WO2003013201A1 - Method for forming device-landing pad of multi-layered printed circuit board - Google Patents

Method for forming device-landing pad of multi-layered printed circuit board Download PDF

Info

Publication number
WO2003013201A1
WO2003013201A1 PCT/KR2001/001480 KR0101480W WO03013201A1 WO 2003013201 A1 WO2003013201 A1 WO 2003013201A1 KR 0101480 W KR0101480 W KR 0101480W WO 03013201 A1 WO03013201 A1 WO 03013201A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
conductive layer
landing pad
forming device
via hole
Prior art date
Application number
PCT/KR2001/001480
Other languages
French (fr)
Inventor
Seong Heon Lee
Original Assignee
Dap Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dap Corporation filed Critical Dap Corporation
Publication of WO2003013201A1 publication Critical patent/WO2003013201A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • H05K1/112Pads for surface mounting, e.g. lay-out directly combined with via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0347Overplating, e.g. for reinforcing conductors or bumps; Plating over filled vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • H05K2201/09518Deep blind vias, i.e. blind vias connecting the surface circuit to circuit layers deeper than the first buried circuit layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0094Filling or covering plated through-holes or blind plated vias, e.g. for masking or for mechanical reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/064Photoresists
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated

Definitions

  • This invention relates to a method for forming device-landing pad of
  • PCB printed circuit board
  • BGA Grid Array
  • a PCB is a primary based device of electronic components being manufactured in the various fields at present.
  • the multi-layered PCB is a primary based device of electronic components being manufactured in the various fields at present.
  • the multi-layered PCB is a primary based device of electronic components being manufactured in the various fields at present.
  • the conventional method comprises essentially
  • processes a1-a9 the step of forming a via hole by using a laser drill through the processes a10-a18, and forming a exposed conductive pattern for interconnecting through the processes a19-a23.
  • a substrate having multi-layered conductive patterns can be
  • the step of forming the via hole comprises the steps of forming a
  • FIG. 2a is a photograph showing the multi-layered PCB
  • Fig. 2b is an enlarged photo
  • FIG. 3 is an enlarged cross-sectional view of
  • the present invention has been made in an effort to solve the above
  • An object of the present invention is to provide a method for forming
  • PCB printed circuit board
  • Another object of the present invention is to provide a method for forming device-landing pad of multi-layered PCB capable of improving an electric connection reliability of components by enhancing the conductivity of an
  • landing pad of multi-layered PCB including the step of forming at least one via
  • the method comprising the steps of: forming a first external
  • the method for forming device-landing pad according to the present invention further comprises a step of grinding the via for flattening a surface of the via.
  • invention further comprises a step of forming a second external conductive layer over the first external conductive layer and the via.
  • Fig. 1a to Fig. 1g show respective processes for illustrating the method
  • Fig. 2a is a photograph showing the multi-layered PCB manufactured by the prior art
  • Fig. 2b is an enlarged photograph showing a portion A of Fig. 2a.
  • Fig. 3 is a cross-sectional view of the via hole formed on the multi- layered PCB of Fig. 2a
  • Fig. 4a to Fig. 4h show respective processes for illustrating the method
  • Fig. 5a is a photograph showing device-landing pads of the multi-layered
  • Fig. 5b is an enlarged photograph showing a portion B of Fig. 5a.
  • Fig. 6 is a cross-sectional view of device-landing pad formed on the multi-layered PCB of Fig. 5a.
  • layered PCB having the conductive pattern over at least three layers.
  • the present invention discloses the conductive pattern formed with
  • Fig. 4a to Fig. 4h show respective processes for illustrating the method for forming device-landing pad of the multi-layered PCB according to a preferred embodiment of the present invention.
  • pad of the multi-layered PCB comprises the steps of forming a first conductive
  • the via hole 1 13 is formed at the laser point 112 using the
  • the first external conductive layer 114 is formed over the surface
  • the third conductive layer 1 10 is connected to the first or second conductive pattern 103a or 107a at
  • the via hole 1 13 is plugged with conductive material such as silver
  • external conductive layer 121 is formed over the surface of the first external conductive layer 114 and the via 120 by the copper plating again at the process b22.
  • a photoresist film 115 is applied over a surface of the second
  • photoresist film 1 15 so as to forming a masking layer at the process b24.
  • conductive pattern 121a, 1 14a, and 1 10a is formed, and then the photoresist film 1 15 is
  • solder-resist 116 is deposited on the etch back portion of the
  • Fig. 5a is a photograph showing device-landing pads of the multi-layered
  • Fig. 5b is an enlarged photograph
  • Fig. 6 is a cross-sectional view of the
  • the device-landing pad for mounting electronic component is flatten by plugging the via hole. This enlarges the contacting
  • the via hole formed on the multi-layered PCB for interconnecting the conductive patterns is plugged and flatten in the present invention such that the contacting surface of the device-landing pad is enlarged, the soldering can be reliably performed, and it is possible to prevent the sold liquid from being flowed into the neighbor via hole and the printing ink from sputtering during the screen printing process.
  • the via hole is plugged with the conductive material and the device landing pad is reinforced by the second external conductive layer formed by the copper plating, electric connectivity between the device landing pad and the component is enhanced, resulting in improving component performance reliability.

Abstract

This invention relates to a method for forming device-landing pad of multi-layered PCB, and more particularly, to a method for foring device-landing pad of a multi-layered PCB by plugging a via hole formed by laser drilling for device-landing and/or forming a via and conductive layer. In order to achieve the objects of the present invention, the method for forming device-landing pad of multi-layered PCB including the step of forming at least one via hole for interconnecting different conductive layer patterns, the method comprising the steps of: forming a first external conductive layer over the a surface of the multi-layered PCB having the via hole; forming a via by plugging the via hole; forming masking layer over a surface of the conductive layer; etching back the first external conductive layer for forming conductive pattern; and removing the masking layer.

Description

METHOD FOR FORMING DEVICE-LANDING PAD OF MULTI-LAYERED
PRINTED CIRCUIT BOARD
BACKGROUND OF THE INVENTION
(a) Field of the Invention
This invention relates to a method for forming device-landing pad of
multi-layered printed circuit board (PCB), and more particularly, to a method for
forming device-landing pads of a multi-layered PCB capable of improving an
electrical contact reliability of components such as Integrated Circuit (IC), Ball
Grid Array (BGA) and etc. as well as soldering property of the device-landing pad by plugging a via hole formed on the PCB and forming plating layer over
the landing pad.
(b) Description of the Related Art
A PCB is a primary based device of electronic components being manufactured in the various fields at present. Currently, the multi-layered PCB
as a thin and small size is applied to a semiconductor package substrate such
as cellular phone, PCS, IMT 2000, Notebook Computer, Palmtop Computer, Camcorder, BGA (ball grid array), CSP (chip scale packaging) and MCM (multi chip module).
In the conventional method for manufacturing the multi-layered PCB,
referring to Fig. 1a to Fig. 1g, the conventional method comprises essentially
the steps of forming a multi-layered substrate as a desired number of layer by forming a plurality of conductive layer insulated each other through the
processes a1-a9, the step of forming a via hole by using a laser drill through the processes a10-a18, and forming a exposed conductive pattern for interconnecting through the processes a19-a23.
Referring to Fig. 1 a to Fig. 1g, the step of forming the multi-layered PCB
comprises the steps of forming a buried via hole 2 through a substrate 1 by
mechanical drilling at the process a1 , forming a first conductive layer 3 on a
surface of the buried via hole and the substrate by plating at least one time at
the process a2, forming a buried via 4 by plugging the buried via hole with a
filler 4 at the process a3, hardening the filler at a predetermined temperature
and time at the process a4, flattening the surface of the substrate and the
buried via by grinding at the process a5, applying a photoresist film 5 over the
buried via 4a and the first conductive layer 3 at the process a6, drawing a
pattern on the photoresist film 5 for forming a mask layer at the process a7,
forming a first conductive pattern 3aby etching the first conducive layer at the
process a8, and removing the film from the first conductive pattern at the
process a9. And, a substrate having multi-layered conductive patterns can be
acquired by repeating the processes a1 to a9 at need.
The step of forming the via hole comprises the steps of forming a
second conductive layer 7 on the substrate at a high temperature and pressure
at the process a10, applying a photoresist film 8 over the surface of the first
conductive layer at the process a1 1 , drawing a pattern on the photoresist film
8for forming a masking layer at the process a12, forming a second conductive
pattern 7aby etching the second conductive layer and removing the film from
the second conductive pattern at the process a13, forming a third conductive
layer over the second conductive pattern at a high temperature and pressure at
the process a14, applying a photoresist film 1 1 over the surface of the second conductive layer at the process a15, drawing a pattern on the photoresist film
11 for forming masking layer at the process a16, forming a third conductive
pattern 10a and a laser point 12 by etching the third conductive layer and
removing the film from the third conductive pattern at the process a17, and
forming a via hole 13 by laser drilling at the laser point at the process a18.
The step of forming the exposed conductive pattern for interconnecting
comprises the steps of forming a external conductive layer 14 over the multi-
layered board at the process a 19, applying a photoresist film 15 over the
surface of the external conductive layer at the process a20, drawing a pattern
on the photoresist film for forming a masking layer at the process a21 , forming a
external conductive pattern 14a and a via pad by etching the external
conductive layer 14 and third conductive layer and removing the film from the
external conductive pattern at the process a22, and depositing a solder-resist
on the etch back portion of the multi-layered board at the process a23. As the above, Fig. 2a is a photograph showing the multi-layered PCB
according to the conventional method, and Fig. 2b is an enlarged photo
showing a portion A of Fig. 2a, and Fig. 3 is an enlarged cross-sectional view of
the via pad formed on the multi-layered PCB of Fig. 2a. Referring to Fig. 2a, Fig.
2b and Fig. 3, however, because the conventional laser via hole has a little contact region for bonding electronic components and laser via hole, the
electronic components cannot be accurately landed and bonded to the laser via hole such that the prior art reduces the reliability of the multi-layered PCB. Furthermore, if IC and BGA are landed on the PCB, a solder ball is created at
the lower end of the PCB such that prior art has a disadvantage generating a short between components and a solder ball.
SUMMARY OF THE INVENTION
The present invention has been made in an effort to solve the above
problems of the prior art.
An object of the present invention is to provide a method for forming
device-landing pad of multi-layered printed circuit board (PCB) capable of
improving connecting and bonding property between multi-layered PCB and
electronic components by extending contact region of electronic components
and a board and a via hole created on the multi-layered PCB for landing electronic components.
Another object of the present invention is to provide a method for forming device-landing pad of multi-layered PCB capable of improving an electric connection reliability of components by enhancing the conductivity of an
external conductive pattern.
In order to achieve the above objects, the method for forming device-
landing pad of multi-layered PCB including the step of forming at least one via
hole for interconnecting different conductive layer patterns according to the
present invention, the method comprising the steps of: forming a first external
conductive layer over the a surface of the multi-layered PCB having the via hole; forming a via by plugging the via hole; forming masking layer over a
surface of the conductive layer; etching back the first external conductive layer for forming conductive pattern; and removing the masking layer.
Also, the method for forming device-landing pad according to the present invention further comprises a step of grinding the via for flattening a surface of the via.
The method for forming device-landing pad according to the present
invention further comprises a step of forming a second external conductive layer over the first external conductive layer and the via.
BRIEF DESCRIPTION OF THE DRAWINGS
The above objects and other features of the present invention will
become more apparent by describing the preferred embodiment thereof with
reference to the accompanying drawings, in which:
Fig. 1a to Fig. 1g show respective processes for illustrating the method
for forming the multi-layered PCB according to a prior art.
Fig. 2a is a photograph showing the multi-layered PCB manufactured by the prior art
Fig. 2b is an enlarged photograph showing a portion A of Fig. 2a.
Fig. 3 is a cross-sectional view of the via hole formed on the multi- layered PCB of Fig. 2a
Fig. 4a to Fig. 4h show respective processes for illustrating the method
for forming device-landing pad of the multi-layered PCB according to a
preferred embodiment of the present invention. Fig. 5a is a photograph showing device-landing pads of the multi-layered
PCB manufactured according to the present invention.
Fig. 5b is an enlarged photograph showing a portion B of Fig. 5a.
Fig. 6 is a cross-sectional view of device-landing pad formed on the multi-layered PCB of Fig. 5a.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A preferred embodiment of the present invention will be described
hereinafter with reference to the accompanying drawings. A preferred embodiment of the present invention provides the method
for forming device-landing pad for mounting electronic components on the multi-
layered PCB having the conductive pattern over at least three layers.
Particularly, the present invention discloses the conductive pattern formed with
three conductive layers in the multi-layered PCB, however the present invention
is not limited by the embodiments to be described hereinbelow, and it should be
obvious to a person skilled in the art that modifications and alterations could be
made to the embodiments hereinbelow.
Fig. 4a to Fig. 4h show respective processes for illustrating the method for forming device-landing pad of the multi-layered PCB according to a preferred embodiment of the present invention.
Referring to Fig. 4a to Fig. 4h, the method for forming device-landing
pad of the multi-layered PCB comprises the steps of forming a first conductive
pattern 103aon a substrate 101 through the processes b1-b9, forming a second
conductive pattern 107a on the surface of the board through the processes b10-
b13, forming a third conductive pattern 110a through the processes b13-b17, forming at least one via hole 113 using a laser drill at the process b18, forming
a first external conductive layer 114 for interconnecting the conductive patterns b19, forming a via 120 by plugging the via hole with a filler such as silver paste, copper paste, or conductive resin at the process b20, grinding the via for flatting
a surface thereof at the process b21 , forming a second external conductive
layer 121 over the first external conductive layer and via at the process b22,
and forming an exposed conductive pattern through the processes b23-b26.
The method for forming the device-landing pad according to the
preferred embodiment of the present invention will be described in more detail
hereinbelow.
Since the processes from b1 to b19 for forming a plurality of conductive
patterns interconnected each other on the substrate are well known in the multi-
layered PCB-manufacturing field as explained in the prior art, only the features
of the present invention will be described.
Once the third conductive pattern 1 10a and laser point 112 are formed
by etching the third conductive layer 110 and removing the photoresist 111 at
the process b17, The via hole 1 13 is formed at the laser point 112 using the
laser drilling at the process b18.
Next, the first external conductive layer 114 is formed over the surface
of the multi-layered board by the copper plating such that the third conductive layer 1 10 is connected to the first or second conductive pattern 103a or 107a at
the process b19.
The via hole 1 13 is plugged with conductive material such as silver
paste, copper paste, or conductive resin so as to form the via 120 at the process b20 and then the via 120 is flatten by grinding at the process b21.
After the surface of the multi-layered board is flattened, the second
external conductive layer 121 is formed over the surface of the first external conductive layer 114 and the via 120 by the copper plating again at the process b22.
Next, a photoresist film 115 is applied over a surface of the second
external conductive layer 121 at the process b23 and a pattern is drawn on the
photoresist film 1 15 so as to forming a masking layer at the process b24.
Consequently, the first and second external conductive layers 114 and
121 and third conductive layer 110 are etched back such that conductive pattern 121a, 1 14a, and 1 10a is formed, and then the photoresist film 1 15 is
removed at the process b25.
Finally, solder-resist 116 is deposited on the etch back portion of the
multi-layered board at the process b26.
Fig. 5a is a photograph showing device-landing pads of the multi-layered
PCB according to the present invention, Fig. 5b is an enlarged photograph
showing a portion B of Fig. 5a, and Fig. 6 is a cross-sectional view of the
device-landing pad formed on the multi-layered PCB of Fig. 5a.
As shown in the drawings, the device-landing pad for mounting electronic component is flatten by plugging the via hole. This enlarges the contacting
surface of the electric component such that the electric connection reliability of the component is enhanced and the bonding property of the soldering is
improved.
Of course, only plugging the via hole with the conductive material, it is
possible to improve the electric connectivity of the component and bonding property of the soldering.
While this invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. As described above, the via hole formed on the multi-layered PCB for interconnecting the conductive patterns is plugged and flatten in the present invention such that the contacting surface of the device-landing pad is enlarged, the soldering can be reliably performed, and it is possible to prevent the sold liquid from being flowed into the neighbor via hole and the printing ink from sputtering during the screen printing process.
Furthermore, since the via hole is plugged with the conductive material and the device landing pad is reinforced by the second external conductive layer formed by the copper plating, electric connectivity between the device landing pad and the component is enhanced, resulting in improving component performance reliability.

Claims

WHAT IS CLAIMED IS:
1. A method for forming device-landing pad of a multi-layered printed circuit board (PCB) including the step of forming at least one via hole for interconnecting different conductive layer patterns, the method comprising the steps of: forming a first external conductive layer over the a surface of the multi- layered PCB having the via hole; forming a via by plugging the via hole; forming masking layer over a surface of the conductive layer; etching back the first external conductive layer for forming conductive pattern; and removing the masking layer.
2. A method for forming device-landing pad of claim Ifurther comprises a step of grinding the via for flattening a surface of the via.
3. A method for forming device-landing pad of claim 1 further comprises a step of forming a second external conductive layer over the first external conductive layer and the via.
4. A method for forming device-landing pad of claim 2 further comprises a step of forming a second external conductive layer over the first external conductive layer and the via.
5. A method for forming device-landing pad of claim 4 further comprises a step of etching back the second external conductive layer.
6. A method for forming device-landing pad of claim 1 wherein the via is a conductive material.
7. A method for forming device-landing pad of claim 5 wherein the conductive material is silver.
8. A method for forming device-landing pad of claim 5 wherein the conductive material is copper.
9. A method for forming device-landing pad of claim 5 wherein the conductive material is a conductive resin.
10. A method for forming device-landing pad of claim 3 wherein the second external conductive layer is formed by using copper plating.
PCT/KR2001/001480 2001-08-02 2001-08-31 Method for forming device-landing pad of multi-layered printed circuit board WO2003013201A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020010046850A KR20030011433A (en) 2001-08-02 2001-08-02 Manufacturing method for hidden laser via hole of multi-layered printed circuit board
KR2001/46850 2001-08-02

Publications (1)

Publication Number Publication Date
WO2003013201A1 true WO2003013201A1 (en) 2003-02-13

Family

ID=19712822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2001/001480 WO2003013201A1 (en) 2001-08-02 2001-08-31 Method for forming device-landing pad of multi-layered printed circuit board

Country Status (2)

Country Link
KR (1) KR20030011433A (en)
WO (1) WO2003013201A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1545175A2 (en) * 2003-12-18 2005-06-22 Endicott Interconnect Technologies, Inc. Method of providing printed circuit board with conductive holes and board resulting therefrom
CN102026471B (en) * 2009-09-18 2013-05-08 欣兴电子股份有限公司 Circuit board and manufacturing method thereof
CN103428993A (en) * 2012-05-18 2013-12-04 揖斐电株式会社 Wiring board and method for manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100509201B1 (en) * 2003-04-22 2005-08-18 주식회사 디에이피 Method of manufacture for multi-layered printed circuit board
KR100965341B1 (en) * 2007-12-20 2010-06-22 삼성전기주식회사 Method of Fabricating Printed Circuit Board
CN112566374B (en) * 2020-11-16 2022-07-12 奥士康科技股份有限公司 Control method for solder mask plug hole of PCB double-sided mechanical back drilling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627345A (en) * 1991-10-24 1997-05-06 Kawasaki Steel Corporation Multilevel interconnect structure
US6015520A (en) * 1997-05-15 2000-01-18 International Business Machines Corporation Method for filling holes in printed wiring boards
KR20000052162A (en) * 1999-01-30 2000-08-16 정해원 Multi-layer PCB and method for manufacturing the same
US6190493B1 (en) * 1995-07-05 2001-02-20 Hitachi, Ltd. Thin-film multilayer wiring board and production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627345A (en) * 1991-10-24 1997-05-06 Kawasaki Steel Corporation Multilevel interconnect structure
US6190493B1 (en) * 1995-07-05 2001-02-20 Hitachi, Ltd. Thin-film multilayer wiring board and production thereof
US6015520A (en) * 1997-05-15 2000-01-18 International Business Machines Corporation Method for filling holes in printed wiring boards
KR20000052162A (en) * 1999-01-30 2000-08-16 정해원 Multi-layer PCB and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1545175A2 (en) * 2003-12-18 2005-06-22 Endicott Interconnect Technologies, Inc. Method of providing printed circuit board with conductive holes and board resulting therefrom
EP1545175A3 (en) * 2003-12-18 2007-05-30 Endicott Interconnect Technologies, Inc. Method of providing printed circuit board with conductive holes and board resulting therefrom
CN102026471B (en) * 2009-09-18 2013-05-08 欣兴电子股份有限公司 Circuit board and manufacturing method thereof
CN103428993A (en) * 2012-05-18 2013-12-04 揖斐电株式会社 Wiring board and method for manufacturing the same
US9480157B2 (en) 2012-05-18 2016-10-25 Ibiden Co., Ltd. Wiring board and method for manufacturing the same

Also Published As

Publication number Publication date
KR20030011433A (en) 2003-02-11

Similar Documents

Publication Publication Date Title
US7422978B2 (en) Methods of manufacturing interposers with flexible solder pad elements
US8115104B2 (en) Circuit board with buried conductive trace formed thereon and method for manufacturing the same
EP1827067B1 (en) Method of forming a circuit substrate
US20080258293A1 (en) Semiconductor device package to improve functions of heat sink and ground shield
US6495912B1 (en) Structure of ceramic package with integrated passive devices
US5636104A (en) Printed circuit board having solder ball mounting groove pads and a ball grid array package using such a board
US20060134826A1 (en) Methods of forming semiconductor packages
US7678612B2 (en) Method of manufacturing semiconductor device
US9324580B2 (en) Process for fabricating a circuit substrate
US8022513B2 (en) Packaging substrate structure with electronic components embedded in a cavity of a metal block and method for fabricating the same
US8436463B2 (en) Packaging substrate structure with electronic component embedded therein and method for manufacture of the same
US8471375B2 (en) High-density fine line structure and method of manufacturing the same
JPH1032224A (en) Semiconductor device and manufacture thereof
US6708398B2 (en) Substrate for use in package of semiconductor device, semiconductor package using the substrate, and methods for manufacturing the substrate and the semiconductor package
JP2009528707A (en) Multilayer package structure and manufacturing method thereof
WO2003013201A1 (en) Method for forming device-landing pad of multi-layered printed circuit board
KR100923501B1 (en) Manufacturing method of package board
TW531818B (en) Resin encapsulated BGA-type semiconductor device
US6429049B1 (en) Laser method for forming vias
CN111463189B (en) Flexible device based on system-in-package and manufacturing method thereof
KR20030011434A (en) Manufacturing method for hidden laser via hole of multi-layered printed circuit board
KR200257974Y1 (en) Multi-layered printed circuit board having hidden laser via hole
KR200257975Y1 (en) Multi-layered printed circuit board having hidden laser via hole
US20080303150A1 (en) High-Density Fine Line Structure And Method Of Manufacturing The Same
JP2002343923A (en) Semiconductor module and manufacturing method therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EE ES FI GB GD GE GH GM HU ID IL IN IS JP KE KG KP KZ LC LR LS LT LU LV MA MD MG MK MN MX MZ NO NZ PL PT RO RU SD SE SG SK SL TJ TM TR TT TZ UA UG US UZ YU ZA

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZW AM AZ BY KG KZ MD TJ TM AT BE CH CY DE DK ES FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP