable to set the lower limit of the above expression (7) to 0.7.
また、 瞳座標依存性の高い (像面座標依存性の低い) 偏光収差 (複屈折の影響) を補正するための複屈折量及び分布を有する非結晶材料からなる光学部材は、 投 影光学系の瞳位置より 1 5 O mm以内の位置に配置されることが好ましい。  In addition, an optical member made of an amorphous material having a birefringence amount and distribution for correcting polarization aberration (influence of birefringence) having high pupil coordinate dependency (low image plane coordinate dependency) includes a projection optical system. It is preferable to be arranged at a position within 15 O mm from the pupil position.
また、 コマ収差等の像面座標依存性及び瞳座標依存性が同等に近い収差をより 効果的に補正するためには、 物点 Q 1からの光束 L 1及び物点 Q 2からの光束 L 2の重畳の程度が中間的となる 2つ光学部材の光学面に関する非球面形状を算出 することが望ましいため、 ステップ S 5 2 6では、 投影光学系 P L中の複数の光 学部材 e 1〜 e 4のうちの少なくとも 4つの光学部材の光学面に関して非球面形 状を算出することがさらに好ましい。 Also, in order to more effectively correct aberrations such as coma aberration and the like that are almost equivalent to the image plane coordinates and the pupil coordinates, the light flux L 1 from the object point Q 1 and the light flux L from the object point Q 2 Since it is desirable to calculate the aspherical shape related to the optical surfaces of the two optical members where the degree of superposition of 2 is intermediate, in step S526, the plurality of optical members e1 to e in the projection optical system PL are calculated. e is aspherical with respect to the optical surface of at least four of the optical members More preferably, the shape is calculated.
なお、 光学部材 e 1 〜 e 4に形成する非球面は、 光軸 A xに対して対称■非対 称の何れであってもよい。 更には、 発生する収差に応じて不規則 (ランダム) に 非球面を形成しても良い。 同様に、 光学部材 e l 〜 e 4に設けられる複屈折分布 は光軸 A xに対して対称 ·非対称の何れであってもよく、 発生する変更収差に応 じて不規則 (ランダム) な複屈折分布を有していても良い。  The aspherical surfaces formed on the optical members e1 to e4 may be symmetric or asymmetric with respect to the optical axis Ax. Further, an aspherical surface may be formed irregularly (randomly) according to the generated aberration. Similarly, the birefringence distribution provided in the optical members el to e4 may be either symmetric or asymmetric with respect to the optical axis Ax, and may be irregular (random) birefringence depending on the generated aberration. It may have a distribution.
ここで、 ステップ S 5 2 6で算出される非球面並びに複屈折量及び分布は、 必 ずしも投影光学系 P Lに残存する波面収差の全てを補正する目的のものに限られ ず、 特定の残存収差だけを補正する目的のものであっても良い。 例えば、 後述す る外部調整機構で補正できる波面収差はこのステップ S 5 2 6では敢えて補正せ ずに、 外部調整機構で補正するようにしても良い。 また、 投影光学系 P Lの残存 波面収差の内、 結像性能を鑑みて無視できるものは非球面形成又は複屈折分布付 与により捕正しなくとも良い。  Here, the aspherical surface, the amount of birefringence, and the distribution calculated in step S526 are not necessarily intended to correct all the wavefront aberrations remaining in the projection optical system PL. The purpose may be to correct only the residual aberration. For example, the wavefront aberration that can be corrected by the external adjustment mechanism described later may be corrected by the external adjustment mechanism without being intentionally corrected in step S526. In addition, among the residual wavefront aberrations of the projection optical system PL, those that can be ignored in view of the imaging performance need not be corrected by forming an aspheric surface or adding a birefringent distribution.
(ステップ S 5 2 7 ) 図 1 3に戻って、 ステップ S 5 2 7では、 ステップ S 5 2 6で選択された光学部材の光学面 (レンズ面、 反射面等) を、 ステップ S 5 2 (Step S 5 2 7) Returning to FIG. 13, in step S 5 27, the optical surface (lens surface, reflection surface, etc.) of the optical member selected in step S 5 26 is replaced with step S 5 2
6で算出された非球面形状となるように加工を行う。 また、 ステップ S 5 2 6に おいて、 所定の光学部材の複屈折分布を変更する場合には、 ステップ S 5 2 6で 算出された複屈折量及び分布を持つ光学材料を準備し、 この光学材料の加工を行 う。 Processing is performed to obtain the aspherical shape calculated in 6. When the birefringence distribution of a predetermined optical member is changed in step S526, an optical material having the birefringence amount and distribution calculated in step S526 is prepared, and this optical material is prepared. Process materials.
(ステップ S 5 2 8 ) ステップ S 5 2 8では、 所定形状の非球面が加工された 光学部材及びノ又は所定の複屈折量及び分布を持つ光学部材を投影光学系へ組み 込む。 このとき、 組み込み誤差が発生する恐れがあるが、 ここで発生する組み込 み誤差は、 図 1 4に示した収差測定装置で計測不可能となる程には大きくないと 考えられるため、 本実施例ではステップ S 5 1 6 へ移行する。  (Step S528) In step S528, an optical member having a predetermined aspherical surface and an optical member having a predetermined birefringence and distribution are assembled into a projection optical system. At this time, an assembling error may occur.However, the assembling error generated here is considered to be not so large as to be impossible to measure with the aberration measuring device shown in FIG. In the example, the process shifts to step S 5 16.
(ステップ S 5 2 9 ) さて、 ステップ S 5 2 2において、 シミュレーションに より予測された収差が所定の規格内である場合(判断結果が 「O K」 である場合) には、 投影光学系 P Lの光学特性が外部調整機構により微調整できる程度に調整 されている場合であるため、 外部調整機構の取り付けと、 その初期調整を行う。 ここで、 外部調整機構の初期調整では、 図 1 5に示したァクチユエータ 2 8〜 3 2の制御信号に対する応答量を調整する処理が行われる。 具体的には、 例えば 図示なき制御系からァクチユエータ 2 8〜3 2に対して 1 μ πι伸長せよとの制御 信号が出力されたときに、 制御信号通りにァクチユエータ 2 8〜3 2が 1 /z m伸 長しない場合があるので、 制御系による制御量に対するァクチユエータ 2 8〜3 2の応答量を調整する。 ここで、 制御系から出力される制御信号は投影光学系 P Lの光学的な性能を可変する信号であるので、 つまりこの初期調整は、 外部調整 機構による調整量と投影光学系 P Lの性能の変化量との相関を求める処理である。 尚、 ァクチユエータ 2 8〜3 2が取り付けられると、 外部調整機構を用いた調整 のみが行われる。 (Step S 5 2 9) By the way, in Step S 5 2 2, when the aberration predicted by the simulation is within a predetermined standard (when the judgment result is “OK”) In this case, since the optical characteristics of the projection optical system PL have been adjusted to such an extent that they can be finely adjusted by an external adjustment mechanism, the external adjustment mechanism is attached and its initial adjustment is performed. Here, in the initial adjustment of the external adjustment mechanism, processing for adjusting the response amount to the control signals of the actuators 28 to 32 shown in FIG. 15 is performed. Specifically, for example, when a control signal for extending 1 μπι is output to the actuators 28 to 32 from a control system (not shown), the actuators 28 to 32 output 1 / zm according to the control signal. Since the extension may not occur, the response amount of the actuators 28 to 32 to the control amount by the control system is adjusted. Here, since the control signal output from the control system is a signal that varies the optical performance of the projection optical system PL, this initial adjustment is performed by adjusting the amount of adjustment by the external adjustment mechanism and the performance of the projection optical system PL. This is a process for obtaining a correlation with the quantity. When the actuators 28 to 32 are attached, only adjustment using the external adjustment mechanism is performed.
(ステップ S 5 3 0 ) 以上のステップ S 5 2 9が終了すると、 上述のステップ S 5 1 6で用いた波面測定装置を用いて波面収差計測を行う。 このとき、 上述の ステップ S 5 2 0と同様に、 波面収差計測結果に対してツェルニケの円筒関数系 Z n p, Θ ) をフィッティングして各項毎の展開係数 C n (ツェルニケ係数) を求め、 波面収差の成分を算出する処理を行っても良い。  (Step S530) When the above step S529 is completed, the wavefront aberration is measured using the wavefront measuring device used in step S516 described above. At this time, similarly to the above-described step S520, the Zernike cylindrical function system Znp, に 対 し て) is fitted to the wavefront aberration measurement result to obtain an expansion coefficient Cn (Zernike coefficient) for each term. Processing for calculating the component of the wavefront aberration may be performed.
(ステップ S 5 3 1 ) 以上のステップ S 5 3 1が終了すると、 投影光学系の収 差所定の規格内であるか否かが判断される。 ステップ S 5 3 1の判断結果が 「N G」 の場合には、 ステップ S 5 3 2へ移行する。 また、 ステップ S 5 3 1の判断 結果が 「O K」 の場合には、 投影光学系 P Lの製造が完了する。  (Step S 531) When the above step S 531 is completed, it is determined whether or not the projection optical system is within a predetermined tolerance. If the result of the determination in step S 531 is “NG”, the flow proceeds to step S 5 32. If the result of the determination in step S 531 is “OK”, the manufacture of the projection optical system PL is completed.
(ステップ S 5 3 2 ) ステップ S 5 3 2では、 上述の外部調整機構を用いた調 整を行いステップ S 5 2 9へ移行する。 ここで、 ステップ S 5 3 1の判断結果が 「O Kj となるまで、 ステップ S 5 2 9〜S 5 3 2を繰り返す。  (Step S 5 32) In step S 5 32, adjustment using the above-described external adjustment mechanism is performed, and the flow advances to step S 5 29. Here, steps S529 to S532 are repeated until the determination result of step S530 becomes "OKj".
なお、 以上に説明した第 2実施例の組立工程では、 複数の偏光成分の波面収差 を用いた調整を行ったが、 非偏光成分のみを用いて波面収差を測定しても良い。 この場合には、 波面収差のスカラー成分のみが既知となっているため、 波面収差 の偏光成分に影響を及ぼす光学部材のパラメータと、 波面収差のスカラー成分の 変化との相関をとり、 この相関に基づいて、 各ステップにおいて光学部材のパラ メータ変更を行えば良い。 In the assembling process of the second embodiment described above, the adjustment is performed using the wavefront aberration of a plurality of polarization components, but the wavefront aberration may be measured using only the non-polarization component. In this case, since only the scalar component of the wavefront aberration is known, the parameter of the optical member that affects the polarization component of the wavefront aberration is correlated with the change in the scalar component of the wavefront aberration. Based on this, the parameters of the optical member may be changed in each step.
以上の通り、 第 2実施例に係る投影光学系の製造方法によれば、 例えば蛍石や フッ化バリゥム等の等軸晶系の結晶材料に起因する複屈折の影響を複数の偏光成 分に関して評価しつつ、 この等軸晶系の結晶材料からなる屈折部材の結晶軸の組 み込み角度を複屈折の影響 (偏光収差) が極小となるように定め、 かつ結晶軸方 位の最適化のみでは補正しきれない複屈折の影響 (偏光収差) を非結晶屈折部材 により補償することが可能であるため、 良好な光学性能を確保できる。  As described above, according to the method for manufacturing a projection optical system according to the second embodiment, the influence of birefringence caused by an equiaxed crystal material such as fluorite or barium fluoride is applied to a plurality of polarization components. During the evaluation, the incorporation angle of the crystal axis of the refraction member made of this equiaxed crystal material was determined so that the effect of birefringence (polarization aberration) was minimized, and only the optimization of the crystal axis direction was performed. Since the effect of birefringence (polarization aberration) that cannot be completely corrected can be compensated by the amorphous refraction member, good optical performance can be secured.
次に、 第 3実施例として、 第 1実施例又は第 2実施例に従って製造された投影 光学系を備えた露光装置について図 1 7を参照して説明する。 図 1 7は第 3実施 例に係る露光装置を概略的に示す図である。  Next, as a third embodiment, an exposure apparatus including a projection optical system manufactured according to the first or second embodiment will be described with reference to FIG. FIG. 17 is a diagram schematically showing an exposure apparatus according to the third embodiment.
図 1 7において、 例えば波長 1 9 3 n mのパルス光を供給する A r Fエキシマ レーザからなる光源 4 0からのパルス光は、 X方向に沿って進行し、 光路折り曲 げプリズム 4 1によって偏向されて、 D O Eターレッ ト 4 2に設けられた回折光 学素子 (D O E : Di ffractive Optical Element) (こ人射する。 この D O E ターレツト 4 2には、互いに異なる種類の複数の回折光学素子が設けられている。 これらの回折光学素子は、 当該回折光学素子のファーフィールド(Far f ield) 領域において所定の断面形状、 例えば円形断面、 輪帯状断面、 多重極断面 (基準 光軸に対して偏心した複数の極) を有する光束となるように、 入射する光束を変 換する。  In FIG. 17, for example, a pulse light from a light source 40 composed of an ArF excimer laser that supplies a pulse light having a wavelength of 193 nm travels along the X direction and is deflected by an optical path bending prism 41. Then, a diffractive optical element (DOE) provided on the DOE turret 42 is provided. The DOE turret 42 is provided with a plurality of diffractive optical elements of different types. These diffractive optical elements have a predetermined cross-sectional shape in a far field region of the diffractive optical element, for example, a circular cross section, an annular cross section, a multipole cross section (a plurality of eccentric sections with respect to the reference optical axis). The incident light beam is converted so that the light beam has the following pole.
この回折光学素子からの発散光束は、 集光レンズ群 4 3により集光され、 マイ クロフライアイレンズ 4 4の位置の近傍に、 回折光学素子のファーフィールド領 域を形成する。 ここで、 マイクロフライアイレンズ 4 4とは、 2次元マトリック ス状に配列された複数のレンズ面を 1つ或いは複数の基板上に一体的に形成した ものである。 なお、 マイクロフライアイレンズ 4 4に代えて、 2次元マトリック ス状に集積された複数のレンズ素子を備えるフライアイレンズを用いても良い。 また、 回折光学素子とマイクロフライアイレンズ 4 4との間に配置される集光レ ンズ群は、 レンズを光軸方向へ移動させることにより焦点距離を連続的変更する ことができるズーム光学系、 レンズを交換することにより焦点距離を不連続的に 変更することができる多焦点距離光学系などの変倍光学系とすることが好ましい。 さて、 マイクロフライアイレンズ 4 4の射出面側には複数の光源像からなる 2 次光源 (面光源) が形成される。 なお、 マイクロフライアイレンズ 4 4 (又はフ ライアイレンズ) の入射面の位置に複数の光源の虚像を形成するようにしてもよ い。 The divergent light beam from the diffractive optical element is condensed by the condenser lens group 43, and forms a far-field area of the diffractive optical element near the position of the micro fly's eye lens 44. Here, the micro fly's eye lens 4 is formed by integrally forming a plurality of lens surfaces arranged in a two-dimensional matrix on one or a plurality of substrates. Things. Instead of the micro fly's eye lens 44, a fly's eye lens having a plurality of lens elements integrated in a two-dimensional matrix may be used. Further, a condenser lens group disposed between the diffractive optical element and the micro fly's eye lens 44 includes a zoom optical system capable of continuously changing the focal length by moving the lens in the optical axis direction, It is preferable to use a variable power optical system such as a multifocal length optical system that can change the focal length discontinuously by exchanging lenses. A secondary light source (surface light source) composed of a plurality of light source images is formed on the exit surface side of the micro fly's eye lens 44. Note that virtual images of a plurality of light sources may be formed at the position of the incident surface of the micro fly's eye lens 44 (or fly's eye lens).
この 2次光源からの光は、 コンデンサ光学系 4 5により集光されて、 可変視野 絞り 4 6を重畳的に照明する。 そして、 可変視野絞り 4 6からの光は、 可変視野 絞り 4 6の開口部と第 1面に配置された投影原板としてのレチクル Rとをほぼ共 役にするプラインド結像光学系 4 7 a〜4 7 cを介して、 レチクル Rに達する。 なお、 本実施例においては、 ブラインド結像光学系 4 7 a〜4 7 c中に 2枚の光 路折り曲げ鏡 4 8 a, 4 8 bを配置して、 光路をほぼ 1 8 0 ° 偏向させている。 ブラインド結像光学系 4 7 a〜4 7 cからの光により、 レチクル R上のパターン 形成領域の一部には、 例えばスリッ ト状の照野が形成される。 この照野からの光 は、 上述の第 1又は第 2実施例の製造方法により得られた投影光学系 P Lを介し て、 投影光学系の第 2面に配置されたワークピース (感光性基板) としてのゥェ ハ Wに達し、このウェハ Wにスリット状の照野内のパターンの像を形成する。 本 実施例では、 レチクル Rを第 1面上に支持するレチクルステージ R Sと、 ウェハ Wを第 2面上に支持するウェハステージとが Y方向に移動可能となっており、 投 影光学系の倍率を とするとき、 当該倍率 jSの比でこれらのレチクルステージ R Sとウェハステージ W Sとを移動させつつ露光を行うことで、 ウェハ W S上に、 スリツト状の結像領域が Y方向に掃引された形状、 典型的には長方形状のショッ ト領域内にレチクル Rのパターン形成領域内のパターン像を形成する。 The light from the secondary light source is condensed by the condenser optical system 45 and illuminates the variable field stop 46 in a superimposed manner. Then, the light from the variable field stop 46 is used as a blind imaging optical system 47 a through which the aperture of the variable field stop 46 and the reticle R as a projection original plate arranged on the first surface are almost shared. Reticle R is reached via 4 7 c. In this embodiment, two optical path bending mirrors 48a and 48b are arranged in the blind imaging optical systems 47a to 47c to deflect the optical path by approximately 180 °. ing. For example, a slit-shaped illumination field is formed in a part of the pattern formation area on the reticle R by the light from the blind imaging optical systems 47a to 47c. The light from this illuminated field passes through the projection optical system PL obtained by the manufacturing method of the first or second embodiment described above and passes through a work piece (photosensitive substrate) arranged on the second surface of the projection optical system. Then, the wafer W is formed, and an image of the pattern in the slit-shaped illumination field is formed on the wafer W. In the present embodiment, the reticle stage RS supporting the reticle R on the first surface and the wafer stage supporting the wafer W on the second surface are movable in the Y direction, and the magnification of the projection optical system is changed. By performing exposure while moving the reticle stage RS and the wafer stage WS at the ratio of the magnification jS, a slit-shaped imaging region is swept in the Y direction on the wafer WS. , Typically a rectangular A pattern image of the reticle R in the pattern formation region is formed in the region.
1つのショット領域への走査露光が終了した後に、 ウェハステージ W Sを駆動 して、 別のショット領域への走査露光を行い、 ウェハ Wのほぼ全面に複数のショ ット領域を形成する。  After the scanning exposure on one shot area is completed, the wafer stage WS is driven to perform scanning exposure on another shot area, and a plurality of shot areas are formed on almost the entire surface of the wafer W.
なお、 本実施例では、 第 1及び第 2実施例の製造方法により製造された投影光 学系を走査露光装置に適用した例を示したが、 第 1及び第 2実施例の製造方法に より製造された投影光学系は、 一括露光型の投影露光装置にも適用できる。  In this embodiment, an example is shown in which the projection optical system manufactured by the manufacturing method of the first and second embodiments is applied to a scanning exposure apparatus. The manufactured projection optical system can be applied to a batch exposure type projection exposure apparatus.
また、 本実施例の投影露光装置においては、 光源からの光に基づいて第 1面上 に配置された投影原板としてのレチクル Rを照明する照明光学系 4 1〜4 7 cの 少なくとも一部、特に光エネルギーが高くなる部位には、等軸晶系の結晶材料(例 えば蛍石) からなる光学部材を用いている。 このような照明光学系では、 要求さ れる光学性'能が投影光学系に比して低いため、 本実施例では照明光学系中の等軸 晶系の結晶材料の結晶軸方位を最適化して複屈折の影響 (偏光収差) を低減させ ることは行っていない。  Further, in the projection exposure apparatus of the present embodiment, at least a part of the illumination optical system 41 to 47 c for illuminating the reticle R as the projection original plate arranged on the first surface based on the light from the light source, In particular, an optical member made of an equiaxed crystal material (for example, fluorite) is used in a portion where light energy is increased. In such an illumination optical system, the required optical performance is lower than that of the projection optical system. Therefore, in this embodiment, the crystal axis orientation of the equiaxial crystal material in the illumination optical system is optimized. We did not reduce the effect of birefringence (polarization aberration).
但し、 照明光学系に要求される光学性能が高い場合には、 上述の第 1及び第 2 実施例と同様に、 等軸晶系の結晶材料の結晶軸方位の最適化を行ったり、 非結晶 材料からなる光学部材で等軸晶系の結晶材料に起因する複屈折の影響 (偏光収差) を捕正したりしても良い。  However, when the optical performance required for the illumination optical system is high, the crystal axis orientation of the equiaxed crystal material is optimized or the non-crystal The influence of birefringence (polarization aberration) caused by the equiaxial crystal material may be corrected by an optical member made of a material.
また、 本実施例では、 光源として波長 1 9 3 n mのパルス光を供給する A r F エキシマレーザを適用したが、 光源としては、 例えば波長 1 5 7 n mのパ ス光 を供給する F 2 レーザ、 波長 1 4 7 n mの光を供給する K r 2 レーザ、 波長 1 2 6 n lnの光を供給するA r 2 レーザを適用することもできる。 Further, in the present embodiment, the wavelength 1 9 3 nm of pulsed light is applied to A r F excimer laser for supplying the light source as the light source, for example, F 2 laser which supplies the path light of wavelength 1 5 7 nm , it can also be applied K r 2 laser supplying light of wavelength 1 4 7 nm, the a r 2 laser supplying light of wavelength 1 2 6 n ln.
例えば光源として波長 1 5 7 n mのパルス光を供給する F 2 レーザを適用した 際には、 照明光学系 4 1〜4 7 c中の光透過部材として、 蛍石やフッ化バリゥム 等の等軸晶系の結晶材料や、 フッ素がドープされた石英 (改質石英) を用いるこ とができる。 特に、 上記マイクロフライアイレンズ 4 4の光学材料としては、 力 [1 ェの容易さと硝路長の短さとを鑑みて改質石英とすることが好ましい。 For example, when the pulsed light having a wavelength of 1 5 7 nm were applied F 2 laser which supplies a light source, a light transmitting member in the illumination optical system 4 1 to 4 7 c, equiaxed fluorite or the like fluoride Bariumu Crystalline crystalline materials and fluorine-doped quartz (modified quartz) can be used. In particular, as the optical material of the micro fly's eye lens 44, force [1 It is preferable to use modified quartz in consideration of ease of use and shortness of the glass path.
さて、 次に第 4実施例として、 双晶からなる屈折部材を用いた投影光学系につ いて説明する。図 1 8は第 4実施例の投影光学系を模式的に示す図である。なお、 以下に説明する第 4実施例の投影光学系も上記第 3実施例の投影露光装置の投影 光学系として適用できるものである。  Next, as a fourth embodiment, a projection optical system using a twin refraction member will be described. FIG. 18 is a diagram schematically showing the projection optical system of the fourth embodiment. The projection optical system of the fourth embodiment described below is also applicable as the projection optical system of the projection exposure apparatus of the third embodiment.
図 1 8 Aは双晶からなる屈折部材 5 1と非結晶材料からなる屈折部材 5 2とを 備えた投影光学系の概略的な構成をしめし、 図 1 8Bは屈折部材 5 1における結 晶 5 1 aの結晶軸を示し、 図 1 8 Cは屈折部材 5 1における結晶 5 1 bの結晶軸 を示している。 なお、 これら図 1 8A、 図 1 8B及び図 1 8Cの座標系は図示の通 り共通している。  FIG. 18A shows a schematic configuration of a projection optical system including a refraction member 51 made of a twin crystal and a refraction member 52 made of an amorphous material, and FIG. 18B shows a crystal 5 in the refraction member 51. FIG. 18C shows the crystal axis of crystal 51 b in refraction member 51. The coordinate systems in FIGS. 18A, 18B and 18C are common as shown.
図 1 8A、 図 1 8B及び図 1 8Cに示す通り、 双晶からなる屈折部材 5 1は、 双 晶面又は双晶境界 50 Sを境として互いに接している同一相の 2つの結晶 5 1 a , 5 1 bが所定の共通の低指数の結晶軸(本実施例では結晶軸 [1 1 1]) の周りに 1 8 0° 回転した方位関係となっているもの、 或いは互いに接している同一相の 2つの結晶が所定の結晶面 (本例では { 1 1 1 } 面) に関して鏡像関係となって いるものである。  As shown in FIG. 18A, FIG. 18B and FIG. 18C, the twin refraction member 51 is composed of two crystals 5 1a of the same phase that are in contact with each other with a twin plane or twin boundary 50S as a boundary. , 5 1b are oriented 180 ° rotated around a predetermined common low-index crystal axis (in this embodiment, crystal axis [1 1 1]), or are in contact with each other The two crystals of the phase are mirror images of a given crystal plane (the {111} plane in this example).
この構成では、 双晶からなる屈折部材 5 1では、 2つの結晶 5 l a , 5 1 の 結晶軸 [1 1 1] が光軸 Axと一致し、 かつ結晶 5 1 aに対して結晶 5 1 bが光 軸 Axを中心として XY平面内で 1 80° 回転されている。 これは、 2つの結晶 5 1 a, 5 1 bの結晶軸 [1 1 1] が光軸 Axと一致し、 かつ結晶 5 1 aに対し て結晶 5 1 bが光軸 Axを中心として XY平面内で 6 0° 回転される構成と等価 であるため、 上述の図 1 1に示した投影光学系と同じ理由により、 複屈折の影響 (偏光収差) を結晶 5 1 aと結晶 5 1 bとで互いにほぼキャンセルすることが可 能である。 なお、 このとき、 結晶 5 1 a, 5 1 bでキャンセルしきれない複屈折 の影響 (偏光収差) を上述の実施例と同様に、 非結晶材料からなる光学部材 5 2 で補正することも可能である。 以上の通り、 本実施例では、 複屈折の影響が双晶面又は双晶境界の前後で互い に逆向きとなることを利用して、 結晶屈折部材全体で固有複屈折による光学性能 の悪化を低減することが可能である。 これにより、 投影光学系の光学性能を確保 することが可能となる。 In this configuration, in the twin refraction member 51, the crystal axes [1 1 1] of the two crystals 5 la and 5 1 coincide with the optical axis Ax, and the crystal 5 1b corresponds to the crystal 5 1a. Is rotated 180 ° around the optical axis Ax in the XY plane. This is because the crystal axes [1 1 1] of the two crystals 51a and 51b coincide with the optical axis Ax, and the crystal 51b is positioned on the XY plane with respect to the crystal 51a. In this case, the effect of birefringence (polarization aberration) is reduced by the crystal 51a and the crystal 51b for the same reason as in the projection optical system shown in FIG. 11 described above. Can cancel each other out. At this time, the influence of the birefringence (polarization aberration) that cannot be completely canceled by the crystals 51a and 51b can be corrected by the optical member 52 made of an amorphous material as in the above-described embodiment. It is. As described above, in this embodiment, the deterioration of optical performance due to intrinsic birefringence in the entire crystal refraction member is exploited by utilizing the fact that the influence of birefringence is opposite to each other before and after a twin plane or a twin boundary. It is possible to reduce. This makes it possible to ensure the optical performance of the projection optical system.
さて、 上述の実施例では、 等軸晶系の結晶材料からなる光学部材の結晶軸 [1 By the way, in the above-described embodiment, the crystal axis of the optical member made of an equiaxed crystal material [1
1 1]を光軸と一致させた例を示したが、光軸と一致させる結晶軸は、結晶軸 [1 1 1] 及び当該結晶軸 [1 1 1] と等価な結晶軸には限定されない。 Although an example in which [1 1] is matched with the optical axis is shown, the crystal axis to be matched with the optical axis is not limited to the crystal axis [1 1 1] and a crystal axis equivalent to the crystal axis [1 1 1]. .
以下、 第 5実施例として、 等軸晶系の結晶材料からなる複数の屈折部材のうち 所定の第 1群の光軸を結晶軸 [1 00] または該結晶軸 [1 00] と光学的に等 価な結晶軸とほぼ一致させ、 第 1群とは異なる所定の第 2群の光軸を結晶軸 [1 00] または該結晶軸 [1 00] と光学的に等価な結晶軸とほぼ一致させ、 これ ら第 1群及び第 2群を光軸を中心として 4 5° だけ相対的に回転させた例を説明 する。  Hereinafter, as a fifth embodiment, of a plurality of refraction members made of an equiaxed crystal material, a predetermined first group of optical axes is optically defined as the crystal axis [100] or the crystal axis [100]. The optical axis of the predetermined second group, which is different from the first group, is substantially coincident with the crystal axis [100] or a crystal axis optically equivalent to the crystal axis [100]. An example in which the first and second units are relatively rotated by 45 ° about the optical axis will be described.
図 1 9は、 第 5実施例の手法を説明する図であって、 前述した図 1 1B及ぴ図 1 1Cと同様に、 光線の入射角に対する複屈折の分布を示している。 第 5実施例 の手法では、 第 1群の屈折部材における複屈折の分布は図 1 9 (a) に示すよう になり、 第 2群の屈折部材における複屈折の分布は図 1 9 (b) に示すようにな る。 その結果、 第 1群の屈折部材と第 2群の屈折部材との全体における複屈折の 分布は、 図 1 9 (c) に示すようになる。  FIG. 19 is a diagram for explaining the method of the fifth embodiment, and shows the distribution of birefringence with respect to the incident angle of a light ray, similarly to FIGS. 11B and 11C described above. In the method of the fifth embodiment, the distribution of birefringence in the first group of refraction members is as shown in FIG. 19 (a), and the distribution of birefringence in the second group of refraction members is shown in FIG. 19 (b). It becomes as shown in. As a result, the distribution of birefringence in the whole of the first group of refraction members and the second group of refraction members is as shown in FIG. 19 (c).
図 1 9の (a) 及び図 1 9の (b) を参照すると、 第 5実施例の手法では、 光 軸と一致している結晶軸 [1 0 0] に対応する領域は、 比較的大きな屈折率を有 する複屈折のない領域となる。 また、 結晶軸 [1 1 1], [1 - 1 1], [一 1 1— 1], [1 1 - 1] に対応する領域は、 比較的小さな屈折率を有する複屈折のない 領域となる。 さらに、 結晶軸 [1 0 1], [1 0- 1], [1 1 0], [1— 1 0] に 対応する領域は、 周方向の偏光 (0偏光) に対する屈折率が比較的大きく径方向 の偏光(R偏光)に対する屈折率が比較的小さい複屈折領域となる。このように、 各群のレンズ素子では、 光軸から 4 5° (結晶軸 [1 00] と結晶軸 [1 0 1] とのなす角度) の領域において、 複屈折の影響を最大に受けることがわかる。 一方、 図 1 9の (c) を参照すると、 第 1群の屈折部材と第 2群の屈折部材と を光軸を中心として 45° だけ相対的に回転させることにより、 第 1群の屈折部 材と第 2群の屈折部材との全体では、 複屈折が最大である結晶軸 [1 0 1], [1 0- 1], [1 1 0], [1 _ 1 0] の影響がかなり薄められ、 光軸から 4 5° の領 域すなわち光軸から離れた領域において径方向の偏光 (R偏光) に対する屈折率 よりも周方向の偏光 (Θ偏光) に対する屈折率が大きい複屈折領域が残ることに なる。 この場合、 一般の投影光学系において各レンズ素子における光軸と光束と の最大角度は 3 5° 〜40° 程度である。 従って、 第 5実施例の手法を採用する ことにより、 結晶軸 [1 0 1], [1 0- 1], [1 1 0], [1 - 1 0] の複屈折の 影響を実質的に受けることなく、 良好な結像性能を確保することができる。 なお、 上述の説明において、 第 1群の屈折部材及び第 2群の屈折部材は、 それ ぞれ 1つまたは複数の屈折部材を有する。 そして、 第 1群の屈折部材又は第 2群 の屈折部材が複数の屈折部材を含む場合、 複数の屈折部材は必ずしも隣接する屈 折部材には限られない。 本実施例における屈折部材の群の概念は、 後述の第 3群 〜第 6群の屈折部材についても同様である。 第 5実施例の手法では、 第 1群の屈 折部材の光軸に沿った厚さの総計と第 2群の屈折部材の光軸に沿った厚さの総計 とがほぼ等しいことが好ましい。 Referring to FIGS. 19 (a) and 19 (b), in the method of the fifth embodiment, the region corresponding to the crystal axis [100] coincident with the optical axis is relatively large. This is a region having a refractive index and no birefringence. The regions corresponding to the crystal axes [1 1 1], [1-1 1], [1 1 1-1], [1 1-1] are the regions with relatively small refractive index and no birefringence. Become. Furthermore, the regions corresponding to the crystal axes [1 0 1], [1 0-1], [1 10], [1-10] have relatively large refractive indices for polarized light in the circumferential direction (0 polarized light). The birefringence region has a relatively small refractive index for radially polarized light (R-polarized light). in this way, It can be seen that the lens elements of each group are maximally affected by birefringence in the region of 45 ° from the optical axis (the angle between the crystal axis [100] and the crystal axis [101]). On the other hand, referring to (c) of FIG. 19, the first group of refraction members and the second group of refraction members are relatively rotated about the optical axis by 45 ° to thereby obtain the first group of refraction portions. The effect of the crystal axes [1 0 1], [1 0-1], [1 1 0], and [1 _ 1 0], where the birefringence is the largest, on the whole and the second group of refraction members A birefringent region that is thinned and has a larger refractive index for circumferentially polarized light (Θ-polarized light) than that for radially polarized light (R-polarized light) in a region 45 ° from the optical axis, that is, a region far from the optical axis. Will remain. In this case, in a general projection optical system, the maximum angle between the optical axis and the light beam in each lens element is about 35 ° to 40 °. Therefore, by employing the method of the fifth embodiment, the effect of the birefringence of the crystal axes [101], [101-1], [110] and [1-110] is substantially reduced. Good imaging performance can be ensured without receiving. In the above description, the first group of refraction members and the second group of refraction members each have one or more refraction members. When the first group of bending members or the second group of bending members include a plurality of bending members, the plurality of bending members are not necessarily limited to adjacent bending members. The concept of the group of refracting members in the present embodiment is the same for the refracting members of the third to sixth groups described later. In the method of the fifth embodiment, it is preferable that the total thickness of the first group of bending members along the optical axis is substantially equal to the total thickness of the second group of bending members along the optical axis.
ところで、 前述の図 1 1Bの (c) と図 1 9の (c) とを参照すると、 図 1 1 の手法における光軸から 3 5. 26° の領域での複屈折の方向と、 第 5実施例の 手法における光軸から 4 5° の領域での複屈折の方向とが逆である。 従って、 第 5実施例の手法と図 1 1A、図 1 1B及ぴ図 1 1 Cで説明した手法とを組み合わせ る手法を採用することにより、 複屈折の影響を実質的に受けることなく、 良好な 結像性能を確保することができる。  By the way, referring to FIG. 11B (c) and FIG. 19 (c), the birefringence direction in the region of 3.5.26 ° from the optical axis in the method of FIG. The direction of birefringence in a region 45 ° from the optical axis in the method of the embodiment is opposite. Therefore, by adopting a method that combines the method of the fifth embodiment with the method described in FIGS. 11A, 11B and 11C, it is possible to obtain a good A high imaging performance can be ensured.
次に第 6実施例として、上記第 5実施例の手法と、 図 1 1A、 図 1 1B及び図 1 1 cで説明した手法とを組み合わせた例を説明する。 Next, as a sixth embodiment, the method of the above fifth embodiment, FIG. 11A, FIG. 11B and FIG. An example in which the method described in 1c is combined will be described.
第 6実施例の手法では、 等軸晶系の結晶材料からなる複数の屈折部材のうち、 所定の第 1群の屈折部材の光軸を結晶軸 [1 0 0] (または該結晶軸 [1 00] と 光学的に等価な結晶軸) と一致させ、 第 1群とは異なる第 2群の屈折部材の光軸 を結晶軸 [1 00] (または該結晶軸 [1 00] と光学的に等価な結晶軸) と一致 させ、 第 1群の屈折部材と第 2群の屈折部材とを光軸を中心として 45° だけ相 対的に回転させる。 さらに、 所定の第 3群の屈折部材の光軸を結晶軸 [1 1 1] According to the method of the sixth embodiment, the optical axis of a predetermined first group of refraction members among a plurality of refraction members made of an equiaxed crystal material is set to the crystal axis [100] (or the crystal axis [1 00] and the optical axis of the second group of refraction members different from the first group is optically aligned with the crystal axis [100] (or the crystal axis [100]). The first group of refracting members and the second group of refracting members are rotated relative to each other by 45 ° about the optical axis. Further, the optical axis of the predetermined third group of refraction members is set to the crystal axis [1 1 1]
(または該結晶軸 [1 1 1] と光学的に等価な結晶軸) と一致させ、 第 3群とは 異なる第 4群の屈折部材の光軸を結晶軸 [1 1 1] (または該結晶軸 [1 1 1] と 光学的に等価な結晶軸) と一致させ、 第 3群の屈折部材と第 4群の屈折部材とを 光軸を中心として 60° だけ相対的に回転させる。 (Or the crystal axis optically equivalent to the crystal axis [111]), and the optical axis of the fourth group of refraction members different from the third group is set to the crystal axis [111] (or the crystal axis). The third group of refraction members and the fourth group of refraction members are rotated relative to each other by 60 ° about the optical axis.
ここで、 結晶軸 [1 1 1] と光学的に等価な結晶軸とは、 結晶軸 [— 1 1 1], [1一 1 1], [1 1 - 1] である。 第 6実施例の手法では、 第 1群の屈折部材の 光軸に沿った厚さの総計と第 2群の屈折部材の光軸に沿った厚さの総計とがほぼ 等しく、 且つ第 3群の屈折部材の光軸に沿った厚さの総計と第 4群の屈折部材の 光軸に沿つた厚さの総計とがほぼ等しいことが好ましい。  Here, the crystal axes optically equivalent to the crystal axis [1 1 1] are the crystal axes [—1 1 1], [1 1 1 1], and [1 1 1]. According to the method of the sixth embodiment, the total thickness of the first group of refracting members along the optical axis is substantially equal to the total thickness of the second group of refracting members along the optical axis; It is preferable that the total thickness of the refraction members along the optical axis be substantially equal to the total thickness of the fourth group of refraction members along the optical axis.
次に、第 7実施例として、等軸晶系の結晶材料からなる複数の屈折部材のうち、 少なくとも 1つの屈折部材の光軸と結晶軸 [1 0 0] (または該結晶軸 [1 00] と光学的に等価な結晶軸) と一致させた例について説明する。  Next, as a seventh embodiment, the optical axis and the crystal axis [100] (or the crystal axis [100]) of at least one of the plurality of refraction members made of an equiaxed crystal material are used. A crystal axis that is optically equivalent to the above) will be described.
上記図 1 1Bの (a) 及び図 1 1Bの (b) を参照すると、 屈折部材の光軸と結 晶軸 [1 1 1] とを一致させているので、 複屈折が最大の結晶軸 [1 1 0], [1 0 1], [0 1 1] に対応する領域が 1 2 0° ピッチで存在し、 瞳面内で 3 0の分 布を有する複屈折の影響すなわち像面 (ウェハ面) においてコマ収差が発生する ような影響が現れるものと考えられる。  Referring to (a) of FIG. 11B and (b) of FIG. 11B, since the optical axis and the crystal axis [1 1 1] of the refraction member are matched, the crystal axis having the maximum birefringence [ The areas corresponding to [1 1 0], [1 0 1], and [0 1 1] exist at a pitch of 1 20 °, and the effect of birefringence having a distribution of 30 in the pupil plane, ie, the image plane (wafer) It is considered that an effect such as the occurrence of coma aberration appears on the surface.
これに対して、 図 1 9の (a) 及び図 1 9の (b) を参照すると、 屈折部材の 光軸と結晶軸 [1 00] とを一致させているので、 複屈折が最大の結晶軸 [1 0 1], [1 0- 1], [1 1 0], [1一 1 0] に対応する領域が 9 0° ピッチで存在 し、 瞳面内で 4 Θの分布を有する複屈折の影響が現れる。 On the other hand, referring to (a) of FIG. 19 and (b) of FIG. 19, since the optical axis of the refraction member and the crystal axis [100] match, the crystal having the largest birefringence is obtained. Axis [1 0 Regions corresponding to [1], [1 0-1], [1 10], and [1 1 1 0] exist at 90 ° pitch, and the influence of birefringence having a distribution of 4 mm in the pupil plane is appear.
この場合、 ウェハに投影すベきパターンにお 、て縦横パタ一ンが支配的である ため、 4 Θの分布であれば縦横パターンに対して非点収差が発生するような影響 が現れることなく、 像の崩れも顕著にならない。 従って、 等軸晶系の結晶材料か らなる複数の屈折部材のうち、 少なくとも 1つの屈折部材の光軸と結晶軸 [1 0 0] (または該結晶軸 [1 00] と光学的に等価な結晶軸) と一致させる第 7実施 例の手法を採用することにより、 複屈折の影響を実質的に受けることなく、 良好 な結像性能を確保することができる。  In this case, since the vertical and horizontal patterns are dominant in the pattern to be projected on the wafer, if the distribution is 4 mm, the vertical and horizontal patterns are not affected by astigmatism. The collapse of the image does not become noticeable. Therefore, among a plurality of refraction members made of an equiaxed crystal material, the optical axis and the crystal axis [100] of at least one refraction member (or optically equivalent to the crystal axis [100]) By adopting the method of the seventh embodiment that matches the crystal axis, good imaging performance can be secured without being substantially affected by birefringence.
次に、 第 8実施例として、 等軸晶系の結晶材料からなる複数の屈折部材のうち 所定の第 5群の光軸を結晶軸 [1 1 0] または該結晶軸 [1 1 0] と光学的に等 価な結晶軸とほぼ一致させ、 第 5群とは異なる所定の第 6群の光軸を結晶軸 [1 1 0] または該結晶軸 [1 1 0] と光学的に等価な結晶軸とほぼ一致させ、 これ ら第 5群及び第 6群を光軸を中心として 9 0° だけ相対的に回転させた例を説明 する。  Next, as an eighth embodiment, among a plurality of refraction members made of an equiaxed crystal material, the optical axis of a predetermined fifth group is defined as a crystal axis [110] or the crystal axis [110]. The optical axis of the predetermined sixth group, which is different from the fifth group, is made substantially coincident with the optically equivalent crystal axis, and the optical axis of the crystal axis [110] or the crystal axis [110] is optically equivalent. An example will be described in which the fifth group and the sixth group are relatively rotated by 90 ° about the optical axis so that they substantially coincide with the crystal axis.
図 20は、 本発明の第 8実施例の手法を説明する図であって、 上述の図 1 1B 及び図 1 1 図1 9と同様に、 光線の入射角に対する複屈折の分布を示してい る。 第 8実施例の手法では、 第 5群の屈折部材における複屈折の分布は図 20の ( a )に示すようになり、第 6群の屈折部材における複屈折の分布は図 20の( b ) に示すようになる。 その結果、 第 5群の屈折部材と第 6群の屈折部材との全体に おける複屈折の分布は、 図 20の (c) に示すようになる。  FIG. 20 is a diagram for explaining the method of the eighth embodiment of the present invention, and shows the distribution of birefringence with respect to the incident angle of a light ray, similarly to FIGS. 11B and 11 to 19 described above. . In the method of the eighth embodiment, the distribution of birefringence in the fifth group of refraction members is as shown in FIG. 20 (a), and the distribution of birefringence in the sixth group of refraction members is shown in FIG. It becomes as shown in. As a result, the distribution of birefringence in the whole of the fifth group of refraction members and the sixth group of refraction members is as shown in FIG. 20 (c).
図 20の (a) および図 20の (b) を参照すると、 第 8実施例の手法では、 . 光軸と一致している結晶軸 [1 1 0] に対応する領域は、 一方の方向の偏光に対 する屈折率が比較的大きく他方の方向 (一方の方向に直交する方向) の偏光に対 する屈折率が比較的小さい複屈折領域となる。 また、結晶軸 [1 00], [0 1 0] に対応する領域は、 比較的大きな屈折率を有する複屈折のない領域となる。 さら に、 結晶軸 [ 1 1 1 ], [ 1 1 - 1 ] に対応する領域は、 比較的小さな屈折率を有 する複屈折のない領域となる。 Referring to FIG. 20 (a) and FIG. 20 (b), in the method of the eighth embodiment, the region corresponding to the crystal axis [1 10] coinciding with the optical axis is located in one direction. The birefringence region has a relatively large refractive index for polarized light and a relatively small refractive index for polarized light in the other direction (a direction orthogonal to one direction). The region corresponding to the crystal axes [100] and [010] is a region having a relatively large refractive index and no birefringence. Further In addition, the region corresponding to the crystal axes [111] and [111] is a region having a relatively small refractive index and no birefringence.
—方、 図 2 0の (c ) を参照すると、 第 5群の屈折部材と第 6群の屈折部材と を光軸を中心として 9 0。 だけ相対的に回転させることにより、 第 5群の屈折部 材と第 6群の屈折部材との全体では、 複屈折が最大である結晶軸 [ 1 1 0 ] の影 響がほとんどなく、光軸付近は中間的な屈折率を有する複屈折のない領域となる。 すなわち、 第 8実施例の手法を採用すると、 複屈折の影響を実質的に受けること なく、 良好な結像性能を確保することができる。  On the other hand, referring to (c) of FIG. 20, the refractive index of the fifth group and the refractive group of the sixth group are 90 around the optical axis. By rotating them relatively only, the entire refracting member of the fifth group and the refracting member of the sixth group have almost no influence on the crystal axis [110] where the birefringence is maximum, and the optical axis does not. The vicinity is a region having an intermediate refractive index and no birefringence. That is, when the method of the eighth embodiment is adopted, good imaging performance can be secured without being substantially affected by birefringence.
第 8実施例の手法においても、 第 5群の屈折部材の光軸に沿った厚さの総計と 第 6群の屈折部材の光軸に沿った厚さの総計とがほぼ等しいことが好ましい。 特 に、 第 8実施例の手法では、 複屈折領域が中央部 (光軸およびその近傍) にある ので、 中央部の薄い負レンズに適用することがさらに好ましい。  Also in the method of the eighth embodiment, it is preferable that the total thickness of the fifth group of refraction members along the optical axis is substantially equal to the total thickness of the sixth group of refraction members along the optical axis. In particular, in the method of the eighth embodiment, since the birefringent region is located at the center (the optical axis and its vicinity), it is more preferable to apply the method to a thin negative lens at the center.
なお、 以上説明した 4つの手法から適宜選択した 1つの手法を採用する、 或い は 4つの手法から選択した複数の手法を組み合わせて採用することもできる。 また、 等軸晶系の結晶材料からなる屈折部材においては、 当該屈折部材を通過 する光線の光軸に対する最大角度が 2 0 ° を超えるような場合には、 その配置位 置にかかわらず複屈折の影響を受けやすい。 そこで、 通過する光線の光軸に対す る最大角度が 2 0 ° を越えるような等軸晶系の結晶材料からなる屈折部材に対し て、 図 1 1 A、 図 1 1 B及び図 1 1 Cに示した手法、第 5〜第 8実施例に示した手 法を単独或いは組み合わせて適用することが好ましい。 この構成により、 複屈折 の影響をさらに良好に低減でき良好な光学性能を確保できる。  It should be noted that one method appropriately selected from the four methods described above may be employed, or a plurality of methods selected from the four methods may be employed in combination. Further, in the case of a refraction member made of an equiaxed crystal material, when the maximum angle of a light beam passing through the refraction member with respect to the optical axis exceeds 20 °, birefringence is performed regardless of the arrangement position. Susceptible to. Therefore, for a refraction member made of an equiaxed crystal material in which the maximum angle of the passing light beam with respect to the optical axis exceeds 20 °, FIG. 11A, FIG. 11B and FIG. It is preferable to apply the method described in (1) or the method described in the fifth to eighth examples alone or in combination. With this configuration, the influence of birefringence can be further reduced, and good optical performance can be secured.
また、 像側開口数の大きい投影光学系では、 瞳位置 (中間結像点を有する複数 回結像光学系の場合には最も像側 (第 2面側) の瞳位置) よりも第 2面側に配置 されたレンズにおいて、 通過する光線の光軸に対する最大角度が大きい傾向にあ る。 そこで、 最も第 2面側の瞳位置と第 2面との間に配置される屈折部材のうち 等軸晶系の結晶材料で形成される屈折部材に対して、 図 1 1に示した手法、 第 5 〜第 8実施例に示した手法を単独或いは組み合わせて適用することが好ましい。 この構成により、 複屈折の影響をさらに良好に低減でき良好な光学性能を確保で さる。 Also, in a projection optical system having a large image-side numerical aperture, the pupil position (the pupil position closest to the image side (second surface side in the case of a multiple-imaging optical system having an intermediate imaging point)) is closer to the second surface. In the lens located on the side, the maximum angle of the passing light beam with respect to the optical axis tends to be large. Therefore, for the refraction member formed of an equiaxed crystal material among the refraction members arranged between the pupil position closest to the second surface and the second surface, the method shown in FIG. number 5 It is preferable to apply the methods shown in the eighth to eighth embodiments individually or in combination. With this configuration, the influence of birefringence can be further reduced, and good optical performance can be ensured.
また、 等軸晶系の結晶材料からなる複数の屈折部材のうち、 所定の結晶軸と光 軸とがほぼ一致するように形成された第 7群の光透過部材と、 所定の結晶軸と光 軸とがほぼ一致するように形成された第 8群の光透過部材とは、 投影光学系の最 大開口数に対応する光線が第 7群の光透過部材を通過する際の硝路長を L 7とし、 投影光学系の最大開口数に対応する光線が前記第 8群の光透過部材を通過する際 の硝路長を L 8とし、所定の波長を; Iとするとき、 (9) I L 7-L 8 \ /λ< 3 X 10+5なる条件式を満足することが好ましい。 この構成によれば、 像側開口 数の大きい投影光学系であつても、これら第 7群と第 8群との光透過部材により、 複屈折の影響を低減することが可能となる。 なお、 さらに複屈折の影響を低減す るためには、上記(9)式の上限値を 2. 6 X 10+5に設定することが好ましい。 以下、 具体的な数値に基づく実施例を説明する。 Also, among a plurality of refraction members made of an equiaxed crystal material, a seventh group of light transmitting members formed so that a predetermined crystal axis and an optical axis substantially coincide with each other; The eighth group of light transmitting members formed so that their axes substantially coincide with each other is defined as the glass path length when the light beam corresponding to the maximum numerical aperture of the projection optical system passes through the seventh group of light transmitting members. Let L7 be a path length when a ray corresponding to the maximum numerical aperture of the projection optical system passes through the eighth group of light transmitting members, and let L be a predetermined wavelength; It is preferable to satisfy the following conditional expression: IL 7−L 8 \ / λ <3 X 10 + 5 According to this configuration, even in a projection optical system having a large image-side numerical aperture, the effects of birefringence can be reduced by the light transmitting members of the seventh and eighth units. In order to further reduce the influence of birefringence, it is preferable to set the upper limit of Expression (9) to 2.6 × 10 + 5 . Hereinafter, embodiments based on specific numerical values will be described.
図 21は、 本発明に係る第 1実施例にかかる投影光学系のレンズ構成を示す図 である。 本実施例の投影光学系は, 光学材料として石英 S i 02及び蛍石 C a F2 を使用しており、 第 1面に配置されたレチクル Rの像を第 2面に配置されたゥェ ハ W上に投影する。 FIG. 21 is a diagram showing a lens configuration of a projection optical system according to Example 1 of the present invention. The projection optical system of this embodiment uses quartz SiO 2 and fluorite C a F 2 as optical materials, and an image of the reticle R arranged on the first surface is arranged on the second surface. Project on W.
この投影光学系は、 レチクル R側より順に、 正の屈折力を有する第 1レンズ群 G 1、 負の屈折力を有する第 2レンズ群 G 2、 及び正の屈折力を有する第 3レン ズ群 G 3を有する。 ここで、 第 1レンズ群 G 1は、 蛍石で形成された正の屈折力 を有するレンズ L P 1 1を含む。 第 3レンズ群 G3は、 蛍石で形成されたレンズ LP 12、 LP 1 3、 LP 14、 L P 1 5を含む。 また、 開口絞り ASは第 3レ ンズ群 G 3中に配置されている。 第 1実施例の投影光学系の基準波長は 1 93. 3 nm (A r Fエキシマレーザ)であり、両側テレセントリックな光学系である。 さて、 第 1実施例において、 正の屈折力を有する第 1レンズ群 G1は第 1面か ら射出するテレセントリックな光束を第 2レンズ群 G 2にリレーすると共に、 正 の歪曲収差を予め発生させ、 これにより第 2、 第 3 レンズ群 G 2, G 3で発生す る負の歪曲収差を補正している。 負の屈折力を有する第 2レンズ群 G 2は主にべ ッッバール和の補正に寄与し、 像面の平坦性を実現させている。 正の屈折力を有 する第 3レンズ群 G 3は第 2レンズ群 G 2からリ レーした光束に基づいて、 主に 球面収差の発生を極力抑制した状態で、 第 2面上に像をテレセントリックな光束 のもとで結像させる役割を担っている。 The projection optical system includes, in order from the reticle R side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. Has G3. Here, the first lens group G1 includes a lens LP11 formed of fluorite and having a positive refractive power. The third lens group G3 includes lenses LP12, LP13, LP14, and LP15 formed of fluorite. The aperture stop AS is arranged in the third lens group G3. The reference wavelength of the projection optical system of the first embodiment is 193.3 nm (ArF excimer laser), and is an optical system that is telecentric on both sides. Now, in the first embodiment, the first lens group G1 having a positive refractive power is The telecentric luminous flux emitted from the second lens group G2 is relayed to the second lens group G2, and a positive distortion is generated in advance, whereby the negative distortion generated by the second and third lens groups G2 and G3 is reduced. Has been corrected. The second lens group G2 having a negative refractive power mainly contributes to the correction of the Bebbar sum and realizes the flatness of the image plane. The third lens group G3 having a positive refractive power is based on the luminous flux relayed from the second lens group G2, and telecentrically forms an image on the second surface while suppressing the generation of spherical aberration as much as possible. It plays the role of forming an image under a luminous flux.
A r Fレーザに対して石英硝材は吸収やコンパクション等の照射変動が発生す ることは知られている。 ここで、 正の屈折力を有する第 1 レンズ群に少なくとも 1枚以上の蛍石硝材を使用することによって、 石英硝材による照射変動の収差劣 化を押さえる事ができるようになる。第 1 レンズ群では、光軸中心を通る光束(パ ーシャル径) と周辺を通る光束はレンズ面で比較的に離れている為、 第 1 レンズ 群で照射変動が発生した場合、 コマ収差や投影ェリアにおける中心と周辺の差等 が顕著になり、 収差変動が大きくなる。 よって、 第 1 レンズ群 G 1に蛍石を使用 することにより、照射変動による収差劣化を効率よく抑制することができる。 ま た、 本実施例の投影光学系においては、 第 1 レンズ群 G 1中の蛍石で形成された レンズ成分のうちの少なくとも 1つのレンズ成分は、 正の屈折力を有すること事 が望ましい。 上述のように、 第 1 レンズ群 G 1に起因するコマ収差や投影エリア における中心と周辺の差などの照射変動による収差劣化の影響は、 他のレンズ群 に起因するものより大きい。 特に、 凸レンズでは、 硝材を通過する光路長が周辺 光束に比べ光軸中心を通る光束の方がより長く、 よって硝材の照射変動の影響を 受けやすい。 このように、 照射変動による収差変動を効率よく制御するという点 で蛍石硝材は正の屈折力を有するレンズに使用する事が望ましい。 また、 石英と の屈折率差によつて色消しをするという点から見ても、 蛍石硝材は正の屈折力を 有するレンズに使用する事が望ましい。  It is known that the quartz glass material causes irradiation fluctuation such as absorption and compaction with respect to the ArF laser. Here, by using at least one or more fluorite glass material for the first lens group having a positive refractive power, it becomes possible to suppress the deterioration of the irradiation fluctuation caused by the quartz glass material. In the first lens group, the luminous flux (partial diameter) passing through the center of the optical axis and the luminous flux passing through the periphery are relatively far from each other on the lens surface. In the area, the difference between the center and the periphery becomes noticeable, and the aberration fluctuation increases. Therefore, by using fluorite for the first lens group G1, it is possible to efficiently suppress aberration degradation due to irradiation fluctuation. In the projection optical system according to the present embodiment, it is desirable that at least one of the lens components formed of fluorite in the first lens group G1 has a positive refractive power. As described above, the influence of aberration degradation due to irradiation variation such as coma caused by the first lens group G1 and the difference between the center and the periphery of the projection area is greater than that caused by other lens groups. In particular, with a convex lens, the optical path length passing through the glass material is longer in the light beam passing through the center of the optical axis than in the peripheral light beam, and is therefore more susceptible to fluctuations in the irradiation of the glass material. As described above, it is desirable to use the fluorite glass for a lens having a positive refractive power from the viewpoint of efficiently controlling aberration fluctuation due to irradiation fluctuation. Also, from the viewpoint of achromatism due to the difference in refractive index from quartz, it is desirable to use fluorite glass for lenses having a positive refractive power.
また、 第 3レンズ群 G 3は、 少なくとも 1つの前記蛍石で形成されたレンズ成 分を有することが好ましい。 本実施例の投影光学系では、 第 2レンズ群 G 2によ つて発散した光束が第 3レンズ群 G 3によって収束してゆくため、 第 3レンズ群 G 3の各レンズにおける照射エネルギー密度が高くなる。 このことが照射変動の 1種であるコンパクションの発生原因となる。 第 3 レンズ群に蛍石硝材を使用す れば、 このコンパクションの影響を軽減させる効果が得られる。 さらに、 蛍石硝 材を照射エネルギー密度が集中する面上近くの厚みのある硝材に使用すれば、 よ り効率よくコンパクションを補正できる。 The third lens group G3 includes a lens component formed of at least one fluorite. It is preferred to have a minute. In the projection optical system of the present embodiment, the luminous flux diverged by the second lens group G2 is converged by the third lens group G3, so that the irradiation energy density of each lens of the third lens group G3 is high. Become. This causes compaction, a type of irradiation variation. If fluorite glass material is used for the third lens group, the effect of reducing the effect of this compaction can be obtained. Furthermore, if fluorite glass is used for thick glass near the surface where the irradiation energy density is concentrated, compaction can be corrected more efficiently.
以下の表 1に第 1実施例にかかる投影光学系の諸元値を示す。 表 1において、 3は投影倍率 (横倍率)、 NAは像側 (第 2面側) 開口数、 Bは像面上でのィメー ジサークルの直径をそれぞれ表している。 また、 表 1において、 面番号は、 物体 面 (第 1面) であるレチクル面から像面 (第 2面) であるウェハ面への光線の進 行する方向に沿ったレチクル側からの順序を、 rは各面の曲率半径 (非球面の場 合には頂点曲率半径)、 dは各面の光軸上の面間隔をそれぞれ示している。  Table 1 below shows the specification values of the projection optical system according to the first example. In Table 1, 3 indicates the projection magnification (lateral magnification), NA indicates the numerical aperture on the image side (second surface side), and B indicates the diameter of the image circle on the image plane. In Table 1, the surface numbers indicate the order from the reticle side along the direction in which light rays travel from the reticle surface, which is the object surface (first surface), to the wafer surface, which is the image surface (second surface). , R indicates the radius of curvature of each surface (vertical radius of curvature in the case of an aspheric surface), and d indicates the surface interval of each surface on the optical axis.
また、 各非球面における非球面係数を表 2に示す。 非球面は、 光軸に垂直な方 向の高さを yとし、 非球面の頂点における接平面から高さ yにおける非球面上の 位置までの光軸に沿った距離 (サグ量) を Zとし、 頂点曲率半径を rとし、 円錐 係数を Kとし、 n次の非球面係数を A〜Fとしたとき, 以下の式 (1 0) で表さ れる。  Table 2 shows the aspheric coefficient for each aspheric surface. For an aspheric surface, let y be the height in the direction perpendicular to the optical axis, and let Z be the distance (sag amount) along the optical axis from the tangent plane at the vertex of the aspheric surface to a position on the aspheric surface at height y. Where r is the radius of curvature at the apex, K is the conic coefficient, and A to F are the n-th order aspherical coefficients, the following equation (10) is obtained.
(1 0) Z= (y 2 / x ) { 1 - (1 +K) - y 2 /r 2 } 1/2 ] + A · y 4 + B ■ y 6 + C · y 8 +D ■ y 10+ E · y 12+ F ■ y 14 なお、 表 (1 0) Z = (y 2 / x) {1-(1 + K)-y 2 / r 2} 1/2] + Ay4 + B ■ y6 + Cy8 + D ■ y 10+ E · y 12+ F
2において各非球面係数の欄に記載される Emは 10m を表している。 ここで, 本実施例の諸元値における曲率半径, 面間隔の単位の一例としては、 mmを用い ることができる。 波長 1 9 3. 3 nmにおける各硝材の屈折率を以下に示す。 Si02 1. 5 6 0 326 1 Em described in the column of each aspheric coefficient in 2 represents 10 m. Here, mm can be used as an example of the unit of the radius of curvature and the surface interval in the specification values of the present embodiment. The refractive index of each glass material at a wavelength of 193.3 nm is shown below. Si0 2 1.5 6 0 326 1
CaF 2 1. 5 0 14 5 48 Cn ί_π CaF 2 1.5 0 14 5 48 Cn ί_π
ο CO o H W ¾ o ^ 琳 >
Figure imgf000054_0001
ο CO o HW ¾ o ^ Rin>
Figure imgf000054_0001
CTi CTi
00 ω CO CO O CJi 00  00 ω CO CO O CJi 00
-J Cn o o O n Cn  -J Cn o o On Cn
o O C o O Cn  o O C o O Cn
o t\j ω CJI O o cn o O CJi IV) O 0  o t \ j ω CJI O o cn o O CJi IV) O 0
-J o o o n Ol  -J o o o n Ol
cn ω o in in H- cn ω o in in H-
H- H- 〇 〇 〇 〇 H- H- 〇 〇 〇 〇
〇 〇 〇 〇 ho  〇 〇 〇 〇 ho
s〇i s〇i
n n
Figure imgf000055_0001
ω
Figure imgf000055_0001
ω
o I— 1 GO Cn Cn Cn Cn ro t  o I— 1 GO Cn Cn Cn Cn ro t
CO ro Cn CO CO O  CO ro Cn CO CO O
I ) 00  I) 00
ω -J Ω ω (_Π CO ) O ω -J Ω ω (_Π CO) O
Ji O ο -J 00
Figure imgf000055_0002
Ji O ο -J 00
Figure imgf000055_0002
SiO [面番号 2] SiO [Surface number 2]
K= 0.000000 K = 0.000000
Α = -0.106010E-06Α = -0.106010E-06
Β = 0.204228Ε - 11 C=-0.588237E-16Β = 0.204228Ε-11 C = -0.588237E-16
D= 0.112269E-20D = 0.112269E-20
[面番号 14] [Surface number 14]
K= 0.000000 K = 0.000000
A= 0.417491E-08 Β = 0.514111E-13A = 0.417491E-08 Β = 0.514111E-13
C=-0.666592E-18C = -0.666592E-18
D= 0.141913E-22D = 0.141913E-22
[面番号 20] κ== 0.000000 Α= 0.166854E-07[Surface number 20] κ == 0.000000 Α = 0.166854E-07
Β = 0.370389E-12Β = 0.370389E-12
C=-0.138273E-16C = -0.138273E-16
D=-0.304113E - 20D = -0.304113E-20
[面番号 24] [Surface number 24]
K= 0.000000K = 0.000000
A= 0.361963E-07A = 0.361963E-07
Β =-0.679214E-12Β = -0.679214E-12
C=-0.128267E-16C = -0.128267E-16
D= 0.908964E-21 E=-0.121007E-25D = 0.908964E-21 E = -0.121007E-25
[面番号 40 ] K= 0.000000 [Surface number 40] K = 0.000000
A = - 0.179608E - 07 A =-0.179608E-07
B = 0.149941E-12 B = 0.149941E-12
C=-0.128914E-17 C = -0.128914E-17
D=-0.506694E-21 D = -0.506694E-21
E= 0.204017E-25 E = 0.204017E-25
F=-0.730011E-30 さて、 本実施例では、 投影光学系を構成する光学部材のうちの蛍石よりなるレ ンズ成分 LP11〜LP15の方位角 (光軸周りの回転角) を調整することによって、 複屈折による悪影響 (偏光収差) を補正している。 F = -0.730011E-30 In this embodiment, the azimuth angles (rotation angles around the optical axis) of the lens components LP11 to LP15 made of fluorite in the optical members constituting the projection optical system are adjusted. This corrects the adverse effect (polarization aberration) due to birefringence.
図 22Aは、蛍石よりなるレンズ成分 LP11~LP15を、蛍石の結晶軸 [1 1 1] が光軸と一致しかつそれぞれの方位角を同じ方向に揃えた場合における光軸上で の点像強度分布を示す。 なお、 図 2 2Aにおいて、 P S Fの最大値は 90.72であ る。  FIG. 22A shows the points of the lens components LP11 to LP15 made of fluorite on the optical axis when the crystal axis [1 1 1] of fluorite matches the optical axis and their azimuths are aligned in the same direction. 4 shows an image intensity distribution. In FIG. 22A, the maximum value of PSF is 90.72.
図 2 2Bは、 蛍石よりなるレンズ成分 LP11〜LP15のうちレンズ成分 LP14の 方位角を、他の蛍石レンズ成分 LP11〜LP13,LP15に対して光軸周りに相対的に 1 80° 回転させた場合の光軸上での点像強度分布を示す。 なお、 図 22Bにお いて、 P S Fの最大値は 96.41である。  Fig. 22B shows that the azimuth of the lens component LP14 of the fluorite lens components LP11 to LP15 is rotated by 180 ° around the optical axis with respect to the other fluorite lens components LP11 to LP13 and LP15. 7 shows a point image intensity distribution on the optical axis in the case of the above. In FIG. 22B, the maximum value of PSF is 96.41.
これら図 2 2A及び図 2 2Bを参照すると、 蛍石よりなるレンズ成分 LP11〜 Referring to FIGS. 22A and 22B, the lens components LP11 to fluorite
LP15の結晶軸の方位角が全て揃った場合(図 2 2Aの場合) には、スカラー収差 の 30成分が大きく、 かつ P SF値も 90. 6程度と低いのに対し、 レンズ成分 LP14の方位角を、 他の 石レンズ成分; LP11〜! ^13,1^15に対して光軸周りに 相対的に 1 80° 回転させた場合 (レンズ成分 LP14 と蛍石レンズ成分 LP11〜 LP13,LP15との相対的な方位角が 60° である場合と等価、図 22Bの場合)に は、 スカラー収差の 3 Θ成分が小さくなり、 かっ?3 値も 96. 4程度まで上 がる。 このように、 等軸晶系結晶材料の結晶軸の方位角を変更することにより、 投影光学系の光学性能の改善が図れる。 When the azimuth angles of the crystal axes of LP15 are all the same (in the case of Fig. 22A), the scalar aberration 30 component is large and the PSF value is as low as 90.6, whereas the azimuth of the lens component LP14 Horn, other stone lens components; LP11 ~! Rotated 180 ° around the optical axis with respect to ^ 13,1 ^ 15 (When the relative azimuth between lens component LP14 and fluorite lens components LP11-LP13, LP15 is 60 ° In the case of Fig. 22B), the 3Θ component of the scalar aberration becomes smaller, 3 value also up to about 96.4 To Thus, by changing the azimuth of the crystal axis of the equiaxed crystal material, the optical performance of the projection optical system can be improved.
図 22Cは、 図 2 2Bの状態 (レンズ成分 LP14の方位角を、 他の蛍石レンズ 成分 LP11〜LP13,LP15に対して光軸周りに相対的に 1 80° 回転させた状態) に加え、 投影光学系中の石英からなるレンズ成分 LS1〜LS17のうち、 瞳近傍の レンズ成分 LS12及び LS14に、 図 2 2 Bで示される収差を捕正するための複屈 折分布を与えたものである。 これにより、 P S F値の最大値が 99.86となり、投 影光学系の光学性能のさらなる改善が図れる。  Fig. 22C shows the state of Fig. 22B (in which the azimuth of the lens component LP14 is rotated by 180 ° relative to the other fluorite lens components LP11 to LP13 and LP15 around the optical axis). Of the lens components LS1 to LS17 made of quartz in the projection optical system, the lens components LS12 and LS14 near the pupil are given a birefringence distribution for correcting the aberration shown in Fig. 22B. . As a result, the maximum value of the PSF value becomes 99.86, and the optical performance of the projection optical system can be further improved.
さて、図 2 2A—図 2 2Cに示した例では、投影光学系中の蛍石レンズ成分の結 晶軸 [1 1 1] を光軸と一致させた手法を用いたが、 別の結晶軸と光軸とを一致 させても良い。  By the way, in the examples shown in FIGS. 22A to 22C, a method was used in which the crystal axis [1 1 1] of the fluorite lens component in the projection optical system was made to coincide with the optical axis. And the optical axis may be matched.
図 23Aは、 図 2 2Aと同様に、 蛍石よりなるレンズ成分 LP11〜LP15を、 蛍 石の結晶軸 [1 1 1] が光軸と一致しかつそれぞれの方位角を同じ方向に揃えた 場合における光軸上での点像強度分布を示す。 そして、 図 2 3Bは、 蛍石レンズ 成分 LP11—LP15のうち、 レンズ成分 LP11、 LP12及び LP13の光軸を蛍石の結 晶軸 [1 00] と一致させ、 レンズ成分 LP14及び LP15の光軸を蛍石の結晶軸  Fig. 23A shows a lens component LP11 to LP15 made of fluorite, as in Fig. 22A, when the crystal axis [1 1 1] of fluorite matches the optical axis, and the azimuths are aligned in the same direction. 5 shows a point image intensity distribution on the optical axis at. FIG. 23B shows that, among the fluorite lens components LP11-LP15, the optical axes of the lens components LP11, LP12 and LP13 coincide with the crystal axis [100] of the fluorite, and the optical axes of the lens components LP14 and LP15. The fluorite crystal axis
[1 1 0] と一致させた例である。  This is an example of matching with [1 1 0].
そして、 結晶軸 [1 0 0] を光軸に持つレンズ成分 LP11、 LP12及び LP13に おいて、レンズ成分 LP11及び LP13の光軸周りの方位角を揃え、レンズ成分 LP12 の方位角をレンズ成分 LP11及び LP13に対して 45° だけ光軸周りに回転させ ている。 また、 結晶軸 [1 1 0] を光軸に持つレンズ成分 LP14及び LP15にお いて、 一方のレンズ成分の方位角に対して他方のレンズ成分の方位角を 9 0° だ け光軸周りに回転させている。  Then, in the lens components LP11, LP12, and LP13 having the crystal axis [100] as the optical axis, the azimuths of the lens components LP11 and LP13 around the optical axis are aligned, and the azimuth of the lens component LP12 is changed to the lens component LP11. And it is rotated around the optical axis by 45 ° with respect to LP13. Also, in the lens components LP14 and LP15 having the crystal axis [110] as the optical axis, the azimuth of one lens component is set to be 90 ° around the optical axis with respect to the azimuth of one lens component. Rotating.
比較例としての図 2 3Aと図 2 3Bとを参照すると、 図 2 3Bの場合では、 P S F値の最大値が 99.4であり、 良好な光学性能を有していることが分かる。 な お、 図 2 3Bにおいては、 わずかに残存する偏光収差成分を捕正するために、 図 22 Cの場合と同様に、 石英からなるレンズ成分 LS1〜LS17のうちの少なくと も 1つのレンズ成分に所定の複屈折分布を与えて、 光学性能のさらなる改善を図 つてぁ良レヽ。 Referring to FIG. 23A and FIG. 23B as comparative examples, in the case of FIG. 23B, the maximum value of the PSF value is 99.4, and it can be seen that the optical system has good optical performance. Note that in Figure 23B, in order to capture the slightly remaining polarization aberration component, As in the case of 22C, at least one of the lens components LS1 to LS17 made of quartz is given a predetermined birefringence distribution to further improve the optical performance.
図 24は、 本発明に係る第 2実施例にかかる投影光学系のレンズ構成を示す図 である。 本実施例の投影光学系は, 光学材料として石英 S i 02及び蛍石 C a F2 を使用しており、 第 1面に配置されたレチクル Rの像を第 2面に配置されたゥェ ハ W上に投影する。 第 2実施例の投影光学系は、 蛍石で形成された正の屈折力を 有するレンズ L P 1 1〜LP 16と、 石英で形成されたレンズ L S 1〜: L S 16 とを含む。 第 2実施例の投影光学系の基準波長は 193. 3 n m ( A r Fエキシ マレーザ) であり、 両側テレセントリックな光学系である。 FIG. 24 is a diagram showing a lens configuration of a projection optical system according to Example 2 of the present invention. The projection optical system of this embodiment uses quartz SiO 2 and fluorite C a F 2 as optical materials, and an image of the reticle R arranged on the first surface is arranged on the second surface. Project on W. The projection optical system of the second embodiment includes lenses LP11 to LP16 formed of fluorite and having a positive refractive power, and lenses LS1 to LS16 formed of quartz. The reference wavelength of the projection optical system of the second embodiment is 193.3 nm (ArF excimer laser), which is a double-sided telecentric optical system.
以下の表 3に第 2実施例にかかる投影光学系の諸元値を示す。 表 3における符 号の意味は表 1と同様であるため、 ここでは説明を省略する。  Table 3 below shows the specification values of the projection optical system according to the second example. The meanings of the symbols in Table 3 are the same as those in Table 1, and the description is omitted here.
また、 各非球面における非球面係数を表 4に示す。 非球面形状は、 上述の (1 0)式で表される。なお、表 4において各非球面係数の欄に記載される Eraは ΙΟια を表している。  Table 4 shows the aspheric coefficient for each aspheric surface. The aspherical shape is represented by the above-described equation (10). In Table 4, Era described in the column of each aspheric coefficient represents ΙΟια.
ここで, 本実施例の諸元値における曲率半径, 面間隔の単位の一例としては、 mmを用いることができる。 なお、 波長 1 93. 3 n mにおける各硝材の屈折率 は、 上記第 1実施例で示した通りである。  Here, mm can be used as an example of the unit of the radius of curvature and the surface interval in the specification values of the present embodiment. The refractive index of each glass material at the wavelength of 193.3 nm is as shown in the first embodiment.
【表 3】  [Table 3]
β =— 0. 25 β = — 0.25
ΝΑ= 0. 85  ΝΑ = 0.85
Β =23. 4 Β = 23.4
面番号 曲率半径 面間隔 硝材 Surface number Curvature radius Surface spacing Glass material
1 -1664 .993 14.681 S i 02 1 -1664 .993 14.681 S i 0 2
2 200.000 38.160 2 200.000 38.160
3 -97.636 39.394 S i 02 o 3 -97.636 39.394 S i 0 2 o
の 〇 ί 〇 〇
の 〇 ί 〇 〇
〇 0 〇 〇 〇 0
Figure imgf000060_0001
ω ϋ の o ω
〇 0 〇 〇 〇 0
Figure imgf000060_0001
o ω of ω ϋ
〇 ί 〇 ί
Figure imgf000060_0002
Figure imgf000060_0002
CM o oCM o o
CO m CO m
σι o r- σι o r-
[ [
ro LO  ro LO
Figure imgf000060_0003
Figure imgf000060_0003
LO LO LOLO LO LO
CM cm
69 69
[ 9 τ·^暴鹿]
Figure imgf000061_0001
[9 τ · ^ deer]
Figure imgf000061_0001
^ζ-30805Δ£·2-=Ή  ^ ζ-30805Δ £ · 2- = Ή
02-309T05£'2 =α  02-309T05 £ '2 = α
9T-a0T£T58'2-=O  9T-a0T £ T58'2- = O
- 3〇6 06'ς = e  -3〇6 06'ς = e
Δ0-ϋ06009^·τ- = ν 02 ΟΟΟΟΟΟΌ =¾  Δ0-ϋ06009 ^ τ- = ν 02 ΟΟΟΟΟΟΌ = ¾
[ S各銎 ffl]  [S each 銎 ffl]
【 挲】 [挲]
009 · οτ oo V 91 866 * ε L69 ' ^T05- ε  009 οτ oo V 91 866 * ε L69 '^ T05- ε
τε9 "90 2  τε9 "90 2
d Β〇 8 9 τ  d Β〇 8 9 τ
οοο'τ TLL'9£Z οοο'τ TLL'9 £ Z
Figure imgf000061_0002
Figure imgf000061_0002
οοο *τ 296" 9ん 8ε  οοο * τ 296 "9 n 8ε
:ο ΐ S 8ん ε"68τ L£  : ο ΐ S 8 ε "68τ L £
οοο'τ 691*655- 9£  οοο'τ 691 * 655- 9 £
:ο ΐ S 088 · £60 *£901 ςε  : ο ΐ S 088 · £ 60 * £ 901 ςε
£9L'9Z οοο *οοε- ε  £ 9L'9Z οοο * οοε- ε
ϊ S 990 Ή οβνττζ- εε  ϊ S 990 Ή οβνττζ- εε
fL9 'T££- fL9 'T ££-
Ό ΐ S 086*£9/. τε Ό ΐ S 086 * £ 9 / .τε
2S9 ·6Τ £L '18L- οε  2S9 6Τ £ L '18L- οε
LlOLO/ZOdt/Ud St0L00/£0 OAV K= 0.000000 LlOLO / ZOdt / Ud St0L00 / £ 0 OAV K = 0.000000
A= 2.294100E-08 A = 2.294100E-08
B=-2.794170E-13B = -2.794170E-13
C= 1.017110E-17 D= 5.514660E-22C = 1.017110E-17 D = 5.514660E-22
E=-5.807000E-26E = -5.807000E-26
F = 4.364070E-30 F = 4.364070E-30
[面番号 2 2 ]  [Surface number 2 2]
K= 0.000000  K = 0.000000
A= 7.961350E-09A = 7.961350E-09
B =-3.690120E-12B = -3.690120E-12
C = 1.927460E-17C = 1.927460E-17
D= 5.305600E-21D = 5.305600E-21
E=-2.919800E-26 F=-2.770450E-29 E = -2.919800E-26 F = -2.770450E-29
[面番号 26 ] [Surface number 26]
= 0.000000  = 0.000000
A= 2.103660  A = 2.103660
E-08B=-6.466850E-13 C =-6.551390E-18 E-08B = -6.466850E-13 C = -6.551390E-18
D= 2.426880E-22D = 2.426880E-22
E= 1.189120E-27E = 1.189120E-27
F=-3.538550E-31 F = -3.538550E-31
[面番号 40]  [Surface number 40]
K= 0.000000 K = 0.000000
A 1.693250E-08 B = 6.620660E-13 A 1.693250E-08 B = 6.620660E-13
C=-9.551420E-18  C = -9.551420E-18
D=-l .367360E-21 D = -l .367360E-21
E = 1.080030E-25 E = 1.080030E-25
F=-4.115960E-30 F = -4.115960E-30
さて、 本実施例では、 投影光学系を構成する光学部材のうちの蛍石よりなるレ ンズ成分 LP11〜LP16の方位角 (光軸周りの回転角) を調整することによって、 複屈折による悪影響 (偏光収差) を補正している。  By the way, in this embodiment, by adjusting the azimuth angle (rotation angle around the optical axis) of the lens components LP11 to LP16 made of fluorite in the optical members constituting the projection optical system, the adverse effect due to birefringence ( (Polarization aberration) is corrected.
図 25 Aは、 比較のために蛍石の固有複屈折の影響を無視した場合における光 軸上での点像強度分布を示す。なお、図 2 5 Aにおいて、 P S Fの最大値は 99.97 である。  FIG. 25A shows the point image intensity distribution on the optical axis when the influence of the intrinsic birefringence of fluorite is neglected for comparison. In FIG. 25A, the maximum value of PSF is 99.97.
図 25Bは、蛍石よりなるレンズ成分 LP11〜LP16を、蛍石の結晶軸 [11 1] が光軸と一致しかつそれぞれの方位角を同じ方向に揃えた場合における光軸上で の点像強度分布を示す。 なお、 図 2 5Aにおいて、 P S Fの最大値は 94.57であ る。  Fig. 25B shows a point image of the lens components LP11 to LP16 made of fluorite on the optical axis when the crystal axis [111] of the fluorite matches the optical axis and their azimuths are aligned in the same direction. 3 shows an intensity distribution. In FIG. 25A, the maximum value of PSF is 94.57.
図 25Cは、 蛍石よりなるレンズ成分 LP11〜LP16のうちレンズ成分 LP11の 方位角を、他の蛍石レンズ成分 LP12~LP14,LP16に対して光軸周りに相対的に 60° 回転させ、力つレンズ成分 LP15の方位角を、他の蛍石: LP12〜LP14,LP16 に対して光軸周りに相対的に 6 0° 回転させた場合の光軸上での点像強度分布を 示す。 なお、 図 2 5Cにおいて、 P S Fの最大ィ直は 95.86である。  Fig.25C shows the azimuth of the lens component LP11 of the fluorite lens components LP11 to LP16, which is rotated by 60 ° around the optical axis relative to the other fluorite lens components LP12 to LP14 and LP16. The point image intensity distribution on the optical axis when the azimuth of the lens component LP15 is rotated by 60 ° relative to the other fluorites: LP12 to LP14 and LP16 around the optical axis is shown. In Fig. 25C, the maximum number of PSF is 95.86.
これら図 2 5B及び図 2 5Cを参照すると、 蛍石よりなるレンズ成分 LP11〜 LP16の結晶軸の方位角が全て揃った場合(図 2 5Bの場合) には、スカラー収差 の 3 0成分が大きく、 かつ P S F値も 94. 6程度と低いのに対し、 レンズ成分 LP11の方位角を、 他の资石レンズ成分 LP12〜; LP14,LP16 こ対して光軸周りに 相対的に 6 0° 回転させ、 かつレンズ成分 LP15の方位角を他の蛍石レンズ成分 Referring to FIGS. 25B and 25C, when the azimuthal angles of the crystal axes of the lens components LP11 to LP16 made of fluorite are all the same (in the case of FIG. 25B), the 30 component of the scalar aberration is large. , And the PSF value is as low as about 94.6, but the azimuth of the lens component LP11 is rotated by 60 ° relatively around the optical axis with respect to the other stone lens components LP12 to LP14, LP16. , And lens component LP15 azimuth angle to other fluorite lens components
LP12〜LP14,LP16に対して光軸周りに相対的に 60° 回転させた場合 (図 2 5 Cの場合) には、 スカラー収差の 3 0成分が小さくなり、 かっ?3 値も 9 5. 8程度まで上がる。 このように、 等軸晶系結晶材料の結晶軸の方位角を変更する ことにより、 投影光学系の光学性能の改善が図れる。 When rotated around the optical axis by 60 ° relative to LP12 to LP14 and LP16 (Fig. 25 In the case of C), the 30 component of the scalar aberration becomes small, The three values also rise to about 95.8. As described above, by changing the azimuth of the crystal axis of the equiaxed crystal material, the optical performance of the projection optical system can be improved.
図 25Dは、 図 2 5Cの状態 (レンズ成分 LP11,LP15の方位角を、 他の蛍石 レンズ成分 LP12〜LP14,LP16に対して光軸周りに相対的に 60° 回転させた 状態) に加え、 投影光学系中の石英からなるレンズ成分 LS1〜LS16のうち、 瞳 近傍のレンズ成分 LSI 4に、 図 2 5 Cで示される収差を補正するための複屈折分 布を与えたものである。これにより、 P S F値の最大値が 99.82となる。ここで、 図 2 5 Aの理想的な状態と比較すると、 図 2 5Aの場合の P S Fの最大値が 99.92であるのに対し、 図 2 5Dではほぼ等しい値まで P S Fの最大値が向上し ており、投影光学系の光学性能のさらなる改善が図れていることが明らかである。 さて、図 2 5A—図 2 5Dに示した例では、投影光学系中の蛍石レンズ成分の結 晶軸 [1 1 1] を光軸と一致させた手法を用いたが、 上述の第 1実施例と同様に 別の結晶軸と光軸とを一致させても良い。  Fig. 25D shows the state of Fig. 25C (in which the azimuths of lens components LP11 and LP15 are rotated by 60 ° around the optical axis relative to the other fluorite lens components LP12 to LP14 and LP16). Of the lens components LS1 to LS16 made of quartz in the projection optical system, the lens component LSI4 near the pupil is provided with a birefringence distribution for correcting the aberration shown in FIG. 25C. As a result, the maximum value of the PSF value becomes 99.82. Here, comparing with the ideal state of Fig. 25A, the maximum value of PSF in Fig. 25A is 99.92, while in Fig. 25D, the maximum value of PSF is improved to almost the same value. It is clear that the optical performance of the projection optical system can be further improved. By the way, in the examples shown in FIGS. 25A to 25D, the method in which the crystal axis [1 1 1] of the fluorite lens component in the projection optical system is made to coincide with the optical axis is used. Similar to the embodiment, another crystal axis may be coincident with the optical axis.
図 26 Aは、 投影光学系中の蛍石レンズ成分 LP11〜LP16のうち、 レンズ成分 Figure 26A shows the lens component of the fluorite lens components LP11 to LP16 in the projection optical system.
LP11及び LP12の光軸を蛍石の結晶軸 [1 1 0] と一致させ、 レンズ成分 LP 13 及び LP14の光軸を蛍石の結晶軸 [1 00] と一致させ、 レンズ成分 LP15及び LP16の光軸を蛍石の結晶軸 [1 1 1]と一致させた場合の点像強度分布を示す。 この図 26Aの場合において、 結晶軸 [1 1 0] を光軸に持つレンズ成分 LP11 及び LP12において、 一方のレンズ成分の方位角に対して他方のレンズ成分の方 位角を 90° だけ光軸周りに回転させている。 また、 結晶軸 「1 00] を光軸に 持つレンズ成分 LP 13及び LP 14において、 一方のレンズ成分の方位角に対して 他方のレンズ成分の方位角を 45° だけ光軸周りに回転させている。 また、 結晶 軸 [1 1 1] を光軸に持つレンズ成分 LP15及び LP16において、 一方のレンズ 成分の方位角に対して他方のレンズ成分の方位角を 6 0° だけ光軸周りに回転さ せている。 比較例としての図 2 5 Bと図 2 6 Aとを参照すると、 図 2 6 Aの場合では、 P S F値の最大値が 98 . 76であり、 良好な光学性能を有していることが分かる。 また、 図 2 6 Bは、 図 2 6 Aの状態に加え、 投影光学系中の石英からなるレン ズ成分 LS I〜: LS 16のうち、瞳近傍のレンズ成分 LS 14に、図 2 6 Aで示される収 差を補正するための複屈折分布を与えた場合における光軸上での点像強度分布で ある。 これにより、 P S F値の最大値が 99 . 7 6となる。 ここで、 図 2 5 Aの理想 的な状態と比較すると、図 2 5 Aの場合の P S Fの最大値が 99 . 92であるのに対 し、 図 2 5 Dではほぼ等しい値まで P S Fの最大値が向上しており、 投影光学系 の光学性能のさらなる改善が図れていることが明らかである。 The optical axes of LP11 and LP12 are aligned with the crystal axis of fluorite [1 10], the optical axes of lens components LP 13 and LP14 are aligned with the crystal axis of fluorite [100], and the lens components LP15 and LP16 are aligned. Fig. 3 shows a point image intensity distribution when the optical axis is matched with the crystal axis [1 1 1] of fluorite. In the case of FIG. 26A, in the lens components LP11 and LP12 having the crystal axis [1 110] as the optical axis, the azimuth of one lens component is shifted by 90 ° with respect to the azimuth of one lens component. Rotating around. In the lens components LP 13 and LP 14 having the crystal axis “100” as the optical axis, the azimuth of one lens component is rotated around the optical axis by 45 ° with respect to the azimuth of one lens component. In the lens components LP15 and LP16 having the crystal axis [1 1 1] as the optical axis, the azimuth of one lens component is rotated around the optical axis by 60 ° with respect to the azimuth of the other lens component. Let me know. Referring to FIGS. 25B and 26A as comparative examples, in the case of FIG. 26A, it can be seen that the maximum value of the PSF value is 98.76, and that it has good optical performance. . Further, FIG. 26B shows, in addition to the state of FIG. 26A, a lens component LS I〜 made of quartz in the projection optical system. This is a point image intensity distribution on the optical axis when a birefringence distribution for correcting the difference represented by is given. As a result, the maximum value of the PSF value is 99.776. Here, when compared with the ideal state of Fig. 25A, the maximum value of PSF in Fig. 25A is 99.92, while in Fig. 25D, the maximum value of PSF is almost equal. It is clear that the optical performance of the projection optical system has been further improved.
上述の各実施例の露光装置では、 照明装置によってレチクル (マスク) を照明 し(照明工程)、投影光学系を用いてマスクに形成された転写用のパターンを感光 性基板に露光する (露光工程) ことにより、 マイクロデバイス (半導体素子、 撮 像素子、 液晶表示素子、 薄膜磁気ヘッド等) を製造することができる。 以下、 各 実施例の露光装置を用いて感光性基板としてのウェハ等に所定の回路パターンを 形成することによって、 マイクロデバイスとしての半導体デバイスを得る際の手 法の一例につき図 2 7のフローチャートを参照して説明する。  In the exposure apparatus of each of the above-described embodiments, the reticle (mask) is illuminated by the illumination device (illumination step), and the transfer pattern formed on the mask is exposed on the photosensitive substrate using the projection optical system (exposure step). Thus, microdevices (semiconductor elements, imaging elements, liquid crystal display elements, thin-film magnetic heads, etc.) can be manufactured. The flowchart of FIG. 27 shows an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of each embodiment. It will be described with reference to FIG.
先ず、 図 2 7のステップ 3 0 1において、 1ロットのウェハ上に金属膜が蒸着 される。 次のステップ 3 0 2において、 その 1ロットのウェハ上の金属膜上にフ ォトレジストが塗布される。 その後、 ステップ 3 0 3において、 各実施例の露光 装置を用いて、 マスク上のパターンの像がその投影光学系を介して、 その 1ロッ トのウェハ上の各ショット領域に順次露光転写される。 その後、 ステップ 3 0 4 において、 その 1ロットのウェハ上のフォトレジストの現像が行われた後、 ステ ップ 3 0 5において、 その 1ロットのウェハ上でレジストパターンをマスクとし てエッチングを行うことによって、 マスク上のパターンに対応する回路パターン 力 S、 各ウェハ上の各ショ ット領域に形成される。  First, in step 301 of FIG. 27, a metal film is deposited on one lot of wafers. In the next step 302, a photoresist is applied on the metal film on the wafer of the lot. Thereafter, in step 303, the image of the pattern on the mask is sequentially exposed and transferred to each shot area on the one-lot wafer via the projection optical system using the exposure apparatus of each embodiment. . Then, in step 304, the photoresist on the one lot of wafers is developed, and then in step 304, etching is performed on the one lot of wafers using the resist pattern as a mask. Thus, a circuit pattern force S corresponding to the pattern on the mask is formed in each shot area on each wafer.
その後、 更に上のレイヤの回路パターンの形成等を行うことによって、 半導体 素子等のデバイスが製造される。 上述の半導体デバイス製造方法によれば、 極め て微細な回路パターンを有する半導体デバイスをスループット良く得ることがで きる。 なお、 ステップ 3 0 1〜ステップ 3 0 5では、 ウェハ上に金属を蒸着し、 その金属膜上にレジストを塗布、 そして露光、 現像、 エッチングの各工程を行つ ているが、 これらの工程に先立って、 ウェハ上にシリコンの酸化膜を形成後、 そ のシリコンの酸化膜上にレジス トを塗布、 そして露光、 現像、 エッチング等の各 工程を行っても良いことはいうまでもない。 After that, the circuit pattern of the upper layer is formed, etc. Devices such as elements are manufactured. According to the above-described semiconductor device manufacturing method, a semiconductor device having an extremely fine circuit pattern can be obtained with high throughput. In steps 301 to 305, a metal is vapor-deposited on the wafer, a resist is applied on the metal film, and the respective steps of exposure, development, and etching are performed. It is needless to say that a silicon oxide film may be formed on the wafer, a resist may be applied on the silicon oxide film, and each process such as exposure, development, and etching may be performed.
また、 各実施例の露光装置では、 プレート (ガラス基板) 上に所定のパターン (回路パターン、 電極パターン等) を形成することによって、 マイクロデバイス としての液晶表示素子を得ることもできる。 以下、 図 2 8のフローチャートを参 照して、 このときの手法の一例につき説明する。 図 2 8において、 パターン形成 工程 4 0 1では、各実施例の露光装置を用いてマスクのパターンを感光性基板(レ ジス トが塗布されたガラス基板等) に転写露光する、 所謂光リソグラフイエ程が 実行される。 この光リソグラフィー工程によって、 感光性基板上には多数の電極 等を含む所定パターンが形成される。 その後、 露光された基板は、 現像工程、 ェ ツチング工程、 レチクル剥離工程等の各工程を経ることによって、 基板上に所定 のパターンが形成され、 次のカラーフィルター形成工程 4 0 2へ移行する。  In the exposure apparatus of each embodiment, a liquid crystal display element as a micro device can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate). Hereinafter, an example of the technique at this time will be described with reference to the flowchart in FIG. In FIG. 28, in a pattern forming step 401, a so-called optical lithography is used in which a mask pattern is transferred and exposed to a photosensitive substrate (a glass substrate coated with a resist or the like) using the exposure apparatus of each embodiment. The process is executed. By this photolithography process, a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate. Thereafter, the exposed substrate undergoes each of a developing process, an etching process, a reticle peeling process, and the like, whereby a predetermined pattern is formed on the substrate, and the process proceeds to a next color filter forming process 402.
次に、カラーフィルター形成工程 4 0 2では、 R (Red)、 G (Green)、 B (Blue) に対応した 3つのドットの組がマトリックス状に多数配列されたり、 または R、 G、 Bの 3本のストライプのフィルターの組を複数水平走査線方向に配列された りしたカラ一フィルタ一を形成する。 そして、 カラーフィルター形成工程 4 0 2 の後に、 セル組み立て工程 4 0 3が実行される。 セル組み立て工程 4 0 3では、 パターン形成工程 4 0 1にて得られた所定パターンを有する基板、 およびカラー フィルター形成工程 4 0 2にて得られたカラーフィルタ一等を用いて液晶パネル (液晶セル) を組み立てる。 セル組み立て工程 4 0 3では、 例えば、 パターン形 成工程 4 0 1にて得られた所定パターンを有する基板とカラーフィルター形成ェ 程 4 0 2にて得られたカラーフィルターとの間に液晶を注入して、液晶パネル (液 晶セル) を製造する。 Next, in the color filter forming step 402, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or R, G, B A color filter in which a set of three stripe filters is arranged in a plurality of horizontal scanning line directions is formed. Then, after the color filter forming step 402, a cell assembling step 403 is performed. In the cell assembling step 403, a liquid crystal panel (liquid crystal cell) is formed by using the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402. Assemble the. In the cell assembling step 403, for example, the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter forming layer are formed. Liquid crystal is injected between the color filter obtained in step 402 and the liquid crystal panel (liquid crystal cell).
その後、 モジュール組み立て工程 4 0 4にて、 組み立てられた液晶パネル (液 晶セル) の表示動作を行わせる電気回路、 バックライト等の各部品を取り付けて 液晶表示素子として完成させる。 上述の液晶表示素子の製造方法によれば、 極め て微細な回路パターンを有する液晶表示素子をスループット良く得ることができ る。  Then, in a module assembling step 404, components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element. According to the above-described method for manufacturing a liquid crystal display element, a liquid crystal display element having an extremely fine circuit pattern can be obtained with high throughput.
産業上の利用可能性 Industrial applicability
上述の通り、 本発明によれば、 例えば蛍石のような固有複屈折を示す結晶材料 を用いても、 複屈折の影響を実質的に受けることなく良好な光学性能を確保する ことができる投影光学系を製造することができる。  As described above, according to the present invention, even when a crystalline material exhibiting intrinsic birefringence such as fluorite is used, it is possible to secure good optical performance without being substantially affected by birefringence. An optical system can be manufactured.

Claims

請求の範囲 The scope of the claims
1 . 所定波長の光に基づいて第 1面の像を第 2面上に結像する投影光学 系であって、 前記所定波長の光に対して透過性を有する少なくとも 1つの等軸晶 系の結晶材料からなる屈折部材を含む投影光学系の製造方法において、  1. A projection optical system that forms an image of a first surface on a second surface based on light of a predetermined wavelength, wherein the projection optical system has at least one equiaxed crystal system that is transparent to the light of the predetermined wavelength. In a method for manufacturing a projection optical system including a refraction member made of a crystalline material,
第 1の偏光成分及び該第 1の偏光成分とは異なる第 2の偏光成分の光に 関する評価を行いつつ、 前記少なくとも 1つの等軸晶系の結晶材料からなる屈折 部材の結晶軸の方位を定める補助工程を含み、 所定の設計データを得る設計工程 と ; 前記等軸晶系の結晶材料を準備する結晶材料準備工程と ; 前記等軸晶系 の結晶材料の結晶軸を測定する結晶軸測定工程と ; 前記設計工程での前記設計 データに基づいて、 前記等軸晶系の結晶材料から所定形状の屈折部材を形成する 屈折部材形成工程と ; 前記設計工程で得られた前記屈折部材の結晶軸方位に基 づいて、 前記屈折部材を配置する組上工程と ;を含むことを特徴とする投影光学 系の製造方法。  While evaluating the first polarized light component and the light of the second polarized light component different from the first polarized light component, the orientation of the crystal axis of the refraction member made of the at least one equiaxed crystal material is determined. A design step of obtaining predetermined design data including an auxiliary step of determining; a crystal material preparing step of preparing the equiaxed crystal material; and a crystal axis measurement of measuring a crystal axis of the equiaxed crystal material. A refraction member forming step of forming a refraction member having a predetermined shape from the equiaxed crystal material based on the design data in the design step; and a crystal of the refraction member obtained in the design step. And assembling the refraction member on the basis of the axial direction.
2 . 所定の複屈折分布を有する少なくとも 1つの屈折部材を準備するェ 程をさらに含み、  2. The method further includes providing at least one refraction member having a predetermined birefringence distribution,
前記所定の複屈折分布は、 前記設計工程での前記設計データに従って決定され ることを特徴とする請求の範囲第 1項に記載の投影光学系の製造方法。  2. The method according to claim 1, wherein the predetermined birefringence distribution is determined according to the design data in the design step.
3 . 前記所定の複屈折分布は、前記屈折部材が有する所定の応力複屈折 分布、 及び前記屈折部材に設けられる薄膜に起因する複屈折分布のうちの少なく とも一方であることを特徴とする請求の範囲第 2項に記載の投影光学系の製造方 法。  3. The predetermined birefringence distribution is at least one of a predetermined stress birefringence distribution of the refraction member and a birefringence distribution caused by a thin film provided on the refraction member. 3. The method for manufacturing a projection optical system according to item 2 above.
4 . 前記所定の複屈折分布を有する屈折部材は、石英またはフッ素がド ープされた石英からなることを特徴とする請求の範囲第 2又は 3項に記載の投影 光学系の製造方法。  4. The method for manufacturing a projection optical system according to claim 2, wherein the refraction member having the predetermined birefringence distribution is made of quartz or quartz in which fluorine is doped.
5 . 前記応力複屈折分布を有する屈折部材の有効径を ψ cとし、前記第 5. The effective diameter of the refractive member having the stress birefringence distribution is ψc,
1面上の所定の 1点から発する光束が前記応力複屈折分布を有する屈折部材を通 過するときの光束径を Φ Pとするとき、 A light beam emitted from a predetermined point on one surface passes through the refractive member having the stress birefringence distribution. When the luminous flux diameter when passing is ΦP,
0 . 6 < φ ρ / φ c≤ 1を満足することを特徴とする請求の範囲第 2〜4 項の何れか一項に記載の投影光学系の製造方法。  6. The method of manufacturing a projection optical system according to claim 2, wherein 0.6 <φρ / φc ≦ 1 is satisfied.
6 . 前記投影光学系中の少なくとも 1つの光学部材の表面形状を非球面 形状に形成する非球面創成工程をさらに含み、  6. The method further includes an aspheric surface forming step of forming a surface shape of at least one optical member in the projection optical system into an aspheric shape.
該非球面形状は、 前記設計工程での設計データに従って決定されること を特徴とする請求の範囲第 1〜 5項の何れか一項に記載の投影光学系の製造方法。  The method according to any one of claims 1 to 5, wherein the aspherical shape is determined according to design data in the design step.
7. 前記非球面形状は、前記光学部材の光軸に関して非対称な非球面形 状を有することを特徴とする請求の範囲第 6項に記載の投影光学系の製造方法。  7. The method according to claim 6, wherein the aspherical shape has an aspherical shape that is asymmetrical with respect to an optical axis of the optical member.
8 . 前記組上工程は、  8. The assembling step includes:
組み上げられた前記投影光学系の光学性能を測定する光学性能測定補助 工程と ; 測定された前記光学性能を所定の光学性能とするために前記投影光学 系中の少なくとも 1つの光学部材の位置及び/又は姿勢を変更する光学部材調整 補助工程と ; 測定された前記光学性能を所定の光学性能とするために前記投影 光学系中の少なくとも 1つの光学部材の表面形状を非球面形状に形成する非球面 カロェ捕助工程と ;を備えることを特徴とする請求の範囲第 1〜 7項の何れか一項 に記載の投影光学系の製造方法。  An optical performance measurement assisting step of measuring the optical performance of the assembled projection optical system; and a position and / or a position of at least one optical member in the projection optical system in order to make the measured optical performance a predetermined optical performance. Or an optical member adjustment assisting step of changing the posture; and an aspheric surface for forming the surface shape of at least one optical member in the projection optical system into an aspherical shape in order to make the measured optical performance a predetermined optical performance. The method for manufacturing a projection optical system according to any one of claims 1 to 7, further comprising:
9 . 前記非球面形状は、前記設計工程での設計データも考慮して定めら れることを特徴とする請求の範囲第 8項に記載の投影光学系の製造方法。  9. The method for manufacturing a projection optical system according to claim 8, wherein the aspherical shape is determined in consideration of design data in the design process.
1 0 . 前記組上工程は、  10. The assembling step includes:
前記等軸晶系からなる屈折部材の光軸周りの方位角を調整する方位角調 整捕助工程を含むことを特徴とする請求の範囲第 1〜 9項の何れか一項に記載の 投影光学系の製造方法。  The projection according to any one of claims 1 to 9, further comprising an azimuth angle adjusting and trapping step of adjusting an azimuth angle of the refraction member made of the equiaxed crystal system around the optical axis. Optical system manufacturing method.
1 1 . 前記組上工程は、  1 1. The assembling step is
複数の偏光成分の光に関して、 組み上げられた前記投影光学系の光学性 能を測定する偏光光学性能測定補助工程を含み、 前記方位角調整補助工程は、 前記測定された複数の偏光成分に関する光 学性能に基づいて、 複数の偏光成分に関する光学性能が所定の値となるように前 記等軸晶系からなる前記屈折部材の前記方位角を調整することを特徴とする請求 の範囲第 1 0項に記載の投影光学系の製造方法。 A polarization optical performance measurement assisting step of measuring the optical performance of the assembled projection optical system with respect to light of a plurality of polarization components, The azimuth angle adjustment assisting step is performed based on the measured optical performance of the plurality of polarization components so that the optical performance of the plurality of polarization components has a predetermined value. The method for manufacturing a projection optical system according to claim 10, wherein the azimuth angle is adjusted.
1 2 . 前記組上工程は、  1 2. The assembling step includes:
組み上げられた前記投影光学系の光学性能を測定する光学性能測定捕助工程を 含み、  Including an optical performance measurement assisting step of measuring the optical performance of the assembled projection optical system,
前記方位角調整補助工程は、 前記測定された光学性能に基づいて、 前記 投影光学系の光学性能が所定の値となるように前記等軸晶系からなる前記屈折部 材の前記方位角を調整することを特徴とする請求の範囲第 1 0項に記載の投影光 学系の製造方法。  The azimuth angle adjustment assisting step adjusts the azimuth angle of the refraction member made of the equiaxed crystal system based on the measured optical performance so that the optical performance of the projection optical system becomes a predetermined value. 10. The method for manufacturing a projection optical system according to claim 10, wherein:
1 3 . 前記等軸晶系の結晶材料は、フッ化カルシウム又はフッ化バリゥ ムを有することを特徴とする請求の範囲第 1〜 1 2項の何れか一項に記載の投影 光学系の製造方法。  13. The production of the projection optical system according to any one of claims 1 to 12, wherein the equiaxed crystal material has calcium fluoride or barium fluoride. Method.
1 4 . 前記所定の波長は、 200nm以下の波長であることを特徴とする 請求の範囲第 1〜 1 3項の何れ力、一項に記載の投影光学系の製造方法。  14. The method for manufacturing a projection optical system according to any one of claims 1 to 13, wherein the predetermined wavelength is a wavelength of 200 nm or less.
1 5 . 所定波長の光に基づいて第 1面の像を第 2面上に結像する投影光 学系であって、 前記所定波長の光に対して透過性を有する少なくとも 1つの等軸 晶系の結晶材料からなる屈折部材を含む投影光学系の製造方法において、  15. A projection optical system that forms an image of the first surface on the second surface based on light of a predetermined wavelength, wherein at least one equiaxed crystal that is transparent to the light of the predetermined wavelength. In a method of manufacturing a projection optical system including a refraction member made of a system crystal material,
前記投影光学系中の屈折部材のうちの少なくとも 1つの屈折部材を、 該 屈折部材とは異なる複屈折量及び Ζ又は複屈折分布を有する別の屈折部材と交換 する工程を含むことを特徴とする投影光学系の製造方法。  A step of replacing at least one of the refraction members in the projection optical system with another refraction member having a birefringence amount and Ζ or a birefringence distribution different from the refraction member. A method for manufacturing a projection optical system.
1 6 . 前記別の屈折部材は、等軸晶系の結晶材料又は非結晶材料を有す ることを特徴とする請求の範囲第 1 5項に記載の製造方法。 16. The manufacturing method according to claim 15, wherein said another refraction member comprises an equiaxed crystalline material or an amorphous material.
1 7 . 所定波長の光に基づいて第 1面の像を第 2面上に結像する投影光 学系であって、 前記所定波長の光に対して透過性を有する少なくとも 1つの等軸 晶系の結晶材料からなる屈折部材を含む投影光学系の製造方法において、 17. Projection light that forms an image of the first surface on the second surface based on light of a predetermined wavelength A method of manufacturing a projection optical system, comprising: a refraction member made of at least one equiaxed crystal material having transparency to light having the predetermined wavelength.
偏光収差を補正するために、 前記投影光学系中の所定の複屈折分布を有 する光学部材の位置及び Z又は姿勢を調整する工程を含むことを特徴とする投影 光学系の製造方法。  A method of manufacturing a projection optical system, comprising: adjusting a position, a Z, or a posture of an optical member having a predetermined birefringence distribution in the projection optical system to correct polarization aberration.
1 8 . 前記偏光収差は回転非対称な偏光収差を含むことを特徴とする請 求の範囲第 1 7項に記載の製造方法 18. The manufacturing method according to claim 17, wherein the polarization aberration includes rotationally asymmetric polarization aberration.
1 9 . 請求の範囲第 1〜 1 8項の何れか一項に記載の製造方法に従って 製造された投影光学系。 19. A projection optical system manufactured according to the manufacturing method according to any one of claims 1 to 18.
2 0 . 所定波長の光に基づいて第 1面の像を第 2面上に結像する投影光 学系において、  20. In a projection optical system that forms an image of the first surface on the second surface based on light of a predetermined wavelength,
前記所定波長の光に対して透過性を有する少なくとも 1つの等軸晶系の 結晶材料からなる等軸晶系屈折部材と ; 該等軸晶系屈折部材が有する固有複屈 折による光学性能の悪化を補償するための非結晶材料からなる非結晶屈折部材 と ;を備えることを特徴とする投影光学系。  An equiaxed refraction member made of at least one equiaxed crystal material having transparency to the light having the predetermined wavelength; and deterioration of optical performance due to intrinsic birefringence of the equiaxed refraction member. And a non-crystalline refraction member made of a non-crystalline material for compensating the following.
2 1 . 前記等軸晶系屈折部材は、結晶軸 [ 1 0 0 ] または該結晶軸 [ 1 0 0 ] と光学的に等価な結晶軸と、 前記等軸晶系屈折部材の光軸とがほぼ一致す るように形成されていることを特徴とする請求の範囲第 1 6項に記載の投影光学 系。  21. The equiaxed refraction member has a crystal axis [100] or a crystal axis optically equivalent to the crystal axis [100], and an optical axis of the equiaxed refraction member. 17. The projection optical system according to claim 16, wherein the projection optical system is formed so as to substantially match.
2 2 . 前記等軸晶系の結晶材料からなる等軸晶系屈折部材は、複数の等 軸晶系屈折部材を含み、  22. The equiaxed refraction member made of the equiaxed crystal material includes a plurality of equiaxed refraction members,
該複数の等軸晶系屈折部材の結晶軸方位は、 前記固有複屈折による光学 性能の悪化を低減するようにそれぞれ定められていることを特徴とする請求の範 囲第 1 6項に記載の投影光学系。 17. The method according to claim 16, wherein the crystal axis directions of the plurality of equiaxed refraction members are determined so as to reduce deterioration of optical performance due to the intrinsic birefringence. Projection optics.
2 3. 前記固有複屈折による前記光学性能の悪化を低減するように前記 結晶軸方位が定められている前記等軸晶系屈折部材を通過する光線の光軸に対す る角度の最大値は、 20度を超えていることを特徴とする請求の範囲第 1 8項に 記載の投影光学系。 2 3. The maximum value of the angle with respect to the optical axis of the light beam passing through the equiaxed refraction member, in which the crystal axis orientation is determined so as to reduce the deterioration of the optical performance due to the intrinsic birefringence, is: 19. The projection optical system according to claim 18, wherein the angle is larger than 20 degrees.
24. 前記固有複屈折による前記光学性能の悪化を低減するように前記 結晶軸方位が定められている前記等軸晶系屈折部材は、 前記投影光学系の最も前 記第 2面側の瞳位置と前記第 2面との間に配置されることを特徴とする請求の範 囲第 1 8又は 1 9項に記載の投影光学系。  24. The equiaxed refraction member, in which the crystal axis orientation is determined so as to reduce the deterioration of the optical performance due to the intrinsic birefringence, is provided at the pupil position on the second surface side of the projection optical system, 10. The projection optical system according to claim 18, wherein the projection optical system is disposed between the first surface and the second surface.
2 5. 前記複数の等軸晶系屈折部材は、  2 5. The plurality of equiaxed refraction members include:
結晶軸 [1 00] または該結晶軸 [1 00] と光学的に等価な結晶軸と 光軸とがほぼ一致するように形成された第 1群の光透過部材と、  A first group of light transmitting members formed so that the crystal axis [100] or a crystal axis optically equivalent to the crystal axis [100] and the optical axis substantially coincide with each other;
結晶軸 [1 00] または該結晶軸 [1 00] と光学的に等価な結晶軸と 光軸とがほぼ一致するように形成された第 2群の光透過部材とを備え、  A second group of light transmitting members formed so that the crystal axis [100] or a crystal axis optically equivalent to the crystal axis [100] and the optical axis substantially coincide with each other,
前記第 1群の光透過部材と前記第 2群の光透過部材とは、 光軸を中心としてほ ぼ 4 5° だけ相対的に回転した位置関係を有することを特徴とする請求の範囲第 1 8〜20項の何れか一項に記載の投影光学系。  The first group of light transmitting members and the second group of light transmitting members have a positional relationship relatively rotated by about 45 ° about an optical axis. 21. The projection optical system according to any one of items 8 to 20.
2 6. 前記複数の等軸晶系屈折部材は、  2 6. The plurality of equiaxed refraction members are:
結晶軸 [1 1 1] または該結晶軸 [1 1 1] と光学的に等価な結晶軸と 光軸とがほぼ一致するように形成された第 3群の光透過部材と、  A third group of light transmitting members formed such that the crystal axis and the optical axis thereof are substantially the same as the crystal axis [1 1 1] or the crystal axis [1 1 1];
結晶軸 [1 1 1] または該結晶軸 [1 1 1] と光学的に等価な結晶軸と 光軸とがほぼ一致するように形成された第 4群の光透過部材とを備え、  A fourth group of light transmitting members formed so that the crystal axis [1 1 1] or the crystal axis optically equivalent to the crystal axis [1 1 1] and the optical axis substantially coincide with each other,
前記第 3群の光透過部材と前記第 4群の光透過部材とは、 光軸を中心と してほぼ 6 0° だけ相対的に回転した位置関係を有することを特徴とする請求の 範囲第 1 8〜 2 1項の何れか一項に記載の投影光学系。  The light transmitting member of the third group and the light transmitting member of the fourth group have a positional relationship relatively rotated about 60 ° about an optical axis. 18. The projection optical system according to any one of items 18 to 21.
2 7. 前記複数の等軸晶系屈折部材は、  2 7. The plurality of equiaxed refraction members include:
結晶軸 [1 1 0] または該結晶軸 [1 10] と光学的に等価な結晶軸と 光軸とがほぼ一致するように形成された第 5群の光透過部材と、 結晶軸 [1 1 0] または該結晶軸 [1 1 0] と光学的に等価な結晶軸と 光軸とがほぼ一致するように形成された第 6群の光透過部材とを備え、 A crystal axis [1 10] or a crystal axis optically equivalent to the crystal axis [1 10] A fifth group of light transmitting members formed so that their optical axes substantially coincide with each other; and a crystal axis [1 110] or a crystal axis optically equivalent to the crystal axis [1 110] and an optical axis. A sixth group of light transmitting members formed so as to substantially coincide with each other,
前記第 5群の光透過部材と前記第 6群の光透過部材とは、 光軸を中心としてほ ぼ 9 0° だけ相対的に回転した位置関係を有することを特徴とする請求の範囲第 1 8〜2 2項の何れか一項に記載の投影光学系。  The light transmitting member of the fifth group and the light transmitting member of the sixth group have a positional relationship relatively rotated by about 90 ° about an optical axis. The projection optical system according to any one of Items 8 to 22.
2 8. 前記複数の等軸晶系屈折部材は、  2 8. The plurality of equiaxed refraction members are:
結晶軸 [1 00] または該結晶軸 [1 00] と光学的に等価な結晶軸と 光軸とがほぼ一致するように形成された第 1群の光透過部材と、  A first group of light transmitting members formed so that the crystal axis [100] or a crystal axis optically equivalent to the crystal axis [100] and the optical axis substantially coincide with each other;
結晶軸 [1 1 0] または該結晶軸 [1 1 0] と光学的に等価な結晶軸と 光軸とがほぼ一致するように形成された第 5群の光透過部材とを備えていること を特徴とする請求の範囲第 1 8〜 20項の何れか一項に記載の投影光学系。 .  A fifth group of light transmitting members formed so that the crystal axis [1 110] or the crystal axis optically equivalent to the crystal axis [1 110] and the optical axis substantially coincide with each other. The projection optical system according to any one of claims 18 to 20, wherein: .
2 9. 前記複数の等軸晶系屈折部材は、  2 9. The plurality of equiaxed refraction members are:
結晶軸 [1 1 1] または該結晶軸 [1 1 1] と光学的に等価な結晶軸と 光軸とがほぼ一致するように形成された第 3群の光透過部材をさらに備えている ことを特徴とする請求の範囲第 24項に記載の投影光学系。  A third group of light transmitting members formed so that the crystal axis [1 1 1] or the crystal axis optically equivalent to the crystal axis [1 1 1] substantially coincides with the optical axis. 25. The projection optical system according to claim 24, wherein:
3 0. 前記固有複屈折による前記光学性能の悪化を低減するように前記 結晶軸方位が定められている前記複数の等軸晶系屈折部材は、 所定の結晶軸と光 軸とがほぼ一致するように形成された第 7群の光透過部材と、 所定の結晶軸と光 軸とがほぼ一致するように形成された第 8群の光透過部材とを備え、  30. In the plurality of equiaxed refraction members in which the crystal axis orientation is determined so as to reduce the deterioration of the optical performance due to the intrinsic birefringence, a predetermined crystal axis substantially coincides with an optical axis. A seventh group of light transmitting members formed as described above, and an eighth group of light transmitting members formed so that a predetermined crystal axis and an optical axis substantially coincide with each other,
前記投影光学系の最大開口数に対応する光線が前記第 7群の光透過部材 を通過する際の硝路長を L 7とし、 前記投影光学系の最大開口数に対応する光線 が前記第 8群の光透過部材を通過する際の硝路長を L 8とし、 前記所定の波長を 1とするとき、  The glass path length when a light ray corresponding to the maximum numerical aperture of the projection optical system passes through the light transmitting member of the seventh group is L7, and a light ray corresponding to the maximum numerical aperture of the projection optical system is the eighth. When the glass path length when passing through the light transmitting member of the group is L 8 and the predetermined wavelength is 1,
I L 7-L 8 I /2 < 3 X 1 0 +5を満足することを特徴とする請求の範囲第 1Claim 1 characterized by satisfying IL7-L8I / 2 < 3X10 + 5 .
8〜 2 5項の何れか一項記載の投影光学系。 26. The projection optical system according to any one of items 8 to 25.
3 1 . 前記第 7群及び前記第 8群の光透過部材を通過する光線の光軸に 対する角度の最大値は、 2 0度を超えていることを特徴とする請求の範囲第 2 6 項に記載の投影光学系。 31. The method according to claim 26, wherein the maximum value of the angle of the light beam passing through the light transmitting members of the seventh group and the eighth group with respect to the optical axis exceeds 20 degrees. 3. The projection optical system according to 1.
3 2 . 前記第 7群及び前記第 8群の光透過部材は、前記投影光学系の最 も前記第 2面側の瞳位置と前記第 2面との間に配置されることを特徴とする請求 の範囲第 2 6又は 2 7項に記載の投影光学系。  32. The seventh group and the eighth group of light transmitting members are arranged between the pupil position on the second surface side of the projection optical system and the second surface. The projection optical system according to claim 26 or 27.
3 3 . 前記固有複屈折による光学性能の悪化のうちのスカラー成分を低 減させるための非球面をさらに備えることを特徴とする請求の範囲第 1 6〜2 8 項の何れか一項に記載の投影光学系。  33. The method according to any one of claims 16 to 28, further comprising an aspherical surface for reducing a scalar component in deterioration of optical performance due to the intrinsic birefringence. Projection optics.
3 4 . 前記非球面は、前記非球面が設けられている屈折部材の光軸に関 して回転非対称な形状を有していることを特徴とする請求の範囲第 2 9項に記載 の投影光学系。  34. The projection according to claim 29, wherein the aspherical surface has a shape that is rotationally asymmetric with respect to the optical axis of the refraction member provided with the aspherical surface. Optical system.
3 5 . 前記非結晶屈折部材は、応力複屈折分布を有していることを特徴 とする請求の範囲第 1 6〜3 0項の何れか一項に記載の投影光学系。  35. The projection optical system according to any one of claims 16 to 30, wherein the amorphous refraction member has a stress birefringence distribution.
3 6 . 前記応力複屈折分布は、前記非結晶性屈折部材の製造時における 不純物、 熱履歴による密度分布のうちの少なくとも一方に起因して生成されるこ とを特徴とする請求の範囲第 3 1項に記載の投影光学系。  36. The stress birefringence distribution according to claim 3, wherein the stress birefringence distribution is generated due to at least one of an impurity and a density distribution due to a heat history at the time of manufacturing the amorphous refraction member. 2. The projection optical system according to item 1.
3 7 . 前記非結晶光学部材は、石英またはフッ素がドープされた石英で あることを特徴とする請求の範囲第 1 6〜3 2項の何れか一項に記載の投影光学 系。  37. The projection optical system according to any one of claims 16 to 32, wherein the amorphous optical member is quartz or quartz doped with fluorine.
3 8 . 前記等軸晶系屈折部材は、フッ化カルシウム又はフッ化バリゥム を有することを特徴とする請求の範囲第 1 6〜3 3項の何れか一項に記載の投影 光学系の製造方法。  38. The method for manufacturing a projection optical system according to any one of claims 16 to 33, wherein the equiaxed refraction member has calcium fluoride or barium fluoride. .
3 9 . 所定波長の光に基づいて第 1面の像を第 2面上に結像する投影光 学系において、  39. In a projection optical system that forms an image of the first surface on the second surface based on light of a predetermined wavelength,
前記所定波長の光に対して透過性を有する双晶からなる双晶屈折部材を 備えていることを特徴とする投影光学系。 A twin refraction member made of a twin having transparency to the light having the predetermined wavelength. A projection optical system, comprising:
4 0 . 前記双晶屈折部材の双晶境界または双晶面は、前記双晶が有する 固有複屈折による光学性能の悪化を低減するように定められていることを特徴と する請求の範囲第 3 5項に記載の投影光学系。  40. The twin boundary or twin plane of the twin refraction member is set so as to reduce deterioration of optical performance due to intrinsic birefringence of the twin. Item 6. The projection optical system according to Item 5.
4 1 . 前記所定の波長は、 200ηια以下の波長であることを特徴とする 請求の範囲第 1 6〜3 6項の何れか一項に記載の投影光学系。  41. The projection optical system according to any one of claims 16 to 36, wherein the predetermined wavelength is a wavelength equal to or less than 200ηια.
4 2 . 所定の波長の光に基づいて第 1面に配置される投影原版の像を第 2面に配置されるワークピースへ投影露光する投影露光装置において、  42. A projection exposure apparatus for projecting and exposing an image of a projection original placed on a first surface to a workpiece placed on a second surface based on light of a predetermined wavelength,
前記所定波長の光を供給する光源と ;  A light source for supplying light of the predetermined wavelength;
該光源と前記第 1面との間の光路中に配置されて、 前記光源からの前記 光を前記投影原版へ導く照明光学系と ; 前記第 1面と前記第 2面との間の光路 中に配置されて、 前記投影原版の像を前記第 2面上に形成する請求の範囲第 1 5 〜 3 7項の何れか一項に記載の投影光学系と ;を備えることを特徴とする投影露  An illumination optical system arranged in an optical path between the light source and the first surface, for guiding the light from the light source to the projection master; and an optical path between the first surface and the second surface. The projection optical system according to any one of claims 15 to 37, wherein the projection optical system is configured to form an image of the projection original on the second surface. Dew
4 3 . 所定の波長の光に基づいて第 1面に配置される投影原版の像を第 2面に配置されるワークピースへ投影露光する投影露光方法において、 4 3. A projection exposure method for projecting and exposing an image of a projection original arranged on a first surface to a workpiece arranged on a second surface based on light of a predetermined wavelength,
前記所定の波長の光を供給する工程と ; 前記所定の波長の光を用いて 前記投影原版を照明する工程と ; 前記照明された前記投影原版からの光に基づ いて、 請求の範囲第 1 5〜3 7項の何れか一項に記載の投影光学系により前記第 2面上に前記投影原版の像を形成する工程と ;を備えることを特徴とする投影露 光方法。  A step of supplying the light of the predetermined wavelength; a step of illuminating the projection master using the light of the predetermined wavelength; and a step based on the illuminated light from the projection master. 39. A projection exposure method, comprising: forming an image of the projection original on the second surface by the projection optical system according to any one of items 5 to 37.
4 4 . 所定波長の光に基づいて第 1面に配置される投影原板の像を第 2 面に配置されるワークピースへ投影露光する投影露光装置に適用されて、 前記所 定波長の光に対して透過性を有する少なくとも 1つの等軸晶系の結晶材料からな る屈折部材を含む照明光学系の製造方法において、  44. Applied to a projection exposure apparatus for projecting and exposing an image of a projection original plate arranged on a first surface to a work piece arranged on a second surface based on light of a predetermined wavelength, A method for manufacturing an illumination optical system including a refraction member made of at least one equiaxed crystal material having transparency with respect to
偏光収差を補正するために、 前記等軸晶系の結晶材料からなる結晶屈折 部材の結晶軸方位を最適化する工程を含むことを特徴とする製造方法。 In order to correct the polarization aberration, the crystal refraction made of the equiaxed crystal material A manufacturing method comprising a step of optimizing a crystal axis orientation of a member.
4 5 . 残存する前記偏光収差を補正するための非結晶材料からなる非結 晶屈折部材を準備する工程をさらに含むことを特徴とする請求の範囲第 4 4項に 記載の製造方法。 45. The manufacturing method according to claim 44, further comprising a step of preparing an amorphous refraction member made of an amorphous material for correcting the remaining polarization aberration.
4 6 . 所定の波長に基づいて第 1面に配置される投影原板の像を第 2面 に配置されるワークピースへ投影露光する投影露光装置において、 46. A projection exposure apparatus for projecting and exposing an image of a projection original placed on a first surface to a work piece placed on a second surface based on a predetermined wavelength,
前記所定波長の光を供給する光源と ;  A light source for supplying light of the predetermined wavelength;
該光源と前記第 1面との間に配置されて、 前記光源からの前記光を前記投影原 板へ導くための請求の範囲第 4 4項又は第 4 5項に記載の照明光学系と ;  The illumination optical system according to claim 44 or 45, disposed between the light source and the first surface, for guiding the light from the light source to the projection original;
前記第 1面と前記第 2面との間の光路中に配置されて、 前記投影原板の 像を前記第 2面上に形成する投影光学系と ;  A projection optical system that is arranged in an optical path between the first surface and the second surface and forms an image of the original projection plate on the second surface;
を備えることを特徴とする投影露光装置。 A projection exposure apparatus comprising:
4 7 . 所定の波長に基づいて第 1面に配置される投影原板の像を第 2面に配置さ れるワークピースへ投影露光する投影露光方法において、 47. A projection exposure method for projecting and exposing an image of a projection original placed on a first surface to a work piece placed on a second surface based on a predetermined wavelength,
前記所定波長の光を供給する工程と ; 請求の範囲第 4 4項又は第 4 5項に記載の照明光学系を介して前記所定 の波長の光を用いて前記投影原板を照明する工程と ;  Supplying the light having the predetermined wavelength; and illuminating the projection original plate with the light having the predetermined wavelength via the illumination optical system according to claim 44.
前記照明された前記投影原板からの光に基づいて、 前記第 2面上に前記 投影原板の像を形成する工程と ;  Forming an image of the projection master on the second surface based on the illuminated light from the projection master;
を備えることを特徴とする投影露光方法。 A projection exposure method comprising:
PCT/JP2002/007017 2001-07-10 2002-07-10 Projection optical system production method WO2003007045A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003512755A JPWO2003007045A1 (en) 2001-07-10 2002-07-10 Manufacturing method of projection optical system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001208837 2001-07-10
JP2001-208837 2001-07-10
JP2001-257809 2001-08-28
JP2001257809 2001-08-28

Publications (1)

Publication Number Publication Date
WO2003007045A1 true WO2003007045A1 (en) 2003-01-23

Family

ID=26618421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/007017 WO2003007045A1 (en) 2001-07-10 2002-07-10 Projection optical system production method

Country Status (3)

Country Link
JP (1) JPWO2003007045A1 (en)
TW (1) TW571344B (en)
WO (1) WO2003007045A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003096124A1 (en) * 2002-05-08 2003-11-20 Carl Zeiss Smt Ag Lens consisting of a crystalline material
WO2003077007A3 (en) * 2002-03-12 2004-04-08 Zeiss Carl Smt Ag Objective lens consisting of crystal lenses
WO2005071718A1 (en) 2004-01-27 2005-08-04 Nikon Corporation Optical system, exposure system, and exposure method
WO2006013734A1 (en) * 2004-08-03 2006-02-09 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
WO2006030684A1 (en) * 2004-09-13 2006-03-23 Nikon Corporation Projection optical system, production method for projection optical system, exposure system and exposure method
US7126765B2 (en) 2001-05-15 2006-10-24 Carl Zeiss Smt Ag Objective with fluoride crystal lenses
US7170585B2 (en) 2001-05-15 2007-01-30 Carl Zeiss Smt Ag Projection lens and microlithographic projection exposure apparatus
JP2007033556A (en) * 2005-07-22 2007-02-08 Olympus Corp Lens centering apparatus, lens centering method and lens centering program
JP2007527552A (en) * 2004-02-23 2007-09-27 ショット アクチエンゲゼルシャフト Method for preparing CaF2 lens blanks, especially for 193 nm and 157 nm lithography, with minimal defects
US7292388B2 (en) 2002-05-08 2007-11-06 Carl Zeiss Smt Ag Lens made of a crystalline material
US7471374B2 (en) 2003-05-01 2008-12-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2009086692A (en) * 2005-02-25 2009-04-23 Carl Zeiss Smt Ag Optical system for microlithographic projection exposure apparatus
JP2010501113A (en) * 2006-08-17 2010-01-14 カール・ツァイス・エスエムティー・アーゲー Microlithography projection exposure apparatus and microlithography exposure method
JP2012186466A (en) * 2011-02-16 2012-09-27 Carl Zeiss Smt Gmbh Manufacturing method of microlithography projection exposure apparatus, corresponding projection exposure apparatus and projection objective lens for the same
JP2013058801A (en) * 2006-07-03 2013-03-28 Carl Zeiss Smt Gmbh Method of correcting/repairing lithography projection target instrument

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507620B (en) * 2011-10-18 2013-06-26 丹东奥龙射线仪器有限公司 Device for acquiring crystal diffraction spot

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283119A (en) * 1994-04-14 1995-10-27 Hitachi Ltd Aligner and exposure method
JPH10154657A (en) * 1996-09-27 1998-06-09 Nikon Corp Manufacture of projection optical system, projection aligner, and semiconductor device
JPH1154411A (en) * 1997-07-29 1999-02-26 Canon Inc Projection optical system and projection aligner using the same
US6137626A (en) * 1997-06-24 2000-10-24 Olympus Optical Co., Ltd. Optical system having polarization compensating optical system
WO2000064826A1 (en) * 1999-04-21 2000-11-02 Nikon Corporation Quartz glass member, production method therefor, and projection aligner using it
EP1063684A1 (en) * 1999-01-06 2000-12-27 Nikon Corporation Projection optical system, method for producing the same, and projection exposure apparatus using the same
US6201634B1 (en) * 1998-03-12 2001-03-13 Nikon Corporation Optical element made from fluoride single crystal, method for manufacturing optical element, method for calculating birefringence of optical element and method for determining direction of minimum birefringence of optical element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283119A (en) * 1994-04-14 1995-10-27 Hitachi Ltd Aligner and exposure method
JPH10154657A (en) * 1996-09-27 1998-06-09 Nikon Corp Manufacture of projection optical system, projection aligner, and semiconductor device
US6137626A (en) * 1997-06-24 2000-10-24 Olympus Optical Co., Ltd. Optical system having polarization compensating optical system
JPH1154411A (en) * 1997-07-29 1999-02-26 Canon Inc Projection optical system and projection aligner using the same
US6201634B1 (en) * 1998-03-12 2001-03-13 Nikon Corporation Optical element made from fluoride single crystal, method for manufacturing optical element, method for calculating birefringence of optical element and method for determining direction of minimum birefringence of optical element
EP1063684A1 (en) * 1999-01-06 2000-12-27 Nikon Corporation Projection optical system, method for producing the same, and projection exposure apparatus using the same
WO2000064826A1 (en) * 1999-04-21 2000-11-02 Nikon Corporation Quartz glass member, production method therefor, and projection aligner using it

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7126765B2 (en) 2001-05-15 2006-10-24 Carl Zeiss Smt Ag Objective with fluoride crystal lenses
US7180667B2 (en) 2001-05-15 2007-02-20 Carl Zeiss Smt Ag Objective with fluoride crystal lenses
US7170585B2 (en) 2001-05-15 2007-01-30 Carl Zeiss Smt Ag Projection lens and microlithographic projection exposure apparatus
WO2003077007A3 (en) * 2002-03-12 2004-04-08 Zeiss Carl Smt Ag Objective lens consisting of crystal lenses
US7292388B2 (en) 2002-05-08 2007-11-06 Carl Zeiss Smt Ag Lens made of a crystalline material
WO2003096124A1 (en) * 2002-05-08 2003-11-20 Carl Zeiss Smt Ag Lens consisting of a crystalline material
US7672044B2 (en) 2002-05-08 2010-03-02 Carl Zeiss Smt Ag Lens made of a crystalline material
US7471374B2 (en) 2003-05-01 2008-12-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
WO2005071718A1 (en) 2004-01-27 2005-08-04 Nikon Corporation Optical system, exposure system, and exposure method
JP2007527552A (en) * 2004-02-23 2007-09-27 ショット アクチエンゲゼルシャフト Method for preparing CaF2 lens blanks, especially for 193 nm and 157 nm lithography, with minimal defects
US8102508B2 (en) 2004-08-03 2012-01-24 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
WO2006013734A1 (en) * 2004-08-03 2006-02-09 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
WO2006030684A1 (en) * 2004-09-13 2006-03-23 Nikon Corporation Projection optical system, production method for projection optical system, exposure system and exposure method
US7706074B2 (en) 2004-09-13 2010-04-27 Nikon Corporation Projection optical system, method of manufacturing projection optical system, exposure apparatus, and exposure method
JP4780412B2 (en) * 2004-09-13 2011-09-28 株式会社ニコン Projection optical system, projection optical system manufacturing method, exposure apparatus, and exposure method
JP2009086692A (en) * 2005-02-25 2009-04-23 Carl Zeiss Smt Ag Optical system for microlithographic projection exposure apparatus
JP2007033556A (en) * 2005-07-22 2007-02-08 Olympus Corp Lens centering apparatus, lens centering method and lens centering program
JP4524224B2 (en) * 2005-07-22 2010-08-11 オリンパス株式会社 Lens centering device, lens centering method, and lens centering program
JP2013058801A (en) * 2006-07-03 2013-03-28 Carl Zeiss Smt Gmbh Method of correcting/repairing lithography projection target instrument
JP2010501113A (en) * 2006-08-17 2010-01-14 カール・ツァイス・エスエムティー・アーゲー Microlithography projection exposure apparatus and microlithography exposure method
JP4730675B2 (en) * 2006-08-17 2011-07-20 カール・ツァイス・エスエムティー・ゲーエムベーハー Microlithography projection exposure apparatus and microlithography exposure method
US8675178B2 (en) 2006-08-17 2014-03-18 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus
JP2012186466A (en) * 2011-02-16 2012-09-27 Carl Zeiss Smt Gmbh Manufacturing method of microlithography projection exposure apparatus, corresponding projection exposure apparatus and projection objective lens for the same

Also Published As

Publication number Publication date
JPWO2003007045A1 (en) 2004-11-04
TW571344B (en) 2004-01-11

Similar Documents

Publication Publication Date Title
US6788389B2 (en) Production method of projection optical system
JP4207389B2 (en) Projection optical system, method of manufacturing the same, and projection exposure apparatus using the same
US20030197946A1 (en) Projection optical system, fabrication method thereof, exposure apparatus and exposure method
US8379188B2 (en) Optical system
US6672109B1 (en) Silica glass member, method for producing the same, and projection aligners using the same
WO2003007045A1 (en) Projection optical system production method
KR101541563B1 (en) Illumination optics and projection exposure apparatus
WO2002031570A1 (en) Method of evaluating imaging performance
WO2003046634A1 (en) Projection optical system, exposure device, and exposure method
WO2003088330A1 (en) Projection optical system, exposure system and exposure method
KR100291564B1 (en) Optical member for optical lithography and evaluation method of optical member
EP1586946A2 (en) Optical system of a microlithographic projection exposure apparatus
JP4029838B2 (en) Optical member for optical lithography and its evaluation method
US7706074B2 (en) Projection optical system, method of manufacturing projection optical system, exposure apparatus, and exposure method
JP4189724B2 (en) Exposure apparatus and exposure method
JP2002072080A (en) Projection optical system and exposure device equipped therewith
TW584898B (en) Optical system and exposure apparatus having the optical system
US20090041934A1 (en) Method for manufacturing projection optics
JP2004157349A (en) Manufacturing method for optical system, projection optical system, aligner and aligning method
JP2004253583A (en) Projection optical system, adjustment method and manufacturing method thereof, exposure system, and exposure method
JP2001284249A (en) Optical member for photolithography, method of production and aligner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003512755

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase